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Convex order for path-dependent derivatives: a dynamic

programming approach

Gilles Pagès ∗

July 23, 2014

Abstract

We investigate the (functional) convex order of for various continuous martingale processes,
either with respect to their diffusions coefficients for Lévy-driven SDEs or their integrands for
stochastic integrals. Main results are bordered by counterexamples. Various upper and lower
bounds can be derived for pathwise European option prices in local volatility models. In view of
numerical applications, we adopt a systematic (and symmetric) methodology: (a) propagate the
convexity in a simulatable dominating/dominated discrete time model through a backward induc-
tion (or linear dynamical principle); (b) Apply functional weak convergence results to numerical
schemes/time discretizations of the continuous time martingale satisfying (a) in order to transfer
the convex order properties. Various bounds are derived for European options written on convex
pathwise dependent payoffs. We retrieve and extend former results obtains by several authors
([8, 2, 15, 13]) since the seminal paper [10] by Hajek. In a second part, we extend this approach
to Optimal Stopping problems using a that the Snell envelope satisfies (a’) a Backward Dynamical
Programming Principle to propagate convexity in discrete time; (b’) satisfies abstract convergence
results under non-degeneracy assumption on filtrations. Applications to the comparison of Ameri-
can option prices on convex pathwise payoff processes are given obtained by a purely probabilistic
arguments.

Keywords. Convex order ; local volatility models ; Itô processes ; Lévy-Itô processes ; Laplace
transform ; Lévy processes ; completely monotone functions ; pathwise European options ; pathwise
American options ; comparison of option prices.

2010 AMS Classification. Primary: 62 P05, 60E15, 91B28, secondary : 60J75, 65C30

1 Introduction

The first aim of this paper is to propose a systematic and unified approach to establish functional
convex order results for discrete and continuous time martingale stochastic processes using the propa-
gation of convexity through some kind of backward dynamic programing principles (in discrete time)
and weak functional limit theorems (to switch to continuous time. The term “functional” mainly refers
to the “parameter” we deal with: thus, for diffusions processes (possibly with jumps) this parameter is
the diffusion coefficient or, for stochastic integrals, their integrand. Doing so we will retrieve, extend
and sometimes establish new results on functional convex order. As a second step, we will tackle
the same type of question in the framework of Optimal Stopping Theory for the Snell envelopes and
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their means, the so-called réduites (which maybe provides a better justification for the terminology
“dynamic programming approach” used in the title).

Let us first briefly recall that if X and Y are two real-valued random variables, X is dominated
by Y for the convex order – denoted X �c Y – if, for every convex functions f : R → R such that
f(X), f(Y )∈ L1(P),

E f(X) ≤ E f(Y ).

Thus, if (Mλ)λ>0 denotes a martingale indexed by a parameter λ, then λ 7→Mλ is non-decreasing for
the convex order as a straightforward consequence of Jensen’s Inequality. The converse is clearly not
true but, as first established by Kellerer in [22], whenever λ 7→ Xλ is non-decreasing for the convex

order, there exists a martingale (X̃λ)λ≥0 such that Xλ
d
= X̃λ for every λ ≥ 0 (we will say that (Xλ)

and (X̃λ) coincide en 1-marginal distributions.
The connection with Finance and, to be more precise with the pricing and hedging of derivative

products is straightforward : let (X
(θ)
t )t∈[0,T ] be a family of non-negative P-martingales on a probability

space (Ω,A,P) indexed by a parameter θ. Such a family can be seen as possible models for the
discounted price dynamics of a risky asset under its/a risk-neutral probability where θ (temporarily)
is a real parameter (e.g. representative of the volatility). If θ 7→ X(θ)

T
is non-decreasing for the convex

order, then for every convex vanilla payoff function f : R+ → R+, the function θ 7→ E f(X(θ)
T

) is

non-decreasing or equivalently its greek ∂
∂θ
Ef(X(θ)

T
) with respect to θ is non-negative. Typically, in a

discounted Black-Scholes model

Xσ,x
t = xeσWt−

σ2

2
t, x, σ > 0,

the function σ 7−→ Ef
(
x eσWT

−σ2T
2

)
since

∀ t∈ [0, T ], x eσWT
−σ2T

2
L∼
[
eBu−

u
2

]
|u=σ2T

where u 7→ eBu−
u
2 is a martingale as as well as its composition with σ 7→ σ2T . So (Xσ,x

T
)σ≥0coincides

in 1-marginal distributions with a martingale. The same result holds true for the premium of convex
Asian payoff functions of the form

E f

(
1

T

∫ T

0
xeσWt−

σ2t
2 dt

)

but, by contrast, its proof is significantly more involved (see [6] or, more recently, the proof in [13]
where an explicit martingale based on the Brownian sheet coinciding in 1-dimensional martingale is
exhibited). Both results turn out to be examples of a general result dealing with convex pathwise
dependent functionals (see e.g. [13] or [31] where a functional co-monotony argument is used).

A natural question at this stage is to try establishing a functional version of these results in terms
of θ-parameter i.e. when θ is longer a real number or a vector but lives in a subset of a functional
space or even of space of stochastic processes. A typical example where θ is a function is the case
where X(θ) is a diffusion process, (weak) solution to a Stochastic Differential equation (SDE) of the
form

dX
(θ)
t = θ(t,X

(θ)
t− )dZt, X

(θ)
0 = x, t∈ [0, T ],

with Z = (Zt)t∈[0,T ] a martingale Lévy process (having moments of order at least 1). The parameter
θ can also be a (predictable) stochastic process when

X
(θ)
t =

∫ t

0
θsdZs, t∈ [0, T ].
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When dealing with optimal stopping problems, i.e. with the réduite of a target process Yt =

F (t,X(θ),t), t∈ [0, T ], (where X
(θ),t
s = X

(θ)
s∧t is the stopped process X(θ) at t) and all the functionals

F (t, .) are (continuous) convex functionals defined on the path space of the process X, the functional
convex order as defined above amounts to determine the sign of the sensitivity with respect to the
functional parameter θ of an American option with payoff functional F (t, .) at time t∈ [0, T ], “written”
on X(θ): if the holder of the American option contract exercises the option at time t, she receives
F (t,X(θ),t).

More generally, various notions of convex order in Finance are closely related to risk modeling and
come out in many other frameworks than the pricing and hedging of derivatives.

Many of these questions have already been investigated for a long time: thus, the first result known
to us goes back to Hajek in [10] where convex order is established for Brownian martingale diffusions
“parametrized” by their (convex) diffusion coefficients (with an extension to drifted diffusions with
non-decreasing convex drifts but with a restriction to non-decreasing convex functions f of X

T
). The

first application to the sensitivity of (vanilla) options of both European and American style, is due
to [8]. It is shown that the options with convex payoffs in a [σmin, σmax]-valued local volatility model
with bounded volatility can be upper- and lower-bounded by the premium of the the same option
contracts in a Black-Scholes model with volatilities σmin and σmax respectively (note however that
a PDE approach relying on a maximal principle provides an alternative easier proof). See also [15]
for a result on lookback options. More recently, in a series of papers (see [3, 2, 4]) Bergenthum
and Rüschendorf extensively investigated the above mentioned problems (for both fixed maturity
and for optimal stopping problemss) for various classes of continuous and jump processes, including
general semi-martingales in [3] (where the comparison is carried out in terms of their predictable local
characteristics, assuming one of them propagates convexity, then proving this last fact). In several
of these papers, the convexity is – but not always (see [2]) – propagated directly in continuous time
which is clearly an elegant way to proceed but also seems to more heavily rely on specific features
of the investigated class of processes (see [13]). In this paper, we propose a generic and systematic
systematic – but maybe also more “symmetric” – two-fold approach which turns out to be efficient for
many classes of stochastic dynamics and processes which is based on a swathing from discrete times
to continuous time using functional weak limit theorems “à la Jacod-Shyriaev” (see [18]). To be more
precise:

– As first step, we study the propagation of convexity “through” a discrete time dynamics –
typically a GARCH model – in a very elementary way for path-dependent convex functionals relying
on repeated elementary backward inductions and conditional Jensen’s inequality. These inductions
take advantage of the “linear” backward dynamical programming principle resulting from from a
discrete time martingale property written in a step-by-step manner. This terminology borrowed from
stochastic control can be viewed as a bit excessive but refers to a second aspect of the paper devoted
to optimal stopping theory (see further on).

– As a second step, we use that these discrete time GARCH model are discretization schemes for
the “target” continuous time dynamics (typically the “Euler schemes as concerns diffusion processes)
and we transfer to this target the searched functional convex order property by calling upon functional
limit theorems for the convergence of stochastic integrals (typically borrowed form [20] and/or [23].

Our typical result for jump diffusions reads as follows (for a more complete and rigorous statements
see e.g. Theorems 2.1 and 2.2 in Section 2). If 0 ≤ κ1 ≤ κ ≤ κ2 are continuous functions with linear
growth defined on R and κ is convex then the existing weak solutions X(κi), i = 1, 2, to the SDEs

X
(κi)
t = x+

∫

(0,t]
κi(X

(κi)
s− )dZs
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where Z = (Zt)t∈[0,T ] is a martingale Lévy process with Lévy measure ν satisfying ν(z2) < +∞,

then X(κ1) �fc X
(κ2) for the convex order defined on (continuous for the Skorokhod topology) convex

functionals (with polynomial growth). Note that when Z is a Brownian motion, the continuity of
the functional appears as a consequence of its convexity (under the polynomial growth assumption,
see the remark in Section 2.1). Equivalently, we have X(κ1) �fc X

(κ) �fc X
(κ2) as soon as both

functions κi are convex. Results in the same spirit are obtained for stochastic integrals, Doléans
exponentials (which unfortunately requires one of the two integrands H1 and H2 to be deterministic).
Counter-examples to put the main results in perspective are exhibited to prove the consistency of
these assumptions in both settings.

We also deal with non-linear problems, typically optimal stopping problems, framework where we
use the same approach from discrete to continuous time, taking advantage of the Backward Dynamic
Programming Principle in the first framework and using various convergence results for the Snell
envelope (see [25]). In fact, a similar approach in discrete time has already been been developed to
solve the propagation of convexity in a stochastic control problem “through” the dynamic programming
principle in a pioneering work by Hernández-Lerma and Runggaldier [11].

The main reason for developing in a systematic manner this approach is related with Numerical
Probability: our discrete time models appear as simulatable discretization schemes of the continuous
time dynamics of interest. It is important for applications, especially in Finance, to have at hand
discretization schemes which both preserve the (functional) convex order and can be simulated at
a reasonable cost. So is the case of the Euler scheme for Lévy driven diffusions (as soon as the
underling Lévy processes is itself simulatable). This is not always the case: think e.g. to the (second
order) Milstein scheme for Brownian diffusions, in spite of its better performances in term of strong
convergence rate.

The paper is organized as follows. Section 2 is devoted to functional convex order for path-
dependent functionals of Brownian and Lévy driven martingale diffusion processes. Section 3 is devoted
to comparison results for Itô processes based on comparison of their integrand. Section 4 deals with
réduites, Snell envelopes of path dependent obstacle processes (American options) in both Brownian
and Lévy driven martingale diffusions. In the two-fold appendix, we provide short proofs of functional
weak convergence of the Euler scheme toward a weak solution of SDEs in both Brownian and Lévy
frameworks under natural continuity-linear growth assumptions on the diffusion coefficient.

Notation: • For every T > 0 and every integer n ≥ 1, one denotes the uniform mesh of [0, T ] by

tnk = kT
n
, k = 0, . . . , n. Then for every t ∈ [kT

n
, (k+1)T

n
), we set tn = kT

n
and t

n
= (k+1)T

n
with the

convention T n = T . We also set tn− = lims→t sn = kT
n

if t∈
(
kT
n
, (k+1)T

n

]
.

• For every u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ Rd, (u|v) =
∑d

i=1 uivi, |u| =
√

(u|u) and xm:n =
(xm, . . . , xn) (where m ≤ n, m, n∈ N \ {0}).
• F([0, T ],R) denotes the R-vector space of R-valued functions f : [0, T ]→ R and C([0, T ],R) denotes
the subspace of R-valued continuous functions defined over [0, T ].
• For every α ∈ F([0, T ],R), we define Cont(α) =

{
t ∈ [0, T ] : α is continuous at t

}
with the usual

left- and right- continuity conventions at 0 and T respectively. We also define the uniform continuity
modulus of α by where w(α, δ) = sup

{
|α(u) − α(v)|, u, v ∈ [0, T ], |u − v| ≤ δ

}
(δ∈ [0, T ]).

• Lp
T

= Lp([0, T ], dt), 1 ≤ p ≤ +∞, |f |Lp

T
=
( ∫ T

0 |f(t)|pdt
) 1

p ≤ +∞, 1 ≤ p < +∞ and |f |L∞
T

=

dt-esssup|f | where dt stands for the Lebesgue measure on [0, T ] equipped with its Borel σ-field.
• For a function f : [0, T ]→ R, we denote ‖f‖sup = supu∈[0,T ] |f(u)|.
• Let (Ω,A,P) be a probability space and let p∈ (0,+∞). For every random vector X : (Ω,A)→ Rd

we set ‖X‖p =
(
E|X|p

) 1
p . Lp

Rd(Ω,A,P) denotes the vector space of (classes) of Rd-valued random
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vectors X such that ‖X‖p < +∞. ‖ . ‖p is a norm on Lp

Rd(Ω,A,P) for p∈ [1,+∞) (the mention of Ω,
A and the subscript Rd will be dropped when there is no ambiguity).
• If F = (Ft)t∈[0,T ] denotes a filtration on (Ω,A,P), let T F

[0,T ] = {τ : Ω→ [0, T ],F-stopping time}.
• FY = (FY

t )t∈[0,T ] is the smallest right continuous filtration (Gt)t∈[0,T ] that makes the process Y =
(Yt)t∈[0,T ] a (Gt)t∈[0,T ]-adapted process.

