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High Performance Computing linear algorithms for two-phase

flow in porous media

Robert Eymard∗, Cindy Guichard†, Roland Masson‡

March 11, 2014

Abstract

We focus here on the difficult problem of linear solving, when considering implicit scheme for two-
phase flow simulation in porous media. Indeed, this scheme leads to ill-conditioned linear systems,
due to the different behaviors of the pressure unknown (which follows a diffusion equation) and
the saturation unknown (mainly advected by the total volumic flow). This difficulty is enhanced
by the parallel computing techniques, which reduce the choice of the possible preconditioners. We
first present the framework of this study, and then we discuss different algorithms for linear solving.
Finally, numerical results show the performances of these algorithms.

1 Introduction

We consider the flow of two immiscible compressible phases, the water phase (denoted w) and the
gas phase (denoted g), in porous media; each phase is only composed of one component. In order
to characterize the mathematical coupling of diffusion and advection, we consider the case where the
capillary pressure effects can be neglected in front of the high level of pressure gradients imposed by
the production and injection wells. The mass conservation equations are therefore the following,

φ ∂t( ρα(P ) Sα ) + div ( ρα(P ) Vα ) = Qα, α = w, g , (1)

together with the generalized Darcy law

Vα = −
krα(Sα)

µα(P )
Λ ( ∇P − ρα(P ) g ) , α = w, g . (2)

In equations (1) and (2), the main unknowns are the pressure P and one saturation, for example
Sw, since the phase saturations are linked by Sw + Sg = 1. Additionally, φ is the porosity, Λ is
the absolute permeability tensor (these values only depending on the rock material), g is the gravity
acceleration, and, for each phase α = w, g, ρα represents the bulk density, krα is the relative perme-
ability (nonnegative increasing function with respect to Sα), µα is the viscosity and Qα is the source
term that represents the contribution of the wells. The ratio krα

µα
is called the mobility of the phase

α. These equations are considered in a time-space domain (0, tf) × Ω, where Ω is a polygonal open
bounded and connected subset of R

3, and tf > 0 is the time duration of the simulation. Finally,
these equations are considered together with homogeneous Neumann conditions at the boundary of
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the domain Ω, and initial conditions on the pressure and on the saturation.

The approximation of the solution to (1-2) in the industrial framework with large time and space
scales, requires High Performance Computing techniques. This implies to handle the difficult problem
of solving the linear systems which arise from fully coupled schemes and domain decomposition, using
multi-threading algorithms: these schemes happen to be the only ones used for the approximation of
(1-2) in the industrial framework. For this purpose, we consider here the use of PETSc [5] together
with external preconditioners libraries like MUMPS [4] and HYPRE [2]. Note that other packages,
like DUNE [1], are available. In the example of a gas storage case [10], a very good scalability has
been observed using Boomer AMG [2] as a preconditioner on the full system, although AMG is
usually not adapted to solve the full system but only the pressure elliptic block. But for more general
situations of two-phase flow (such as the case considered in the numerical example of this paper), this
strategy fails. This has led to the development of efficient Combinative-AMG preconditioners [11],
combining typically an AMG preconditioner on the pressure block with an ILU preconditioner on
the full system. This paper focuses on an alternative algorithm, based on the PETSc environment,
for the resolution of the linear systems issued from a fully implicit scheme for the approximation of
(1-2). Its main advantages are the following:

1. It makes a bridge between sequential and fully implicit schemes.

2. It leads to the sequential use of robust solvers suited for the nature of each unknown.

This paper is organized as follows. In Section 2, we present a discretization scheme and its parallel
implementation. We then discuss in Section 3 the fix-point methods used for the approximation of the
solution to the nonlinear systems of equations (3-4). Some numerical results, in Section 4, illustrate
our method.

2 Discretization and parallel implementation

In order to study the algorithms for solving the linear systems in a parallel framework, we have
extended to the two-phase flow model a recent work (see [6]) done for a linear parabolic equation.
For the implementation details, we use below the same notations as [6], thus we focus on the specific
points regarding the discretization of two-phase flow. Hence, the continuous model (1-2) is discretized
using an Euler fully implicit method in time, and the VAG scheme (Vertex Approximate Gradient
scheme introduced in [7]) in space with up-winding of the mobilities according to the sign of the
Darcy fluxes. We emphasize that the VAG scheme is a symmetric scheme based on a hybrid for-
mulation, both in terms of vertices and cells unknowns, but in the resulting linear system the cell
unknowns are algebraically eliminated without any fill-in. The VAG scheme involves linear fluxes
between a cell and its vertices and its implementation matches with that of a standard Multi-Points
Flux Approximation. We refer to [8, 9] for details on the VAG scheme for multiphase flow in porous
media in the case of a sequential implementation.

