
Quantitative Types for Intuitionistic Calculi

Delia Kesner, Daniel Ventura

To cite this version:

Delia Kesner, Daniel Ventura. Quantitative Types for Intuitionistic Calculi. 2014. <hal-
00980868>

HAL Id: hal-00980868

https://hal.archives-ouvertes.fr/hal-00980868

Submitted on 18 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47093866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00980868

Quantitative Types for Intuitionistic Calculi

Delia Kesner1 and Daniel Ventura2

1 Univ. Paris-Diderot, SPC, PPS, CNRS, France
2 Univ. Federal de Goiás, INF, Brasil

Abstract. We define quantitative type systems for two intuitionistic term languages. While the first
language in natural deduction style is already known in the literature, the second one is one of the
contributions of the paper, and turns out to be a natural computational interpretation of sequent
calculus style by means of a non-idempotent type discipline. The type systems are able to characterize
linear-head, weak and strong normalization sets of terms. All such characterizations are given by means
of combinatorial arguments, i.e. there is a measure based on type derivations which is decreasing with
respect to the different reduction relations considered in the paper.

It is quite difficult to reason about programs in general by only taking into account their syntax,
so that many different semantic approaches were proposed to analyze them in a more abstract
way. One typical tool to analyze relevant aspects of programs is the use of type systems. In par-
ticular, intersection types allow to characterize head/weakly/strongly normalizing terms, i.e. a term
t is typable in an intersection type system iff t is head/weakly/strongly normalizing; quantitative
information about the behaviour of programs can also be obtained if they enjoy non-idempotence.

Intersection Types (IT): Simply typed terms are strongly normalizing (cf. [6]) but the converse
does not hold, e.g. the term t := λx.xx. Intersection Types [15] extend the simply typed discipline
with a finitary notion of polymorphism, listing type usage, that exactly captures the set of strongly
normalizing terms. This is done by introducing a new construct σ∧τ in the syntax of types together
with a corresponding set of typing rules. Thus for example, the previous term t is typable with
((σ → σ) ∧ σ) → σ so that the first occurrence of the variable x is typed with σ → σ while
the second one is just typed with σ. Typically, intersection types are idempotent, i.e. σ ∧ σ = σ.
Moreover, the intersection constructor is usually commutative and associative. Intersection types in
their full generality provide a characterization of various properties of terms: models of λ-calculus
[7], characterization of head [17] as well as weakly [13, 17] and strongly normalizing terms [33].

Non-Idempotent Intersection Types: The use of non-idempotent types [11] gives rise to
resource aware semantics, which is relevant for computational complexity because it gives tools to
extract quantitative information about reduction sequences. Indeed, the inequality σ ∧ σ 6= σ can
be read as the fact that two different uses of the variable x are not isomorphic to a single use. The
relationship with Linear Logic [25] and Relevant Logic [18], gives an insight on the information
refinement aspects of non-idempotent intersection types. In the framework of the λ-calculus, the
relationship between the size of a non-idempotent intersection typing derivation and the head/weak-
normalization execution time of λ-terms by means of abstract machines was established by D. de
Carvalho [21]. Non-idempotent types for different calculi based on linear logic are explored in [35].
They are also used in [8, 9, 20] to reason about the longest derivations of strongly β-normalizing
terms in the λ-calculus by means of combinatorial arguments.

Calculi with Explicit Substitutions (ES) and Intersection Types: Calculi with ES refine
the λ-calculus by decomposing β-reduction into small steps in order to specify different evaluation
strategies by means of abstract machines. In traditional calculi with ES [27, 1], the operational
semantics specifies the propagation of ES through the term’s structure until they reach variable
occurrences, on which they finally substitute or get garbage collected. But calculi with ES can also

be interpreted in Linear Logic [22, 30, 28, 5] by implementing another kind of operational semantics:
their dynamics is defined using contexts (i.e. terms with holes) that allows the ES to act directly at
a distance on single variable occurrences, with no need to commute with any other constructor in
between. In other words, the propagation of substitutions is not performed by structural induction
on terms, since they are only consumed according to the multiplicity of the variables.

Idempotent intersection type systems were used to characterize [34, 29] strongly normalizing
terms of calculi with ES in natural deduction style. Similar results [24, 23] exist for intuitionistic
sequent calculus style. Non-idempotence is used in [10] to prove the exact relationship between typ-
ing derivations and the number of steps of the longest reduction sequences of strongly-normalizing
terms in the λs-calculus [28] and in the λlxr-calculus [30]. These systems are not syntax-directed
(i.e. they need generation lemmas) and only deal with strong normalization.

This paper focuses on functional programs specified – via the Curry-Howard isomorphism – by
intuitionistic logic, in both natural deduction and sequent calculus style. The operational semantics
for both languages/styles implements resource control by means of reduction rules describing the
behaviour of explicit operators for erasure and duplication. The term language in natural deduction
style is the linear substitution calculus [3], called here M-calculus, and obtained from Milner’s cal-
culus [37] and the structural λ-calculus [5]. For the computational interpretation of intuitionistic
sequent calculus style we propose a new term language called J-calculus, whose syntax comes from
Herbelin [27] and whose semantics is inspired by the linear substitution calculus. In fact, the oper-
ational rules of [27] allow the useless duplication of empty resources, which is inefficient and fails to
be interpreted by a quantitative approach. We then propose an alternative semantics for Herbelin’s
syntax, which, in particular, only allows duplication of resources that are useful, i.e. those that are
non empty. This is achieved by the partial substitution operation of the linear substitution calculus.

Partial substitution naturally allows to express linear-head reduction [19, 36], a notion of eval-
uation of proof nets that is strongly related to significant aspects of computer science [33, 2, 4].
Linear-head reduction cannot be expressed as a simple strategy of the λ-calculus, where substitu-
tion acts on all free occurrences of a variable at once; this is probably one of the reasons why there
are so few works investigating it. In this paper we use logical systems to reason about different
notions of normalization of terms, including those obtained with linear-head reduction.

More precisely, the quantitative semantics of programs used in this paper is given by two kind
of non-idempotent intersection type system. The first one, based on [21], allows a characterization
of linear-head and weakly normalizing terms. While full logical characterizations of head/weakly β-
normalizing λ-terms were already given in the literature, the use of a logical/type system to directly
characterize linear-head normalization in calculi with ES is new. The second kind of system, another
main contributions of this paper, gives a characterization of strongly normalizing terms.

Main contributions: they can be summarized as follows.
- We define two type systems for the linear substitution calculus. The first system characterizes
linear-head and weak normalization while the second one characterizes strong normalization. No
previous logical characterization of linear-head normalization for ES was known in the literature.
- We propose a new term language with resources in sequent calculus style which naturally admits
a quantitative type semantics. As for the linear substitution calculus, we characterize linear-head,
weak and strong normalization sets of terms.
- The type systems use multiset notation and are syntax directed so that no generation lemmas
are needed. Moreover, the type systems for strong normalization make use of a special notion of
witness derivation for the arguments of applications and explicit substitutions which makes them
particular natural and simple.

- Similar proof schemes can be applied to both calculi, thus obtaining an homogenous technical
development for natural deduction and sequent calculus.
- All the characterizations are given by means of simple combinatorial arguments, i.e. there is a
measure that can be associated to each typing derivation which is decreasing with respect to the
different reduction relations considered in the paper.

Structure of the paper: We recall some general notions of rewriting in Section 1 and we
conclude in Section 8. The rest of the paper is organized as follows:

Syntax and Semantics Linear-Head and Weak-Normalization Strong-Normalization

M-calculus Section 2 Section 3 Section 4
J-calculus Section 5 Section 6 Section 7

All the detailed proofs of our results are contained in the Appendix.

1 Some General Notions of Rewriting

We use the following general notions of rewriting.

Let →R and →S be two reduction relations on a set O. The concatenation (resp. union) of
→R and →S is written →R·S or →R · →S (resp. →R∪S). The reflexive-transitive (resp. transitive)
closure of →R is written →∗

R (resp. →+
R); they both denote finite R-reduction sequences.

Moreover, →n
R denotes a reduction sequence of length n (n ≥ 0).

Given o ∈ O, o is in R-normal form, written o ∈ R-nf, if there is no o′ such that o →R o′,
and o has an R-normal form iff there exists o′ ∈ R-nf such that o→∗

R o′. Moreover, o is weakly
R-normalizing, written o ∈ WN (R), iff o has an R-normal form, o is strongly R-normalizing
or R-terminating, written o ∈ SN (R), if there is no infinite R-reduction sequence starting at o,
and o is R-finitely branching if the set {o′ | o→R o′} is finite. If o ∈ O is R-strongly normalizing
and R-finitely branching then the depth of o, written ηR(o), is the maximal length of R-reduction
sequences starting at o.

2 An Intuitionistic Term Calculus in Natural Deduction Style

We first describe the syntax and the operational semantics of the M-calculus, including some partic-
ular notions of rewriting such as linear-head reduction. We then introduce a notion of type together
with two different type systems that play a central role in the first part the paper.

Syntax: Given a countable infinite set of symbols x, y, z, . . ., three different syntactic categories
for terms (TM) and contexts (CM) are defined by the following grammars:

(terms) t, u, v ::= x | tt | λx.t | t[x/t]
(term contexts) C ::= ✷ | λx.C | C t | t C | C[x/t] | t[x/C]
(list contexts) L ::= ✷ | L[x/t]

A term x is called a variable, tu an application, λx.t an abstraction and t[x/u] a closure
where [x/u] is an explicit substitution (ES). We write tt1 . . . tn for (. . . (tt1) . . . tn) and |t|
for the size of t. The notions of free and bound variables are defined as usual, in particular,
fv(t[x/u]) := fv(t) \ {x} ∪ fv(u), fv(λx.t) := fv(t) \ {x}, bv(t[x/u]) := bv(t) ∪ {x} ∪ bv(u) and
bv(λx.t) := bv(t)∪ {x}. We work with the standard notion of α-conversion i.e. renaming of bound
variables for abstractions and substitutions. We write C[t] (resp. L[t]) for the term obtained by re-
placing the hole of C (resp. L) by the term t. We write C[[u]] or L[[u]] when the free variables of u are

not captured by the context, i.e. there are no abstractions or explicit substitutions in the context
that bind the free variables of u. The set of positions of t, written pos(t), is the finite language
over {0, 1} inductively defined as follows: ǫ ∈ pos(t) for every t; 0p ∈ pos(λx.t) if p ∈ pos(t);
0p ∈ pos(tu) (resp. pos(t[x/u])) if p ∈ pos(t); 1p ∈ pos(tu) (resp. pos(t[x/u])) if p ∈ pos(u). The
subterm of t at position p is written t|p and defined as expected. The term u has an occur-
rence in t iff there is p ∈ pos(t) such that t|p = u. We write |t|x to denote the number of free
occurrences of the variable x in the term t. All these notions are extended to contexts as expected.

Operational Semantics: The M-calculus is given by the set of terms TM and the reduction
relation →M on TM defined as the union of →dB, →c, and →w, which are, respectively, the closure
by term contexts C of the following rewriting rules:

L[λx.t]u 7→dB L[t[x/u]]
C[[x]][x/u] 7→c C[[u]][x/u]
t[x/u] 7→w t if |t|x = 0

The names dB, c and w stand for distant Beta, contraction and weakening, respectively. Rule 7→dB

(resp. 7→c) comes from the structural λ-calculus [5] (resp. Milner’s calculus [37]), while 7→w belongs to
both calculi. Rule dB could also be written as (λx.t)[y1/v1] . . . [yn/vn]u 7→dB t[x/u][y1/v1] . . . [yn/vn].
Notice that the use of a list (resp. term) context L (resp. C) in rule dB (resp. c) makes the reduction
at a distance. By α-conversion we can assume in the rule dB that x may only be free in t and no
variable in the domain of L, defined as expected, has free occurrences in the term u. The pushed
out list context L in rule dB corresponds to Regnier’s σ-equivalence [40]: L[λx.t]u ∼σ L[(λx.t)u]→dB

L[t[x/u]]. We will come back on this equivalence in Section 4.

The notion of redex occurrence in this calculus is more subtle than the one in standard rewriting
because one unique term may give rise to different reduction steps at the root, as the following
example shows: (xu)[x/u] c← (xx)[x/u] →c (ux)[x/u]. Thus, a position p ∈ pos(t) is said to be
a dB (resp. w and c) redex occurrence of t if t|p = L[λx.t]u (resp. t|p = v[x/u] with |v|x = 0,
and p = p1p2 with t|p1 = C[[x]][x/u] and C|p2 = ✷). For example 000 and 001 are both c-redex
occurrences of the term λz.(xx)[x/u].

The M-calculus enjoys good properties required for calculi with ES (including simulation of
β-reduction, preservation of strong normalization, confluence on terms and metaterms and full
composition) [31]. It was recently used in investigations related to cost models [4], π-calculus [2],
and axiomatic standardization [3].

The reduction relation→M can be refined in different ways. The non-erasing reduction relation
→M\w is given by→dB∪c, and plays a key role in the characterization of strongly normalizing terms in
Section 4. Another key subrelation studied in this paper is linear-head reduction [19, 36], a strategy
related to abstract machines [19] and linear logic [25]. To introduce this notion, we first define the
set of linear-head contexts that are generated by the following grammar: LH ::= ✷ | λx.LH | LHt |
LH[x/t]. Linear-head M-reduction, written →LHM, is the closure under linear-head contexts of the
rewriting rules {7→dB, 7→c|LH

}, where 7→c|LH
is the following variation of the rewriting rule 7→c:

LH[[x]][x/u] 7→c|LH
LH[[u]][x/u]

Indeed, the leftmost (i.e. head) occurrence of the variable x in LH[[x]] is substituted by u and
this partial (i.e. linear) substitution is only performed on that head occurrence. The notion of c|LH-
redex occurrence is defined as for the c-rule. A term t is linear-head M-normalizing, written
t ∈ LHN (M), iff t has an LHM-nf. For example, if t0 := λx.xy and t1 := x[y/z](II), where I := λw.w,

x:[τ] ⊢ x:τ
(ax)

x:[σi]i∈I ;Γ ⊢ t:τ (∆i ⊢ u:σi)i∈I

Γ +i∈I ∆i ⊢ t[x/u]:τ
(cutHW)

Γ ⊢ t:τ

Γ \\x ⊢ λx.t:Γ (x)→τ
(→ i)

Γ ⊢ t:[σi]i∈I →τ (∆i ⊢ u:σi)i∈I

Γ +i∈I ∆i ⊢ tu:τ
(→ eHW)

Fig. 1. The Type System HW for the M-Calculus

then t0 ∈ M-nf, and so also t0 ∈ LHM-nf, while t1 6∈ M-nf but t1 ∈ LHM-nf.

Types: We denote finite multisets by brackets, so that [] denotes the empty multiset; [a, a, b]
denotes a multiset having two occurrences of the element a and one occurrence of b. We use +
for multiset union. Given a countable infinite set of base types α, β, γ, . . . we consider types and
multiset types defined by the following grammars:

(types) τ, σ, ρ ::= α | M→τ (multiset types)M ::= [τi]i∈I where I is a finite set

Observe that types are strict, i.e. the type on the right hand side of a functional type is never a
multiset [16]. They make use of usual notations for non-idempotent intersection types via multisets,
as in [21]. Thus for instance, an intersection type [σ, σ, τ] must be understood as σ ∧ σ ∧ τ , where
the intersection symbol ∧ is defined to enjoy commutative and associative laws. When ∧ verifies
the axiom σ ∧ σ = σ, the underlying type system is called idempotent, otherwise, like in this
paper, the type system is called non-idempotent.

Type assignments, denoted by Γ,∆, . . . are (possibly empty) finite sets of assignments of the
form x:M, where x is a variable andM is a non-empty multiset type. The domain of a type as-
signment Γ is given by dom(Γ) := {x | x:M∈ Γ}. The type of a variable x at the assignment
Γ is given by Γ (x) :=M if x:M ∈ Γ , and Γ (x) := [] otherwise; so that Γ (x) = [] iff x /∈ dom(Γ).
The intersection of type assignments, written Γ +∆, is defined by (Γ +∆)(x) := Γ (x)+∆(x),
where the symbol + denotes multiset union. As a consequence dom(Γ +∆) = dom(Γ)∪dom(∆). We
write Γ +i∈I ∆i as an abbreviation of Γ +∆1 + . . .+∆n, where |I| = n. The disjoint union of an
assignment Γ and x /∈ dom(Γ) is defined by x:[];Γ := Γ and x:M;Γ := {x:M}∪Γ ifM 6= []. The
assignment Γ deprived of x is defined by Γ \\x := Γ \ {x:Γ (x)}. The extension Γ \\ (x1, . . . , xn)
is defined as expected.

The Type Systems: Type judgments are triples of the form Γ ⊢ t:τ , where Γ is a type
assignment, t is a term and τ is a type. The two type systems HW and S for the M-calculus are
given respectively in Figure 1 and 2. A (typing) derivation in system X is a tree obtained by
applying the typing rules of system X. The notation Γ ⊢X t:τ is used if there is a derivation of
the judgment Γ ⊢ t:τ in system X. The term t is typable in the type system X, or X-typable,
iff there is an assignment Γ and a type τ such that Γ ⊢X t:τ . We use the capital Greek letters
Φ, Ψ, . . . to name type derivations, e.g. we write Φ ⊲ Γ ⊢X t:τ or Φt ⊲ Γ ⊢X t:τ . The size of a type
derivation Φ is a positive natural number written sz(Φ) and is defined as expected.

The rules (ax), (→ i) and (→ eHW) in the type system HW come from a relational seman-
tics for linear logic in [21]. Remark in particular the absence of weakened axioms and the use of
multiplicative rules for application and substitution. A particular case of rule (→ eHW) is when
I = ∅: the subterm u occuring in the typed term tu turns out to be untyped. Thus for example,
from the derivation x:[σ] ⊢HW λy.x:[]→σ we can construct x:[σ] ⊢HW (λy.x)Ω:σ, where Ω is the
non-terminating term (λz.zz)(λz.zz). This is precisely the reason why rules (→ eS) and (cutS) in

Typing Rules {(ax), (→ i)} plus

x:[σi]i∈I ;Γ ⊢ t:τ (∆i ⊢ u:σi)i∈I∪{w}

Γ +i∈I∪{w} ∆j ⊢ t[x/u]:τ
(cutS)

Γ ⊢ t:[σi]i∈I →τ (∆i ⊢ u:σi)i∈I∪{w}

Γ +i∈I∪{w} ∆i ⊢ tu:τ
(→ eS)

Fig. 2. The Type System S for the M-Calculus

Figure 2, the system which characterizes strongly-normalizing terms, always asks a witness typing
derivation for the arguments of applications and substitutions. Indeed, if I = ∅, then the argument
u will be typed with the witness derivation ∆w ⊢ u:σw, whatever the type σw is. This witness
derivation for u is essential to guarantee strong-normalization of u (and thus of tu and t[x/u]).
When I 6= ∅ the rules (→ eS) and (cutS) also require a witness derivation for u, whose use is
necessary in order to deal with the c-rule when |C[[x]]|x = 1 (see discussion after Lemma 4).

Given a derivation Φ⊲Γ ⊢HW t:σ, not every free variable of t necessarily appears in the domain
of Γ , this is for example the case in x:[σ] ⊢HW (λy.x)z:σ. More precisely, the systems enjoy the
following (weak/strong) relevance properties, that can be easily shown by induction on derivations.

Lemma 1. If Φ ⊲ Γ ⊢HW t:σ then dom(Γ) ⊆ fv(t). If Φ ⊲ Γ ⊢S t:σ, then dom(Γ) = fv(t).

In contrast to many intersection type systems for explicit substitutions in the literature, the
typing rules of systems HW and S are syntax oriented, so that generation lemmas are not needed
to distinguish particular syntactical forms of derivations when proving the previous lemma.

3 Characterization of Linear-Head and Weak M-Normalization

In this section we show two main results. The first one (Section 3.1) characterizes linear-head M-
normalizing terms with ES by means of HW-typability. This result generalizes to calculi with ES
the well-known characterization of head β-normalizing terms in the λ-calculus [17, 21], by giving in
particular a logical argument instead of the operational one in [4]. The HW-type system is known
to type also some non weakly M-normalizing terms: for instance, if Ω is a non-terminating term,
then x:[]→σ ⊢HW xΩ:σ but xΩ is not weakly M-normalizing. We are then going to characterize the
set of weakly M-normalizing terms, our second result in Section 3.2, by restricting the HW-typing
derivations to some particular ones. But first, we develop some key technical tools.

In order to understand which are the redex occurrences actually constrained by the type system,
i.e. the reducible subterms that verify some particular type specification, let us consider a derivation
Φ⊲Γ ⊢HW t:τ . A position p ∈ pos(t) is a typed occurrence of Φ if either p = ǫ, or p = ip′ (i = 0, 1)
and p′ ∈ pos(t|i) is a typed occurrence of some of their corresponding subderivations of Φ. A redex
occurrence of t which is also a typed occurrence of Φ is a redex typed occurrence or redex
T-occurrence of t in Φ. Thus for example, given the following derivations Φ and Φ′, we have that
ǫ, 0, 1 and 10 are T-occurrences in Φ and Φ′, while 11 is a T-occurrence in Φ but not in Φ′.

Φ ⊲
x:[[τ, τ]→τ] ⊢ x:[τ, τ]→τ

y:[[]→τ] ⊢ y:[]→τ

y:[[]→τ] ⊢ yz:τ

y:[[τ]→τ] ⊢ y:[τ]→τ z:[τ] ⊢ z:τ

y:[[τ]→τ], z:[τ] ⊢ yz:τ

x:[[τ, τ]→τ], y:[[]→τ, [τ]→τ], z:[τ] ⊢ x(yz):τ

Φ′ ⊲
x:[[τ, τ]→τ] ⊢ x:[τ, τ]→τ

y:[[]→τ] ⊢ y:[]→τ

y:[[]→τ] ⊢ yz:τ

y:[[]→τ] ⊢ y:[]→τ

y:[[]→τ] ⊢ yz:τ

x:[[τ, τ]→τ], y:[[]→τ, []→τ] ⊢ x(yz):τ

The notion of T-occurrence plays a key role in the Subject Reduction (SR) lemma, which is based
on a subtle partial substitution lemma, a refinement of the standard substitution lemmas used in
the λ-calculus. See Appendix A for details.

Lemma 2 (SR I). Let Φ ⊲ Γ ⊢HW t:τ . If t→M t
′ reduces a (dB, c, w)-redex T-occurrence of t in Φ

then Φ′ ⊲ Γ ⊢HW t′:τ and sz(Φ) > sz(Φ′).

