
Modeling the effects of space structure and combination

therapies on phenotypic heterogeneity and drug

resistance in solid tumors

Alexander Lorz, Tommaso Lorenzi, Jean Clairambault, Alexandre Escargueil,
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47092876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.upmc.fr/hal-00921266v2




Modeling the effects of space structure and combination
therapies on phenotypic heterogeneity and drug resistance in

solid tumors

Alexander Lorz 123 Tommaso Lorenzi 123 Jean Clairambault 312

Alexandre Escargueil 45 Benoît Perthame 123

November 5, 2014

Abstract

Histopathological evidence supports the idea that the emergence of phenotypic hetero-
geneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor
cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of cell
adaptation to local conditions? Can we overcome the emergence of resistance and favor the
eradication of cancer cells by using combination therapies? Bearing these questions in mind,
we develop a model describing cell dynamics inside a tumor spheroid under the effects of
cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by
two real variables standing for space position and the expression level of a phenotype of resis-
tance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources
and anti-cancer drugs as well as their interactions with the cell population under treatment.
We analyze the effects of space structure and combination therapies on phenotypic hetero-
geneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined
therapy protocols based on constant infusion and/or bang-bang delivery of cytotoxic and
cytostatic drugs.

1 Introduction

The levels of abiotic factors are not uniform throughout solid tumors [37, 39, 51, 52]. This
leads to the creation of distinct niches differentiated by the local environment, which provide
ecological opportunities for diversification (e.g., cells characterized by different proliferation or
drug-resistant phenotypes can be selected depending on the local concentrations of nutrients and
anti-cancer drugs), and paves the way for the emergence of intra-tumor heterogeneity [11, 16].
In this line, histopathological evidence supports the idea that the emergence of resistance to
anti-cancer therapies can be considered as a process of Darwinian-like selection in tumor cell
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populations [16, 32]. In fact, malignant clones with heterogeneous genetic/epigenetic expressions
leading to different phenotypes (e.g., epithelial vs mesenchymal, with the same genetic material
[53]) can be seen as competing for space and resources (i.e., oxygen, glucose or other nutrients)
within the environment defined by the surrounding tissues, together with the selective pressure
exerted by therapeutic actions.

Cytotoxic drugs, such as DNA damaging agents and antimetabolites, are the most widely used
chemical weapons in the fight against cancer. However, these drugs usually cause unwanted toxic
side effects in the patients’ organisms, since they are designed to kill cancer cells and are seldom
specific toward tumor cells. Furthermore, they tend to kill strongly proliferative clones, usually
considered as made of the most drug-sensitive cells [36], thus selecting for cells resistant to
therapies [17, 18, 24, 46]. These are the two major obstacles - toxic side effects and emergence
of resistant clones - encountered in the clinic when using cytotoxic agents in treating tumors.

This situation calls for therapy optimization, that is, identification of drug doses and design
of optimal delivery schedules in multi-drug combinations, allowing for an effective control of
cancer growth. As regards multi-drug combinations, a trend in modern treatment of cancers
leads to combining cytotoxic and cytostatic drugs. Cytostatic drugs slow down proliferation of
cancer cells by blocking growth factor receptors, or downstream intracellular pathways involved
in proliferation (e.g., tyrosine kinase inhibitors) and have lower toxicity for healthy cells. This
mode of therapy combination allows to attain the twofold goal of reducing toxicity and holding
in check the multiplication of resistant clones [42, 48, 49, 50, 54].

As far as drug delivery schedules are concerned, it has been suggested that, among others,
infusion protocols based on bang-bang control (i.e., those protocols in which drug delivery is
alternatively switched on and off over time) can allow an effective control of tumor size [28]. We
will consider here the case where tumor cells are exposed to rectangle-wave infusions of cytotoxic
and/or cytostatic drugs at constant concentrations.

Motivated by these considerations, and focusing on an in vitro cancer cell population as
reference system (i.e., not taking into account unwanted toxicity to healthy cells, which is a
theme we had explored in a previous paper [29]), we propose a space and phenotype structured
population model for selection dynamics under the effects of cytotoxic and/or cytostatic drugs.
The model we design includes birth and death processes of cancer cells. Furthermore, it also
takes explicitly into account the dynamics of resources and anti-cancer drugs as well as their
interactions with the cell population under treatment.

Cancer cells are assumed to be organized in a non-vascularized and radially symmetric spheroid.
The assumption of radial symmetry is consistent with experimental evidence on tumor spheroids
of small size [56]. As a simplification, we state our model in one space dimension [8, 22]. In
spite of this apparently simplified assumption, we do believe our model relevant to study small
small avascular tumors and micrometastases [9, 44], which are believed to be the target of adju-
vant chemotherapies, but also to tackle, as an initial step, highly complex macrotumor models
targeted by metastatic chemotherapy [3, 4].

Cells are structured as a population by two non-negative real variables x ∈ [0; 1] and r ∈ [0; 1]
standing, respectively, for the normalized expression level of a cytotoxic resistant phenotype
and for the normalized linear distance from the center of the spheroid. This implies that we do
not consider a cell to be necessarily either totally sensitive or totally resistant to a given drug;
we rather introduce a continuous structuring variable describing resistance between 0 (highly
sensitive) and 1 (highly resistant).

