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ABSTRACT

On the one hand Cartesian products of graphs have been extensively studied since the
1960s. On the other hand hypergraphs are a well-known and useful generalization of
graphs.

In this article, we present an algorithm able to factorize into its prime factors any
bounded-rank and bounded-degree hypergraph in O(nm), where n is the number of
vertices and m is the number of hyperedges of the hypergraph.

First the algorithm applies a graph factorization algorithm to the 2-section of the
hypergraph. Then the 2-section factorization is used to build the factorization of the
hypergraph via the factorization of its L2-section. The L2-section is a recently introduced
way to interpret a hypergraph as a labeled-graph.

The graph factorization algorithm used in this article is due to Imrich and Peterin and
is linear in time and space. Nevertheless any other such algorithm could be extended to a
hypergraph factorization algorithm similar to the one presented here.

1. Introduction

In the 1960s VizING and SABIDUSSI independently showed [17,19] that, for every finite connected graph, there is a unique
(up to isomorphism) decomposition of the graph into prime factors. This theorem was the starting point for research on
Cartesian products of graphs. Some of the questions raised during these years are still open, as for Vizing’s conjecture.

An important motivation for the study of Cartesian products is that factorization allows us to reduce algorithmic
complexity by transferring the search for solutions from the product to the factors. Several classical problems in graph
theory were made easier following this approach. For instance, it is well-known that the chromatic number of a Cartesian
product is the maximum of the chromatic numbers of its factors [16] and that lower and upper bounds for the independence
number of a product can be given using the independence numbers of its factors [ 19,13]. Several other useful parameters or
properties of graphs were also investigated, especially in coloring theory. For instance, several interesting results concerning
the antimagicness [21,9,20] as well as the game chromatic number [15] of various classes of Cartesian products were recently
published. Thus, all these parameters and properties are easily computable thanks to Cartesian product operations.

Moreover, most of the networks used in the context of parallel and distributed computation are Cartesian products: the
hypercube, grid graphs, etc. In this context, the problem of finding a “Cartesian” embedding of an interconnection network

* A short version of this paper has been presented to COCOON 2010.
* Corresponding author. Tel.: +33 2315467485.
E-mail addresses: alain.bretto@unicaen.fr (A. Bretto), yannick.silvestre@unicaen.fr (Y. Silvestre), vallee@pps.jussieu.fr (T. Vallée).

T This conjecture expressed by VIzING in 1968 states that the domination number of the Cartesian product of graphs is greater than the product of the
domination numbers of its factors.
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Fig. 1. A graph H and its 2-section [H],. The 2-section is the Cartesian product K30K,(K, while H is the Cartesian product TOK,OK,, where T is the
hypergraph T = ({0, 1, 2}, {{0, 1, 2}}).

into another one is also a topic of interest and thus has gained considerable attention (see for instance [1,10]). Note that
Cartesian products are also used in telecommunications [18].

Finally, in 2006, IMRICH and PETERIN [12] gave an algorithm able to compute the prime factorization of connected graphs
in linear time and space, making the use of Cartesian products even more attractive.

Hypergraphs are a well-known generalization of graphs introduced in the 1960s [3]. Since then, they had many
applications in several fields of computer science: machine learning, game theory, indexing of databases, SAT problem,
data mining and optimization (for a survey see [4]).

Cartesian products of hypergraphs can be defined in the same way as for graphs. The unicity of the prime factorization
was first proved for finite hypergraphs in [11] and then generalized to infinite hypergraphs in [ 14]. As for graphs, it is often
possible to facilitate the search for solutions by studying the factors rather than the product. In particular, several hypergraph
properties and parameters (see [5,7]), like linearity, conformality, Helly property, transversal and matching numbers, can be
easily deduced from the same properties and parameters on the factors. For instance, a hypergraph has the Helly property
if its factors have it.

Summary of the results

In this article, we present an algorithm (Algorithm 1) able to factorize any hypergraph into its prime factors. It is, up to
our knowledge, the first such algorithm. It is based on the algorithm of IMRrICH and PETERIN introduced in [12], but it is easily
adaptable to any algorithm which factorizes Cartesian products of graphs.

One way to interpret the greater generality of hypergraphs over graphs is to say, for fixed parameters, that a hypergraph
can store more information than a graph. In [8], this interpretation is made explicit by the introduction of some sort of
labeled-graphs where the labels are used to store the additional information.

In the sequel, we use an alternative and equivalent way, introduced first in [7,6], to represent hypergraphs by labeled-
graphs. These labeled-graphs are named labeled 2-sections (L2-sections) as they interpret a hypergraph H by its 2-section
G endowed with an additional labeling function £, which associates with each edge of G the set of all hyperedges of
H containing the vertices of this edge. It is then easy to retrieve the hypergraph H from its L2-section (G, £). It is also
straightforward to show that the prime factorization of H can be easily built from the prime factorization of (G, .£). Note
that this is not true for the 2-section. Indeed, except in the quite narrow case of conformal hypergraphs, the 2-section does
not even contain enough information to decide the number of factors in the hypergraph prime factorization. For instance,
Figs. 1 and 2 give an example of two hypergraphs which have the same 2-section and have respectively three and two prime
factors. It is also not so difficult to see that there exists another hypergraph which has again the same 2-section and which
is prime.

The basic idea behind the design of Algorithm 1 is to use the L2-section (G, £) of H. In particular, the algorithm runs the
algorithm of IMRICH and PETERIN on the 2-section G to obtain its prime factors Gy, . . ., Gy. Then, it is not so difficult to see that
the prime factors of (G, «£) must be of the form (G,, £1), ..., (G¢,, £m), Wherecy, ..., ¢y isa partition of k = {1, ..., k}
and where each G is the Cartesian product of the G;s, for i € ¢j, and £; is some labeling-function on G;. So it remains to
find the partition ¢y, ..., ¢, as well as the L4, .. ., £, functions. Since by definition a factor contains at 1’east two vertices,
G has at most log, n factors, where n is the number of vertices of G, and so the set k has at most 2!°62" = n subsets. Hence, it
is feasible to find the partition by trying every possible subset ¢ C k. Nevertheless, this way does not give any information
about how to define the .£;’s. Indeed, except in the case where H is conformal, there are many possibilities to define .£; in
such a way that (Gg;, L)) is an L2-section, that is, there are many possibilities to define a hypergraph corresponding to G-

Hence, in the sequel we define explicitly the right partition ci, . .., ¢n (cf. Definition 9) in such a way that the £;'s can
be defined, up to isomorphism, as the restrictions of .£ to some subgraphs of G, called the c;-layers of G.

In the second section of this article, we show how to build the L2-section of a hypergraph and conversely how to retrieve
a hypergraph from its L2-section. Then we introduce Cartesian products of hypergraphs as well as Cartesian products of
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Fig. 2. A hypergraph # with two factors corresponding to two equivalence classes c; = {1, 2} and ¢, = {3} according to Definition 9.

