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Abstract

This paper presents the first experiments on identifying implicit discourse relations (i.e., relations

lacking an overt discourse connective) in French. Given the little amount of annotated data for

this task, our system resorts to additional data automatically labeled using unambiguous connec-

tives, a method introduced by (Marcu and Echihabi, 2002). We first show that a system trained

solely on these artificial data does not generalize well to natural implicit examples, thus echoing

the conclusion made by (Sporleder and Lascarides, 2008) for English. We then explain these ini-

tial results by analyzing the different types of distribution difference between natural and artificial

implicit data. This finally leads us to propose a number of very simple methods, all inspired from

work on domain adaptation, for combining the two types of data. Through various experiments

on the French ANNODIS corpus, we show that our best system achieves an accuracy of 41.7%,

corresponding to a 4.4% significant gain over a system solely trained on manually labeled data.

1 Introduction

An important bottleneck for automatic discourse understanding is the proper identification of implicit

relations between discourse units. What makes these relations difficult is that they lack strong surface

cues like a discourse marker. This point is illustrated in the French examples (1) and (2).1 In (1), the

connective mais (but) triggers a relation of contrast, whereas in (2), there is no explicit connective to

signal the explanation relation, and the relation has to be inferred through other ways (in this case, a

causal relation between having injured players and loosing).

(1) La hulotte est un rapace nocturne, mais elle peut vivre le jour.

The tawny owl is a nocturnal bird of prey, but it can live in the daytime.

(2) L’équipe a perdu lamentablement hier. Elle avait trop de blessés.

The team lost miserably yesterday. It had too many injured players.

Implicit relations are very widespread in naturally-occurring data. Thus, they make up between 39.5%

and 54% of the annotated examples in the Penn Discourse TreeBank (PDTB) (Prasad et al., 2008),

depending on the relation types used.2 A quick look at other discourse corpora suggests that the problem

is as pervasive (if not more) in other languages. The French ANNODIS corpus does not annotate the

distinction between explicit and implicit relations, but a projection of a French connective lexicon on the

data gives a proportion of 47.4 to 71% of implicit relations, depending on the set of relations.3 For the

German discourse corpus of (Gastel et al., 2011), (Versley, 2013) report 65% of implicit relations.

In this paper, we tackle the problem of automatically identifying implicit discourse relations in French.

To date, the large majority of studies on this task have focused on English, and to a lesser extent on

German. Performance remain relatively low compared to explicit relations, due to the lack of strong

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organisers. License details: http://creativecommons.org/licenses/by/4.0/

1All our examples are taken from the ANNODIS corpus: http://redac.univ-tlse2.fr/corpus/annodis/.
2The former count does not include AltLex, EntRel and NoRel as implicit examples, whereas the latter does.
3The first count does not include attribution, e-elaboration and frame examples.



predictors. Because it relies on more complex, interacting factors, the identification of implicit relations

requires a lot of data. But the available annotated for French is scarce: while the PDTB contains about

40, 000 examples, the French ANNODIS only has about 3, 000 examples. An additional challenge for

building such a system for French compared to English is the lack of external lexical ressources (e.g.,

semantic verb classification, polarity database).

A natural approach to deal with the lack of annotated implicit data is to resort to additional data

automatically obtained from explicit examples in which the connective is removed (Marcu and Echihabi,

2002). Provided that one could reliably identify discourse connectives, this approach makes it possible to

create large amounts of additional implicit data from raw texts. Unfortunately, (Sporleder and Lascarides,

2008) show that a system trained on this type of artificially generated data does not generalize well,

leading to important performance degradation compared to a system solely trained on natural data.

The central question we address in this paper is how to better leverage the large amount of automat-

ically generated data. We first show that the bad generalization performance of the system trained on

artificial data lies in important distribution differences between the two datasets. This analysis in turn

leads us to investigate various simple schemes for combining natural and artificial data methods inspired

from the field of domain adaptation. Our best combined system yields a significant improvement of 4.4%

over a system solely trained on the available manually annotated data.

The rest of this paper is organized as follows. Section 2 summarizes previous works on implicit

relation identification. In section 3, we describe the problems introduced by the use of artificial data and

the methods we develop to deal with them. In section 4, we give a description of the data used, and in

section 5, we detail our feature set. Our experiments are then summarized in section 6.

