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A FLAG STRUCTURE ON A CUSPED HYPERBOLIC

3-MANIFOLD WITH UNIPOTENT BOUNDARY HOLONOMY

ELISHA FALBEL AND RAFAEL SANTOS THEBALDI

Abstract. A Flag structure on a 3-manifold is an (X,G) structure where
G = SL(3,R) and X is the space of flags on the 2-dimensional projective
space. We construct a flag structure on a cusped hyperbolic manifold with
unipotent boundary holonomy. The holonomy representation can be obtained
from a punctured torus group representation into SL(3,R) which is equivariant
under a pseudo-Anosov.

1. Introduction

A Flag structure on a 3-manifold is an (X,G) structure where G = SL(3,R) and
X is the space of flags on the 2-dimensional projective space. That is the space of
pairs: point and line containing it. The most direct construction of such structures
starts with a real projective surface or orbifold. The projectivization of its tangent
bundle is a Seifert manifold and has a natural flag structure. Other constructions on
Seifert manifolds are studied in [1]. Note that projective structures on 3-manifolds
concern instead the group SL(4,R) (see [3]).

Representations of fundamental groups of three manifolds into SL(3,R) were
obtained in [6] following the method described in [2]. A fundamental question is
whether these representations correspond to holonomies of flag structures on the
manifold.

The goal of this paper is to construct a flag structure on a cusped hyperbolic
manifold with unipotent boundary holonomy (see Theorem 6.8). We introduce a
general method of construction via gluings of tetrahedra which are defined on the
flag space. The tetrahedra are canonical up to a finite choice related to an order on
the 0-skeleton of an ideal triangulation of the manifold once one fixes a decoration
(that is a choice of a flag at each vertex) satisfying certain compatibility conditions
(see [2]). Definitions of simplices in Grassmanian spaces (although not containing
the case of flag space) were also considered in [7] and inspired us for our definition
of tetrahedron.

The method presented here can be considered as a flag structure analog of
Thurston’s construction of hyperbolic structures on cusped manifolds by gluing
ideal hyperbolic tetrahedra ([8]) and of the construction of CR structures as in [5].

The holonomy representation of the structure we obtained is not faithful. It
turns out that the manifold m009 we analyzed here has holonomy group contained
in a triangle group of type (3, 3, 5) (see the end of the appendix). An isomorphic
triangle group was obtained in [4] where the holonomy representation has values in
PU(2, 1). These representations are Galois conjugates as explained in [6], indeed,
they are all parametrized by solutions of a degree four irreducible polynomial in
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one variable. Two solutions correspond to conjugate representations in PU(2, 1)
and the other two to two dual flag structures.

It is interesting to remark that the manifold m009 is fibered over the circle with
fiber a punctured torus. The representation into SL(3,R) of the fiber surface group
is then equivariant with respect to the mapping class group element defining the
bundle.

We thank N. Bergeron, M. Deraux, A. Guilloux, Neil Hoffman and P.-V. Koseleff
for stimulating discussions. This work was partially financed by an ANR project
SGT(Structures Géométriques Triangulées). R. Santos Thebaldi is supported by
CAPES Brazil and partially supported by UFOP. CAPES - Proc. n. BEX 9599/11-
8. He also thanks FAPEMIG Brazil for financial support (CEX-APQ-01056-08).

2. Flag structures on 3-manifolds

A Flag structure on a 3-manifold is an (X,G) structure where X is a homoge-
neous space described in the following paragraph and G = SL(3,R) = PGL(3,R).

The homogeneous space X is the space of flags in P(R3). An affine flag in
V = R

3 is a couple (line, plane), the line belonging to the plane. They project to
flags in P(V ), that is, couples (point, line). Using the dual vector space V ∗ and the
projective spaces P(V ) and P(V ∗), define the spaces of flags Fl by the following:

Fl = {([x], [f ]) ∈ P(V )× P(V ∗) | f(x) = 0}.
The action of SL(3,R) on V induces an action on P(V )×P(V ∗). Indeed, identify

V and V ∗ using the canonical scalar product and then, via this identification, the

contragredient action (that is g.v = (g−1)
T
v) on V ∗. We note π1 and π2 the two

projections of Fl into P(V ) and P(V ∗) respectively.
Observe that

Fl = SL(3,R)/B,

where B is the Borel subgroup of upper-triangular matrices in SL(3,R). The flag
space is identified to the projectivization of the tangent bundle to P (V ) and the
differential action of SL(3,R) on the tangent bundle induces the above action.
Observe that, in fact, SL(3,R) acts on the unit tangent bundle of P (V ) (which has
S3 as a double cover) and therefore the double cover of SL(3,R) (which is simply
connected) acts on the sphere S3.