It should be noted that, compared to the model proposed in [29], the present one is able to
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mimic the simultaneous selection of several traits (i.e., the rise of phenotypic polymorphism)
within the cancer cell population, which provides the basis for intra-tumor heterogeneity. The
additional spatial structure variable r, together with the diffusion along the r-axis of nutrients
and therapeutic drugs, are the key ingredients of this model that enable the emergence of such
a heterogeneous scenario, which is close to the ones observed in biological experimentations
[7, 16, 45]. An alternative way to obtain the emergence of intra-tumor heterogeneity has been
proposed in [27], by considering sufficiently large mutations in the models from [29].

At this stage, let us stress that both structure variables, x and r, have a well defined biological
meaning, so that they can be evaluated by means of laboratory experiments. In particular, a
cell resistance level can be measured either by the expression level of ABC transporter genes,
that are known to be associated with resistance to the drug [40, 46], or by the minimal dose of
each drug under consideration needed to kill a given percentage of the cell population [57].

Let us furthermore mention that the derivation of models able to include both selection and
spatial dynamics, as the one presented here, is a key step toward a better comprehension of those
mechanisms that underlie the evolution of ecological systems in general. These models can pave
the way for interesting mathematical questions; see for instance [1, 5, 34, 35] and references
therein.

The paper is organized as follows. In Section 2, we describe the mathematical model and the
related underlying assumptions. Section 3 establishes the setup for numerical simulations and
provides some considerations about the choice of the parameter functions and their biological
consistency. Further details about the values of parameters can be found in Appendix B. Section
4 is devoted to study cell environmental adaptation in the framework of our model (i.e., how
tumor cells adapt to the surrounding environment defined by nutrients and anti-cancer drugs).
In particular, the evolution of phenotypic heterogeneity and chemotherapeutic resistance are
analyzed in the presence of cytotoxic and cytostatic drugs. A qualitative mathematical justifi-
cation for the results presented here is proposed in Appendix A. With the aim of supporting the
design of optimal therapeutic strategies, in Section 5 we test the efficacy of therapeutic protocols
based on constant infusion and/or bang-bang delivery (i.e., infusion schedules relying on bang-
bang control) of cytotoxic drugs, cytostatic drugs or combinations of cytotoxic and cytostatic
drugs. Conclusions are drawn in Section 6, which provides also some ideas about future research
perspectives.

2 A structured population model for a tumor cell spheroid ex-

posed to anti-cancer drugs

We present a mathematical model for the dynamics of an in vitro population of tumor cells
exposed to cytotoxic and cytostatic drugs. The cell population is assumed to be organized in
a non-vascularized and radially symmetric spheroid, and to be structured by two non-negative
real variables x ∈ [0, 1] and r ∈ [0, 1]. The former represents the normalized expression level
of a cytotoxic resistant phenotype (i.e., roughly speaking, the level of resistance to cytotoxic
agents), while the latter stands for the planar distance of cells from the center of the spheroid,
whose radius is assumed to be normalized in order to have unitary length.

Cancer cells proliferate through the consumption of nutrients – oxygen and glucose, since in
this setting we do not consider the glycolytic phenotype (i.e., we do not distinguish between
these two nutrients) – and die due to interpopulation competition for space and resources. We
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sum up the effects of cytotoxic drugs directly on mortality (i.e., in this simple setting, not
involving the cell division cycle, we do not consider drug effects on cell cycle phase transitions
[23]), while we let cytostatic drugs slow down cellular proliferation. Nutrients and drugs are
assumed to be in quasi-stationary equilibrium (i.e., their dynamics is assumed to be much faster
than the selection dynamics involving cancer cells), and their concentrations vary over r due to
diffusion, decay and consumption by cancer cells.

The population density of cancer cells is modeled by the function n(t, r, x) ≥ 0, so that local
and global population densities at time t ∈ [0, T ] are computed, respectively, as

̺(t, r) =

∫

1

0

n(t, r, x)dx, ̺T (t) =

∫

1

0

̺(t, r)r2dr,

while the local average level of resistance X(t, r), the global average level of resistance χ(t) and
the related variance σ2(t) can be evaluated as

X(t, r) =

∫

1

0

x
n(t, r, x)

̺T (t)
dx, χ(t) =

∫

1

0

X(t, r)r2dr, σ2(t) =

∫

1

0

∫

1

0

x2
n(t, r, x)

̺T (t)
r2drdx −χ(t)2.

In the present mathematical framework, the function σ2(t) provides a possible measure for intra-
tumor phenotypic heterogeneity at time t. The function s(t, r) ≥ 0 identifies the concentration
of nutrients available to cells. The densities of cytotoxic and cytostatic drugs are described,
respectively, by c1(t, r) ≥ 0 and c2(t, r) ≥ 0.

The dynamics of functions n, s, c1 and c2 is ruled by the following set of equations

∂tn(t, r, x) =

[

p(x)

1 + µ2c2(t, r)
s(t, r) − d̺(t, r) − µ1(x)c1(t, r)

]

n(t, r, x), (2.1)

−αs∆s(t, r) +

[

γs +

∫

1

0

p(x)n(t, r, x)dx

]

s(t, r) = 0, (2.2)

−αc1
∆c1(t, r) +

[

γc1
+

∫

1

0

µ1(x)n(t, r, x)dx

]

c1(t, r) = 0, (2.3)

−αc2
∆c2(t, r) +

[

γc2
+ µ2

∫

1

0

n(t, r, x)dx

]

c2(t, r) = 0, (2.4)

with zero Neumann conditions at r = 0 coming from radial symmetry, and Dirichlet boundary
conditions at r = 1

s(t, r = 1) = s1, ∂rs(t, r = 0) = 0, c1,2(t, r = 1) = C1,2(t), ∂rc1,2(t, r = 0) = 0, (2.5)