2 Related Work

To date, there have been only a few attempts at building full document-based discourse parsers. On the

RST-DT (Carlson et al., 2001), the best performing system is (Joty et al., 2013), who report an F1 score

of 55.71 for labeled stuctures (with 23 relations). On the same corpus, (Sagae, 2009) and (Hernault et

al., 2010) report F1 scores of 44.5 and 47.3, respectively. On the PDTB, the parser of Lin et al. (2010)

obtains an F1 score of 33 (16 explicit relations, 11 implicit relations). On the ANNODIS corpus, Muller

et al. (2012) reports F1 scores of 36.1 (17 relations) and 46.8 (4 relations).

These still modest performance are due to wrong attachment decisions, as well as to errors in relation

labeling. Most of these latter errors are mostly imputable to wrong classifications of implicit relations.

Thus, the current best accuracy performance on explicit PDTB relations are 94.15% on 4 relations (Pitler

and Nenkova, 2009), and 86.77% on 16 relations (Lin et al., 2010). By contrast, the best identification

system for implicit PDTB relations obtains an accuracy of 65.4% on 4 relations in (Pitler et al., 2009), and

down to 40.2% for 11 of the level 2 relations of PDTB (Lin et al., 2009). For German, Versley (2013)’s

study on implicit relations reports 42.5 in F1 for 5 relations and 18.7 for 21 relations. For French, Muller

et al. (2012) report an accuracy score of 63.6% for their relation labeling system (over 17 relations), but

they do not provide separate scores for explicit vs. implicit relations.

This performance drop reflects the difficulty of identifying a rhetorical relation in the absence of an

explicit discourse marker. As shown by (Park and Cardie, 2012), the identification of implicit relations

relies on more diverse and noisy predictors from syntax (in the form of prediction rules) and (lexical)

semantics (e.g., polarity, semantic classes and fine-grained semantic tags for verbs). Unfortunately, most

of the semantic resources used to derive features for English (polarity database, Inquirer tags) are not

available for French. Zhou et al. (2010) try to predict the implicit connectives annotated in the PDTB

as a way of predicting the relation, a method only possible with this corpus. They obtain results lower

than those reported by (Park and Cardie, 2012). In another context, Sporleder (2008) shows that using

WordNet is less effective than lemmatisation for capturing semantic generalization, and (Wang et al.,

2010) use tree kernels in order to better capture important syntactic information. In another context,

Sporleder (2008) shows that using WordNet is less effective than lemmatisation for capturing semantic

generalization, and (Wang et al., 2010) use tree kernels in order to better capture important syntactic

information.



Another set of studies we directly build upon explore the idea that many connectives unambiguously

trigger a unique relation, thus allowing to construct massive amount of (artificially) labelled implicit

examples from raw data. Marcu and Echihabi (2002) were the first to use this method: they were mainly

interested in showing that a removed connective could be recovered from its linguistic context. In turn,

they only tested their approach on examples that were also generated automatically, and not on manually

annotated implicit examples. In this setting, they report an accuracy of 49.7 (6 classes), significantly

above luck. Reusing the same approach, Sporleder and Lascarides (2008) then showed that a system

trained on a large amount of artificial examples (72000 examples) performs much worse than the same

system trained on a much smaller amount of natural examples (1, 051 examples) implicit examples, with

accuracies of 25.8 and 40.3, respectively.

Marcu and Echihabi’s (2002) original approach was based on the idea of finding pairs of semantically

related words that together trigger a relation (such as “nocturne/jour” (“nocturnal/daytime”) in example

1 of contrast). Interestingly, Pitler et al. (2009) showed that word pairs extracted from artificial data are

not helpful for implicit relation identification and, moreover, that the most informative word pairs are not

semantically related. Blair-Goldensohn et al. (2007) showed that, for cause and contrast at least, results

can be enhanced by improving the quality of the artificial data. Finally, Wang et al. (2012) propose a

first approach that exploits both natural and artificial data. Specifically, they select the most informative

training points among natural and artificial examples, both coming from the PDTB or the RST DT. They

define deterministic rules for identifying so-called “typical” examples of a relation, the “seed” sets that

are then expanded using a simple clustering algorithm. They report performance results well over those

of (Pitler et al., 2009), but using a different evaluation protocole. 4 Also, their method is not easy

to repoduce, especially for French, where we can not define the same deterministic rules as some of

these depend on polarity information, for which we do not have external resources. Furthermore, their

approach only extracts 1 to 5% of the data as seed examples, which would represent too few examples on

our corpus. Finally, we are interested in finer-grained relations, thus more difficult to discriminate using

these kind of rules.