2.1. Definition. A flag structure on a 3-manifold M is a (Fl, SL(3,R)) structure
on that manifold.

The involution Θ(v, w) = (w, v) defined on Fl and the Cartan involution θ(g) =

(g−1)
T

defined on SL(3,R) satisfy

Θ ◦ g = θ(g) ◦Θ.

Given a flag structure on a 3-manifold, we call dual flag structure the structure
obtained by using transition functions composed with θ.

2.2. Coordinates in P(V ). To make possible a visualization of the flags we will
choose a chart (called prefered chart) on P(V ). Consider the hyperplane in R

3

defined by the three basis unit vectors, that is

x+ y + z = 1.
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The chart is defined by projecting lines passing through the origin in that hyper-
plane and imposing that

[1, 0, 0] → (0, 0), [0, 1, 0] → (1, 0), [0, 0, 1] → (0, 1).

Observe than that, on the hyperplane,

[x, y, z] → (y, z).

In particular [1, 1, 1] → ( 1
3
, 1

3
).

Given a flag [[x, y, z], [a, b, c]], with x+y+z = 1, the line on P(V ) defined by the
image of the plane orthogonal to the vector (a, b, c) is described in the chart above
by:

• the point (y, z),
• the line defined by the vector (a− c, b−a) passing through the point (y, z).

Therefore the line makes an angle θ satisfying tan θ = b−a
a−c

with the horizontal
direction. Figure 1 shows, three flags corresponding to planes passing through the
three basis vectors in R

3.

p1
p2

p3

Figure 1. Three flags corresponding to planes passing through
the three basis vectors in R

3

3. Edges

One can join a couple of flags by simple paths (see Figure 2) but there is a
canonical construction of a unique line containing two flags.

p1

p2

Figure 2. Two simple paths of flags projected into P(V ).

Consider two flags in generic position, that is, f1 = (p1, l1), f2 = (p2, l2) such
that li(pj) 6= 0 if i 6= j.
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Figure 3. Points and lines fixed by H0
12.

The action of SL(3,R) is transitive on these pairs. There exists a unique point
p12 such that li(p12) = 0, for i = 1, 2. Up to the action of SL(3,R) we can normalize
so that

• p1 = (1, 0, 0), l1 = (0, 1, 0),
• p2 = (0, 1, 0), l2 = (1, 0, 0)

The intersection point of the two lines is p12 = (0, 0, 1). Projective transformations
fixing the three points are diagonal and they preserve the line [p1, p2]. For each
line l passing through p12 we consider its intersection p with the line [p1, p2] (see
Figure 4). This defines a circle of flags (p, l) containing f1 and f2. It is divided in
two segments with boundaries the two given flags. Following [7] we let H0

12 be the
connected component of the identity of the group preserving the points p1, p2, p12.
It preserves the lines l1, l2, l12 (see Figure 3) and the two segments are orbits of
its action on the space of flags whose closure contains the flags f1 and f2. In the
normalization above we have

H0
12 =





h1 0 0
0 h2 0
0 0 h3





with hi > 0. The circle of flags is given by

p = [λ1, λ2, 0], l = [λ2,−λ1, 0].

More generally, if f1 = (p1, l1), f2 = (p2, l2) are two flags in generic position than
the line containing the flags is

(

λ1p1 + λ2p2,
λ2

l2(p1)
l2 −

λ1

l1(p2)
l1

)

.

The line is divided in two segments corresponding to the relative signs of λ1 and
λ2.

A simple property of a segment between two flags is stated in the following
lemma. It is the basic technical resut we need to construct the tetrahedra of flags
and will be repeatedly used in the analysis of the example in the last section.