• ID([0, T ],Rd) denotes the set of Rd-valued right continuous left limited (or càdlàg following the French
acronym) function defined on the interval [0, T ], T > 0. It is usually endowed with the Skorokhod
topology denoted Sk (see [17], chapter VI or [1], chapter 3, for an introduction to Skorokhod topology).

• If two random vectors U and V have the same distribution, we write U
d∼ V . If an (S, dS)-

valued sequence of random variable ((S, d) Polish space equipped with its Borel σ-field Bor(S)) weakly
converges toward an (S, d)-valued random variable Y∞ (we will also say converge in distribution or in

law), we will denote Yn
L(S,dS)−→ Y∞ or, if no ambiguity, Yn

L(dS)−→ Y∞ .

We will extensively make use the following classical result:

Let (Yn)n≥1be a sequence of tight random variables taking values in a Polish space (S, d
S
) (see [1],

Chapter 1). If Yn weakly converges toward Y∞ and (Φ(Yn))n≥1 is uniformly integrable where Φ :
S → R is a Borel function then, for every PY∞-a.s. continuous Borel functional F : S → R such that
|F (u)| ≤ C(1 + Φ(u)) for every u∈ S, one has EF (Yn)→ EF (Y∞).

2 Functional convex order

2.1 Brownian martingale diffusion

The main result of this section is the proposition below.

Theorem 2.1. Let σ, θ : [0, T ]×R→ R be two continuous functions with linear growth in x uniformly
in t∈ [0, T ]. Let X(σ) and X(θ) be two Brownian martingale diffusions, supposed to be the unique weak
solutions starting from x at time 0, to the stochastic differential equations (with 0 drift)

dX
(σ)
t = σ(t,X

(σ)
t )dW

(σ)
t , X

(σ)
0 = x and dX

(θ)
t = θ(t,X

(θ)
t )dW

(θ)
t , X

(θ)
0 = x (2.1)

respectively, where W (σ) and W (θ) are standard one dimensional Brownian motions.

(a) Partitioning assumption: Let κ : [0, T ] × R → R+ be a continuous function with (at most) linear
growth in x uniformly in t∈ [0, T ], satisfying

κ(t, .) is convex for every t∈ [0, T ] and 0 ≤ σ ≤ κ ≤ θ.

Then, for every convex functional F : C([0, T ],R) → R with (r, ‖ . ‖sup)-polynomial growth, r ≥ 1, in
the following sense

∀α∈ C([0, T ],R), |F (α)| ≤ C(1 + ‖α‖rsup)
one has

EF (X(σ)) ≤ EF (X(θ)).

From now on, the function κ is called a partitioning function.

(a′) Claim (a) can be reformulated equivalently as follows: if either σ(t, .) is convex for every t∈ [0, T ]
or θ(t, .) is convex for every t∈ [0, T ] and 0 ≤ σ ≤ θ, then the conclusion of (a) still holds true.

(b) Domination assumption: If |σ| ≤ θ and θ is convex, then

EF (X(σ)) ≤ EF (X(θ)).

5



Remarks. • The linear growth assumption on the convex functional F implies its everywhere
local boundedness on the Banach space

(
C([0, T ],R), ‖ . ‖sup

)
, hence its ‖ . ‖sup-continuity (see e.g.

Lemma 2.1.1 in [27], p.22).

• The introduction of two standard Brownian motions W (σ) and W (θ) in the above claim (a) is just a
way to recall that the two diffusions processes can be defined on different probability spaces, although
it may be considered as an abuse of notation. By “unique weak solutions”, we mean classically that
two such solutions (with respect to possibly different Brownian motions) share the same distribution
on the Wiener space.

•Weak uniqueness holds true as soon as strong uniqueness holds e.g. as soon as σ and θ are Lipschitz
continuous in x, uniformly in t ∈ [0, T ], (as it can easily be derived from Theorem A.3.3, p.271, in [5]).

The proof of this theorem can be decomposed in two main steps: the first one is a dynamic
programming approach in discrete time detailed in Proposition 2.1 below which relies itself on a
revisited version of Jensen’s Inequality. The second one remiss on a functional weak approximation
argument.

The first ingredient is a simple reinterpretation of the celebrated Jensen Lemma.

Lemma 2.1. (Revisited Jensen’s Lemma) Let Z : (Ω,A,P) → R be an integrable centered R-valued
random vector.

(a) Assume that Z ∈ Lr(P) for an r ≥ 1. For every Borel function ϕ : R → R such that |ϕ(x)| ≤
C(1 + |x|r), x∈ R, we define

∀u∈ R, Qϕ(u) = Eϕ
(
uZ
)
. (2.2)

If ϕ is convex, then, Qϕ is convex and u 7→ Qϕ(u) is non-decreasing on R+, non-increasing on R−.

(b) If Z has exponential moments in the sense that

∀u∈ R, E(euZ) < +∞

(or equivalently E(ea|Z|) < +∞ for every a ≥ 0), then claim (a) holds true for any convex function
ϕ : R → R satisfying an exponential growth condition of the form |ϕ(x)| ≤ CeC|x|, x∈ R, for a real
constant C ≥ 0.

(c) If Z has a symmetric distribution (i.e. Z and −Z have the same distribution) and ϕ : R → R is
convex, then Qϕ is an even function, hence satisfying the following maximum principle:

∀ a∈ R+, sup
|u|≤a

Qϕ(u) = Qϕ(a).

Proof. (a)-(b) Existence and convexity of Qϕ are obvious. The function Qϕ is clearly finite on R and
convex. Furthermore, Jensen’s Inequality implies that

Qϕ(u) = Eϕ(uZ) ≥ ϕ(EuZ) = ϕ(0) = Qϕ(0)

since Z is centered. Hence Qϕ is convex and minimum at u = 0 which implies that it is non-increasing
on R− and non-decreasing on R+.

(c) is obvious. �

Proposition 2.1. Let (Zk)1≤k≤n be a sequence of independent, centered, R-valued random vectors
lying in Lr(Ω,A,P), r ≥ 1, and let (FZ

k )0≤k≤n denote its natural filtration. Let (Xk)0≤k≤n and
(Yk)0≤k≤n be two sequences of random vectors recursively defined by

Xk+1 = Xk + σk(Xk)Zk+1, Yk+1 = Yk + θk(Yk)Zk+1, 0 ≤ k ≤ n− 1, X0 = Y0 = x (2.3)

6



where σk, θk : R→ R, k = 0, . . . , n− 1, are Borel functions with linear growth i.e. |σk(x)|+ |θk(x)| ≤
C(1 + |x|), x∈ R, for a real constant C ≥ 0.

(a) Assume that, either σk is convex for every k ∈ {0, . . . , n − 1}, or θk is convex for every k ∈
{0, . . . , n − 1}, and that

∀ k∈ {0, . . . , n − 1}, 0 ≤ σk ≤ θk.
Then, for every convex function Φ : Rn+1 → R with r-polynomial growth, r ≥ 1, i.e. satisfying
|Φ(x)| ≤ C(1 + |x|r), x∈ R, for a real constant C ≥ 0,

EΦ(X0:n) ≤ EΦ(Y0:n).

(b) If the random variables Zk have symmetric distributions, if the functions θk are all convex and if

∀ k∈ {0, . . . , n− 1}, |σk| ≤ θk,

then the conclusion of claim (a) remains valid.

Proof. (a) First one shows by an easy induction that the random variables Xk and Yk all lie in Lr.
Let Qk, k = 1, . . . , n, denote the operator attached to Zk by (2.2) in Lemma 2.1.

Then, one defines the following martingales

Mk = E
(
Φ(X0:n) | FZ

k

)
and Nk = E

(
Φ(Y0:n) | FZ

k

)
, 0 ≤ k ≤ n.

Their existence follows from the growth assumptions on Φ, σk and θk, k = 1, . . . , n. Now we define
recursively in a backward way two sequences of functions Φk and Ψk : Rk+1 → R, k = 0, . . . , n,

Φn = Φ and Φk(x0:k) =
(
Qk+1Φk+1(x0:k, xk + .)

)
(σk(xk)), x0:k∈ Rk+1, k = 0, . . . , n− 1,

on the one hand and, on the other hand,

Ψn = Φ and Ψk(x0:k) =
(
Qk+1Ψk+1(x0:k, xk + .)

)
(θk(xk)), x0:k∈ Rk+1, k = 0, . . . , n− 1.

This can be seen as a linear Backward Dynamical Programming Principle. It is clear by a (first)
backward induction and the definition of the operators Qk that, for every k∈ {0, . . . , n},

Mk = Φk(X0:k) and Nk = Ψ(Y0:k).

Let k∈ {0, . . . , n− 1}. One derives from the properties of the operator Qk+1 (and the representation
below as an expectation) that, for any convex function G : Rk+2 → R with r-polynomial growth,
r ≥ 0, the function

G̃ : (x0:k, u) 7−→
(
Qk+1G(x0:k, xk + . )

)
(u) = EG(x0:k, xk + uZk+1) (2.4)

is convex. Moreover, owing to Lemma 2.1(a), for fixed x0:k, G̃ is non-increasing on (−∞, 0), non-
decreasing on (0,+∞) as a function of u. In turn, this implies that, if γ : R → R+ is convex (and
non-negative), then ξ 7→ G̃ ◦ γ(ξ) = Qk+1G(x0:k, xk + .)

(
γ(ξ)

)
is convex in ξ.

⊲ Assume all the functions σk, k = 0, . . . , n − 1, are non-negative and convex. One shows by a
(second) backward induction that the functions Φk are all convex.

Finally, we prove that Φk ≤ Ψk for every k = 0, . . . , n−1, using again a (third) backward induction
on k. First note that Φn = Ψn = Φ. If Φk+1 ≤ Ψk+1, then

Φk(x0:k) =
(
Qk+1Φk+1(x0:k, xk + .)

)
(σk(xk)) ≤

(
Qk+1Φk+1(x0:k, xk + .)

)
(θk(xk))

≤
(
Qk+1Ψk+1(x0:k, xk + .)

)
(θk(xk)) = Ψk(x0:k).
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In particular, when k = 0, we get Φ0(x) ≤ Ψ0(x) or, equivalently, taking advantage of the martingale
property, EΦ(X0:n) ≤ EΦ(Y0:n).

⊲ If all the functions θk, k = 0, . . . , n − 1 are convex, then all functions Ψk, k = 0, . . . , n, are
convex and one shows like wise that Φk ≤ Ψk for every k = 0, . . . , n − 1.

(b) The proof follows the same lines as (a) calling upon Claim (c) of Lemma 2.1. In particular, the
functions u 7→ G̃(x0:k, u) is also even so that supu∈[−a,a] G̃(x0:k, u) = G̃(x0:k, a) for any a ≥ 0. �

To prove Theorem 2.1 we need to transfer the above result into a continuous time setting by
a functional weak approximation result. To this end, we introduce the notion of piecewise affine
interpolator and recall an elementary weak convergence lemma.

Definition 2.1. (a) For every integer n ≥ 1, let in : Rn+1 → C([0, T ],R) denote the piecewise affine
interpolator defined by

∀x0:n∈ Rn+1, ∀ k = 0, . . . , n − 1, ∀ t∈ [tnk , t
n
k+1], in(x0:n)(t) =

n

T

(
(tnk+1 − t)xk + (t− tnk)xk+1

)
.

(b) For every integer n ≥ 1, let In : F([0, T ],R) → C([0, T ],R) denote the functional interpolator
defined by

∀α∈ F([0, T ],R), In(α) = in
(
α(tn0 ), . . . , α(t

n
n)
)
.

We will use extensively the following obvious fact

sup
t∈[0,T ]

|In(α)t| ≤ sup
t∈[0,T ]

|α(t)|

in particular for uniform integrability purpose.

Lemma 2.2. Let Xn, n ≥ 1, be a sequence of continuous processes weakly converging towards X
for the ‖ . ‖sup-norm. Then the sequence of continuously interpolated processes X̃n = In(X

n) of Xn,
n ≥ 1, is weakly converging toward X for the ‖ . ‖sup-norm topology.

Proof. For every integer n ≥ 1 and every α∈ F([0, T ],Rd), the interpolation operators In(α) reads

In(α) =
n

T

(
(tnk+1 − t)α(tnk) + (t− tnk)α(tnk+1)

)
, t∈ [tnk , t

n
k+1], k = 0, . . . , n− 1.

Note that In maps C([0, T ],Rd) into itself. One easily checks that ‖In(α) − α‖sup ≤ w(α, T/n) (keep
in mind that w denotes the uniform continuity modulus of α) and ‖In(α) − In(β)‖sup ≤ ‖α − β‖sup.
We use the standard distance dwk for weak convergence on Polish metric spaces defined by

dwk

(
L(X),L(Y )

)
= sup

{
|EF (X)− EF (Y )|, [F ]Lip ≤ 1, ‖F‖sup ≤ 1

}
.

Then

dwk

(
L(In(Xn)),L(X)

)
≤ dwk

(
L(In(Xn)),L(In(X))

)
+ dwk

(
L(In(X)),L(X)

)

≤ dwk

(
L(Xn),L(X)

)
+ E

(
w(X,T/n) ∧ 2

)

which goes to 0 since X has continuous paths. �

Proof of Theorem 2.1. We consider now for both SDEs (related to X(σ) and X(θ)) their continuous
(also known as “genuine”) Euler schemes with step T

n
, starting at x with respect to a given standard
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Brownian motion W defined on an appropriate probability space. E.g., to be more precise, the Euler
scheme related to X(σ) is defined by

X̄
(σ),n
tn
k+1

= X̄
(σ),n
tn
k

+ σ(tnk , X̄
(σ),n
tn
k

)
(
Wtn

k+1
−Wtn

k

)
, k = 0, . . . , n− 1, X̄

(σ),n
0 = x

X̄
(σ),n
t = X̄

(σ),n
tn
k

+ σ(tnk , X̄
(σ),n
tn
k

)
(
Wt −Wtn

k

)
, t∈ [tnk , t

n
k+1).

