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We study the capillary rise of wetting liquids in the corners of different geometries
and show that the meniscus rises without limit following the universal law: h(t)/a ≈
(γ t/ηa)1/3, where γ and η stand for the surface tension and viscosity of the liquid
while a =

√
γ /ρg is the capillary length, based on the liquid density ρ and gravity

g. This law is universal in the sense that it does not depend on the geometry of the
corner.
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1. Introduction

According to Hardy (1922), the study of surface energies and short-range forces
started with Boyle’s experiment on capillary rise in 1682 (Boyle 1682). This experiment
consists in contacting a wetting liquid with a vertical tube. The liquid spontaneously
rises up to a final height he, whose value is inversely proportional to the tube
radius r (he ∼ 1/r). The interest of physicists, or even physicians, for capillary rise
is naively explained in the Encyclopedia Diderot d’Alembert, first published in 1751:
The spontaneous rise of water in a capillary tube, which seems to contradict the law
of gravitation, deserves our attention. Indeed, the human body is a hydraulic machine
where the number of capillary tubes is almost infinite.

Following more than one century of experiments, the theory of capillary rise was
proposed by Laplace (1806), who determined in particular the final height of rise:

he

r
= 2

(a

r

)2

cos θ. (1.1)

In this expression, a =
√

γ /ρg is the capillary length and θ is the contact angle that
characterizes the wetting of the liquid on the solid (θ = 0 in the limit of complete
wetting). In the expression of the capillary length, γ , ρ, g respectively stand for
surface tension, liquid density and gravity. The law (1.1) is often referred to as Jurin’s
law, following the work of Jurin (1718). It reveals that the capillary rise becomes
significant only in tubes of diameter smaller than the capillary length (millimetric).
It also predicts a height of 30 km for nanopores (r = 0.5 nm). The question of the
maximum possible value of he has recently been addressed by Caupin et al. (2008).

† Email address for correspondence: clanet@ladhyx.polytechnique.fr



A universal law for capillary rise in corners 147

It took another century to solve the question of the dynamics h(t) of the rise.
The solution was found by Lucas (1918) and independently, in the context of oil
extraction, by Washburn (1921). They both showed that for a liquid of viscosity η in
a horizontal tube, the meniscus moves according to the law:

h(t) =
√

Dt with D = 2
γ r cos θ

η
. (1.2)

For a vertical tube, this law holds in the limit h ≪ he, where gravity can be neglected.
The major assumption used in (1.2) is the constancy of the contact angle θ . The studies
of dynamical wetting (Hoffman 1974; Tanner 1979; de Gennes 1985) later showed
that this is generally not the case, so that the Lucas–Washburn law must be corrected
in the first steps of the rise (Siebold 2000; Wolf 2010). Another assumption in this
law is that inertia is negligible. When this approximation is not satisfied, Quéré (1997)
and Quéré, Raphael & Ollitrault (1999) reported a very different behaviour for the
rise, composed of an initial phase of constant velocity followed by oscillations around
the equilibrium h = he. The transition from the viscous to the inertial regime was
discussed by Fries & Dreyer (2008).

On the applied side, capillary rise plays a major role in the imbibition of porous
media (Kistler 1993; Steen 1996; Lago & Araujo 2001; Marmur 2003). Its main
applications are, among others, in soil imbibition (Depountis et al. 2001; Ramrez-
Flores, Bachmann & Marmur 2010), wicking in textiles (Ferrero 2003), flows in foams
(Caps et al. 2005) or powders (Galet, Patry & Dodds 2010) and civil engineering
materials (Karoglou et al. 2005; Hall & Hoff 2007). In all these examples, the
geometry of the porous media is far from a collection of cylindrical tubes and the
applicability of Jurin’s and Lucas–Washburn’s laws can be questioned (van Brakel &
Heertjes 1975; Lago & Araujo 2001). This led to the study of capillary rise in more
complex geometries, such as between cylinders (Princen 1968, 1969), in rectangular
tubes (Ramos & Cerro 1994; Weislogel & Lichter 1998; Bico & Qur 2002), or on
textured surfaces (Ishino et al. 2007). For each of these systems, the wicking process is
characterized by well-defined length scales (distance between the cylinders for Princen,
or size of the rectangular cavities for examples).