3.1. Lemma (monotonicity Lemma). Let f1 = (p1, l1), f2 = (p2, l2) be two flags.
Suppose, in the preferred chart, the angles of the projected lines are 0 ≤ θ1 ≤ θ2 ≤ π.
Then, along the finite segment from f1 to f2, the angles of the projected lines are
increasing (and satisfy θ1 ≤ θ ≤ θ2).
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Figure 4. A segment between two flags.

Moreover, if f ′
2 = (p2, l

′
2) is another flag such that θ2 ≤ θ′2 then, along the

corresponding segment, the angles of the projected lines satisfy θ ≤ θ′.

4. Triangles

p1

p2

p3

Figure 5. A triangle of flags projected into P(V ).

By a generic configuration of flags ([xi], [fi]), 1 ≤ i ≤ n+1 we understand n+1
points [xi] in general position and n + 1 lines li in P(V ) such that lj(xi) 6= 0 if
i 6= j. Recall that a configuration of ordered points in P(V ) is said to be in general
position when no three points are contained in the same line. Remark that we give
priority to the points in the above definition and don’t impose that the lines are in
generic position.

Let e1, e2, e3 be the canonical basis of V and (e∗1, e
∗
2, e

∗
3) its dual basis. Up to

the action of SL(3,R), a generic configuration of three flags ([xi], [li])1≤i≤3 can be
normalized, in these coordinates, as

• x1 = (1, 0, 0), l1 = (0, 1, 1),
• x2 = (0, 1, 0), l2 = (1, 0, 1) and
• x3 = (0, 0, 1), l3 = (z, 1, 0) with z 6= 0.
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Therefore the only invariant of a generic configuration of three flags (up to SL(3,R))
is given by the triple ratio

z =
l1(x2)l2(x3)l3(x1)

l1(x3)l2(x1)l3(x2)
∈ R

×

Remark that the three lines of the triple of flags are linearly independent if and
only if z 6= −1.

Given three flags in general position f1 = (p1, l1), f2 = (p2, l2), f3 = (p3, l3) we
may form a triangle (a 1-skeleton as in Figure 5) containing them by choosing three
edges as above. There are 8 possible choices, namely for each couple of flags in a
chart one can choose either the bounded segment or the unbounded segment with
end points given by the two flags.

Fixing a choice of edges we define a face as an embedded 2-simplex whose bound-
ary is the union of the three edges. Observe that this imposes a restriction on the
1-simplex; it should be null-homotopic. In particular, the projections by π1 and
π2 of the 1-skeleton should be null-homotopic. If the edges are as in the previous
section there is a restriction on the triple-ratio of a triple of flags:

4.1. Lemma. A triple of flags defines a null-homotopic canonical 1-skeleton if and
only if the triple ratio of the three flags is negative. In that case there are precisely
four canonical 1-skeletons which are null homotopic.

The proof of the lemma consists of comparing the two possible situations which
give negative and positive triratios in the following Figures 6 and 7. To obtain the
sign of the triratio one simply counts the number of times the lines separate the
points not contained in them.

Once the 1-skeleton is defined we should define a 2-simplex whose boundary is
the given 1-skeleton. A particular canonical choice is given as a union of segments:

4.2. Definition. A face F123 in the flag space with vertices fi, i = 1, 2, 3 (with
negative triple ratio) and a choice of edges [f1, f2], [f2, f3], [f3, f1] is the 2-skeleton
which is the union of segments between f1 and ft where ft ∈ [f2, f3], that is,

F123 = {f ∈ Fl | f ∈ [f1, ft] for ft ∈ [f2, f3] }.
The flag f1 is called the source of the face . Remark that given a triple of flags

with negative triple ratio, the surface obtained is embedded with boundary the
union of edges only for two choices of the source.

If the triple of flags has positive triple ratio it will be impossible to fill up a
triangle unless we change the 1-skeleton in the following way: in the configuration
represented in the figure below there is a flag f0 = (p0, l0) ∈ [f2, f3] such that
p1 ∈ l0 so that the flags f0 and f1 are not in general position. In order to define the
triangle we should add, along the points p ∈ [p0, p1) the flags (p, l0) and over the
point p1 the flags π−1

1 (p1). In this way the projection of the 1-skeleton is twice the
generator and therefore it is null-homotopic. In this paper, though, we will only
use triples with negative ratio.

The 1-skeleton determines a triangle T123 ⊂ P(V ) when projected by π1 and
T ∗
123 ⊂ P(V ∗) when projected by π2. The following straightforward Lemma helps

computing intersections between faces.