In the above equations, ∆ stands for the Laplacian in polar coordinates and:

• The function p(x) models the proliferation rate of cells expressing the resistance level x due
to the consumption of resources. The factor

1

1 + µ2c2(t, r)

mimics the effects of cytostatic drugs. The parameter µ2 models the average uptake rate and
effect on proliferation of these drugs.
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• The parameter d is the average death rate of cells due to the competition for limited space.
• The function µ1(x) denotes the death rate of cells due to the consumption of cytotoxic drugs.
• The parameters αs, αc1

and αc2
model, respectively, the diffusion constants of nutrients, cy-

totoxic drugs and cytostatic drugs.
• The parameters γs, γc1

and γc2
represent the decay rate of nutrients, cytotoxic drugs and

cytostatic drugs, respectively.

The total delivered dose of anti-cancer drugs is computed as

∫ T

0

[

C1(t) + C2(t)
]

dt.

The equation (2.1) can be recast in the equivalent form

∂tn(t, r, x) = R
(

x, ̺(t, r), c1,2(t, r), s(t, r)
)

n(t, r, x),

in order to highlight the role played by the net growth rate of cancer cells, which is described
by

R
(

x, ̺(t, r), c1,2(t, r), s(t, r)
)

:=
p(x)

1 + µ2c2(t, r)
s(t, r) − d̺(t, r) − µ1(x)c1(t, r).

The following considerations and hypothesis are assumed to hold:

• With the aim of translating into mathematical terms the idea that expressing cytotoxic re-
sistant phenotype implies resource reallocation (i.e., redistribution of energetic resources from
proliferation-oriented tasks toward development and maintenance of drug resistance mecha-
nisms), we assume p to be decreasing

p(·) > 0, p′(·) < 0. (2.6)

• The effects of resistance to cytotoxic therapies are modeled by assuming function µ1 to be
decreasing

µ1(·) > 0, µ′

1(·) < 0. (2.7)

Further considerations and details about the definitions of p(x) and µ1(x) are provided in the
following section.

3 Setup for numerical simulations and model parametrization

Numerical simulations are performed in Matlab making use of an implicit-explicit finite differ-
ence scheme combined with a shooting method with 200×200 points on the square [0, 1]× [0, 1].
For all simulations, the interval [0, T ] is selected as time domain, with time step dt = 0.1.

We choose the boundary and initial conditions to be

s(t, r = 1) = s1 > 0, c1,2(t, r = 1) = C1,2(t), (3.1)

n(t = 0, ·, x) = n0(·, x) := C0 exp(−(x − 0.5)2/ε). (3.2)

The parameter s1 stands for the infusion rate of nutrients; the positive real functions C1,2(t)
model the infusion rates of cytotoxic/cytostatic drugs and are defined, case by case, according
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to the situation under investigation in Section 4 and Section 5. Since we are dealing with a
tumor spheroid of small size and micro-tumors are often derived from a single cell clone, we set
C0 ≪ 1 and ε ≪ 1. In particular, the choice (3.2) mimics a biological scenario where most of the
cells are characterized by the same intermediate level of resistance to therapies at the beginning
of observations (i.e., the cell population is almost monomorphic).

We use linear functions to model the proliferation rate p(x) and the death rate µ1(x), which is
consistent with the method of measuring selection via multiple regression, that can be adapted
from ecology [6, 19]. In more detail, we set

p(x) := a1 + a2(1 − x), µ1(x) := b1 + b2(1 − x). (3.3)

The above definitions satisfy the generic properties set in (2.6)-(2.7). The parameters a1,2 and
b1,2 are constrained by the following conditions:

b1 ∝ a1, b2 ∝ a2, (3.4)

∫

1

0

a1 + a2(1 − x)dx = 0.231 [day−1] ⇒ a2 = 0.4620 − 2a1 [day−1], (3.5)

∫

1

0

b1 + b2(1 − x)dx = 0.8 [day−1] ⇒ b2 = 1.6 − 2b1 [day−1]. (3.6)

Relations (3.4) represent a possible way to model the relation between the rate of regression
under chemotherapy and the rate of tumor growth established by the Norton-Simon hypothesis
[43]. Conditions (3.5)-(3.6) require the values of the average proliferation rate and the average
mortality rate due to the effect of cytotoxic drugs to be equal to some values coming from
experimental evidence [10, 19]. We set a1 = 0.1 [day−1] and b1 = 0.1 [day−1], so that the orders
of magnitude of these parameters are consistent with the existing literature [?, ?, ?]. The values
of the other parameters are selected with exploratory aim.

4 Study of cell environmental adaptation and phenotypic het-
erogeneity

For the model described in the previous section, we now study how tumor cells adapt to the sur-
rounding environment defined by nutrients and anti-cancer drugs. Subsection 4.1 deals with cell
dynamics without drugs, while in Subsection 4.2 we analyze the effects of constant infusions of
cytotoxic and cytostatic drugs. Considerations about the evolution of intra-tumor heterogeneity
are drawn in Subsection 4.3. A qualitative mathematical justification for phenotypic selection is
provided by Appendix A. Details about the values of parameters are provided in Appendix B.
In particular, we select the distribution presented in Fig. 1 as initial datum in order to mimic
a biological scenario where most of the cells are characterized by the same intermediate level
of resistance to therapies at the beginning of observations (i.e., the cell population is almost
monomorphic at time t = 0).
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(a)

Figure 1: Initial cell distribution. Plots of

∫

1

0

n(0, r, x)r2dr/̺T (0) (left panel) and

n(0, r, x)/̺(0, r) (right panel). The cell population is almost monomorphic at time t = 0.