Our aim in this study is to characterize capillary rise in ‘open’ geometries, which do
not impose any length scale. Two of these geometries are sketched in figure 1(a, b).
The linear case (figure 1a) has been studied by Higuera, Medina & Linan (2008)
in the limit of small angles (α = 0.75◦). Using the lubrication approximation, these
authors found a self-similar solution, with a t1/3 time evolution for the liquid front,
compatible with the theory of Tang & Tang (1994). After presenting the experimental
set-up and results, we will compare the data obtained in linear (figure 1a), quadratic
(figure 1b) and cubic corners (figure 4a,b) with the small-angle limit and discuss the
general properties of capillary rise in corners.

2. Experimental set-up and protocol

The experimental set-up used to study capillary rise in a quadratic corner is shown
in figure 1(c). Two solid rods made of Plexiglas are pressed together by regularly
spaced threaded rods. The diameter D of the cylinders is varied from 10 to 30 mm.
The wetting liquid is a silicon oil (γ = 20 mN m−1) of viscosity η between 10 and
1000 mPa s. The liquid is contained in a Petri dish whose vertical position is controlled
by a Micro-Controle translation table. This yields a precise and reproducible contact.
The capillary rise of the liquid in the corner is observed through the cylinders
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Figure 1. (Colour online) (a) Linear corner y = tan αx. (b) Quadratic corner y = x2/D.
(c) Sketch of the experiment. (d ) Typical sequence obtained with solid rods made of
Plexiglas (diameter D = 30 mm) and brought in contact with a silicone oil V20 (η = 20mPa s,
γ = 20mN m−1).

(figure 1c) via a D300 Nikon programmable camera. The location of the front is
determined by subtracting, from each image, the initial unwetted reference frame. An
example of the rise is shown in figure 1(d ), where the wetted region appears in light
grey and the determination of the liquid front h(t) does not present any ambiguity.
The actual shape of the wetted area is more difficult to extract from these pictures
since the observation is made through cylindrical Plexiglas lenses. In this study, we
focus on the time evolution h(t) of the liquid height.

3. Experimental results

In the sequence 1(d ) it can be seen that the front progresses in a strongly nonlinear
fashion. It takes 196 s to reach 73 mm and 1042 s to double this distance. More
quantitatively, the height h(t) is shown in figure 2. For different cylinder diameters,
figure 2(a) shows the front dynamics obtained with silicone oil 10 times more viscous
than water. After an initial phase of about 10 s, the front progresses as t1/3. This
evolution does not depend on the rod diameter. For a fixed diameter D = 30 mm, the
influence of the viscosity on the capillary rise can be seen in figure 2(b): the larger the
viscosity, the longer the time needed to reach a given height. As an example, it takes
100 s to reach 100 mm with a silicon oil V10, whereas an oil 100 times more viscous
reaches the same height in 104 s, suggesting a characteristic time of rise proportional
to η. For all the viscosities, the rise comprises an initial ‘quick’ rise followed by a t1/3

evolution. The duration of the initial regime also increases with the viscosity.

4. The organ model

Figure 3(a) shows a sketch of our model to capture the dynamics of the rise. For
a corner of arbitrary shape, we model it as a kind of organ, that is, a collection
of juxtaposed tubes of decreasing diameters as they approach the corner. Our main
assumptions here are that the motion is mainly vertical and that the curvature
imposed by the wall confinement (in the (y, z)-plane) dominates the curvature in the
(x, z)-plane, as indicated by the observations of the wetting front (figure 1d ).
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Figure 2. (Colour online) Experimental results for the time evolution of the position of the
liquid front. (a) The wetting liquid is a silicon oil (viscosity η = 10 mPa s, surface tension
γ = 20 mN m−1) and the diameter of the solid rods is changed. (b) The diameter of the plain
cylinders is kept constant (D = 30 mm) but the silicon oil viscosity η is varied between 10 and
1000 mPa s. The solid lines indicate the slope 1/3.
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Figure 3. (Colour online) (a) Presentation of the ‘organ’ model. (b) Evolution of the
normalized height h/a as a function of the reduced time (γ /ηa)t . The solid line shows
the slope 1/3 (4.4).

