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Recirculation cells in a wide channel
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Secondary flow cells are commonly observed in straight laboratory channels, where

they are often associated with duct corners. Here, we present velocity measure-

ments acquired with an Acoustic Doppler Current Profiler in a straight reach of the

Seine river (France). We show that a remarkably regular series of stationary flow

cells spans across the entire channel. They are arranged in pairs of counter-rotating

vortices aligned with the primary flow. Their existence away from the river banks

contradicts the usual interpretation of these secondary flow structures, which invokes

the influence of boundaries. Based on these measurements, we use a depth-averaged

model to evaluate the momentum transfer by these structures, and find that it is

comparable with the classical turbulent transfer.
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I. INTRODUCTION

Turbulent shear flows often generate stationary vortices aligned with the primary flow.

They appear in rapid granular flows1, in Rayleigh-Bénard-Poiseuille flows2, in the superficial

layers of sea and lakes3, in straight tubes4,5, as well as in straight channels and natural

rivers6–8.

In laboratory channels, a broad spectrum of instruments provide detailed measurements

of the velocity field. They reveal secondary flow structures in the plane normal to the

primary flow6,7,9,10, among which are the stationary helicoidal flows observed in straight

channels (Prandtl refers to them as “secondary flow of the second kind”11). They were

originally associated with duct corners10,12,13, where they were attributed to the turbulence

anisotropy3,12,14–17. Recent experiments reported their existence in wide channels (aspect

ratio of about 10), where they arrange themselves as pairs of counter-rotating vortices aligned

with the stream direction6–8.

To our knowledge, secondary flow cells have never been measured in very wide chan-

nels —the only configuration which separates unambiguously recirculation cells from corner

vortices. Alluvial rivers are typically wide and shallow, with an aspect ratio of a few tens18.

Therefore, a significant proportion of their flow should be free from the influence of the

banks. Nonetheless, various indirect observations such as sediment streaks10,19,20 or fluctu-

ations in the suspended particles concentration21 have been associated to secondary flows

in alluvial streams. There is however no clear consensus on the physical origin of these

patterns10,19,20.

To identify directly secondary flow cells in rivers, we need accurate measurements of

the velocity field. Unfortunately, because they require heavy infrastructures, laboratory

measurement techniques are of delicate use in the field. Instead, many river studies involve

Acoustic Doppler Current Profilers (ADCP). An ADCP emits a diverging bunch of ultrasonic

beams from a single source. The three-dimensional velocity field is then reconstructed from

the measured radial velocities, thus making it possible to record velocity profiles with a

light measurement setup. Due to the divergence of the beams, the velocity reconstruction

relies on the assumption that the flow is uniform in the horizontal plane. This configurational

limitation generally precludes ADCPs from measuring flow structures smaller than the water

depth22.
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Recirculation cells, however, are still accessible to ADCP measurements, since they are

streamwise invariant and stationary. Here we use these properties to identify recirculation

cells in a straight reach of the Seine river (France). At this location, the river is wide

and deprived of bed sediment, thus limiting the possible causes of recirculation. Based on

these measurements, we then evaluate the momentum transfer by secondary flow cells, and

compare it to the classical turbulent transfer.

II. MEASUREMENTS

A. Acoustic Doppler Current Profiler

Our ADCP (model RDI-Workhorse 1200 kHz) emits four divergent acoustic beams. Each

beam measures the radial velocities ur every 25 cm through the water column. The beam

angle with respect to the vertical direction is α = 20◦. Consequently, the distance 2lcor

between opposite beams is proportional to the measurement depth h:

2lcor = 2h tan (α) ≃ 0.8h . (1)

Used conventionally, an ADCP computes the Cartesian components of the velocity field (ux,

uy and uz) from the four radial velocities (figure 1b). For instance, to get the streamwise

velocity ux at a depth h, it uses the radial velocities from beam 3 and beam 4 (figure 1b).