It is clear that both sequences (X̄
(σ),n
tn
k

)k=0:n and (X̄
(θ),n
tn
k

)k=0:n are of the form (2.3) with the Gaussian

white noise sequence Zk = Wtn
k
− Wtn

k−1
, k = 1, . . . , n. Furthermore, owing to the linear growth

assumption made on σ and θ, the sup-norm of these Euler schemes of Brownian diffusions lie in
Lp(P) for any p∈ (0,+∞), uniformly in n, (see e.g. Lemma B.1.2 p.275 in [5] or Proposition A.1 in
Appendix A)

sup
n≥1

∥∥ sup
t∈[0,T ]

|X̄(σ),n
t |

∥∥
p
+ sup

n≥1

∥∥ sup
t∈[0,T ]

|X̄(θ),n
t |

∥∥
p
< +∞.

Furthermore, In(X̄
(σ),n) = in

(
(X̄(σ),n)tn0:n

)
is but the piecewise affine interpolated Euler scheme

(which coincide with X̄(σ),n at times tnk). Note that the sup-norm of In(X̄
(σ),n) also has finite polyno-

mial moments uniformly in n like the genuine Euler scheme.

Let F : C([0, T ],R) → R be a convex functional with (r, ‖ . ‖sup)-polynomial growth. For every
integer n ≥ 1, we define on Rn+1 the function Fn by

Fn(x0:n) = F
(
in(x0:n)

)
, x0:n∈ Rn+1. (2.5)

It is clear that the convexity of F on C([0, T ],R) is transferred to the functions Fn, n ≥ 1. So does
the polynomial growth property. Moreover, F is ‖ . ‖sup-continuous since it is convex with ‖ . ‖sup-
polynomial growth (see Lemma 2.1.1 in [27]). It follows from Proposition 2.1 applied with Φ = Fn,
(Zk)1≤k≤n = (Wtn

k
−Wtn

k−1
)1≤k≤n, σk = σ(tnk , .) and θk = θ(tnk , .), k = 0, . . . , n which obviously satisfy

the required linear growth and integrability assumptions, that, for every n ≥ 1,

EF
(
In(X̄

(σ),n)
)
= EFn

(
(X̄

(σ),n
tn
k

)k=0:n

)
≤ EFn

(
(X̄

(θ),n
tn
k

))k=0:n

)
= EF

(
In(X̄

(θ),n)
)
. (2.6)

On the other hand, it is classical background that the genuine (continuous) Euler schemes X̄(σ),n

weakly converges for the ‖ . ‖sup-norm topology toward X(σ), unique weak solution to the SDE ≡
dXt = σ(Xt)dWt, X0 = x, as n→ +∞. For a proof we refer e.g. to exercise 23 in [32], p.359 when σ
is homogeneous in t, see also [20, 23]; we also provide a short self-contained proof in Proposition A.1
in Appendix A). The key in all them being the weak convergence theorem for stochastic integrals first
established in [20].

It follows from Lemma 2.2 and the Lp(P)-boundedness of the sup-norm of the sequence (In(X̄
(σ),n))n≥1

for p > r that

EF (X(σ)) = lim
n

EF
(
In(X̄

(σ),n)
)
= lim

n
EFn

(
(X̄

(σ),n
tn
k

)0≤k≤n

)
.

The same holds true for the diffusion X(θ) and its Euler scheme. The conclusion follows.

(a) Applying successively what precedes to the couples (σ, κ) and (κ, θ) until Equation (2.6) respec-
tively, we derive that for every n ≥ 1,

EF
(
In(X̄

(σ),n)
)
≤ EF

(
In(X̄

(κ),n)
)
≤ EF

(
In(X̄

(θ),n)
)

and one concludes likewise by letting n go to infinity in the resulting inequality

EF
(
In(X̄

(σ),n)
)
≤ EF

(
In(X̄

(θ),n)
)
.
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(b) The proof follows the same lines by calling upon item (c) of the above Lemma 2.1, having in mind
that the distribution of a standard Brownian increment is symmetric with polynomial moments at
any order as a Gaussian random vector. �

Remarks. • Note that no “weak uniqueness” assumption is requested for the function κ.

• The Euler scheme has already been successfully used to establish convex order in [2].

The following corollaries can be obtain with obvious adaptations of the above proof.

Corollary 2.1. Under the above assumption of Claim (a), if, furthermore, the SDE

dX
(κ)
t = κ(t,X

(κ)
t )dWt, X

(κ)
0 = x

has a unique weak solution, then, for every convex functional F : C([0, T ],R) → R with (r, ‖ . ‖sup)-
polynomial growth,

EF (X(σ)) ≤ EF (X(κ)) ≤ EF (X(θ)).

Corollary 2.2. If σ, θ : [0, T ] × I → R, where I is a nontrivial interval of R, are continuous with
polynomial growth and if the related Brownian SDEs satisfy a weak uniqueness assumption for every
I-valued weak solution starting from x ∈ I, at time t = 0. Then the above Proposition remains
true (the extension of the functional weak convergence of the Euler scheme established in Appendix A
(Proposition A.1) under the assumption made on the drift b is left to the reader).

This approach based on the combination of a (linear) dynamic programming principle and a
functional weak approximation argument also allows us to retrieve Hajek’s result for drifted diffusions.

Proposition 2.2 (Extension to drifted diffusions, see [10]). Let σ and θ be two functions on [0, T ]×R
satisfying the partitioning or the dominating assumptions (a) or (b) from Theorem 2.1 respectively.
Let b : [0, T ] × R → R be a continuous function with linear growth in x uniformly in t and such
that b(t, .) is convex for every t ∈ [0, T ]. Let Y (σ) and Y (θ) be the weak solutions, supposed to be

unique, starting from x at time 0 to the SDEs dY
(σ)
t = b(t, Y

(σ)
t )dt + σ(t, Y

(σ)
t )dW

(σ)
t and dY

(θ)
t =

b(t, Y
(θ)
t )dt+ θ(t, Y

(θ)
t )dW

(θ)
t . Then, for every non-decreasing convex function f : R→ R,

E f(X(σ)) ≤ E f(X(θ)).

Proof. We have to introduce the operators Qb,γ,t, γ > 0, t∈ [0, T ], defined for every Borel function
f : R→ R (satisfying the appropriate polynomial growth assumption in accordance with the existing
moments of Z) by

Qb,γ,t(f)(x, u) = E f
(
x+ γb(t, x) + uZ

)
.

One shows like in Lemma 2.1 above that, if the function f is convex, Qb,γ,tf is convex in (x, u),
non-decreasing in u on R+, non-increasing in u∈ R−. �

2.2 Applications to (Brownian) functional peacocks

We consider a local volatility model on the discounted risky asset dynamics given by

dS
(σ)
t = S

(σ)
t σ(t, S

(σ)
t )dW

(σ)
t , S

(σ)
0 = s0 > 0, (2.7)

where σ : [0, T ] × R → R is a bounded continuous function so that the above equation has at least a

weak solution (S
(σ)
t )t∈[0,T ] with distribution on a probability space (Ω,A,P) on which lives a Brownian
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motion (W
(σ)
t )∈[0,T ] (with augmented filtration (FW (σ)

t )t∈[0,T ]). This follows from the proof of Propo-

sition A.1 in Appendix A (see also [33], p. ??). Then, (S
(σ)
t )t∈[0,T ] is a true (FW (σ)

t )t∈[0,T ]-martingale
satisfying

S
(σ)
t = s0 exp

(∫ t

0
σ(s, S(σ)

s )dW (σ)
s − 1

2

∫ t

0
σ2(s, S(σ)

s )ds
)

so that S
(σ)
t > 0 for every t ∈ [0, T ]. One introduces likewise the local volatility model (S

(θ)
t )t∈[0,T ]

related to the bounded volatility function θ : [0, T ] × R+ → R, still starting from s0 > 0. Then, the
following proposition holds which appears as a functional or non-parametric extension of the fact that( ∫ T

0 eσBt−
σ2t
2 dt

)
σ≥0

is a peacock (see e.g. [6, 13]).

Proposition 2.3 (Functional peacocks). Let σ and θ be two real valued bounded continuous functions
defined on [0, T ] × R. Assume that S(σ) is the unique weak solution to (2.7) as well as S(θ) for its
mutatis mutandis counterpart involving θ. If one of the following additional conditions holds

(i) Partitioning function: there exists a function κ : [0, T ]× R+ → R+ such that, for every t∈ [0, T ],

x 7→ xκ(t, x) is convex on R+ and 0 ≤ σ(t, .) ≤ κ(t, .) ≤ θ(t, .) on R+,

or

(ii) Domination property: for every t∈ [0, T ] the function x 7→ x θ(t, x) is convex on R+ and

|σ(t, .)| ≤ θ(t, .),

then, for every convex (hence continuous) function f : R→ R with polynomial growth

E f

(∫ T

0
S(σ)
s µ(ds)

)
≤ E f

(∫ T

0
S(θ)
s µ(ds)

)

where µ is a signed (finite) measure on ([0, T ],Bor([0, T ])). More generally, for every convex functional
F : C([0, T ],R+)→ R with (r, ‖ . ‖sup)-polynomial growth polynomial growth, one has,

EF
(
S(σ)

)
≤ EF

(
S(θ)

)
. (2.8)

Proof. We focus on the first partitioning setting. The second one can be treated likewise. First
note that κ is bounded since θ is. As a consequence, the function x 7→ xκ(t, x) is zero at x = 0 and
can be extended into a convex function on the whole real line by setting xκ(t, x) = 0 if x ≤ 0. One
extends xσ(t, x) and x θ(t, x) by zero on R− likewise. Once this has been done, this claim appears as
a straightforward consequence of Theorem 2.1 for the (martingale) diffusion processes whose diffusion
coefficients are given by (the extension) of xσ(t, x) and x θ(t, x) on the whole real line. As above, the
sup-norm continuity follows from the convexity and polynomial growth. In the end we take advantage
of the a posteriori positivity of S(θ) and S(σ) when starting from s0 > 0 to conclude. �

Applications to volatility comparison results. The corollary below shows that comparison
results for vanilla European options established in [8] appear as a special case of Proposition 2.3.

Corollary 2.3. Let σ : [0, T ] × R→ R+ be a bounded continuous function

0 ≤ σmin(t) ≤ σ(t, .) ≤ σmax(t), t∈ [0, T ],

then for every convex functional F : C([0, T ],R+)→ R with (r, ‖ . ‖sup)-polynomial growth (r ≥ 1),

EF
(
S(σmin)
s

)
≤ EF

(
S(σ)
s

)
≤ EF

(
S(σmax)
s

)
. (2.9)
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Proof. We successively apply the former Proposition 2.3 to the couple (σmin, σ) and the partitioning
function κ(t, x) = σmin(t) to get the left inequality and to the couple (σ, σmax) with κ = σmax to get
the right inequality. �

Note that the left and right hand side of the above inequality are usually considered as quasi-closed
forms since they correspond to Hull-White model (or even to the regular Black-Scholes model if σmin,
σmax are constant). Moreover, it has to be emphasized that no convexity assumption on σ is requested.

2.3 Counter-example (discrete time setting)

The above comparison results for the convex order can fail when the assumptions of Theorem 2.1 are
not satisfied by the diffusion coefficient. In fact, for simplicity, the counter-example below is developed
in a discrete time framework corresponding to Proposition 2.1. We consider the 2-period dynamics
X = Xσ,x = (Xσ,x

0:2 ) satisfying

X1 = x+ σZ1 and X2 = X1 +
√

2v(X1)Z2

where Z1:2
L∼ N (0; I2), σ ≥ 0, and v : R→ R+ is a bounded C2-function such that v has a strict local

maximum at x0 satisfying v′(x0) = 0 and v′′(x0) < −1 (so is the case if v(x) = v(x0) − ρ(x − x0)2 +
o((x−x0)2), 0 < ρ < 1

2 , in the neighbourhood of x0). Of course this implies that
√
v cannot be convex.

Let f(x) = ex. It is clear that

ϕ(x, σ) := Ef(X2) = exE
(
eσZ1+v(x+σZ1)

)
.

Elementary computations show that

ϕ′
σ(x, σ) = exE

(
eσZ1+v(x+σZ1)

(
1 + v′(x+ σZ1)

)
Z1

)

ϕ′′
σ2(x, σ) = ex

(
E
(
eσZ1+v(x+σZ1)

(
1 + v′(x+ σZ1)

)2
Z2
1

)
+ E

(
eσZ1+v(x+σZ1)v′′(x+ σZ1)Z

2
1

))
.

In particular

ϕ′
σ(x, 0) = ex+v(x)(1 + v′(x))EZ1 = 0 and ϕ′′

σ2(x, 0) = ex+v(x)
(
(1 + v′(x))2 + v′′(x)

)

so that ϕ′′
σ2(x0, 0) < 0 which implies that there exists a small enough σ0 > 0 such that

ϕ′
σ(x0, σ) < 0 for every σ∈ (0, σ0],

This clearly exhibits a counter-example to Proposition 2.1 when the convexity assumption is fulfilled
neither by the functions (σk)k=0:n nor the functions (κk)k=0:n (here with n = 1).

2.4 Lévy driven diffusions

Let Z = (Zt)t∈[0,T ] be a Lévy process with Lévy measure ν satisfying

∫

|z|≥1
|z|pν(dz) < +∞, p ∈

[1,+∞). Then Zt∈ L1(P) for every t∈ [0, T ]. Assume furthermore that EZ1 = 0: then (Zt)t∈[0,T ] is

an FZ -martingale.