As the corner contacts the wetting liquid, the rise starts in the collection of
juxtaposed tubes and we try to understand the race between the menisci in each tube.
By definition, the height of the leader, which is not always in the same tube, is h(t).
If hr (r, t) stands for the location of the front in the tube of radius r at time t , Stokes’
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equation can be written in the scaling form:

γ

rhr

∼ ρg + η
ḣr

r2
. (4.1)

Equation (4.1) shows that the driving capillary pressure gradient γ /rhr is balanced
by both the force of gravity ρg, and the viscous friction based on the velocity of the
front ḣr . This classical equation can be integrated as

hr (r, t) ∼
√

2γ r

η
t − ρgr2

η
t. (4.2)

At short times, gravity can be neglected and we recover the Lucas–Washburn
behaviour. More generally, (4.2) provides the radius rL of the leading meniscus,
deduced from the condition (∂hr/∂r)r=rL = 0. Hence, we find

rL ∼
(

1

8

ηγ

ρ2g2t

)1/3

. (4.3)

The position of the front thus approaches the corner as 1/t1/3. Since our definition
of h(t) is hr (rL, t), we can deduce from (4.2) and (4.3) the dynamics of the capillary
rise:

h(t) ∼
(

γ 2t

ηρg

)1/3

. (4.4)

This scaling law is in good agreement with the experimental observations reported
in figure 2. The capillary rise does not depend on the rod diameter D. Moreover, the
time needed to reach a fixed height is proportional to the viscosity. Finally, the model
predicts the t1/3 behaviour observed at long times. Rewriting (4.4) as h/a ∼ (γ t/ηa)1/3,
we show in figure 3(b) the collection of our experimental results. All the data collapse
on a single curve, even in the initial phase, and they follow the t1/3 law at long times
(γ t/ηa > 103). The short-time regime can be associated with the meniscus onset. Our
model assumes that the contact angle between the liquid and the wall is θ = 0, fixed
by the wetting condition. However, this condition is not fulfilled at t = 0 since the
liquid is initially horizontal, so the contact angle is π/2. According to Clanet & Quéré
(2002), it takes a time τm ≈ 102–103 ηa/γ to establish the condition θ = 0. This time
is compatible with the observations in figure 3(b). Since it also varies as ηa/γ , we
understand that the data also collapse in this initial phase.

5. A universal law

The law of rise (4.4) is derived without needing the relation r(x) between the tube
radius and the distance from the corner. In other words, (4.4) is independent of the
actual shape of the corner. To check this strong prediction, we tested three types of
corners, namely linear, quadratic and cubic. The linear-type (figure 1a) consists of the
intersection of two rigid planes with an opening angle 2α. The distance between the
two planes is thus described by y = tan α x. We worked with α =2.5◦ and α = 6.5◦

and compared our results with those of Higuera et al. (2008), obtained in a more
confined geometry (α =0.75◦). The quadratic type of equation y = x2/D is used in
figures 1(b–d ), 2 and 3. Finally, cubic corners were obtained by pressing two elastic
sheets against a solid plane (figure 4a (top view) and figure 4b (side view)). Then, the
distance between the elastic walls follows the law y ≈ x3/L2, where L is the length of
the sheet.
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Figure 4. (Colour online) (a) Top view of a cubic corner of equation y ≃ x3/L2 created by
the compression of elastic mylar sheets. (b) Side view of the corner. The horizontal lines are
rubber bands that hold the structure. (c) Evolution of the reduced height h/a as a function
of (γ /ηat)1/3 for different corners: (i) linear (y = tanα x): � data from Higuera et al. (2008)
(α = 0.75◦ and silicon oil V460) � α = 2.5◦ with a silicon oil V20, � α = 6.5◦ with a silicon oil
V20; (ii) quadratic (y = x2/D): ×D = 30 mm with a silicon oil V20; (iii) cubic (y ≃ x3/L2): �

L = 6 cm with a silicon oil V20.