Indeed, consider a derivation Φ′′ ⊲ y:[[]→ []→τ] ⊢HW (xxx)[x/y]:τ . Then the (typed) reduc-
tion step (xxx)[x/y] →c (yxx)[x/y] decreases the measure of Φ′′ but thereafter (yxx)[x/y] →c

(yyx)[x/y]→c (yyy)[x/y] are not decreasing reduction steps since they act on untyped occurrences.
As a corollary, termination holds for any strategy reducing only redexes in T-occurrences, this

is an important key point that will be used in Sections 3.1 an 3.2.

Corollary 1. If Φ ⊲ Γ ⊢HW t:τ , then any M-reduction sequence contracting only (dB, c, w)-redex
T-occurrences is finite.

Types of terms can also be recovered by means of a Subject Expansion (SE) lemma, a property
which will be particular useful in Sections 3.1 and 3.2, and which reads as follows (see Appendix A
for details):

Lemma 3 (SE I). If Γ ⊢HW t′:τ and t→M t
′ then Γ ⊢HW t:τ .

3.1 Linear-Head M-Normalization

Linear-head reduction [19, 36] comes from a fine notion of evaluation for proof nets [26]. It is a par-
ticular reduction strategy of the M-calculus although it is not a strategy of β-reduction. In contrast
to the standard deterministic notion of head-reduction, →LHM is non-deterministic, and in particu-
lar, it can occur under λ-abstractions, e.g. y[y/w][x/z]LHM← (λx.y[y/w])z →LHM (λx.w[y/w])z. This
behaviour is however safe since →LHM has the diamond property [6].

Another remarkable property of linear-head reduction is that the hole of the head contexts
LH cannot be duplicated nor erased. This is related to a recent result [3] stating that linear-head
reduction is standard for the M-calculus, as well as left-to-right reduction is standard for the λ-
calculus. Other applications concern Abstract Machines [19], π-calculus [2] and cost models [4].

We now refine a known result in the λ-calculus which characterizes head-normalizing terms by
means of intersection types, either idempotent [17, 7]3 or non-idempotent [21]. Indeed, the set of
linear-head M-normalizing terms coincides with the set of HW-typable terms.

Lemma 4. If Φ⊲Γ ⊢HW t:τ and t has no (dB, c|LH)-redexes in T-occurrences in Φ, then t ∈ LHM-nf.

It is worth noticing that Lemma 4 does not hold for head-nfs 4. Indeed, the term (yxx)[x/y] in
the example just after Lemma 2 does not have any redex in a T-occurrence (the only two c-redexes
occurrences are untyped), and is not a head-nf. This emphasizes the fact that linear-head reduction
is more pertinent for calculi with ES than head reduction. We can conclude this section by

Theorem 1. Let t ∈ TM. Then t ∈ LHN (M) iff t is HW-typable.

Proof. Let t ∈ LHN (M). We proceed by induction on the length of the linear-head M-normalizing
reduction using Lemma 3 (see Lemma 25 in the Appendix A for details).

Let t beHW-typable. By Corollary 1 the strategy consisting in the contraction of (dB, c|LH)-redex
T-occurrences terminates in a term t′ without such redexes. The term t′ is typable by Lemma 2
and then t′ turns out to be a LHM-nf by Lemma 4. Thus, t ∈ LHN (M).

3 Although idempotency was not explicity mentioned in [17], a remark on pp. 55 points out the meaninglessness of
duplication of types in a sequence.

4 A head-nf is a λ-term having the shape λx1 . . . λxn.yt1 . . . tm, with n,m ≥ 0

3.2 Weak M-Normalization

In this section we use the type system HW to characterize weakly M-normalizing terms, a result
that extends the well-known characterization [17] of weakly β-normalizing in the λ-calculus. As
in [17, 13], HW-typability alone does not suffice to characterize weak M-normalizing terms (see an
example at the beginning of Section 3). The type [] plays a similar rôle the universal ω type in
[17, 13], although it is restricted to only occur in the type of the domain of a function that accepts
any kind of argument. We then restrict the allowed typing derivations in order to recover such a
characterization. Indeed, the set of positive (resp. negative) subtypes of a type is the smallest
set satisfying the following conditions (cf.[13]).

– A ∈ P(A).
– A ∈ P([σi]i∈I) if ∃i A ∈ P(σi); A ∈ N ([σi]i∈I) if ∃i A ∈ N (σi).
– A ∈ P(M→τ) if A ∈ N (M) or A ∈ P(τ); A ∈ N (M→τ) if A ∈ P(M) or A ∈ N (τ).
– A ∈ P(Γ) if ∃ y ∈ dom(Γ) s.t. A ∈ N (Γ (y)); A ∈ N (Γ) if ∃ y ∈ dom(Γ) s.t. A ∈ P(Γ (y)).
– A ∈ P(〈Γ, τ〉) if A ∈ P(Γ) or A ∈ P(τ); A ∈ N (〈Γ, τ〉) if A ∈ N (Γ) or A ∈ N (τ).

As an example, [] ∈ P([]), so that [] ∈ N ([]→σ), [] ∈ P(x:[[]→σ]) and [] ∈ P(〈x:[[]→σ], σ〉).

Lemma 5. Let Φ ⊲ Γ ⊢HW t:τ s.t. [] /∈ P(〈Γ, τ〉). If t has no (dB, c, w)-redex T-occurrences in Φ,
then t ∈ M-nf.

Theorem 2. Let t ∈ TM. Then, t ∈ WN (M) iff Γ ⊢HW t:τ and [] /∈ P(〈Γ, τ〉).

Proof. If t ∈ WN (M), we proceed by induction on the length of the M-normalizing reduction sequence
using Lemma 3 (see Lemma 28 in the Appendix A for details).

Suppose Γ ⊢HW t:τ and [] /∈ P(〈Γ, τ〉). By Corollary 1 the strategy of contracting only redex
T-occurrences terminates in a term t′ without such redexes. The term t′ is typable by Lemma 2
and then t′ turns out to be a M-nf by Lemma 5. Thus, t ∈ WN (M).

4 Characterization of Strong M-Normalization

In this section we show the third main result concerning the M-calculus that is a characterization of
the set of strongly M-normalizing terms by means of S-typability. The proof is done in several steps.
The first key point is the characterization of the set of strongly M\w-normalizing terms (instead
of M-normalizing terms). For that, SR and SE lemmas for the S-type system are needed, and an
inductive characterization of the set SN (M\w), based on Regnier’s σ-equivalence [40], turns out to
be helpful to obtain them. The second key point is the equivalence between strongly M and M\w-
normalizing terms. While the inclusion SN (M) ⊆ SN (M\w) is straightforward, the fact that every
w-reduction step can be postponed w.r.t. any M\w-step (Lemma 10) turns out to be crucial to show
SN (M\w) ⊆ SN (M).

We first introduce the head graphical equivalence ∼ on M-terms, given by the contextual,
transitive, symmetric and reflexive closure of the axiom (tv)[x/u] ≈ t[x/u]v, where x /∈ fv(v).
This equivalence, which comes from Regnier’s σ-equivalence [40] on λ-terms (resp. σ-equivalence
on terms with ES [5]), preserves types, a property used to perform some safe transformations of
terms in order to inductively define the set SN (M\w) (cf. clause (E)). We also need lemmas for SE
and SR (their proofs can be found in Appendix B).

Lemma 6 (Invariance for ∼). Let t, t′ ∈ TM such that t ∼ t′. Then, 1) ηM\w(t) = ηM\w(t
′).

2) Φ ⊲ Γ ⊢S t:τ iff Φ′ ⊲ Γ ⊢S t′:τ . Moreover, sz(Φ) = sz(Φ′).

In contrast to system HW, whose typing measure sz() is only decreasing w.r.t. reduction of
redex typed occurrences, the system S enjoys a stronger subject reduction property which guarantees
that every reduction decreases the measure sz() of terms (whose redexes are now all typed).

Lemma 7 (SR II). Let Φ ⊲ Γ ⊢S t:τ . If t→M\w t
′ then Φ′ ⊲ Γ ⊢S t′:τ and sz(Φ) > sz(Φ′).

The “witnesses derivation everywhere” in the typing rules (→ eS) and (cutS) is justified by the
proofs of the Lemma above. Indeed, let Φ⊲Γ ⊢ x[x/u]:τ and x[x/u]→c u[x/u] thus Φ

′⊲Γ ⊢ u[x/u]:τ .
In a type system without “witness everywhere”, one would have sz(Φ) = sz(Φu)+2 ≤ 2sz(Φu)+1 =
sz(Φ′). Therefore, in order to decrease the measure sz(), a witness derivation of u must also be
required in the typing derivation of x[x/u] so that one gets sz(Φ) = 2 ·sz(Φu)+2 > 2 ·sz(Φu)+1 =
sz(Φ′). An alternative approach would be to change the operational semantics of the calculus,
spliting the c-rule in two cases: |t|x = 1 would be handled by the dereliction rule t[x/u]→d t{x/u}
and |t|x > 1 by our c-rule. The witness derivation would then be required only when I = ∅.

Notice that →w-reduction also decreases the measure sz() but the type assignment Γ may
change, i.e. decrease.

Lemma 8 (SE II). Let Γ ⊢S t′:τ . If t→M\w t
′ then Γ ⊢S t:τ .

Notice that expansion does not hold for →w-reduction. Thus for example x : [σ] ⊢S x:σ and
x[y/Ω]→w x, but x : [σ] ⊢S x[y/Ω]:σ does not hold.

These technical tools are now used to prove that SN (M\w) coincides exactly with the set of S-
typable terms. To close the picture, i.e. to show that also SN (M) coincides with the set of S-typable
terms, we establish an equivalence between SN (M) and SN (M\w). This is done constructively thanks
to the use of an inductive definition for SN (M\w). Indeed, the inductive set of M\w-strongly-
normalizing terms, written ISN (M\w), is the smallest subset of TM that satisfies the following
properties:

(V) If t1, . . . , tn ∈ ISN (M\w), then xt1 . . . tn ∈ ISN (M\w).
(L) If t ∈ ISN (M\w), then λx.t ∈ ISN (M\w).
(W) If t, s ∈ ISN (M\w) and |t|x = 0, then t[x/s] ∈ ISN (M\w).
(B) If u[x/v]t1, . . . , tn ∈ ISN (M\w), then (λx.u)vt1, . . . , tn ∈ ISN (M\w).
(C) If C[[u]][x/u] ∈ ISN (M\w), then C[[x]][x/u] ∈ ISN (M\w).
(E) If (tu)[x/s] ∈ ISN (M\w) and |u|x = 0, then t[x/s]u ∈ ISN (M\w).

Notice that use of the ∼-equivalence in the last clause. It is not surprising that ISN (M\w) turns
out to be equivalent to SN (M\w) (see Lemma 32 in Appendix B for details). We then have:

Lemma 9. Let t ∈ TM. If t ∈ SN (M\w) then t is S-typable.

Proof. We use the equality SN (M\w) = ISN (M\w) to reason by induction on t ∈ ISN (M\w). The
proof also uses Lemma 8. See Appendix B for details.

In order to infer SN (M\w) ⊆ SN (M), the following postponement property is crucial.

Lemma 10 (Postponement). Let v ∈ TM. If v →
+
w→M\w v

′ then v →M\w→
+
w v′.

Proof. We first show by cases v →w→M\w v′ implies v →M\w→
+
w v′. Then, the statement holds by

induction on the number of w-steps from v.

Lemma 11 (From M\w to M). Let t ∈ TM. If t ∈ SN (M\w), then t ∈ SN (M).

Proof. We show that any reduction sequence ρ : t →M . . . is finite by induction on the pair 〈t, n〉,
where n is the maximal number such that ρ can be decomposed as ρ : t →n

w t′ →M\w t′′ → . . . (this
is well-defined since →w is trivially terminating). We compare the pair 〈t, n〉 using →M\w for the
first component (this is well-founded since t ∈ SN (M\w) by hypothesis) and the standard order on
natural numbers for the second one. When the reduction sequence starts with at least one w-step
we conclude by Lemma 10. All the other cases are straightforward.

We conclude this section with the third main theorem for M-calculus:

Theorem 3. Let t ∈ TM. Then t is S-typable iff t ∈ SN (M).

Proof. Let Φ ⊲ Γ ⊢S t:τ . Assume t /∈ SN (M\w) so that ∃∞ sequence t = t0 →M\w t1 →M\w t2 →M\w · · · .
By Lemma 7 Φi ⊲ Γ ⊢ ti:τ for very i, and ∃∞ sequence sz(Φ0) > sz(Φ1) > sz(Φ2) > . . ., which
leads to a contradiction. Therefore, t ∈ SN (M\w) ⊆Lemma 11 SN (M).

For the converse, t ∈ SN (M) ⊆ SN (M\w) because →M\w⊆→M. We conclude by Lemma 9.

5 An Intuitionistic Term Calculus in Gentzen Sequent Style

In this second part of the paper we develop linear-head, weak and strong normalization character-
izations for a term calculus based on the intuitionistic sequent calculus. We first give the syntax
and the operational semantics of the J-calculus (including the notion of linear-head reduction). We
then introduce the two type systems, called again respectively HW and S.

Syntax:We use Herbelin’s syntax [27]. We consider a countable infinite set of symbols x, y, z,
Three different syntactic categories for objects (OJ), terms (TJ) and lists (LJ) are defined by the
following grammars:

(objects) o, p ::= t | l (terms) t, u ::= xl | tl | λx.t | t[x/t] (lists) l,m ::= nil | t; l

The term xl is a headed list, tl is an application, λx.t an abstraction, t[x/u] a closure
affected by an explicit substitution [x/u], nil the empty list and t; l a nonempty list. We
write tl1 . . . ln for (. . . (tl1) . . . ln) and xnil for x nil. The size of the object o is denoted by |o|.
Remark that the symbol x alone is not an object of the calculus. In contrast to [27] we do not
consider a concatenation symbol for lists inside the syntax, but we define a meta-operation of
concatenation of lists by induction as follows: nil@l := l and (u;m)@l := u; (m@l). Moreover,
explicit substitutions do not apply to lists, but only to terms, i.e. l[x/u] is not in the grammar.

Free and bound symbols of objects are defined as expected, written resp. fs(o) and bs(o),
and |o|x denotes the number of free occurrences of the symbol x in o. As before, we work
with the standard notion of α-conversion. Positions, subterms and term occurrences are defined as
expected, in particular, 0 ∈ pos(xl) and (xl)|0 = l since the symbol x is not a subterm of xl (it is
not even a term). We also consider two notions of contexts given by the following grammars:

(list contexts) L ::= ✷ | L[x/t] (object contexts) O, P ::= C | V
C, D ::= ✷ | xV | Cl | λy.C | C[y/u] | t[y/C] | tV
V, U ::= C; l | t; V

Operational Semantics: The J-calculus is given by the set of objects OJ and the reduction
relation →J on OJ defined as the closure by contexts O of the following rewriting rules:

L[λx.t]nil 7→dBnil L[λx.t] t[x/u] 7→w t if |t|x = 0
L[λx.t](u; l) 7→dBcons L[t[x/u]l] L[xl]m 7→@var

L[x(l@m)]
C[[x l]][x/u] 7→c C[[u l]][x/u] L[tl]m 7→@app

L[t(l@m)]

The reader will notice some differences from the reduction rules in [27]. First of all, the use
of the meta-operation for concatenating lists in the rules 7→@var

and 7→@app
replaces the explicit

concatenation rules in [27]. This is particularly convenient since we only reduce objects that are
terms (even if these terms occur inside lists) and so the proofs are simpler/shorter because there
are less rules and only of one kind. Another difference from [27] is the use of rules at a distance,
specified by means of list contexts L, as we did in the M-calculus. Moreover, the rule 7→c is not exactly
the same as that of M-calculus (even if denoted by the same name); the reason being that C[[x]] is
meaningless in the J-calculus because the symbol x does not belong to the set OJ. Last, but not
least, the operational semantics of the J-calculus prevents the useless duplication of empty resources
which does happens in [27], e.g. the reduction step (tl)[x/u]→ t[x/u]l[x/u], where |tl|x = 0.

The notion of redex occurrence follows the same idea used for the M-calculus. Thus, we define
a position p ∈ pos(t) to be a X-redex (for X ∈ {dBnil, dBcons, w,@var,@app}) if t|p has the form of
the left-hand side of the rule 7→X , and p ∈ pos(t) is a c-redex if p = p1p2, where t|p1 = C[[xl]][x/u]
and C|p2 = ✷. For example 00 and 01 are both c-redex occurrences of the term xnil[y/xnil][x/znil].

The reduction relation →J can also be refined. We write →X for the closure by contexts O of
the rewriting rule 7→X for every X. We define B@ := {dBnil ∪ dBcons ∪ @var ∪ @app} and →B@:=
⋃

X∈B@ →X . The non-erasing reduction relation→J\w is given by→B@∪c, i.e.→J\w=→J \ →w, and
plays a key role in the characterization of strongly normalizing terms in Section 7.

To define linear-head J-reduction we first introduce the set of linear-head contexts that are
generated by the grammar: LH ::= ✷ | λx.LH | LHl | LH[x/t], obtained by adapting the one for
the M-calculus given in Section 2. Linear-head J-reduction, written →LHJ, is the closure under
linear-head contexts of the relation generated by the rules B@ ∪ {c|LH}, where 7→c|LH

is given by:

LH[[xl]][x/u] 7→c|LH
LH[[ul]][x/u]

As for the rule 7→c introduced in Section 2, the hole of the context LH contains the term xl instead of
the symbol x, which is not an object of this calculus. An object o is linear-head J-normalizing,
written t ∈ LHN (J), iff t has an LHJ-normal form.

As expected the postponement property also holds in this calculus:

Lemma 12 (Postponement). Let o ∈ OJ. If o→
+
w→J\w o

′ then o→J\w→
+
w o′.

The Type Systems: The set of types is the same that we considered in Section 2. The
symbol is called the empty stoup. A stoup Σ is either a type σ or the empty stoup. Type
environments are pairs of the form Γ | Σ, where Γ is a type assignment and Σ is a stoup. Type
judgments are triples of the form Γ | Σ ⊢ o:τ , where o is an object, Γ | Σ a type environment and
τ a type. The two type systems for the J-calculus, called again HW and S, and given respectively in
Figure 3 and 4, are used to derive type judgments of the form Γ | ⊢ t:τ and Γ | σ ⊢ l:τ , where t is a
term and l is a list. Remark the absence of weakened axioms and the multiplicative presentation of
the rules, resulting in a logical system which can be shown to be equivalent to the original one [27].
As before Γ | Σ ⊢HW o:τ (resp. Γ | Σ ⊢S o:τ) denotes derivability in system HW (resp. S). The
hlist-size of the type derivation Φ is a positive natural number written sz2(Φ) which denotes the
size of Φ where every node hlist counts 2 and the other ones count 1.

The two systems are syntax oriented so we do not need generation lemmas. The following
(weak/strong) relevance properties can easily be shown by induction on derivations.

Lemma 13. If Γ | Σ ⊢HW o:τ , then dom(Γ) ⊆ fs(o). If Γ | Σ ⊢S o:τ , then dom(Γ) = fs(o).

∅ | τ ⊢ nil:τ
(ax)

Γ | ⊢ t:τ

Γ \\x | ⊢ λx.t:Γ (x)→τ
(→ r)

(∆i | ⊢ u:σi)i∈I x:[σi]i∈I ;Γ | ⊢ t:τ

Γ +i∈I ∆i | ⊢ t[x/u]:τ
(esHW)

Γ | σ ⊢ l:τ

Γ + {x:[σ]} | ⊢ xl:τ
(hlist)

Γ | ⊢ t:σ ∆ | σ ⊢ l:τ

Γ +∆ | ⊢ tl:τ
(app)

(∆i | ⊢ t:σi)i∈I Γ | σ ⊢ l:τ

Γ +i∈I ∆i | [σi]i∈I →σ ⊢ t; l:τ
(→ lHW)

Fig. 3. The Type System HW for the J-Calculus

Typing Rules {(ax), (hlist), (app), (→ r)} plus

(∆i | ⊢ t:σi)i∈I∪{w} Γ | σ ⊢ l:τ

Γ +i∈I∪{w} ∆i | [σi]i∈I →σ ⊢ t; l:τ
(→ lS)

(∆i | ⊢ u:σi)i∈I∪{w} x:[σi]i∈I ;Γ | ⊢ t:τ

Γ +i∈I∪{w} ∆i | ⊢ t[x/u]:τ
(esS)

Fig. 4. The Type System S for the J-Calculus

6 Characterization of Linear-Head and Weak J-Normalization

In this section we show the characterizations of linear-head and weakly normalizing terms by means
of HW-typability. We use the same notion of (redex) T-occurrence introduced in Section 3 for the
M-calculus. The proof of the SR lemma can be found in Appendix C, and makes use of a subtle
partial substitution lemma as well as the measure sz2() introduced in Section 5.

Lemma 14 (SR III). Let Φ ⊲ Γ | Σ ⊢HW o:τ . If o →J o′ reduces a (B@, c, w)-redex T-occurrence
of o in Φ then Φ′ ⊲ Γ ⊢HW o′:τ and sz2(Φ) > sz2(Φ′).

To illustrate the need of the measure sz2() instead of the size sz() used in Section 2 con-
sider the derivation Φ ⊲ y:σ | ⊢HW xnil[x/ynil]:σ and the reduction step t = xnil[x/ynil] →c

ynilnil[x/ynil] = t′. Let Φ′ be the typing derivation obtained from Φ for the term t′. Then it is not
difficult to see that the size of the derivation Φ is not strictly bigger than that of Φ′ if we only count
1 for the (hlist) rules (indeed, the size is 5 for both terms). However, 7 = sz2(Φ) > sz2(Φ′) = 6.

Corollary 2. If Φ⊲Γ | Σ ⊢HW o:τ , then any J-reduction sequence contracting only (B@, c, w)-redex
T-occurrences is finite.

As expected, subject expansion also holds in this framework:

Lemma 15 (SE III). If Γ | Σ ⊢HW o′:τ and o→J o
′ then Γ | Σ ⊢HW o:τ .

We first use HW-typability to characterize linear-head normalization for the J-calculus, which
can be seen as a particular reduction strategy of the relation→J, even if it induces non-deterministic
behaviours. This is however safe since →LHJ has the diamond property. The characterization of
linear-head normalizing terms follows from the lemma below.

Lemma 16. If Φ⊲Γ | ⊢HW u:τ and u has no (B@, c|LH)-redex T-occurrences in Φ then u ∈ LHJ-nf.

Theorem 4. Let u ∈ TJ. Then u ∈ LHN (J) iff u is HW-typable.