Theorem 2.2. Let Z = (Zt)t∈[0,T ] be a martingale Lévy process with Lévy measure ν satisfying
ν(|z|p) < +∞ for a p∈ (1,+∞) if Z has no Brownian component and ν(z2) < +∞ if Z does have a
Brownian component. Let κi : [0, T ] × R → R, i=1, 2, be continuous functions with linear growth in
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x uniformly in t ∈ [0, T ]. For i = 1, 2, let X(κi) = (X
(κi)
t )t∈[0,T ] be the weak solution, assumed to be

unique, to

dX
(κi)
t = κi(t,X

(κi)
t− )dZ

(κi)
t , X

(κi)
0 = x∈ R, (2.10)

where Z(κi), i = 1, 2 have the same distribution as Z. Let F : ID([0, T ],R) → R be a Borel convex
functional, PX(κi)-a.s. Sk-continuous, i=1, 2, with (r, ‖.‖sup)-polynomial growth for some r∈ [1, p) i.e.

∀α∈ ID([0, T ],R), |F (α)| ≤ C(1 + ‖α‖rsup).

(a) Partitioning function: If there exists a function κ : [0, T ]×R→ R+ such that κ(t, .) is convex for
every t∈ [0, T ] and 0 ≤ κ1 ≤ κ ≤ κ2, then

EF (X(κ1)) ≤ EF (X(κ2)).

(a′) An equivalent form for claim (a) is: if 0 ≤ κ1 ≤ κ2 and, either κ1(t, .) is convex for every t∈ [0, T ],
or κ2(t, .) is convex for every t∈ [0, T ], then the conclusion of (a) still holds true.

(b) Domination property: If Z has a symmetric distribution, |κ1| ≤ κ2 and κ2 is convex, then

EF (X(κ1)) ≤ EF (X(κ2)).

Remarks. • The PX(κi)-a.s. Sk-continuity of the functional F , i = 1, 2, is now requested sinceSk-
continuity no longer follows form the convexity (

(
ID([0, T ],R), Sk

)
is a Polish space but not even a

topological vector space). Thus the function α 7→ |α(t0)| for a fixed t0∈ (0, T ) is continuous at a given
β∈ ID([0, T ],R) if and only if β is continuous at t0 (see [1], Chapter 3).

• The result remains true under the less stringent moment assumption on the Lévy measure ν:
ν(|z|p1{|z|≥1} < +∞ but would require much more technicalities since one has to carry out the rea-
soning of the proof below between two large jumps of Z and “paste” these inter-jump results.

The following technical lemma is the key that solves the approximation part of the proof in this
càdlàg setting.

Lemma 2.3. Let α∈ ID([0, T ],R). The sequence of stepwise constant approximations defined by

αn(t) = α(tn), t∈ [0, T ],

converges toward α for the Skorokhod topology.

Proof. See [18]Proposition VI.6.37 p.387 (second edition). �

Proof of Theorem 2.2. Step 1. Let (X̄n
t )t∈[0,T ] be the genuine Euler scheme defined by

X̄n
t = x+

∫

(0,t]
κ(sn, X̄

n
sn−

)dZs

where κ = κ1 or κ2. Then, owing to the linear growth of κ, we derive (seee.g. Proposition B.2 in
Appendix B) that ∥∥∥ sup

t∈[0,T ]
|Xt|

∥∥∥
p
+ sup

n≥1

∥∥∥ sup
t∈[0,T ]

|X̄n
t |
∥∥∥
p
< +∞.

We know, e.g. from form Proposition B.1 in Appendix B, that (X̄n)n≥1 functionally weakly converges
for the Skorokhod topology toward the unique weak solution X of the SDE dXk = κ(t,Xt−)dZt,
X0 = x. In turn, Lemma 2.3 implies that (X̄n

tn
)t∈[0,T ] Sk-weakly converges toward X.
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Step 2. Let F : ID([0, T ],R)→ R be a P
X
-Sk-continuous convex functional. For every integer n ≥ 1,

we still define the sequence of convex functional Fn : Rn+1 → R by

Fn(x0:n) = F
( n−1∑

k=0

xk1[tn
k
,tn
k+1)

+ xn1{T}

)
so that Fn

(
(X̄n

tn
k
)0:n
)
= F

(
(X̄n

tn
)t∈[0,T ]

)
.

Now, for every n ≥ 1, the discrete time Euler schemes X̄(κi),n, i=1, 2, related to the jump diffusions
with diffusion coefficients κ1 and κ2 are of the form (2.3) and |Fn(x0:n)| ≤ C(1 + ‖x0:n‖r), r∈ [1, p).

(a) Assume 0 ≤ κ1 ≤ κ2. Then, taking advantage of the partitioning function κ, it follows from Propo-

sition 2.1(a) that, for every n ≥ 1, EFn

(
(X̄

(κ1),n
tn
k

)0:n
)
≤ EFn

(
(X̄

(κ2),n
tn
k

)0:n
)
i.e. EF

(
(X̄

(κ1),n
tn

)t∈[0,T ]

)
≤

EF
(
(X̄

(κ2),n
tn

)t∈[0,T ]

)
. Letting n → +∞ completes the proof like in that of Theorem 2.1 since F is

P
X
-a.s. Sk-continuous. �

(b) is an easy consequence of Proposition 2.1(b). �

3 Convex order for non-Markovian Itô and Doléans martingales

The results of this section illustrates another aspects of our paradigm in order to establish functional
convex order for various classes of continuous time stochastic processes. Here we deal with (couples
of) Itô-intregrals with the restriction that one of the two integrands needs to be deterministic.

3.1 Itô martingales

Proposition 3.1. Let (Ht)t∈[0,T ] be an (Ft)-progressively measurable process defined on a ) filtered
probability space (Ω,A, (Ft)t∈[0,T ],P) satisfying the usual conditions and let h = (ht)t∈[0,T ] ∈ L2

T
. Let

F : C([0, T ],R)→ R be a convex functional with (r, ‖.‖sup)-polynomial growth, r≥1.

(a) If |Ht| ≤ ht P-a.s. for every t ∈ [0, T ], then

EF

(∫ .

0
HsdWs

)
≤ EF

(∫ .

0
hsdWs

)
.

(b) If Ht ≥ ht ≥ 0 P-a.s. for every t ∈ [0, T ] and ‖H‖L2
T
∈ Lr′(P) for r′ > r, then

EF

(∫ .

0
HsdWs

)
≥ EF

(∫ .

0
hsdWs

)
.

Remarks. • In the “marginal” case where F is of the from F (α) = f(α(T )), it has been shown in [14]
that the above assumptions on H and h in (a) and (b) are too stringent and can be relaxed into

∫ T

0
EH2

t dt ≤
∫ T

0
h2t dt and

∫ T

0
EH2

t dt ≥
∫ T

0
h2t dt

respectively. The main ingredient of the proof is the Dambis-Dubins-Schwartz representation theorem
for one-dimensional Brownian martingales (see e.g. Theorem 1.6 in [33], p.181).

• The first step of the proof below, can be compared to Proposition 2.1 in a Markov framework as an
autonomous proposition devoted to discrete time setting.

Proof. Step 1 (Discrete time). Let (Zk)1≤k≤n be an n-tuple of independent symmetric (hence
centered) R-valued random variables satisfying Zk ∈ Lr(Ω,A,P), r ≥ 1, and let FZ

0 = {∅,Ω}, FZ
k =
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σ
(
Z, . . . , Zk

)
, k = 1, . . . , n be its natural filtration. Let (Hk)0≤k≤n be an (FZ

k )0≤k≤n-adapted sequence
such that Hk∈ Lr(P), k = 1, . . . , n.

Let X=(Xk)0≤k≤n and Y =(Yk)0≤k≤n be the two sequences of random variables recursively defined
by

Xk+1 = Xk +HkZk+1, Yk+1 = Yk + hkZk+1, 0 ≤ k ≤ n− 1, X0 = Y0 = x0.

These are the discrete time stochastic integrals of (Hh) and (hk) with respect to (Zk)1≤k≤n. It is
clear by induction that Xk, Yk∈ Lr(P) for every k = 0, . . . , n since Hk is FZ

k -measurable and Zk+1 is
independent of FZ

k .
Let Φ : Rn+1 → R be a convex function such that |Φ(x)| ≤ C(1 + |x|r) where C ≥ 0 is a real

constant. Let us focus on the first inequality (discrete time counterpart of claim (a)). One proceeds
like in the proof Proposition 2.1 to prove by (three) backward induction(s) that if |Hk| ≤ hk, k = 0:n,
then

EΦ(X) ≤ EΦ(Y ).

To be more precise, let us introduce by analogy with this proposition the sequence (Ψk)0≤k≤n of
functions recursively defined by

Ψn = Φ, Ψk(x0:k) = (Qk+1Ψk+1(x0:k, xk + .))(hk), x0:k∈ Rk+1, k = 0, . . . , n− 1.

First note that the functions Ψk satisfy a linear dynamic programing principle

Ψk(Y0:k) = E
(
Ψk+1(Y0:k+1) | FZ

k

)
, k = 0, . . . , n − 1

so that by the chaining rule for conditional expectations, we have

Φk(Y0:k) = E
(
Φ(Y0:n) | FZ

k

)
, k = 0, . . . , n.

Furthermore, owing to the properties of the operator Qk+1, we already proved that for any convex
function G : Rk+2 → R such that |G(x)| ≤ C(1 + |x|r), the function

(x0:k, u) 7→ (Qk+1G(x0:k, xk + .))(u) = EG(x0:k, xk + uZk+1)

is convex and even as a function of u for every fixed x0:k. As a consequence, it also satisfies the
maximum principle established in Lemma 2.1(c) since the random variables Zk have symmetric dis-
tributions.

Now, let us introduce the martingale induced by Φ(X0,n), namely

Mk = E
(
Φ(X0:n) | FZ

k )
)
, k∈ {0, . . . , n}.

We will show by a backward induction that Mk ≤ Ψk(X0:k) for every k∈ {0, . . . , n}. If k = n, this is
trivial. Assume now that Mk+1 ≤ Ψk+1(X0:k+1) for a k∈ {0, . . . , n − 1}. Then we get the following
string of inequalities

Mk = E(Mk+1 | FZ
k ) ≤ E(Ψk+1(X0:k+1) | FZ

k )

= E(Ψk+1(X0:k,Xk +HkZk+1) | FZ
k )

=
(
E(Ψk+1(x0:k, xk + uZk+1) | FZ

k )
)

|x0;k=X0:k,u=Hk

=
(
Qk+1Ψk+1(x0:k, xk + .)(Hk)

)
|x0;k=X0:k

≤
(
Qk+1Ψk+1)(x0:k, xk + .)(hk)

)
|x0;k=X0:k

= Ψk(X0:k) (3.11)
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where we used in the fourth line that Zk+1 is independent of FZ
k and in the penultimate line the

assumption |Hk| ≤ hk and the maximum principle. Finally, at k = 0, we get EΦ(X0,n) = M0 ≤
Φ0(x0) = EΦ(Y0:n) which is the announced conclusion.

Step 2 (Approximation-Regularization). We temporarily assume that the function h (has a modifi-
cation which) is bounded by a real constant so that P(dω)-a.s. ‖H(ω)‖sup∨‖h‖sup ≤ K. We first need
a technical lemma inspired by Lemma 2.4 in [21] (p.132, 2nd edition) about approximation of pro-
gressively measurable processes by simple processes, with in mind the preservation of the domination
property requested in our framework.

Lemma 3.1. (a) For every ε∈ (0, T ) and every g∈ L2([0, T ], dt) we define

∆εg(t) ≡ t 7−→
1

ε

∫ t

(t−ε)+

g(s)ds∈ C([0, T ],R).

The operator ∆ε : L2
T
→ C([0, T ],R) is non-negative. In particular, if g, γ ∈ L2

T
with |g| ≤ γ λ1-a.e.,

then |∆εg| ≤ ∆εγ and ‖∆εg‖sup ≤ |g|L∞
T
.

(b) If g∈ C([0, T ],R), define for every integer m ≥ 1, the stepwise constant càglàd (for left continuous
right limited) approximation g̃n of g by

g̃m(t) = g(0)1{0}(t) +

m∑

k=1

g
(
tmk−1

)
1(tm

k−1,t
m
k
].

Then g̃m
‖ . ‖sup−→ g as m→ +∞. Furthermore, if g, γ∈ C([0, T ],R) and |g| ≤ γ, then for every m ≥ 1,

|g̃m| ≤ γ̃m.

The details of the proof are left to the reader.

By the Lebesgue fundamental Theorem of Calculus we know that

∣∣∆ 1
n
H −H

∣∣
L2
T

−→ 0 P-a.s.

Since |∆ 1
n
H −H|L2

T
≤ 2K, the Lebesgue dominated convergence theorem implies that

E

∫ T

0
|∆ 1

n
Ht −Ht|2dt −→ 0 as n→ +∞. (3.12)

By construction, ∆ 1
n
H is an (Ft)t-adapted pathwise continuous process satisfying the domination

property |∆ 1
n
H| ≤ ∆ 1

n
h so that, in turn, using this time claim (b) of the above lemma, for every

n, m ≥ 1,

|∆̃ 1
n
Ht

m
| ≤ ∆̃ 1

n
ht

m
.

On the other hand, for every n ≥ 1, the a.s. uniform continuity of ∆ 1
n
H over [0, T ] implies

∫ T

0

∣∣∆̃ 1
n
Ht

m
−∆ 1

n
Ht

∣∣2dt ≤ sup
t∈[0,T ]

|∆̃ 1
n
Ht

m
−∆ 1

n
Ht|2 → 0 as m→ +∞ P-a.s.