L2-sections. In the fourth section, we introduce the graph factorization algorithm of IMRICH and PETERIN and give some
properties of Cartesian products. This algorithm is based on a coloring of the Cartesian product which exhibits the underlying
factorization of the graph. In the fifth section, we introduce an equivalence relation on the set of colors induced by the
factorization of the 2-section of the hypergraph. This relation induced a new coloring of the 2-section and is shown to induce
the prime factorization of the hypergraph. Finally, in the sixth section, based on these results, we introduce an algorithm
able to perform the prime factorization of any bounded-rank and bounded-degree hypergraph in O(nm), where n is the
number of vertices and m is the number of hyperedges of the hypergraph.

Preliminaries

In the sequel, the cardinality of a set A is denoted by |A|. The set #,(A) is the set of pairs {x, y} such that x,y € A and
x # y, P(A) is the powerset of A and £*(A) = {a € P(A) : a # @}. The union of Aistheset| JA={x € a:a € A}.Forf a
function, we define Im(f) = {y : 3x, f(x) = y} and for every subset A of its domain f[A] = {f(a) : a € A}.

The general terminology concerning graphs and hypergraphs in this article is similar to the one used in [2,3].

A hypergraph H on a non-empty set of vertices V is a pair (V, E), where E is a set of non-empty subsets of V, called
hyperedges. Ahypergraph is simple if no hyperedge is contained in another. In the sequel, unless explicitly stated, we suppose
hypergraphs to be simple and that no hyperedge is a loop, that is, the cardinality of a hyperedge is at least 2. Hypergraphs
are considered non-trivial here, that is, to contain at least two vertices and one hyperedge.

A graph G = (V, E) is a particular case of (simple) hypergraph where every e € E is of size 2. Hyperedges of graphs are
simply called edges. The set of vertices (resp. hyperedges) of the hypergraph H is often written V (H) (resp. E(H)).

A path p in H is either a single vertex x, or a sequence of vertices (xg, . .., X,), where n > 1, containing no repetition of
vertex and such that x;, x;1, belong to an hyperedge of H, for everyi € {0, ...,n — 1}. The integer n = length(p) is the
length of p and the vertices xy and x, are said to be connected by p in H. In particular, if p = x then length(p) = 0 and it is
convenient to consider that p connects x to itself.

The hypergraph H is connected if every pair {x, y} C V(H) is connected by a path. From now on, unless explicitly stated,
we assume that hypergraphs are connected. Note that this implies that every vertex is incident to at least one edge, that is,
there is no isolated vertex and V = [ J E.

Two subgraphs of a graph G are vertex-disjoint if they have no common vertex. Two vertex-disjoint subgraphs G;, G, are
adjacent if there exists an edge of G having one vertex in G; and the other in G,. They are connected by a path p if the first
vertex of pisin Gy and its last vertex is in G,. The distance between G; and G; in G is the minimal length of a path connecting
G, and G,. Moreover, it is convenient to consider that every subgraph G’ of G is connected to itself by single-vertex paths of
the form p = x, where x is a vertex of G/, and so that the distance of G’ to itself is 0.

The subgraph of G = (V, E) induced by a set of vertices V' C V is the graph (V/, E’), where E’ = {{u, v} € E : {u, v} C V'}.

The number of hyperedges of a hypergraph H is denoted by m(H). The rank of H is r(H) = max{le| : e € E(H)}.

Given two simple hypergraphs H; = (Vy, E1), H, = (V5, E;), a hypergraph isomorphism is a bijection f : V; — V; such
that, for all e C V7, we have e € E; if and only if f[e] € E,.

2. Hypergraphs and labeled 2-sections
We introduce below the notion of labeled 2-section (L2-section) of a hypergraph which is a particular case of labeled-graph.

2.1. Definitions and basic facts

The 2-section of the hypergraph H = (V,E) is the graph [H], = (V,E) where E = |, #(e), that is, two distinct
vertices are adjacent in [H], if and only if they belong to a same hyperedge of H (see Fig. 1). Note that every hyperedge of H



is a clique of [H]; and that | JE = V implies | JE = V. Note also that a hypergraph is connected if and only if its 2-section
is. Note finally that if f is an isomorphism between [H], and a graph G then H' = (f[V], {f[e] : e € E}) is also a hypergraph
isomorphic to H. This remark will allow us to work up to isomorphism when dealing with isomorphisms between [H], and
Cartesian products of graphs.

In order to define the labeled 2-section, we introduce first a slightly more general concept of labeled-graph, called
hyperedge-set labeled-graph. Note that the hypergraph H = (V, E) associated with a hyperedge-set labeled-graph may not
be simple, nor connected (so we may have | JE C V).

Definition 1. A (hyperedge-set) labeled-graph is a pair I' = (G, £), where G = (V, E’) is a graph and £ is a function from E’
to PH(P*(V)).

The inverse [I“]L_Zl of the labeled-graph I" = (G, «£) is the hypergraph H = (V, | JIm(L)), where V is the set of vertices
of G.

Definition 2 (L2-Section). For every hypergraph H = (V, E), the L2-section of H is the labeled-graph [H];; = ([H],, &£),
where the function £ is defined, for every edge {x, y} of [H],, by L({x,y}) = {e € E: X,y € e}.
A labeled-graph I is a labeled 2-section (L2-section) if there exists a hypergraph H such that [H];; = I".

The following result is straightforward.
Proposition 1. For all hypergraph H and L2-section I" we have [[H ]LZ]L_Z1 = H and [[F]L_;]Lz =1T.

Definition 3. An isomorphism between two labeled-graphs Iy = (Gy, &£1) and I3 = (G,, £3), where G; = (V, E7) and
G, = (V,, E3), is a bijection f : Vi — V; such that

1. f is a graph isomorphism from G; to G,.
2. LLAf®), fOD = {flel - e € L1({x, yD}, for all {x, y} € E;.

We write I'y = I, and we say that I'; and I, are L2-isomorphic if there exists an isomorphism from Iy and 5.

Note that by the first condition of the definition, f is a graph isomorphism from G; to G, and so {x, y} € E; if and only if
{f(x), f(y)} € Ey, for every pair of vertices of V;. This ensures that .£1({x, y}) is defined if and only if £ ({f (x), f ()}) is, and
so that the second condition of the definition makes sense.

It is also easy to check thatiff : Iy — I, and g : I, — I3 are labeled-graph isomorphisms thengof : I'T — I3 is also
an isomorphism. It is also clear that if I'; and I are isomorphic then I is an L2-section if and only if I is. The following
result is straightforward.

Lemma 1. Two hypergraphs are isomorphic if and only if their L2-sections are.

We remind the reader that a hypergraph H' = (V', E’) is a partial hypergraph of H = (V,E) if EE C Eand V' = [ JE".
We give below a sufficient condition for a labeled-graph I to be a sub-section of I, that is, to be a labeled-graph such that
[I“O]L_Zl is a partial hypergraph of H.

Definition 4 (Subsection). Let I' = (G, £) be the L2-section of H, where G = (V, E’). A pair Iy = (Gy, £o) is a subsection
of I' if the following conditions are satisfied:

1. Go = (Vo, E) is a connected subgraph of G (thatis, Vo € V and Ej C E').
2. Ly is the restriction of .C to Ej.
3. Ife € [JIm(Lo) then P, (e) C Ey.