4.1 Cell dynamics without therapies

We begin our study by analyzing the dynamics of cancer cells without therapies (i.e., C1,2(t) :=
0). The results obtained are summarized by Fig. 2(a), which shows how, in the absence of
therapeutic agents, cells characterized by lower resistance levels and thus, due to assumption
(2.6), by stronger proliferative potentials, are selected. At each position r, a different trait
X(T, r) is favored (i.e., for each value of r, n(T, r, x) concentrates in a different point X(T, r)).
In the framework of our model, this result can be justified by noting that the concentration of
resources varies along the radius of the spheroid (i.e., s(T, r) attains different values at each r, see
solid lines in Fig. 3), and different densities of available nutrients imply the selection of different
levels of ability to get resources, thus providing the basis for the emergence of polymorphism
within the tumor cell population considered. This is in agreement with experimental evidence.
In fact, it has been shown that growing spheroids display a proliferation gradient where only the
external cells do proliferate [26]. These data are confirmed by in situ experiments where only
tumor cells closed to vessels do proliferate in the absence of drugs [33].

4.2 Cell dynamics under infusion of cytotoxic or cytostatic drugs

At first, we consider the effects that constant infusions of cytotoxic drugs induce on cell dynamics,
i.e., we perform simulations setting C1(t) := C1 > 0 and C2(t) := 0. Fig. 2(b) highlights how
cytotoxic drugs promote a selective sweep toward resistant phenotypes. A polymorphic scenario
arises at the end of simulations also in this case; in fact, a different level of resistance X(T, r)
is selected at any level within the spheroid (i.e., for each value of r, n(T, r, x) concentrates in a
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different point X(T, r)). By analogy with the case without therapies, this is due to the fact that
the concentrations of nutrients and cytotoxic drugs vary along the radius of the spheroid (i.e.,
s(T, r) and c1(T, r) attain different values for different values of r, see solid and dashed lines in
Fig. 3).

In order to study how cancer cells respond to the on-off switch of cytotoxic drug infusion, we
perform simulations setting

C1(t) :=

{

C1 > 0, if t ∈ [0, 20]
0, if t ∈ (20, 60],

(4.1)

and keeping C2(t) := 0. The above definition mimics a biological scenario where cytotoxic
drugs are delivered in the time interval [0, T/3] only. Fig. 4 highlights the selection of higher
levels of resistance during the infusion of cytotoxic drugs, i.e., on the time interval [0, T/3], and
higher level of proliferative potential in the absence of cytotoxic drugs, i.e., on the time interval
(T/3, T ]. In fact, when the infusion of cytotoxic drugs is stopped, more proliferative, and thus
less resistant, cancer clones are favored [14, 15]. The switch from the selection for resistance to
the selection for proliferative potential occurs in a progressive and continuous way, rather than
through jumps in the distribution over the traits (see the right panel in Fig. 4).

Finally, we analyze the dynamics of cancer cells under the effects of constant infusions of cy-
tostatic drugs, i.e., we run simulations setting C1(t) := 0 and C2(t) := C2 > 0 for any t ∈ [0, T ].
Fig. 2(c) shows how the cell distribution at the end of simulations is still close to the initial one
(see Fig. 1), that is, cytostatic drugs tend to slow down selection dynamics in the cancer cell
population.

The results presented in this subsection lead us to conclude that phenotypic heterogeneity within
solid tumors can come from cell adaptation to local conditions. In fact, cells characterized by
different levels of proliferative potential and resistance to therapies can be selected depending on
space position, in relation with the local concentrations of nutrients and anti-cancer drugs.

4.3 Considerations about intra-tumor heterogeneity

Here we study the evolution over time of the average level of resistance and the related variance.
The results presented in Fig. 5 lead us to conclude that cytotoxic drugs cause an increase in
time of the average level of resistance expressed by the whole cell population χ(t), while the re-
lated variance σ2(t) decreases. In the framework of our model, this result implies that cytotoxic
drugs reduce intra-tumor heterogeneity. This is in agreement with the Gause competitive ex-
clusion principle, and it is consistent with experimental observations for the fact that cytotoxic
drugs reduce intra-tumor heterogeneity by favoring highly resistant cancer clones [12, 18, 25, 46].

In conclusion to this study of cell environmental adaptation, we observe that cytotoxic drugs
tend to limit diversity by favoring only resistant clones. This results in a bottleneck effect, which
decreases intra-tumor heterogeneity.
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5 Study of optimized therapeutic protocols

In this section, we compare the efficacy of different schedules of drug delivery with the aim
of supporting the development of optimized therapeutic protocols. The effects of bang-bang
infusion of cytotoxic or cytostatic drugs are compared with that of constant supply in Subsec-
tion 5.1, while the same kind of comparison for cytotoxic and cytostatic drugs in combination
is provided in Subsection 5.2. Finally, the effects of therapeutic strategies that combine con-
stant delivery of cytotoxic drugs with bang-bang infusion of cytostatic drugs, and vice-versa,
are inspected in Subsection 5.3. The infusion schemes (i.e., the boundary conditions C1,2(t)) in
use throughout this section are summarized by Fig. 6, where the parameters Ca,b,c,d model the
instantaneous delivered doses. The values of these parameters are selected in such a way that
the total delivered dose remains always the same.

