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Models of rotating boson stars and geodesics around them: new type of orbits

Philippe Grandclément,* Claire Somé,! and Eric Gourgoulhon?
Laboratoire Univers et Théories, UMR 8102 du CNRS,
Observatoire de Paris, Université Paris Diderot, F-92190 Meudon, France
(Dated: 4 July 2014)

We have developed a highly accurate numerical code capable of solving the coupled Einstein-
Klein-Gordon system, in order to construct rotating boson stars in general relativity. Free fields and
self-interacting fields, with quartic and sextic potentials, are considered. In particular, we present
the first numerical solutions of rotating boson stars with rotational quantum number £ = 3 and
k =4, as well as the first determination of the maximum mass of free-field boson stars with k = 2.
We have also investigated timelike geodesics in the spacetime generated by a rotating boson star
for k =1, 2 and 3. A numerical integration of the geodesic equation has enabled us to identify a
peculiar type of orbits: the zero-angular-momentum ones. These orbits pass very close to the center
and are qualitatively different from orbits around a Kerr black hole. Should such orbits be observed,
they would put stringent constraints on astrophysical compact objects like the Galactic center.

PACS numbers: 02.70.Hm, 04.25.D-, 04.40.Nr, 95.30.Sf

I. INTRODUCTION

Boson stars are localized configurations of a self-
gravitating complex scalar field, introduced in the end
of the sixties by Bonazzola and Pacini [1], Kaup [2] and
Ruffini and Bonazzola [3]. Motivated by the facts that
(i) boson stars are, at the fundamental level, the simplest
self-gravitating configurations of “matter” and (ii) they
can act as black hole mimickers [1], numerous studies of
boson stars have been performed (see [5—8] for a review).
A recent impetus to the topic has been provided by the
discovery of the Higgs boson at CERN [9], which proves
the existence of fundamental scalar fields in Nature. In
addition, the main paradigm of current primordial cos-
mology, the inflation, is generally based on a scalar field
(the inflaton) [10]. Still in the field of cosmology, we note
that many dark energy models also rely on a scalar field,
such as the quintessence model [11].

Boson stars studies have explored a large parameter
space [5—8], by varying the scalar field’s self-interaction
potential, the spacetime symmetry (static, axisymmet-
ric rotating or dynamical configurations), the number of
spacetime dimensions (2 to 5), the spacetime asymptotic
(flat or AdS) or the theory of gravity (general relativ-
ity, Einstein-Gauss-Bonnet gravity, scalar-tensor gravity,
ete.).

We consider boson star models with a minimal cou-
pling of the scalar field to gravity. They are described by

the following action ':

S / (L + Lo) vV=gd'z, (1)
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We use geometrized units, in which both Newton gravitational
constant G and the speed of light ¢ are set to unity: G =c = 1.
We also use the convention (—, 4+, +, +) for the spacetime metric
signature.

o —k %

where L, is the Hilbert-Einstein Lagrangian of the grav-
itational field:

= — 2
L, =R ©)

R being the Ricci scalar associated with the spacetime
metric gog, and Lo is the Lagrangian of the complex
scalar field ®:

Lo= —% V,OVID + V (|<1>|2)} : (3)

The potential V is assumed to depend on |®|* only (U(1)
symmetry). The simplest choice for V is that correspond-
ing to a free field:

v(®P) = Tlof, )

the constant m being the boson mass. Boson stars built
on (4) are called mini-boson stars [7], for their maximum
mass is very small, except for extremely tiny values of m
[5]. To get massive boson stars, Colpi et al. [12] have
added a repulsive self-interacting term of the type A|®|[*

to the potential V:
2 m® 2
V(o) = 5 [2] (1+2mAl2f%), ()

where A is a positive constant. Important mass can then
be reached in the limit A > 1. Another generalization of
the potential has been proposed by Friedberg et al. [13]:

m2 2\ 2
vier = Zoep (1-0) L @

where o is a constant, which corresponds to the value of
the field in the degenerate vacuum state. The potential
(6) authorizes localized configurations of solitonic type,
i.e. that can exist even in the absence of gravity, which


mailto:philippe.grandclement@obspm.fr
mailto:claire.some@obspm.fr
mailto:eric.gourgoulhon@obspm.fr

is not possible for a free field. A related alternative is
based on a potential of the form [14]:

2 m? 2 6 4
V(lof) = ?I‘PI +A(|2° —al®|?), (7)

where A and a are two constants. The corresponding
solutions in flat spacetime are called Q-balls (see e.g. [15,
16]).

Beside the choice of the potential V', models of station-
ary and axisymmetric rotating boson stars are based on
the following ansatz for the complex scalar field ®:

P = ¢ (r,0) exp i (wt = kp)], (8)

where (¢, 7,6, ) are coordinates adapted to the spacetime
symmetries (i.e. 9/0t is the stationarity generator and
0/0¢ the axisymmetry one), ¢ = |®| is a positive real
function of r and # only, w is a real constant and k is
an integer, called the rotational quantum number [3, 17].
Note that k has to be an integer in order for the scalar
field to be single-valued at ¢ = 0 and ¢ = 2w. The
ansatz (8) has been introduced by Kaup [2] for k = 0
(nonrotating case) and by Schunck and Mielke [18] for
|k| > 1. It leads to stationary solutions for the spacetime
metric.

The first (numerical) solutions for rotating boson stars
in general relativity have been obtained by Schunck and
Mielke in 1996 [18, 19], considering a free scalar field [i.e.
V given by Eq. (4)] and k = 1 to 10, as well as k = 500, in
Eq. (8); their study was limited to the weakly relativistic
regime. The strongly relativistic regime has been tackled
in the works of Ryan [20] (|®|* self-interaction and ap-
proximation valid for k£ > 1) and Yoshida and Eriguchi
[21] (free field with k = 1 and k = 2). In particular, the
latter authors have performed the first determination of
the maximum mass of free-field rotating boson stars for
k = 1. In 2004, Lai computed a full sequence for k = 2,
thereby obtaining a maximum mass value, but his code
suffered from regularity issues at the rotation axis. In
particular the maximum mass for k = 1 was significantly
different from that obtained by Yoshida and Eriguchi and
Lai’s results have not been published but in the PhD the-
sis [22]. In the present work, we confirm the value found
by Yoshida and Eriguchi [Eq. (51) below]. In 2005, Klei-
haus et al. [17] have computed rotating boson stars with
the self-interacting potential (7) for k = 1, generalizing
the rotating @-balls models of Volkov and Wohner [14]
to the self-gravitating case. They extended the study to
k = 2 and to negative parity scalar fields (i.e. ® anti-
symmetric with respect to the equatorial plane § = 7/2)
in [23] and analyzed the stability of the configurations in
[24]. For the sake of completeness, let us mention that
Hartmann et al. have studied special cases of rotating bo-
son stars in 5-dimensional spacetimes [25] (the boson field
is then actually a doublet of complex scalar fields) by as-
suming that the two angular momenta (associated with
the 2 independent planes of rotations in 5 dimensions)
are equal. Their results have been extended recently to

5-dimensional Einstein-Gauss-Bonnet gravity [26]. Solu-
tions in higher dimensions, with only one Killing vector,
are obtained in [27, 28]. Recently Herdeiro and Radu [29]
constructed rotating solutions containing, in addition to
the scalar field, an event horizon. Their solutions are
thus hairy black holes, which can be viewed as interme-
diate states between rotating boson stars and Kerr black
holes.