Lemma 2. Let I" be the L2-section of the simple connected hypergraph H and I'y = (Go, £o) be a subsection of I". Then
Hy = [I“O]L_Zl is a simple connected partial hypergraph of H with L2-section I5,.

Proof. Let H = (V, E), I' = ([H],, £), where [H], = (V, E), I = (G, £Lo), where Gy = (Vq, Ep).

We show first that, under the hypotheses of the lemma, Iy is a labeled-graph. Note that Gy is a connected graph by the
first condition of Definition 4, and so Vo = | E/,. It remains to show that £, is a function from Ej to 2*(£*(Vj)). Since, £
is the restriction of £ to Ej, we know already that .£ is defined from Ej to £*(£*(V)). So it is sufficient to show that, for
every e € | JIm(Lp), e is a non-empty subset of Vy. The non-emptiness is immediate since e € £*(V). Note now that, since
le] > 2, e =J P, (e). Hence, since £, (e) < E; by the third condition of Definition 4, it comes e = | #(e) < |JE; = Vo.

We show now that the inverse of Iy is a simple connected partial hypergraph of H. So let Hy = (Vy, Ep), where
Eo = | JIm(Ly). Note first that, since I is a labeled-graph, Hy is a hypergraph and | JEy € V,. Since £y is the restriction
of £ to Ej, every hyperedge of Hy comes from H, and so clearly Hy is simple by simplicity of H. We show now that Hy
is connected. Let u, v be two vertices of V. They are connected by a path in Gg. Now, for each edge {z, w} of this path,
£L({z, w}) contains at least one hyperedge which contains z, w by construction of I" from H. Since £ is the restriction of .£
to Eg and Eg = |JIm(Lp), this hyperedge is in Ho. It is then easy to build a path in Ho from u to v using these hyperedges.
Hence Hj is connected and so UE, = Vj, and since clearly Eg C E, Hy is a partial hypergraph of H. O



3. Cartesian products of hypergraphs and L2-sections

We remind the reader that k = {1, .. ., k}, for every positive integer k.

Definition 5. Let H; = (Vq, E1) and H, = (V,, E;) be hypergraphs. The Cartesian product of H, and H, is the hypergraph
H1OH, with set of vertices V; x V; and set of edges:

Ei0E, = {{x} xe:xeViande e E,}U{e x {u} :e€ Eiand u € V,}.

Aq Ay

Note that up to the isomorphism the Cartesian product is commutative and associative. That will allow us to denote
simply by u = x4, ..., x, the vertices of V; x - -- x Vj.In particular, every permutation 7 : k — k induces an isomorphism
fr between H1O - - - OHj and Hy1yO - - - OHy ) defined by fr (x1, ..., Xk) = Xz 1)y« s X (k)-

For every i € k, the i™ projection p; : Vi x --- x Vi — V; is the function which associates with every k-uple u
its i"-coordinate. To simplify notations p;(u) will be denoted by u; as soon as there will be no ambiguity. We denote by
uli := y] the vertex of V; x --- x V} having the same coordinates than u except that u; is replaced by y € V;, that is, if
U=2X1,...,Xi—1,% Xit1, ..., X thenu[i :=y] = X1, ..., Xi—1, ¥, Xit15 - - - » Xk ~

It is easy to check thate € V; x --- x Vj is a hyperedge of H;O- - - OH, if and only if there exist a unique i € k,
X1y ooy Xi—1, Xit1y o+, Xk € Vix---xVi_y XV1'+1 X - ~~><Vkande € E; suchthate = {X1}X~ ~~><{x,-_1}><e><{x,-+1}><~ . ~X{Xk}.
Such a hyperedge ¢ is then called an i-hyperedge and clearly ¢ = {u[i :=y] : y € e}, foreveryu € «.

Note that a Cartesian product of hypergraphs is a graph (resp. connected) if and only if all its factors are. Moreover, if H;
is isomorphic to H;, for every i € k, then HiO - - - OHj is also isomorphic to HO - - - OH;.

Fig. 1 illustrates the notion of Cartesian product of graphs and hypergraphs. We give now two results from [5].

Lemma 3. We have A; N A, = (. Moreover, [eNe'| < 1foranye € A; and any e’ € A,.

Proposition 2. If H; and H, are hypergraphs then the 2-section of their Cartesian product is the Cartesian product of their 2-
sections.

The Cartesian product is now extended to (hyperedge-set) labeled-graphs.

Definition 6. Let I} = (Gq, £1) and I, = (G;, £3) be two labeled-graphs, where G; = (V1, E;) and G, = (V5, E;). Their
Cartesian product I'y75 is the labeled-graph (G10G;, £10.£3), where L£10L, is defined respectively on every hyperedge
of A; and every hyperedge of A, (cf. Definition 5) by

o L10Lry({x} x {u,v}) ={{x} xe:e e Lo({u, v}}.
o L10Lo({x, ¥} x {u}) = {e x {u} : e € L1({x, y}}.

It is easy to check that .£10.£5 is a function from E;0E, to £*(£*(V; x V5)) and so that ;075 is indeed a labeled-graph
(using in particular the fact that .£; : E; — 2*(P*(V)),i € {1, 2}).

It is also straightforward to check that, up to isomorphism, the Cartesian product on labeled-graphs is commutative and
associative. That will allow us to overlook parentheses in the sequel. It is also straightforward to show thatif I7 is isomorphic
to I7, foreveryi € k, then MO--- Ol and I'/O - - - OF are.

Lemma 4. For all hypergraphs Hy, H, and L2-sections I'y, I;, we have

1. [Hl]LZD[le]LZ = [1‘111E]1‘12]L2-1
2. [MOL], =[], 0], .

Proof. Note that second point of the lemma is an easy application of the first one and of Proposition 1. In order to show the
first point, let H; = (Vq, E;) and H, = (V5, E;) be two hypergraphs and [Hi];; = ([H1l2, &£1) and [Hz];2 = ([Hal2, £2)
be their L2-sections, where [H{], = (Vi,E;) and [H;], = (V5, E;). Note that by Proposition 2, we have already
[HiOH;]; = [H1],O[H:],. It remains to show that the labeling function of [H{OH,];, and the function £{0L; given in
Definition 6 are equal. Let us denote by .£ the first one. Let {(x, u), (v, v)} € E{OE,, we have to show £L({(x, u), (y, v)} =
L10L5({(x, u), (v, v)}). By definition of the L2-section, there exists a hyperedge &, of E{OE, such that (x, u), (y, v) € &
and, clearly, either g = {x} x eg, where x € V; and eg €E;, or g = eg x {u}, where u € V, and ey € E;. We show the result
for the first case, the second case is similar. Since x = y and u = v, clearly every hyperedge ¢ of E;0E, containing both (x, u)
and (y, v) is of the form {x} x e where e € E,. It comes by Definitions 2 and 6:

L{(x,u), (x,v)}) ={e:(x,u), (x,v) € ¢ € E10E,}
= {{x} x e: (x,u), (x,v) € {x} x e € E;0E,}
={{x} xe:u,veeck}
= {{x} xe:ee Lr({u,v})}
= L10L2({(x, w), (x,v)}). O



4. Colorings and factorization of graphs

In [12], IMRICH and PETERIN designed an algorithm able to factorize any finite connected graph into its prime factors.