The radial velocities ur,1 and ur,2 are decomposed as follows:




ur,3

ur,4



 =





ux,3(−lcor) uz,3(−lcor)

−ux,4(lcor) uz,4(lcor)



 ·





sin(α)

cos(α)



 , (2)

where uz,n and ux,n are respectively the vertical and the streamwise velocity in the n-th

bins of each beam. This procedure relies on the assumption that the flow is uniform in the

horizontal plane23:

ui,3(−lcor) = ui,4(lcor). (3)

The streamwise velocity at deph h thus reads ux = (ur,3 − ur,4)/2 sin(α). Similarly, beam 1

and beam 2 provide the transverse velocity uy
24.

The uniformity assumption proves reasonable to measure integrated quantities, such as

the river discharge, or large flow structures. However, due to the large tilt angle α of a beam,

the correlation length lcor is of the order of the flow depth (equation 1, figure 1). Therefore,
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FIG. 1. (a) Configuration of the ADCP beams, oriented with respect to the primary flow. (b) Con-

figuration of beams 4 and 3, in the vertical streamwise plane. The tilt angle of the beam is α = 20◦

and its opening angle is φ = 30◦. The radial velocity is measured at depth h. The associated

correlation length is lcor.

it cannot detect flow patterns smaller than the flow depth22. This precludes ADCPs from

measuring the complete velocity field associated to secondary flow cells in a river.

In a straight channel however, we expect the average flow to be uniform in the streamwise

direction, even in the presence of stationary helicoidal cells. The uniformity assumption

therefore holds along the primary flow and, in principle, we can calculate the vertical velocity

of secondary flow cells from the two acoustic beams aligned with the flow (beam 3 and beam

4 in figure 1a)25,26.

Secondary flow cells are weak stationary eddies in a highly turbulent flow. We thus need

to average the velocity field over time to reveal them. In addition, since the uniformity

assumption holds only on average, our experimental setup can only measure the average

velocity field in the vertical streamwise plane (x, z). We define the average velocity as

ui =
1

T

∫ T

0

ui dt , (4)

where i denotes the coordinate x or z, and T is a time period long enough to average out the

unsteady turbulent flow (T ≈ 10min). Fortunately, ux and uz suffice to identify secondary

flow cells, and to estimate their influence on the flow.
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B. Field site

We collected our measurements midway of a 3 km-long straight reach of the Seine river

(France). The river flows above bedrock between two vertical banks (width: 148m, depth:

about 6.2 ± 0.3m depending on the discharge, figure 2a). The ADCP was mounted on a

raft moored to a suspension footbridge which does not perturb the flow (figure 2b). The

horizontal velocity of the raft was recorded by an echo-sounder, and the measurements are

corrected for it. The raft position was measured with an auto-tracking theodolite with

a precision of about a centimeter. We also used the ADCP goniometer to correct the

measurements for the angular motion of the raft.

FIG. 2. (a) Aerial picture of the field site (source: Institut Géographique National). Measurements

are made from the footbridge. (b) Set-up of the measurement raft.

We acquired three data sets at the same location and at comparable discharges (January

2011: 900m3 s−1, February 2012: 950m3 s−1, February 2013: 780m3 s−1). For each set, we

collected static measurements across the river, about 2m apart from each other. Each static

measurement lasted about 10 min, a duration sufficient for the turbulent component of the

flow to average out. In addition, we collected measurements in a transect by slowly pulling

the raft along the footbridge.
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III. OBSERVATIONS

A. Streamwise velocity

To visualize the primary flow, we define the depth-averaged streamwise velocity as

Ux(y) =
1

H

∫ H

0

ux dz , (5)

where H is the water depth. The primary velocity appears roughly constant around the

center of the channel, and slows down near the banks (figure 3a). As a result, the velocity

profile is curved over about two thirds of the river width. Since the water depth is virtually

constant across the river, this profile suggests that the flow transfers streamwise momentum

to the banks.
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FIG. 3. Streamwise velocity measurements (m.s−1) in the Seine river during winter high flow.