One concludes again by the Lebesgue dominated convergence theorem that, for every n ≥ 1,

E

∫ T

0

∣∣∣∆̃ 1
n
Ht

m
−∆ 1

n
Ht

∣∣∣
2
dt −→ 0 as m→ +∞.
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One shows likewise for the function h it self that

∣∣∆ 1
n
h− h

∣∣
L2
T

→ 0 as n→ +∞

and, for every n ≥ 1, ∣∣∆̃ 1
n
h
m −∆ 1

n
h
∣∣
L2
T

→ 0 as m→ +∞.

Consequently there exists an increasing subsequence m(n) ↑ +∞ such that

E

∫ T

0

∣∣∣∆̃ 1
n
Ht

m(n)
−∆ 1

n
Ht

∣∣∣
2
dt+

∫ T

0

∣∣∣∆̃ 1
n
ht

m(n)
−∆ 1

n
ht

∣∣∣
2
dt −→ 0 as n→ +∞

which in turn implies, combined with (3.12) (and its deterministic counterpart for h),

E

∫ T

0

∣∣∣∆̃ 1
n
Ht

m(n)
−Ht

∣∣∣
2
dt+

∫ T

0

∣∣∣∆̃ 1
n
ht

m(n)
− ht

∣∣∣
2
dt −→ 0 as n→ +∞.

At this stage, we set for every integer n ≥ 1,

H
(n)
t = ∆̃ 1

n
Ht

m(n)
and h

(n)
t = ∆̃ 1

n
ht

m(n)
(3.13)

which satisfy
E|H −H(n)|2L2

T

+ |h− h(n)|L2
T
−→ 0 as n→ +∞. (3.14)

It should be noted that these processes H(n), H and these functions h(n), h are all bounded by 2K.

We consider now the continuous modifications of the four (square integrable) Brownian martingales
associated to the integrands H(n), H, h(n) and h (the last two being of Wiener type in fact). It is
clear by Doob’s Inequality that

sup
t∈[0,T ]

∣∣∣
∫ t

0
H(n)

s dWs −
∫ t

0
HsdWs

∣∣∣+ sup
t∈[0,T ]

∣∣∣
∫ t

0
h(n)s dWs −

∫ t

0
hsdWs

∣∣∣ L
2(P)−→ 0 as n→ +∞.

In particular
( ∫ .

0
H(n)

s dWs

)
t∈[0,T ]

functionally weakly converges to
( ∫ .

0
HsdWs

)
t∈[0,T ]

for the

‖ . ‖sup-norm topology. We also have, owing to the B.D.G. Inequality, that for every p∈ (0,+∞),

E sup
t∈[0,T ]

∣∣∣
∫ t

0
H(n)

s dWs

∣∣∣
p

≤ cpp E‖H(n)‖p
L2
T

≤ cpKp (3.15)

where cp is the universal constant involved in the B.D.G. inequality. The same holds true for the
three other integrals related to h(n), H, and h.

Let n ≥ 1. Set Hn
k = H

(n)

t
m(n)
k

, hnk = h
(n)

t
m(n)
k

, k = 0, . . . ,m(n) and Zn
k = W

t
m(n)
k

− W
t
m(n)
k−1

, k =

1, . . . , n(m). One easily checks that

∫ t
m(n)
k

0
H(n)

s dWs =

k∑

ℓ=1

Hn
ℓ Z

n
ℓ , k = 0, . . . ,m(n) so that

Im(n)

(∫ .

0
H(n)

s dWs

)
= im(n)

(( k∑

ℓ=1

Hn
ℓ Z

n
ℓ

)
k=0:m(n)

)
.
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Let Fm(n) be defined by (2.5) from the convex functional F (with (r, ‖ . ‖sup)-polynomial growth). It
is clearly convex. One derives from Step 1 with applied with horizon m(n) and discrete time random
sequences (Zn

k )k=1:m(n), (H
n
k )k=0:m(n), (hk)k=0:m(n) that

EF ◦Im(n)

( ∫ .

0
H(n)

s dWs

)
= EFm(n)

(( k∑

ℓ=1

Hn
ℓ Z

n
ℓ

)
k=0:m(n)

)

≤ EFm(n)

(( k∑

ℓ=1

hnℓZ
n
ℓ

)

k=0:m(n)

)
= EF ◦Im(n)

(∫ .

0
h(n)s dWs

)
.

Combining the above functional weak convergence, Lemma 2.2 and the uniform integrability derived
form (3.15) (with any p > r) yields the expected inequality by letting n go to infinity.

Step 3. (Second approximation) Let K ∈ N and χK : R → R the thresholding function defined by
χK(u) = (u ∧K) ∨ (−K). It follows from the B.D.G. Inequality that for every p∈ (0,+∞)

E sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdWs −

∫ t

0
χK(Hs)dWs

∣∣∣
p

≤ cpp E|H − χK(H)|p
L2
T

= cpp E|
(
|H| −K

)
+
|p
L2
T

(3.16)

≤ cpp |
(
|h| −K

)
+
|p
L2
T

(3.17)

where u+ = max(u, 0), u∈ R+. The same bound obviously holds when replacing H by h. This shows
that the convergence holds in every Lp(P) space, p∈ (0,+∞) as K → +∞. Hence, one may let K go
to infinity in the inequality

EF

(∫ .

0
χK(Hs)dWs

)
≤ EF

(∫ .

0
χK(hs)dWs

)
= EF

(∫ .

0
hs ∧KdWs

)
(3.18)

which yield the expected inequality.

(b) We consider the same steps as for the upper-bound established in (a) with the same notations.

Step 1: First, in a discrete time setting, we assume that 0 ≤ hk ≤ Hk∈ Lr(P) and we aim at showing
that by backward induction that Mk ≥ Ψk(X0:k) where Mk = E

(
Φ(X0,n) | FZ

k

)
.

If k = n, the inequality hold as an equality since Ψn = Φ. Now assume Mk+1 ≥ Ψk+1(X0:k+1).
Then, like in (a),

Mk = E
(
Mk+1 | FZ

k

)

≥ E
(
Φ(X0,k+1) | FZ

k

)
= E

(
Φ(X0,k,Xk +HkZk+1) | FZ

k

)
=
(
QkΨk+1(x0:k, xk + . )(Hk)

)
|x0:k=X0:k

≥
(
QkΨk+1(x0:k, xk + . )(hk)

)

|x0:k=X0:k

= Ψk(X0:k).

Step 2. This step is devoted to approximation in a bounded setting where 0 ≤ ht ≤ Ht ≤ K. It
follows the lines of its counterpart in claim (a) taking advantage of the global boundedness by K.

Step 3. This last step is devoted to the approximation procedure in the general setting. It differs
from the above one since there is no longer a deterministic upper-bound provided by the function
h ∈ L2

T
. Then, the key is to show that the process

∫ .

0 χK(Hs)dWs converges for the sup norm over

[0, T ] in Lr′(P) toward the process
∫ .

0HsdWs. In fact, it follows from (3.16) applied with p = r′ that

E sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdWs −

∫ t

0
χK(Hs)dWs

∣∣∣
r′

≤ cpp E|
(
|H| −K

)
+
|r′L2

T

.
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As |H|L2
T
∈ Lr′(P), one concludes by the Lebesgue dominated convergence theorem by letting K →

+∞. �

Remarks. • Step 1 can be extended to non-symmetric, centered independent random variables
(Zk)1≤k≤n if the sequences (Hk)0≤k≤n−1 and (hk)0≤k≤n−1 under consideration satisfy 0 ≤ Hk ≤ hk,
k = 0, . . . , n− 1.

• When H has left continuous paths, the proof can be significantly simplified by considering the

simpler approximating sequence H
(n)
t = H̃n

t which clearly converges toward H dP ⊗ dt-a.e. (and in
the appropriate Lp(dP ⊗ dt)-spaces as well).

3.2 Lévy-Itô martingales

Proposition 3.2. Let Z = (Zt)t∈[0,T ] be an integrable centered Lévy process with Lévy measure ν satis-
fying ν(|x|p1{|x|≥1}) < +∞ for a real exponent p > 1. Let F : ID([0, T ],R)→ R be a convex Skorokhod-
continuous functional with (p, ‖ . ‖sup)-polynomial growth. Let (Ht)t∈[0,T ] be an (Ft)-predictable process
and let h = (ht)t∈[0,T ]∈ ‖h‖Lp∨2

T

< +∞.

(a) If 0 ≤ Ht ≤ ht dt-a.e., P-a.s. then

EF

(∫ .

0
HsdZs

)
≤ EF

(∫ .

0
hsdZs

)
.

If furthermore Z is symmetric, the result holds as soon as |Ht| ≤ ht dt-a.e., P-a.s..
(b) If Ht ≥ ht ≥ 0 dt-a.e., P-a.s. and |H|

L
p∨2
T

∈ Lp(P), then

EF

(∫ .

0
HsdZs

)
≥ EF

(∫ .

0
hsdZs

)
.

(c) If the Lévy process Z has no Brownian component, the above claims claims (a) and (b) remain
true if we only assume h∈ Lp

T
and |H|Lp

T
∈ Lp(P) respectively.

Proof. (a) This proof follows the approach introduced for the is an extension of the Brownian-Itô
case up to the technicalities induced by Lévy processes.

Step 1 (Discrete time). This step does not differ from that developed for Brownian-Itô martingales,
except that in the the Lévy setting we rely on claim (a) of Lemma 2.1 since the marginal distribution
of the increment of a Lévy process has no reason to be symmetric.

Step 2 (Approximation-Regularization). Temporarily assume that h is bounded. We consider the
approximation procedure ofH by stepwise constant càglàd (Ft)t-adapted (hence predictable) processes
H(n) already defined by (3.13) in the proof of the previous proposition. Then, we first consider the
Lévy-Khintchine decomposition of the Lévy martingale Z

∀ t∈ [0, T ], Zt = aWt + Z̃η
t + Zη

t , a ≥ 0,

where Z̃η is a martingale with jumps of size at most η and Lévy measure ν( .∩ {|z| ≤ η}) and Zη is a
compensated Poisson process with (finite) Lévy measure ν(. ∩ {|z| > η}). Let n be a positive integer.
We will perform a “cascade” procedure to make p decrease thanks to st the B.D.G. Inequality. This
– classical – method is more detailed in the proof of Proposition 3.1 in Appendix B (higher moments
of Lévy driven diffusions).
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We first assume assume that p∈ (1, 2]. Combining Minkowski’s and B.D.G.’s Inequalities yields

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdZs −

∫ t

0
H(n)

s dZs

∣∣∣
∥∥∥∥∥
p

≤ cp a
∥∥∥|H −H(n)|L2

T

∥∥∥
p

+cp

∥∥∥
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

21{|∆Zs|>η}

∥∥∥
1
2

p

2

+cp

∥∥∥
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

21{|∆Zs|≤η}

∥∥∥
1
2

1

where we used in the last line the monotony of Lp(P)-norm p
2 ≤ 1.

Using now the compensation formula and again that p
2 ∈ (0, 1], it follows

E
∣∣∣
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

21{|∆Zs|>η}

∣∣∣
p

2 ≤ E
∑

0<s≤T

|Hs −H(n)
s |p|∆Zs|p1{|∆Zs|>η}

= E|H −H(n)|p
L
p

T

ν(|z|p1{|z|>η})

≤ T 1− p

2E|H −H(n)|p
L2
T

ν(|z|p1{|z|>η})

≤ T 1− p

2

(
E|H −H(n)|2L2

T

) p

2
ν(|z|p1{|z|>η}).

On the other hand,

E
∣∣∣
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

21{|∆Zs|≤η}

∣∣∣ = E|H −H(n)|2L2
T

ν(z2 ∧ η).

We derive from (3.14) that the above three terms go to 0 as n goes to infinity so that

sup
t∈[0,T ]

∣∣∣
∫ t

0
H(n)

s dZs −
∫ t

0
HsdZs

∣∣∣ L
p(P)−→ 0.

Then, Lemma 2.3 applied to the subsequence (m(n))n≥1 implies that the stepwise constant process(∫ tm(n)

0
H(n)

s dZs

)

t∈[0,T ]

satisfies

distSk

(∫ .m(n)

0
H(n)

s dZs,

∫ .

0
HsdZs

)
P−→ 0

which in turn implies the functional Sk-weak convergence. Furthermore, the above Lp-convergence

implies that the sequence

(
sup

t∈[0,T ]

∣∣∣
∫ t

0
H(n)

s dZs

∣∣∣
)

n≥1

is uniformly Lp-integrable which is also clearly

true for

(
sup

t∈[0,T ]

∣∣∣
∫ tm(n)

0
H(n)

s dZs

∣∣∣
)

n≥1

. Following the same lines and still using Lemma 2.3, we get

distSk

(∫ .m(n)

0
h(n)s dZs,

∫ .

0
hsdZs

)
P-a.s.−→ 0 and

(
sup

t∈[0,T ]

∣∣∣
∫ t

0
h(n)s dZs

∣∣∣
)

n≥1

is uniformly Lp-integrable.
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Since 0 ≤ Ht ≤ h(t) dt-a.e. P-a.s. (or 0 ≤ |Ht| ≤ ht if Z is symmetric), for every fixed integer
n ≥ 1, we have, owing to Step 1 and following the lines of Step 3 of the proof of Proposition 3.1,

E

(
F
( ∫ tm(n)

0
H(n)

s dZs

)
t∈[0,T ]

)
≤ E

(
F
( ∫ tm(n)

0
h(n)s dZs

)
t∈[0,T ]

)
.

Letting n → +∞ yields the announced result since F is Sk-continuous with (p, ‖ . ‖sup)-polynomial
growth (owing to the above uniform Lp-integrability results).