Proof. Exactly as the proof of Theorem 1, but using Corollary 2, Lemmas 14, 15 and 16 and
Lemma 37 in Appendix C in place of Corollary 1, Lemmas 2, 3 and 4, and Lemma 25 in the
Appendix A respectively.

Typing derivations in the HW-system must be restricted in order to characterize weak J-
normalizing terms, as we did for the M-calculus, so that positive/negative types need to be extended
to type environments. Therefore, the set of positive (resp. negative) subtypes of a type is the
smallest set satisfying the conditions in Section 3.2 extended with the following cases.

– A∈P(Γ |Σ) if A∈P(Γ) or Σ = σ & A∈N (σ); A∈N (Γ |Σ) if A∈N (Γ) or Σ = σ & A∈P(σ).
– A∈P(〈Γ | Σ, τ〉) if A ∈ P(Γ |Σ) or A ∈ P(τ); A∈N (〈Γ |Σ, τ〉) if A∈N (Γ |Σ) or A∈N (τ).

Lemma 17. Let Φ⊲Γ | Σ ⊢HW o:τ s.t. [] /∈ P(〈Γ | Σ, τ〉). If o has no (B@, c, w)-redex T-occurrences
in Φ, then o ∈ J-nf.

Proof. By induction on Φ (see Appendix C for details).

Theorem 5. Let o ∈ OJ. Then, o ∈ WN (J) iff Γ | Σ ⊢HW o:τ and [] /∈ P(〈Γ | Σ, τ〉).

Proof. If o ∈ WN (J), we proceed by induction on the length of the J-normalizing sequence using
Lemma 15 (see Lemma 39 in the Appendix C for details).

Suppose Γ | Σ ⊢HW o:τ and [] /∈ P(〈Γ | Σ, τ〉). By Corollary 2 the strategy of contracting only
redex T-occurrences terminates in a object o′ without such redexes. The object o′ is typable by
Lemma 14 and then o′ turns out to be a J-nf by Lemma 17. Thus, o is weakly J-normalizing.

7 Characterization of Strong J-Normalization

This section is devoted to the characterization of J-strong normalization. Since the techniques
already presented in Section 4 were developed to be applied to both calculi M and J, the schemes
of the proofs in this section are the same we used for the M-calculus.

The head graphical equivalence ∼ on J-terms is given by the contextual, transitive, sym-
metric and reflexive closure of the axiom (tl)[x/u] ≈ t[x/u]l, where |l|x = 0. Notice that (xl)[x/u]
cannot be ∼-converted into x[x/u]l when x /∈ fv(l), since x alone is not a term of the calculus.

The main properties of system S follow (see Appendix D for details).

Lemma 18 (Invariance for ∼). Let o, o′ ∈ OJ s.t. o ∼ o′. Then 1) ηJ\w(o) = ηJ\w(o
′).

2) Φ ⊲ Γ ⊢S o:τ iff Φ′ ⊲ Γ ⊢S o′:τ . Moreover, sz2(Φ) = sz2(Φ′).

Lemma 19 (SR IV). Let Φ ⊲ Γ | Σ ⊢S o:τ . If o →J\w o′, then Φ′ ⊲ Γ | Σ ⊢S o′:τ and sz2(Φ) >
sz2(Φ′).

Lemma 20 (SE IV). Let Γ | Σ ⊢S o′:τ . If o→J\w o
′, then Γ | Σ ⊢S o:τ .

We now use the previous technical tools to characterize strongly J-terms by means of the type
system S. We start by giving an inductive definition for the set of strongly-normalizing terms w.r.t.
the non-erasing reduction relation J\w such that the resulting set ISN (J\w) coincides with SN (J\w).
Indeed, the inductive set of J\w-strongly-normalizing objects is the smallest subset of OJ

that satisfies the following properties:

(EL) nil ∈ ISN (J\w).
(NEL) If t, l ∈ ISN (J\w), then t; l ∈ ISN (J\w),

(L) If t ∈ ISN (J\w), then λx.t ∈ ISN (J\w).
(HL) If l ∈ ISN (J\w), then xl ∈ ISN (J\w).
(W) If t, s ∈ ISN (J\w) and |t|x = 0, then t[x/s] ∈ ISN (J\w).

(dBnil) If (λx.t)l1 . . . ln (n ≥ 0) ∈ ISN (J\w), then (λx.t)nill1 . . . ln ∈ ISN (J\w).
(dBcons) If t[x/u]ml1 . . . ln (n ≥ 0) ∈ ISN (J\w), then (λx.t)(u;m)l1 . . . ln ∈ ISN (J\w).
(@var) If x(n@m)l1 . . . ln (n ≥ 0) ∈ ISN (J\w), then (xn)ml1 . . . ln ∈ ISN (J\w).
(@app) If t(n@m)l1 . . . ln (n ≥ 0) ∈ ISN (J\w), then (tn)ml1 . . . ln ∈ ISN (J\w).

(C) If C[[u l]][x/u] ∈ ISN (J\w), then C[[x l]][x/u] ∈ ISN (J\w).
(E) If (tl)[x/s] ∈ ISN (J\w) and |l|x = 0, then t[x/s]l ∈ ISN (J\w).

The sets SN (J\w) and ISN (J\w) coincide (see Lemma 47 in the Appendix D for details) so
that we can show the following result:

Lemma 21. Let o ∈ OJ. If o ∈ SN (J\w) then o is S-typable.

Proof. Using the equality SN (J\w) = ISN (J\w) to reason by induction on o ∈ ISN (J\w). The
proof also uses Lemma 20. See Appendix D for details.

Lemma 22 (From J\w to J). Let o ∈ OJ. If o ∈ SN (J\w), then o ∈ SN (J).

Proof. The proof proceeds as the one for Lemma 11, but uses Lemma 12 instead to achieve the
postponement of w-steps.

We can now conclude with the main result of this section.

Theorem 6. Let o ∈ OJ. Then o is S-typable iff o ∈ SN (J).

Proof. Same scheme used in the proof of Theorem 3, but using Lemmas 19, 21 and 22 in place of
Lemmas 7, 9 and 11 respectively.

8 Conclusion

This paper studies quantitative types for two intuitionistic term languages specified by natural
deduction and sequent calculus. We characterize linear-head, weak and strongly normalizing sets
of terms in each language. In particular, the correspondence between head β-normalization for
λ-terms and linear-head M-normalization for terms with ES can now be obtained by means of an
indirect logical reasoning (i.e. the HW-system), in contrast to the operational result in [4].

The type systems are given by simple formalisms: 1) intersection is represented by multisets so
that no axioms for commutative and associative laws are needed, 2) the typing rules are syntax-
oriented so that no generation lemmas are used, 3) the type systems used to characterize strongly
normalizing terms are just based on a notion of witness sequent, no subtyping relation is used [10],
and 4) the type systems are specified in an homogeneous way, so that the schemes of the proofs for
the HW-systems can be reused in the development of the proofs for the S-systems. Similarly, the
proofs for the J-calculus follow the same schemes than those for the M-calculus.

One current investigation line is the use of quantitative type systems to directly characterize
head M-normalization (instead of linear-head) for terms with ES, as already done with head β-
normalization for λ-terms. This could be done by redefining the notion of redex typed occurrence
and/or by considering some equivalence on terms with ES.

The relation between our type systems and the bounds for linear-head and head-reduction
obtained in [4] should be studied. Recovering the bounds on the longest reduction sequences defined
in [10] is another further interesting question. Last but not least, we would like to derive from each
type system a notion of relational model [21] for the corresponding term calculus.

Although type inference is undecidable for any system characterizing termination properties,
semi-decidable restrictions are expected to hold. Principal typing is a necessary property (cf. [21])
to obtain partial typing inference algorithms [42, 41, 32]. Moreover, relevance in the sense of [18] is
a key property to obtain principal typings. Therefore semi-decidable typing inference algorithms
are also expected to hold for our four non-idempotent type systems.

Neergard et al. [38] proved that type inference and execution of typed programs are in different
classes of complexity in the idempotent case but in the same class in the the non-idempotent case.
However, as noted there, the system introduced by Carlier et al. [14] allows to relax the notion of
type linearity. An interesting challenge would be to understand how to use this relaxed notion of
linear types in order to gain expressivity while staying in a different class.

Last but not least, the inhabitation problem for idempotent intersection types typing the λ-
calculus is known to be undecidable [43], while the problem was recently shown to be decidable in
the non-idempotent case [12]. An interesting question concerns the inhabitation problems for our
non-idempotent type systems.

9 Acknowledgment

This work was partially funded by the international project STIC-AmSud and the French-
Argentinian Laboratory in Computer Science INFINIS.

References

1. M. Abadi, L. Cardelli, P-L. Curien, and J-J. Lévy. Explicit substitutions. JFP, 1(4):375–416, 1991.

2. B. Accattoli. Evaluating functions as processes. In TERMGRAPH, EPTCS 110:41–55, 2013.

3. B. Accattoli, E. Bonelli, D. Kesner, and C. Lombardi. A nonstandard standardization theorem. In POPL, ACM,
2014.

4. B. Accattoli and U. Dal Lago. On the invariance of the unitary cost model for head reduction. In RTA, LIPIcs
15:22–37, 2012.

5. B. Accattoli and D. Kesner. The structural λ-calculus. In CSL, LNCS 6247:381–395, 2010.

6. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics (revised edition). Elsevier Science, Amsterdan,
The Netherlands, 1984.

7. H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of type
assignment. Bulletin of Symbolic Logic, 48:931–940, 1983.

8. A. Bernadet and S. Lengrand. Complexity of strongly normalising λ-terms via non-idempotent intersection types.
In FOSSACS, LNCS 6604:88–107, 2011.

9. A. Bernadet and S. Lengrand. Filter models: non-idempotent intersection types, orthogonality and polymorphism.
In CSL, LIPIcs 12:51–66, 2011.

10. A. Bernadet and S. Lengrand. Non-idempotent intersection types and strong normalisation. LMCS, 9(4), 2013.

11. G. Boudol, P-L. Curien, and C. Lavatelli. A semantics for lambda calculi with resources. MSCS, 9(4):437–482,
1999.

12. A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca. The inhabitation problem for non-idempotent intersection
types. Submitted.

13. F. Cardone and M. Coppo. Two extension of Curry’s type inference system. In Logic and Computer Science,
APIC Series 31, pages 19–75. Academic Press, 1990.

14. S. Carlier, J. Polakow, J. B. Wells, and A. J. Kfoury. System E: Expansion variables for flexible typing with
linear and non-linear types and intersection types. In ESOP’04, LNCS 2986:294-309. Springer-Verlag, 2004.

15. M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for lambda terms. Archiv für Mathematische Logik
und Grundlagenforschung, 19:139–156, 1978.

16. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the lambda-calculus
Notre Dame Journal of Formal Logic 21(4):685–693, 1980.

17. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms. Mathematical Logic
Quarterly, 27(2-6):45–58, 1981.

18. F. Damiani and P. Giannini. A decidable intersection type system based on relevance. In TACS’94, LNCS
789:707–725. Springer, 1994.

19. V. Danos and L. Regnier. Head linear reduction, 2003. iml.univ-mrs.fr/~regnier/articles/pam.ps.gz.
20. E. De Benedetti and S. Ronchi Della Rocca. Bounding normalization time through intersection types. ITRS,

EPTCS 121, pages 48-57, 2013.
21. D. de Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD Univ. Aix-Marseille II, 2007.
22. R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit substitutions. MSCS, 13(3):409–450, 2003.
23. D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the curien-herbelin symmetric

lambda calculus: Extending the Coppo-Dezani heritage. TCS, 398(1-3):114–128, 2008.
24. J. Esṕırito Santo, S. Ghilezan, and J. Ivetic. Characterising strongly normalising intuitionistic sequent terms. In

TYPES, LNCS 4941:85–99, 2007.
25. J-Y. Girard. Linear logic. TCS, 50:1–102, 1987.
26. J-Y. Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and Algebra, pages 97–124, 1996.
27. H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent calculus structure. In CSL, LNCS

1092:61–75, 1995.
28. D. Kesner. The theory of calculi with explicit substitutions revisited. In CSL, LNCS 4646:238–252, 2007.
29. D. Kesner. A theory of explicit substitutions with safe and full composition. LMCS, 5(3), 2009.
30. D. Kesner and S. Lengrand. Resource operators for lambda-calculus. IandC, 205(4):419–473, 2007.
31. D. Kesner and S. Ó Conchúir. Milner’s lambda calculus with partial substitutions, 2008. http://www.pps.

univ-paris-diderot.fr/~kesner/papers/shortpartial.pdf.
32. A. J. Kfoury and J. B. Wells. Principality and type inference for intersection types using expansion variables,

TCS, 311(1-3):1–70, 2004.
33. J.-L. Krivine. Lambda-calculus, types and models, Ellis Horwood, 1993.
34. S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection types for explicit

substitutions. IandC, 189:17–42, 2004.
35. J-M. Madiot. Embedding intersection types into multiplicative linear logic. TR, LIPN, Paris 13, 2010.
36. G. Mascari and M. Pedicini. Head linear reduction and pure proof net extraction. TCS, 135(1):111–137, 1994.
37. R. Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). ENTCS, 175(3):65–73, 2007.
38. P. Neergaard and H. Mairson. Types, Potency, and Idempotency: Why Nonlinearity and Amnesia Make a Type

System Work. In ICFP ’ 04, SIGPLAN Not. vol. 39(9):138–149, 2004.
39. G. Pottinger. A type assignment for the strongly normalizable λ-terms. In To H.B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism, pages 561–578. Academic Press, 1980.
40. L. Regnier. Une équivalence e sur les lambda-termes. TCS, 2(126):281292, 1994.
41. S. Ronchi Della Rocca. Principal Type scheme and unification for intersection type discipline. TCS, 59:1–29,

1988.
42. S. Ronchi Della Rocca and B. Venneri. Principal Type Scheme for an extended type theory. TCS, 28:151–169,

1984.
43. P. Urzyczyn. The emptiness problem for intersection types. Journal of Symbolic Logic, 64(3):1195–1215, 1999.

A Appendix: Characterization of Linear-Head and Weak M-Normalization

Lemma 23 (Partial Substitution I). If ΦC[[x]]⊲x:[σi]i∈I ;Γ ⊢HW C[[x]]:τ and (Φi
u⊲∆i ⊢HW u:σi)i∈I

then ΦC[[u]]⊲x:[σi]i∈IrK ;Γ +k∈K ∆k ⊢HW C[[u]]:τ , for some K ⊆ I where sz(ΦC[[u]]) = sz(ΦC[[x]])+k∈K

sz(Φk
u) − |K|. Moreover, if C|p = ✷ and p ∈ pos(C[[x]]) is a T-occurrence of C[[x]] in ΦC[[x]], then

K 6= ∅.

Proof. By induction on the type derivation ΦC[[x]].

– If C = ✷, then by construction Γ = ∅, I = {1}, ρ1 = τ and Φx has the following form:

Φx ⊲
x:[τ] ⊢ x:τ

(ax)

Thus, for K = {1} ⊆ I we have C[[s]] = s and Φs = Φ1
s. Moreover, sz(Φs) = sz(Φ1

s) =
1 + sz(Φ1

s)− 1 = sz(Φx) + sz(Φ1
s)− 1. Thus the statement holds.

– If C = λy.D, then the property is straightforward by the i.h.
– If C = Dt, then by construction x:[ρi]i∈I ;Γ = ∆+j∈J Γj and ΦC[[x]] is of the following form

ΦC[[x]] ⊲

ΦD[[x]] ⊲

h

∆ ⊢ D[[x]]:[σj]j∈J→τ

Φj
t ⊲

h

Γj ⊢ t:σj

j∈J

x:[ρi]i∈I ;Γ ⊢ D[[x]]t:τ
(→ eHW)

Moreover, sz(ΦC[[x]]) = sz(ΦD[[x]]) +j∈J sz(Φj
t) + 1.

We necessarily have ∆ = x:[ρi]i∈L;∆
′, where L ⊆ I. The i.h. then holds for ΦD[[x]] so that

we get ΦD[[s]] ⊲ x:[ρi]i∈LrK ;∆′ +i∈K ∆i ⊢ D[[s]]:[σj]j∈J→τ , for some K ⊆ L where sz(ΦD[[s]]) =
sz(ΦD[[x]]) +i∈K sz(Φi

s)− |K|. Then we construct the following derivation

ΦC[[s]] ⊲

ΦD[[s]] ⊲

h

x:[ρi]i∈LrK ;∆′ +i∈K ∆i ⊢ D[[s]]:[σj]j∈J→τ

Φj
t ⊲

h

Γj ⊢ t:σj

j∈J

(x:[ρi]i∈LrK ;∆′ +i∈K ∆i) +j∈J Γj ⊢ D[[s]]t:τ
(→ eHW)

We thus have x:[ρi]i∈I ;Γ = ∆ +j∈J Γj implies x:[ρi]i∈I ;Γ = x:[ρi]i∈L;∆
′ +j∈J Γj implies

x:[ρi]i∈I ;Γ = x:[ρi]i∈L\K +x:[ρk]k∈K ;∆′+j∈J Γj implies x:[ρi]i∈I\K ;Γ = x:[ρi]i∈L\K ;∆′+j∈J Γj

implies x:[ρi]i∈IrK ;Γ+i∈K∆i = (x:[ρi]i∈LrK ;∆′+i∈K∆i)+j∈JΓj and sz(ΦC[[s]]) = sz(ΦD[[s]])+j∈J

sz(Φj
t) + 1 =i .h. sz(ΦD[[x]]) +i∈K sz(Φi

s)− |K|+j∈J sz(Φj
t) + 1 = sz(ΦC[[x]]) +i∈K sz(Φi

s)− |K|.
We conclude the first part of the statement since K ⊆ L ⊆ I. Finally, if the position p = 0p′ ∈
pos(C[[x]]) is a T-occurrence of C[[x]] ΦC[[x]], then p′ is a T-occurrence of D[[x]] ΦD[[x]] so that K 6= ∅
by the i.h.

– If C = tD, then by construction x:[ρi]i∈I ;Γ = ∆+j∈J Γj , and ΦC[[x]] is of the form

ΦC[[x]] ⊲

Φt ⊲

h

∆ ⊢ t:[σj]j∈J→τ

Φj
D[[x]] ⊲

h

Γj ⊢ D[[x]]:σj

j∈J

x:[ρi]i∈I ;Γ ⊢ tD[[x]]:τ
(→ eHW)

Moreover, sz(ΦC[[x]]) = sz(Φt) +j∈J sz(Φj
D[[x]]) + 1.

We necessarily have Γj = x:[ρi]i∈Lj
;Γ ′

j , where Lj ⊆ I. The i.h. then holds for Φj
D[[x]]⊲x:[ρi]i∈Lj

;Γ ′
j ⊢ D[[x]]:σj

so that Φj
D[[s]] ⊲ x:[ρi]i∈LjrKj

;Γ ′
j +i∈Kj

∆i ⊢ D[[s]]:σj for Kj ⊆ Lj and sz(Φj
D[[s]]) = sz(Φj

D[[x]]) +i∈Kj

sz(Φi
s)− |Kj |. We then construct the following derivation:

ΦC[[s]] ⊲

Φt ⊲

h

∆ ⊢ t:[σj]j∈J→τ

Φj
D[[s]] ⊲

h

x:[ρi]i∈LjrKj
;Γ ′

j +i∈Kj
∆i ⊢ D[[s]]:σj

j∈J

∆+j∈J (x:[ρi]i∈LjrKj
;Γ ′

j +i∈Kj
∆i) ⊢ tD[[s]]:τ

(→ eHW)

We have ∆ +j∈J (x:[ρi]i∈LjrKj
;Γ ′

j +i∈Kj
∆i) = x:[ρi]i∈Ir∪j∈JKj

;Γ +j∈J +i∈Kj
∆i so that let

K = ∪j∈JKj ⊆ ∪j∈JLj ⊆ I. If the position p = 1p′ ∈ pos(C[[x]]) is a T-occurrence of C[[x]] in

ΦC[[x]], then p′ is a T-occurrence of D[[x]] in some Φj
D[[x]] so that Kj 6= ∅ by the i.h. We thus have

∅ 6= Kj ⊆ K which concludes the first part of the statement.

Finally, sz(ΦC[[s]]) = sz(Φt)+j∈J sz(Φ
j
D[[s]])+1 =i .h. sz(Φt)+j∈J (sz(Φ

j
D[[x]])+i∈Kj

sz(Φi
s)−|Kj |)+

1 = sz(Φt) +j∈J sz(Φj
D[[x]]) +i∈K sz(Φi

s)− |K|+ 1 = sz(ΦC[[x]]) +i∈K sz(Φi
s)− |K|.

– If C = D[x/u] or C = t[x/D] we proceed similarly to the previous case.

Using Lemma 1 (Weak) and Lemma 23 we can show the Subject Reduction property.

Lemma 2 (SR I) Let Φ ⊲ Γ ⊢HW t:τ . If t →M t′ reduces a redex T-occurrence of t in Φ then
Φ′ ⊲ Γ ⊢HW t′:τ and sz(Φ) > sz(Φ′).

Proof. By induction on the reduction relation →M.

– If t = L[[λx.v]]s → L[[v[x/s]]] = t′, then we proceed by induction on L and we show that in this
case sz(Φ) > sz(Φ′). Let L = ✷. By construction the derivation Φ is of the form:

Φ ⊲

Φv ⊲

h

x : [ρi]i∈I ;Π ⊢ v:σ

Π ⊢ λx.v:[ρi]i∈I→σ

Φi
s ⊲

h

Γi ⊢ s:ρi

i∈I

Π +i∈I Γi ⊢ (λx.v)s:τ

Moreover, sz(Φ) = sz(Φv) +i∈I sz(Φ
i
s) + 2. Hence,

Φ′ ⊲

Φv ⊲

h

x : [ρi]i∈I ;Π ⊢ v:σ

Φi
s ⊲

h

Γi ⊢ s:ρi

i∈I

Π +i∈I Γi ⊢ v[x/s]:σ

We have sz(Φ′) = sz(Φv) +i∈I sz(Φ
i
s) + 1 < sz(Φ).