4.3. Lemma.

π1(F123) = T123, π2(F123) = T ∗
123.
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p1 p2

p3

Figure 6. Three flags and segments joining them projected in
the preferred chart. We only draw the finite triangle. The Euler
number of a vector field parallel to the line field along the triangle
is 0. The triratio is negative.

p1 p2

p3

Figure 7. Three flags and segments joining them projected in the
preferred chart. The Euler number of a vector field parallel to the
line field is of absolute value 1. The triratio is positive.

5. Coordinates on a flag tetrahedron

In this section we recall the coordinates parametrizing configurations of four flags
in the projective space P(R3) as in [2, 6].

5.1. Coordinates for a tetrahedron of flags. Let ([xi], [fi])1≤i≤4 be a generic
tetrahedron. Dispose symbolically these flags on a tetrahedron 1234 as in Figure
9. We define a set of 12 coordinates on the edges of the tetrahedron (1 for each
oriented edge).

To define the coordinate zij associated to the edge ij, we first define k and l
such that the permutation (1, 2, 3, 4) 7→ (i, j, k, l) is even. The pencil of (projective)
lines through the point xi is a projective line P1(k). We have four points in this
projective line: the line ker(fi) and the three lines through xi and one of the xl for
l 6= i. We define zij as the cross-ratio of four flags by

zij := [ker(fi), (xixj), (xixk), (xixl)].
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Figure 8. A synthetic construction of the flag (p, l) in the face F123.

Note that we follow the usual convention that the cross-ratio of four points x1, x2, x3, x4

on a line is the value at x4 of a projective coordinate taking value ∞ at x1, 0 at
x2, and 1 at x3. Figure 9 displays the coordinates.

At each face (ijk) (oriented as the boundary of the tetrahedron (1234)), we
associate the 3-ratio:

zijk =
fi(xj)fj(xk)fk(xi)

fi(xk)fj(xi)fk(xj)
.

Observe that if the same face (ikj) (with opposite orientation) is common to a
second tetrahedron then

zikj =
1

zijk
.

Of course there are relations between the whole set of coordinates. Fix an even
permutation (i, j, k, l) of (1, 2, 3, 4). First, for each face (ijk), the 3-ratio is the
opposite of the product of all cross-ratios “leaving” this face:

(5.1.1) zijk = −zilzjlzkl.
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z34

z32

z31

3
z43

z42

z41

4

z14
z12

z13

1

z24

z21

z23

2

Figure 9. The z-coordinates.

Second, the three cross-ratio leaving a vertex are algebraically related:

zik =
1

1− zij

zil = 1− 1

zij

(5.1.2)

The next proposition shows that a tetrahedron is uniquely determined, up to the
action of SL(3,R), by four numbers.

5.2. Proposition. The space of generic tetrahedra is parametrized by the 4-tuple
(z12, z21, z34, z43) of elements in R \ {0, 1}.

In particular, one can normalize the coordinates of four flags up to the action of
SL(3,R) as follows

(1) f1: x1 = (1, 0, 0), l1 = (0, z14,−1),
(2) f2: x2 = (0, 1, 0), l2 = (1/z24, 0,−1),
(3) f3: x3 = (0, 0, 1), l3 = (z34,−1, 0),
(4) f4: x4 = (1, 1, 1), l4 = (z42, 1/z41,−1).

6. Example: m009

The manifold m009 is an open manifold which has a complete hyperbolic struc-
ture with finite volume. It is obtained by gluing three tetrahedra T0(ui), T1(vi) and
T2(wi) as shown in Figure 10.

The face identifications are the following: (234)0 ↔ (243)1, (142)0 ↔ (314)1,
(134)0 ↔ (143)2, (123)0 ↔ (213)2, (142)1 ↔ (241)2 and (123)1 ↔ (342)2.

