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The recent theory of compressive sensing leverages upon the structure of signals to acquire themwithmuch
fewer measurements than was previously thought necessary, and certainly well below the traditional
Nyquist-Shannon sampling rate. However, most implementations developed to take advantage of this
framework revolve around controlling the measurements with carefully engineered material or acquisition
sequences. Instead, we use the natural randomness of wave propagation through multiply scattering media
as an optimal and instantaneous compressive imaging mechanism. Waves reflected from an object are
detected after propagation through a well-characterized complex medium. Each local measurement thus
contains global information about the object, yielding a purely analog compressive sensing method. We
experimentally demonstrate the effectiveness of the proposed approach for optical imaging by using a
300-micrometer thick layer of white paint as the compressive imaging device. Scattering media are thus
promising candidates for designing efficient and compact compressive imagers.

A
cquiring digital representations of physical objects - in other words, sampling them - was, for the last half
of the 20th century, mostly governed by the Shannon-Nyquist theorem. In this framework, depicted in
Fig. 1(a), a signal is acquired by N regularly-spaced samples whose sampling rate is equal to at least twice

its bandwidth. However, this line of thought is thoroughly pessimistic sincemost signals and objects of interest are
not only of limited bandwidth but also generally possess some additional structure1. For instance, images of
natural scenes are composed of smooth surfaces and/or textures, separated by sharp edges.

Recently, newmathematical results have emerged in the field of Compressive Sensing (or Compressed Sensing,
CS in short) that introduce a paradigm shift in signal acquisition. It was indeed demonstrated byDonoho, Candès,
Tao and Romberg2–4 that this additional structure could actually be exploited directly at the acquisition stage so as
to provide a drastic reduction in the number of measurements without loss of reconstruction fidelity.

For CS to be efficient, the sampling must fulfill specific technical conditions that are hard to translate into
practical design guidelines. In this respect, the most interesting argument featured very early on in2–4 is that a
randomized sensing mechanism yields perfect reconstruction with high probability. As a matter of convenience,
hardware designers have created physical systems that emulate this property. This way, each measurement
gathers information from all parts of the object, in a controlled but pseudo-random fashion. Once this is achieved,
CS theory provides good reconstruction guarantees.

In the past few years, several hardware implementations capable of performing such random compressive
sampling were introduced5–13. In optics, these include the single pixel camera6, which is depicted in Fig. 1(b), and
uses a digital array of micromirrors (abbreviated DMD) to sequentially reflect different random portions of the
object onto a single photodetector. Other approaches include phase modulation with a spatial light modulator10,
or a rotating optical diffuser13. The idea of random multiplexing for imaging has also been considered in other
domains of wave propagation. CS holds much promise in areas where detectors are rather complicated and
expensive such as the THz or far infrared. In this regards, there have been proposals to implement CS imaging
procedures in the THz using random pre-fabricated masks5, DMD or SLM photo-generated contrast masks on
semi-conductors slabs14 and efforts are also pursued on tunable metamaterial reflectors15. Recently, a carefully
engineered metamaterial aperture was used to generate complex RF beams at different frequencies8.

OPEN

SUBJECT AREAS:

OPTICAL SENSORS

APPLIED MATHEMATICS

INFORMATION THEORY AND
COMPUTATION

Received
28 January 2014

Accepted
13 June 2014

Published
9 July 2014

Correspondence and

requests for materials

should be addressed to

S.G. (sylvain.gigan@

espci.fr)

SCIENTIFIC REPORTS | 4 : 5552 | DOI: 10.1038/srep05552 1



However, these CS implementations come with some limitations.
First, these devices include carefully engineered hardware designed
to achieve randomization, via a DMD6, a metamaterial8 or a coded
aperture11. Second, the acquisition time ofmost implementations can
be large because they require the sequential generation of a large
number of random patterns.
In this work, we replace such man-made emulated randomization