Let L = L′[y/u]. By construction the derivation has the following form:

h

Γ0; y : [ρj]j∈J ⊢ L
′[[λx.v]]:[σi]i∈I→τ

h

Πj ⊢ u:ρj

j∈J

Γ0 +j∈J Πj ⊢ L
′[[λx.v]][y/u]:[σi]i∈I→τ

h

∆i ⊢ s:σi

i∈I

Γ0 +j∈J Πj +i∈I ∆i ⊢ L
′[[λx.v]][y/u]s:τ

We can then construct the following derivation:

ΦL′[[λx.v]]s ⊲

h

Γ0; y : [ρj]j∈J ⊢ L
′[[λx.v]]:[σi]i∈I→τ

h

∆i ⊢ s:σi

i∈I

Γ0; y : [ρj]j∈J +i∈I ∆i ⊢ L
′[[λx.v]]s:τ

By the i.h. there is a derivation ending with ΦL′[[v[x/s]]]⊲Γ0; y : [ρj]j∈J +i∈I ∆i ⊢ L
′[[v[x/s]]]:τ such

that sz(ΦL′[[λx.v]]s) > sz(ΦL′[[v[x/s]]]). We thus conclude with the following derivation.

h

Γ0; y : [ρj]j∈J +i∈I ∆i ⊢ L
′[[v[x/s]]]:τ

h

Πj ⊢ u:ρj

j∈J

Γ0 +j∈J Πj +i∈I ∆i ⊢ L
′[[v[x/s]]][y/u]:τ

We have sz(ΦL′[[v[x/s]]][y/u]) = sz(ΦL′[[v[x/s]]])+j∈J sz(Φ
j
u)+1 <i .h. sz(ΦL′[[λx.v]]s)+j∈J sz(Φ

j
u)+1 =

sz(ΦL′[[λx.v]]) +i∈I sz(Φ
i
s) +j∈J sz(Φj

u) + 2 = sz(ΦL′[[λx.v]][y/u]s).
– If o = C[[x]][x/u]→ C[[u]][x/u] = o′, where |C[[x]]|x ≥ 1, then by construction Φ is of the form

Φ ⊲

ΦC[[x]] ⊲

h

x:[ρi]i∈I ;Π ⊢ C[[x]]:τ

Φi
u ⊲

h

∆i ⊢ u:ρi

i∈I

Π +i∈I ∆i ⊢ C[[x]][x/u]:τ

Moreover, sz(Φ) = sz(ΦC[[x]])+i∈Isz(Φ
i
u)+1. By Lemma 23 we have ΦC[[u]]⊲x:[ρi]i∈IrK ;Π +i∈K ∆i ⊢ C[[u]]:τ ,

for some K ⊆ I where sz(ΦC[[u]]) = sz(ΦC[[x]]) +i∈K sz(Φi
u)− |K|. Hence

Φ′ ⊲

ΦC[[u]] ⊲

h

x:[ρi]i∈IrK ;Π +i∈K ∆i ⊢ C[[u]]:τ

Φi
u ⊲

h

∆i ⊢ u:ρi

i∈IrK

Π +i∈K ∆i +i∈IrK ∆i ⊢ C[[u]][x/u]:τ

We have sz(Φ′) = sz(ΦC[[u]])+i∈IrKsz(Φi
u)+1 = sz(ΦC[[x]])+i∈Ksz(Φi

u)−|K|+i∈IrKsz(Φi
u)+1 =

sz(ΦC[[x]]) +i∈I sz(Φ
i
u) + 1− |K| = sz(Φ)− |K| ≤ sz(Φ).

By hypothesis, the hole of C is a T-occurrence in Φ, so that Lemma 23 guarantees K 6= ∅ and
thus sz(Φ′) < sz(Φ).

– If o = t[x/u]→ t = o′ with |t|x = 0, then by construction and Lemma 1 (Weak) Φ is of the form

Φ ⊲

Φt ⊲

h

x:[];Γ ⊢ t:τ

Γ ⊢ t[x/u]:τ

where sz(Φ) = sz(Φt) + 1. The result then holds for Φ′ := Φt.
– All the inductive cases are straightforward.

The following Lemma is used in the Subject Expansion property for system HW.

Lemma 24. Let C[[x]], s be M-terms s.t. x /∈ fv(s) and Γ ⊢HW C[[s]]:τ . Then ∃Γ0, ∃I, ∃(Γi)i∈I , ∃(σi)i∈I
such that Γ = Γ0 +i∈I Γi, Γ0 + {x : [σi]i∈I} ⊢HW C[[x]]:τ , and (Γi ⊢HW s:σi)i∈I .

Proof. By induction on the structure of C[[s]].

– If C = ✷ then C[[s]] = s and the result holds, for Γ0 = ∅, |I| = 1 and σi = τ .
– If C = λy.D then the property is straightforward by the i.h. (since y /∈ fv(s) by α-conversion).
– If C = D r then C[[s]] = D[[s]] r and by construction Γ = Π+j∈JΓj and ΦD[[s]]⊲Π ⊢ D[[s]]:[ρj]j∈J→τ

and (Φj
r ⊲ Γj ⊢ r:ρj)j∈J . By the i.h. Π = Π0 +i∈I Γi where x:[σi]i∈I +Π0 ⊢ D[[x]]:[ρj]j∈J→τ and

(Γi ⊢ s:σi)i∈I . Then, by the rule (→ eHW), (x:[σi]i∈I +Π0) +j∈J Γj ⊢ D[[x]] r:τ . The result then
holds for Γ0 := Π0 +j∈J Γj .

– If C = r D then C[[s]] = r D[[s]] and by construction Γ = Π +j∈J Γj and Φr ⊲ Π ⊢ r:[ρj]j∈J→τ

and (Φj
D[[s]] ⊲Γj ⊢ D[[s]]:ρj)j∈J . By the i.h. for each j ∈ J , Γj = Γ 0

j +i∈Ij Γi where x:[σi]i∈Ij + Γ 0
j ⊢

D[[x]]:ρj and (Γi ⊢ s:σi)i∈Ij . Let I := ∪j∈JIj . Then, by the rule (→ eHW),Π +j∈J (x:[σi]i∈Ij + Γ 0
j) ⊢

r D[[x]]:τ . Note that Π +j∈J (x:[σi]i∈Ij + Γ 0
j) = x:[σi]]i∈I +Π +j∈J Γ 0

j . The result then holds for

Γ0 := Π +j∈J Γ 0
j .

– All the remaining cases are similar to the previous ones.

Lemma 3 (SE I). If Γ ⊢HW t′:τ and t→M t
′ then Γ ⊢HW t:τ .

Proof. Let Γ ⊢HW t′:τ . The proof is by induction on t→M t
′.

– If t = L[[λx.p]]s → L[[p[x/s]]] = t′, then we proceed by induction on L. Let L = ✷, then by
construction Γ = ∆+i∈I Γi and we have the following derivation:

h

x:[σi]i∈I ;∆ ⊢ p:τ

h

Γi ⊢ s:σi

i∈I

Γ ⊢ p[x/s]:τ

We then construct the following derivation

h

x:[σi]i∈I ;∆ ⊢ p:τ

∆ ⊢ λx.p:[σi]i∈I→τ
(→ i)

h

Γi ⊢ s:σi

i∈I

Γ ⊢ (λx.p) s:τ
(→ eHW)

Let L = L′[y/u] so that L′[y/u][[p[x/s]]] = L′[[p[x/s]]][y/u]. Then by construction there is a
derivation of the following form:

h

Γ0; y : [ρj]j∈J +i∈I ∆i ⊢ L
′[[p[x/s]]]:τ

h

Πj ⊢ u:ρj

j∈J

Γ0 +j∈J Πj +i∈I ∆i ⊢ L
′[[p[x/s]]][y/u]:τ

By the i.h. there is a derivation ending with ΦL′[[λx.p]]s ⊲ Γ0; y : [ρj]j∈J +i∈I ∆i ⊢ L
′[[λx.p]]s:τ so

that by construction there is a derivation of the following form:

h

Γ0; y : [ρj]j∈J ⊢ L
′[[λx.p]]:[σi]i∈I→τ

h

∆i ⊢ s:σi

i∈I

Γ0; y : [ρj]j∈J +i∈I ∆i ⊢ L
′[[λx.p]]s:τ

We can then conclude by the following derivation:

h

Γ0; y : [ρj]j∈J ⊢ L
′[[λx.p]]:[σi]i∈I→τ

h

Πj ⊢ u:ρj

j∈J

Γ0 +j∈J Πj ⊢ L
′[[λx.p]][y/u]:[σi]i∈I→τ

h

∆i ⊢ s:σi

i∈I

Γ0 +j∈J Πj +i∈I ∆i ⊢ L
′[[λx.p]][y/u]s:τ

– t = p[x/s] → p, where |p|x = 0. Since x /∈ fv(p) one has Γ = x:[];Γ . Therefore, one can
construct the following derivation

x:[];Γ ⊢ p:τ

Γ ⊢ p[x/s]:τ
(cutHW)

– If t = C[[x]][x/s] → C[[s]][x/s] = t′, then by construction Γ = ∆+i∈I Γi and the type derivation
of t′ has the following form:

h

x:[σi]i∈I ;∆ ⊢ C[[s]] : τ

h

Γi ⊢ s : σi

i∈I

∆+i∈I Γi ⊢ C[[s]][x/s] : τ
(cutHW)

By Lemma 24 x:[σi]i∈I ;∆ = Γ0 +j∈J Γj s.t. x:[σj]j∈J + Γ0 ⊢ C[[x]]:τ and (Γj ⊢ s:σj)j∈J . Note
that x /∈ fv(s) hence Γ0 = x:[σi]i∈I ;Γ

′
0 where Γ ′

0 +j∈J Γj = ∆.

LetK := I∪J . Then x:[σj]j∈J+Γ0 = x:[σk]k∈K ;Γ ′
0 and we can construct the following derivation

h

x:[σk]k∈K ;Γ ′
0 ⊢ C[[x]] : τ

h

Γk ⊢ s : σk

k∈K

Γ ′
0 +k∈K Γk ⊢ C[[x]][x/s] : τ

(cutHW)

We conclude since Γ ′
0 +k∈K Γk = Γ ′

0 +j∈J Γj +i∈I Γi = ∆+i∈I Γi = Γ as expected.

– All the inductive cases are straightforward.

Lemma 4. If Φ ⊲ Γ ⊢HW t:τ and t has no (dB, c|LH)-redex T-occurrences in Φ then t ∈ LHM-nf.

Proof. Suppose t is not a LHM-nf. Then it is not difficult to show that t ∈ B ∪ C, where B and C
are defined as follows :

– L[[λx.u]]v ∈ B.

– If u ∈ B, then uv ∈ B, u[x/v] ∈ B, λx.u ∈ B.

– y ∈ Ay.

– If u ∈ Ay, then uv ∈ Ay, λx.u ∈ Ay, u[x/v] ∈ Ay for x 6= y.

– If u ∈ Ay, then u[y/v] ∈ C.

– If u ∈ C, then uv ∈ C, λx.u ∈ C, u[x/v] ∈ C.

We show that t ∈ B ∪ C implies that t has a redex T-occurrence in Φ, which leads to a
contradiction. We proceed by induction on the definitions of B and C. But first of all we show that
t ∈ Ay implies y has a T-occurrence in Φ.

If t = y ∈ Ay, then the property is straightforward. If t = uv ∈ Ay or t = λx.u ∈ Ay or
t = u[x/v] ∈ Ay for x 6= y, where u ∈ Ay, then by the i.h. the variable y has a T-occurrence in the
corresponding subderivation of Φ so that y has a T-occurrence in Φ.

If t = L[[λx.u]]v ∈ B, then ǫ is a redex T-occurrence in Φ. If t = uv ∈ B or t = u[x/v] ∈ B
or t = λx.u ∈ B, where u ∈ B, then by the i.h. the subterm u has a redex T-occurrence in the
corresponding subderivation of Φ so that also t has a redex T-occurrence in Φ. Exactly the same
reasoning applies for t = uv, or t = u[x/v] or t = λx.u belonging to C where u ∈ C. Finally,
if t = u[y/v], where u ∈ Ay, then by the first property shown before we know that y has a T-
occurrence in the corresponding subderivation of Φ so that the redex u[y/v] has a T-occurrence in
Φ. This concludes the proof.

Lemma 25. If t is linear-head M-normalizing then t is HW-typable.

Proof. By induction on the length of the linear-head M-normalizing reduction. Let t→k
LHM

t′, where
t′ ∈ LHM-nf. If k = 0 (i.e. t = t′), then it is not difficult to prove that t ∈ A(n, y,m), for some variable
y and some n,m ≥ 0, where A(n, y,m) is defined as follows:

– If t ∈ B(n, y,m), then t ∈ A(n, y,m).
– If t ∈ A(n, y,m), then λx.t ∈ A(n, y,m).
– If t ∈ A(n, y,m), then t[x/u] ∈ A(n, y,m) for any M-term u and x 6= y.
– y ∈ B(n, y, n) for any n ≥ 0.
– If t ∈ B(n, y,m) and m > 0, then tu ∈ B(n, y,m− 1) for any M-term u.
– If t ∈ B(n, y,m), then t[x/u] ∈ B(n, y,m) for any M-term u and x 6= y.

Let τn = M1 → · · · →Mn→τ (n ≥ 0) such that Mi = [] (1 ≤ i ≤ n). We first prove by
induction on B(n, y,m) that t ∈ B(n, y,m) implies y:[τn] ⊢HW t:τm.

– If y ∈ B(n, y, n), then y:[τn] ⊢HW y:τn by the typing rule (ax).
– If tu ∈ B(n, y,m) comes from t ∈ B(n, y,m + 1), then y:[τn] ⊢HW t:τm+1 holds by the i.h. so

that y:[τn] ⊢HW tu:τm holds by application of the typing rule (→ eHW).
– If t[x/u] ∈ B(n, y,m) comes from t ∈ B(n, y,m), then y:[τn] ⊢HW t:τm by holds the i.h. so that

y:[τn] ⊢HW t[x/u]:τm holds by application of the typing rule (cutHW).

Now, we prove by induction on A(n, y,m) that t ∈ A(n, y,m) implies Γ ⊢HW t:σ where the
domain of Γ has at most the variable y.

– If t ∈ A(n, y,m), where t ∈ B(n, y,m), then the property follows by the previous point.
– If λx.t ∈ A(n, y,m), where t ∈ A(n, y,m), then Γ ⊢HW t:σ by the i.h. so that Γ \\x ⊢HW

λx.t:Γ (x)→σ by application of the typing rule (→ i). If Γ has at most y, then also does Γ \\x.
– If t[x/u] ∈ A(n, y,m), where t ∈ A(n, y,m), then Γ ⊢HW t:σ by the i.h. so that Γ ⊢HW t[x/u]:σ

by application of the typing rule (cutHW). Since Γ has at most y, then we are done.

Otherwise, let t →LHM u →k
LHM

t′. By the i.h. the term u is HW-typable and thus by Lemma 3
the same holds for t.

Lemma 26. Let Φ⊲Γ ⊢HW t:τ , where t = Ln[. . . L1[L0[y] t1] · · · tn], then y:N1→· · · → Nn→τ ∈ Γ ,
i.e. Γ = Γ ′ + {y:N1→· · · → Nn→τ}.

Proof. By induction on n.

Let Φ ⊲ Γ ⊢ t:τ . We define the predicate A(t, Φ) := t has no (dB, c, w)-redex T-occurrences in Φ.

Lemma 27. Let Φ ⊲ Γ ⊢HW t:τ such that A(t, Φ).

1. If []/∈P(Γ), and t = Ln[. . . L1[L0[y] t1] · · · tn], then t has no substitution and x∈fv(t) implies x
has some T-occurrence in Φ.

2. If []/∈P(〈Γ, τ〉), then t has no substitution and x∈fv(t) implies x has some T-occurrence in Φ.

Proof. We proceed by induction on Φ.

– t = y. Then t has no substitution. We have that x ∈ fv(t) implies x = y so that x trivially has
some T-occurrence in Φ.

– t = u[z/v]. We have Γ = Γ0 +i∈I ∆i and Φ has necessarily the following form:

Φ ⊲

Φu ⊲

h

Γ0; z:[σi]i∈I ⊢ u:τ

Φi
v ⊲

h

∆i ⊢ v:σi

i∈I

Γ0 +i∈I ∆i ⊢ u[z/v]:τ

Moreover, A(t, Φ) implies A(u, Φu). We consider two cases.

• z /∈ fv(u). Then t has a w-redex T-occurrence which contradicts A(t, Φ).
• z ∈ fv(u). If z has some T-occurrence in Φu, then t has a c-redex T-occurrence which

contradicts A(t, Φ). Therefore, z only has untyped occurrences of Φu and thus I = ∅. We
have Γ0; z:[σi]i∈I = Γ0; z:[] = Γ0. We consider again two cases:
1. If t is of the form of item 1, the hyp [] /∈ P(Γ) implies [] /∈ P(Γ0). Therefore, the i.h. on

(1) (from right to left) allows to conclude that z /∈ fv(u) which leads to a contradiction.
2. Otherwise, the hyp [] /∈ P(〈Γ, τ〉) implies [] /∈ P(〈Γ0, τ〉). Therefore the i.h. on (2) (from

right to left) then allows to conclude that z /∈ fv(u) which leads to a contradiction.

We then conclude that t cannot be a substitution.
– t = uv. Then t (and u) is necessarily of the form of item 1, otherwise there is a dB-redex

T-occurrence which contradicts the hyp. Then Γ = Γ0 +i∈I ∆i and Φ has the following form

Φ ⊲

Φu ⊲

h

Γ0 ⊢ u:[σi]i∈I→τ

Φi
v ⊲

h

∆i ⊢ v:σi

i∈I

Γ0 +i∈I ∆i ⊢ uv:τ

By Lemma 26 we have that Γ = Γ ′ + {y :M1 → . . .→Mn−1 → [σi]i∈I → τ} for some y being
the head of the term u. Moreover A(t, Φ) implies A(u, Φu).
Let us suppose [] ∈ P(Γ0), then [] ∈ P(Γ), which leads to a contradiction. Therefore [] /∈ P(Γ0).
By the i.h. on (1) u has no substitution and x ∈ fv(u) implies x has some T-occurrence in Φu,
which also means some T-occurrence in Φ. Now we consider two cases:

1. If I = ∅, then [] ∈ N ([]→ τ) implies [] ∈ N (M1 → . . .→Mn−1 → []→ τ), which in turn
implies [] ∈ P(y :M1 → . . .→Mn−1 → []→ τ) and [] ∈ P(Γ). This contradicts the hyp.

2. If I 6= ∅, suppose [] ∈ P(∆i) for some i ∈ I. Then [] ∈ P(Γ0 +i∈I ∆i) which contradicts the
hyp. Therefore, ([] /∈ P(∆i))i∈I . Moreover, if [] ∈ P(σi), then [] ∈ P([σi]i∈I), which implies
[] ∈ N ([σi]i∈I → τ), which implies [] ∈ N (M1 → . . . → Mn−1 → [σi]i∈I → τ) and thus
[] ∈ P(Γ). This leads to a contradiction with the hyp. Therefore ([] /∈ P(σi))i∈I and thus
([] /∈ P(〈∆i, σi〉))i∈I . Since A(t, Φ) implies A(v, Φi

v), then we can now apply the i.h. on (2)
so that we obtain that v has no substitution. Therefore t has no substitution.
If x ∈ fv(v), the i.h. on (2) also gives that x has a T-occurrence in Φv, thus a T-occurrence
in Φ. If x ∈ fv(u), then x has a T-occurrence in Φu as explained, thus a T-occurrence in Φ.

– t = λy.u. Then A(t, Φ) implies A(u, Φu) and we are necessarily in case 2. By construction we have
τ =M→σ and Φu ⊲Γ ; y:M ⊢HW u:σ. If [] ∈ P(〈Γ ; y:M, σ〉) then either [] ∈ P(Γ), [] ∈ N (M)
or [] ∈ P(σ), which leads to a contradiction with the hyp. Hence, [] /∈ P(〈Γ ; y:M, σ〉) and the
property is straightforward by the i.h.

– There is no other possible case.

Lemma 5. Let Φ ⊲ Γ ⊢HW t:τ s.t. [] /∈ P(〈Γ, τ〉). If t has no (dB, c, w)-redex T-occurrences in Φ,
then t is in M-nf.

Proof. We proceed by induction on Φ.

– If t = y, the two statements are trivial.
– Let t = λx.u. By construction we have τ = M → σ and Φu ⊲ Γ ;x:M ⊢HW u:σ. If [] ∈
P(〈Γ ;x:M, σ〉) then either [] ∈ P(Γ), [] ∈ N (M) or [] ∈ P(σ), leading to a contradiction
with the hyp. Hence, [] /∈ P(〈Γ ;x:M, σ〉) and the property is straightforward by the i.h.

– Let t = u[x/v]. Since [] /∈ P(〈Γ, τ〉) and A(t, Φ), then t has no substitution by Lemma 27, thus
t cannot be of this form.

– If t is an application, then t = Ln[. . . L1[L0[y] t1] · · · tn], for n > 0, otherwise t would have a
dB-redex T-occurrence in Φ. Moreover, A(t, Φ) and [] /∈ P(〈Γ, τ〉) hold by hypothesis, so that t
has no substitution, thus (Li = ✷)0≤i≤n, by Lemma 27. Therefore t = yt1 . . . tn.

By construction (Γ
(j+1)
0 = Γ j

0+i∈IjΓ
j
i)1≤j≤n, (σj = Nj→σ(j+1))1≤j≤n and (Nj = [ρi]i∈Ij)1≤j≤n,

where Φ = Φn+1
0 , Γ = Γn+1

0 and τ = σn+1. Moreover, each Φj+1
0 has the following form

Φj+1
0 ⊲

Φj
0 ⊲

h

Γ j
0 ⊢ y t1 · · · t(j−1):[ρi]i∈Ij→σ(j+1)

Φi
tj ⊲

h

Γ j
i ⊢ tj :ρi

i∈Ij

Γ j
0 +i∈Ij Γ

j
i ⊢ y t1 · · · tj :σ(j+1)

(→ eHW)

Suppose [] ∈ P(Γ j
0) for some j ∈ {1 . . . n}. Then [] ∈ P(Γ) which leads to a contradiction.

Therefore, ([] /∈ P(Γ j
0))1≤j≤n.

Suppose [] ∈ P(Γ j
i) for some i ∈ Ij and some 1 ≤ j ≤ n. Then [] ∈ P(Γ) which leads to a

contradiction. Therefore, ([] /∈ P(Γ j
i))i∈Ij ,1≤j≤n.

In particular Φ1
0 ⊲ Γ 1

0 ⊢HW y:σ1 = N1→· · · → Nn→τ thus, by construction, Γ 1
0 = {y : [N1→

· · · → Nn→σ]}. Since [] /∈ P(Γ 1
0) then (Ij 6= ∅)1≤j≤n and ([] /∈ P(ρi))i∈Ij ,1≤j≤n.