In the present article, we have considered both free-
field boson stars [potential (4)] and self-interacting-field
ones, based on the potentials (5) and (6), with the ro-
tational quantum number ranging from k£ = 0 to k£ = 4.
We have developed a new numerical code, based on a
spectral method, to compute the solutions of the cou-
pled Einstein-Klein-Gordon equations. We have also in-
vestigated the timelike geodesics in the obtained numer-
ical spacetimes. To our knowledge, the determination of
geodesics around a rotating boson star has never been
performed before; only the case of geodesics around non-
rotating spherically symmetric boson stars has been dealt
recently by Diemer et al. [30], for a self-interacting po-
tential which reduces to (7) in the weak field limit. The
particular case of circular timelike geodesics around static
boson stars with various types of self-interaction (free,
|®|*, and solitonic) has been investigated also recently
by Macedo et al. [31].

This article is organized as follows. In Sec. II, we
present the field equations to be solved (Einstein-Klein-
Gordon system) as well as the relevant global quantities.
Section IIT focuses on models of nonrotating spherically
symmetric boson stars, while Sec. IV presents the models
with rotation, which are axisymmetric. In both cases a
detailed description of the numerical method, based on
spectral methods, is given. Various error indicators are
also exhibited and discussed. Section V is devoted to the
study of orbits of massive particles around boson stars.
Circular orbits and zero-angular momentum one are dis-
cussed, the latter ones being computed via a numerical
integration of the geodesic equation. Conclusions and
perspectives are given in Sec. VI.

II. FIELD EQUATIONS AND GLOBAL
QUANTITIES

A. Equations to be solved

Variation of the action (1) with respect to the space-
time metric gos leads to Einstein equation

1
RQB — §Rga,8 = SWTQB, (9)

where R, is the Ricci tensor associated with g.g, R :=
9" R, and T,g is the energy-momentum tensor of the
scalar field:

Top = V@@V ® — % [V, 2VH® +V (|©%)] gap. (10)



Variation of the action (1) with respect to the scalar
field ® results in the Klein-Gordon equation:

dVv

V, Vi =

Given some choice of the potential V', the field equa-
tions (9)-(11) are solved for (gag, ®), under the assump-
tions of stationarity and axisymmetry for the spacetime
metric gos and the ansatz (8) for ® (which is compatible
with the assumed spacetime symmetries).

In the following, we use the language of the 3+1 formal-
ism (see e.g. [32-34]), denoting by X; the hypersurfaces
of constant ¢, by n® the timelike future-directed unit nor-
mal to ¥, by v;; the metric induced by gng on ¥¢, by N
the lapse function and by 5% the shift vector, the last two
quantities being defined by the orthogonal decomposition
of the stationarity generator: (9/0t)" = Nn® + 3%, with
n,p" = 0. The spacetime metric line element can then
be written as

g dz* dz” = —N?dt* + ;5 (da’ 4 B'dt)(da? + 5/ dt).
(12)
Note that for stationary and axisymmetric spacetimes
that are circular (cf. Sec. IV A), such as those of rotating
boson stars with ® of the type (8), 5" = (0,0, 5%).

B. Global quantities

Via Noether’s theorem, the U(1) symmetry of the
Lagrangian (3) yields the following conserved current
[2, 3, 8:

1

~on

e

Jj (fi)VO‘CI) - @Vafi)) . (13)
It is divergence-free: V,j" = 0 and its flux through a
hypersurface ¥; gives the scalar charge or total particle
number of the boson star:

N = —/ nut /A e, (14)
PO

where v := det~;; (compare e.g. with Eq. (4.4) of
Ref. [36]). By plugging the ansatz (8) into (13), we get

J* =01V (ke — wt), (15)
so that (14) becomes

1 1
N=g [ gtk yide (o

The spacetime symmetries lead to two other conserved
quantities, expressed by the Komar integral of the related
Killing vector. The first one, associated to the Killing
vector & = 0/t is the gravitational mass M of the bo-
son star. While the original Komar expression invokes a
surface integral of the gradient of the Killing vector, it

can be rewritten as the following volume integral [see e.g.
Eq. (8.63) of Ref. [32]]:

M = 2/E <Twn“§” - %Tn#§“> N2 (17)

In the present case, T}, n*§" = N=Y Ty — Ti,5%). Using
the expressions derived in Appendix A for T}, T}, and
T [Egs. (A4), (A6) and (A10) respectively], we arrive at

M = [2—w(w + kB¥)¢* — NV} VA d3a. (18)
2t N

The second spacetime symmetry, the axisymmetry,
leads to the angular momentum J. The Komar expres-
sion can be recast as [see e.g. Eq. (8.75) of Ref. [32]]

J = —/ Tntx” /7 dz, (19)
P

where x stands for the Killing vector 9/0¢ Now
Twn*x” = N~Y Ty, — 9T,,). Using expressions (A6)
and (A9) for Ty, and T,,,, we get

J= k/z % (w+ kB?) ¢ /7 d3x. (20)

Comparing with (16), we recover the quantization law for
the angular momentum of a rotating boson star [18]:

J = khN. (21)

C. Units and order of magnitude

As stated above, in this article we use geometrized
units: ¢ = 1 and G = 1. From Egs. (1)-(3) and the
fact that R has dimension length™2, it is clear that
®, and hence ¢, is dimensionless in these units. In
non-geometrized units, the dimension of ® is actually
mass'/2 x length'/? x time ™! (i.e. square-root of a force),
so that ® := (y/m/h)® has the dimension of a wave
function, i.e. length_3/2.

In view of (4) or (6), a natural length scale that ap-
pears in the problem is the boson reduced Compton wave-
length?:

Ap = —. 22
b me (22)
The boson gravitational mass scale associated with Ay, is

AN, mi
My, := =—L 23
b G m’ (23)
where mp 1= \/hc/G ~ 2.18 1078 kg is the Planck mass.

Note that in geometrized units, M}, = .

2 In this section, we restore the G’s and ¢’s.



Scalar field mass MHiggs | Mproton | Melectron
Mass free-field (in kg) 2-10° |3-10"| 5-10*
Mass potential with A ~ 1 (in kg)|2-10%%|4-10%°| 1-10%"
Value of A 7-10%2|1-10%7 | 5.10%

TABLE I. Order of magnitude of the masses of various boson
stars. The three columns correspond to various masses of the
scalar field : the mass of the Higgs boson, the mass of the
proton and the mass of the electron (we do not say the proton
and the electron are bosons !). For the Higgs mass one uses
m = 125 GeV [9]. The first line shows the values for the free
field and the second one for the potential (5), assuming A ~ 1.
The last line gives the corresponding values of A.

In the free scalar field case, the maximal mass allowed
for a boson star is of order My. As can be seen in Tab.
I, it leads to small masses, even if the scalar field has the
same mass as the electron.

For the potential (5) the situation is different. In-
deed one can show [12] that the maximal mass scales

2
2Mp

A\ 2 m
as Mpax ~ AY/ = — —. A is the true cou-
m

m 47

pling constant (see [12]). If one assumes that A is close to
one, it leads to a dramatic increase of the allowed masses
as can be seen in Tab. I. In particular, if the scalar field
has the same mass as the electron, one can reach values
comparable to the ones of supermassive black holes. Let
us point out that the corresponding values of A are then
very large, in particular much larger than the value stud-
ied in this paper (see Sec. IV F where A = 200). Similar
considerations hold for the potential (6) and we refer the
reader to [6] for more details.

III. SPHERICALLY SYMMETRIC MODELS
A. Equations

Spherically symmetric solutions are constructed by set-
ting & = 0 in the ansatz (8) and by demanding that the
field modulus ¢ depends only on 7:

D = ¢(r) exp(iwt). (24)

Note that according to Eq. (21), k¥ = 0 implies a van-
ishing angular momentum; the spherically symmetric so-
lutions are thus nonrotating. The corresponding space-
time is static [while ® is not, as it is clear from (24)]. In
particular, 8° = 0 in Eq. (12). Note that, contrary to
fluid stars, staticity does not imply that the boson stars
have to be spherically symmetric, as demonstrated by the
non-spherically symmetric static solutions obtained by
Yoshida and Eriguchi [35]. This is due to the anisotropy
of the scalar field energy-momentum tensor (10). There-
fore the spherical symmetry of our models results from
the assumption ¢ = ¢(r) in (24).