In [6] we obtained a particular realization of these tetrahedra by 4-tuples of flags
giving rise to representations into SL(3,R) with unipotent boundary holonomy. The
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u34
3

u43
4

u12

1

u21

2

v34
3

v43
4

v12

1

v21

2

w34
3

w43
4

w12

1

w21

2

Figure 10. Three tetrahedra glued to obtain the manifold m009.
The tetrahedra are numbered from 0 to 2 from left to right.

invariants of the 4-tuple of flags all depend on γ = − 1

2
+ 1

2

√

5 + 4
√
5. Explicitly:

u12 = w34 = γ+3

γ+1
, u21 = w43 = γ, u34 = w12 = γ−2

γ
,

u43 = w21 = −1− γ, v12 = v34 = 1

γ+3
, v21 = v43 = 1

2−γ
.

The group obtained has rank one boundary holonomy and one can chose generators
called meridian gM and longitude gL satisfying gMg2L = 1.

The realization described above comes in pair with another one giving rise to a
dual flag structure. It is also related to a representation of the fundamental group
in PU(2, 1) with boundary holonomy of rank one which seems to give rise to a
uniformizable CR structure on m009 ([4]).

6.1. The tetrahedron T0. Using the coordinates above, the four flags fi = [pi, li],
1 ≤ i ≤ 4, defining T0 can be represented in the preferred chart as in Figure 11. We
choose the segments between the flags so that all of them are finite and contained
in the preferred chart.

The remaining part of this subsection contains the proof of the following propo-
sition.

6.2. Proposition. The four flags defining T0 and the 1-skeleton Eij (defined by the
finite segments joining the flags i and j in the preferred chart ) can be extended to
a simplex with faces F 0

314, F 0
342, F 0

412, F 0
312.

We need to construct the four faces of the tetrahedron and verify that their
intersections are precisely their common edges. They are (where we write, to simply
notations, F 0

ijk = Fijk):
F314, F342, F412, F312.

Clearly, the first three faces only intersect in their common edges. The only ver-
ification to be done is on the intersection of these faces with F312. We need to
prove:

(1) F412 ∩ F312 = E12,
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f1 f2

f3

f4

Figure 11. The four flags of tetrahedron T0 and segments joining
them projected in the preferred chart. Here θ4 < θ1 < θ2 < θ3.

(2) F314 ∩ F312 = E31,
(3) F342 ∩ F312 = E32.

The argument uses Lemma 3.1 in a simple way. We choose the preferred chart.
Observe first, because θ4 < θ1 < θ2, that the segment E12 has all flags with
angles greater than the flags at the edges E14. By the Lemma we have then that
F314 ∩ F312 = E31.

Observe that the line from p3 to p4 intersects the edge E12 at a point, say
p, whose flag has angle θ > θ4. Moreover a simple drawing (see Figure 6.1) or
computation shows that the intersection point of l4 with the line l2 is between p2
and the intersection point between l1 and l2. This is sufficient to prove that the
angle of a flag along the segment E24 is smaller than the corresponding flag (along
the segment whose projection contains p3 and the projection of the flag in E24)
passing at the edge E12.

This implies, again by the Lemma, that F342 ∩ F312 = E32.
To analyse F412 ∩F312, observe that if x belongs to the triangle p1p2p4 and is to

the left of the line p3p4 then, because θ1 < θ2 we obtain that the angle at x along
the line from p3 is greater than the angle along the line from p4. For a point to
the right of the line p3p4, we conclude with an argument analogous to the previous
paragraph. This implies again that F412 ∩ F312 = E12.
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p1 p2

p3

p4

p12

p24

t

Figure 12. Comparison of two flags over a point t ∈ p2p4. At the
point t the flag of the face F312 has greater angle than the one of
the face F342.

6.3. The other two tetrahedra T1 and T2. In Figure 13 we show the three
tetrahedra glued according to g1 : (243)1 → (234)0 and g2 : (142)2 → (241)1. The
points in the Figure are projections of the following flags: f5 = [p5, l5] = g1[p1, l1]
and f6 = [p6, l6] = g1g2[p3, l3].

Due to the face pairings, the faces of T1 and T2 are in part determined by the
choice of the faces of T0. Namely, for T1, F

1
432 and F 1

134 and for T2, F
2
413 and F 2

312

are determined. The remaining two couples of faces might be chosen arbitrarily.
Observe that F 1

432 and F 1
134 are represented, in the glued configuration, by F342

and F543 respectively. Also, F 2
413 and F 2

312 are represented by F326 and F625.
We have to verify compatibilities in the definition. Namely, that the side pairings

maps the edges between them and that the tetrahedra defined by the faces above
do not intersect else than in their common faces. We state the compatibility of the
edges as a Lemma whose proof is a straightforward computation.