Therefore (Φi
tj⊲Γ

j
i ⊢ tj :ρi and [] /∈ P(〈Γ j

i , ρi〉))i∈Ij ,1≤j≤n. Note also that, any redex T-occurrence

of tj in some Φi
tj , for some i ∈ Ij , would also be a redex T-occurrence of t in in Φ. Since A(t, Φ),

then also A(tj , Φ
i
tj)i∈Ij ,1≤j≤n. Finally, (tj)1≤j≤n is a M-nf by the i.h. so that t = yt1 . . . tn is a

M-nf too.

Lemma 28. Let t ∈ TM. If t ∈ WN (M) then Γ ⊢HW t:τ and [] /∈ P(〈Γ, τ〉).

Proof. Let t →k
M t′, where t′ ∈ M-nf. We proceed by induction on k. If k = 0 (i.e. t = t′), then

t = λx1 . . . λxm.yt1 . . . tn, where m,n ≥ 0 and ti ∈ M-nf for 1 ≤ i ≤ n. We then proceed by
induction on M-nf.

The i.h. gives Γi ⊢ ti:σi, s.t. [] /∈ P(〈Γi, σi〉) for 1 ≤ i ≤ n. Let τ = [σ1]→· · · → [σn]→α, for α
a base type, and let Γ = {y:[τ]}+1≤i≤n Γi. Note that [] /∈ N (τ) thus [] /∈ P(Γ) and [] /∈ P(〈Γ, α〉).
By the typing rule (ax) and n applications of (→ eHW) we obtain Γ ⊢HW yt1 . . . tn:α where
[] /∈ P(〈Γ, α〉). Therefore, by m applications of the rule (→ i) we obtain Γ \\ (xm, . . . , x1) ⊢HW

t:Γ (x1)→· · · → Γ (xm)→α. We have in particular [] /∈ N (Γ (xi)) since [] /∈ P(Γ) and [] /∈ N ([]).
Therefore we conclude [] /∈ P(〈Γ \\ (xm, . . . , x1), Γ (x1)→· · · → Γ (xm)→α〉).

Otherwise, let t →M u →k
M t′. By the i.h. we have Γ ⊢HW u:τ and [] /∈ P(〈Γ, τ〉). Thus by

Lemma 3 the same holds form t.

B Appendix: Characterization of Strong M-Normalization

As for the HW typing system, the S system verifies the following partial substitution lemma.

Lemma 29 (Partial Substitution II). If ΦC[[x]] ⊲ x:[σi]i∈I ;Γ ⊢S C[[x]]:τ and (Φi
u ⊲ ∆i ⊢S u:σi)i∈I

then ΦC[[u]]⊲x:[σi]i∈IrK ;Γ +k∈K ∆k ⊢S C[[u]]:τ , for some ∅ 6= K ⊆ I where sz(ΦC[[u]]) = sz(ΦC[[x]])+k∈K

sz(Φk
u)− |K|.

Proof. By induction on the type derivation ΦC[[x]]. We only show here the two application cases, the
cases with explicit substitutions follow the same scheme of this one, and all the other ones are very
similar to those in the proof of Lemma 23.

– If C = Dt, then by construction x:[ρi]i∈I ;Γ = ∆+j∈J∪{w} Γj and ΦC[[x]] is of the following form

ΦC[[x]] ⊲

ΦD[[x]] ⊲

h

∆ ⊢ D[[x]]:[σj]j∈J→τ

Φj
t ⊲

h

Γj ⊢ t:σj

j∈J∪{w}

x:[ρi]i∈I ;Γ ⊢ D[[x]]t:τ
(→ eS)

and sz(ΦC[[x]]) = sz(ΦD[[x]]) +j∈J∪{w} sz(Φ
j
t) + 1.

By Lemma 1 we necessarily have ∆ = x:[ρi]i∈L;∆
′, where ∅ 6= L ⊆ I. The i.h. then holds for

ΦD[[x]] ⊲x:[ρi]i∈L;∆
′ ⊢ D[[x]]:[σj]j∈J→τ so that ΦD[[s]] ⊲x:[ρi]i∈LrK ;∆′ +k∈K ∆k ⊢ D[[s]]:[σj]j∈J→τ ,

for some ∅ 6= K ⊆ L where sz(ΦD[[s]]) = sz(ΦD[[x]]) +k∈K sz(Φk
s) − |K|. Then we construct the

following derivation

ΦC[[s]] ⊲

ΦD[[s]] ⊲

h

x:[ρi]i∈LrK ;∆′ +k∈K ∆k ⊢ D[[s]]:[σj]j∈J→τ

Φj
t ⊲

h

Γj ⊢ t:σj

j∈J∪{w}

(x:[ρi]i∈LrK ;∆′ +k∈K ∆k) +j∈J∪{w} Γj ⊢ D[[s]]t:τ
(→ eS)

We thus have x:[ρi]i∈I ;Γ = ∆+j∈J∪{w}Γj implies x:[ρi]i∈I ;Γ = x:[ρi]i∈L;∆
′+j∈J∪{w}Γj implies

x:[ρi]i∈I ;Γ = x:[ρi]i∈L\K+x:[ρk]k∈K ;∆′+j∈J∪{w}Γj implies x:[ρi]i∈I\K ;Γ = x:[ρi]i∈L\K ;∆′+j∈J∪{w}

Γj implies x:[ρi]i∈IrK ;Γ +i∈K ∆i = (x:[ρi]i∈LrK ;∆′ +i∈K ∆i) +j∈J∪{w} Γj and sz(ΦC[[s]]) =

sz(ΦD[[s]])+j∈J∪{w}sz(Φ
j
t)+1 =i .h. sz(ΦD[[x]])+k∈Ksz(Φk

s)−|K|+j∈J∪{w}sz(Φ
j
t)+1 = sz(ΦC[[x]])+k∈K

sz(Φk
s)− |K|.

We conclude since K ⊆ L ⊆ I.
– If C = tD, then by construction x:[ρi]i∈I ;Γ = ∆+j∈J∪{w} Γj , and ΦC[[x]] is of the form

ΦC[[x]] ⊲

Φt ⊲

h

∆ ⊢ t:[σj]j∈J→τ

Φj
D[[x]] ⊲

h

Γj ⊢ D[[x]]:σj

j∈J∪{w}

x:[ρi]i∈I ;Γ ⊢ tD[[x]]:τ
(→ eS)

and sz(ΦC[[x]]) = sz(Φt) +j∈J∪{w} sz(Φ
j
D[[x]]) + 1.

By Lemma 1 we necessarily have Γj = x:[ρi]i∈Lj
;Γ ′

j , where ∅ 6= Lj ⊆ I. The i.h. then holds for

Φj
D[[x]]⊲x:[ρi]i∈Lj

;Γ ′
j ⊢ D[[x]]:σj so that Φj

D[[s]]⊲x:[ρi]i∈LjrKj
;Γ ′

j +i∈Kj
∆i ⊢ D[[s]]:σj for ∅ 6= Kj ⊆ Lj

and sz(Φj
D[[s]]) = sz(Φj

D[[x]]) +i∈Kj
sz(Φi

s)− |Kj |.
We then construct the following derivation:

ΦC[[s]]⊲

Φt ⊲

h

∆ ⊢ t:[σj]j∈J→τ

Φj
D[[s]] ⊲

h

x:[ρi]i∈LjrKj
;Γ ′

j +i∈Kj
∆i ⊢ D[[s]]:σj

j∈J∪{w}

∆+j∈J∪{w} (x:[ρi]i∈LjrKj
;Γ ′

j +i∈Kj
∆i) ⊢ tD[[s]]:τ

(→ eS)

We have ∆+j∈J∪{w} (x:[ρi]i∈LjrKj
;Γ ′

j+i∈Kj
∆i) = x:[ρi]i∈Ir∪j∈JKj

;Γ +j∈J∪{w}+i∈Kj
∆i so that

we can conclude with K = ∪j∈J∪{w}Kj .

Finally, sz(ΦC[[s]]) = sz(Φt)+j∈J∪{w}sz(Φ
j
D[[s]])+1 =i .h. sz(Φt)+j∈J∪{w}(sz(Φ

j
D[[x]])+i∈Kj

sz(Φi
s)−

|Kj |) + 1 = sz(Φt) +j∈J∪{w} sz(Φ
j
D[[x]]) +i∈K sz(Φi

s)− |K|+ 1 = sz(ΦC[[x]]) +i∈K sz(Φi
s)− |K|.

We conclude since K = ∪j∈J∪{w}Kj ⊆ ∪j∈J∪{w}Lj ⊆ I. Finally, Kj 6= ∅ by the i.h. so that
∅ 6= Kj ⊆ K as required.

Using Lemma 1 (Strong) and Lemmas 29 we can show the Subject Reduction property.

Lemma 7 (SR II). Let Φ ⊲ Γ ⊢S t:τ . If t→M\w t
′ then Φ′ ⊲ Γ ⊢S t′:τ and sz(Φ) > sz(Φ′).

Proof. By induction on the reduction relation →M\w. We only show here the most interesting case
as the other ones are similar to the those of the proof of Lemma 2. Remark that the case →w is not
treated since the statement only concerns the non-erasing reduction →M\w.

Let t = C[[x]][x/u]→ C[[u]][x/u] = t′, where |C[[x]]|x ≥ 1, then by construction Φ is of the form

Φ ⊲

ΦC[[x]] ⊲

h

x:[ρi]i∈I ;Π ⊢ C[[x]]:τ

Φi
u ⊲

h

∆i ⊢ u:ρi

i∈I∪{w}

Π +i∈I∪{w} ∆i ⊢ C[[x]][x/u]:τ

where sz(Φ) = sz(ΦC[[x]])+i∈I∪{w}sz(Φ
i
u)+1. By Lemma 29, ΦC[[u]]⊲x:[ρi]i∈IrK ;Π +k∈K ∆k ⊢ C[[u]]:τ ,

for some ∅ 6= K ⊆ I where sz(ΦC[[u]]) = sz(ΦC[[x]])+k∈Ksz(Φk
u)−|K|. Hence I∪{w}\K = (I\K)∪{w}

and

Φ′ ⊲

ΦC[[u]] ⊲

h

x:[ρi]i∈IrK ;Π +i∈K ∆i ⊢ C[[u]]:τ

Φi
u ⊲

h

∆i ⊢ u:ρi

i∈I∪{w}rK

Π +i∈K ∆i +i∈I∪{w}rK ∆j ⊢ C[[u]][x/u]:τ

where sz(Φ′) = sz(ΦC[[u]])+i∈I∪{w}rK sz(Φi
u)+1 = sz(ΦC[[x]])+k∈K sz(Φk

u)−|K|+i∈I∪{w}rK sz(Φi
u)+

1 = sz(ΦC[[x]]) +i∈I∪{w} sz(Φ
i
u) + 1− |K| = sz(Φ)− |K| ≤ sz(Φ).

Since K 6= ∅, then sz(Φ′) < sz(Φ).

The following Lemma is used in the Subject Expansion property for system S.

Lemma 30. If Γ ⊢S C[[s]]:τ and x /∈ fv(s) then ∃∆, ∃I, ∃(Πi)i∈I , ∃(σ)i∈I s.t. Γ = ∆ +i∈I Πi and
{x:[σi]i∈I}+∆ ⊢S C[[x]]:τ and (Πi ⊢S s:σi)i∈I .

Proof. By induction on the structure of C[[s]]. The proof is very similar to that of Lemma 24.

Lemma 8 (SE II). Let Γ ⊢S t′:τ . If t→M\w t
′ then Γ ⊢S t:τ .

Proof. The proof is by induction on the reduction relation and proceeds similarly to that of
Lemma 3. We only show here the two most interesting cases.

– If t = L[[(λx.p)]]s → L[[p[x/s]]] = t′, then we proceed by induction on L. If L = ✷, then by
construction Γ = ∆+i∈I∪{w} Γi and we have the following derivation:

h

x:[σi]i∈I ;∆ ⊢ p:τ

h

Γi ⊢ s:σdij

i∈I∪{w}

Γ ⊢ p[x/s]:τ (cutS)

We then construct the following derivation

h

x:[σi]i∈I ;∆ ⊢ p:τ

∆ ⊢ λx.p:[σi]i∈I→τ
(→ i)

h

Γi ⊢ s:σi

i∈I∪{w}

Γ ⊢ (λx.p) s:τ
(→ eS)

If L = L′[y/u], then we proceed exactly as in Lemma 3.
– If t = C[[x]][x/s]→ C[[s]][x/s] = t′, where |C[[x]]|x ≥ 1, then by construction Γ = ∆+i∈I∪{w} Πi

and the typing derivation of t′ has the following form:

h

x:[σi]i∈I ;∆ ⊢ C[[s]] : τ

Φi
s ⊲

h

Πi ⊢ s : σi

i∈I∪{w}

∆+i∈I∪{w} Πi ⊢ C[[s]][x/s] : τ
(cutS)

By Lemma 30 x:[σi]i∈I ;∆ = Λ +l∈L Π ′
l and ∃(σl)l∈L s.t. {x:[σl]l∈L}+ Λ ⊢ C[[x]]:τ and (Π ′

l ⊢
s:σl)l∈L. Note that x /∈ fv(s) by α-conversion hence by Lemma 1 Λ = x:[σi]i∈I ;Λ

′ where
Λ′ +l∈L Π ′

l = ∆. Let K := I ∪ L. Then x:[σl]l∈L + Λ = x:[σk]k∈K ;Λ′ and we can construct the
following derivation

h

x:[σk]k∈K ;Λ′ ⊢ C[[x]] : τ

Φk
s ⊲

h

Πk ⊢ s : σk

k∈K∪{w}

Λ′ +k∈K∪{w} Πk ⊢ C[[x]][x/s] : τ
(cutS)

We conclude since Λ′+k∈K∪{w}Πk = Λ′+i∈IΠi+l∈LΠl+Πw = ∆+i∈I∪{w}Πj = Γ as expected.

Let t ∈ TM such that |t|x = n. If y /∈ fv(t), then we write t[x/y] to denote an arbitrary nonde-
terministic replacement of i (0 ≤ i ≤ n) occurrences of x by the variable y. Thus for example if
t = xx, then t[x/y] may denote one of the terms xx, yx, xy or yy.

Lemma 31. Let t∈TM s.t. y/∈fv(t). If t→M\w t
′, then t[x/y] →M\w t

′
[x/y] and t[x/y]{y/v} →

+
M\w t

′
[x/y]{y/v}.

A consequence of the previous lemma is that t→ t′ implies t{x/v} →+
M\w t

′{x/v}.

Corollary 3. Let t, u ∈ TM s.t. y /∈ fv(t). If t[x/y]{y/u} ∈ SN (M\w) then t ∈ SN (M\w).

A consequence of the previous corollary is that C[[u]] ∈ SN (M\w) implies C[[x]] ∈ SN (M\w).

Lemma 32. SN (M\w) = ISN (M\w).

Proof. If t ∈ SN (M\w), then we show t ∈ ISN (M\w) by induction on 〈ηM\w(t), t〉 w.r.t. the lexicographic
order. We reason by cases. If t = x or t = λx.u or t = u[x/v] with |u|x = 0, then the property is
straightforward. Otherwise,

– If t = u[x/v] with |u|x > 0, i.e. u = C[[x]], then every t s.t. t → t′ verifies t′ ∈ SN (M\w) and in
particular t′ = C[[v]][x/v]. Since ηM\w(t

′) < ηM\w(t), then t′ ∈ ISN (M\w), so that we can conclude
t ∈ ISN (M\w) by (C).

– If t is an application, then we reason by cases.

• If t = u0[x/u1]t1 . . . tn, with n ≥ 1, then ηM\w(u0[x/u1]t1 . . . tn) = ηM\w((u0t1 . . . tn)[x/u1]) by
Lemma 6. Therefore (u0t1 . . . tn)[x/u1] ∈ SN (M\w) and in particular ηM\w(u0t1 . . . tn), ηM\w(u1) ≤
ηM\w(u0[x/u1]t1 . . . tn). Thus u0t1 . . . tn, u1 ∈ ISN (M\w) holds by the i.h. If |u0t1 . . . tn|x = 0,
then (u0t1 . . . tn)[x/u1] ∈ ISN (M\w) by (W) and u0[x/u1]t1 . . . tn ∈ ISN (M\w) by several ap-
plications of (E). If |u0t1 . . . tn|x > 0, then (u0t1 . . . tn)[x/u1] = C[[x]][x/u1]→c C[[u1]][x/u1]
and thus ηM\w(C[[u1]][x/u1]) < ηM\w(C[[x]][x/u1]). The i.h. gives C[[u1]][x/u1] ∈ ISN (M\w) so
that (u0t1 . . . tn)[x/u1] = C[[x]][x/u1] ∈ ISN (M\w) holds by (C) and u0[x/u1]t1 . . . tn ∈
ISN (M\w) by several applications of (E).

• If t = xt1 . . . tn, with n ≥ 1, then t ∈ SN (M\w) implies ti ∈ SN (M\w). Moreover 〈ηM\w(ti), ti〉 <lex

〈ηM\w(t), t〉 so the i.h. gives ti ∈ ISN (M\w) and thus xt1 . . . tn ∈ ISN (M\w) by (V).

• If t = (λx.u0)t1 . . . tn, with n ≥ 1, then u0[x/t1]t2 . . . tn ∈ SN (M\w). Moreover we ave that
〈ηM\w(u0[x/t1]t2 . . . tn), u0[x/t1]t2 . . . tn〉 <lex 〈ηM\w(t), t〉 so the i.h. gives u0[x/t1]t2 . . . tn ∈
ISN (M\w) and thus (λx.u0)t1 . . . tn ∈ ISN (M\w) by (B).

For the converse we reason by induction on the definition of t ∈ ISN (M\w).

– If t = xt1 . . . tn ∈ ISN (M\w), where t1, . . . , tn ∈ ISN (M\w), then the i.h. gives t1, . . . , tn ∈
SN (M\w) so that the term xt1 . . . tn is trivially in SN (M\w).

– If t = λx.v ∈ ISN (M\w), where v ∈ ISN (M\w), then the i.h. gives v ∈ SN (M\w) so that the
term λx.v is trivially in SN (M\w).

– If t = (λx.v)ut1 . . . tn ∈ ISN (M\w), where v[x/u]t1 . . . tn ∈ ISN (M\w), then the i.h. gives
v[x/u]t1 . . . tn ∈ SN (M\w) so that in particular v, u, t1 . . . tn ∈ SN (M\w). We show that t ∈
SN (M\w) by a second induction on ηM\w(v) + ηM\w(u) +

∑

ηM\w(ti).

Let us see how are all the reducts of t.

If t → (λx.v′)ut1 . . . tn = t′, where v → v′ or t → (λx.v)u′t1 . . . tn = t′, where u → u′, or
t→ (λx.v)ut1 . . . t

′
i . . . tn = t′, where ti → t′i, then t′ ∈ SN (M\w) by the second i.h.

If t→ v[x/u]t1 . . . tn = t′, then t′ ∈ SN (M\w) by the first i.h.

Since all reducts of t are in SN (M\w), then t ∈ SN (M\w).

– If t = v[x/u] ∈ ISN (M\w), where |v|x = 0 and v, u ∈ ISN (M\w), then the i.h. gives u, v ∈ SN (M\w)
so that the term v[x/u] ∈ SN (M\w) is trivial.

– If C[[x]][x/u] ∈ ISN (M\w) where C[[u]][x/u] ∈ ISN (M\w), then the i.h. gives C[[u]][x/u] ∈ SN (M\w)
so in particular C[[u]], u ∈ SN (M\w). By Corollary 3 we also have C[[x]], u ∈ SN (M\w). We show
that t ∈ SN (M\w) by induction on ηM\w(C[[x]]) + ηM\w(u).
Let us see how are all the reducts of t.
If t→ C ′[x/u] = t′, where C[[x]]→ C ′ or t→ C[[x]][x/u′] = t′, where u→ u′, then t′ ∈ SN (M\w)
by the second i.h.
If t→ C[[u]][x/u] = t′, then t′ ∈ SN (M\w) by the first i.h.
Since all reducts of t are in SN (M\w), then t ∈ SN (M\w).

– If v[x/u]s ∈ ISN (M\w) where (vs)[x/s] ∈ ISN (M\w), then (vs)[x/u] ∈ SN (M\w) by the i.h. so
that v[x/u]s ∈ SN (M\w) since ηM\w(v[x/u]s) = ηM\w((vs)[x/u]) by Lemma 6.

Lemma 9. Let t be a M-term. If t ∈ SN (M\w) then t is S-typable.

Proof. By induction on the structure of t ∈ SN (M\w) =L. 32 ISN (M\w).

– If t = x t1 · · · tn ∈ ISN (M\w) with n ≥ 0 and t1, . . . , tn ∈ ISN (M\w) then (Γi ⊢ ti:σi)i=1...n by the
i.h. Let τ = [σ1]→· · · [σn]→α, where α is a base type, and Γ = x:[τ] +Γ1 +Γ1 + · · ·+Γn +Γn.
Then, x:[τ] ⊢ x:τ by the typing rule (ax) and, by n applications of the typing rule (→ eS),
Γ ⊢ x t1 · · · tn:α.

– If t = λx.u ∈ ISN (M\w) with u ∈ ISN (M\w) then, by the i.h. Γ ⊢ u:τ thus, by the rule (→ i),
Γ \\x ⊢ λx.u:Γ (x)→τ .

– If t = (λx.u)vt1, . . . , tn ∈ ISN (M \w) with u[x/v]t1, . . . , tn ∈ ISN (M \w) then, by the i.h.
Γ ⊢ u[x/v]t1, . . . , tn:τ . We conclude by Lemma 8.

– If C[[x]][x/s] ∈ ISN (M\w) with C[[s]][x/s] ∈ ISN (M\w), we conclude by the i.h. and Lemma 8.
– If t[x/s]u ∈ ISN (M\w), with (tu)[x/s] ∈ ISN (M\w), then we conclude by the i.h. and the

Invariance Lemma 6.
– If t = u[x/v] where |u|x = 0 and u, v ∈ ISN (M\w) then, by the i.h. Γ0 ⊢ u:τ and Γ1 ⊢ v:σ thus,

by the rule (cutS), Γ0 + Γ1 ⊢ u[x/v]:τ .

C Appendix: Characterization of Linear-Head and Weak J-Normalization

Lemma 33 (Partial Substitution III). If ΦO[[xl]]⊲x:[ρi]i∈I ;Γ | Σ ⊢HW O[[xl]]:τ and (Φi
u⊲∆i | ⊢HW u:ρi)i∈I

then ΦO[[ul]]⊲x:[ρi]i∈IrK ;Γ +i∈K ∆i | Σ ⊢HW O[[ul]]:τ , for some K ⊆ I where sz2(ΦO[[ul]]) = sz2(ΦO[[xl]])+i∈K

sz2(Φi
u) − |K|. Moreover, if O|p = ✷ and p ∈ pos(O[[xl]]) is a T-occurrence of O[[xl]] in ΦO[[xl]], then

K 6= ∅.