3 Proposed Approach

Our approach builds upon and extends the method of (Marcu and Echihabi, 2002) and (Sporleder and

Lascarides, 2008) by investigating different strategies for combining natural and artificial examples of

implicit discourse relations. These different combination schemes are inspired from domain adaptation

and are motivated by the fact that artificial and natural examples follow different probability distributions.

3.1 Distribution Differences

Most machine learning algorithms are based on the assumption that data from training and test samples

are independently and identically distributed (i.e., the i.i.d. sampling assumption). Yet, it seems that the

use of artificial data clearly undermines this assumption. There is indeed no guarantee that our artificial

examples should follow a distribution similar to that of the manual examples. This leads to the problem

of learning from non-iid data, a problem that has attracted growing attention these last years in machine

learning and NLP (Sogaard, 2013), (Hand, 2006).

In this particular context, we have two sets of data with the same output space (i.e., the discourse

relations), and the same kind of inputs space (i.e., spans of text). But our data samples can differ in a

number of ways. Following the terminology in (Moreno-Torres et al., 2012), we may encounter all the

different kinds of shift that can appear in a classification problem.

Prior Probability Shift This shift describes changes in the marginal distribution of the output (i.e., the

relations). The artificial data do not have the same class distribution as the natural ones (see section 4).

Neither do they have the same distribution as the natural explicit, because of the automatic extraction.

This problem can be easily handled by resampling artificial data (see section 4).

4Wang et al. (2012) only use the first annotated relation and ignore the Entity relation, whereas Pitler et al. (2009) keep all
the annotations and map Entity examples to the Expansion class.



Covariate Shift This shift describes changes in the marginal distribution of the input (i.e., the pairs of

spans of text). Artifical examples are originally explicit examples minus their connective, so it is rea-

sonnable to think that these examples will have a different distribution from the natural implicit examples.

Moreover, it is possible that, by removing the connective, we have made these examples semantically

unfelicitous or even ungrammatical. Segmentation is another issue, since it is automatic and based on

heuristics (see section 4). For example, artificial examples can not be multi-sentential whereas it can be

the case for natural ones.

Concept Shift This shift describes changes in the joint distribution of inputs and outputs. Consider

for instance the occurrences of relations within inter- and intra-sentential contexts. The proportion of

inter-sentential examples in natural and artificial datasets is the same for contrast (57.1%), it is similar

for result (resp. 45.7% and 39.8%), but very different for continuation (resp. 70% and 96.5%) and for

explanation (resp. 21.4% and 53.0%). Moreover, the extraction method is prone to errors, and it may

be the case that we wrongly identify a word form as a discourse connective. Thus, we may produce

examples annotated with a wrong relation or that do not involve any discourse relation at all. Finally,

deleting a connective can make the discourse ackward or even incoherent (Asher and Lascarides, 2003).

We can actually witness this with example (1). As shown by (Sporleder and Lascarides, 2008), deleting

the connective can also change the inferred relation. They found examples of explanation in which an

implicit relation becomes the only one inferable after removing the explicit marker.The deletion can

also change the inferred relation (Sporleder and Lascarides, 2008). We found an even worse effect in

our French corpus. In example (3), the connective puisqu(e) (because) triggers an explanation, thus the

events are ordered following the causal law. The cause, “migrer” (“migrate”), comes before the effect,

“deviennent” (“becomes”). But when we delete the connective, the order of the events seems to be

reversed. Keeping the first clause as the first argument, we then obtain a result relation in this sentence.

(3) Les Amorrites deviennent à la période suivante de sérieux adversaires des souverains d’Ur,

puisqu’ils commencent alors à migrer en grand nombre vers la Mésopotamie.

In the next period, Amorrites become severe opponents of the sovereigns of Ur, because they then

begin to migrate in large numbers to Mesopotamia.