The discharge is 900 m3/s. (a) Depth-averaged velocity Ux from moving measurements (blue) and

from static measurements (yellow). (b), (c), (d) Time-averaged (≃ 10 minutes) depth profiles

(ux) with fitted logarithmic profiles (red curve).

The vertical velocity profile is also affected by the banks. At the center of the channel,
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the velocity profile resemble the classical logarithmic law of the wall (figure 3b). However, as

we approach the banks, the vertical profile deforms: the point of maximum velocity detaches

from the water surface and migrates downwards, until it reaches approximately half the flow

depth (figure 3c-d).

This observation is reminiscent of laboratory experiments showing a velocity maximum

at about z = 0.6H near the banks10,27. This departure from the logarithmic profile is usually

interpreted as a signature of secondary flow cells near duct corners7,10,11: these cells create

an upward velocity along the side wall, thus bringing slow fluid up to the surface. The center

of the cell, hardly impacted by the cell velocity, flows faster than the surrounding fluid. The

same flow cell would have a much weaker effect far away from the banks, since the slow

water must be transported from the bottom to the surface, thus explaining why the profiles

near the center and near the bank differ.

Similarly, the weak spatial oscillation of the streamwise velocity across the river suggests

that periodic upwelling brings slow water from the bottom to the surface (figure 3a).

B. Vertical velocity

The streamwise velocity profiles suggests that secondary flow cells exist across the entire

channel. We now turn our attention to the vertical velocity, which provides direct insight

on such flow structures (figure 4).

To reduce the scatter, the data set is divided into 2m-wide bins. The vertical velocity

is then averaged over each bin, and the standard deviation within a single bin provides an

estimate of the error on the mean. The mean vertical velocity shows periodic oscillations

across the river, with an amplitude significantly larger than the measurement error. As ex-

pected, the average vertical velocity across the channel vanishes, indicating that the vertical

motion of the raft does not perturb significantly the measurements.

Despite considerable scatter, both the amplitude and the wavelength of this oscillation

are roughly constant over the right-hand half of the river (the duration of the high-flow con-

ditions did not allow measurements across the entire channel). They also show a reasonable

consistency between data sets collected one year apart.

Fitting a cosine to the data leads to a wavelength of about 12± 0.5 m, and an amplitude

of about 0.4± 0.1 cm s−1. The Fourier spectrum of the same data set shows a maximum at
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FIG. 4. (a) Time-averaged vertical velocity uz in a transect, at half the flow depth. The shaded

envelopes represent the standard error on the mean. The red curve is a cosine fitted to the data.

(b) Topography of the river cross-section at the measurement location (scales are preserved). The

distance y is measured from the middle of the channel.

a wavelength of about 12± 0.5 m (figure 5). Based on this observation, and in accordance

with previous experiments7,8, we suggest that the flow generates recirculation cells across the

entire channel. The wavelength of the velocity oscillation corresponds to a series of counter-

rotating vortices with a diameter of about the flow depth (figure 4b and figure 6). The

amplitude of the vertical oscillation is about 0.3% of the streamwise velocity, in accordance

with previous findings in laboratory flumes7.

IV. MOMENTUM TRANSFER BY RECIRCULATION CELLS

In this section, our intention is to quantify the contribution of secondary flow cells in

transporting momentum across the flow. To do so, we use a heuristic model to include the

advection by secondary flow cells in the streamwise momentum balance.
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FIG. 5. Energy spectrum of the vertical velocity field, calculated from the data set of figure 4.

A. Momentum balance

In steady state, the Reynolds-averaged Navier-Stokes equation for streamwise momentum

reads

ρ
∂〈uj〉〈ux〉

∂xj

=
∂τx,j
∂xj

+ ρgS, (6)

where g, S and ρ are the acceleration of gravity, the river slope and the density of water

respectively. The repeated j index implies summation over the transverse y and vertical z

coordinates. The brackets denote ensemble average and τx,j is the stress tensor, including

the Reynolds components.