Assume now p > 2. First note that since h is bounded one can extend (3.14) as follows: there exists
a sequence m(n) ↑ +∞ such that the processes H(n) and the functions h(n) defined by (3.13) satisfy

E|H −H(n)|p
L
p
T

+ |h− h(n)|Lp

T
−→ 0 as n→ +∞. (3.19)

To this end, we introduce the dyadic logarithm m of p i.e. the integer ℓp such that where 2ℓp < p ≤
2ℓp+1. Thus, if p∈ (2, 4] i.e. ℓp = 1,

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdZs −

∫ t

0
H(n)

s dZs

∣∣∣
∥∥∥∥∥
p

≤cp


κ
∥∥∥|H −H(n)|L2

T

∥∥∥
p
+
∥∥∥
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

2
∥∥∥

1
2

p

2


 . (3.20)

Now, Minkowski’s Inequality applied with ‖.‖p

2
yields

∥∥∥
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

2
∥∥∥

p

2

≤
∥∥∥
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

2 − ν(z2)
∫ T

0
(H(n)

s −Hs)
2ds
∥∥∥

p

2

+ν(z2)
∥∥|H(n) −H|L2

T

∥∥2
p
.

In turn, the B.D.G. Inequality applied to the martingale

M
(1)
t =

∑

0<s≤t

(Hs −H(n)
s )2(∆Zs)

2 − ν(z2)
∫ t

0
(H(n)

s −Hs)
2ds, t ∈ [0, T ],

yields

∥∥∥
∑

0<s≤T

(Hs −H(n)
s )2(∆Zs)

2 − ν(z2)
∫ T

0
(H(n)

s −Hs)
2ds
)∥∥∥

p

2

≤ c p

2

∥∥∥
∑

0<s≤T

(Hs −H(n)
s )4(∆Zs)

4
∥∥∥

1
2

p

4

≤ c p

2

(
E
∑

0<s≤T

(Hs −H(n)
s )p|∆Zs|p

) 2
p

= c p

2

(
ν(|z|p)E

∫ T

0
|Hs −H(n)

s |pds
) 2

p

= c p

2

(
ν(|z|p)

) 2
p
∥∥|H −H(n)|Lp

T

∥∥2
p

where we successively used that p
4 ≤ 1 in the second line and the compensation formula in the third

line. Finally, we note that, as p ≥ 2,

∥∥|H(n) −H|L2
T

∥∥
p
≤ T

1
2
− 1

p

∥∥|H(n) −H|Lp
T

∥∥
p
≤ T

1
2
− 1

p

∥∥|H(n) −H|Lp
T

∥∥
p
→ 0 as n→ +∞
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owing to (3.19). This shows that both terms in the right hand side of (3.20) converge to 0 as n→ +∞,
so that ∥∥∥∥∥ sup

t∈[0,T ]

∣∣∣
∫ t

0
H(n)

s dZs −
∫ t

0
HsdZs

∣∣∣
∥∥∥∥∥
p

−→ 0 as n→ +∞.

We show likewise ∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∫ t

0
h(n)s dZs −

∫ t

0
hsdZs

∣∣∣
∥∥∥∥∥
p

−→ 0 as n→ +∞.

These two convergences imply the Lp(P)-uniform integrability of both sequences

(
sup

t∈[0,T ]

∣∣∣
∫ t

0
H(n)

s dZs

∣∣∣
)

n≥1

and

(
sup

t∈[0,T ]

∣∣∣
∫ t

0
h(n)s dZs

∣∣∣
)

n≥1

. At this stage, one concludes like in the case p∈ (1, 2].

In the general case, one proceeds by a classical “cascade” argument based on repeated applications
of the B.D.G. Inequality involving the martingales (see the proof of Proposition B.2 in Appendix B
for a more detailed implementation this cascade procedure in a similar situation)

M
(k)
t =

∑

0≤s≤t

(H(n)
s −Hs)

2k(∆Zs)
2k − ν(|z|2k )

∫ t

0
(H(n)

s −Hs)
2kds, t ≥ 0, k = 1, . . . , ℓp.

We show by switching from p to p/2, p/22, . . . , p/2k, . . . until we get p/2ℓp ∈ (1, 2] when k = ℓp, that
∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdZs −

∫ t

0
H(n)

s dZs

∣∣∣
∥∥∥∥∥
p

≤ cp κ
∥∥∥|H −H(n)|L2

T

∥∥∥
p

+κp,ν

ℓp∑

ℓ=1

∥∥∥|H(n) −H|
L2ℓ
T

∥∥∥
2

p
+
∥∥∥|H(n) −H|Lp

T

∥∥∥
2

p
.

One shows likewise the counterpart related to h and h(n).

Step 3 (Second approximation). Now we have to get rid of the boundedness of h. Like in the
Brownian Itô case, we approximate h by h∧K and H by χK(H) where the thresholding function χK

have been introduced in Step 3 of the proof of Theorem 2.2 (to take into account at the same time
the symmetric and the standard settings for the Lévy process Z). Let p∈ (1,+∞).

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdZs −

∫ t

0
χK(Hs)dZs

∣∣∣
∥∥∥∥∥
p

≤ cp


κ
∥∥∥|H − χK(H)|L2

T

∥∥∥
p
+
∥∥∥
∑

0<s≤T

(Hs − χK(Hs))
2(∆Zs)

2
∥∥∥

p

2




= cp


κ
∥∥∥|(|H| −K)+|L2

T

∥∥∥
p
+
∥∥∥
∑

0<s≤T

(|Hs| −K)2+(∆Zs)
2
∥∥∥

p

2




≤ cp


κ|(h−K)+|L2

T
+
∥∥∥
∑

0<s≤T

(hs −K)2+(∆Zs)
2
∥∥∥

p

2


 .

We derive again by this cascade argument that
∥∥∥
∑

0<s≤T (hs−K)2+(∆Zs)
2
∥∥∥

p

2

can be upper-bounded

by linear combinations of quantities of the form

|(h−K)+|L2k

T

ν(z2
k

), 0 ≤ k ≤ ℓp
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and
E
∑

0<s≤T

(hs −K)p+|∆Zs|p = |(h−K)+|pLp

T

ν(|z|p).

Consequently, if h∈ Lp
T
, all these quantities go to zero as K → +∞n owing to the Lebesgue dominated

convergence theorem. In turn this implies that

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣
∫ t

0
HsdZs −

∫ t

0
χK(Hs)dZs

∣∣∣
∥∥∥∥∥
p

−→ 0 as K → +∞.

The same holds with h and h ∧K. So it is possible to let K go to infinity in the inequality

EF
(∫ .

0
χK(Hs)dZs

)
≤ EF

(∫ .

0
χK(hs)dZs

)

to get the expected result.

(b) is proved adapting the lines of the proof Proposition 3.1(b) as we did for (a). The main point is to
get rid of the boundedness of h i.e. to obtain the conclusion of the above Step 3 without “domination
property” ofH by h. The additional assumption |H|

L
p∨2
T

∈ Lp clearly yields to the expected conclusion.

(c) This follows from a careful reading of the proof, having in mind that terms of the form
∥∥∥|H −

H(n)|L2
T

∥∥∥
p
vanish when κ = 0. �

3.2.1 Doléans (Brownian) martingales

The dame methods applied to Doléans exponential yields similar result holds with direct applications to
the robustness of Black-Scholes formula for option pricing. First we recall that the Doléans exponential
of a continuous local martingale (Mt)t∈[0,T is continuous local martingale defined by

E
(
M
)
t
= eMt−

1
2
〈M〉t , t∈ [0, T ].

It is a martingale on [0, T ] if an sonly if E eMt−
1
2
〈M〉t = 1. A practical criterion, due to Novikov, says

that, s a martingale on [0, T ] as soon as E e
1
2
〈M〉t < +∞.

Proposition 3.3. Let (Ht)t∈[0,T ] and h = (ht)t∈[0,T ] be like in Proposition 3.1. Let F : C([0, T ],R+)→
R be a convex functional with (r, ‖ . ‖sup)-polynomial growth (r ≥ 1).

(a) If ( |Ht| ≤ ht dt-a.e.) P-a.s., then

EF

(
E
(∫ .

0
HsdWs

))
≤ EF

(
E
(∫ .

0
hsdWs

))
.

(b) If (Ht ≥ ht ≥ 0 dt-a.e.) P-a.s. and there exists ε > 0 such that

E
(
e

r2+ε
2

|H|
L2
T

)
< +∞,

then

EF

(
E
(∫ .

0
HsdWs

))
≥ EF

(
E
( ∫ .

0
hsdWs

))
.
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Proof. (a) Step 1: For a fixed integer n ≥ 1, we consider the sequence of random variables (Ξn
k)k=0:n

recursively defined in a forward way by

Ξn
0 = 1 and Ξn

k = Ξn
k−1 exp

(
Htn

k−1
∆Wtn

k
− T

2n
H2

tn
k−1

)
, k = 1, . . . , n,

(where ∆Wtn
k
= Wtn

k
−Wtn

k−1
) and the sequences (ξn,kℓ )ℓ=k:ndefined, still in a recursive forward way,

by

ξn,kk = 1, ξn,kℓ = ξn,kℓ−1 exp
(
htn

ℓ−1
∆Wtn

ℓ
− T

2n
h2tn

ℓ−1

)
, ℓ = k + 1, . . . , n.

We denote by Q̃(n) the operator defined on Borel functions f : R+ → R with polynomial growth by

∀x, h∈ R+, Q̃(n)(f)(x, h) = E f
(
x exp

(
hWT

n

− T

2n
h2
))
.

It is clear that
(
exp

(
hWT

n

− T
2nh

2
))

h≥0
is increasing for the convex order (i.e. a peacock as already

mentioned on the introduction since exp
(
hWT

n
− T

2n
h2
) d∼ exp

(
Wh2 T

n
− 1

2

T

n
h2
)
and (eWu−

u
2 )u≥0 is a

martingale. Hence, as soon as f is convex,

h 7→ Q̃(n)(f)(x, h) satisfies the maximum principle i.e. is even and)non-decreasing on R+. (3.21)

In turn, it implies that the function (x, h) 7→ Q̃(n)(f)(x, h) is convex on R × R+ since for every
x, x′∈ R+, h, h

′∈ R, λ∈ [0, 1],

E f
(
λx exp

(
λhWT

n

− T

2n
(λh)2

)
+ (1− λ)x′ exp

(
(1− λ)h′WT

n

− T

2n
((1 − λ)h′)2

))

≤ λE f
(
x exp

(
λhWT

n

− T

2n
(λh)2

))
+ (1− λ)E f

(
x′ exp

(
(1− λ)h′WT

n

− T

2n
((1 − λ)h′)2

))

≤ λE f
(
x exp

(
|h|WT

n

− T

2n
h2
))

+ (1− λ)E f
(
x′ exp

(
|h′|WT

n

− T

2n
(h′)2

))

= λE f
(
x exp

(
hWT

n

− T

2n
h2
))

+ (1− λ)E f
(
x′ exp

(
h′WT

n

− T

2n
(h′)2

))

where we used the convexity of f in the first inequality and (3.21) in the second one. From now on,
we consider the discrete time filtration Gnk = FW

tn
k

and set Ek = E( . |Gnk ).
We temporarily assume that for every k = 0, . . . , n, |Htn

k
| ≤ htn

k
P-a.s.. Let F : C([0, T ],R) → R

be a (Borel) functional with (r, ‖ . ‖sup)-polynomial growth and let Fn = F ◦ in. We will show by
induction that, for every k∈ {1, . . . , n},

Ek−1Fn(Ξ
n
0:k−1,Ξ

n
k ξ

n,k
k:n) ≤ Ek−1Fn(Ξ

n
0:k−2,Ξ

n
k−1ξ

n,k−1
k−1:n) (3.22)

with the obvious convention Ξn
0:−1 = ∅. Starting from the identity

Fn(Ξ
n
0:k−1,Ξ

n
k ξ

n,k
k:n) = Fn

(
Ξn
0:k−1,Ξ

n
k−1 exp

(
Htn

k−1
∆Wtn

k
− T

2n
H2

tn
k−1

)
ξn,kk:n

)
,

we derive

Ek−1Fn(Ξ
n
0:k−1,Ξ

n
k ξ

n,k
k:n) =

(
E
(
F (x0:k−1, xk−1 exp

(
η∆Wtn

k
− T

2n
η2
)
ξn,kk:n)

))

|x0:k−1=Ξn
0:k−1,η=Htn

k−1

since (Ξn
0:k−1,Htn

k−1
) is Gnk−1-measurable and (∆Wtn

k
, ξn,kk:n) is independent of Gnk−1. Now set, for every

x0:k−1∈ Rk
+, x̃k∈ R+,

Gn,k(x0:k−1, x̃k) = EFn

(
x0:k−1, x̃k ξ

n,k
k:n

)
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so that

Q̃(n)(Gn,k(x0:k−1, .))(xk−1, η) = EFn

(
x0:k−1, xk−1 exp

(
η∆Wtn

k
− T

2n
η2
)
ξn,kk:n

)
.

The function Fn being convex on Rn+1
+ , it is clear that Gn,k is convex on Rk+1

+ as well. It is in particular

convex in the variable x̃k which in turn implies by (3.21) that η 7→ Q̃(n)(Gn,k(x0:k−1, .))(xk−1, η)
satisfies the maximum principle i.e. is even and convex. As a consequence, |Htn

k−1
| ≤ htn

k−1
implies

Ek−1Fn(Ξ
n
0:k−1,Ξ

n
k ξ

n,k
k:n) =

[
Q̃(n)

(
Gn,k(x0:k−1, . )

)
(xk−1, η)

]
|x0:k−1=Ξn

0:k−1,η=Htn
k−1

=
[
Q̃(n)

(
Gn,k(x0:k−1, . )

)
(xk−1, η)

]

|x0:k−1=Ξn
0:k−1,η=|Htn

k−1
|

≤
[
Q̃(n)

(
Gn,k(x0:k−1, . )

)
(xk−1, η)

]
|x0:k−1=Ξn

0:k−1,η=htn
k−1

= Ek−1

(
Fn

(
Ξn
0:k−1,Ξ

n
k−1 exp

(
htn

k−1
∆Wtn

k
− T

2n
h2tn

k−1

)
ξn,kk:n

))

= Ek−1

(
Fn

(
Ξn
0:k−2,Ξ

n
k−1ξ

n,k−1
k−1:n

))

where we used once again that ξn,kk:n is independent of Gnk−1 in the penultimate line.