5.1 Constant vs bang-bang infusion of cytotoxic or cytostatic drugs only

At first, we study the efficacy of therapeutic protocols relying on bang-bang delivery of cytotoxic
drugs only, and we compare the results obtained with the ones of constant infusion. We perform
simulations with C2(t) := 0 and C1(t) defined as in the center panel of Fig. 6. The results
obtained are compared with the outcomes of simulations performed with C2(t) := 0 and C1(t)
defined as in the left panel of Fig. 6.

Constant infusion of cytotoxic drugs leads to a temporary reduction of the population density
of cancer cells, which is then followed by a relapse caused by the emergence of resistance, see
Fig. 8(a). On the other hand, the bang-bang infusion scheme with the same total dose leads to a
population evolution that is qualitatively the same as that observed in the absence of therapies,
apart from a temporary reduction of the population density of cancer cells during drug delivery
(see Fig. 8(b) and compare it with Fig. 7).

Then, we develop the same kind of analysis for cytostatic drugs only. We perform simulations
with C1(t) := 0 and C2(t) defined as in the center panel of Fig. 6. The results obtained are
compared with the outcomes of simulations performed with C1(t) := 0 and C2(t) defined as in
the left panel of Fig. 6. As we already know from Section 3, the constant infusion of cytostatic
drugs tends to slow down the selection of high proliferative potentials by comparison with the
case without drugs, see Fig. 9(a) and compare it with Fig. 7. On the other hand, the dynamics
of cancer cells under bang-bang delivery of cytostatic drugs is qualitatively the same as that
observed in the absence of therapies, apart from a temporary reduction of the population density
of cancer cells during drug delivery (see Fig. 9(b) and compare it with Fig. 7).

As a conclusion to this section, we notice that the constant infusion of cytotoxic drugs leads
to a temporary reduction of the population density of cancer cells, which is followed by a relapse
caused by the emergence of resistance. As noted in the previous section, the constant infusion
of cytostatic drugs slows down the dynamics of cancer cells. On the other hand, the bang-bang
infusion of cytotoxic or cytostatic drugs weakly affects the dynamics of cancer cells by comparison
with the case without therapies, apart from temporary reductions of the population density of
cancer cells during drug delivery. With the doses used in our tests, neither constant nor bang-
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bang infusion of only cytotoxic (cytostatic) drugs will push cancer cells toward extinction.

5.2 Constant vs bang-bang infusion of cytotoxic and cytostatic drugs

This subsection aims at making a comparison between the therapeutic effects of constant and
bang-bang delivery of cytotoxic and cytostatic drugs in combination. Therefore, we perform
simulations with C1,2(t) defined as in the center or the left panel of Fig. 6, respectively.

Bang-bang infusion leaves qualitatively unaltered the dynamics of cancer cells observed in the
absence of therapeutic agents, apart from temporary reductions of the population density of
cancer cells during drug delivery (see Fig. 10(b) and compare it with Fig. 7). On the other
hand, the constant infusion scheme under consideration pushes cancer cells toward extinction,
see Fig. 10(a). This is in agreement with the conclusions drawn in [29] and consistent with
experimental observations suggesting that combination therapies can be more effective [47, 55].
Therefore we are led to conclude that, keeping equal the total delivered dose of drugs, if cytotoxic
and cytostatic agents are used in combination, protocols relying on simultaneous bang-bang in-
fusion can be less effective than protocols relying on simultaneous constant infusion.

As a conclusion to this section, we observe that effective anti-cancer treatments can be designed
by making use of proper combinations between cytotoxic and cytostatic drugs. If these drugs are
delivered together, constant supply is more effective than bang-bang infusion and will push cancer
cells toward extinction.

5.3 Mixed constant/bang-bang infusions of cytotoxic and cytostatic drugs

Finally, using the two types of drugs in combination, we test the effects of delivery schedules
relying on constant infusion of cytotoxic drugs and bang-bang infusion of cytostatic drugs, or
vice-versa. Therefore, we perform simulations with C1,2(t) as in the right panel of Fig. 6. We
define C1(t) as the fixed line and C2(t) as the dashed line, or vice-versa.

Bang-bang infusion of cytostatic drugs and constant infusion of cytotoxic drugs allows to con-
trol the tumor size, although a detectable number of cancer cells survives within the population,
see Fig. 11(a). On the other hand, in good qualitative agreement with experimental observa-
tions [13], therapeutic protocols relying on bang-bang infusion of cytotoxic drugs and constant
delivery of cytostatic drugs can push cancer cells toward extinction, see Fig. 11(b).

These results, together with that presented in Subsection 5.2, support the idea that more
effective therapeutic protocols can be designed by using cytotoxic and cytostatic drugs in com-
bination, with constant delivery for both drugs, or bang-bang infusion for cytotoxic drugs and
constant infusion for cytostatic drugs. This can be justified by observing that cytostatic drugs
in constant infusion slow down the emergence of resistance. As a consequence, the efficacy of
cytotoxic drugs is enhanced, so that the same total dose of cytotoxic drugs can push cancer cells
toward extinction.

As a conclusion to this section, we notice that therapeutic protocols relying on bang-bang infu-
sion of cytotoxic drugs - constant delivery of cytostatic drugs are more effective than therapeutic
protocols based on bang-bang infusion of cytostatic drugs - constant delivery of cytotoxic drugs.
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The former make possible to push cancer cells toward extinction, while the latter allow only a
control on tumor size.