Parallel discretization. We consider a mesh of the domain Ω (the elements of the mesh are called
cells in the following). As in [6, Sub-section 2.1], we denote the set of processes by P, and we consider
a partition of the mesh. For a given process p ∈ P, we denote by Mp the set of its own cells (in
practice selected by applying the Metis package [3]) and by M

p
the set of its overlapped cells which

is defined as the set of all cells sharing a vertex with Mp. Then we can define the overlapping
decomposition of the set of vertices as follows:

V
p
=

⋃

K∈M
p

VK , p ∈ P,

where VK is the set of the vertices of a given cell K. Finally, the set of the own vertices of a process
p ∈ P, denoted Vp, is obtained by the application of a rule detailed in [6, Sub-section 2.1]. We then
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discretize the continuous equations (1-2) on each process p, for each phase α = w, g, by writing

|s|

δt(n)

(
ρα(P

(n+1)
s

)S(n+1)
α,s − ρα(P

(n)
s

)S(n)
α,s

)
−

∑

K∈Ms

M
up,(∗)
α,Ks

V
(n+1)
α,K→s

= 0

∀s ∈ Vp
, (3a)

|K|

δt(n)

(
ρα(P

(n+1)
K )S

(n+1)
α,K − ρα(P

(n)
K )S(n)

α,s

)
+

∑

s∈VK

M
up,(∗)
α,Ks

V
(n+1)
α,K→s

= |K|Q
(n+1)
α,K

∀K ∈ M
p
, (3b)

together with the Darcy fluxes (see [8, Sub-sections 3.1.2 and 3.2])

V
(n+1)
α,K→s

=
∑

s
′∈VK

a
s
′

K,s

(
P

(n+1)
K − P

(n+1)

s
′ + ρα(P

(n)
K )g · (xK − x

s
′)
)
. (4)

In (3-4), we use the following notations: Ms is the set of cells K such that s ∈ VK , |K| (resp. |s|)
is the porous volume associated to a cell K (resp. to a vertex s), computed from a redistribution of
the total porous volume of the space domain with respect to the mesh and the rock type properties
[8, 9], xK ∈ R

3 (resp. xs ∈ R
3) denotes the coordinates of the center of the cell K (resp. of the vertex

s). Note that the VAG scheme construction does not use the geometry of the control volumes s ∈ V
and K ∈ M but only their volumes. For n∈N, δt(n) = t(n+1) − t(n) is the time step between times
t(n+1) and t(n). For any control volume I (I = K or I = s), P

(n)
I (resp. S

(n)
α,I) is an approximation of

P (resp. of Sα) in I at time t(n). as
′

K,
s
is computed with respect to the mesh and the permeability

tensor Λ [8, 9]. M
up,(∗)
α,Ks

denotes the upstream mobility of the phase α and is defined by

M
up,(∗)
α,Ks

=

(

ρα(P
(n)
Ks

)
krα(S

(∗)
α,Ks

)

µα(P
(n)
Ks

)

)

,

where Ks denotes the cell K if V
(n+1)
α,K→s

> 0, or the vertex s otherwise. The upper index (∗) stands for
(n) (ImPES scheme) or (n+ 1) (fully implicit scheme); this point is reviewed in Section 3. Finally,

Q
(n+1)
α,K is the possible source term if any well is open through cell K.

As usual, no special numerical treatment is needed for taking into account the homogeneous Neumann
boundary conditions (see [8, 9]). The set of equations (3-4) leads to a system of nonlinear equations
at each time step. This system is solved by a fix-point algorithm based on the Newton-Raphson
method (up to a possible under-relaxation in order to prevent from nonconvergence behaviors).
Thus, the unknowns of the resulting discrete problem are, on each process p ∈ P, the variations
of (P

(n+1)
I )I∈V

p
∪M

p and (S
(n+1)
w,I )I∈V

p
∪M

p between two fix-point iterations. As in [6, Sub-section
2.4], their values are obtained through the construction of rectangular linear systems on each process
p ∈ P and, as mentioned above, a consequence of equations (3-4) is that the cell unknowns can be
eliminated by a Schur complement without fill-in, in order to reduce the linear system to the vertices
unknowns. Thanks to our general definition of the overlap, the assembling step may be performed
locally on each process without communication.