by a natural multiply scattering material, as depicted in Fig. 1(c).
Whereas scattering is usually seen as a time-varying nuisance, for
instance when imaging through turbid media16, the recent results of
wave control in stable complex material have largely demonstrated
that it could also be exploited, for example so as to build focusing
systems that beat their coherent counterparts in terms of resolu-
tion17,18. Such complex and stable materials are readily available in
several frequency ranges -they were even coined in as one-way phys-
ical functions for hardware cryptography19. In the context of CS, such
materials perform an efficient randomized multiplexing of the object
into several sensors and hence appear as analog randomizers. The
approach is applicable in a broad wavelength range and in many
domains of wave propagation where scattering media are available.
As such, this study is close in spirit to earlier approaches such as the
random reference structure20, the random lens imager7, the metama-
terial imager8, or the CS filters proposed in21 for microwave imaging.
They all abandoned digitally controlledmultiplexors as randomizers.
Still, we go further in this direction and even drop the need for a
designer to craft the randomizer.
Compressive sampling with multiply scattering material has sev-

eral advantages. First, it has recently been shown that they have an
optimal multiplexing power for coherent waves22, which conse-
quently makes them optimal sensors within the CS paradigm.
Second, these materials are often readily available and require very
few engineering. In the domain of optics for example, we dem-
onstrate one successful implementation using a 300 mm layer of
Zinc Oxide (ZnO), which is essentially white paint. Third, contrarily
to most aforementioned approaches, this sensing method provides
the somewhat unique ability to take a scalable number of measure-
ments in parallel, thus with a potential of strongly reducing acquisi-
tion time. In practice, if 500 samples are required to reconstruct a
given image using CS principles, this imaging framework allows their
acquisition at once on 500 independent sensors, whereas state-of-
the-art systems such as the single pixel camera require a sequence of
500 random patterns on the DMD.
On practical grounds, the use of a multiply scattering material

in CS raises several ideas that we consider in this study. First, the

random multiplexing achieved through multiple scattering must be
measured a posteriori, since it is no longer known a priori as in
engineered random sensing. This calibration problem has been the
topic of recent studies in the context of CS23 and we propose here a
simple least squares calibration procedure that extends our previous
work24,25. Second, the use of such a measured Transmission Matrix
(TM) induces an inherent uncertainty in the sensing mechanism,
that can be modeled as noise in the observations. As we show both
through extensive simulations and actual experiments, this uncer-
tainty is largely compensated by the use of adequate reconstruction
techniques. In effect, the imager we propose almost matches the
performance of idealized sub-Nyquist random sensing.

Theoretical background
In its simplest form, CS may be understood as a way to solve an
underdetermined linear inverse problem. Let x be the object to
image, understood as a N 3 1 vector, and let us suppose that x is
only observed through its multiplication y by a knownmeasurement
matrix H, of dimensionM3 N, we have y5 Hx. Each one of theM
entries of y is thus the scalar product of the object with the corres-
ponding row ofH. When there are fewer measurements than the size
of the object, i.e.M,N, it is impossible to recover x perfectly without
further assumptions, since the problem has infinitely many solu-
tions. However, if x is known to be sparse, meaning that only a few
of its coefficients are nonzero (such as stars in astronomical images),
and provided H is sufficiently random, x can still be recovered
uniquely through sparse optimization techniques1.
In a signal processing framework, the notion of structuremay also

be embodied as sparsity in a known representation1. For example,
most natural images are not sparse, yet often yield near-sparse repre-
sentations in the wavelet domain. If the object x is known to have
some sparse or near-sparse representation s in a known basis B (x5
Bs), then it may again be possible to recover it from a few samples, by
solving y 5 HBs, provided H and B obey some technical conditions
such as incoherence1–4,26.
In practice, when trying to implement Compressive Sensing in a

hardware device, fulfilling this incoherence requirement is nontrivial.
It requires a way to deterministically scramble the information some-
where between the object and the sensors. Theory shows that an
efficient way to do this is by using random measurement matrices
H or HB2–4. Using such matrices, it can indeed be shown26 that the
number of samples required to recover the object is mostly governed
by its sparsity k, i.e. the number of its nonzero coefficients in the
given basis. If the coefficients of theM3 Nmeasurement matrix are