6.4. Lemma. The finite edges between the flags are compatible with the side pair-
ings.

The second Lemma is the verification that the T1 and T2 are well defined, that
is, as for T0, their faces intersect only at common edges. Finally, we prove that the
three tetrahedra intersect only at common faces. The proof is a sequence of tedious
arguments as in the proof that T0 was well defined but one can be convinced by
carefully looking at Figure 13.

6.5. Proposition. The gluing of the three tetrahedra T0, T1 and T2 forms a poly-
hedron in the flag space.
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f1 f2

f3

f4

f5

f6

Figure 13. Gluing the 3 tetrahedra projected in the preferred chart

6.6. The structure around the edges. There are three edges in the quotient
manifold. They are represented by the edges E23, E24 and E34 in the first tetra-
hedron T0. As far as the topological gluing is concerned, the number of tetrahedra
around each edge are 8, 4 and 6 respectively (we show the schematic diagram of
the gluing for each edge in figures 14 and 15). In order to prove that we have a
genuine flag structure on the quotient manifold we should prove that the gluing of
the tetrahedra around each of the three edges has no branching. That is, that the
gluing around each edge gives a neighborhood of the edge.

We state the result in the following proposition. Its proof, again, is a tedious
verification. Heuristically, one can understand the neighborhood of an edge by
following the vertices of the tetrahedra that one adjoins to the edge. Turning
around the edge corresponds to turning the angle of the projected line of the flag
in the vertex in such a way that increasing the angle makes the tetrahedron go up
and decreasing the angle makes the tetrahedron go down. In Figure 16 we show the
4 tetrahedra around the edge E24. One can observe that the last point adjoined
has the projected line of angle lower than the others. The tetrahedra adjoined will
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f1

f3

f5

f7

T0g1(T1)

g1g6(T2) g1g6g
−1

2
(T1)

Figure 14. A schematic picture of a neighborhood around the
edge E23 = [f2, f4], where the segments stand for the faces with
the common edge E23 denoted by the origin and the arcs and the
regions between two segments stand for the neighborhoods con-
tained in one tetrahedron.

be bellow the original two. In Figure 17 we show 5 of the 6 tetrahedra around
the edge E34. Here we have to add three more points to the original 3 tetrahedra.
Observe that the first two have lines of decreasing angle but the last point increases
the angle in order to complete the turn. In Figure 18 we show the vertices of the 8
tetrahedra around the edge E23.

6.7. Proposition. Along each of the three edges E13, E24 and E34 the gluing of the
tetrahedra defines a neighborhood.

As a consequence of the propositions above we obtain our conclusion:

6.8. Theorem. The manifold m009 has a flag structure whose holonomy map is
boundary unipotent.
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f1f10

f9

f8 f5

f2

T0

g1g
−1

3
g5g

−1

2
g6(T2)

g1g
−1

3
g5g

−1

2
(T1)

g1g
−1

3
g5(T2)

g1g
−1

3
(T0)

g1(T1)

f1

f4

f5

f6

f11

f12

f13
f14

T0

g1g2g
−1

4
g5g

−1

6
g−1

3
g4(T2)g1g2g

−1

4
g5g

−1

6
g−1

3
(T0)

g1g2g
−1

4
g5g

−1

6
(T1)

g1g2g
−1

4
g5(T2)

g1g2g
−1

4
(T0) g1g2(T2)

g1(T1)

Figure 15. A schematic picture of a neighborhood around the
edges E23 = [f2, f3] and E34 = [f3, f4].
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f7 = g1g6f1

Figure 16. Tetrahedra around the edge E24.

f8 = g1g
−1
3 f3

f9 = g1g
−1
3 g5f4

f10 = g1g
−1
3 g5g

−1
2 f3

Figure 17. Tetrahedra around the edge E34.
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f11 = g1g2g
−1
4 f2

f12 = g1g2g
−1
4 g5f4

f13 = g1g2g
−1
4 g5g

−1
6 f4

f14 = g1g2g
−1
4 g5g

−1
6 g−1

3 f3

Figure 18. Vertices of tetrahedra around the edge E23. The
group of 6 points in the center can be zoomed to coincide with
Figure 13.
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7. Appendix