These different corners are brought into contact with a silicone oil V20, and the
reduced height h(t)/a is measured and plotted in figure 4(c) as a function of the non-
dimensional time γ t/ηa. The rise is independent of the corner geometry. Equation
(4.4) indeed describes the whole family of rises. Note that the numerical coefficient is
found to be of order one.

6. Implications for porous media

In complex geometries such as encountered in porous media, one expects to find
both closed vessels leading to the Washburn t1/2 law, and corners leading to the
t1/3 law. In this section, we present a device in which these two dynamics appear
simultaneously and we discuss their coexistence.

A top view of the channel designed for this experiment is shown in figure 5(a). Two
elastic sheets (dark grey regions) are clamped together on one side (A) and are pressed
against a rigid plate (B) on the other side. This builds up a complex channel (shown in
black), in which one finds three corners and a confined region of submillimetric size.
Once put vertically in contact with a wetting liquid (again, a silicone oil V20), the rise
starts both in the centre of the channel and in the corners. The location of the liquid
in the main channel is shown in figure 5(b) by solid squares, while open squares
indicate the location of the front in one of the corners. In addition, the horizontal
crosses show the position of the front in a quadratic corner obtained with solid rods
(D = 30 mm) with the same silicone oil. It is observed that both capillary rises occur
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Figure 5. (a) Device used to study the capillary rise in a complex submillimetric geometry,
where a central channel coexists with three corners (black region). (b) Location of the liquid
front in the centre of the channel (�) and the corner (�). In addition, we show the liquid front
in a free quadratic corner (+), with D = 30 mm and the same silicone oil V20.

independently of each other. The front in the corner is always the leading front, and
apart from the very early stage, it superimposes with the data for an open corner,
showing that the filling of the channel does not impact the t1/3 dynamics. Conversely,
the channel follows the classical Lucas–Washburn law before stopping at a height
he ≈ 20a.

One can propose an argument to understand that these features are general and
why, in particular, the t1/2 law cannot cross the t1/3 law at long times. Inside a tube of
radius r , the wetting liquid moves as h =

√
Dt . Extrapolating the Lucas–Washburn law

up to h = he enables evaluation of the characteristic time of the rise: te ∼ ηa4/γ r3. On
the other hand, the time for which we expect a crossover between the two dynamics
can be deduced from matching (1.2) and (4.4). We find the same time te, which implies
that a Lucas–Washburn front will experience gravity (and stop) before catching up
the meniscus in the corner.

7. Conclusion

We have studied the capillary rise of wetting liquids in corners. Using different
geometries (linear, quadratic and cubic), we showed that the meniscus rises indefinitely
(without saturation), following a universal t1/3 law. This result contrasts with most
wicking dynamics. The Lucas–Washburn law (t1/2), initially derived and observed in
a capillary tube, still holds in much more complex geometries (paper, fabric, sand
and rough solids). Hence, for each of these geometries, an equivalent radius r can be
deduced, which characterizes the wickability of the material. Conversely, there is no
such length in a corner which was found to dramatically affect the rise. The absence
of characteristic length is also at the origin of the independence of the t1/3 law on the
corner geometry.
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The possible application of this work to capillary rise in trees was discussed with
Noel Michele Holbrook during a summer school and with Hervé Cochard at INRA
during a seminar. Both discussions were fruitful and have led to ongoing experiments
on capillary rise in real stems. May both of them find here the expression of our
sincere gratitude.
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