Figure 1 | Concept. (a) Classical Nyquist-Shannon sampling, where the waves originating from the object, of size N, are captured by a dense array ofM5

N sensors. (b) The ‘‘Single Pixel Camera’’ concept, where the object is sampled by M successive random projections onto a single sensor using a digital

multiplexer. (c) Imaging with a multiply scattering medium. The M sensors capture, in a parallel fashion, several random projections of the original

object. In cases (b) and (c), sparse objects can be acquired with a low sensor density M/N , 1.

www.nature.com/scientificreports
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independent and identically distributed (i.i.d.) with respect to a
Gaussian distribution, perfect reconstruction can be achieved with
onlyO(k log(N/k)) measurements27. Furthermore, many algorithms
are available, for instance Orthogonal Matching Pursuit (OMP) or
Lasso26,28, which can efficiently perform such reconstruction under
sparsity constraints.

Using natural complex media as random sensing
devices
Our approach is summarized in Fig. 1(c) and its implementation in
an optical experiment is depicted in Fig. 2. The coherent waves
originating from the object and entering the imaging system prop-
agate through a multiply scattering medium. Within the imager,
propagation produces a seemingly random and wavelength-depend-
ent interference pattern called speckle on the sensors plane. The
speckle figure is the result of the random phase variations imposed
on the waves by the propagation within the multiply scattering sam-
ple29. Scattering, although the realization of a random process, is
deterministic: for a given input, and as long as the medium is stable,
the interference speckle figure is fully determined and remains con-
stant. In essence, the complex medium acts as a highly efficient
analog multiplexer for light, with an input-output response charac-
terized by its transmission-matrix24,25. We highlight the fact that the
multiple scattering material is not understood here as a nuisance
occurring between the object and the sensors, but rather as a desir-
able component of the imaging system itself. After propagation,
sensing takes place using a limited number M , N of sensors.
Let x and y denote theN3 1 andM3 1 vectors gathering the value

of the complex optical field at discrete positions before and after,
respectively, the scattering material. It was confirmed experiment-
ally24,25 that any particular output ym can be efficiently modeled as a
linear function of the N complex values xn of the input optical field:

ym~
XN

n~1

hmnxn,

where the mixing factor hmn[C corresponds to the overall contri-
bution of the input field xn into the output field ym. All these factors

can be gathered into a complex matrix [H]mn 5 hmn called the
Transmission Matrix (TM), which characterizes the action of the
scattering material on the propagating waves between input and
output. The medium hence produces a very complex but determin-
istic mixing of the input to the output, that can be understood as
spatial multiplexing. This linear model, in the ideal noiseless case,
can be written more concisely as:

y~Hx:

As can be seen, each of theMmeasurements of the output complex
field may hence be considered as a scalar product between the input
and the corresponding row of the TM. If multiply scattering materi-
als have already been considered for the purpose of focusing, thus
serving as perfect ‘‘opaque lenses’’17,18, the main idea of the present
study is to exploit them for compressive imaging. In other wave-
length domains than optics, analogous configurations may be
designed to achieve CS through multiple scattering. For instance, a
collection of randomly packed metallic scatterers could be used as a
multiply scattering media from the microwave domain up to the far
infrared, and the method proposed here could allow imaging at these
frequencies with only a few sensors. A similar approach could be used
to lower the number of sensors in 3D ultrasound imaging using CS
through multiple scattering media.
In our optical experimental setup, we used a Spatial Light

Modulator (an array of N 5 1024 micromirrors, abbreviated as
SLM) to calibrate the system and also to display various objects, using
a monochromatic continuous wave laser as light source.
During a first calibration phase, which lasts a few minutes and

needs to be performed only once, a series of controlled inputs x are
emitted and the corresponding outputs y are measured. The TM can
be estimated through a simple least-squares error procedure, which
generalizes the method proposed in24,25, as detailed in the supple-
mentary material below. In short, this calibration procedure benefits
from an arbitrarily high number of measurements for calibration,
which permits to better estimate the TM. It is important to note
here that the need for calibration is the main disadvantage of this