Proof. By induction on the typing derivation ΦO[[xl]] ⊲ x:[ρi]i∈I ;Γ | Σ ⊢HW O[[xl]]:τ .

– If O = ✷ then, by construction, Σ = , x:[ρi]i∈I ;Γ = Γl + {x:[σ]} and Φxl is of the form:

Φxl ⊲

Φl ⊲

h

Γl | σ ⊢ l:τ

Γl + {x:[σ]} | ⊢ xl:τ
(hlist)

Therefore, σ = ρk and Γl = x:[ρi]i∈Ir{k};Γ for some k ∈ I. Moreover, sz2(Φxl) = sz2(Φl) + 2.
Let K := {k}. Hence,

Φsl ⊲

Φs ⊲

h

∆k | ⊢ s:ρk
Φl ⊲

h

x:[ρi]i∈Ir{k};Γ | ρk ⊢ l:τ

x:[ρi]i∈Ir{k};Γ | ⊢ sl:τ

Moreover, sz2(Φsl) = sz2(Φs) + sz2(Φl) + 1 = sz2(Φs) + sz2(Φxl) − 1. Thus the statement
holds.

– If O = yU, then by construction Σ = and ΦyU[[xl]] is of the form

ΦyU[[xl]] ⊲

ΦU[[xl]] ⊲

h

Γ ′ | σ ⊢ U[[xl]]:τ

Γ ′ + {y:[σ]} | ⊢ yU[[xl]]:τ

where Γ ′+{y:[σ]} = x:[ρi]i∈I ;Γ and sz2(ΦyU[[xl]]) = sz2(ΦU[[xl]])+2. W.l.o.g. let y 6= x. Then Γ ′ =
x:[ρi]i∈I ;Γ

′′ where Γ ′′+{y:[σ]} = Γ . By i.h. we have that ΦU[[sl]]⊲x:[ρi]i∈IrK ;Γ ′′ +i∈K ∆i | σ ⊢ U[[sl]]:τ
for some K ⊆ I where sz2(ΦU[[sl]]) = sz2(ΦU[[xl]])+i∈K sz2(Φi

s)−|K|. Note that if p ∈ pos(yU[[xl]])
is a T-occurrence of yU[[xl]] in ΦyU[[xl]] s.t. (yU)|p = ✷ then p = 0p′ where p′ ∈ pos(U[[xl]]) is a
T-occurrence of U[[xl]] in ΦU[[xl]]. In this case, K 6= ∅ by the i.h. Therefore,

ΦyU[[sl]] ⊲

ΦU[[sl]] ⊲

h

x:[ρi]i∈IrK ;Γ ′′ +i∈K ∆i | σ ⊢ U[[sl]]:τ

x:[ρi]i∈IrK ; (Γ ′′ +i∈K ∆i) + {y:[σ]} | ⊢ yU[[sl]]:τ

where (Γ ′′+i∈K∆i)+{y:[σ]} = Γ+i∈K∆i and sz2(ΦyU[[sl]]) = sz2(ΦU[[sl]])+2 =i .h. sz2(ΦU[[xl]])+i∈K

sz2(Φi
s)− |K|+ 2 = sz2(ΦyU[[xl]]) +i∈K sz2(Φi

s)− |K|.
– O = tU, O = Dm and O = λz.D are similar.
– If O = D;m, then by construction Σ = [σj]j∈J→ϕ and ΦD[[xl]];m is of the form

ΦD[[xl]];m ⊲

Φj
D[[xl]] ⊲

h

Γj | ⊢ D[[xl]]:σj

j∈J

Φm ⊲

h

Π | ϕ ⊢ m:τ

Π +j∈J Γj | [σj]j∈J→ϕ ⊢ D[[xl]];m:τ

where Π +j∈J Γj = x:[ρi]i∈I ;Γ thus Π = x:[ρi]i∈Im ;Π
′ and (Γj = x:[ρi]i∈Ij ;Γ

′
j)j∈J s.t. I =

Im ∪j∈J Ij and Γ = Π ′ +j∈J Γ ′
j . Moreover sz2(ΦD[[xl]];m) = sz2(Φm) +j∈J sz2(Φj

D[[xl]]) + 1.

By i.h. for each j ∈ J , Φj
D[[sl]] ⊲ x:[ρi]i∈IjrKj

;Γ ′
j +i∈Kj

∆i | ⊢ D[[sl]]:σj for some Kj ⊆ Ij where

sz2(Φj
D[[sl]]) = sz2(Φj

D[[xl]])+i∈Kj
sz2(Φi

s)−|Kj |. If p ∈ pos(D[[xl]];m) is a T-occurrence of D[[xl]];m

s.t. (D;m)|p = ✷ then p = 0p′ where p′ ∈ pos(D[[xl]]) is a T-occurrence in Φj
D[[xl]] for some j ∈ J .

In this case, Kj 6= ∅ by the i.h. Let K := ∪j∈JKj so that K 6= ∅.
Therefore,

ΦD[[sl]];m⊲

Φj
D[[sl]] ⊲

h

x:[ρi]i∈IjrKj
;Γ ′

j +i∈Kj
∆i | ⊢ D[[sl]]:σj

j∈J

Φm ⊲

h

x:[ρi]i∈Im ;Π
′ | ϕ ⊢ m:τ

x:[ρi]i∈IrK ;Π ′ +j∈J Γ ′
j +i∈K ∆i | [σj]j∈J→ϕ ⊢ D[[sl]];m:τ

where sz2(ΦD[[sl]];m) = sz2(Φm) +j∈J sz2(Φj
D[[sl]]) + 1 =i .h. sz2(Φm) +j∈J (sz2(Φj

D[[xl]]) +i∈Kj

sz2(Φi
s)− |Kj |) + 1 = sz2(Φm) +j∈J sz2(Φj

D[[xl]]) +i∈K sz2(Φi
s)− |K|+ 1 = sz2(ΦD[[xl]];m) +i∈K

sz2(Φi
s)− |K|.

– O = t; U, O = D[z/u] or O = t[z/D] are similar.

Lemma 34. If Φl ⊲Γ | δ ⊢HW l:σ and Φm⊲∆ | σ ⊢HW m:τ , then Φl@m⊲Γ +∆ | δ ⊢HW l@m:τ and
sz2(Φl@m) = sz2(Φl) + sz2(Φm)− 1.

Proof. By induction on the type derivation Φl ⊲ Γ | δ ⊢ l:σ.

If l = nil, then Γ = ∅, δ = σ and nil@m = m. Moreover, sz2(Φl) = 1. We have Φl@m = Φm

so that sz2(Φm) = 1 + sz2(Φm)− 1.

If l = t; r, then δ = [σi]i∈I→δ′, Γ = Γ0 +i∈I Γi and Φl is of the form

Φl ⊲

Φi
t ⊲

h

Γi | ⊢ t:σi

i∈I

Φr ⊲

h

Γ0 | δ
′ ⊢ r:σ

Γ0 +i∈I Γi | [σi]i∈I→δ′ ⊢ t; r:σ
(→ l)

and sz2(Φl) = sz2(Φr)+
∑

i∈I sz2(Φ
i
t)+1. By the i.h. Φr@m⊲Γ0 +∆ | δ′ ⊢ r@m:τ and sz2(Φr@m) =

sz2(Φr) + sz2(Φm)− 1. Hence,

Φl@m ⊲

Φi
t ⊲

h

Γi | ⊢ t:σi

i∈I

Φr@m ⊲

h

Γ0 +∆ | δ′ ⊢ r@m:δ

Γ0 +∆+i∈I Γi | [σi]i∈I→δ′ ⊢ t; (r@m):τ

We have sz2(Φl@m) = sz2(Φr@m)+
∑

i∈I sz2(Φ
i
t)+1 =i .h. sz2(Φr)+sz2(Φm)−1+

∑

i∈I sz2(Φ
i
t)+

1 = sz2(Φl) + sz2(Φm)− 1.

Lemma 14 (SR III). Let Φ⊲Γ | Σ ⊢ o:τ . If o→J o
′ reduces a redex T-occurrence of o in Φ then

Φ′ ⊲ Γ ⊢ o′:τ and sz2(Φ) > sz2(Φ′).

Proof. By induction on the reduction relation →J.

– If o = L[[λx.v]]nil→ L[[λx.v]] = o′, then by construction we have Σ = and Φ is of the form

Φ ⊲

ΦL[[λx.v]] ⊲

h

Γ | ⊢ L[[λx.v]]:τ
Φnil ⊲

∅ | τ ⊢ nil:τ

Γ | ⊢ L[[λx.v]]nil:τ

We have Φ′ = ΦL[[λx.v]] and sz2(Φ) = sz2(ΦL[[λx.v]]) + sz2(Φnil) + 1 > sz2(ΦL[[λx.v]]) = sz2(Φ′).

– If o = L[[λx.v]](s; l) → L[[v[x/s]l]] = o′, then we show sz2(Φ) > sz2(Φ′) by induction on L. Let
L = ✷. By construction we have that Σ = and Φ is of the form:

Φ ⊲

Φv ⊲

h

x : [ρi]i∈I ;Π | ⊢ v:σ

Π | ⊢ λx.v:[ρi]i∈I→σ
Φs;l ⊲

Φi
s ⊲

h

Γi | ⊢ s:ρi

i∈I

Φl ⊲

h

∆ | σ ⊢ l:τ

∆+i∈I Γi | [ρi]i∈I→σ ⊢ s; l:τ

Π +∆+i∈I Γi | ⊢ (λx.v)(s; l):τ

Moreover, sz2(Φ) = sz2(Φv) +i∈I sz2(Φ
i
s) + sz2(Φl) + 3. Hence,

Φ′ ⊲

Φv[x/s] ⊲

Φv ⊲

h

x : [ρi]i∈I ;Π | ⊢ v:σ

Φi
s ⊲

h

Γi | ⊢ s:ρi

i∈I

Π +i∈I Γi | ⊢ v[x/s]:σ
Φl ⊲

h

∆ | σ ⊢ l:τ

Π +∆+i∈I Γi | ⊢ v[x/s]l:τ

We have sz2(Φ′) = sz2(Φv[x/s]) + sz2(Φl) + 1 = sz2(Φv) +i∈I sz2(Φ
i
s) + sz2(Φl) + 2 < sz2(Φ).

Let L = L′[y/u], so that L[[t]] = L′[[t]][y/u] for any t. By construction Φ is of the form:

h

Γ0; y : [ρj]j∈J ⊢ L
′[[λx.v]]:[σi]i∈I→σ

Φj
u ⊲

h

Πj | ⊢ u:ρj

j∈J

Γ0 +j∈J Πj ⊢ L
′[[λx.v]][y/u]:[σi]i∈I→σ

Φi
s ⊲

h

Γi | ⊢ s:σi

i∈I

Φl ⊲

h

∆ | σ ⊢ l:τ

∆+i∈I Γi | [σi]i∈I→σ ⊢ s; l:τ

Γ0 +j∈J Πj +∆+i∈I Γi ⊢ L
′[[λx.v]][y/u](s; l):τ

We can then construct the following derivation

ΦL′[[λx.v]](s;l)⊲

h

Γ0; y : [ρj]j∈J ⊢ L
′[[λx.v]]:[σi]i∈I→σ

Φi
s ⊲

h

Γi | ⊢ s:σi

i∈I

Φl ⊲

h

∆ | σ ⊢ l:τ

∆+i∈I Γi | [σi]i∈I→σ ⊢ s; l:τ

Γ0; y : [ρj]j∈J +∆+i∈I Γi ⊢ L
′[[λx.v]](s; l):τ

By the i.h. there is a derivation ending with ΦL′[[v[x/s]l]]⊲Γ0; y : [ρj]j∈J +∆+i∈I Γi ⊢ L
′[[v[x/s]l]]:τ

such that sz2(ΦL′[[λx.v]](s;l)) > sz2(ΦL′[[v[x/s]l]]).

We thus conclude by the existence of the following derivation.

h

Γ0; y : [ρj]j∈J +∆+i∈I Γi ⊢ L
′[[v[x/s]l]]:τ

Φj
u ⊲

h

Πj | ⊢ u:ρj

j∈J

Γ0 +j∈J Πj +∆+i∈I Γi ⊢ L
′[[v[x/s]l]][y/u]:τ

We have sz2(ΦL′[[v[x/s]l]][y/u]) = sz2(ΦL′[[v[x/s]l]]) +j∈J sz2(Φj
u) + 1 <i .h. sz2(ΦL′[[λx.v]](s;l)) +j∈J

sz2(Φj
u) + 1 = sz2(ΦL′[[λx.v]]) +j∈J sz2(Φj

u) + sz2(Φs;l) + 2 = sz2(ΦL′[[λx.v]][y/u](s;l)).

– If o = C[[xl]][x/u]→ C[[ul]][x/u] = o′ then, by construction, Σ = and Φ is of the form

Φ ⊲

ΦC[[xl]] ⊲

h

x:[ρi]i∈I ;Π | ⊢ C[[xl]]:τ

Φi
u ⊲

h

∆i | ⊢ u:ρi

i∈I

Π +i∈I ∆i | ⊢ C[[xl]][x/u]:τ

where sz2(Φ) = sz2(ΦC[[xl]])+i∈Isz2(Φ
i
u)+1. By Lemma 33 ΦC[[ul]]⊲x:[ρi]i∈IrK ;Π +i∈K ∆i | ⊢ C[[ul]]:τ

for some K ⊆ I where sz2(ΦC[[ul]]) = sz2(ΦC[[xl]]) +i∈K sz2(Φi
u)− |K|. Hence

Φ′ ⊲

ΦC[[ul]] ⊲

h

x:[ρi]i∈IrK ;Π +i∈K ∆i | ⊢ C[[ul]]:τ

Φi
u ⊲

h

∆i | ⊢ u:ρi

i∈IrK

Π +i∈I ∆i | ⊢ C[[ul]][x/u]:τ

where sz2(Φ′) = sz2(ΦC[[ul]]) +i∈IrK sz2(Φi
u) + 1 =L.33 sz2(ΦC[[xl]]) +i∈I sz2(Φ

i
u) − |K| + 1 ≤

sz2(Φ). By hypothesis, the hole of C is a T-occurrence in Φ, so that Lemma 33 guarantees K 6= ∅
and thus sz(Φ′) < sz(Φ).

– If o = t[x/u]→ t = o′ where |t|x = 0 , then by construction and Lemma 13 we have that Σ =
and Φ is of the form

Φ ⊲

Φt ⊲

h

x:[];Γ | ⊢ t:τ

Γ | ⊢ t[x/u]:τ

where sz2(Φ) = sz2(Φt) + 1. The result then holds for Φ′ := Φt.
– If o = L[[xl]] m→ L[[x(l@m)]] = o′, then we proceed by induction on L by showing in particular

that sz2(Φ) > sz2(Φ′). If L = ✷, then by construction we have Σ = and Γ = Γ0+{x : [π]}+Γ1

and Φ is of the form

Φ ⊲

Φl ⊲

h

Γ0 | π ⊢ l:δ

Γ0 + {x : [π]} | ⊢ xl:δ
Φm ⊲

h

Γ1 | δ ⊢ m:τ

Γ0 + {x : [π]}+ Γ1 | ⊢ (xl)m:τ

Moreover, sz2(Φ) = sz2(Φl) + sz2(Φm) + 3.
By Lemma 34 we have Φl@m ⊲Γ0 + Γ1 | π ⊢ l@m:τ , where sz2(Φl@m) = sz2(Φl)+ sz2(Φm)− 1.
We construct the following derivation

Φx(l@m) ⊲

Φl@m ⊲

h

Γ0 + Γ1 | π ⊢ l@m:τ

Γ0 + Γ1 + {x : [π]} | ⊢ x(l@m):τ

Hence, sz2(Φx(l@m)) = sz2(Φl@m) + 2 = sz2(Φl) + sz2(Φm) + 1 < sz2(Φ).
Let L = L′[y/u] so that L[[xl]] = L′[[xl]][y/u]. By construction Φ is of the following form:

Φ ⊲

ΦL′[[xl]] ⊲

h

Γ0; y:[ρi]i∈I | ⊢ L
′[[xl]]:δ

Φi
u ⊲

h

∆i | ⊢ u:ρi

i∈I

Γ0 +i∈I ∆i | ⊢ L
′[[xl]][y/u]:δ

Φm ⊲

h

Γ1 | δ ⊢ m:τ

Γ0 + Γ1 +i∈I ∆i | ⊢ L
′[[xl]][y/u]m:τ

Moreover, sz2(Φ) = sz2(ΦL′[[xl]]) +i∈I sz2(Φ
i
u) + sz2(Φm) + 2.

We can then construct the following derivation:

ΦL′[[xl]]m ⊲

ΦL′[[xl]] ⊲

h

Γ0; y:[ρi]i∈I | ⊢ L
′[[xl]]:δ

Φm ⊲

h

Γ1 | δ ⊢ m:τ

Γ0; y:[ρi]i∈I + Γ1 | ⊢ L
′[[xl]]m:τ

By the i.h. there is a derivation ΦL′[[x(l@m)]] ⊲ Γ0; y:[ρi]i∈I + Γ1 | ⊢ L
′[[x(l@m)]]:τ such that

sz2(ΦL′[[xl]]m) > sz2(ΦL′[[x(l@m)]]). We thus conclude with the following derivation:

Φ′ ⊲

ΦL′[[x(l@m)]] ⊲

h

Γ0; y:[ρi]i∈I + Γ1 | ⊢ L
′[[x(l@m)]]:τ

Φi
u ⊲

h

∆i | ⊢ u:ρi

i∈I

Γ0 + Γ1 +i∈I ∆i | ⊢ L[[x(l@m)]]:τ

We have sz2(Φ) = sz2(ΦL′[[xl]]) + sz2(Φm) + 1+i∈I sz2(Φ
i
u) + 1 = sz2(ΦL′[[xl]]m) +i∈I sz2(Φ

i
u) +

1 >i .h. sz2(ΦL′[[x(l@m)]]) +i∈I sz2(Φ
i
u) + 1 = sz2(Φ′).

– If o = L[[tl]] m → L[[t(l@m)]] = o′, then we proceed by induction on L as the previous case. We
only show here the base case where L = ✷. In that case, by construction, we have Σ = and
Γ = Γ0 + Γ1 + Γ2 and Φ is of the form

Φ ⊲

Φt ⊲

h

Γ0 | ⊢ t:σ
Φl ⊲

h

Γ1 | σ ⊢ l:δ

Γ0 + Γ1 | ⊢ tl:δ
Φm ⊲

h

Γ2 | δ ⊢ m:τ

Γ0 + Γ1 + Γ2 | ⊢ (tl)m:τ

Moreover, sz2(Φ) = sz2(Φt) + sz2(Φl) + sz2(Φm) + 2.
By Lemma 34 we have Φl@m ⊲Γ1 + Γ2 | σ ⊢ l@m:τ , where sz2(Φl@m) = sz2(Φl)+ sz2(Φm)− 1.
Then we can construct the following typing derivation:

Φ′ ⊲

Φt ⊲

h

Γ0 | ⊢ t:σ
Φl@m ⊲

h

Γ1 + Γ2 | σ ⊢ l@m:τ

Γ0 + Γ1 + Γ2 | ⊢ t(l@m):τ

Hence, sz2(Φ′) = sz2(Φt) + sz2(Φl@m) + 1 = sz2(Φt) + sz2(Φl) + sz2(Φm) < sz2(Φ).
– All the inductive cases are straightforward.

We need to prove a couple of technical results in order to prove the Subject Expansion property.

Lemma 35. If Γ |δ ⊢HW l@m:τ then ∃Γ1, ∃Γ2, ∃σ s.t. Γ=Γ1+Γ2, Γ1|δ ⊢HW l:σ and Γ2|σ ⊢HW m:τ

Proof. By induction on the type derivation Φ ⊲ Γ | Σ ⊢HW l@m:τ , reasoning by cases on l.

Lemma 36. Let O[[xl]] ∈ OJ, u ∈ TJ s.t. |u|x = 0 and Γ | Σ ⊢HW O[[ul]]:τ . Then ∃Γ0, ∃I, ∃(Γi)i∈I , ∃(σi)i∈I
s.t. Γ = Γ0 +i∈I Γi, Γ0 + {x : [σi]i∈I} | Σ ⊢HW O[[xl]]:τ , and (Γi | ⊢HW u:σi)i∈I .

Proof. By induction on the typing derivation ΦO[[ul]] ⊲ Γ | Σ ⊢ O[[ul]]:τ .

– If O = ✷, then by construction we know that Σ = , Γ = Γu + Γl and Φul is of the form:

Φul ⊲

h

Γu | ⊢ u:σ

h

Γl | σ ⊢ l:τ

Γu + Γl | ⊢ ul:τ

Therefore, Γl + {x:[σ]} | ⊢HW xl:τ by the rule (hlist). We then conclude with Γ0 := Γl,
I = {u} and σu := σ.

– If O = yU, then by construction Σ = and ΦyU[[ul]] is of the form

ΦyU[[ul]] ⊲
ΓU[[ul]] | σ ⊢ U[[ul]]:τ

ΓU[[ul]] + {y:[σ]} | ⊢ yU[[ul]]:τ

By the i.h. ΓU[[ul]] = Γ ′
0 +i∈I Γi s.t. Γ ′

0 + {x:[σi]i∈I} | ⊢ U[[xl]]:τ and (Γi | ⊢ u:σi)i∈I . We
have that Γ ′

0 + {x:[σi]i∈I}+ {y:[σ]} | ⊢ yU[[xl]]:τ by the rule (hlist) and we conclude with
Γ0 := Γ ′

0 + {y:[σ]} since Γ0 +i∈I Γi = Γ ′
0 + {y:[σ]}+i∈I Γi = ΓU[[ul]] + {y:[σ]}.