Thanks to spherical symmetry, we may choose spatial
coordinates such that v;; = Wif;; where fi; is a flat

metric (isotropic coordinates). The metric line element

is thus

—N2dt*+W¥* [dr? + r?(d6? + sin® 6 dp?)] .
(25)

The unknown functions are N, ¥ and ¢, which all
depend only on r and obey the system obtained from
the Einstein equation (9) and the Klein-Gordon equation

(11):

G dz! dx” =

2
_ 5 | (we 9999
A3\If——7T\I/ (W) + \114 +V (26)
ONOY 2
AsN +2 =47 No? <2W¢2 - V) (27)
dv w? 0pON 6¢8\If
j— 4 S — e — _
Aap = <d|<1>|2 N2>¢ N Tu
(28)
2 2d . . o
where Az := 2 + - . (3-dimensional flat Laplacian in
r
spherical symmetry) and dfdg := 47 jg
rdr

The system is closed by demanding that, at spatial
infinity, one recovers Minkowski spacetime. This implies
that N -1, ¥ — 1 and ¢ — 0 when r — co.

The simplest potential V (|®|?) is that of a free field,
as given by Eq. (4). Tt is the only one considered in
this section but more complicated examples are given
in Sec. IV. At the lowest order in ¢, all the potentials
considered reduce to the free field one so that the follow-
ing discussions always hold. The dominant part of the
asymptotic behavior of Eq. (28) with V(|®|?) replaced
by (4) is obtained by setting N =1 and ¥ = 1:

Az — (:—j - w2> ¢ =0. (29)

For w > m/h, solutions to this equation are oscillat-
ing spherical Bessel functions, which do not decay fast
enough to lead to configurations with finite total energy.
On the other hand regular solutions for w < m/h decay

like exp (— (m/h)2 — w?
tions to the physical problem. In the following, we will fo-

cus on this case, i.e. assume w < m/h. When w — m/h,
one can anticipate that the field vanishes (¢ — 0).

r) /7 and are admissible solu-

B. Numerical code

The system (26)-(28) is solved by means of a Newton-
Raphson iteration implemented in a C++ code built
on the Kadath library [37, 38]. This library enables
the use of spectral methods for solving a great variety
of partial differential equations that arise in theoretical
physics. The 3-dimensional space ¥; is decomposed into
several numerical domains. In this particular case spher-
ical shells are used. In the outer numerical domain, space
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FIG. 1.  For two different values of ¢. (corresponding to
w ~ 08m/h and w ~ 0.9m/h), the top panel shows the
convergence towards the exact value of w (defined as the value
found for N, = 33) as a function of N,, while the bottom
panel shows the difference between the ADM and the Komar
masses.

is compactified by making use of the variable 1/r so that
the computational domain extends up to spatial infinity.
Spectral methods are used [39]: in each domain, the fields
are described by their expansions onto a set of known ba-
sis functions (typically Chebyshev polynomials). The un-
known are then the coefficients of the expansions and the
resulting non-linear system is solved iteratively. Regular-
ity near » = 0 is ensured by using only even Chebyshev
polynomials in the numerical domain that encompasses
the origin (a more detailed discussion about regularity
can be found in the case k > 0 ; see Sec. IV B).

Let us point out that an empty flat spacetime (¢ = 0,
N =1and ¥ = 1) is a trivial solution to the system (26)-
(28). In order to avoid convergence to this solution, one
demands that the value of the field at the center takes a
given non-zero value:

¢ (r=0) = ¢e. (30)

In order to maintain the same number of equations than
unknowns, w is not treated as a fixed parameter of the
solution but rather as an additional unknown. The code
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FIG. 2. Value of w as a function of ¢. for spherical configu-
rations and a free scalar field.

finds the appropriate value of w so that the condition
(30) is fulfilled. This obviously prevents the code from
converging to the trivial solution.

The precision of the code can be assessed by checking
the convergence of the value found for w when the num-
ber of radial coefficients is increased. This is shown on
the first panel of Fig. 1. The convergence is exponential
as expected for a well-posed problem solved by spectral
methods. Another indicator of the code accuracy is the
identity between the Komar mass and the ADM mass of
the solution. The Komar mass, expressed above by the
volume integral (18), can be computed from the gradient
of the lapse function N on a 2-sphere at spatial infin-
ity, while the ADM mass is given by the gradient of the
conformal factor U (see e.g. Eq. (4.15) of Ref. [36] for
Mxomar and Eq. (8.48) of Ref. [32] for Mapwm):

Myomar = — lim ]{ 9N 7% sin @ dfdy (31)
A r—oo
Mapy = —— lim 8 Ur?sinf@dody, (32)

27 r—o0

where S is the 2-sphere of constant coordinate r. Sta-
tionarity implies that Mapym = Mkomar = M [40, 41].
This equality can be viewed as a manifestation of the
virial theorem [412]. The second panel of Fig. 1 shows, for
two different configurations, the difference between the
two masses, as a function of the number of coefficients
N,.. Once again the difference goes to zero exponentially.
The very last point for w ~ 0.9m /7% slightly deviates from
the exponential behavior probably due to the fact that
the Newton-Raphson iteration is stopped at a threshold
of 10~% or to round-off errors.

C. Solutions

Some results regarding the spherical case are shown in
Figs. 2-4. The configurations are computed with N, =
21 and a decomposition of space in 6 radial domains.
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FIG. 4. Radial profiles of the scalar field modulus ¢ and
of the metric functions N and ¥ for the free-field spherical
configuration corresponding to ¢. = 0.2

Figure 2 shows the value of w as a function of ¢.. One
can see that there is a range of values of w for which
more than one configuration exist. There is a minimum
value of w ~ 0.77m/h for ¢. ~ 0.2. Figure 3 shows
the value of the gravitational mass M as a function of
¢c. We recover the maximum mass found by Kaup [2]:
Mpmax = 0.633m3/m (reached for ¢, ~ 0.07). Finally
Fig. 4 shows the radial profiles of N, ¥ and ® for a
configuration close to the minimum value of w, that is
for ¢ = 0.2. The results from Fig. 2-3 confirm the fact
that when w — m/h, the fields goes to zero, as does its
gravitational mass.

IV. ROTATING BOSON STARS
A. Equations

In order to construct boson stars that depart from
spherical symmetry and are rotating, one considers
the ansatz (8) with & > 1. The obtained configu-
rations are stationary, axisymmetric and circular, i.e.
the 2-surfaces of transitivity of the spacetime symme-
try group (the surfaces of constant (r,6) in adapted
coordinates) are orthogonal to the surfaces of constant
(t,) [36, 43]. Thanks to the circularity property, we
may use quasi-isotropic coordinates (t,r,0, ) (also called
Lewis-Papapetrou coordinates), in which 8% = (0,0, %)
and v;; = diag(A?, A%r? B%r? sin? 0), so that the 4-
dimensional metric line element reads (see e.g. [36, 44])

G Azt dz” = —N2dt* + A? (dr2 + 7’2d92)

+B%%sin? 0 (dp + B2dt)*.  (33)
The metric is thus entirely described by four functions
of (r,0): N, A, B and B%. Note that the spherically
symmetric case treated in Sec. III is recovered for A =
B =2 and B¢ = 0.