Figure 2 | Experimental setup for compressive imaging usingmultiply scatteringmedium.Within the imaging device, waves coming from the object (i)

go through a scatteringmaterial (ii) that efficientlymultiplexes the information to allM sensors (iii). Provided the transmissionmatrix of thematerial has

been estimated beforehand, reconstruction can be performed using only a limited number of sensors, potentially much lower than without the

scattering material. In our optical scenario, the light coming from the object is displayed using a spatial light modulator.

www.nature.com/scientificreports
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technique, compared to the more classical CS imagers based on
pseudo-random projections, which have direct control on the TM.
However, this calibration step here involves only standard least-
squares estimation of the linear mapping between input and output
of the scattering material24,25. In our experimental setup, the whole
calibration is performed in less than 1 minute. While we here rely on
optical holography to extract complex amplitude from intensity
measurements, the TM measurement can be implemented in a sim-
plified way for other types of waves (RF, acoustics, Terahertz), where
direct access to the field amplitude is possible. It may not be so
straightforward in practical situations when only the intensity of
the output is available, and where more sophisticated methods30

would be required.
After calibration, the scattering medium can be used to perform

CS, using this estimated TM as a measurement matrix. Note that, in
our experiment, the same SLM used for calibration is then used as a
display to generate the sparse objects. This approach is not restrictive
as any sparse optical field or other device capable of modulating light
could equivalently be used at this stage. As demonstrated in our
results section, using such an estimated TM instead of a perfectly
controlled one does yield very good results all the same, while bring-
ing important advantages such as ease of implementation and
acquisition speed. Hence, even if the proposed methodology does
require the introduction of a supplementary calibration step, this
step comes at the cost of a fewmandatory supplementary calibration
measurements rather than at the cost of performance. This claim is
further developed in our results and methods sections.
For a TM to be efficient in a CS setup, it has to correctly scramble

the information from all of its inputs to each of its outputs. It is
known that a matrix with i.i.d Gaussian entries is an excellent can-
didate for CS31 and the TM of optical multiple scattering materials
were recently shown to be well approximated by suchmatrices22. The
rationale for this fact is that the transmission of light through an
opaque lens leads to a very large number of independent scattering
events. Even if the total transmission matrix that links the whole
input field to the transmitted field shows some non-trivial meso-

scopic correlations32, recent studies proved that these correlations
vanish when controlling/measuring only a random partition of
input/output channels22. In our experimental setup, the number of
sensors is very small compared to the total number of output speckle
grains and we can hence safely disregard anymesoscopic correlation.
Several previous studies24,25 have shown on experimental grounds

that TMs were close to i.i.d. Gaussians by considering their spectral
behavior, i.e. the distribution of their eigenvalues. As a consistency
check, we also verified that our experimentally-obtained TMs are
close to Gaussian i.i.d., through a complementary study of their
coherence, which is the maximal correlation between their columns
with values between 0 and 1. Among all the features that were pro-
posed to characterize a matrix as a good candidate for CS33–35, coher-
ence plays a special role because it is easily computed and because a
low coherence is sufficient for good recovery performance in CS
applications36–39, even if it is not necessary40. In Fig. 3(a), we display
one actual TM obtained in our experiments. In Fig. 3(b), we compare
its coherence with the one of randomly generated i.i.d. Gaussian
matrices. The similar behavior confirms the results and discussions
given in22,24, but also suggests that TMs are good candidates in a CS
setup, as will be demonstrated below.

Results and discussion
During our experiments, we measured the reconstruction perform-
ance of the imaging system, when the image to reconstruct is com-
posed of N 5 32 3 32 5 1024 pixels, using a varying number M of
measurements. In practice, we use a CCD array, out of which we
select M pixels. These are chosen at random in the array, with an
exclusion distance equal to the coherence length of the speckle, in
order to ensure uncorrelated measurements. Details of the experi-
ments can be found in the methods section below. For each sparsity
level k between 1 and N, a sparse object with only k nonzero coeffi-
cients was displayed under P 5 3 different random phase illumina-
tions [Since our SLM can only do phase modulation, we used a simple
trick as in41 to simulate actual amplitude objects, based on two phase-