We remind the reader that hypergraphs and graphs are supposed to be non-trivial (that is, non-reduced to a single vertex
and having at least one edge).In particular, if G = G;0- - - OG is a Cartesian product of graphs, its factors Gy, - - - , Gy are all
supposed non-trivial.

4.1. The algorithm of IMRICH and PETERIN

A prime graph is a graph which cannot be factorized as a Cartesian product of non-trivial graphs. A factorization is prime
if each factor is prime.

The algorithm of IMRICH and PETERIN is based on the fact that if G = G0 - - - OGy then this factorization induces a coloring
of the edges of G.Indeed, if G = G,O - - - OGy then, forallu € V; x - -- x Vy andi € k, there is a subgraph G} of G such that the
it projection p; induces an isomorphism between G! and G;. Indeed, as already noticed, {u, v} € V(G) is a edge of G if and
only if there exists a unique i € k such that {u;, v;} is an edge of G;, and u; = vj, forevery j € k,j # i. An edge of that form is
said to be an i-edge or to have the color i. Since, every edge of G is an i-edge for a unique i, clearly k induces a coloring of the
edges of G. The graph G!' is then defined as the connected subgraph of G induced by the set of vertices V", where a vertex
belongs to V" if and only if it is connected to u by an i-path, that is, a path containing only i-edges. The set of edges of G!' is
denoted below by E.

Subgraphs of the form G are said to be the i-layers of G and it is clear that every edge of G is contained in exactly one
layer. Note that if v is a vertex of G}’ then clearly G! = G;'. This implies that the vertex used to denote G} can be freely chosen
among the vertices of V. It is also clear that two distinct i-layers are vertex-disjoint. Finally, since each G; is connected, it is
easy to check that every vertex u is adjacent to at least one i-edge, for each i € k, and so G}' is a non-trivial graph.

Note that {u, v} is an i-edge of G if and only if u = v[i := u;] (or equivalently v = u[i := v;]) and {u;, v;} is an edge
of G;. More generally, u and v are connected by an i-path of length n in G! if and only if u = v[i := u;] (or equivalently
v = u[i := v;]) and u; and v; are connected by a path of length n is G;. It is also easy to check that u and v are connected by
a path in G if and only if, for everyi € k, u; and v; are connected by a path in G;.

Let now {u, v} and {u, w} be respectively ani-edge and aj-edge of G, where i # j. We show that these edges are contained

into an induced square of G. Indeed, by hypothesis we have v = u[i := v;] and {v;, u;} € E;, as well as, w = u[j := wj]
and {wj, u;} € E;. Moreover, since i # j, we have w; = u; and v; = u;, and so {v;, w;} € E; and {wj, v;} € E;. Hence, since
u' = uli := vi][j ;= wj] is a vertex of G such that u; = v; and u; = wj, it comes {uj, wi} € E; and {u;, v;} € E;. Since

moreover w and ' differ only of their i-coordinate, and v and v’ differ only on their j®-coordinate, {w, v’} and {v, u'} are
respectively an i-edge and a j-edge of G. It is also easy to see that there is no edge between u and u’ and no edge between v
and w. Hence, the subgraph of G induced by V' = {u, v, w, u'} is a square. Note that opposite edges in this square have the
same color. Moreover, it is easy to show that this induced square is the unique one containing both {u, v} and {u, w}. This
fact is expressed in the following result from [12].

Lemma 5 (Square Lemma). LetG = G0 - - - OGy, be a cartesian product. If two edges of G are adjacent edges with different colors
then they lay in a unique induced square (with opposite edges in the square having the same color).

A straightforward consequence of the Square Lemma is that every clique of G is necessarily contained in the same layer.
From the Square Lemma we easily get the following result, also given in [12].

Lemma 6. Let G = G0 - - OGy. Then every clique of G is contained in a single layer. Moreover, if two cliques share an edge then
they both are contained in the same layer.

Since a hyperedge of a hypergraph H induces a clique in its 2-section, the definition of the labeling function in the L2-
section gives easily.

Corollary 1. If I = (G, L) is the L2-section of H and G = G,0- - - OGy then e is a clique of G} for alli € k and i-edge {u, v} such
that e € L({u, v}).

4.2. I-paths, I-layers, I-projection and edge-induced isomorphisms

We fix now a graph G = G;0- - - OG;. B

We generalize first the notion of i-layer to the notion of I-layer, where I C k. Indeed, we let {u, v} be an I-edge of G if
and only if {u, v} is an i-edge for some i € I. Then, for every u € V, the I-layer G} = (V/, E}') is the connected subgraph of G
induced by the set of vertices V!, where a vertex of G belongs to V" if and only if it is connected to u by an I-path, that is, a
path containing only I-edges.

Forl = {iy, ..., iy} C k, p; is the I-projection on G, that is, the mapping which associates with every sequence u € V the
sequence u,, ..., U, € Vi x --- x V; . To simplify notations, p; (1) is often simply written u; and v[I := u;] is the k-tuple
obtained from v by replacing v; by u;, for every i € I.



Note that p; extends naturally to a function on £ (V) by letting p;(e) = {p;(x) : x € e}, for every e C V. Similarly, it
extends to a function on £ (£ (V)) by letting p; (L) = {p;(e) : e € L}, for every L C £ (V). We use this remark freely in the
sequel.

Note finally that we denote by G; the graph G;; O - - OG

on k.

wherel = {iy, ..., iy} is ordered according to the natural order

i

Lemma 7. Two vertices u, v of G are connected by an I-path, I C k, if and only if these vertices have the same coordinates except
for some coordinates of I.

Proof. Indeed, since {u, v} is an i-edge of G if and only if u[i := v;] and {u;, v;} is an edge of G;, it is easy to check that if u, v
are connected by an I-path then their coordinates are the same except for some coordinates of I.

Now suppose that u, v are equal on their coordinates except for some coordinates of I. We show the result by induction
on the number n of such coordinates. If n = 0 then u = v and the trivial path u connects u to v. Now suppose that u, v are
equal on their coordinates except for n + 1 coordinates of I and let i € I be such that a coordinate. Let now v’ = u[i := v;].
Clearly v’ have the same coordinates as v except for n coordinates of I. Hence, by induction hypothesis, there exists an [-path
q between v’ and v in G. Now, since G; is connected, there exists a path between u; and v; in G;. As noticed previously, this
path induces an i-path p in G between u and v’. Since i € I, clearly pq is an I-path connectingu and v. 0O

By definition of v[I := u;], we have v[I := u;]; = vj, for every j ¢ I. Moreover, if u; = v; for some i € I then clearly
o[l :=u] = v[I'\ {i} := up]. It comes easily.