The Einstein equation (9) leads to the following system (see e.g. [36, 44], taking into account that these references

make use of w = —3%):

BZ 2 12 0
Asv = 47 A% (E + S) + ZTS{?&W@W — 9vd (v +InB) (34)
Az (B%7rsinf) = 1671'NA2 ?_ 4+ rsinf0B?O (v — 3In B) (35)
B? rsinf
Ao [(NB —1)rsin6] = 8tNA*Brsin6 (5", + 5%) (36)
2,2 i 2
Az (InA+v) = 87AS%, + w(w’aﬁw — v, (37)

4N



where v :=In N and

2 2

Agim A—ﬁ (39)
2 2

0f0g = %%—I—%%% (41)

As (resp. Asg) is the 3-dimensional flat Laplacian (resp. 2-dimensional) applied to axisymmetric functions. 9f0g
denotes the scalar product of the gradients of f and g, with respect to the flat metric. The quantities E, S, S° j
and P, are related to the 3+1 decomposition of the energy-momentum tensor, as defined in Appendix A. Using
Eqgs. (A11)-(A14), we find the explicit form of the terms involved in the right-hand side of (34)-(37):

E+S8= %(w+k5¢)2¢2 -V (42)
P, = %(w + kB%)o? (43)
. 1 2
ST +8% = [m(w +kp¥)? — m} > -V (44)
5o, = M L wrrsep s 5 o Lagos-v (45)
2 [V B2r2sin? 6 A?

The scalar field ® obeys the Klein-Gordon equation (11), which becomes, once the metric (33) and the ansatz (8)

are used,

dVv 1

k2¢ 2 _ _(
d|¢|2 N2

r2sin? 0

Az

w+kﬁ“")2] ¢ — 090 (v+1InB) + (— — 1)

k26

r2sin? 0

(46)

The system of equations is closed by demanding that one recovers empty flat spacetime at infinity, i.e. that N — 1,

A—1, B—=1, % —=0and ¢ — 0 when r — cc.

The main difference between the spherical and axisym-
metric boson stars is a change in the topology of the
field ¢. Indeed, for regularity reasons, ¢ must vanish on
the rotation axis (¢ = 0 or § = 7). It follows that the
shape of the scalar field is no longer spherical but rather
toroidal. More precisely, close to the axis, the field be-
haves like (rsinf)®. For k > 2 this ensures regularity
on the axis because all the divisions by sin®# that ap-
pear in Eqs. (44)-(46) are made possible. The case k = 1
is slightly more subtle, especially concerning Eq. (46),

. o) .
for terms like i’ d may appear singular at first glance.

However the potentially singular part in the left-hand
99 ¢
ide of Eq. (46) i —
side of Eq. (46) is w008 su2d
tion enables to verify that the singularities cancel. On the
A? k¢
ight-hand side of Eq. (46), the te — —1
rig nd si q. (46) rm <B2 >Sin29
may seem problematic when ¢ vanishes only like sin 6.

However it is known that on the axis A = B (local flat-
2

A
ness, cf. [36]) so that the term (ﬁ -1

and a direct computa-

vanishes at

least as sin 6, thus ensuring regularity, even in the k = 1

case. The regularity near the origin = 0 is ensured by
the basis decompositions used in the innermost domain,
as discussed in IV B.

B. Spectral solver

Let us note that boson stars have some common fea-
tures with a class of field solutions known as vortons and
already studied by means of Kadath in a previous article
[45]. In the vorton case, a complex field o has the same
geometry as the @ field. However, instead of being cou-
pled to gravity there is a second complex field and the
two interacts. Nevertheless, the numerical treatment of
the vorton field o and the boson field ® is very similar.

The axisymmetric boson stars are computed using the
polar space of the Kadath library, where fields are given
in terms of the (r,0) coordinates. As usual, space is
divided into several radial domains and extends up to
spatial infinity. Real scalar fields, like the lapse N, are
expanded onto even cosines with respect to the angular
variable 6. As far as the radial coordinate is concerned,
standard Chebyshev are employed, except in the domain



that encompasses the origin, for which only even Cheby-
shev polynomials are used. We will refer to such basis of
decomposition as the even basis. Another basis is the odd
basis, where odd sines are used with respect to # and odd
Chebyshev polynomials with respect to r, near the origin.
It is for instance easy to see that if a field f is expanded
onto the even basis, then a ratio like f/ (rsinf) must be
expanded onto the odd one. Let us mention that, due
to the non-local nature of spectral methods, the use of
those basis is valid throughout the innermost domain, no
matter what its size is.

The metric fields N, A, B and 8% must be expanded
onto the even basis. This can be understood by noting
that ds? = g, dz**dz” in Eq. (33) must be a scalar field.
The case of ¢ is different in the sense that the “true”
scalar is the field @ itself. In other words, ¢ is only the
harmonic k of a genuine scalar field. It follows that ¢
must be expanded onto the even basis if &k is even but onto
the odd one when k is odd. This situation is the same as
that for the o field in the vorton case [15]. This choice
of decomposition is also consistent with the regularity
condition that ¢ must vanish like (rsin®)* on the axis.
For completeness, let us mention that the numerical code
does not search directly for the fields N, B, A and 5¥
but rather works with the auxiliary fields appearing on
the left-hand side of Egs. (34)-(37) which are v, 8%rsin#,
(NB—1)rsinf and In A + v.

The system is solved by means of Newton-Raphson
iterative scheme. For each value of k, the most difficult
part consists in finding a first solution. Once this is done,
w can be slowly changed to construct the whole family of
configurations. This is to be contrasted with the param-
eter k, which is an integer and so cannot be modified in
this manner. For each k we proceed as follows. First we
consider an initial guess for ¢ of the form

¢ (r,0) = fo(rsin H)k exp (—3:2/01) exp (—22/0'Z) , (47)

where z := rsin6, z := rcosf, and fy, 0, and o, are
three constants that can be freely chosen; they control
the amplitude of the field and the shape of the toroidal
configuration. The form (47) ensures that the regularity
condition on the axis is fulfilled and that the field decays
as expected at spatial infinity. As for the spherical case
(cf. Sec. III B), in order to avoid that the solver converges
to the trivial solution ¢ = 0, w is treated as an unknown
and one demands that the field takes a given non-zero
value ¢y at some point (r,0) = (rg, 7/2) in the equatorial
plane (we have to choose roy # 0 since ¢(r = 0) = 0 for
k > 1). In order to facilitate convergence, one also tries
to work in cases where the scalar field amplitude is small
and the metric close to Minkowski spacetime. As already
stated, this should give a value of w close to m/h. After
a few trials, it is usually possible to find a choice of f,
O, 0y, o and ¢ that leads to an admissible solution, i.e.
that converges to a solution with w < m/k. For instance,
choosing rog = 35h/m, ¢o = 0.001, fo =510~ 2h* /m?,
0, = 61217 /m? and o = 306 h*/m? proved to be a valid
choice for k = 4. Once again, this is done only once for

each value of k, the other solutions being found by slowly
varying w.

C. Error indicators

In order to check the accuracy of the code, several error
indicators can be defined. First, as in the spherical case
(Sec. III B), one can check whether the ADM and Komar
expressions of the gravitational mass M agree.

The second error indicator was first obtained by
Bonazzola [46] and arises because of the presence of a
2-dimensional Laplace operator in Eq. (37). Using the
associated Green function, one can show that the solu-
tion decreases fast enough if, and only if, the source term
(i.e. the right-hand side of Eq. (37)) has no 2-dimensional
monopolar contribution. This is equivalent to

oy
r=0J6=0

2,2 (i2
7TA2S¢¢—|—3BT sin” 6

e ag‘/’aﬂ#’

—81/84 rdrdf = 0. (48)

This is the so-called GRV2 identity [17]. Let us mention
that even if Eq. (36) does involve another Ay operator,
it does not lead to such condition. Indeed, the source
being proportional to rsin 6, it has, by construction, no
monopolar term. In previous works, for instance in the
Lorene/nrotstar code (see Appendix B of [36]), it was
necessary to enforce the condition I = 0 at each step of
the iteration by modifying the source of Eq. (37). With
Kadath, no such treatment is required. This is proba-
bly due to the fact that the system is solved as a whole
and not by separating the various equations in terms of
operators on one side and source on the other one.