3.2 Methods Inspired by Domain Adaptation

A way to deal with all the distribution differences observed is to reframe our problem within the frame-

work of domain adaptation. Informally, the task of domain adaptation is to port some system from one

domain, the source, to another, the target. Informally, we have a distribution Ds for the source data and

a distribution Dt for the target data. The goal of the classifier is to build a good approximation of Dt. If

one uses data following the distribution Ds in order to build this approximation, then the performance

will depend of the similarity between Ds and Dt. If these distributions are too dissimilar, the approxi-

mation will be bad and so will be the performance. It is the case in particular when the domains (e.g.,

text genres) are different. The goal of domain adaptation is precisely to deal with data from different

distributions (Jiang, 2008), (Mansour et al., 2009). We are not exactly in the same setting, but we can

regard the artificial data as the source, and the natural data, on which we evaluate, as the target.

As a first step, we decided to investigate the simplest domain adaptation methods there is, such as

those described in (Daumé III, 2007). These methods either combine directly the data or the models built

on each set of data. Performance of all these systems will be compared to the base systems trained on

only one set of data, in section 6.

Data combination The first possibility is to combine the data. The first model is trained on all natural

and artificial data together (UNION). This method does not allow us to control the importance of the two

sets of data nor to evaluate their influence on the system. We thus refine it in two ways. First, we only

add to the manual data randomly selected samples from the artificial data (ARTSUB). Alternatively, we

keep all the artificial examples but reweight (or, equivalently, duplicate) the manual examples (NATW).

Both these schemes allow us to avoid a massive imbalance between the two kinds of data.



Model combination The second strategy consists in combining the models. A first set of methods

involve adding new features. That is, we train a model on the artificial data, then run it on the natural

examples. We use these predictions as new attributes for the natural model (ADDPRED). The parameter

associated to the attribute therefore measures the importance to be given to the predictions made by the

model trained on artificial data. We propose a variation of this method by adding the probabilities of each

prediction as supplementary attributes (ADDPROB). The intuition is that even if the classifier is wrong, it

could still be consistent in its errors. Yet another model combination consists in using the parameters of

the artificial model as initial values for the manual model parameters (ARTINIT). This method allows to

give an initial information to the natural model rather than a random intialization. Finally, we also build

a model by linearly interpolating the two basic models (LININT).

In addition to these combination schemes, we also add a method to automatically select examples

among the artificial set based on the confidence of the artificial model. Its aim is to filter out noisy

examples, our hypothesis being that the more confident the model, the less noisy the example.

4 Data

In this work, we choose to focus on 4 relations, contrast, result, continuation and explanation, each

of which can be either explicit or implicit. These are the same as the relations used in (Sporleder and

Lascarides, 2008), allowing for easy comparison across languages, with the exception of the relation

summary which does not appear in the ANNODIS corpus. Although it is difficult to map these relations

onto the relation set of the PDTB, we can say that our relations are closer to level 2 and level 3 (i.e.,

fine-grained) PDTB relations than level 1 (i.e., coarse-grained) ones.

4.1 Manually Annotated Data: ANNODIS

Our natural implicit examples are taken from the ANNODIS corpus, which is to date the only available

French corpus annotated at the discourse level. Its annotations are based on the SDRT framework (Asher

and Lascarides, 2003). It consists of 86 newspaper and Wikipedia articles. 3, 339 examples have been

annotated using 17 relations. In way of comparison, note that the PDTB has roughly 12 times more

annotated relations than ANNODIS. Documents are segmented in Elementary Discourse Units (EDUs)

which can be clauses, prepositionnal phrases and some adverbials and parentheticals if the span of text

describes an event. The relations link EDUs and complex segments, adjacent or not. The connectives are

not annotated, which means that the examples of implicit relations had to be extracted automatically.

The corpus has been pre-processed using the MELt tagger (Denis and Sagot, 2009) for POS-tagging,

lemmatization and morphological markings. Then, the documents have been parsed using the the MST-

Parser (McDonald and Pereira, 2006) trained for French by (Candito et al., 2010). In order to identify

implicit examples, we used the French lexicon of connectives (LexConn) developed by Roze (2009).

We simply matched all possible connective forms associated with the annotated relations (discarding à,

which is too ambiguous). We did not add constraints on the connective position, as we wanted to be

sure to exclude all explicit examples, this method led us to miss a few implicit examples. Out of 1, 108
examples annotated with one of the 4 relations considered, 494 were found to be implicit (see table 2).