Corollary 2. Two vertices u, v are connected by an I-path if and only ifu = v[lI := y;] ifand only if v = u[l := v;].
Corollary 3. If v, w are vertices of G}, then v; = wj, foreveryj ¢ I.

Proof. Indeed, since v, w are in G which is clearly connected by definition, there exists an I-path between w and v. Hence,
by the lemma, their coordinates out of I are the same. O

Corollary 4. Every edge of G} is an I-edge.

Proof. Let {v, w}beanedge of G}'. By definition of G}' as the subgraph of G induced by V', {v, w}isanedgeof Gand v, w € V}'.
So, in particular, {v, w} must be a j-edge for some j € k. Hence, {v;, w;} is an edge of G; and so v; # wj. If we suppose now
thatj ¢ I, since v, w € V', we get v; = wj by the previous corollary. Contradiction. O

Lemma 8. For allu € V and non-empty set I C k, the restriction p¥ of p to G} is a graph isomorphism between G} and G,.

Proof. Let] = {i1, ..., i,} C kand let u be avertex of V; x - -- x V. In order to simplify notations, p} is simply written p;.
By definition p;(v) is the sequence vy, , .. ., v;, and so clearly p; is a function from V" to Vi, x --- x V;,.

Now if p;(v) = p;(w), where v, w € V}, this means that v; = wj, for everyi € I. Since v, w are both in G}, we have also
v; = wj for every j ¢ I by Corollary 3. So v = w and p; (restricted to G}') is an injection.

Now to see that p; is a surjection, let xq, ..., X, be a vertex of V;; x --- x V;,. Since G; is a connected graph, there is a
path p from the vertex u;,, ..., u;, to Xy, ..., X,. We show now by induction on the length of p that there exists v € V}" such
that pj(v) = x1, ..., X, and such that v is connected to u by a path of same length as p in G}'. If the length is 0, that is, if
Uiy, ..., Ui, = X1, ..., X then u is such a vertex and path (of length 0).Now suppose p of length m 4 1 between u;,, .. ., u;,
and X1, ..., X;. The path can be decomposed into a path q of length m and a last edge incident to x1, .. ., X,. By induction
hypothesis, the last vertex of q is of the form wy,, .. ., w;,, for some w € V' connected to u by a path g’ of the same length as
q. The last edge links wy, , ..., w;, and x4, ..., X, and, since G; is a Cartesian product, this edge must be an i;-edge for some
Jj € n.Hence, we have {wy, x;} € E;; and w;, = x,, forevery l € n\ {j}. Itis then easy to check that w[i; := x;] and q extended
with the ij-edge {w, w[i; := x;]} are respectively the vertex and the path we are looking for.

Finally, by Corollary 4, every edge of G!' is an i-edge for some i € I. It is then easy to check that p; associates an i-edge of
G; with this edge, proving that p; is a graph morphism. O

Lemma 9. Let G} and G; be disjoint I-layers of G, where I < k is non-empty, and {u, v} be a j-edge, for j ¢ I. The function ;Y
defined by f'" (w) = wlj := v;], for every vertex w of G, is a graph isomorphism between G}' and G; such that f*’ (u) = v. It is
moreover edge-color preserving and {w, w[j := v;]} is a j-edge.

Proof. First, let us show the injectivity of f*". Indeed, let w, z be vertices of G} If w[j := v;] = z[j := v;] then, for every
i € k\ {j}, wi = z;. Moreover, since j ¢ I, we have w; = z; by Corollary 3, and so w = z.

Second, by Lemma 8, both G} and G} are isomorphic to G;, and so have the same cardinality. That shows that f!¥ is
bijective, since the graphs are supposed finite in this article.

Finally, since there is a j-edge between u and v, we have v = u[j := ;] = f*"(u). Moreover, since an edge {x, y} of the
Cartesian product G is an i-edge if and only if x and y are equal for every coordinate different from i and {x;, y;} is an edge of
G, and sincej ¢ I, it is straightforward to check that {w, z} is an i-edge of G} if and only if {w[j := vj], z[j := v;]} is an i-edge
of G}'. Hence, f"¥ is an edge-color preserving graph isomorphism. It is also straightforward to check that {w, w[j := v;]} isa
j-edge using the Square Lemma. O



Corollary 5. Under the hypotheses of the lemma, f"* = f,“/”/ for all vertex u" in G} and v" in G} such that {u’, v'} is a j-edge.

Proof. Indeed, since v is in G and j ¢ I, we have vj = v; (Corollary 3). Since moreover u’ € Gy, we have G} = G}‘/, and so
the result. O

5. Prime factorization of hypergraphs via their L2-sections

In this section we fix an hypergraph H = (V, E), its 2-section G = (V, E) and its L2-section I" = (G, £). We suppose
moreover that G = G;0- - - OG is colored with the set k as shown previously.

We show how the prime factorization of H can be deduced from the prime factorization of G using I". This is done by
introducing an equivalence relation on k (cf. Definition 9) from which are defined the prime factors of I".

Let m be an integer and let, for every i € m, f; be a graph isomorphism from a graph G; to a graph G;. It is straightforward
to show that the function f; x - - - x f;;, defined, for every vertexxq, ..., X, € Vi X+« X Vi, by f1 X -+ X frn(X1, ..., Xm) =
(fi(x1), ..., fm(Xm)), is a graph isomorphism from G,0- - - OG, to G} - - - OG},..

Definition 7. Let cq, ..., ¢, be a partition of k and u be a vertex of G. We defined the function hy : VC“1 X +o0 X ch,,, =
Vix-.--xVyoneveryv € ch1 X - x Vg by hy(v) is the sequence which i" coordinate is equal to pi(v;), wherei € g, for
everyi e kandj e m.

Lemma 10. For all partitioncy, ..., Cn ofl_c and vertex u of G, h, is a graph isomorphism from G?l a--- DG?m to GO - - - OGy.

Proof. It is easy to check that h, in Definition 7 is well defined as a function from ch1 X -+ X Vg‘m toV; x -+ - x V. Note that
by the remark above and Lemma 8, the function p;, X - - - X p,, is a graph isomorphism from G?l O---0Gg to GO+ -OG,.

Now let ji, j2, . .., jk be the elements of k ordered in such a way that the indices of ¢; appear first in the natural order, then
the indices of ¢, appear second in the natural order, and so on until ¢, Since ¢y, ..., ¢y is a partition of k, the function
m : k — kdefined by 7 (i) = j; is a permutation. It is then straightforward to check that the function h,, is equal to the
functionf~ To (e, X+ - - X Pe,, ), Where f; is the isomorphism induced by 7. Hence h, is a graph isomorphism as a composition
of two graph isomorphisms. O

Definition 8. For every ¢ C kand u € V, we let I'* be the graph G* endowed with the restriction of £ to EY. The labeled-
graph I'!" is called the c-Cartesian join of u and we let H! = [I“C“]L_Zl. If ¢ = {i} then I’} (resp. H}) is simply written I3}"
(resp. H}').