Figure 3 | Experimentally measured Transmission Matrix (TM). (a) TM for a multiply scattering material as obtained in our experimental study. (b)

Coherence of sensing matrices as a function of their numberM of rows, for both a randomly generated Gaussian i.i.d. matrix, and an actual experimental

TM. Coherence gives the maximal colinearity between the columns of a matrix. The lower, the better is the matrix for CS.

www.nature.com/scientificreports
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modulated measurements. See the supplementary material on this
point.]. These virtual measurements may, without loss of generality,
be replaced by the use of an amplitude light modulator and are any-
ways replaced by the actual object to image in a real use-case. The
corresponding outputs were then measured and fed into a Multiple
Measurement Vector (MMV) sparse recovery algorithm20. For each
sparsity level, 32 such independent experiments were performed.
Reconstruction of the sparse objects was then achieved numer-

ically using theM3 Pmeasurements only. The TM used for recon-
struction is the one estimated in the calibration phase. In order to
demonstrate the efficiency and the simplicity of the proposed system,
we used the simpleMultichannel OrthogonalMatching Pursuit algo-
rithm42 for MMV reconstruction. It should be noted that more
specialized algorithms may lead to better performance and should
be considered in the future.
Examples of actual reconstructions performed by our analog com-

pressive sampler are shown on Fig. 4. As can be seen, near-perfect
reconstruction of complex sparse patterns occur with sensor density
ratiosM/N that are much smaller than in classical Shannon-Nyquist
sampling (M 5 N). An important feature of the approach is its
universality: reconstruction is also efficient for objects that are sparse
in the Fourier domain.
The performance of the proposed compressive sampler for all

sampling and sparsity rates of interest is summarized on Fig. 5, which
is the main result of this paper. It gives the probability of successful

reconstruction displayed as a function of the sensor densityM/N and
relative sparsity k/M. Each point of this surface is the average recon-
struction performance for real measurements over approximately 50
independent trials. As can be seen, this experimental diagram exhi-
bits a clear ‘‘phase transition’’ from complete failure to systematic
success. This thorough experimental study largely confirms that the
proposed methodology for sampling using scattering media indeed
reaches very competitive sampling rates that are far below the
Shannon-Nyquist traditional scheme.
The phase transition observed on Fig. 5 appears to be slightly

different from the ones described in the literature31,43. The main
reason for this fact is that this diagram concerns reconstruction
under P 5 3 Multiple Measurement Vectors (MMV) instead of the
classical Single Measurement Vector (SMV) case. This choice, which
proves important in practice, is motivated by the fact that MMV is
much more robust to noise than SMV44. In order to compare our
experimental performance to its numerical counterpart, we per-
formed a numerical experiment whose 50% success-rate transition
curve is represented by the dashed green line. The transmission
matrix is taken as i.i.d Gaussian. The measurement matrix is esti-
mated with the same calibration procedure as in the physical experi-
ment. Each measurement, during calibration and imaging, is
contaminated by additive Gaussian noise of variance 3%.
Performance obtained in this idealized situation is close to that
obtained in our practical setup, for this level of additive noise.

Figure 4 | Imaging results. Examples of signals, which are sparse either in the Fourier or canonical domain (left), along with their actual experimental

reconstruction using a varying number of measurements. (a) Fourier-sparse object (b–c) canonical sparse objects. In (b), small squares are the

original object and large squares are the reconstruction. In all cases, the original object contains 1024 pixels and is thus sampled with a number M of

sensors much smaller than N. A, B, C and D images are correspondingly represented in the phase transition diagram of Fig. 5.