6 Conclusions and perspectives

Departing from theories derived in other contexts of population biology and Darwinian-like se-
lection, we have developed a space and phenotype structured population model for the dynamics
of cancer cells exposed to cytotoxic and cytostatic drugs. Relying on the assumption that cells
are organized in a radially symmetric spheroid, the present model takes explicitly into account
the dynamics of resources and anti-cancer drugs, which define the cellular environment. In the
present model, space structure together with diffusion of nutrients and therapeutic agents are
the key ingredients providing the basis for the emergence of intra-tumor heterogeneity (i.e., the
simultaneous selection of several levels of resistance/proliferative potential within the cancer cell
population).

6.1 Study of cell environmental adaptation and phenotypic heterogeneity

In the framework of this model, we have first made use of numerical simulations to analyze the
evolution of phenotypic heterogeneity and the emergence of resistance to therapies (see Section
3), and we have reached the following conclusions:

• Phenotypic heterogeneity within solid tumors can be explained, at least partially, by cell
adaptation to local conditions. In fact, cells characterized by different levels of proliferative
potential and resistance to therapies are selected depending on space position, in relation with
the distributions of resources and anti-cancer drugs.
• Cytostatic drugs can slow down tumor evolution, while cytotoxic drugs can favor the selection
of highly resistant cancer clones and cause a decrease in the heterogeneity with respect to the
resistance trait. In the framework of our model, this is not in contradiction with the Gause
competitive exclusion principle.

6.2 Study of optimized therapeutic protocols

As a second step, we have tested, in silico, the capability of different therapeutic protocols to
effectively contrast cancer progression. The cases of constant infusion, bang-bang delivery and
mixed constant - bang-bang infusion of the anti-cancer drugs under study have been considered
(see Section 4). The results we have obtained lead us to the following conclusions:

• Looking for combination therapies relying on cytotoxic and cytostatic drugs is a more ef-
fective strategy for fighting cancer rather than using high doses of cytotoxic or cytostatic drugs
only.
• Therapeutic protocols relying on constant supply of cytotoxic and cytostatic drugs, or bang-
bang infusion of cytotoxic drugs and constant delivery of cytostatic drugs are more effective
than the other protocols considered here, since they can push cancer cells toward extinction.
This can be justified by noting that cytostatic drugs slow down the growth of resistant cells and,
thus, cytotoxic drugs can kill more cancer cells in the same time window.
• Since constant supplies of cytotoxic drugs might be excluded in practice for toxicity reasons,
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the bang-bang delivery of cytotoxic drugs associated with the constant infusion of cytostatic
drugs might turn out to be optimal.

6.3 Perspectives

Future researches will be addressed to extend the present model in order to include the dynamics
of healthy cells, and study how to handle unwanted toxic side effects related to the delivery
of anti-cancer agents. In view of this, a possible research direction is to approach the toxicity
problem at stake as an optimal control problem, where the systemic cost for human body related
to cancer growth and therapy infusion has to be minimized under the constraint that a minimal
concentration of healthy cells should be preserved inside the system. In the same way, in view
of adaptive therapy [15], preserving a minimal proportion of cancer cells under a sensitivity
threshold x ≤ x̄ (to be tuned) is another possible constraint to be represented in an optimal
control problem. This general direction of research, using optimal control settings, clearly aims
at therapeutic optimization in the clinic of cancers.

From a modeling point of view, the present theoretical study has taken into account (addition-
ally to the space variable r) only one drug resistance trait for two different classes of anticancer
drugs. This study should also be completed in the future by further work involving a multi-
dimensional structure variable x including different resistant phenotypes to different classes of
drugs. Furthermore, it might be interesting to consider other phenotypes related, for instance, to
epithelial-to-mesenchymal transition, glycolytic metabolism and dormancy, which are involved
in the emergence of cell subpopulations less accessible to treatment than the classical forms of
in situ proliferating epithelial solid tumors.

From a more biological point of view, understanding what are the cell population characters
(genetically or epigenetically determined?) aggregated in this structure variable (r, x) standing
for spatial heterogeneity and quantitated drug resistance, and how it can be related in exper-
imental measurements with gene expression or epigenetic enzyme activity, is a big challenge
that must be faced in transdisciplinary studies gathering mathematicians and biologists. We
know from Luria and Delbrück’s princeps experiment [31] that some drug resistance, due to
stochastic genetic mutations in cell populations, occurring prior to drug exposure, is likely to
exist in cancer cell populations, all the more so as genome instability is a common feature of
these cells [2, 21]. Finding out what are the respective parts played in drug resistance by purely
stochastic processes [20] on the one hand, and by more Lamarckian-like phenomena resulting
from adaptation of the cells surviving a massive drug infusion, involving epigenetic mechanisms
in response [41], and thus justifying the use of deterministic models, is another challenge that
we intend to tackle in forthcoming studies.
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Appendix A. A qualitative mathematical justification for pheno-
typic selection

From a mathematical standpoint, using the considerations drawn in [30, 34, 38], the long term
dynamics of X(t, r) can be formally characterized by evaluating

lim
t→∞

R
(

x = X(t, r), ̺(t, r), c1,2(t, r), s(t, r)
)

= 0.