4.2 Automatically Annotated Data

The artificial data are automatically extracted from raw data using heuristic rules. We use LexConn to

mine explicit instances in the corpus Est Républicain composed of newspaper articles (9M sentences),

with the same pre-processings as ANNODIS. LexConn contains 329 connectives, among them, 131 are

unambiguous for our 4 relations. We grouped pragmatic relations (i.e., the relation is between speech

acts) and non pragmatic relations (i.e., the relation is between facts) relations, assuming they involve the

same kind of predictors, and the 3 contrastive relations, as only one type of contrast is annotated in ANN-

ODIS. We did not take into account 3 connectives corresponding to unknown part-of-speech. Our first

evaluation led us to delete 6 connectives, very ambiguous between discourse and non discourse readings,

such as “maintenant” (“now”). We eventually settled on 122 connectives, among which 100 were seen

in the corpus in a configuration matching one of our pre-defined patterns. As a comparison, (Sporleder



and Lascarides, 2008) only had 50 such connectives.We finally use 122 connectives, among which 100
were seen in a correct configuration in the corpus. As a comparison, 50 were used in (Sporleder and

Lascarides, 2008).

Position Part-of-speech Patterns Examples

Inter-sentential All POS A1. C(,) A2. A1. Malheureusement(,) A2

A1. Surtout, A2.

Adv.

A1. beg-A2(,) C(,) end-A2. A1. beg-A2, de plus, end-A2.

A1. beg-A2(,) en outre(,) end-A2.

A1. A2, C. A1. A2, remarque.

Intra-sentential All POS A1, C(,) A2. A1, de plus(,) A2.

A1(,) donc(,) A2.

SC and Prep. C A1, A2. Preuve que A1, A2.

Puisque A1, A2.

Adv.

A1, beg-A2(,) C (,) end-A2. A1, beg-A2, de plus, end-A2.

A1, beg-A2(,) en outre(,) A2.

A1, A2, C. A1, A2, réflexion faite.

Table 1: Defined patterns with some examples. “A1” stands for the first argument, “A2” for the second

and “C” stands for the connective ; “beg” and “end” stand resp. for the beginning and the end of an

argument ; “(x)” indicates that “x” is not necessary, depending on the connective form. Some patterns

are only possible for some sets of connectives based on their part-of-speech (Subordinating Conjunction

(SC), Preposition (Prep.), Averbials (Adv.)).

The heuristic used to extract the examples has two main steps. First, we search forms used in discourse

readings using patterns (see table 1)that were manually defined for each connective based on its position,

its part-of-speechand the punctuation around it. Second, we identify the connectives arguments using the

same information. We make the same simplifying assumptions as in the previous studies: an argument

covers at most one sentence, and we have at most 2 EDUs within a sentence. As additional constraint,

we also require the presence of a verb in each relation argument. When two connectives occur in the

same segment, it is possible that one modifies the other. In turn, a naive extraction could produce two

examples with different relations but the same arguments. To avoid the creation of spurious examples,

we extract two examples in these cases only if one is inter- and the other intra-sentential according to our

extraction patterns.

Natural dataset Artificial dataset

Relation Explicit Implicit Available Training Test

contrast 100 42 252 793 23 409 2 926

result 52 110 50 297 23 409 2 926

continuation 404 272 29 261 23 409 2 926

explanation 58 70 59 909 23 409 2 926

All 614 494 392 260 93 636 11 704

Table 2: Number of examples in our corpora, for the natural dataset, only the implicit examples are used.

This simple method allows to quickly generate a large amount of data. In total, we extracted 392, 260
examples (see table 2). This initial dataset was rebalanced in a way to keep the maximum number of

available examples (thus dealing with the prior probability shift). We used 80% of the data as training

set, and 10% the development and test set. Note that there are some important differences in the label

distributions between natural and artificial data. For instance, the most represented relation in the natural

data (continuation) is the least represented in the artificial data. This is because the connectives that

trigger this relation are highly ambiguous between discourse and non-discourse readings. Finally, this

method generates some noise: out of 250 random examples, we found 37 errors in span boudaries and



18 cases in which the connective form does not have a discourse reading.

5 Features

We adapted various features used in previous studies. The lack of ressources for French prevented us

from using them all, especially the semantic ones. These features correspond to surface information and

others more linguistic. As a comparison, (Marcu and Echihabi, 2002) only used pairs of words.

Sporleder and Lascarides (2008) used various linguistic features but no syntaxic ones. (Wang et al.,

2012) used semantic, syntaxic and lexical information. We used lexico-syntaxic information. Finally,

note that our goal is to evaluate the efficiency of data combinations. Thus we did not try to optimize this

feature set, as it would have introduced another parameter in our model.