3 Fix-point methods

This section presents the fix-point method used in our parallel implementation, and its implementa-
tion thanks to open-source libraries. The variation of the vertices unknowns between two fix-point
iterations is denoted as follows, omitting the time superscript (n+1) and the Newton iteration index
for the sake of clarity,

U
p =

(
(△Ps)

s∈V
p , (△Sw,s)

s∈V
p

)
, ∀p ∈ P.
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If the fix-point method were exactly the Newton method, then Up would be the solution of a linear
system over all processes p, under the form

(
A

p
PP A

p
PS

A
p
SP A

p
SS

)
U

p =

(
B

p
P

B
p
S

)
, (5)

where, for u1, u2 = P, S, the vectors right-hand-side B
p
u1 belong to R

Vp

and the sub-matrices Ap
u1,u2

belong to R
Vp

⊗ R
Vp

.

Then, we define the diagonal blocks, of size 2× 2, by

D
s =

(
A

p
PP (s, s) A

p
PS(s, s)

A
p
SP (s, s) A

p
SS(s, s)

)
, ∀s ∈ Vp

, ∀p ∈ P,

where A
p
u1,u2(s, s) is the term associated to the equation on s and the unknown on s of the sub-

matrix A
p
u1,u2. We then left-multiply the system (5) by the square matrix [diag(Ds, s ∈ Vp)]−1 ∈

R
(Vp)2 ⊗ R

(Vp)2 . We then get the following linear system

(
Â

p
PP Â

p
PS

Â
p
SP Â

p
SS

)

U
p =

(
B̂

p
P

B̂
p
S

)

, (6)

where the new right-hand-side and sub-matrices have the same dimension as in (5) but now satisfy

Â
p
PP (s, s) = 1, Â

p
PS(s, s) = 0, Â

p
SP (s, s) = 0, Â

p
SS(s, s) = 1, (7)

for all vertices s ∈ Vp, and for any process p ∈ P.
Our implementation of the sequential fix-point scheme allows the choice between the three following
schemes (in all cases, the solution at own and ghost cells is computed locally on each process p ∈ P
by Schur complement).

1. The ImPES scheme, for Implicit in Pressure and Explicit in Saturation, is obtained by taking
(∗) = (n) in (3). This means that the linear system, under the form (6), is such that Â

p
PS = 0 and

Â
p
SS(s, s) = 1 if s ∈ Vp, and Â

p
SS(·, ·) = 0 otherwise. Hence the resolution of (6) first implies a full

resolution on all vertices of the mesh for the equation

Â
p
PP (△Ps)

s∈Vp = B̂p. (8)

This sub-system is transferred line by line to PETSc which provides the solution vector on pressure
variations (△Ps)s∈Vp at own vertices for each process p ∈ P. The pressure variations at own and
ghost vertices (△Ps)

s∈Vp , p ∈ P is obtained by a synchronization of the vertices. Then the saturation
variations at own vertices are immediately obtained from (6) and the saturation variations at ghost
vertices are obtained by a second synchronization of the vertices. Note that the matrix A

p
PP has the

main properties of a finite element matrix for a diffusion problem. Therefore, in PETSc, it is standard
to use Algebraic Multi-Grid preconditioning for the resolution of these linear systems. Unfortunately,
the ImPES scheme implies a limit on the time step, for standard stability reasons, which is generally
not compatible with industrial requirements.

2. The fully implicit scheme is obtained by taking (∗) = (n + 1) in (3) (which implies that

the matrices Âp
PS do no longer vanish) and then to solve the coupled linear system (6) with a unique

linear solver issued from the PETSc library. In this case, PETSc provides the solution on both pres-
sure and saturation variations at own vertices for each process p ∈ P. The variations at the unknowns
at the ghost vertices are then obtained by synchronization. As discussed in the introduction of this
paper, this strategy implies the implementation of Combinative preconditioners [11]. The following
sequential scheme proposes a related but simpler to implement approach.
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3. The sequential scheme consists in only approximately solving the linear systems (6), thanks to
the following algorithm, based on the combination of adapted preconditioners on both the pressure
and saturation blocks of the full system. For any process p ∈ P, we consider the Gauss-Seidel type
method,

∀s ∈ Vp, △S
{0}
w,s = 0, (9a)

Â
p
PP (△P

{k+1}
s

)
s∈Vp + Â

p
PS(△S

{k}
w,s )s∈Vp = B̂p (9b)