The third error indicator regards the computation of
the angular momentum .J introduced in Sec. IIB. It can
be evaluated by means of the volume integral (20) with
VA &Pz = A?Br?sinf dr df dy in quasi-isotropic coordi-
nates. Let us call J, this value. An alternative way to
compute J is via the Komar surface integral, which can
be written as (see e.g. Sec. 4.4 of Ref. [30])

I = Tor A

0.B%rt sin® 0 d de, (49)
s
where S is the 2-sphere of coordinate radius r. Let us
call Jg the numerical value of J hence obtained. Note
that thanks to the compactification of the last domain,
r = 400 belongs to the computational domain and both
expressions can be computed directly. One can then
check whether J, = J;.

The error indicators are shown on the different pan-
els of Fig. 5 for different spectral resolutions. By res-
olution, one means the number of points in both the
radial and the angular dimensions (those numbers are
thereafter kept identical). Results are shown for w =
0.8m/h and k = 1,2,3 and 4. More precisely, the
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FIG. 5. Various error indicators as the number of spectral
coefficients in both the radial and angular dimensions, for free
scalar field configurations with w = 0.8 m/h and rotational
quantum number k = 1,2, 3 and 4. The first panel shows the
error on the masses, the second one on the GRV2 identity and
the last one on the angular momentum.

first panel shows the error on the masses defined as
|MKomar - MADM| / |MKomar + MADM|- On the second
panel the error on the GRV2 identity is plotted and de-
fined as being |Ie + Igrav| / [Io — Igrav|, Where Ig is the
part of Eq. (48) that contains the 5%, term and Igyay the
remaining terms. The third panel of Fig. 5 shows the
relative difference |Js — Jy| /|Js + Jy| of the two expres-

sions for the angular momentum. All the error indicators
exhibit a similar behavior, that is a spectral convergence
[39]: the error decreases exponentially and then satu-
rates due to round-off errors. The error on the angular
momentum seems to slightly increase at very high reso-
lution. By looking separately at the convergence of Jg
and J, with the resolution, one can see that the error is
dominated by the surface integral Js. In this case, the
round-off errors are greater because of the multiplication
by r* that appears in Eq. (49). Those errors accumu-
late which explains the increase of the error at very high
resolution. This suggests that it is preferable to use the
volume integral (20) to compute the angular momentum.

D. Numerical results for a free scalar field

In this section numerical results for rotating boson
stars with £ = 1, 2, 3 and 4 and the free-field poten-
tial (4) are presented. The same numerical setting is
used for almost all the computations. It consists in a de-
composition of the 3-dimensional space ¥; into 8 spheri-
cal domains. The last compactified domain extends from
r = 64 h/m up to infinity. In each domain, 21 coefficients
are used for both coordinates r and 6. For the most rel-
ativistic configurations in the cases k = 3 and k =4, up
to 33 coefficients are used. The Newton-Raphson itera-
tion is stopped at the threshold of 1078, This setting has
been chosen to ensure a good accuracy in all the quan-
tities presented thereafter. However, in some cases, this
is not the best possible choice. For instance, in the case
k = 4, the boson stars have a much larger size than in the
k =1 case and would benefit from using more extended
domains. An extensive survey of the parameter space
would require some fine-tuning of the numerical param-
eters to ensure convergence and is beyond the scope of
this paper.

Global quantities are plotted in Fig. 6. The gravita-
tional mass [Eq. (18)] and the total angular momentum
[Eq. (20)] are plotted as functions of w. The binding
energy is also shown; it is defined by

Ebind =M — Nm, (50)

with the particle number A given by (16). Maximum
mass configurations are observed for £ = 0, £k = 1 and
k = 2. The k = 0 case is the Kaup limit M,gfio) =
0.633 m% /m discussed in Sec. II1 C. For k = 1, we recover
the value found by Yoshida and Eriguchi [21]:

2

MFE=D = 1315 2 (51)
m

The maximum mass for k¥ = 2 could not be determined

in Ref. [21], but the lower bound M{n> > 2.21m2/m

was established, with the hint that the maximum mass

was not far from it (cf. Fig. 3 in Ref. [21]). In agreement

with this lower bound, we find here (cf Fig. 6)

max

2
ME=2) — 9,916 B (52)
m



There is little doubt that maximum masses also exist for
k > 3 but these configurations are difficult to get given
our standard numerical setting. Note however that if
such maximum mass stars exist, they have an ergoregion
as shown in Fig. 6 and therefore are likely to be unstable
(see Sec. IVE).

In the case k = 1, a turning point is observed around
w = 0.64m/h, meaning that no solutions are found for
smaller values of w. This also implies that there are val-
ues of w for which two different boson stars coexist. For
k = 1, configurations with positive binding energy are
observed; they are expected to be unstable.

Figure 7 shows quantities related to the value of the
scalar field ®. More precisely, the first panel shows w
as a function of the maximum value of ® and the second
panel shows the gravitational mass M as a function of the
radius rp,ax at which the maximum value of ® is attained.
This last plot illustrates clearly the fact that the boson
stars size increases with k. This effect is also seen on
Fig. 8 where isocontours of the scalar field are shown,
for k =1, 2 and 3, and for a fixed value of w (0.8 m/h).
Fig. 8 also shows (last panel) the corresponding profiles
of the scalar field along the z-axis.

Figure 9 shows the effect of w on the structure of the
scalar field. It illustrates the fact that the configurations
are more and more extended as w approaches m/h.

E. Ergoregions

A highly relativistic rapidly rotating object can de-
velop an ergoregion, i.e. a spacetime region where the
Killing vector /0t becomes spacelike; in more physical
terms, this means that, in such a region, no observer can
remain static with respect to asymptotically inertial ob-
servers, due to some strong frame dragging effect. This
concept is well known for a Kerr black hole, for which, as
long as the angular momentum differs from zero, an er-
goregion exists outside the event horizon. The existence
of ergoregions in some rotating boson star models has
been demonstrated by Kleihaus et al. [23].

As found by Friedman [48], scalar field configurations
are unstable in spacetimes with an ergoregion but no
event horizon, the instability mechanism being linked to
superradiant scattering. The timescale of the instability
depends on the spherical harmonic azimuthal index m
of the perturbation: it is very large for m > 1 [19] and
smaller for m ~ 1 [50]. Some authors have put forward
the existence of ergoregions to eliminate boson stars as
viable alternatives to black holes in rapidly rotating com-
pact objects [51]. However no exact computation of the
instability timescale for rotating boson stars has been
performed yet. Accordingly, we shall consider configu-
rations with an ergoregion as potentially ruled out from
an astrophysical viewpoint, their exact status depending
whether the instability timescale is larger or shorter than
the age of the Universe.

The assumption that 9/0t is spacelike (ergoregion def-
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FIG. 6. Global quantities as functions of w, namely the grav-
itational mass (first panel), the angular momentum (second
panel) and the binding energy (third panel). Configurations
at the left side of the circles possess an ergoregion and thus
may be unstable (see Sec. IV E).

inition) is equivalent to goo > 0 or, in view of the quasi-
isotropic line element (33), to

— goo = N? — (Bp#)*r?sin® 0 < 0. (53)

The region defined by the above equation is topologi-
cally a toroid. The minimal value of —ggg is plotted in
Fig. 10 for all the rotating configurations. When it is neg-
ative, an ergoregion exists. The first panel shows that
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FIG. 7. The first panel shows the value of w as a function
of the maximum value of the scalar field modulus ¢, whereas
the second one shows the gravitational mass as a function of
the radius at which this maximum is attained. As in Fig. 6,
circles denote the configurations for which ergoregions start
to appear.

ergoregions appear at approximately the same value of
w: w>~0.66m/hfor k=1 and w ~ 0.64m/h for k = 2,
k = 3 and k = 4, the last two being indistinguishable.
For w larger than this critical value, the configurations
are not sufficiently relativistic for an ergoregion to ex-
ist. Once again, the second panel shows that boson stars
are more extended for higher values of k, as can be seen
with the increase of the radius of the minimum with k.
The third panel of Fig. 10 shows the isocontours of —ggg
in a meridional plane of constant (¢,¢), for k = 2 and
w = 0.55m/h. The ergoregion is located where the iso-
contours are dashed lines. One can note that ggy never
changes sign on the axis so that ergoregions have always
the shape of a torus.