www.nature.com/scientificreports
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Conclusion
In this study, we have demonstrated that a simple natural layer of
multiply scattering material can be used to successfully perform
compressive sensing. The compressive imager relies on scattering
theory to optimally dispatch information from the object to all mea-
surement sensors, shifting the complexity of devising CS hardware
from the design, fabrication and electronic control to a simple cal-
ibration procedure.
As in any hardware implementation of CS, experimental noise is

an important issue limiting the performance, especially since it
impacts the measurement matrix. Using baseline sparse reconstruc-
tion algorithms along with standard least-squares calibration tech-
niques, we demonstrated that successful reconstruction exhibits a
clear phase transition between failure and success even at very com-
petitive sampling rates. The proposed methodology can be consid-
ered to be a truly analog compressive sampler and as such, benefits
from both theoretical elegance and ease of implementation.
The imaging system we introduced has many advantageous fea-

tures. First, it enables the implementation of an extremely flat
imaging device with few detectors. Second, this imaging methodo-
logy can be implemented in practice with very few conventional
lenses, as in45 for instance. This is a strong point for implementation
in domains outside optics where it is hard to fabricate lenses. Indeed,
the concept presented here can directly be used in other domains of
optics such as holography, but also in other disciplines such as THz,
RF or ultrasound imaging. Third, similarly to recent work on meta-
materials apertures, non-resonant scattering materials work over a
wide frequency range and have a strongly frequency-dependent

response. Fourth, unlike most current compressive sensing hard-
ware, this system gives access to many compressive measurements
in a parallel fashion, potentially speeding up acquisition. These
advantages come at the simple cost of a calibration step, which
amounts to estimate the Transmission Matrix of the scattering
material considered. As we demonstrated, this can be achieved by
simple input/output mapping techniques such as linear least-squares
and needs to be done only once.
While conventional direct imaging can be thought as an embar-

rassingly parallel process that does not exploit the structure of the
scene, in contrast most current CS hardware (such as the single pixel
camera) require a heavily sequential process that does take into
account the structure of the scene. Our approach borrows from the
best of both acquisition processes, in that it is both embarrassingly
parallel and takes into account the structure of the scene.
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Supplementary material 

 

Experimental setup 

   

 

Fig. S1  Experimental setup for light diffusion through a scattering medium (24). The coherent 

wavefront from a laser is modulated using a SLM and transmitted through the medium. A CCD 

camera measures the wavefront at the output of the medium 

 

For one particular measurement , the experiment is displayed on figure S1. A laser beam 

is enlarged by a couple of (L-L) lenses and the resulting wavefront (1 on figure S1) is partly 

reflected by a Spatial Light Modulator (SLM) and partly by its support, respectively leading to 

the modulated wavefront  and the reference wavefront , which is constant over . The SLM is 

composed of a 32 x 32 matrix of  segmented micromirrors (Kilo-DM, Boston 

Micromachines Corporation). Each  of those mirrors is a 300µm square and locally controls the 

t

t
x A t

1024N =

n



phase  of . Both   and  combine to form the reflected wave (2 on 

figure S1), whose value at position  is thus . This wave is then propagated through an 

opaque 300µm-thin layer of compacted zinc oxide (ZnO) powder. In this medium, light is 

reflected many times and finally collected and imaged by a CCD camera. The interested reader is 

referred to (19,24) for more details concerning the experimental setup. In all the remaining of 

this study, when we mention a specific number  of measurements, we experimentally refer to 

a subset of the CCD pixels. Since those pixels are always randomly chosen, the corresponding 

measurements are equivalent to those performed by  arbitrarily located sensors.  

 The complex wave  at each of the  output positions is estimated using 4 

intensity measurements done by the CCD camera thanks to the phase-stepping technique, which 

is detailed in (41,46). Note that in all the following, each complex measurement is hence 

understood as a combination of 4 intensity measurements. In further studies, compressive phase 

retrieval techniques (30) may be used to directly process intensity measurements  instead of 

 and hence further reduce the acquisition time. For now, we will simply consider the complex 

output , which  are related to  by:  

  

where  is the intrinsic TM of the scattering media. Since the reference wave  is kept fixed 

during the whole process thanks to the stability of the laser beam, it can safely be merged with 

 so as to yield 

  

which will subsequently be called the TM, although it depends both on the scattering medium 

and the laser input. The slight abuse of notation is largely justified by the very high stability of 

lasers available on the market. Its estimation rather than  is sufficient to proceed to 

compressed sensing using scattering media. Note however that since  stays constant over 

different measures , it is possible through calibration to identify  from  (24,25).In any case, 

the complex output  is given by: 

  

which can be written in a more compact matrix-form as , where  and 

are  and  matrices, respectively, whereas  is the (complex) TM.  