In order to simplify notations we use £ to denote the restriction of £ to EY, that is, we write I'Y = (G, £).
Lemma 11. For allu € V and non-empty ¢ C k, HY is a partial hypergraph of H with L2-section I'}.

Proof. By Lemma 2, it is sufficient to show that I is a subsection of I". We prove first that G; is the subgraph of G
induced by EY, that is, we have to prove V! = [JE. Since G! is by definition the subgraph induced by VY, we have
Ef = {{v,w} € E:v,w e V'}andso | JE! € V! Now,if v € V¥ since clearly G is connected, there exists w such
that {v, w} € E!. Hence, we have also V! C [ JE!.

The fact that G is endowed with the restriction of . to E! is given by definition, so it remains to show the third condition
of Definition 4. Let e € «£L({vop, wo}), where {vg, wo} € Ef, and let {v, w} in £, (e). By hypothesis {vy, wo} is a c-edge and so
an i-edge for some i € c. Moreover, by definition of .£, we have e € L({vg, wo}) if and only if vy, wy € e € E. Note now that,
by Corollary 1, e is a clique of Gfo. Hence, since v, w € e, {v, w} and {vg, wo} are edges of the same i-layer Gfo. Finally, since
vo € V¥, we get {v, w} € Ef, proving the result. O

We define now an equivalence relation R* on the set of colors k which uses the graph isomorphisms of the type [ given
by Lemma 9. These graphs isomorphisms are called edge-induced isomorphisms and they are denoted by f** when ¢ = {i}.

Definition 9. We let R be the binary relation on k defined for every ordered pair of distinct i, j by: iRj if and only if there
exist distinct i-layers G} and G} adjacent by a j-edge {u, v} such that the edge-induced graph isomorphism f*’ is not an
L2-isomorphism between I'* and I3".

We define now R* as the reflexive, symmetric and transitive closure of R, and we let k/R* be the quotient of k by R*.

Proposition 3. Forallu, v € V and ¢ € k/R*, the function g2 which associates wlk\ ¢ := Upc] with every vertex w of G¢ is
an L2-isomorphism between I'} and I'.

Proof. Asa preliminary remark, note that vy, . = vi\c for all pair of vertices v, v’ belonging to the same c-layer (Corollary 3).
Hence, in particular, w(k \ ¢ := Vel = wlk\ ¢ := vi\c], forallv’ € V! and w € V. Hence, since G! = Gg/ for every vertex

u’ of G¥, the definition of g"* does not depend on u and v, that is, g*" = g**, for all v’ in G and v’ in G.

The proof is now by induction on the distance d between G! and G;. If d = 0 then G} = G{ (by definition of the distance
between two subgraphs). Hence, since vi, = wy, for every w € V¢ = V! (Corollary 3), the function g;" is the identity
function on V¥, and so trivially an L2-isomorphism.



Suppose now that the distance between G! and G} is n + 1 and let p be a path of minimal length n + 1 between a vertex
of G! and a vertex of G}. By the preliminary remark, we can suppose that p connects u and v and so thatp = u, ..., z, v,
where u, ...,z is a path of length n and {z, v} is a j-edge, for somej € k. Note that, by minimality of p, we havej ¢ c and so
G # G}, otherwise we would have z, v € V! and so {z, v} would be an edge of G, contradicting Corollary 4. By induction
hypothesis the function g}* is an L2-isomorphism.

Now let w be a vertex of GZ. Since {z, v} is a j-edge, we have z; = v;, for every i # j. Hence, by the preliminary remark,
foreveryi € (k\ c) \ {j}, we have w; = z = v;, and so w[k \ ¢ := vy, ] = wlj := v;]. This shows that the function g¢" is
equal to the function f?” introduced in Lemma 9. Hence, g2 is a graph isomorphism between GZ and G! by the same lemma.
Note that the lemma also gives that {w, w[j := v;]} is a j-edge, for every w € VZ. Now, since j ¢ c and c is a class modulo
R*, we cannot have iRj for anyi € c. Hence, in particular, f,-wwu::vj :
f,-wwu::vj : is clearly the restriction of f?" to G}, and so Corollaries 1 and 4 imply easily that f** = gZ” is an L2-isomorphism.
Hence, for every vertex w of ch‘, it comes: g ogé‘z(w) = wlk \g = Zipdlk\ ¢ i= v ] = wlk \ ¢ = vy ] = g (w).
Hence, as a composition of L2-isomorphisms, g*'" is a L2-isomorphism. 0O
Theorem 1. Let I’ = (G, L) be the L2-section of a hypergraph H. If G = G0 - - OGy then H = ]_[CG,;/W HY, for every vertex
ueV.

is a L2-isomorphism, for allw € VZ andi € c. Each such

Proof. Letu € V; x --- x V4. Note that by Lemma 11, I’ is an L2-section and H = [I“C“]L_Z1 is a partial hypergraph of

H, foreachc € I_c/ R*.We must show H = [].; /R H!. Since hypergraphs are isomorphic if and only if their L2-sections
are (Lemma 1), and since the Cartesian product commutes with the L2-section operation (Lemma 4), we must equivalently
show that I" = [] gz« I

Let now cy, ..., cy be an enumeration of k/R*. By Lemma 10, the function h, introduced by Definition 7 is a graph
isomorphism from G¢, O - - OG¢, to G40 - - CIGy.

We show that h, is also an L2-isomorphism. Indeed, let {v, w} be an edge of Gﬁlm ---0Gg, . We must show
L({hy (v), hy(w)}) = {hy(e) 1 € € LO---OL{v, w})}. Now, {v, w} is a ¢j-edge for some j € m. So we have v = w[j := v;]
and {v;, w;} is an edge of Gﬁj. Let v = h,(v) and ggj" be the function given in Proposition 3. In order to simplify notations,
we letg = ggj". Hence, by definition we have g(w) = w[k\ ¢ = v,;\cj], for every w € VC';. We show that, for every such
w, we have hy,(v[j := w]) = g(w). Indeed, leti € k.Ifi € ¢j then w[k \ ¢ := Viag i = wi and clearly h, (0[j := w]); = w;
by definition of h,. Now if i ¢ cj, we have w[k \ ¢ := vk\cj],- = v; which is also equal to h,(v[j := w]); since clearly
hy(v[j := w]); = hy(v); = v;. Hence, h, (v[j := w]) and g(w) are equal on all their coordinates, and so equal.