One derives by taking expectation of the resulting inequality that the sequence Ek−1Fn(Ξ
n
0:k−1,Ξ

n
k ξ

n,k
k:n),

k = 1 : n, is non-increasing. Finally, by comparing the terms for k = n and k = 0, we get

EF
(
Xn,n

)
= EFn(Ξ

n
0:n) ≤ EFn(ξ

n,0
0:n) = EF

(
Xn,0

)
.

Step 2 (Approximation-Regularization). We closely follow the approach developed in Steps 2 and 3
of Proposition 3.1. First, we temporarily assume that h is bounded by a real constant K and we

introduce the stepwise constant càglàd processes (H(n))t∈[0,T ] and (h
(n)
t )t∈[0,T ] defined by (3.13) (and

satisfying (3.14)), namely
∥∥∥|H(n) −H|L2

T

∥∥∥
2

+
∣∣h(n) − h

∣∣
L2
T

−→ 0 as n→ +∞.

In particular

sup
t∈[0,T ]

∣∣∣
∫ t

0
(H(n)

s )2ds−
∫ t

0
H2

s ds
∣∣∣ ≤ 2K

∣∣H(n) −H
∣∣
L1
T

≤ 2K
√
T
∣∣H(n) −H

∣∣
L2
T

.

As a consequence

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
H(n)

s dWs −
1

2

∫ t

0
(H(n)

s )2ds−
(∫ t

0
HsdWs −

1

2

∫ t

0
H2

sds

)∣∣∣∣ ≤ sup
t∈[0,T ]

∣∣∣∣
∫ t

0
(H(n)

s −Hs)dWs

∣∣∣∣

+K
√
T
∣∣H(n) −H

∣∣
L2
T

.

Set for notational convenience

X
(n)
t = E

( ∫ .

0
H(n)

s dWs

)
t

and Xt = E
( ∫ .

0
HsdWs

)
t
, t∈ [0, T ].

which are both true martingales owing to Novikov’s criterion. The above inequality combined with
Doob’s Inequality implies that

sup
t∈[0,T ]

∣∣∣ logX(n)
t − logXt

∣∣∣ L2

−→ 0 as n→ +∞.
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As a consequence, X(n) L(‖ . ‖sup)−→ X since the exponential function is continuous. Denoting by x(n)

and x the counterpart of these processes for the functions h(n) and h, we get likewise x(n)
L(‖ . ‖sup)−→ x.

Owing once again to Lemma 2.2, the continuity of the exponential again, and the chain rule for weak
convergence, we finally get

eIm(n)(logX
(n)) L(‖ . ‖sup)−→ elogX = X and eIm(n)(log x

(n)) L(‖ . ‖sup)−→ elog x = x as n→ +∞.

Applying Step 1 with X(n) and x(n)

∀n∈ N, EF (X(n)) ≤ EF (x(n)).

To let n go to infinity in this inequality, we again need a uniform integrability argument namely
that ‖X(n)‖sup and ‖x(n)‖sup are both Lp-bounded for a p > r since the functional F has at most
a (r, ‖ . ‖sup)-polynomial growth. So, let p > r ∨ 1. It follows from Doob’s Inequality applied to the
non-negative sub-martingale(X(n))p that

E
(

sup
t∈[0,T ]

(X
(n)
t )p

)
≤

( p

p− 1

)p
E
(
X(n)

T
)p

≤
( p

p− 1

)p
E

(
E
(
p

∫ .

0
H(n)

s dWs

)
T

)
e

p(p−1)
2

∫ T

0 (H
(n)
s )2ds

≤
( p

p− 1

)p
e

p(p−1)
2

K2T

where we used that
(
E
(
p
∫ .

0H
(n)
s dWs

)
t

)
t≥0

is a true martingale (owing to Novikov’ criterion). The

case of F (x(n)) follows likewise.

Step 3: The extension to h∈ L2
T
is similar that performed in the former propositions: first note that

E
( ∫ .

0
χK(Hs)dWs

)
L(‖ . ‖sup)−→ E

( ∫ .

0
HsdWs

)
as K → +∞.

The uniform integrality of sup
t∈[0,T ]

E
( ∫ .

0
χK(Hs)dWs

)
t
as K grows to infinity follows form its Lp(P)-

boundedness for a p∈ (1,+∞) which in turn is a consequence of Doob’s inequality:

E sup
t∈[0,T ]

(
E
(∫ .

0
χK(Hs)dWs

)

t

)p

≤
( p

p− 1

)p
E E
(∫ .

0
χK(Hs)dWs

)p
T

≤
( p

p− 1

)p
e

p(p−1)
2

∫ T

0 χ2
K
(hs)ds E E

(
p

∫ .

0
χk(Hs)dWs

)
T

=
( p

p− 1

)p
e

p(p−1)
2

∫ T

0
χ2
K
(hs)ds

≤
( p

p− 1

)p
e

p(p−1)
2

|h|
L2
T < +∞

which yields Lp -boundedness with respect to the threshold K.

(b) The discrete time part can be established by adapting item (a) in the spirit of Proposition 3.1(b).
The approximation step follows like above as well, except for the final uniform integrability argument

which needs specific care. It suffices to show that for an r′ > r, supt∈[0,T ] E
( ∫ .

0 χK(Hs)dWs

)

t
is

Lr′-bounded as K → +∞.
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⊲ If r∈ (0, 1), one may choose r′∈ (r, 1). Then, one checks that

E

[
sup

t∈[0,T ]
E
( ∫ .

0
χK(Hs)dWs

)r′

t

]
leE

[
sup

t∈[0,T ]
E
(∫ .

0
χK(Hs)dWs

)
t

]
.

Now if p > 1, Doob’s Inequality implies

E

[
sup

t∈[0,T ]
E
( ∫ .

0
χK(Hs)dWs

)p
t

]
≤
( p

p− 1

)p
E

[
sup

t∈[0,T ]
E
( ∫ .

0
χK(Hs)dWs

)p
T

]
≤
( p

p− 1

)p
.

which yields the announced result.

⊲ If r ≥ 1, let p > r. Combining successively Doob’s Inequality and Hölder’s Inequality, for every
p > r ∨ 1 and every Hölder conjugate exponents λ, µ = λ

λ−1 > 1, leads to

E sup
t∈[0,T ]

(
E
( ∫ .

0
χK(Hs)dWs

)
t

)p

≤
( p

p− 1

)p
E E
(∫ .

0
χK(Hs)dWs

)p
T

≤
( p

p− 1

)p

E E

(
λp

∫ .

0
χK(Hs)dWs

)
T︸ ︷︷ ︸

=1




1
λ [

E e
λp2

2

∫ T

0 χK(Hs)2ds

]λ−1
λ

≤
( p

p− 1

)p
[
E e

λp2

2
|H|2

L2
T

]λ−1
λ

.

Consequently, for λ close enough to 1 and p close enough to r, we have λp2 ≤ r2 + ε which ensures
the Lp(P)-boundedness as K ↑ +∞. �

3.2.2 A counter-example

The counter-example below shows that Theorem 3.1 is no longer true if we relax the assumption that
the dominating process (ht)t∈[0,T ] is deterministic.

Let X = Xσ = (Xσ
0:2) be a two period process satisfying

X0 = 0, X1 = σZ1 and X2 = X1 +
√

2v(Z1)Z2

where Z1:2
L∼ N (0; I2), σ ≥ 0, and ϕ : R→ R+ is a bounded non-increasing function.

Let f(x) = ex and let ϕ : R+ → R be the function defined by

ϕ(σ) := Ef(X2) = E
(
eσZ1+v(Z1)

)
.

Differentiating ϕ yields
ϕ′(σ) = E

(
eσZ1+v(Z1)Z1

)

so that
ϕ′(0) = E

(
ev(Z1)Z1

)
< E ev(Z1)EZ1 = 0

by a standard one-dimensional co-monotony argument: both functions z 7→ev(z), z 7→z are non-decrea-
sing which implies ϕ′(0)≤0 but none of them are PZ1-a.s. constant, hence equality cannot hold. As a
consequence, ϕ is (strictly) decreasing on a right neighbourhood [0, σ0], σ0 > 0, of 0.
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To include this into a Brownian stochastic integral framework, one proceeds as follows: let W be
a standard Brownian motion and σ, σ̃∈ (0, σ0], σ < σ̃.

Ht = σ1[0,1](t) +
√

2v(W1)1(1,2](t), H̃t = σ̃1[0,1](t) +
√

2v(W1)1(1,2](t).

It is clear that 0 ≤ Ht ≤ H̃t, t∈ [0, 2], whereas

E
(
e
∫ 2
0 HsdWs

)
> E

(
e
∫ 2
0 H̃sdWs

)
.

This makes up a counter-example to the conclusion of Proposition 3.1.

It has to be noted that if the function v is non-decreasing, then choosing f(x) = e−x leads to a
similar result since

ψ(σ) := Ef(X2) = E
(
e−σZ1+v(Z1)

)

satisfies Ψ′(σ) = −E
(
e−σZ1+v(Z1)

)
. In particular one still has by a co-monotony argument that ψ′(0) <

0 since v is not constant.

3.2.3 A comparison theorem for Laplace transforms of Brownian stochastic integrals

Applying our paradigm, we start by a discrete time result with its own interest for applications.

Proposition 3.4. Let (Zk)1≤k≤n be a sequence of N (0; 1)-random variables. We set S0 = 0 and
Sk = Z1 · · ·+ Zk, k=1, . . . , n (partial sums). We consider the two discrete time stochastic integrals

Xk =

k∑

ℓ=1

fℓ(Sℓ−1)Zℓ and Yk =

k∑

ℓ=1

gℓ(Sℓ−1)Zℓ, k = 1, . . . , n, X0 = Y0 = 0

where fk, gk : R→ R+, k = 1, . . . , n are non-negative Borel functions satisfying:

either all fk, k = 1, . . . , n, are non-decreasing or all gk, k = 1, . . . , n, are non-decreasing.

If, furthermore, 0 ≤ fk ≤ gk for all k = 1, . . . , n, then

∀λ ≥ 0, E eλXn ≤ E eλYn .

Proof. We start from the Cameron-Martin identity which reads on Borel function ϕ : R→ R

∀σ∈ R, E eσZ+ϕ(Z) = e
σ2

2 E eϕ(Z+σ) ≤ +∞.
First, we define in a backward way functions f̃k and g̃k, k = 1, . . . , n+ 1 by f̃n+1 = g̃n+1 ≡ 0,

f̃k(x) =
λ2

2
f2k (x) + logE

(
ef̃k+1(x+λfk(x)+Z)

)
, k = 0, . . . , n, (3.23)

where Z ∼ N (0; 1). The functions g̃k are defined from the gk the same way round. Then, relying on
the chaining rule for conditional expectations, we check by a backward induction that

E eλXn = E eλXk+f̃k+1(Sk), k = 1, . . . , n.

In particular, when k = 0, we get

E eλXn = ef̃1(0).
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It follows from (3.23) and a second backward induction that, if the functions fk are non-decreasing
for every k = 1, . . . , n, so are the functions f̃k. The same holds for g̃k with respect to the functions gk.
Assume e.g. that all the functions f̃k are non-decreasing. Then, a (third) backward induction shows:
f̃k ≤ g̃k since f̃n ≤ g̃n, and, if f̃k+1 ≤ g̃k+1, then for every x∈ R,

f̃k+1(x+ λfk(x) + Z) ≤ f̃k+1(x+ λgk(x) + Z) ≤ g̃k+1(x+ λgk(x) + Z).

Plugging this inequality in (3.23) combined with f2k ≤ g2k, one concludes that f̃k ≤ g̃k. A similar
reasoning can be carried out if the functions g̃k are non-decreasing. �

By the standard weak approximation method detailed in the former results, we derive the following
continuous time version of this result involving (non-decreasing) completely monotone functions defined
below.

Definition 3.1. A non-decreasing function ϕ : R → R is completely monotone if it is the Laplace
transform of a non-negative Borel measure µ supported by the non-negative real line, namely

∀x∈ R, ϕ(x) =

∫

R+

eλxµ(dλ).

Theorem 3.1. Let f, g : [0, T ]× R→ R+ two bounded Borel functions such that





(i) f, g are dt⊗ dx-a.e. continuous,
(ii) 0 ≤ f ≤ g,
(iii)

(
∀ t∈ [0, T ], f(t, .) is non-decreasing

)
or
(
∀ t∈ [0, T ], g(t, .) is non-decreasing

)
.

(3.24)

Then,

∀λ ≥ 0, E eλ
∫ T

0 f(t,Wt)dWt ≤ E eλ
∫ T

0 g(t,Wt)dWt

so that, for every non-decreasing completely monotone function ϕ : R→ R+

Eϕ

(∫ T

0
f(t,Wt)dWt

)
≤ Eϕ

(∫ T

0
g(t,Wt)dWt

)
.

Remarks. • The finiteness of these integrals follows from Novikov’s criterion.
• One derives from (3.24) the seemingly more general result





(i) f, g are dt⊗ dx-a.e. continuous,
(ii) ∃h : [0, T ] ×R→ R+ such that

{
(a) 0 ≤ f ≤ h ≤ g and
(b) ∀ t∈ [0, T ], h(t, .) is non-decreasing.