F. Rotating models with self-interacting potentials

Having explored the free field, we turn now to scalar
fields with some self-interaction, i.e. with terms beyond
the mass one in the potential V(|®|?). A great variety
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FIG. 8. Isocontours of the scalar field modulus ¢ in a merid-
ian plane of constant (t,¢) for w = 0.8 m/h in all plots and
k = 1 (first panel), K = 2 (second one) and k = 3 (third
one). The Cartesian-like coordinates used for the plot are
x = rsin@ (horizontal axis) and z := rcos@ (vertical axis),
in units of i/m. The fourth panel shows, for the same config-
urations, the profiles of ¢ along the z-axis, i.e. the functions

o(r,m/2).
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FIG. 10. The first and second panel shows the value of
the minimum of —goo for free-field boson stars of different
rotational quantum number k, as a function of w and the
location of the minimum, respectively. Isocontours of —goo in
a plane of constant (t,¢) are plotted in the third panel, for
k =2 and w = 0.55m/h. The Cartesian-like coordinates of
this plot are x := rsinf and z := rcosf, in units of i/m.
The ergoregion is the torus shown in dashed-lines.

of such potentials have been proposed in the literature
(see the reviews [7, 8]). An exhaustive study of them is
beyond the scope of this paper. We focus instead on two
potentials mentioned in Sec. I: the A|®[* one [Eq. (5)]
and the solitonic one [Eq. (6)].
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FIG. 11.  Gravitational mass as a function of w for boson

star models constructed upon the self-interacting potential (5)
with A = 200, with different values of the rotational quantum
number k.

k 0o 1 2 3 4
Mmax [m3/m]|3.14 3.48 4.08 4.81 5.59
w [m/h) 0.83 0.82 0.80 0.78 0.76

TABLE II. Maximum mass of rotating boson star models
constructed upon the potential (5) with A = 200. The sec-
ond line gives the value of w for which the maximum mass is
reached.

At lowest order the potentials (5) and (6) reduce to the
free field one. The technique used to compute solutions
follows from this property. One starts with one of the
free-field solution and one slowly changes the potential
to reach the desired value of the parameters A [potential
(5)] or o [potential (6)]. This technique works better if
the starting configuration corresponds to small values of
the scalar field, i.e. for values of w close to m/fi. The
precision of the obtained configurations can be assessed
by the error indicators presented in Sec. IV C.

Let us first consider the A|®|* potential (5). In ge-
ometrized units, the constant A is dimensionless. We
select A = 200, which is a representative value consid-
ered by Colpi et al. for their study of the nonrotating
case [12]. The value of A is chosen only for illustrative
purposes and does not come from any physical motiva-
tion. In particular it does not lead to a very big increase
of the maximum mass. We have computed sequences of
rotating configurations for this model, for £ ranging from
1to 4 (k =0 is also shown). Figure 11 shows the result-
ing gravitational mass M as a function of w. As a check,
for k = 0, we recover the maximum mass found by Colpi
et al. [12] for A = 200: M$=? = 3.14m2 /m. For k > 1,
we find the values given in Table II.

For the solitonic potential (6), we perform the study
for o = 0.05. As for A|®|* potential this is only an illus-
trative value. Figure 12 shows the results regarding the
gravitational mass M. For solitonic boson stars, most of
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FIG. 12.  Gravitational mass as a function of w for boson
star models constructed upon the self-interacting potential (6)

with o = 0.05, with different values of the rotational quantum
number k.

the previous works are concerned with relatively small
values of w, where a maximum mass is observed. For
these configurations the scalar field ¢ is very close to
a step function. Such a behavior is rather difficult to
describe with spectral methods, for which smooth fields
are required. Our code has therefore some difficulties in
reaching very small values of w. For moderate values
of w, our results are in good agreement with previous
works. In particular, a secondary maximum is observed
for w near m/h, as in Ref. [17].

This part of the article is not intended to constitute a
detailed study of interacting potentials. It must rather
be viewed as an illustration of the fact that our code
is flexible enough to cope with various different situa-
tions. Comprehensive studies of the parameter space
would however require some tuning of the various com-
putational parameters. Let us eventually mention that
no ergoregions have been found in the configurations pre-
sented in Figs. 11 and 12.

V. TIMELIKE GEODESICS

A standard way to analyze a given spacetime geometry
is to study its geodesics. Moreover computing geodesics
leads to astrophysical observable. Being interested in the
motion of stars in the vicinity of a supermassive boson
star, we consider only timelike geodesics in this article,
i.e. orbits of test particles of mass g > 0. In addition,
we restrict ourselves to the equatorial plane (§ = 7/2)
for simplicity. In this Section we consider only free-field
boson stars, i.e. the models computed in Secs. IIT C, IV D
and [V E.

The stationarity and axisymmetry of the underlying
spacetime imply the existence of two constants of mo-
tion along any geodesic. Given the components p, of the
particle’s 4-momentum with respect to the coordinates
(t,r, 0, ), these constants are expressible as F = —p;



and L = p, and are called respectively the particle’s en-
ergy “at infinity” and its angular momentum “at infin-
ity”. The equation governing the variation of the radial
coordinate r along an orbit in the equatorial plane can
be written as (see e.g. Ref. [30])

(%)2 —V(re,0), (54)

where 7 is the particle’s proper time and the effective
potential in the radial direction, V, is given by

62

V(rel) = [%(5—1—6“’@)2———1, (55)

1
A2 B2r2
with € :== E/p and £ := L/p. Given (54), V must be
positive, which occurs if, and only if,

€< éneg OF €2 Emin, (56)

where epcq and emin are the two roots of the equation

e 20p® (89)? 1 2

m'ﬁ‘ e €+< N2 _B2T2)é —1=0
(57)

For any given value of ¢, this second order polynomial

equation in ¢ has for discriminant

A= <2fv—ﬂ;)2+ % {1+ {B;ﬂ - (%)2} 62}, (58)

which is always positive. Thus (57) does admit two solu-
tions:

V=0 <

N2 N2
Eneg = _gﬁ% — T A and Emin — _gﬁ%’ + 7\/Z

(59)
Here we may distinguish two cases. First of all, for boson
stars without any ergoregion, the term in square brack-
ets in Eq. (58), is always positive (compare to Eq. (53)),
so that VA > 2/|4%|/N? and ey, is always negative.
Since in the absence of ergoregion, one has always € > 0,
we conclude that in this case, only the second inequality
holds in (56). But, as discussed in Sec. IV E, very rel-
ativistic rotating boson stars may have ergoregions. All
signs are allowed for € in these regions, so in this case we
have to consider the two inequalities in (56). We treat
these two cases separately in the next two subsections.