In order to verify it numerically, we write the following identity

R
(

X(T, r), ̺(T, r), c1,2(T, r), s(T, r)
)

= 0,

which implies, due to the definitions of the functions p and µ1 provided in Appendix B,

X(T, r) =
1 + µ2c2(T, r)

a2s(T, r) − b2c1(T, r)[1 + µ2c2(T, r)]

[

s(T, r)

1 + µ2c2(T, r)
(a1 + a2) − d̺(T, r) − (b1 + b2)c1(T, r)

]

.

Fig. 12 shows how the curves X(T, r) obtained from the formula above are in good agreement
with the positions of the maximum points xM (T, r) of n(T, r, x)/̺(T, r) that result from numer-
ical simulations.

Appendix B. Values of the parameters

Figure 2: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, µ2 = 800,
d = 0.3620; (a) s1 = 0.1, C1(t) := 0, C2(t) := 0; (b) s1 = 0.3, C1(t) := 0.07, C2(t) := 0; (c)
s1 = 0.3, C1(t) := 0, C2(t) := 0.07.

Figure 3: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, s1 = 0.3,
µ2 = 800, d = 0.3620; (left) C1 := 0.07, C2(t) := 0; (right) C1 := 0, C2(t) := 0.07.

Figure 4: T = 3000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, s1 = 0.3,
µ2 = 800, d = 0.3620, C1 = 0.1, C2(t) := 0.

Figure 5: T = 3500, αs = 0.08, αc1
= 0.4, αc2

= 0.4, γs = 1, γc1
= 1, γc2

= 1, s1 = 0.3,
µ2 = 800, d = 0.3620; (dashed lines) C1(t) := 0, C2(t) := 0; (dotted lines) C1(t) := 0,
C2(t) := 0.12; (solid lines) C1(t) := 0.12, C2(t) := 0.

Figure 6: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, µ2 = 800,
d = 0.3620; (left) s1 = 0.1, C1(t) := 0, C2(t) := 0; (center) s1 = 0.3, C1(t) := 0.07, C2(t) := 0;
(right) s1 = 0.3, C1(t) := 0, C2(t) := 0.07.

Figure 8: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, s1 = 0.3,
µ2 = 800, d = 0.3620, C1(t) := 0, C2(t) := 0.

Figures 9-10: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1,
µ2 = 800, d = 0.3620, s1 = 0.3, Ca = 0.1, Cb = 2.55.
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Figures 11: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, µ2 = 800,
d = 0.3620, s1 = 0.3, Ca = 0.05, Cb = 1.275.

Figures 12: T = 6000, αs = 0.08, αc1
= 0.08, αc2

= 0.2, γs = 1, γc1
= 1, γc2

= 1, µ2 = 800,
d = 0.3620, s1 = 0.3, Cc = 0.05, Cd = 1.275.
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Figure 2: Cell environmental adaptation. (a) Without drugs. Plots of
∫

1

0

n(t, r, x)r2dr/̺T (t) (left panel) and n(t, r, x)/̺(t, r) (right panel) at t = 50 for C1,2(t) := 0.

For each r value, the function n(t, r, x) concentrates in a different point X(t, r). Cells character-
ized by a low expression level of resistance to cytotoxic therapies and by a strong proliferative
potential are selected, and this is particularly obvious at the rim of the spheroid (r = 1),
where nutrients abound. (b) Under constant infusion of cytostatic drugs. Plots of
∫

1

0

n(t, r, x)r2dr/̺T (t) (left panel) and n(t, r, x)/̺(t, r) (right panel) at t = 200 for C1(t) := 0

and C2(t) := C2 > 0. The cell distribution at t = 200 is still close to the initial one (see Fig. 1),
that is, cytostatic drugs slow down the evolution of cancer cells. The unit of time is days. (c)

Under constant infusion of cytotoxic drugs. Plots of

∫

1

0

n(t, r, x)r2dr/̺T (t) (left panel)

and n(t, r, x)/̺(t, r) (right panel) at t = 120 for C1(t) := C1 > 0 and C2(t) := 0. For each value
of r, the function n(t, r, x) concentrates in a different point X(t, r). Cells characterized by high
resistance levels are selected. As in the case without drugs, this is particularly obvious at the
rim of the spheroid (r = 1), where drugs abound. Details of the parameters used are provided
in Appendix B.
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Figure 3: Distributions of resources and drugs. Plots of s(t, r) (solid line) and c1(t, r)
(dashed line) at t = 120, for C1(·) := C1 > 0, C2(·) = 0 (left panel). Plots of s(t, r) (solid line)
and c2(t, r) (dotted line) at t = 200, for C1(·) := 0, C2(·) := C2 > 0 (left panel). The plot of
s(t, r) at t = 50 in the case C1.2(·) := 0 is analogous to that presented here. The unit of time is
days. Details of the parameters used are provided in Appendix B.

Figure 4: On-off switch of cytotoxic drug infusion. Plots of n(t, r, x)/̺(t, r) at t = 20

(left-top panel), n(t, r, x)/̺(t, r) at t = 60 (left-bottom panel) and

∫

1

0

n(t, r, x)r2dr/̺T (t) with

t ∈ [0, 60] (right panel), for C1(t) defined by (4.1) and C2(t) := 0. The selection of higher levels
of resistance occurs during the infusion of cytotoxic drugs, i.e., in the time interval [0, 20], while
higher levels of proliferative potential are selected in the absence of cytotoxic drugs, i.e., in the
time interval (20, 60]. The unit of time is days. Details of the parameters used are provided in
Appendix B.