Now, note that g is an L2-isomorphism from Fc'j‘ to FC;,’ and that every hyperedge of H containing an edge of G?j is asubset
of VC'; (Corollary 1). Moreover, by the definition of the Cartesian product of L2-sections, € € £0---OL({v, w}) if and only
if there exists e € L({vj, w;}) such thate = {v[j := w] : w € e}. Hence, it comes:

L({hy (), hy(w)}) = L({g(), g(w)})
= {g(e) : e € L({v}, w;})}
= {{g(w) : w ee}:ee Ly, w}))
= {{h,@[:=w) :w € e}:ee Ly, w}}
= {hy({v[j :=w)D : w € e}) : e € L{v;, wj})}
= {hy(e) : e € LO---OL{v, w})}. O

We introduce now a lemma used to show that factors of L2-sections are necessarily Cartesian joins. In the lemma, the
L2-sections denoted by I'; are arbitrary L2-sections, the index (i) is only used to enumerate the factors.
Lemma 12. Let I' = (G, L£) be an L2-section. If I' = I'1yOI')03 - - - Ol is a prime decomposition of I", (I';) non-trivial, for
ie{l1,...,1})then I'; is an R*-induced Cartesian join foralli € {1, ..., 1}, and so we can write I' = I, 0,0 - - Ol , with
Iy = Iy, for{c1, ca, ..., 1} = k/R* a partition of k, the set of colors obtained from the prime factorization of G.
Proof. Note firstthatif I' = I'y0Ipy0- - - OI ), where I is an L2-section for everyi € {1, ..., I}, then we have obviously
G = GOGyO- - - OGyy, where I = (Gg), L), for everyi € {1, ...,1}. As G admits a prime factorization we can write
G = ]_[;‘:1 G;, for some k > I. As this prime factorization is unique, each graph G, is a Cartesian product of the form

]_[jeq Gj, where ¢; C k. Obviously, we have ¢; # ) (otherwise G(;, would be the trivial graph), ¢; N ¢y = @, for all distinct

The equality I' = ]_[L1 Iy implies £(; needs to be defined as p (£|[e€m isaq_edge}). The last mapping is an L,-
isomorphism as soon as each Cartesian join induced by c;-edges FC",‘, u € V, are pairwise L2-isomorphic, what is true as
soon as ¢; are unions of equivalence classes in k/R*, by definition (otherwise, there exists i € ¢;,j ¢ ¢; such that iRj or jRi,
so j-adjacent ¢;-layers are not necessarily L2-isomorphic or ¢; layers c;-adjacent are not). Minimal such unions are elements
of k/R*. O



Theorem 2. Let (G, .£) be the L2-section of a hypergraph H. If G = G0 - - - OGy then, for all vertexu € V and ¢ € k/R*, the
partial hypergraph H! is prime.
Proof. Let u € V and ¢ € k/®R*. By Lemma 4, it is sufficient to show that I'* is prime. Suppose it is not the case. By
Lemma 12, if I’} has at least two prime factors then there exists a partition {c1, ¢;} of ¢ such that and I’} = FC'; DFC';. As we
have ¢y, ¢; C ¢ € k/R*, it comes that ¢; ¢ k/R*, c; ¢ k/R*, contradicting Lemma 12. O

Fig. 2 gives the prime decomposition of a hypergraph # which has the same 2-section as the hypergraph in Fig. 1. This
2-section can be factorized as K30OK, 0K, and so the number k of its prime factors is 3. Nevertheless, and contrary to the
hypergraph in Fig. 1, #¢ cannot be factorized as a product of three prime factors. Indeed, the quotient of k = {1, 2, 3} by

R* contains two equivalent classes c; = {1, 2} and c; = {3} and so, according to the results above, #¢ has only two factors
corresponding to these classes.

6. Hypergraph prime factorization algorithm

6.1. A general prime factorization algorithm

We present now Algorithms 1 and 2. The first one computes the prime factorization of every hypergraph H using the
second one. Algorithm 2 decides the relation R. We suppose implemented the operations [_];> and [_][21.

Algorithm 1 Hypergraph prime decomposition
Require: A hypergraph H = (V, E).
Return: The set of all prime factors of H.

1: Compute I' = (G; £), the L2-section of H.
2: Run the prime factorization algorithm of IMRICH and PETERIN on G and let Gy, . .., Gi be its prime factors.
3: T is an array of length k connecting each color i € k to its class index.
4: Fori=1tokdo

5. ¢={i};T[i]=1i

6: EndFor

7: Fori=1tok—1landj=i+ 1tokdo

8: ifiRj OrjRithen

9: i = TIi]

0. jo=TI[]

11: if g < jo then

12: Ciyp = Cig U ¢,

13: Foralll € ¢j, do

14: T[] =ig

15: EndFor

16: end if

17: if jo < ip then

18: Cjp = Cip Y Gy

19: Foralll € ¢, do

20: T[] =jo

21: EndFor

22: end if

23:  end if

24: EndFor

25: k/R* = {c; : Ji € k, T[i] =j}
26: return {H! : c € k/R*}, where u can be any vertex of V

Theorem 3. Algorithms 1 and 2 are sound and complete.

Proof. Concerning Algorithm 2, it is clearly sufficient to show that, for given i,j € k, iRj if and only if {e[j := vj] : e €
L(>{u, wh)} # L({v, w[j := v;]}), for some i-edge {u, w} and j-edge {u, v}. This can be proved straightforwardly using
Lemma 9, its corollary and the definition of R.

Concerning Algorithm 1. The algorithm is designed in such a way that at each execution of the For loop in Line 7, the class
indices T[i] and T[j] are set at the minimums iy and j, of the current classes of i and j. This is ensured by the initialization
For loop in Line 4, by the fact that only the class indexed by the minimum of {ig, jo} is updated in Line 12 or 18, and by the
fact that either T[I], for all | € ¢;,, or T[l], for alll € ¢, are set to this minimum depending on the test of the if in Line 11 and
17. Since these changes are done only when iRj or jRi, it is clear that if T[i] = T[j] at the end of the execution then iR*j.



Algorithm 2 R-test

Require: A Cartesianly colored L2-section I” = (G; «£). Forallu € V andi € k, N;j(u) = {w : {u, w} is an i-edge}. Two
distinct colors i, j € k.

Return: true if iRj, false otherwise.

1: NonChecked contains the vertices which are not already checked.
2: Let NonChecked =V

3: while NonChecked # ) do

4: Letu € NonChecked
5:  Forallw € N;(u) and v € N;(u) do
6
7
8
9

if {e[j :=vj] : e € L{u, w}} # L{v, w[j := v;])}) then
return true
end if
. EndFor
10:  NonChecked = NonChecked \ {u}
11: end while
12: return false

Now, it is easy to check that, for each i € k, the function which associates the number of iterations of the For loop in Line 7
with the current value of cy; after these iterations is increasing (for inclusion). This implies in particular thati € cy;) at any
time during the computation after the execution of the initialization For loop in Line 4. It is also easy to check that, for all
i,j € k,if T[i] = T[j] at some point during the computation, then T[i] stays equal to T[j] during the rest of the computation.
Now, if iR*j then there exists a sequence iy, ..., ip such thati; = i, i, = jand i, Ripy1, OF iny1Riy, for every n € m. Using
the previous facts, it is then straightforward to show by induction on m that if iR*j then T[i] = T[j] and i, j € crj; at the end
of the execution. O

6.2. Data structures and complexity

We present briefly the data structures and complexity of Algorithms 1 and 2. Let H be a hypergraph and I = (G, £)
be its L2-section, where G = (V, E). We let m be the number of hyperedges of H, n the number of vertices, A the maximal
degree of a vertex and r the rank of H.