A. Effective potential outside ergoregions

To have a better understanding of the effective
potential, we plot enin as a function of r for different
values of ¢ in Fig. 13. Each extremum of these curves
corresponds to a circular orbit. We illustrate this fact
in Fig. 14, which is the reproduction of the Fig. 13
for a single value of ¢ (¢ = h/m). Indeed, we know
that € is constant along the geodesic, so we choose an
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FIG. 13. Effective potential profiles for a free-field rotating

boson star with w = 0.8m/h and k = 1. The vertical line rep-
resents the location of maximum of the scalar field modulus

¢ (cf. Fig. 8).

arbitrary value of & and represent it by an horizontal
dotted line in Fig. 14. The interval where € > €,i, gives
the allowed values of the radial coordinate r (in Fig. 14,
rp < r <r,) and the values of r for which ¢ = e, are
turning points, corresponding to the periastron and the
apoastron. If we choose the energy of the particle to be
equal to the minimum of ey, (), only one value of the
radial coordinate is allowed (in Fig. 14 it corresponds to
re): this is a circular orbit.
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FIG. 14. Effective potential profile for £ = 1 //m. Only the
region where € > enin is allowed for the motion of the test
particle, so the radial coordinate r must obey r, < r < r,.
The spot marks the position of the stable circular orbit of
radius 7.

We can infer two major facts from Fig. 13: first, all
circular orbits around mini boson stars are stable, since
they correspond to a minimum of the effective potential.
Next, if we look at the behavior of particles approaching
the boson star, we see that for £ # 0, there is a infinitely
high potential wall preventing the particle to reach r =
0. But for the particles with zero angular momentum
(¢ = 0), we have a finite value for the energy at the exact



center of the boson star. Note that we are assuming
no interaction between the particle and the scalar field
but the gravitational one, so that the particle may freely
penetrate “inside” the boson star and reach its center.

B. Effective potential in ergoregions

As discussed in Sec. IV E, rotating boson stars with
ergoregions are unstable. If the (unknown) instability
time scale in larger than the age of the Universe, then
it is astrophysically relevant to study orbits around such
stars, and in particular inside the ergoregion.

In the ergoregion, ¢ = E/u = —pt/p = —p,&” /1 can
be negative because in this part of spacetime the Killing
vector associated with stationarity & = 9/9t becomes
spacelike. This is why in the ergoregion, we have to con-
sider the two solutions (59). Accordingly in Fig. 15 we
plot both ey (1) and epeq (1), for different values of ¢
and for a boson star that possesses an ergoregion. To
develop an ergoregion, the boson star spacetime must be
very relativistic and such configurations are obtained for
small w. For Fig. 15, we chose w = 0.646 m/h, along with
the rotational quantum number £ = 1. By “inverting”
the reasoning made on Fig. 14, taking into account that
€ < €neg, We may say that the maximum of ;¢4 corre-
sponds to a stable circular orbits. These orbits, which
exist only inside the ergoregion, are denoted by a dot in
Fig. 15. We note also that inside the ergoregion, epncg
becomes positive in some range of r for ¢ large enough.
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FIG. 15. Effective potential profiles for the free-field rotating
boson star with w = 0.646 m/% and k = 1. The ergoregion
is delimited by the vertical dot-dashed and dashed lines, the
thin vertical dotted line marks the maximum of the scalar
field modulus ¢. The plots for £ > 0.2 are those of emin, while
the plots for ¢ < 0.2 are those of enes. The latter ones can be
used to determine orbits only inside the ergoregion. There is
a circular stable orbit (marked with a dot) for each minimum
of emin and for each maximum of eyeg.
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C. Circular orbits

The two conditions satisfied by circular orbits are
VY =0 and 9V/9r = 0, these two equations admit two so-
lutions written here in terms of the circular orbit velocity
with respect to the zero angular momentum observer or
ZAMO (i.e. the observer of 4-velocity n®, cf. [52] and
[36]), which is given by

with

Bx2 (9p°\®  ov (10B 1

D= N2 (87’) +48T (B(?r—i—r)' (61)
V. is the velocity of the direct orbit and V_ the velocity
of the retrograde one. For these solutions to exist
we must have D > 0. We solved numerically this
inequality for many boson stars and found that there
is a minimum radius under which no circular orbit can
exist. Let us call the corresponding orbit the innermost
circular orbit (ICO). The value rico of its r-coordinate
depends on the boson star as shown in Fig. 16. Let us
point out that the ICO is always located inside the torus.
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FIG. 16. Innermost circular orbit radius rico as a function
of w for boson stars with & = 1. 7rmax is the location of
the maximum of the scalar field modulus ¢, while 4 and r—
denote to the radii where ¢ = @max/10.

Since V; and V_ are velocities measured by a physical
observer, the ZAMO, they must be subluminal, i.e. obey
|[V| < 1. This criterion is always verified for boson stars.

Let us discuss now in more details the stability of the
circular orbits. Circular orbits are stable if, and only if,

0%y

S =V (1) >0 (62)



If we plot V” (r) for various boson stars, as we do for
four of them with fixed values of € and ¢ in Fig. 17, we
see that this inequality is always strictly verified. Thus,
it seems that for rotating free-field boson stars, as long
as a circular orbit exists, it is stable.

0.08
0.07

[ ]
XXXX
I mn

AWONPE

0.06

0.05

=004
5
0.03
0.02
0.01

L B L L L L I

/

Oww\éww\ww\w\‘
2 4 6 8 10 12

r [tm)

o
=
~

FIG. 17. V7 (r) for rotating boson stars with w = 0.8 m/h.
We choose € = 4.2 and ¢ = 1.2h/m. The vertical lines mark
the position of the maximum of the scalar field modulus for
each boson star.

We can compare these results to the black hole case
(conditions for existence and stability of circular orbits
are globally the same for Schwarzschild and Kerr space-
times). For black hole spacetimes, circular orbits ex-
ist for r larger than a critical value, so there is an
1CO, located at rico = (1—}—\/5/2) M ~ 1.87TM for
Schwarzschild spacetime. But the non-existence of cir-
cular orbits in certain regions of spacetime has a differ-
ent cause for boson stars and black holes: for boson star
this is due to D becoming negative in the formula defin-
ing Vi [Eq. (60)]. On the contrary, D is always positive
outside the horizon of a black hole. In this case, it is
|[V1]| that is becoming larger than one beyond the ICO
and thus prevent the existence of physical orbits. More-
over, the circular orbits around black holes, contrary to
those around boson stars, are stable only for » > rigco
where ISCO stands for innermost stable circular orbit
and corresponds to risco = (5/2+ \/6) M ~ 495 M
in Schwarzschild spacetime®. For boson stars, we have
found that, as long as a circular orbit exists, it is stable.

D. Zero angular momentum orbits (¢ = 0)

The orbits with zero angular momentum are interest-
ing in the case of boson star because the particle is al-
lowed to go through the star. This is not the case for

3 Let us recall that we are using isotropic coordinates, not areal
ones; for the latter Schwarzschild ISCO is located at the well-
known value 7igsco = 6 M.
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black holes or ordinary stars, where a particle approach-
ing towards the compact object faces either the event
horizon or the stellar surface. Let us express the effec-
tive potential in the specific case £ = 0. Equation (59)
shows that eniy is then equal to the lapse function:

emin =N (£=0). (63)

We have plotted the profile of epin(r) in Fig. 18 for
different spherical (k = 0) free-field boson stars. As
noticed earlier, there is always a stable equilibrium posi-
tion at the center of the boson star. Then we consider
rotating boson stars, and in Fig. 19 we plot the effective
potential for different boson stars with a same value of
k (k =1) to compare with the nonrotating case. We see
that the equilibrium position still exists at the center
of the torus but has become unstable due to rotation.
We also note the existence of stable circular orbits close
to the center and remaining “inside” the boson star. In
Fig. 20, we plot the effective potential for boson stars
with the same value of w but for different values of
k. The global behavior is the same as in the previous
figures but the scale enlarges as k is increased. This is
consistent with the increase of the size of the torus with k.
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FIG. 18.  Effective potentials for ¢ = 0 and for spherical
boson stars with different values of w (decreasing from top to
bottom).