20



F6a-eps-converted-to.pdf F6b-eps-converted-to.pdf

(a)

F6aa-eps-converted-to.pdf F6bb-eps-converted-to.pdf

(b)

Figure 5: Evolution of the global average level of resistance and related variance.
(a) Under constant infusion of cytostatic drugs. Plot of χ(t) (left panel) and σ2(t)
(right panel) for C1,2(t) := 0 (solid lines), C1(t) := C1 > 0, C2(t) := 0 (dashed lines) and
C1(t) := 0, C2(t) := C2 > 0 (dotted lines). (c) Under constant infusion of cytostatic
drugs. Cytotoxic drugs increase the average level of resistance χ(t) over time, while the related
variance σ2(t) decreases. This may be interpreted as a reduction of intra-tumor heterogeneity
w.r.t. the resistance trait, due to the second selection pressure introduced by the cytotoxic
drugs. The unit of time is days. Details of the parameters used are provided in Appendix B.
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Figure 6: Infusion schemes of cytotoxic and cytostatic drugs. Definitions of boundary
conditions C1,2(t). The left and center panels refer to constant and bang-bang infusion of cyto-
toxic and/or cytostatic drugs, while the right panel refers to the case where cytotoxic drugs are
delivered through a bang-bang infusion scheme while cytostatic drugs are constantly supplied,
or vice-versa. The parameters Ca,b,c,d model the instantaneous delivered doses. The unit of time
is days.
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(a)

Figure 7: Cell dynamics without drugs. Plots of
∫

1

0
n(t, r, x)r2dr (left panel) and ̺T (t)

(right panel). In agreement with the results presented in Section 3, cells characterized by a
low expression level of resistance to cytotoxic therapies (i.e., strong proliferative potentials)
are selected and intra-tumor heterogeneity is high. The unit of time is days. All values are
normalized with respect to the initial global population density. To be compared with Figs. 8-
11.
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Figure 8: (a) Constant infusion of cytotoxic drugs only. Plots of
∫

1

0
n(t, r, x)r2dr (left

panel) and ̺T (t) (right panel). The constant infusion of cytotoxic drugs leads to a temporary
reduction of the population density of cancer cells, which is followed by tumor relapse. (b)
Bang-bang infusion of cytotoxic drugs only. Plots of

∫

1

0
n(t, r, x)r2dr (left panel) and

̺T (t) (right panel). The bang-bang infusion of cytotoxic drugs weakly affects the dynamics of
cancer cells by comparison with the case without therapies, apart from a temporary reduction of
the population density of cancer cells during drug delivery. The unit of time is days. All values
are normalized with respect to the initial global population density. Details of the parameters
used are provided in Appendix B.
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Figure 9: (a) Constant infusion of cytostatic drugs only. Plots of
∫

1

0
n(t, r, x)r2dr (left

panel) and ̺T (t) (right panel). The constant infusion of cytostatic drugs tends to slow down
the selection of high proliferative potentials by comparison with the case without drugs. (b)
Bang-bang infusion of cytostatic drugs only. Plots of

∫

1

0
n(t, r, x)r2dr (left panel) and

̺T (t) (right panel). The bang-bang infusion of cytotoxic drugs weakly affects the dynamics of
cancer cells by comparison with the case without therapies, apart from a temporary reduction of
the population density of cancer cells during drug delivery. The unit of time is days. All values
are normalized with respect to the initial global population density. Details of the parameters
used are provided in Appendix B.
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Figure 10: (a) Constant infusion of cytotoxic and cytostatic drugs. Plots of
∫

1

0
n(t, r, x)r2dr (left panel) and ̺T (t) (right panel). The constant infusion of cytotoxic and

cytostatic drugs pushes cancer cells toward extinction. (b) Bang-bang infusion of cytotoxic
and cytostatic drugs. Plots of

∫

1

0
n(t, r, x)r2dr (left panel) and ̺T (t) (right panel). The bang-

bang infusion of cytotoxic and cytostatic drugs weakly affects the dynamics of cancer cells by
comparison with the case without therapies, apart from temporary reductions of the population
density of cancer cells during drug delivery. The unit of time is days. All values are normalized
with respect to the initial global population density. Details of the parameters used are provided
in Appendix B.
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Figure 11: (a) Constant infusion of cytotoxic drugs and bang-bang infusion of cyto-
static drugs. Plots of

∫

1

0
n(t, r, x)r2dr (left panel) and ̺T (t) (right panel). Bang-bang infusion

of cytostatic drugs together with constant infusion of cytotoxic drugs makes possible a control
on tumor size, but a detectable number of cancer cells survives within the population. (b)
Bang-bang infusion of cytotoxic drugs and constant infusion of cytostatic drugs.
Plots of

∫

1

0
n(t, r, x)r2dr (left panel) and ̺T (t) (right panel). Bang-bang infusion of cytotoxic

drugs together with constant delivery of cytostatic drugs can push cancer cells toward extinction.
The unit of time is days. All values are normalized with respect to the initial global population
density. Details of the parameters used are provided in Appendix B.
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Figure 12: Qualitative mathematical justification for phenotypic selection. Plots of
X(T, r) (solid lines) and positions of the maximum points xM (T, r) of n(T, r, x)/̺(T, r) (•)
for C1,2(t) := 0 (left panel), C1(t) := C1 > 0, C2(t) := 0 (center panel), and C1(t) := 0,
C2(t) := C2 > 0 (right panel).
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