Indication of syntactic complexity: we compute the number of nominal, verbal, prepositional, adjec-

tival and adverbial phrases.

Information concerning the heads of the arguments: we keep the lemma of negative element linked

to the head, we also get some temporal/aspectual information (number of auxiliaries dependent of the

head, tense, person, number of the auxiliaries), information about the heads dependents (if an object, a

by-object or a modifier is present ; if a preposition dependent of the head, subject or object is present ;

part-of-speech of the modifiers and prepositional dependents of the head, subject and object) and some

morphological information (tense and person of the head if verbal, gender if non verbal, number of the

head, precise part-of-speech, “VPP”, and simplified,“V”). We also add features pairing the tenses for

verbal heads and the heads numbers.

Position: we add a feature indicating if the example is inter or intra-sentential.

Indication of thematic continuity: we compute general lemma overlap and lemma overlap for open

class words.

6 Experiments

Our main objective is to assess whether one can use the artificial data to improve the performance of a

system solely based on data manually annotated only available in small amount. We therefore test the

methods described in section 3.

We experimented with a maximum entropy classifier from the MegaM5 package, in multiclass clas-

sification, with a maximum of 100 iterations. We did not try to optimize the regularization parameter

which is then equal to 1.

We rebalance the corpus of manually annotated data to a maximum of 70 examples per relation.6 We

have too few annotated examples to be able to construct a separate test set sufficiently large to make

statistical significance test. Thus, we decided to make a stratified nested cross-validation. It has been

shown that this method provides an estimate of the error that is very close to that one could obtain

on an independent evaluation set ((Varma and Simon, 2006), (Scheffer, 1999)), as it prevents us from

optimizing our hyper-parameters and performing evaluation on the same data. Specifically, there are two

cross-validation loops: the inner loop is used for tuning the hyper-parameters (as described in section

6.2) and the outer loop estimates the generalization error. The data are first split into N folds. We take

the fold k (with 1 ≤ k ≤ N ) as the current evaluation set. The N − 1 other folds are used as training

data and split into M folds used for model fitting. The best model is then evaluated on the fold k.

Finally, we report performance on the N folds. We used two 5-fold cross-validation in order to select

and evaluate the best models for the systems described in section 3.2. We have no guarantee to select the

best models at each test step, but this procedure allows to evaluate the stability of the system with respect

to the hyper-parameters (i.e. the chosen values should not be too scattered), the overfitting (i.e. inner and

5http://www.umiacs.umd.edu/~hal/megam/version0_3/
6Our focus is on the methodology of data combination, so we left for future work the issue of dealing with the highly

imbalanced relation distribution of the natural data. Incidentally, note that this setting prevents us from getting a system solely
performing well on highly frequent relations.



outer estimations should be close) and the stability of the models (i.e. variance in the predictive capacity,

between the results on the outer folds).

As in the previous studies, we report performance using micro-averaged accuracy and F1 score per

relation. In order to evaluate the statistical significance of our results, we use the Student’s t-test (with p-

value < 0.05) which has been proved to work with very small sample (see (de Winter, 2013)) if the effect

size (computed using the Cohen coefficient) and the correlation between the sample are large enough,

while, as noted in (de Winter, 2013), the Wilcoxon signed rank test (that we initially tried) could lead to

overestimated p-value with such small sample. The results of the most relevant systems are presented in

table 3.

Without selection With selection

NATONLY ARTONLY ADDPRED ARTINIT ADDPRED+SELEC NATW+selec

Accuracy 37.3 23.0 39.3 40.1 41.7∗ 41.3

contrast 15.0 23.2 16.0 16.9 20.8 19.2

result 47.6 15.7 50.6 45.9 51.0 48.3

continuation 28.1 32.1 31.9 34.0 31.2 32.4

explanation 47.9 22.4 46.7 52.2 53.9 53.4

Table 3: Most relevant systems, with or without selection of examples, overall accuracy and F1 score per

relation, ∗ corresponds to a significant improvement over NATONLY.

6.1 Basic Models

In the first set of experiments, we trained two classifiers. The first one is trained on the natural implicit

data (NATONLY, 252 examples), and the second one on the artificial implicit data (ARTONLY, 93, 636
examples). We test both models on natural implicit data.