 

Estimation of the Transmission Matrix 

 

In (24,25), Popoff et al. propose to estimate the TM  using an orthonormal basis as input and 

hence having  as a  matrix. The choice of the Hadamard basis to this purpose is 

judicious since all its entries are , which leads to . Therefore, if  denotes the 

Hadamard basis, the measured matrix  is . If  is defined as the  

identity matrix, one of the properties of  is to be its own inverse, leading to  and 
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hence . This very simple procedure leads to a straightforward estimation of the TM . 

However, a better estimation of the TM is possible, provided more calibration measures 

are done, i.e. by choosing . In that case, still holds but  is not an orthonormal 

basis nor its own inverse. However,  can still be estimated straightforwardly through Least-

Squares as: 

  

where  denotes Hermitian (conjugate) transpose. This formula is actually a special case of a 

much more general setting, where noisy observations are accounted for and where estimation of 

the TM is performed through Least-Squares estimation.  

In any case, in our experimental setup, instead of using a single Hadamard matrix 

as , the input matrix  for calibration was built as , with  being the 

horizontal concatenation of  and a large random  matrix with independent entries, 

uniformly distributed on the interval . Then, after measurements have been performed, 

 is estimated through the formula above.  

A clear limitation of the approach is that estimation of the TM requires the linear outputs 

. Even if these linear outputs may be obtained using phase-stepping techniques in 

several wavelengths, there are scenarios where only their intensity may be available. More 

sophisticated techniques (21) may be used in that case to estimate the TM using such 

measurements, with good performance in practice. Such approaches are the topic of current work. 

 

Virtually sparse intensity inputs 

 

In this section, we describe how the input data to the proposed imaging system was 

generated. Sparse signals are zero most of the time and only scarcely nonzero. However, due to 

the particular experimental setup, where light is modulated using a phase-only SLM, we cannot 

consider signals, which are sparse in the Dirac (canonical) domain. Indeed, this would amount to 

having  most of the time, which is impossible because all  have the same amplitude: 

our SLM performs phase and not amplitude modulation. 

However, we can use a simple trick that was already considered by Popoff et al. in (41) 

to generate an arbitrary (virtual) phase and amplitude object from a phase modulator. We use the 

same technique to build virtual sparse objects that are constructed as follows. First, build a 

 random phase vector , called reference, and measure the corresponding  complex 

output . Second, randomly choose  entries in , called the support and set their values as 

new random phases to build the vector , which is identical to  except for only  entries. The 

corresponding complex output  is measured, and thanks to the linearity of the optical 

propagation, the difference  corresponds to the complex output of the system for the 

sparse virtual input object . Using this procedure, we were able to measure the output 

of the system for sparse input vectors of arbitrary sparsity . 

We highlight the fact that this way to build sparse inputs is required only because we 

used a SLM to control the input wavefront and not because of intrinsic limitations of the imaging 

method we propose. On the contrary, we emphasize that such virtual measurements actually lead 

N
H YB= H

T N> Y HX= X

H

( )
1

ˆ H H
H YX XX

−

=

·
H

N N×

X X ( )expX j= Φ Φ

N
B 5N N×

[ ]0 ;2π

H

Y HX=

0
nt
x =

nt
x

1N ×
r
φ 1M ×

r
y k

r
φ

s
φ

r
φ k

r
y

r s
y y y= −

r s
x x x= −

k



to additional (doubled) noise, making the imaging process only more difficult.  

 

Additionally and as done in (41), we were able to measure  several outputs 

corresponding to different illuminations of the same virtual sparse object. This was achieved by 

using the same support for  different reference phases. In essence, we thus settle in the 

Multiple Measurement Vector paradigm, abbreviated as MMV (20) and depicted in figure S2. 

The total number of complex measurements for each trial is hence , used to estimate  

values of the input field.  