In order to help the reader verify computations we list explicitly the side pairings
we used. Note that we simplify notations denoting matrices by the same letters as
the maps. First we let

u1 = 1− 1

u12

=
2

γ + 3
;

u2 = 1− u21 = 1− γ;

u3 = u34 =
γ − 2

γ
;

u4 =
1

1− u43

=
1

2 + γ
;

w1 = 1− 1

w12

=
2

2− γ
;

w2 = 1− w21 = 2 + γ;

w3 = w34 =
γ + 3

γ + 1
;

w4 =
1

1− w43

=
1

1− γ
;

v1 = 1− 1

v12
= −2− γ;

v2 = 1− v21 =
γ − 1

γ − 2
;

v3 = v34 =
1

γ + 3
;

v4 =
1

1− v43
=

γ − 2

γ − 1
;

The the side pairings are given by
F 0
234 = g1(F

1
243)

g1 =





−λ3 0 λ3

−λ1 − λ3 λ1 λ3

−λ3 + λ2 0 λ3



 .

λ2 = λ1(v3 − 1)(1− u4); λ3 = λ1/((v4 − 1)(1− u3)).

F 1
142 = g2(F

2
241)

g2 =





0 δ3 δ2 − δ3
δ1 0 δ2 − δ1
0 0 δ2



 .

δ2 = δ1v1(w2 − 1)/(w2(v1 − 1)); δ3 = δ1(1− v4)(1− w4)/(v4w4).

F 0
142 = g3(F

1
314)

g3 =





α2 −α2 − α1 α1

α2 α3 − α2 0
α2 −α2 0



 .

α2 = α1u2v4/(1− u2); α3 = α1u4(v1 − 1)/(u4 − 1).
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F 0
134 = g4(F

2
143)

g4 =





β1 −β1 − β3 β3

0 −β3 β3

0 β2 − β3 β3



 .

β2 = β1u4(1− w3)/w3; β3 = β1u3/(w4(1− u3)).

F 0
123 = g5(F

2
213)

g5 =





0 ǫ1 0
ǫ2 0 0
0 0 ǫ3



 .

ǫ2 = ǫ1u3w3; ǫ3 = ǫ1u2/w1

F 1
123 = g6(F

2
342)

g6 =





−ζ1 0 ζ1
ζ2 0 0
−ζ3 ζ3 0



 .

ζ2 = ζ1v3(w2 − 1); ζ3 = ζ1v2(1− w4).

Thinking the side pairings as hyperbolic transformations we can obtain a pre-
sentation of the fundamental group of m009. Indeed, the side pairings of the (hy-
perbolic) polyhedron formed by gluing the tetrahedra (as in Figure 13 ) according
to g1 : (243)1 → (234)0 and g2 : (142)2 → (241)1 are

s3 = g3g
−1
1 , s4 = g4g

−1
2 g−1

1 s5 = g5g
−1
2 g−1

1 s6 = g1g6g
−1
2 g−1

1 .

The three edge cycles give the following relations

s6s
−1
3 , s−1

4 s5s
−1
6 s−1

3 s4s
−1
5 , s−1

3 s5s6s
−1
4

and the presentation of the fundamental group Γ = π1(m009) of the manifold m009
can be simplified to be

Γ = 〈 s3, s5 | [s−1
3 , s−1

5 ]s−2
3 [s−1

3 , s5] 〉.
The manifold m009 is fibered over the circle. From the presentation we obtain

that its fundamental group Γ has abelianization

Γ/[Γ,Γ] =
Z

2Z
⊕ Z.

Indeed, from the presentation we observe that s23 ∈ [Γ,Γ]. We conclude that the
image of s5 in Γ/[Γ,Γ] is non-trivial and generates an infinite cyclic group.

One can also check (using SnapPea for instance and comparing fundamental
groups) that m009 is the same as the manifold b++RRL which is the punctured
torus bundle defined by the pseudo-Anosov

[

3 2
1 1

]

.

However, a computation with the matrices of s3 and s5 (we warn the reader that
we also write si for the image of si under the holonomy representation, by abuse of
notation) shows that the holonomy group is contained in a triangle group of type
(3, 3, 5). Indeed, s3 is of order 5, s3s5 and s23s5 are of order 3. On the other hand
s5 is unipotent.
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