– O = tU, O = Dm and O = λz.D are similar.
– If O = D;m, then by construction Σ = [ρj]j∈J→ϕ and ΦD[[ul]];m is of the form

ΦD[[ul]];m ⊲

h

∆j ⊢ D[[ul]]:ρj

j∈J

h

Γm | ϕ ⊢ m:τ

Γm +j∈J ∆j | [ρj]j∈J→ϕ ⊢ D[[ul]];m:τ

By the i.h. for each j ∈ J , ∆j = ∆j
0 +i∈Ij Γi and ∆j

0 + {x:[σi]i∈Ij} | ⊢HW D[[xl]]:ρj and
(Γi | ⊢HW u:σi)i∈Ij . Let I := ∪j∈JIj . Hence,

h

∆j
0 + {x:[σi]i∈Ij} | ⊢ D[[xl]]:ρj

j∈J

h

Γm | ϕ ⊢ m:τ

Γm +j∈J ∆0
j + {x:[σi]i∈I} | [ρj]j∈J→ϕ ⊢ D[[xl]];m:τ

We then conclude with Γ0 := Γm +j∈J ∆0
j since Γ0 +i∈I Γi = Γm +j∈J ∆0

j +j∈J (+i∈IjΓi) =

Γm +j∈J (∆0
j +i∈Ij Γi) = Γm +j∈J ∆j = Γ .

– O = t; U, O = D[z/u] and O = t[z/D] are similar.

Lemma 15 (SE III). If Γ | Σ ⊢HW o′:τ and o→J o
′ then Γ | Σ ⊢HW o:τ .

Proof. The proof is by induction on o→J o
′.

– If o = L[[λx.v]]nil → L[[λx.v]] = o′, then Σ = and ∅ | τ ⊢ nil:τ and Γ | ⊢ L[[λx.v]]nil:τ by
the rules (ax) and (app).

– If o = L[[λx.v]](u; l) → L[[v[x/u]l]] = o′, then we proceed by induction on L. Let L = ✷. In that
case, by construction, we have Σ = and Γ = Γ0 +i∈I Γi +∆ and Φ is of the form

Φ ⊲

h

Γ0;x:[ρi]i∈I | ⊢ v:σ

h

Γi | ⊢ u:ρi

i∈I

Γ0 +i∈I Γi | ⊢ v[x/u]:σ

h

∆ | σ ⊢ l:τ

Γ0 +i∈I Γi +∆ | ⊢ v[x/u]l:τ

Therefore, we can construct the derivation Φ′ below:

Φ′ ⊲

h

Γ0;x:[ρi]i∈I | ⊢ v:σ

Γ0 | ⊢ λx.v:[ρi]i∈I→σ

h

Γi | ⊢ u:ρi

i∈I

h

∆ | σ ⊢ l:τ

∆+i∈I Γi | [ρi]i∈I→σ ⊢ u; l:τ

Γ0 +i∈I Γi +∆ | ⊢ (λx.v)(u; l):τ

Let L = L′[y/s] so that L[[v[x/u]l]] = L′[[v[x/u]l]][y/s]. By construction we have a derivation of
the following form:

Φ ⊲

h

Γ0; y:[ρi]i∈I | ⊢ L
′[[v[x/u]l]]:τ

h

Γi | ⊢ s:ρi

i∈I

Γ0 +i∈I Γi | ⊢ L
′[[v[x/u]l]][y/s]:τ

By i.h. from Γ0; y:[ρi]i∈I | ⊢ L
′[[v[x/u]l]]:τ we have that Γ0; y:[ρi]i∈I | ⊢ L

′[[λx.v]](u; l):τ and, by
construction, Γ0; y:[ρi]i∈I = ∆1+∆2 s.t.∆1 | ⊢ L

′[[λx.v]]:σ and∆2 | σ ⊢ (u; l):τ . We can assume
by α-conversion that |u; l|y = 0 thus, by Lemma 13, we necessarily have that ∆1 = ∆′; y:[ρi]i∈I
and Γ0 = ∆′ +∆2. Therefore, we can construct the following derivation:

Φ′ ⊲

h

∆′; y:[ρi]i∈I | ⊢ L
′[[λx.v]]:σ

h

Γi | ⊢ s:ρi

i∈I

∆′ +i∈I Γi | ⊢ L
′[[λx.v]][y/s]:σ

h

∆2 | σ ⊢ (u; l):τ

Γ0 +i∈I Γi | ⊢ L
′[[λx.v]][y/s](u; l):τ

– If o = C[[xl]][x/u] → C[[ul]][x/u] = o′, then by construction we have that Σ = and Φ is of the
form

Φ ⊲

h

x:[ρj]j∈J ;Π | ⊢ C[[ul]]:τ

h

Γj | ⊢ u:ρj

j∈J

Π +j∈J Γj | ⊢ C[[ul]][x/u]:τ

By Lemma 36, ∃Γ0, ∃I, ∃(Γi)i∈I , ∃(ρi)i∈I s.t. x:[ρj]j∈J ;Π = Γ0 +i∈I Γi, Γ0 + {x:[ρi]i∈I} | ⊢
C[[xl]]:τ and (Γi | ⊢ u:ρi)i∈I . By Lemma 13 and α-conversion we necessarily have that Γ0 =
x:[ρj]j∈J ;Π

′ s.t. Π = Π ′ +i∈I Γi thus Γ0 + {x:[ρi]i∈I} = x:[ρk]k∈I∪J ;Π
′. Let K := I ∪ J .

Hence

Φ′ ⊲

h

x:[ρk]k∈K ;Π ′ | ⊢ C[[xl]]:τ

h

Γk | ⊢ u:ρk

k∈K

Π ′ +k∈K Γk | ⊢ C[[xl]][x/u]:τ

Observe that Π ′ +k∈K Γk = Π ′ +i∈I Γi +j∈J Γj = Π +j∈J Γj .
– If o = t[x/u]→ t = o′ where |t|x = 0 , then by construction and Lemma 13 we have that Σ =

and x /∈ dom(Γ). Therefore, h

x:[];Γ | ⊢ t:τ

Γ | ⊢ t[x/u]:τ
(esHW)

– If o = L[[xl]]m → L[[x(l@m)]] = o′, then we proceed by induction on L. If L = ✷, then by
construction we have Σ = and Γ = ∆+ {x : [π]} and Φ is of the form

Φ ⊲

h

∆ | π ⊢ l@m:τ

∆+ {x:[π]} | ⊢ x(l@m):τ

By Lemma 35, ∃∆1, ∃∆2, ∃σ s.t. ∆ = ∆1 +∆2, ∆1 | π ⊢ l:σ and ∆2 | σ ⊢ m:τ . Therefore,

Φ′ ⊲

h

∆1 | π ⊢ l:σ

∆1 + {x:[π]} | ⊢ xl:σ

h

∆2 | σ ⊢ m:τ

∆1 + {x:[π]}+∆2 | ⊢ (xl)m:τ

Let L = L′[y/u] so that L[[x(l@m)]] = L′[[x(l@m)]][y/u]. By construction we have a derivation of
the following form:

Φ ⊲

h

Γ0; y:[ρi]i∈I | ⊢ L
′[[x(l@m)]]:τ

h

∆i | ⊢ u:ρi

i∈I

Γ0 +i∈I ∆i | ⊢ L
′[[x(l@m)]][y/u]:τ

By the i.h. there is a derivation Γ0; y:[ρi]i∈I | ⊢ L′[[xl]]m:τ and, by construction we have that
Γ0; y:[ρi]i∈I = ∆1 +∆2 s.t. ∆1 | ⊢ L

′[[xl]]:σ and ∆2 | σ ⊢ m:τ .

We can assume by α-conversion that |m|y = 0 thus, by Lemma 13, we necessarily have that
∆1 = ∆′; y:[ρi]i∈I s.t. Γ0 = ∆′ +∆2. We can then construct the following derivation:

Φ′ ⊲

h

∆′; y:[ρi]i∈I | ⊢ L
′[[xl]]:σ

h

∆i | ⊢ u:ρi

i∈I

∆′ +i∈I ∆i | ⊢ L[[xl]]:σ

h

∆2 | σ ⊢ m:τ

∆′ +i∈I ∆i +∆2 | ⊢ L[[xl]]m:τ

– If o = L[[tl]]m → L[[t(l@m)]] = o′, then we proceed by induction on L as the previous case. We
only show here the base case where L = ✷. In that case, by construction, we have Σ = and
Γ = Γ0 + Γ1 and Φ is of the form

Φ ⊲

h

Γ0 | ⊢ t:σ

h

Γ1 | σ ⊢ l@m:τ

Γ0 + Γ1 ⊢ t(l@m):τ

By Lemma 35, ∃∆1, ∃∆2, ∃δ s.t. Γ1 = ∆1 +∆2, ∆1 | σ ⊢ l:δ and ∆2 | δ ⊢ m:τ . Therefore,

Φ′ ⊲

h

Γ0 | ⊢ t:σ

h

∆1 | σ ⊢ l:δ

Γ0 +∆1 | ⊢ tl:δ

h

∆2 | δ ⊢ m:τ

Γ0 +∆1 +∆2 | ⊢ (tl)m:τ

– All the inductive cases are straightforward.

Lemma 16 If Φ⊲Γ | ⊢HW u:τ and u has no (B@, c|LH)-redex T-occurrences in Φ then u ∈ LHJ-nf.

Proof. Suppose that u is not a LHM-nf. Then it is not difficult to show that u ∈ B ∪ C, where B
and C are defined as follows :

– L[[λx.u]]nil ∈ B.
– L[[λx.u]](v; l) ∈ B.
– L[[xl]]m ∈ B.
– L[[tl]]m ∈ B.
– If u ∈ B, then ul ∈ B, u[x/v] ∈ B, λx.u ∈ B.
– yl ∈ Ayl.
– If u ∈ Ayl, then ul ∈ Ayl, λx.u ∈ Ayl, u[x/v] ∈ Ayl for x 6= y.
– If u ∈ Ayl, then u[y/v] ∈ C.
– If u ∈ C, then ul ∈ C, λx.u ∈ C, u[x/v] ∈ C.

Let Φ⊲Γ | ⊢ u:τ . We then show that u ∈ B ∪C implies that u has a redex T-occurrence in Φ,
reasoning by induction on the definitions of B and C. First, we prove that for any u ∈ Ayl, yl has
a T-occurrence in Φ.

If u = yl ∈ Ayl, then the property is straightforward. If u = vm ∈ Ayl or u = λx.v ∈ Ayl

or u = v[x/v′] ∈ Ayl for x 6= y, where v ∈ Ayl, then by the i.h. yl has a T-occurrence in the
corresponding subderivation of Φ so that yl has a T-occurrence in Φ.

If u = L[[λx.v]]nil ∈ B, u = L[[λx.u′]](v;m) ∈ B, u = L[[xl]]m ∈ B or u = L[[vl]]m ∈ B then ǫ is a
redex T-occurrence in Φ. If u = vm ∈ B or u = v[x/v′] ∈ B or u = λx.v ∈ B, where v ∈ B, then
by the i.h. the subterm v has a redex T-occurrence in the corresponding subderivation of Φ so that
also u has a redex T-occurrence in Φ. Exactly the same reasoning applies for u = vm, or u = v[x/v′]
or u = λx.v belonging to C where v ∈ C. Finally, if u = v[y/v′], where v ∈ Ayl, then by the first
property shown before we know that yl has a T-occurrence in the corresponding subderivation of
Φ so that the redex v[y/v′] has a T-occurrence in Φ. This concludes the proof.

Lemma 37. If u is linear-head J-normalizing then u is HW-typable.

Proof. By induction on the length of the linear-head J-normalizing reduction. Let u→k
LHJ

u′, where
u′ ∈ LHJ-nf. If k = 0 (i.e. u = u′), then it is not difficult to prove that u ∈ An

y , for some symbol y,
where An

y is defined as follows:

– If u ∈ Bn
y , then u ∈ An

y .
– If u ∈ An

y , then λx.u ∈ An
y .

– If u ∈ An
y , then u[x/v] ∈ An

y for any J-term v and x 6= y.
– yl ∈ Bn

y , where |l|; = n (the number of ”;” in l).
– If u ∈ Bn

y , then u[x/v] ∈ Bn
y for any J-term v and x 6= y.

Let τn = M1 → · · · →Mn→τ (n ≥ 0) such that Mi = [] (1 ≤ i ≤ n). We first prove by
induction on |l|; = n that ∅ | τn ⊢HW l:τ . If n = 0 then l = nil and ∅ | τ ⊢HW nil:τ by the
typing rule (ax). If l = v;m then ∅ | τn ⊢HW m:τ by the i.h. and ∅ | []→τn ⊢HW v;m:τ by the rule
(→ lHW).

Secondly, we prove by induction on Bn
y that u ∈ Bn

y implies y:[τn] | ⊢HW u:τ :

– If yl ∈ Bn
y then ∅ | τn ⊢HW l:τ by the previous proof and y:[τn] | ⊢HW yl:τ by the rule (hlist).

– If u[x/v] ∈ Bn
y comes from u ∈ Bn

y then y:[τn] | ⊢HW u:τ holds by the i.h. thus y:[τn] | ⊢HW

u[x/v]:τ holds by the typing rule (esHW).

Now, we prove by induction on An
y that u ∈ An

y implies Γ | ⊢HW u:σ where the domain of Γ
has at most the symbol y.

– If u ∈ An
y , where u ∈ Bn

y , then the property follows by the previous point.

– If λx.u ∈ An
y , where u ∈ An

y , then Γ | ⊢HW u:σ by the i.h. so that Γ \\x | ⊢HW λx.t:Γ (x)→σ
by application of the typing rule (→ r). If Γ has at most y, then also does Γ \\x.

– If u[x/v] ∈ An
y , where u ∈ An

y , then Γ | ⊢HW u:σ by the i.h. so that Γ | ⊢HW u[x/v]:σ by
application of the typing rule (esHW).

Otherwise, let u→LHJ v →
k
LHJ

u′. By the i.h. the term v is HW-typable and thus by Lemma 15
the same holds for u.

Given Φ ⊲ Γ | Σ ⊢ o:τ , we define A(o, Φ) := o has no (B@, c, w)-redex T-occurrences in Φ.

Lemma 38. Let Φ ⊲ Γ | ⊢HW o:τ s.t. A(o, Φ).

1. If [] /∈ P(Γ | Σ) and o = L[[yl]] or o = l, then o has no substitutions and |o|x > 0 implies xl′ has
a T-occurrence in Φ, for some l′ ∈ LJ.

2. If [] /∈ P(〈Γ | Σ, τ〉), then o has no substitutions and |o|x > 0 implies xl has a T-occurrence in
Φ, for some l ∈ LJ.

Proof. The proof is by induction on Φ.

– o = yl. By construction Φ is of the form:

Φ ⊲

Φl ⊲

h

Γ | σ ⊢ l:τ

Γ + {y:[σ]} | ⊢ yl:τ

Moreover, A(o, Φ) implies A(l, Φl) and |yl|x > 0 implies either x = y or |l|x > 0.

Suppose that [] ∈ P(Γ | σ). Then either [] ∈ P(Γ) or [] ∈ N (σ), leading to a contradiction
with the hyp in (1). Hence, [] /∈ P(Γ | σ) and l has no substitution by the i.h. on (1). We reason
by cases.

• If x = y then we trivially have that xl has a T-occurrence in Φ.

• If |l|x > 0 then by the i.h. on (1) xl′ has some T-occurrence in Φl thus in Φ.

We can then conclude since l without substitutions implies xl has no substitution.

– o = u[z/v]. Then Γ = Γ0 +i∈I ∆i and Φ has necessarily the following form:

Φ ⊲

Φu ⊲

h

Γ0; z:[σi]i∈I | ⊢ u:τ

Φi
v ⊲

h

∆i | ⊢ v:σi

i∈I

Γ0 +i∈I ∆i | ⊢ u[z/v]:τ

Moreover, A(o, Φ) implies A(u, Φu). We consider two cases.

• Suppose |u|z = 0. Then o has a w-redex T-occurrence which contradicts A(o, Φ).

• Suppose |u|z > 0. If zl′ has some T-occurrence in Φu, then o has a c-redex T-occurrence
which contradicts A(o, Φ). Therefore, zl′ only has untyped occurrences in Φu, for any l′ ∈ LJ,
and thus I = ∅. We have Γ0; z:[σi]i∈I = Γ0; z:[] = Γ0.

We consider again two cases.

1. If o is of the form of item 1, the hypothesis [] /∈ P(Γ |) implies [] /∈ P(Γ0 |).
Therefore, the i.h. on (1) (from right to left) allows to conclude that |u|z = 0 which leads
to a contradiction.

2. Otherwise, the hypothesis [] /∈ P(〈Γ | , τ〉) implies [] /∈ P(〈Γ0 | , τ〉). Therefore the
i.h. on (2) (from right to left) then allows to conclude that |u|z = 0 which leads to a
contradiction.

We conclude that o cannot be a substitution.

– o = λy.u. Then we are necessarily in case (2). By construction Σ = , τ = M → σ and
Φ is obtained applying the rule (→ r) on Φu ⊲ Γ ; y:M | ⊢HW u:σ. Moreover A(o, Φ) implies
A(u, Φu). Suppose [] ∈ P(〈Γ ; y:M | , σ〉). Then either [] ∈ P(Γ), [] ∈ N (M) or [] ∈ P(σ),
leading to a contradiction with the hyp in (2). Therefore, [] /∈ P(〈Γ ; y:M | , σ〉) and the result
is straightforward by the i.h. on (2).

– If o = nil, the two statements are trivial.

– o = u; l. Then, by construction we have Σ = [σi]i∈I→σ, and Φ has the following form.

Φ ⊲

Φi
u ⊲

h

Γi | ⊢ u:σi

i∈I

Φl ⊲

h

Γ0 | σ ⊢ l:τ

Γ0 +i∈I Γi | [σi]i∈I→σ ⊢ u; l:τ

Moreover A(o, Φ) implies (A(u, Φi
u))i∈I and A(l, Φl).

Suppose that [] ∈ P(Γ0 | σ). Then either [] ∈ P(Γ0) or [] ∈ N (σ), which implies [] ∈ P(Γ0+i∈I

Γi | [σi]i∈I→σ), contradicting the hyp in (2), and thus also in (1). Hence, [] /∈ P(Γ0 | σ). Thus,
by the i.h. on (1) l has no substitution and if |l|x > 0 then xl′ has some T-occurrence in Φl;
thus xl′ has some T-occurrence in Φ.

We now consider two cases.

1. I = ∅. Then [] ∈ N ([]→σ), leading to a contradiction with the hyp in (1) and (2).

2. I 6= ∅. Suppose that [] ∈ P(〈Γi | , σi〉) for some i ∈ I. Then either [] ∈ P(Γi) or [] ∈ P(σi),
which implies [] ∈ P(Γ0 +i∈I Γi | [σi]i∈I→σ), contradicting the hyp in (2), and thus also in
(1). Hence, ([] /∈ P(〈Γi | , σi〉))i∈I so by the i.h. on (2) u has no substitution and if |u|x > 0
then xl′ has some T-occurrence in Φi

u for each i, thus xl′ has some T-occurrence in Φ.

Therefore, o has no substitution and if |o|x > 0 then xl′ has some T-occurrence of o in Φ.

– There is no other possible case.

Lemma 17. Let Φ⊲Γ | Σ ⊢HW o:τ s.t. [] /∈ P(〈Γ | Σ, τ〉). If o has no (B@, c, w)-redex T-occurrence
in Φ, then o ∈ J-nf.

Proof. We proceed by induction on Φ.

– o = nil. Then the statement is trivial.

– o = yl. By construction Σ = , Γ = Γ0+{y:[σ]} and Φ is obtained by applying the rule (hlist)
on Φl ⊲Γ0 | σ ⊢ l:τ . Moreover, A(yl, Φ) implies A(l, Φl). Suppose [] ∈ P(〈Γ0 | σ, τ〉). Then either
[] ∈ P(Γ0) or [] ∈ P(τ) or [] ∈ N (σ), which leads to a contradiction with the hyp. Hence,
[] /∈ P(〈Γ0 | σ, τ〉). By the i.h. l is a J-nf thus yl is a J-nf.

– o = λx.u. By construction Σ = , τ = M→ σ and Φ is obtained applying the rule (→ r)
on Φu ⊲ Γ ;x:M | ⊢ u:σ. Moreover, A(o, Φ) implies A(u, Φu). Suppose [] ∈ P(〈Γ ;x:M | , σ〉).
Then either [] ∈ P(Γ) or [] ∈ N (M) or [] ∈ P(σ), which leads to a contradiction with the hyp.
Therefore [] /∈ P(〈Γ ;x:M | , σ〉) and the result is straightforward by the i.h.

– o = u[x/v]. By Lemma 38 o has no susbtitutions. We then conclude that o cannot be of the
form u[x/v].

– o is an application. Then o = L[[yl]], otherwise o would have a B@-redex T-occurrence in Φ.
Moreover, o has no substitution by Lemma 38 so that o = yl and the result is already proved
to hold in the first point.

– o = u; l. By construction we have Σ = [σi]i∈I→σ, and Φ has the following form.

Φ ⊲

Φi
u ⊲

h

Γi | ⊢ u:σi

i∈I

Φl ⊲

h

Γ0 | σ ⊢ l:τ

Γ0 +i∈I Γi | [σi]i∈I→σ ⊢ u; l:τ

Moreover A(o, Φ) implies (A(u, Φi
u))i∈I and A(l, Φl).

Suppose that [] ∈ P(〈Γ0 | σ, τ〉). Then either [] ∈ P(Γ0) or [] ∈ N (σ) or [] ∈ P(τ), which
implies [] ∈ P(〈Γ0 +i∈I Γi | [σi]i∈I→σ, τ〉), contradicting the hyp. Hence, [] /∈ P(〈Γ0 | σ, τ〉).
Thus, by i.h. l ∈ J-nf.

We now consider two cases.

1. I = ∅. Then [] ∈ N ([]→σ), leading to a contradiction with the hyp.

2. I 6= ∅. Suppose that [] ∈ P(〈Γi | , σi〉) for some i ∈ I. Then either [] ∈ P(Γi) or [] ∈
P(σi), which implies [] ∈ P(〈Γ0 +i∈I Γi | [σi]i∈I→σ, τ〉), contradicting the hyp. Hence, ([] /∈
P(〈Γi | , σi〉))i∈I so that by the i.h. u ∈ J-nf.

Therefore, o = u; l ∈ J-nf.

Lemma 39. Let o ∈ OJ. If o ∈ WN (J) then Γ | Σ ⊢HW o:τ and [] /∈ P(〈Γ | Σ, τ〉).

Proof. By induction on the length of the J-normalizing reduction. Let o→k
J o′, where o′ ∈ J-nf. If

k = 0 (i.e. o = o′). Then we proceed by induction on the structure of J-nfs (cf. [27]):

– If o = nil then ∅ | α ⊢ nil:α by the rule (ax), where α is a base type, so that [] /∈ P(〈∅ | α, α〉).