Â
p
SP (△P

{k+1}
s

)
s∈Vp + ÂSS(△S

{k+1}
w,s )

s∈Vp = B̂s, (9c)

where in (9), the upper index k = 0, . . . ,M is corresponding to the sequential scheme iterations.
Hence, if the integer M is large enough, this algorithm leads to a fix point method for solving the
linear systems (6) issued from Newton’s method applied to the fully implicit scheme. Nevertheless,
we take in practice M ≤ 5 to ensure a reasonable wall clock time (denoted by WCT in the tables).
The resolution of (9), at each scheme iteration k+1, requires to solve the first parallel linear system
(9b) which has the same skeleton as (8) issued from the ImPES scheme. Its resolution by PETSc

provides the solution vector on pressure variations (△P
{k+1}
s )s∈Vp at own vertices for each process

p ∈ P. The pressure variations at own and ghost vertices is still obtained by a synchronization of the
vertices. Then the saturation variations is obtained by solving (9c). This implies the assembling of
a second parallel linear system, once again solved by PETSc. This provides the saturation variations
at own vertices for each process p ∈ P, and a synchronization step concludes the iteration of the
method. In terms of cost of communication, this sequential method is close to that resulting from the
fully implicit scheme, if the total (sum on k) number of iterations of its two successive solvers is close
to the number of iterations of the unique linear solver used for the fully implicit method. To achieve
this, a very efficient strategy is then to specify the residual tolerance ε(k) of these two resolutions
with respect to the value of k. We have implemented the relation ε(k + 1) = ε(k)2. This leads to a
very small number of linear solver iterations for the first values of k.

4 Numerical results

We now consider a two-phase flow on a 3D ”five-spot pattern”, i.e. with 4 vertical injection wells (at
each corner of the domain) and 1 vertical production well (at the center of the domain). The geometry
and the permeability field of the test case is illustrated by Figure 1 (right side). The cluster used is
composed of 32 processors Intelr Xeonr CPU E5-4620 with frequency 2.20GHz. Three successive
meshes have been built (with resp. 101×101×12, 201× 201×12 and 401×401×12 cells), and we
focus on the beginning of the simulation where the pressure and saturation variations are the highest.
Referring to Section 3: firstly, the ImPES scheme is not efficient in front of the highest variations
of the unknowns; secondly, we did not find any efficient preconditioner for the coupled system in
the PETSc framework, involving a strong motivation for exploring the sequential algorithm which is
simpler to implement than a Combinative-AMG preconditioner.
Let us first comment the results obtained with 32-processors runs. We present in Figure 1 (left side)
the residual in function of the Newton iterations, for different values of M (see Section 3). This
figure shows that the convergence rate is only linear for M = 1, and is more and more quadratic
as M increases, since the scheme becomes closer to the pure Newton method. Table 1 exhibits the
wall clock times, the total number of Newton iterations, and of solver iterations for the pressure
resolution and the saturation resolution. For the ill-conditioned pressure block, the preconditioner
is 1 V-cycle of boomer AMG of HYPRE with Gauss Seidel relaxation, whereas for the much better
conditionned saturation block, we selected the Jacobi preconditioner. The final residual reduction
specified for each linear resolution is ε(M) = 10−5. For these numerical tests we imposed a reduction
of Newton residual equal to 10−6. This criterion has been selected in order to impose a high precision
in the nonlinear resolution, hence indicating the robustness of the algorithm with respect to severe
convergence requirements. We observe that an optimum, both with respect to the wall clock time
and the number of Newton iterations, is obtained with M = 3.
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6 time steps on the
101× 101× 12 mesh

7 time steps on the
201× 201× 12 mesh

4 time steps on the
401× 401× 12 mesh

WCT init (s) 8 27 110
M 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

WCT Newton (s) 46 38 41 61 72 353 337 309 391 449 1831 1638 1631 1905 2252
♯Newton 57 42 38 38 38 85 53 44 45 44 65 40 33 31 32
♯iter/P 739 737 717 788 809 699 585 558 638 654 722 577 520 540 593
♯iter/S 143 161 168 202 239 255 250 238 275 308 239 228 210 210 245

Table 1: Results on the three meshes with 32 processors: “WCT init” denotes the wall clock time for
initialization operations (in particular including mesh reading and partitioning), “WCT Newton” is the
wall clock time for nonlinear iterations with total number ♯Newton, ♯iter/P (resp. /S) total number of
pressure (resp. saturation) linear iterations.

♯proc. 1 2 4 8 16 32
total WCT (s) 3214 1743 1039 655 460 336

♯Newton 45 45 45 45 45 44
♯iter/P 569 560 570 562 562 558
♯iter/S 243 244 243 244 243 238

Table 2: Results for 7 time steps on the 201 × 201 × 12 mesh and M = 3 (the total Wall Clock Time
includes the initialization and Newton iteration times).

The scalability results presented in Table 2 are similar to those of [10]. The parallel efficiency is
reduced from 16 to 32 processors due to a too small number of unknowns per processor in the AMG
preconditioner for this problem size (see [10]). They also show a very good stability of the linear
algorithms with respect to the increase of the number of processors.

Figure 1: Left: residual with respect to the Newton iteration at the first time step of 401×401×12 mesh.
Right: random log normal heterogeneous permeability tensor on the same mesh.
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