We suppose both the vertices and the hyperedges of H implemented as integers and E implemented as an array of length
m, where E[e] contains the list of the vertices in the hyperedge e. Now, each hyperedge e € E generates less than r? edges in
G, and so the number m’ of edges in G is less than mr2. Moreover, the maximal degree A’ of a vertex in G is clearly bounded
by Ar. Note also that, since G is connected, we have 0(n?) € 0(nm’) and so O(n?) € O(nmr?).

Clearly, the adjacency matrix M of G can be produced from E in O(n?) 4+ O(mr?) € O(nmr?) and we can suppose that
it is implemented as required in [12]. Moreover, we can suppose that each time an edge {u, v} of the 2-section is extracted
from the hyperedge e, this hyperedge is appended to the list £({u, v}) of the labels of {u, v}. Note that this extrawork can
be performed in constant time (for instance by using linked lists) and so it does not add to the overall time complexity of
the construction of M. The adjacency list of G can then be obtained from M in 0(n?) € O(nmr?). Note finally that, since the
number of hyperedges containing u is at most A, each edge of G is labeled by at most A hyperedges.

Thus, the prime decomposition G, - - OGy of G and the corresponding coloring can be obtained in O(m’) € 0(mr?) by
applying the algorithm of IMRICH and PETERIN in [ 12]. We also suppose that the coordinatization algorithm described in [12]
is implemented. This algorithm runs in O(m’) € O(mr?) space and time and allows us to interpret each vertex of G as a
sequence of vertices of V; x - - - x V}. For every vertex u, we let u[] be the array implementing u as a vector. Note finally that,
using the coloring of G, it is possible to generate a “colored” adjacency list A of G, that is, an array which associates, with
each vertex u, the list of the neighborhoods N;(u), i € k. This adjacency list can clearly be built in O(nm’) € O(nmr?) and is
denoted by A in the sequel.

Hence, the overall construction of I', factorization of G and construction of the auxiliary data structures described above,
can be computed in at most 20(nmr?) 4+ 20(mr?) + O(nmr?) = O(nmr?).

We begin now the analysis of the algorithms above with few remarks on the complexity of Algorithm 2. We suppose the
requisites of the algorithm fulfilled and we let d;(u) = |N;(u)|, for all vertex u and i € k. Suppose now i, j to be distinct colors.
The set NonChecked can be built in O(n). The while loop in Line 3 compares, for each vertex u, the i-edges and the j-edges
containing u using Line 6. The number of such i-edge is at most d;(u) and the number of j-edges at most d;(u). Now the
number of substitutions performed in Line 6 for each pair of edges is clearly bounded by Ar + 1. Indeed, -£({u, w}) contains
at most A hyperedges and each hyperedge is at most of size r. Moreover, for all vertices w, v and i C k, the substitution
wl[i := v;] can be performed in constant time by the instruction w[i] = v[i], and so the overall complexity of each execution
of Line 6 is O(Ar). Finally, clearly Line 4 and 10 can be performed in constant time using an adequate data structure to
implement NonChecked.

We discuss now the complexity of Algorithm 1. Note first that, as seen above, the execution of Line 1 and 2, as well as the
construction of the “colored” adjacency list A can be done O(nmr?). Note now that k < dy, where dy is the minimal degree



of avertex u in G (since by connectivity, for each i € k, there is at least one i-edge starting from u). Hence, since the maximal
degree of a vertex in G is bounded by Ar, we have k < Ar. Hence, the initialization For loop in Line 4 can be performed
in O(Ar).

Now, the heart of the algorithm is the For loop in Line 7. Let N be the number of times this loop is iterated during the
computation. Clearly, N < k* < A?r2.Itis also easy to check that the instructions from Line 9 to Line 20 can all be performed
in 0(k?) € 0(A%r?), since any sequence of classes G, - .., G, contains at most k colors. Hence, the For loop in Line 7, if we
except the R-checking in Line 8, can be performed in O(NA?r?) C 0(A*r%). Finally, Algorithm 2 is called 2N times in
Line 8. These calls induce 2N initializations of NonChecked in Line 2 of Algorithm 2 and so, according to the remarks above
concerning this algorithm, the total cost of these calls for Line 2 is 0(n2N) = O(nN). The calls induce also 2N executions
of the while loop in Line 3. Since NonChecked is initialized at V, these executions induce 2Nn iterations of Line 4 and 10 of
Algorithm 2, for a total cost of O(2Nn) 4+ O(2Nn) = O(nN). Finally, for each vertex u, ) ,; di(u) < A’ < Ar and so the 2N
executions of the while loop induce, for each vertex, at most 2Ar iterations of the test in Line 6 of Algorithm 2. Hence the
total cost for all vertices of the 2N executions of the while concerning Line 6 is at most 0(2Nn2 Ar Ar) = O(NnA?r?). So the
total cost of the 2N calls for Algorithm 2 is at most O(nN) 4+ O(nN) 4+ O(NnA?r?) € 0(NnA?r?). Hence, the total cost of the
For loop in Line 7 is 0(A%r%) 4+ O(NnA?r?) € O(NnA*r?) C 0(A%r?nA%r) = 0(A%r®n). B

The instruction in Line 25 can easily be computed in O(k?) € 0(A?r?) by building first] = {j : 3i € k, T[i] = j} and by
letting k/R* = {¢; : j € J}.

Finally, in order to execute Line 26, we pick a vertex root u and, for every j € J, we build a (possibly non-connected)
graph F; by removing from G all the i-edges where i ¢ c;. Then, clearly G?j is the connected component of F; containing u.

Now, to find a partial hypergraph of the form H?, where ¢ C k, we do not need to use explicitly its L2-section. A simple way
to get HY is to note that it has the same vertices as G!' and that a hyperedge e € E is in H! if and only if at least two vertices
v,w € e belong to V}. Indeed, if v, w € ethen {v,w} € Eande € £L({v, w}). Hence, in particular, {v, w} € E! if and
only if v, w € V¢ by definition of G!. Moreover, since all edges extracted from e appear in the same layer of G (Corollary 1),
{v, w} € E! if and only if there exists an edge extracted from e in E{.

Now, for each j € J, clearly F; can be computed in O(m’|c;|). Moreover, it is well known that the connected components
of a graph can be computed in linear time using either breadth-first search or depth-first search. Hence, the construction of
G?j can be made in O(m’|¢;|), for every j € J. Note now that > _._; |¢j| = k and so the overall complexity to build the G?j‘s is

j€l
o(m’k) € O(mr?Ar) = 0(mr3A). Now, since Zje] |VC';| < n, the construction of the H;‘j‘s can clearly be done in O(nm) by

checking if the two first vertices of each hyperedge e € E belong to some VC';. So the overall cost of the execution of Line 26
is 0(mr3A) + 0(nm) € 0(nmr3A). Hence, the total cost of Algorithm 1 is

o(nmr?) 4+ 0(Ar) + 0(A%r®n) + 0(A%r?) + o(nmr3A) € 0(nmA®r®).

Hence, if we suppose H with a bounded-rank and a bounded-degree, Algorithm 1 runs in O(nm).
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