– If o = xl, where l is a J-nf, then by the i.h. Γ | σ ⊢ l:τ , where [] /∈ P(〈Γ | σ, τ〉). Hence, by the
rule (hlist) we have Γ + {x:[σ]} | ⊢ xl:τ so that [] /∈ P(〈Γ + {x:[σ]} | , τ〉).

– If o = λx.t, where t is a J-nf, then by the i.h. Γ | ⊢ t:τ , where [] /∈ P(〈Γ | , τ〉). Hence, by
the rule (→ r), Γ \\x | ⊢ λx.t:Γ (x)→τ . Note that, since [] /∈ P(Γ), [] /∈ N (Γ (x)). Therefore,
[] /∈ P(Γ (x)→τ) thus [] /∈ P(〈Γ \\x | , Γ (x)→τ〉).

– If o = t; l, where t and l are J-nf, then, by the i.h. Γ | ⊢ t:ρ and ∆ | σ ⊢ l:τ where [] /∈
P(〈Γ | , ρ〉) and [] /∈ P(〈∆ | σ, τ〉). Hence, by the rule (→ lHW), ∆+ Γ | [ρ]→σ ⊢ t; l:τ . Note
that [] /∈ P(∆+ Γ). Moreover, since [] /∈ P(ρ) and [] /∈ N (σ), then [] /∈ N ([ρ]→σ). Therefore,
[] /∈ P(〈∆+ Γ | [ρ]→σ, τ〉).

Otherwise, let o→J p→
k
J o′. By the i.h. the term p is HW-typable and thus by Lemma 15 the

same holds for o.

D Appendix: Characterization of Strong J-Normalization

Lemma 40 (Partial Substitution IV). If ΦO[[xl]]⊲x:[ρi]i∈I ;Γ | Σ ⊢S O[[xl]]:τ and (Φi
s⊲∆i | ⊢S s:ρi)i∈I

then ΦO[[sl]] ⊲ x:[ρi]i∈IrK ;Γ +i∈K ∆i | Σ ⊢S O[[sl]]:τ , for some ∅ 6= K ⊆ I where sz2(ΦO[[sl]]) =
sz2(ΦO[[xl]]) +i∈K sz2(Φi

s)− |K|.

Proof. By induction on the typing derivation ΦO[[xl]] ⊲ x:[ρi]i∈I ;Γ | Σ ⊢S O[[xl]]:τ . We only show here
the case O = D;m, the cases with explicit substitutions follow the same scheme of this one, and all
the other ones are very similar to those in the proof of Lemma 33.

So let O = D;m. By construction Σ = [σj]j∈J→ϕ and ΦD[[xl]];m is of the form

ΦD[[xl]];m ⊲

Φj
D[[xl]] ⊲

h

Γj | ⊢ D[[xl]]:σj

j∈J∪{w}

Φm ⊲

h

Π | ϕ ⊢ m:τ

Π +j∈J∪{w} Γj | [σj]j∈J→ϕ ⊢ D[[xl]];m:τ

where Π +j∈J∪{w} Γj = x:[ρi]i∈I ;Γ thus Π = x:[ρi]i∈Im ;Π
′ and (Γj = x:[ρi]i∈Ij ;Γ

′
j)j∈J∪{w} where

I = Im ∪j∈J∪{w} Ij and Γ = Π ′ +j∈J∪{w} Γ ′
j . Moreover sz2(ΦD[[xl]];m) = sz2(Φm) +j∈J∪{w}

sz2(Φj
D[[xl]]) + 1. By i.h. for each j ∈ J ∪ {w}, Φj

D[[sl]] ⊲ x:[ρi]i∈IjrKj
;Γ ′

j +i∈Kj
∆i | ⊢ D[[sl]]:σj for

some ∅ 6= Kj ⊆ Ij where sz2(Φj
D[[sl]]) = sz2(Φj

D[[xl]]) +i∈Kj
sz2(Φi

s)− |Kj |. Let K := ∪j∈J∪{w}Kj so

that K 6= ∅. Therefore,

ΦD[[sl]];m⊲

Φj
D[[sl]] ⊲

h

x:[ρi]i∈IjrKj
;Γ ′

j +i∈Kj
∆i | ⊢ D[[sl]]:σj

j∈J∪{w}

Φm ⊲

h

x:[ρi]i∈Im ;Π
′ | ϕ ⊢ m:τ

x:[ρi]i∈IrK ;Π ′ +j∈J∪{w} Γ
′
j +i∈K ∆i | [σj]j∈J→ϕ ⊢ D[[sl]];m:τ

where sz2(ΦD[[sl]];m) = sz2(Φm) +j∈J∪{w} sz2(Φ
j
D[[sl]]) + 1 =i .h. sz2(Φm) +j∈J∪{w} (sz2(Φ

j
D[[xl]]) +i∈Kj

sz2(Φi
s)− |Kj |) + 1 = sz2(Φm) +j∈J∪{w} sz2(Φ

j
D[[xl]]) +i∈K sz2(Φi

s)− |K|+ 1 = sz2(ΦD[[xl]];m) +i∈K

sz2(Φi
s)− |K|.

Lemma 41. If Φl ⊲ Γ | δ ⊢S l:σ and Φm ⊲ ∆ | σ ⊢S m:τ , then Φl@m ⊲ Γ +∆ | δ ⊢S l@m:τ and
sz2(Φl@m) = sz2(Φl) + sz2(Φm)− 1.

Proof. By induction on the type derivation Φl⊲Γ | δ ⊢S l:σ. The proof is similar to that of Lemma 34.

Lemma 19 (SR IV). Let Φ ⊲ Γ | Σ ⊢S o:τ . If o →J\w o′, then Φ′ ⊲ Γ | Σ ⊢S o′:τ and sz2(Φ) >
sz2(Φ′).

Proof. By induction on the reduction relation →J. We only show the most interesting case as the
other ones are similar to the those of the proof of Lemma 14. Remark that the case →w is not
treated since the statement only concerns the non-erasing reduction →J\w.

Let o = C[[xl]][x/u]→ C[[ul]][x/u] = o′, so that, by construction, Σ = and Φ is of the form

Φ ⊲

ΦC[[xl]] ⊲

h

x:[ρi]i∈I ;Π | ⊢ C[[xl]]:τ

Φi
u ⊲

h

∆i | ⊢ u:ρi

i∈I∪{w}

Π +i∈I∪{w} ∆i | ⊢ C[[xl]][x/u]:τ

where sz2(Φ) = sz2(ΦC[[xl]])+i∈I∪{w}sz2(Φ
i
u)+1. By Lemma 40 ΦC[[ul]]⊲x:[ρi]i∈IrK ;Π +i∈K ∆i | ⊢ C[[ul]]:τ

for some ∅ 6= K ⊆ I s.t. sz2(ΦC[[ul]]) = sz2(ΦC[[xl]]) +i∈K sz2(Φi
u)− |K|. Hence

Φ′ ⊲

ΦC[[ul]] ⊲

h

x:[ρi]i∈IrK ;Π +i∈K ∆i | ⊢ C[[ul]]:τ

Φi
u ⊲

h

∆i | ⊢ u:ρi

i∈IrK∪{w}

Π +i∈I∪{w} ∆i | ⊢ C[[ul]][x/u]:τ

where sz2(Φ′) = sz2(ΦC[[ul]]) +i∈IrK∪{w} sz2(Φ
i
u) + 1 =L.40 sz2(ΦC[[xl]]) +i∈I∪{w} sz2(Φ

i
u)− |K|+ 1.

Since K 6= ∅, then sz(Φ) > sz(Φ′).

We need to prove a couple of technical results in order to prove the Subject Expansion property.

Lemma 42. If Γ |δ ⊢S l@m:τ then ∃Γ1, ∃Γ2, ∃σ s.t. Γ = Γ1 + Γ2, Γ1|δ ⊢S l:σ and Γ2|σ ⊢HW m:τ

Proof. The proof is by induction on the type derivation Φ ⊲ Γ | Σ ⊢S l@m:τ , and is similar to that
of Lemma 35.

Lemma 43. Let O[[xl]] ∈ OJ, u ∈ TJ s.t. |u|x = 0 and Γ | Σ ⊢S O[[ul]]:τ . Then ∃Γ0, ∃I, ∃(Γi)i∈I , ∃(σi)i∈I
s.t. Γ = Γ0 +i∈I Γi, Γ0 + {x : [σi]i∈I} | Σ ⊢S O[[xl]]:τ , and (Γi | ⊢S u:σi)i∈I .

Proof. The proof is by induction on the typing derivation Γ | Σ ⊢ O[[ul]]:τ and is similar to that of
Lemma 36. We only show here the most interesting case.

Let O = D;m, so that Σ = [ρj]j∈J→ϕ and the type derivation is of the following form

h

∆j ⊢ D[[ul]]:ρj

j∈J∪{w}

h

Γm | ϕ ⊢ m:τ

Γm +j∈J∪{w} ∆j | [ρj]j∈J→ϕ ⊢ D[[ul]];m:τ

By the i.h. for each j ∈ J ∪ {w}, ∆j = ∆j
0 +i∈Ij Γi and ∆j

0 + {x:[σi]i∈Ij} | ⊢ D[[xl]]:ρj and
(Γi | ⊢ u:σi)i∈Ij . Let I := ∪j∈J∪{w}Ij . Hence,

h

∆j
0 + {x:[σi]i∈Ij} | ⊢ D[[xl]]:ρj

j∈J∪{w}

h

Γm | ϕ ⊢ m:τ

Γm +j∈J∪{w} ∆
j
0 + {x:[σi]i∈I} | [ρj]j∈J→ϕ ⊢ D[[xl]];m:τ

We then conclude with Γ0 := Γm +j∈J∪{w} ∆j
0 since Γ0 +i∈I Γi = Γm +j∈J∪{w} ∆j

0 +j∈J∪{w}

(+i∈IjΓi) = Γm +j∈J∪{w} (∆
j
0 +i∈Ij Γi) = Γm +j∈J∪{w} ∆j = Γ .

Lemma 20 (SE IV). Let Γ | Σ ⊢S o′:τ . If o→J\w o
′, then Γ | Σ ⊢S o:τ .

Proof. The proof is by induction on o→J\w o
′ and proceeds similarly to that of Lemma 15. We only

show here the two most interesting cases.

– If o = L[[λx.v]](u; l) → L[[v[x/u]l]] = o′, then we proceed by induction on L. Let L = ✷. By
construction, we have Σ = and Γ = Γ0 +i∈I Γi +∆ and Φ is of the form

Φ ⊲

h

Γ0;x:[ρi]i∈I | ⊢ v:σ

h

Γi | ⊢ u:ρi

i∈I∪{w}

Γ0 +i∈I∪{w} Γi | ⊢ v[x/u]:σ

h

∆ | σ ⊢ l:τ

Γ0 +i∈I∪{w} Γi +∆ | ⊢ v[x/u]l:τ

Therefore, we can construct the derivation Φ′ below:

Φ′ ⊲

h

Γ0;x:[ρi]i∈I | ⊢ v:σ

Γ0 | ⊢ λx.v:[ρi]i∈I→σ

h

Γi | ⊢ u:ρi

i∈I∪{w}

h

∆ | σ ⊢ l:τ

∆+i∈I∪{w} Γi | [ρi]i∈I→σ ⊢ u; l:τ

Γ0 +i∈I∪{w} Γi +∆ | ⊢ (λx.v)(u; l):τ

Let L = L′[y/s] so that L[[v[x/u]l]] = L′[[v[x/u]l]][y/s]. By construction we have a derivation of
the following form:

Φ ⊲

h

Γ0; y:[ρi]i∈I | ⊢ L
′[[v[x/u]l]]:τ

h

Γi | ⊢ s:ρi

i∈I∪{w}

Γ0 +i∈I∪{w} Γi | ⊢ L
′[[v[x/u]l]][y/s]:τ

By i.h. from Γ0; y:[ρi]i∈I | ⊢ L
′[[v[x/u]l]]:τ we have that Γ0; y:[ρi]i∈I | ⊢ L

′[[λx.v]](u; l):τ and, by
construction, Γ0; y:[ρi]i∈I = ∆1+∆2 s.t.∆1 | ⊢ L

′[[λx.v]]:σ and∆2 | σ ⊢ (u; l):τ . We can assume
by α-conversion that |u; l|y = 0 thus, by Lemma 13, we necessarily have that ∆1 = ∆′; y:[ρi]i∈I
and Γ0 = ∆′ +∆2. Therefore, we can construct the following derivation:

Φ′ ⊲

h

∆′; y:[ρi]i∈I | ⊢ L
′[[λx.v]]:σ

h

Γi | ⊢ s:ρi

i∈I∪{w}

∆′ +i∈I∪{w} Γi | ⊢ L
′[[λx.v]][y/s]:σ

h

∆2 | σ ⊢ (u; l):τ

Γ0 +i∈I∪{w} Γi | ⊢ L
′[[λx.v]][y/s](u; l):τ

– If o = C[[xl]][x/u] → C[[ul]][x/u] = o′, then by construction we have that Σ = and Φ is of the
form

Φ ⊲

h

x:[ρj]j∈J ;Π | ⊢ C[[ul]]:τ

h

Γj | ⊢ u:ρj

j∈J∪{w}

Π +j∈J∪{w} Γj | ⊢ C[[ul]][x/u]:τ

By Lemma 43, ∃Γ0, ∃I, ∃(Γi)i∈I , ∃(ρi)i∈I s.t. x:[ρj]j∈J ;Π = Γ0 +i∈I Γi, Γ0 + {x:[ρi]i∈I} | ⊢
C[[xl]]:τ and (Γi | ⊢ u:ρi)i∈I . By Lemma 13 and α-conversion we necessarily have that Γ0 =
x:[ρj]j∈J ;Π

′ s.t. Π = Π ′ +i∈I Γi thus Γ0 + {x:[ρi]i∈I} = x:[ρk]k∈I∪J ;Π
′. Let K := I ∪ J .

Hence

Φ′ ⊲

h

x:[ρk]k∈K ;Π ′ | ⊢ C[[xl]]:τ

h

Γk | ⊢ u:ρk

k∈K∪{w}

Π ′ +k∈K∪{w} Γk | ⊢ C[[xl]][x/u]:τ

Observe that Π ′ +k∈K∪{w} Γk = Π ′ +i∈I Γi +j∈J∪{w} Γj = Π +j∈J∪{w} Γj .

Lemma 44. Let n, l ∈ LJ. Then n, l ∈ SN (J\w) iff n@l ∈ SN (J\w).

Proof. By induction on n using the fact that n = t;m ∈ SN (J\w) iff t,m ∈ SN (J\w).

Lemma 45. Let M be a list context, t ∈ TJ and m, l ∈ LJ.

1. M[[tl]] ∈ SN (J\w) implies M[[t]] ∈ SN (J\w).
2. M[[t(m@l)]] ∈ SN (J\w) implies M[[tm]] ∈ SN (J\w).

Proof. The proof of the first point is by induction on ηJ(M[[tl]]) and the proof of the second one is
by induction on ηJ(M[[t(m@l)]]) and uses the first point.

Let o ∈ OJ s.t. |o|x = n. If |o|y = 0, then we write o[x/y] to denote an arbitrary nondeterministic
replacement of i (0 ≤ i ≤ n) occurrences of x by the fresh symbol y. Thus for example, if o =
xnil[z/xnil], then o[x/y] may denote one of the terms xnil[z/xnil], ynil[z/xnil], xnil[z/ynil], or
ynil[z/ynil].

Lemma 46. Let o∈OJ and v∈TJ. If o→J\w o
′, then o[x/y] →J\w o

′
[x/y] and o[x/y]{y/v} →

+
J\w o

′
[x/y]{y/v}.

A consequence of the previous lemma is that o→J\w o
′ implies o{x/v} →+

J\w o
′{x/v}.

Corollary 4. Let o ∈ OJ and v ∈ TJ. If o[x/y]{y/v} ∈ SN (J\w) then o ∈ SN (J\w).

A consequence of the previous Corollary is that C[[vl]] ∈ SN (J\w) implies C[[xl]] ∈ SN (J\w).

Lemma 47. SN (J\w) = ISN (J\w).

Proof. If o ∈ SN (J\w), then we show o ∈ ISN (J\w) by induction on 〈ηJ\w(o), |o|〉. We reason
by cases. If o = nil, o = t; l, o = λx.t, o = xl or o = t[x/u] with |t|x = 0, then the property is
straightforward. Otherwise,

– If o = t[x/v] with |t|x > 0, i.e. t = C[[xl]], then every o′ s.t. o→ o′ verifies o′ ∈ SN (J\w) and in
particular o′ = C[[vl]][x/v]. Since ηJ\w(o

′) < ηJ\w(o), then o′ ∈ ISN (J\w), so that we can conclude
o ∈ ISN (J\w) by rule (C).

– If o = vl is an application, then we reason by cases on v.

• If o = u0[x/u1]l0 . . . ln, with n ≥ 0, then ηJ\w(u0[x/u1]l0 . . . ln) = ηJ\w((u0l0 . . . ln)[x/u1]) by
Lemma 18. Therefore o′ ∈ SN (J\w) and in particular ηJ\w(u0l0 . . . ln), ηJ\w(u1) ≤ ηJ\w(o).
Thus, since |u0l0 . . . ln|, |u1| < |o|, u0l0 . . . ln, u1 ∈ ISN (J\w) holds by the i.h.

If |u0l0 . . . ln|x = 0, then (u0l0 . . . ln)[x/u1] ∈ ISN (J\w) by rule (W) and thus o ∈ ISN (J\w)
by several applications of rule (E).

If |u0l0 . . . ln|x > 0, then (u0l0 . . . ln)[x/u1] = C[[xl]][x/u1]→c C[[u1l]][x/u1] and thus we have
that ηJ\w(C[[u1l]][x/u1]) < ηJ\w(C[[xl]][x/u1]). The i.h. gives C[[u1l]][x/u1] ∈ ISN (J\w) so that
(u0l0 . . . ln)[x/u1] = C[[xl]][x/u1] ∈ ISN (J\w) holds by (C) and o ∈ ISN (J\w) holds by
several applications of rule (E).

• If o = xl0l1 . . . ln, with n ≥ 1, then o →@var
x(l0@l1) . . . ln = o′. Moreover ηJ\w(o

′) < ηJ\w(o)
so that the i.h. gives o′ ∈ ISN (J\w). We conclude by rule (@var).

• If o = tl0 . . . ln, with n ≥ 0, we reason similarly to the previous case but we conclude with
rule (@app).

• If o = (λx.t)l0 . . . ln, with n ≥ 0, then we reason by cases on l0. In every case we can conclude
as before but using rules (dBnil) and (dBcons).

For the converse we reason by induction on the definition of o ∈ ISN (J\w). If o = nil, o = t; l,
o = λx.t, o = xl, or o = t[x/v] with |t|x = 0, then the property is straightforward by using the i.h.
The remaining cases are:

– If o = (λx.t)(u; l0)l1 . . . ln ∈ ISN (J\w) where o′ = t[x/u]l0l1 . . . ln ∈ ISN (J\w), then the i.h.
gives o′ ∈ SN (J\w) so that in particular t, u, li ∈ SN (J\w).
To prove o ∈ SN (J\w) it is is sufficient to prove that all its immediate reducts are in SN (J\w).
This can be done by another induction on ηJ\w(t) + ηJ\w(u) +

∑

ηJ\w(li).

• If o→ o′, then the property holds by the first i.h. as already mentioned.
• If o reduces some subterm t, u or li, then we conclude by the second i.h.

– If o = (λx.t)nill1 . . . ln ∈ ISN (J\w) where o′ = (λx.t)l1 . . . ln ∈ ISN (J\w), then the i.h. gives
o′ ∈ ISN (J\w) and we proceed similarly to the previous case.

– If o = (xm)l0l1 . . . ln ∈ ISN (J\w) where o′ = x(m@l0)l1 . . . ln ∈ ISN (J\w), then o′ ∈ SN (J\w) by
the i.h. so that in particular m@l0, l1, . . . , ln ∈ SN (J\w). Lemma 44 also gives m, l0 ∈ SN (J\w).
To prove o ∈ SN (J\w) it is is sufficient to prove that all its immediate reducts are in SN (J\w).
This can be done by second induction on ηJ\w(m) +

∑

ηJ\w(li).

• If o→ o′, then the property holds by the first i.h. as already mentioned.
• If o reduces some subterm m, li, then we conclude by the second i.h.

– If o = (tm)l0l1 . . . ln ∈ ISN (J\w) where o′ = (t(m@l0))l1 . . . ln ∈ ISN (J\w), then o′ ∈ SN (J\w)
by the i.h. so that in particular t(m@l0), li ∈ SN (J\w). Lemma 45 also gives tm, l0 ∈ SN (J\w).
To prove o ∈ SN (J\w) it is sufficient to prove that all its immediate reducts are in SN (J\w).
This can be done by a second induction on ηJ\w(tm) +

∑

ηJ\w(li).

• If o→ o′, then the property holds by the first i.h. as already mentioned.
• If o reduces some subterm tm or li, then we conclude by the second i.h.

– If o = C[[xl]][x/v] ∈ ISN (J\w) where o′ = C[[vl]][x/v] ∈ ISN (J\w), then o′ ∈ SN (J\w) by the
i.h. so that in particular v, C[[vl]] ∈ SN (J\w). By Corollary 4, C[[xl]] ∈ SN (J\w). To prove that
o ∈ SN (J\w) it is sufficient to prove that all its immediate reducts are in SN (J\w). This can
be done by induction on ηJ\w(v) + ηJ\w(C[[xl]]).

• If o→ o′, then we conclude by the first i.h. as already mentioned.
• If o reduces some subterm C[[xl]] or v, then we conclude by the second i.h.

– If v[x/u]l ∈ ISN (J\w) where (vl)[x/u] ∈ ISN (J\w), then (vl)[x/u] ∈ SN (J\w) by the i.h. so
that v[x/u]l ∈ SN (J\w) since ηJ\w(v[x/u]l) =L. 18 ηJ\w((vl)[x/u]).

Lemma 21. Let o ∈ OJ. If o ∈ SN (J\w) then o is S-typable.

Proof. By induction on the structure of o ∈ SN (J\w) =L. 47 ISN (J\w).

– If o = nil, o = t; l, o = λx.t, o = xl, or o = u[x/v] with |u|x = 0, then the proof is straightfor-
ward by using the i.h.

– If o ∈ ISN (J\w) comes from one of the rules (dBnil), (dBcons), (C), (@var) or (@app), then the
property holds by the i.h. and the Subject Expansion Lemma 20.

– If t[x/s]l ∈ ISN (J\w) comes from the rule (E), then (tl)[x/s] ∈ ISN (J\w), so that (tl)[x/s] is
S-typable by the i.h. and the property holds by Lemma 18.