To fully determine the £ = 0 class of orbits, we used
the GYOTO code [53-55] to integrate directly the geodesic
equations within the 341 formalism [55], taking advan-
tage of the capability of GYOTO to perform such an inte-
gration for a numerical metric. We first computed the
the geodesic of a particle initially at rest in the space-
time of a nonrotating spherically symmetric boson star
(k = 0). Due to spherical symmetry, the particle tra-
jectory is a straight line. As expected, the particle go
straight through the center of the boson star and oscil-
late back and forth, as it can be seen from Fig. 21, where
we have plotted the particle’s r-coordinate as a function
of t.
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FIG. 19. Effective potential for £ = 0 and for rotating boson
stars with £ = 1 and different values of w (decreasing from top
to bottom). The dots mark the position of the stable circular
orbits.
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FIG. 20. Effective potential for £ = 0 and for rotating boson
stars with w = 0.8 m/h and different values of k. The vertical
lines mark the position of the maximum of the scalar field
modulus for each boson star.

15—

r [bm]

_:““\““\““\““’
1% 250 500 750 1000

t [tVm]

FIG. 21. Evolution of the r-coordinate of a ¢ = 0 test particle
of initially at rest at r; = 10.79 i/m in the spacetime gener-
ated by a spherical (k = 0) boson star with w = 0.77 m/h.

We repeated this calculation for a rotating boson
star with £ = 1 and w = 0.8m/h, still starting at rest
from r; = 10.79 i/m. The result is shown in Fig. 22.
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We see clearly the manifestation of the Lense-Thirring
effect: the particle radially infalling is deflected near
the center and continues in almost a straight line
before going backwards and falling towards the center
again. This gives rise to the spike-like structure of the
trajectory. Besides, this orbit is not closed. In order
to understand how these orbits are modified as the
star’s rotational quantum number k is increased, we
plot the zero-angular-momentum orbit around boson
stars with the same value of w as in Fig. 22 but with
k = 2 in Fig. 23 and k = 3 in Fig. 24. We still see the
characteristic spikes, but the particle approaches less
and less the center. To investigate the behavior with
respect to w, we plot in Fig. 25 a boson star with £ = 2
and w = 0.75m/h to compare with Fig. 23. We see that
the effect of w is to change the value of the deviation
angle when going through the center.
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FIG. 22.  Orbit of a £ = 0 test particle in the equatorial
plane of a rotating free-field boson star with £ = 1 and w =
0.80m/h; the particle is initially at rest at » = r; = 10.79h/m
and ¢ = 0. The Cartesian-like coordinates of the plot are
x = rcosy and y := rsingp. The dotted circle marks the
maximum of the scalar field modulus ¢.

We may call the orbits displayed in Figs. 22-25 the
pointy petal orbits. Their spike-like structure is charac-
teristic of boson star spacetimes, since the particle has to
be able to move very close to the center to generate these
orbits. This is indeed very different from the case of Kerr
spacetime, in which all orbits are everywhere smooth and
where a particle initially at rest always falls into the black
hole.
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FIG. 23. Same as Fig. 22 but for k = 2.
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FIG. 24. Same as Fig. 22 but for k = 3.

VI. CONCLUSIONS

We have developed a numerical code, based on multi-
domain spectral methods, capable of solving the coupled
Einstein-Klein-Gordon equations. We have used it to
compute models of rotating boson stars, with various
self-interacting potentials for the scalar field. We have
obtained the first configurations with a rotational quan-
tum number larger than 2, namely k¥ = 3 and k = 4.
For k = 2, we have determined the maximum mass of a
free-field boson star: M2 = 2.216 m#/m, which was
not known before. We have also confirmed the k£ = 1
maximum mass found by Yoshida and Eriguchi [21]. For
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FIG. 25. Same as Fig. 23 but for w = 0.75 m/h.

the self-interacting A|®|* potential originally proposed
by Colpi et al. [12], we have computed the first rotating
models, with &k ranging from 1 to 4 and have determined
the corresponding maximum masses (cf. Table IT).

We have also numerically computed timelike geodesics
in rotating boson star spacetimes. In this article, we
focused on circular orbits and zero-angular-momentum
orbits. In particular, we have shown that as long as
k > 1, there is an innermost circular orbit (ICO), i.e.
a radius rico such that for r < rico no circular orbit ex-
ist. For r > rico, all the orbits are stable. We have found
that circular orbits with zero angular momentum exist
around boson stars, contrary to Kerr black holes. More-
over, we have exhibited a peculiar type of zero-angular-
momentum orbits: the pointy petal ones. Such orbits
do not exist in black hole spacetimes. Therefore observ-
ing them around some astrophysical system, such as the
Galactic Center, would be a strong indication in favor of
a rotating boson star for the central compact object.

In a future article [56], we shall perform a more system-
atic study of orbits around rotating boson stars, stressing
the differences with black holes. In particular, it will be
interesting to know if one can allow non-zero angular mo-
mentum and still observe “pointy petal orbits” exhibited
in Sec. V D. Preliminary studies seem to indicate that
small but non negligible deviations in the value of ¢ are
allowed.

ACKNOWLEDGMENTS

We warmly thank Silvano Bonazzola, Thibaut Pau-
mard and Frédéric Vincent for useful discussions and
advices. EG acknowledges the support from the ANR
grant 12-BS01-012-01 Analyse asymptotique en relativité



générale.

Appendix A: Energy-momentum tensor

Let us derive the explicit expression of the scalar field
energy-momentum tensor resulting from the ansatz (8).
First of all, (8) yields to the following components with
respect to (t,r,0, go) coordinates:

V@ = (iw, 0,6, oo, —ike) expli(wt — k)] (AL)
V@ = (—iwd, Ord, oo, ike) explilky — wt)].(A2)

We may then evaluate VH@V‘@) = g“”VM@V,ﬁi) by
means of the 3+1 expression of g*? (see e.g. Eq. (5.51)
of Ref. [32]), and get the explicit expression of the La-
grangian (3):

1 w + kB¥)?
La= 5{[7< HROEE keyee| 6 o - v}
(A3)
where the indices a and b take the values 1 and 2 only
(i.e. label the coordinates (r,0)). Plugging (A1)-(A2)

into (10) leads to

Ty = w?¢® + Lo(—N? + B,57%) (A4)
Tie =0 (A5)
Ty, = —wkd? + LB, (A6)
Tap = 0a00P + LaYab (AT)
Top =0 (AB)
Top = ko” + LoVpe, (A9)
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where we have used the fact that 5, = 8y = 0 and v4, =
0 (circularity condition, cf. Sec. IV A).

The trace of the energy-momentum tensor is obtained
directly from (10):

T=g"T, =V, 0V'® +4Ls =2Ls — V. (A10)

The 3+1 decomposition of the energy-momentum ten-
sor lets appear the energy density £, the momentum den-
sity P* and the stress tensor .S;;, the three of them as
measured by the ZAMO (i.e. the observer of 4-velocity
n®). These quantities are obtained as the following pro-
jections of T,a:
E=T,n"n"; P,=-n"T\,7"y; Sap= Tw"y”a”y”ﬂ,
with v%; = 6% + n®ng. Given the components (A4)-
(A9) of Top and n* = (1/N,0,0,—B¢/N) and n, =
(=N,0,0,0), we get

E = 1 { [M + k%ww] & + 70,00 + V} ,

2 N2
(A11)
k 2
Pi = 07 07 N(w + kﬁ¢)¢ ) (A12)
Sap = 0adOd+LsVaby  Sap =0,  Spp = K20 +LaVps-
(A13)

The trace of the stress tensor, S := 7%S;;, has the fol-
lowing expression:

2
5= % {3 [7(‘” +Nkf i kzv“’“’} ¢F =" 0upObd — 3V}
(A14)
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