In a rectangular channel with a steady free surface, the integration of equation (6) over

depth leads to
∂

∂y

∫ H

0

(ρ〈ux〉〈uy〉 − τy,x) dz = −τbottom + ρgHS. (7)

In the above equation, the left-hand term represents the cross-stream momentum transfer by

the conjugate action of the secondary flow and turbulence9. Even though the two integrands

ρ〈ux〉〈uy〉 and τy,x can be isolated formally, they are physically interdependent.

The bottom shear stress τbottom is often empirically approximated by a friction law:

τbottom ≈ ρCfU
2, (8)

where U is the mean velocity and Cf is a friction coefficient.
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B. Turbulent transfer of momentum

We first consider the contribution of turbulence to the cross-stream transfer of momen-

tum. Discarding temporarily the influence of the secondary flow, we use an empirical eddy

viscosity νt to get a rough estimate of the turbulent transfer:

τx,y ≈ ρνt
∂〈ux〉

∂y
. (9)

Based on laboratory and field measurements, the vertical profile of eddy viscosity in an open

channel is often approximated by a parabola10,28–30:

νt ≡ κu⋆ z
(

1−
z

H

)

, (10)

where κ is the von Kármán constant and u⋆ is the friction velocity defined as ρu2
⋆ = τbottom.

In an infinitely wide channel (that is, without any flux of momentum across the stream),

the velocity profile resulting from equation (6) with a turbulent viscosity closure (10) is

logarithmic:

〈ux〉 =
u⋆

κ
ln

(

z

z0

)

. (11)

where z0 is the roughness length.

In a bounded channel, on the other hand, momentum is transferred from the flow bulk

to the banks and, strictly speaking, equation (11) does not hold. However, if the channel

aspect ratio is sufficiently large, we may assume that the vertical velocity profile remains

logarithmic, in tune with the classical shallow-water approximation:

〈ux〉 = U(y)

√

Cf

κ
ln

(

z

z0

)

, (12)

where U(y) is the depth-averaged velocity.

Based on equations (9) and (12) , the cross-stream flux of momentum associated to the

Reynolds stress tensor then reads

∫ H

0

τx,y dz ≈ BCf H
2 U

∂U

∂y
(13)

where B depends on the ratio of the water depth to the roughness length only:

B =
1

6
ln

(

H

z0

)

−
5

36
. (14)
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Using the above expression to model the cross-stream momentum transfer, the momentum

balance (7) reads

gHS = CfU
2 −

BCf H
2

2

∂2U2

∂y2
, (15)

To evaluate B from equation (14), we need an estimate of the roughness length z0. Fit-

ting a logarithm on several vertical velocity profiles near the center of the Seine river (fig-

ure 3b), we find an average value of z0 ≈ 2± 1mm (this value is comparable with prior field

measurements31), and therefore B ≈ 1.2± 0.1.

C. Influence of the the secondary flow on the momentum transfer

We now consider the influence of the secondary flow on the cross-stream transfer of mo-

mentum. Based on both the fluctuation of the vertical velocity across the stream (figure 4),

and mass balance, we expect the recirculation cells to be arranged in a series of counter-

rotating eddies, with a diameter of about the water depth and a velocity 〈Ut〉 (figure 6). Such

a flow configuration, by itself, cannot transfer momentum beyond one cell diameter, as it

is compartmented by vertical planes of vanishing cross-stream velocity. However, turbulent

diffusion can take over the momentum transfer across these vertical planes, where the mo-

mentum gradient is enhanced by the recirculation cells. The mixing due to counter-rotating

eddies could thus increase the diffusion of momentum across the stream32.

Assuming that the momentum transfer is limited by convection within the cells, we expect

it to scale like ρH〈Ut〉 (U
− − U+) where U− and U+ stand for the streamwise velocity left

and right of a cell, respectively (figure 6). If the streamwise velocity varies on scales much
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larger than the water depth, we can approximate the velocity difference across a cell by a

gradient, namely U− − U+ ≈ H∂U/∂y. This approximation is valid only in channels much

larger than their depth, which is usually true for alluvial rivers18.