The overall accuracy of the NATONLY model is 37.3 with F1 score ranging from 15.0 for contrast

to 47.9 for explanation. The performance on contrast is fairly low, probably because this relation is

the least frequent in our training set. Note that the overall accuracy obtained is quite close to the 40.3
obtained for English by (Sporleder and Lascarides, 2008).

The overall accuracy of the ARTONLY model is 47.8 when evaluated on the same type of data, that

is, artificial ones (11, 704 test examples), but only 23.0 when evaluated on natural data. This significant

drop in performance has been observed in the previous studies on English. It can be attributed to the

distribution differences described in section 3. We can observe that the use of the artificial data lowers

the F1 score for result and explanation while, for contrast, F1 score is raised by about 10 points.

6.2 Models with Combinations

In this section, we present the results for the systems using both natural and artificial data. We either

directly combine the data or use the data to build separate models that are then combined. Some of these

models use hyper-parameters. When weighting the natural examples, we test weights c ∈ [0.5, 1, 5]
and c ∈ [10; 2000] with an increment of 10 until 100, of 50 until 1000 and of 500 until 2000. When

adding random subsets of artificial data, we add each time k times the number of natural examples

artificial examples with k ∈ [0.1; 600] with an increment of 0.1 until 1, of 10 until 100 and of 50 until

600. Finally, when taking a linear interpolation of the models, we build a new model by weighting the

artificial model by α ∈ [0.1; 0.9] with increments of 0.1.

In general, we observe that most of the systems lead to similar or higher accuracy than NATONLY, but

none of the improvements is statistically significant. The best system is ARTINIT (accuracy 40.1, p-value

of 0.18 and a small effect size, 0.39). Two other systems get an accuracy score better than 39, that is AD-

DPRED (39.3) and LININT (39.3), but not significantly better than NATONLY. The system ADDPROB,

similar to ADDPRED, leads to lower accuracy, showing that adding the probabilities decrease the per-

formance. For these systems, the scores on each of the outer folds are close7, specially for ADDPRED,

7ARTINIT : standard deviation (sd) = 0.074, mean = 40.1 ; ADDPRED : sd = 0.037, ADDPROB sd = 0.061, mean ≃ 39



revealing a high model stability. The other systems allow to evaluate the impact of the artificial data on

the final results.

The only method leading to lower results is when training on the union of the data sets (UNION), the

accuracy (22.6) is similar to ARTONLY. This was expected, as the natural data are about 372 times less

numerous than the artificial ones, the new model is thus more influenced by the latter. Note that Wang et

al. (2012) also experiment this setting but do not observe such a gap, maybe because their artificial data

are based on manually annotated explicit examples, which are likely to be less noisy.

When directly combining the data, either by adding random subsets of the artificial data (ARTSUB,

accuracy 34.5) or by weighting the natural examples (NATW, accuracy 38.9), we observe, on the in-

ner folds, an inverse trend. As expected, the accuracy increases as the influence of the artificial data

decreases, that is, decreasing the coefficients for ARTSUB and increasing the weights for NATW. Ob-

serving the results in the inner folds reveals a same trend about the relative importance of the two kinds

of data: natural data have to be around 2.5 times more important than the artificial ones. We also ob-

serve this effect with LININT, with the mean of the choosen α values equals to 0.3. We also note that

the variance for the values of the hyper-parameter for ARTSUB is pretty high, probably caused by the

randomness of the subsamples selection. It is a bit lower for NATW and LININT showing that these

methods are more robust. Nevertheless, the strategy does not give an a priori good value for the hyper-

parameter but restricts the space of values (1020 plus or minus 272 for NATW and 0.3 plus or minus 0.18
for LININT).

6.3 Models with Automatic Selection of Examples

Previous experiments showed that adding artificial data mostly improves the performance but still not

significantly. We assume that a lot of the artificial data are noisy, which could hurt the systems. The

method of selection of examples thus aims at eliminating potentially noisy examples. The artificial

model is used on the training set, and we keep the examples that are predicted with a probability higher

than a threshold s ∈ [0.3; 0.85] with an increment of 0.1 until 0.5 and of 0.05 until 0.85. If the model

is confident enough about its prediction, that is, a word form that does not have a discourse readings

and/or a segmentation error. We also check whether the connective is redundant. For each threshold, we

rebalance the data based on the least represented relation (+SELEC systems).

The automatic selection of examples allows to improve previous results. The accuracy of the AR-

TONLY model moves from 23.0 to 25.0 with selection, and the system UNION move from 22.6 to 40.1
with selection.