 

In our experiments, we repeated this procedure so as to build a very large number of 

virtual objects of varying sparsity, from  to , along with their corresponding outputs.  

 

Algorithm for reconstruction using compressed sensing  

 

Suppose for now that the considered input wave fronts  are sparse in the canonical 

domain, thus being virtual objects in our experimental setup as described above. We suppose that 

their sparsity  is known and that the complex outputs  of the system for  different 

illuminations of the same object are available, as depicted on figure S2. 

 

 
 

Fig. S2  The  measurements vectors of  correspond to the output of the system to  different sparse inputs 

having the same support. For inputs that are sparse in a base  different from the canonical one,  is simply 

replaced by . 

 

We measure the  matrix , corresponding to the concatenation of  outputs and 

given by , where  is the unknown input matrix to estimate and  is the TM. 

Provided  has been estimated through calibration, any algorithm capable of estimating a 

sparse vector given  random projections of it can be used for the purpose of estimating . In 

our experiments, we made use of basic multichannel Orthogonal Matching Pursuit, OMP (42), 

which is straightforward to implement. Even if more sophisticated methods may be used, we 

purposefully focused on the most simple and widely accepted approach to CS, since the purpose 

of this study was not to concentrate on alternative estimation methods, which may rather be the 

topic of future work. Note that when , the whole procedure simply becomes equivalent to 

classical OMP. 

Once the input  has been estimated, the correlation of its support with ground truth is 
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computed and estimation is said to be successful if this correlation lies above 0.9, meaning that at 

least 90% of the original support has been identified. When we are considering vectors that are 

not sparse in the Dirac (canonical) basis but in an alternative basis , notably the Fourier basis 

as explained above, the same procedure can be applied using  instead of  as a 

measurement matrix. 

 

We applied this procedure for approximately 25000 different inputs, corresponding to a 

large range of sparsity  from 1 to , and for many different values for the number  

of measurements, so as to yield a complete phase transition as found by Donoho and Tanner  

(31,43), displayed on Fig. 5. Each cell of this figure gives the average observed performance for 

the corresponding set of  parameters over approximately 50 independent trials. 

An identical experiment was then performed with measurements that are obtained by 

simply multiplying the sparse inputs by a synthesized i.i.d. Gaussian matrix and further adding a 

noise whose average amplitude is set to 17% of the observed average amplitude of the 

synthesized clean output. This matrix is estimated and used for CS in exactly the same manner as 

for the experimental data, in effect comparing performance of the presented imager with that of 

an idealized random sensor whose matrix would be unknown but estimated using noisy data. The 

transition curve for this idealized case is displayed in figure 4 as a dashed line. 

 

Fourier-sparse inputs 

 

Even if virtual objects are a good way to simulate objects, which are sparse in the 

canonical domain with arbitrary sparsity , it is desirable to test the proposed imaging system 

using direct measurements of sparse objects. To this purpose, we measured the output of the 

system when the input , of constant modulus, is sparse in the 2D-Fourier domain. In other 

words, it is easy to build  as a 2D plane wave so that its modulus is constant while only one 

element of its Fourier transform is non-zero and corresponds to its wave number. 

Although this procedure is simple, it is difficult to generalize it for arbitrary sparsity , 

since it is not straightforward to build 2D wavefronts of constant modulus and arbitrary sparsity 

in the Fourier domain. Given one sparsity level (either  or ), performance of the 

imaging method is evaluated as a function of the number  of measurements and the results are 

displayed on Fig. S3.  

 

 

 
Fig. S3 Compressed sensing performance for the recovery of signals which are sparse in the Fourier domain. The 

two curves correspond to the probability of success as a function of the number of measurements , when the 

unknown signal is either a plane wave ( ) or the superposition of many planewaves ( ). Each point is the 

average of 128 independent trials. 
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As can be seen on this figure, 15 measurements are sufficient to properly recover the 

input wavefront of the system, provided it is a planewave. This result demonstrates that the 

proposed imaging system is indeed universal and that its performance well matches results 

predicted by CS theory. 
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