Finally, based on prior experimental observations7,10 and on the measurements presented

in section III, we assume that the velocity of the secondary flow scales like that of the

primary flow:

〈Ut〉 ≈ Cd U(y) , (16)

where Cd ≈ 0.003± 0.001. The momentum balance then reads

gHS = CfU
2 −

CdH
2

2

∂2U2

∂y2
. (17)

This expression is similar to equation (15), except the dimensionless coefficient Cd is substi-

tuted for BCf .

D. Comparison with field data

We now proceed to compare the estimates of the cross-stream flux of momentum to our

field measurements in the Seine river. Equations (15) and (17), with the requirement that

the velocity vanishes at the banks, share the following analytical solution:

Ux = U∞

√

1−
cosh (y/Lt)

cosh (w/(2Lt))
, (18)

where

U∞ =

√

g H S

Cf

. (19)

The diffusion length Lt determines the inflection of the velocity profile near the banks. Its

mathematical expression depends on the cross-stream diffusion model:

Lt = H

√

B

2
(no secondary flow, equation (15)) (20)

Lt = H

√

Cd

2Cf

(with secondary flow, equation (17)). (21)

We evaluate the parameters U∞ ≈ 1.2m s−1 and Lt ≈ 14m by fitting equation (18) to

the data (figure 7). The resulting shape of the velocity profile accords reasonably with the

data.
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surements (yellow dots). Equation (18) is represented with U∞ ≈ 1.2m s−1 and Lt ≈ 14m fitted

to the data.

Since the the slope of the Seine river in Paris is about 10−4, we find Cf ≈ 0.0042±0.0001,

which is consistent with classical empirical formulas33,34. The estimation of U∞, and therefore

of Cf , is virtually independent from the value of the diffusion length Lt.

Based on our estimate of Cf and on relations (20) and (21), we can calculate the diffusion

length for the two diffusion models:

Lt ≈ 4.8± 0.1m (no secondary flow) (22)

Lt ≈ 3.7± 0.6m (with secondary flow). (23)

The estimated diffusion length is similar for both models, and about three times smaller than

the fitted value. Therefore, the two diffusion models not only share the same mathematical

expression (equations (15) and (17)), but also involve similar constants. We thus expect

the turbulent transfer of momentum to be comparable with the transfer induced by the

secondary flow.

The similarity between the two transfer mechanisms implies (i) that recirculation cells

cannot be neglected in the momentum balance, and (ii) that the momentum transfer by the

recirculation cells cannot be distinguished from the turbulent transfer in the shallow-water

framework presented here.
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V. DISCUSSION AND CONCLUSION

Due to the diverging configuration of its acoustic beams, an ADCP generally cannot

detect flow structures smaller than the flow depth. However, if the measurements are aver-

aged over a sufficient period of time, this instrument can measure stationary and spatially

extended flow structures.

We can unambiguously identify secondary flow cells in the vertical velocity field of the

Seine River. These stationary vortices extend across the entire channel and rotate at about

0.3% of the streamwise velocity, in accord with prior laboratory observations6,7.

An order-of-magnitude analysis suggests that the momentum transfer by these secondary

flow cells could compare with the intensity of the turbulent stress. If confirmed, this would

indicate that the secondary flow influences significantly the primary flow in open channels.

This is a strong incentive for further investigations. For instance, detailed flow measurements

in laboratory experiments could reveal the streamwise extension of the flow cells, their

stability in time and how they depend on the Reynolds number. Experiments would also

guide us towards the mechanism which generates these structures.

In rivers, the momentum distribution determines stress on the bed, and therefore controls

sediment transport and bed erosion. In addition, secondary cells are likely to enhance the

horizontal mixing of passive markers, such as suspended particles, temperature or solutes35.

Finally, beyond open-channel flows, similar recirculation cells appear in a variety of turbu-

lent sheared flows, such as longitudinal streaks in boundary layers36,37, Langmuir circulations

below the wind-blown surface of lakes and oceans38, or even granular flows39. To this day,

we do not know how many of these phenomena share a common physical origin, if any.
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