The best results are obtained when we use artificial data to create new features but when we add only

the relation predicted by the artificial model (ADDPRED+SELEC). With this system, we observe a clear

tendency toward significance (accuracy 41.7 with a large effect size, 0.756, and a high correlation, 0.842).

The F1 scores for all classes are improved : 20.8 for contrast, 51.0 for result, 31.2 for continuation and

53.9 for explanation. Two other systems get an accuracy over 40: NATW+SELEC (accuracy 41.3, with

a trend toward significance8) and UNION+SELEC (no significantly higher than NATONLY). We note that

ADDPRED corresponds to the best baseline in (Daumé III and Marcu, 2006), which shows the relevance

of dealing with the distributions differences in our data through domain adaptation methods.

The automatic selection step allows a more important weight on the informations provided by the

artificial data. For LININT+SELEC, the best results are obtained with an almost equal influence of the

two models. In the same way, the mean of the choosen values for the coefficient for NATW+SELEC

is much lower, and it increases a lot for ARTSUB+SELEC allowing for larger subsamples. Even if the

choosen values are widly scattered, these observations tend to prove that the selection improves the

quality of our artificial corpus. Regarding the choosen values for the thresholds, the mean over all the

systems is 0.7, with a variable standard deviation but always greater than 0.1. This deviation is pretty

high, this hyper-parameter probably needs a better optimisation, by repeating the inner loop for example,

but these experiments will allow to reduce the search space.

The automatic selection of examples leads to one system, namely ADDPRED+SELEC, significantly

8
p-value = 0.077, large effect size, 0.68 and high correlation, 0.67



improving the accuracy of NATONLY. This shows that the artificial data, when rightly integrated, can

thus be used to improve a system identifying implicit relations, especially if their influence is low, the

model is driven towards the good distribution.

6.4 Effects on the Identification of the Relations

Looking at the F1 score per relation, we observed that these systems have dissimilar behaviors. A larger

influence of the artificial model allows improvements for contrast: the best result for this relation is

obtained when only the artificial data are used for training (at best, 28.8 F1 score with ARTSUB+SELEC).

The identification of the relation continuation seems to be also improved by the influence of the artificial

data. We can observe it with the linear interpolation of the models: the mean of the F1 score increases

with the increasing of the α coefficient for these relations. For continuation, however, the best mean

F1 is obtained with α = 0.8, this relation needs a certain degree of influence from the natural data.

Some support for this proposition can be found in the fact that the best result for this relation is obtained

with NATW+SELEC (at best, 44.7 F1 score). For the other relations, a large weight on the artificial data

clearly decreases the F1 score. However, the identification of explanation is improved when we add the

predictions of the artificial model (at best, addpred+SELEC, 53.9F1 score). Improvement is fairly low for

result (at best, 51.0 with ADDPRED+SELEC).

The relation contrast might take advantage of less noisy artificial data as most of the examples are

extracted using the connective mais (but) always in discourse readings. For explanation, predictions of

the artificial model could be quiet coherent as most of the artificial examples correspond to the pragmatic

relation explanation∗. Moreover, if we look at the feature distribution (850 features overall), we observe

a gap of more than 30% for 2 and 5 features for result and explanation that is not observed for contrast

and continuation, the relations that make the most of the artificial data.

7 Conclusion

We have presented the first system that identifies implicit discourse relations for French. This kind

of relation is difficult to identify because of the lack of specific predictors. In the previous studies

on English, the performance on this task are fairly low despite the use of complex features, probably

because of a lack of manually annotated data. To deal with this issue, even more crucial for French,

our system also resorts to additional data, automatically annotated using discourse connectives. These

new data, however, do not generalize well to natural implicit data, because of distribution differences.

We thus test methods inspired by domain adaptation in order to combine natural and artificial data.

We add an automatic selection of examples among the artificial data to deal with noise generated by

the method of automatic annotation. We manage to get significant improvement over a system solely

trained using available data manually annotated by using automatic selection and the addition of features

corresponding to the predictions of the artificial model.

In future work, we will explore more sophisticated methods to deal with data samples that follow

different distributions. We will also explore ways to deal with imbalanced data and use our methods on

all the relations annotated in our French corpus. Finally, we will test these methods on English corpora,

in order to compare their efficiency with previous studies.
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