(3.25)

Proof. Assume e.g. that f(t, .) is non-decreasing for every t ∈ [0, T ]. First note that by Fubini’s
Theorem and Itô’s isometry

∥∥∥
∫ T

0
f(s,Ws)dWs −

∫ T

0
f(sn,Wsn

)dWs

∥∥∥
2

2
=

∫ T

0
E
(
f(s,Ws)− f(sn,Wsn

)
)2
ds.

Now, if we denote Cs = {x∈ R | f is continuous at (s, x)} for every t∈ [0, T ], it follows from Assump-
tion (3.24)(i) that λ(cCs) = 0 ds-a.e. still by Fubini’s Theorem. As PXs is equivalent to the Lebesgue

measure, one derives that Ps(Cs) = 1 ds-a.e.. As a consequence, E
(
f(s,Ws) − f(sn,Wsn

)
)2 → 0

ds-a.e. as n → +∞ since (sn,Wsn
) → (s,Ws). One concludes by the dominated Lebesgue theorem

that
∥∥∥
∫ T

0 f(s,Ws)dWs −
∫ T

0 f(sn,Wsn
)dWs

∥∥∥
2
→ 0 since f is bounded.
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Now, define for every k = 1, . . . , n,

Xk =

∫ tn
k

0
f(sn,Wsn

)dWs =
k∑

ℓ=1

√
T

n
f(tnℓ−1,Wtn

ℓ−1
)Un

ℓ

where Un
ℓ =

√
n
T
(Wtn

ℓ
−Wtn

ℓ−1
), ℓ = 1, . . . , n. We define likewise (Yk)k=0:n with respect to the function

g. It is clear that both (Xk) and (Yk) satisfy the assumptions of the above Proposition 3.4 so that

∀λ ≥ 0, E eλ
∫ T

0 f(sn,Wsn
)dWs ≤ E eλ

∫ T

0 g(sn,Wsn
)dWs .

One concludes by combining the above quadratic (hence weak) convergence and the uniform integra-
bility argument which follows from

∀λ > 0, sup
n

E eλ
∫ T

0 f(sn,Wsn
)dWs ≤ eλ2

2
‖f‖supT < +∞. �

4 Convex order for the réduite and applications to path-dependent
American options

In this section, we aim at applying the methodology developed in the former sections to Optimal
Stopping Theory, i.e., as far as financial applications are concerned, to Bermuda and American style
options. For general background on Optimal Stopping theory, we refer to [29] (Chapter VI) and [7]
(Chapter 5.1) in discrete time and, among others, to [9, 21, 35] in continuous time. For a discussion
(and results) on comparison methods for American option prices, which usually includes an analytic
component involving variational inequalities, we refer to [2] and the references therein.

4.1 Bermuda options

We start from the discrete time dynamics introduced in the “European” framework. Let (Zk)1≤k≤n

be a sequence of independent Rd-valued random vectors satisfying Zk ∈ Lr(Ω,A,P), r ≥ 1 and
EZk = 0, k = 1, . . . , n. Let (Xk)0≤k≤n and (Yk)0≤k≤n be the two sequences of random vectors defined
by (2.3) i.e.

Xx
k+1 = Xx

k + σk(X
x
k )Zk+1, Y x

k+1 = Y x
k + θk(Y

x
k )Zk+1, 0 ≤ k ≤ n− 1, Xx

0 = Y x
0 = x

where σk, θk, k = 0, . . . , n are functions from R to R, all with linear growth. This implies by a
straightforward induction that the random variables Xx

k and Y x
k all lie in Lr since, e.g., σk(X

x
k ) are

adapted to FZ
k hence independent of Zk+1, k = 0, . . . , n− 1.

Let F = (Fk)0≤k≤n and G = (Gk)0≤k≤n two filtrations on (Ω,A,P) such that Xx is F-adapted
and Y x is G-adapted. Let Fk : Rk+1 → R+, k = 0, . . . , n be a sequence of non-negative functions
with r-polynomial growth (i.e. 0 ≤ Fk(x0:k) ≤ C(1 + |x0:k|r), k = 0, . . . , n), r ≥ 1. Then the processes(
Fk(X

x
0:k)
)
0≤k≤n

and (Fk(Y
x
0:k))0≤k≤n are called payoff or obstacle processes (F-adapted and G-adapted

respectively).

We define the F- and G-“réduites” associated to these payoff processes by

u0(x) = sup
{
EFτ (X

x
0:τ ), τ F-stopping time

}
and v0(x) = sup

{
EFτ (Y

x
0:τ ), τ G-stopping time

}

respectively. These quantities are closely related to the optimal stopping problems attached to these
dynamics since they represent the supremum of possible gains among “honest” stopping strategies
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(i.e. non-anticipative with respect to the filtration) in a game where one wins Fk(X
x
0;k) (Fk(Y

x
0:k)

respectively) when leaving the game at time k. Owing to the dynamic programing formula (see the
proof of Proposition below) and the Markov property shared by both dynamics Xx and Y x, it is clear
that we may assume without loss of generality that F = FX (natural filtration of Xx) and G = FY

(natural filtration of Y x) or even F = G = FZ without changing the value of the réduites.

The proposition below is the counterpart of Proposition 2.1 in discrete time for “European” options.

Proposition 4.1. Let Fk : Rk+1 → R+, k = 0, . . . , n, be a sequence of non-negative functions with
r-polynomial growth (r ≥ 1). Assume that all these functions Fk are convex, k = 0, . . . , n.

(a) Partitioning function: If, for every k∈ {0, . . . , n − 1}, there exists a convex function κk such that
0 ≤ σk ≤ κk ≤ θk, then, for every x∈ R,

u0(x) ≤ v0(x).

(b) Dominating function: If the random variable Zk have symmetric distributions, the functions θk,
k = 1, . . . , n, are convex and |σk| ≤ θk, k = 1, . . . , n, then the above inequality remains holds true.

Remark. An equivalent formulation of claim (a) is: assume that both (σk)0≤k≤n and (θk)0≤k≤n are
non-negative convex functions with r-linear growth, then for every sequence (κk)0≤k≤n of functions
such that σk ≤ κk ≤ θk, k = 0, . . . , n− 1,

u0(x) ≤ cκ(x) ≤ v0(x)

where cκ(x) is the réduite of (Fk(K
x
0:k))0≤k≤n where (Kx

k )0≤k≤n satisfies the discrete time dynamics

Kx
k+1 = Kx

k + κk(K
x
k )Zk+1, k = 0, . . . , n− 1, Kx

0 = x.

This follows from (a) applied successively to the pair (σk, κk)0≤k≤n and (κk, θk)0≤k≤n.

Proof. (a) It is clear that this claim is equivalent to proving the expected inequality either if all the
functions (σk)0≤k≤n or all the functions (θk)0≤k≤n are convex.

We introduce Ux = (Ux
k )0≤k≤n and V x = (V x

k )0≤k≤n the (P,F)-Snell envelopes of
(
Fk(X

x
0:k)
)
0≤k≤n

and
(
Fk(Y

x
0:k)
)
0≤k≤n

respectively i.e.

Ux
k = P-supess

{
E
(
Fτ (X

x
0:τ ) | Fk

)
, τ F-stopping time, τ ≥ k

}

and
V x
k = P-supess

{
E
(
Fτ (Y

x
0:τ ) | Fk

)
, τ G-stopping time, τ ≥ k

}

The connection between réduite and Snell envelope is a classical fact from Optimal Stopping Theory
for which we refer e.g. to e.g. [29], Chapter VI), namely

u0(x) = EUx
0

f (idem for v0, V
x
0 for Y x). It is also classical background on Optimal stopping theory (see again

e.g. [29], Chapter VI) that the (P,F)-Snell envelope Ux satisfies the following Backward Dynamic
Programming principle

Ux
n = Fn(X

x
0:n), U

x
k = max

(
Fk(X

x
0:k),E(Uk+1 | Fk)

)
, k = 0, . . . , n− 1.
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Then, we derive from the dynamics satisfied by the Xx
k and the independence of the random vectors Zk

that (Xx
k )k=0:n is a Markov chain. In turn a a first backward induction shows that Ux

k = uk(X
x
0:k) a.s.,

k = 0, . . . , n, where the Borel functions uk : Rk+1 → R, k = 0, . . . , n, satisfy the backward induction

un = Fn, uk(x0:k) = max
(
Fk

(
x0:k), Qk+1uk+1(x0:k, xk + .)

)
(σk(xk))

))
, k = 0, . . . , n− 1. (4.26)

We define likewise the functions vk : Rk+1 → R, k = 0, . . . , n, related to the (P,G)-Snell envelopes of(
Fk(Y

x
0:k)
)
0≤k≤n

.

To emphasize the analogy with the proof of Proposition 2.1 we will detail the case where all the
functions σk = κk are convex, k = 0, . . . , n and satisfy 0 ≤ σk ≤ θk. Following the lines of the proof
of this proposition, we show, still by induction, that the functions uk : Rk+1 → R are convex by
combining Lemma 2.1 and (4.26). The additional argument to ensure the propagation of convexity is
to note that the function (u, v) 7→ max(u, v) is convex and increasing in each of its variable u and v.

On the other hand, as 0 ≤ σk ≤ θk, k = 0, . . . , n and σk are all convex, we can show by a new
backward induction that uk ≤ vk, k = 0, . . . , n. If k = n this is obvious. If it holds true with k+1 ≤ n,
then for every x0:k∈ Rk+1,

uk(x0:k) ≤ max
(
Fk

(
x0:k

)
,
(
Qk+1uk+1(x0:k, xk + .)

)
(θk(xk))

)

≤ max
(
Fk

(
(x0:k

)
,
(
Qk+1vk+1(x0:k, xk + .)

)
(θk(xk))

)
=vk(x0:k)

where we used successively that u 7→
(
Qk+1uk+1(x0:k, xk + .)

)
(u) is non-decreasing on R+ since uk+1

is convex and that uk+1 ≤ vk+1. Finally, the inequality for k = 0 reads

u0(x) = EUx
0 ≤ EV x

0 = v0(x)

which yields the announced result. Other cases follow the same way round following the lines of the
proof of Proposition 4.26. �

4.2 Continuous time optimal stopping and American options

4.2.1 Brownian diffusions

In this section, we switch to the continuous time setting. We will investigate the (functional) convex
order properties of the réduite (or the Snell envelope) of payoff processes obtained as adapted convex
functionals of Brownian martingale diffusion processes i.e. of the form (F (t,Xt))t∈[0,T ] where Xt

denotes the stopped process (Xs)s∈[0,T ] at time t ∈ [0, T ] where X itself is a martingale Brownian

diffusion of type X(σ) as defined in (2.1). This embodies most pricing problems for American options
in local volatility models.

In particular, the results of this section can be seen as an extension to path-dependent “payoff
functionals” of El Karoui-Jeanblanc-Shreve’s Theorem (see [8]) which mainly deals with convex func-
tions of the marginal of the processes at time T (see also [15] devoted to parhwise-dependent lookback
options). The proposition below is also very close to former results by Bergenthum and Rüschen-
dorf by combining Theorems 3.2 and 3.6 from [2] with Theorem 4.1 from [4]. Here, we focus on the
partitioning function.

Proposition 4.2. Let σ, θ : [0, T ] × R be two Lipschitz continuous functions in (t, x) and let W be
a standard F = (Ft)t≥0-Brownian motion defined on a probability space (Ω,A,P) where F satisfies

the usual conditions. Let (X
(σ),x
t )t∈[0,T ] and (X

(θ),x
t )t∈[0,T ] be the martingale diffusions, unique strong

solutions starting at x∈ R to (2.1) (where W (σ) =W (θ) =W ).
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Assume that there exists a partitioning function κ : [0, T ] × R → R such that κ(t, .) is convex for
every t∈ [0, T ] with linear growth in x uniformly in t∈ [0, T ] and

0 ≤ σ(t, .) ≤ κ(t, .) ≤ θ(t, .), t∈ [0, T ].

Let F : [0, T ]×C([0, T ],R) → R+ be a ‖ . ‖sup-continuous functional with (r, ‖ . ‖sup)-polynomial growth
(r ≥ 1) in α∈ C([0, T ],R), uniformly in t∈ [0, T ]. Moreover, assume that, for every t∈ [0, T ], F (t, .)
is convex on C([0, T ],R). Let u0(x) and v0(x) denote the F-réduites of

(
F (t, (X(σ),x)t)

)
t∈[0,T ]

and
(
F (t, (X(θ),x)t)

)
t∈[0,T ]

respectively defined by

u0(x) = sup
{
EF

(
τ, (X(σ),x)τ

)
, τ ∈ T F

[0,T ]

}
and v0(x) = sup

{
EF

(
τ, (X(θ),x)τ

)
, τ ∈ T F

[0,T ]

}

where T F
[0,T ] = {τ : Ω→ [0, T ],F-stopping time}. Then

u0(x) ≤ v0(x).

Remark. All the quantities involved in the above theorem do exist since the sup norm of X(σ),x and
X(θ),x have polynomial moments at any order. Moreover, the Lipschitz continuity assumption is too
stringent but we adopt it to shorten the proof of the“approximation” step from discrete to continuous
time dynamics.

Proof. Step 1 (Euler schemes) We consider the Euler schemes X̄(σ),n and X̄(θ),n (with step T
n
) of

both diffusions (we drop the dependence on the starting value x). Both schemes are adapted to the
filtration F (n) := (Ftn

k
)0≤k≤n.

It follows from Proposition 4.1 that the (P,F (n))-Snell envelopes Ū (n) = (Ū
(n)
tn
k
)0≤k≤n, K̄

(n) =

(K̄
(n)
tn
k
)0≤k≤n and V̄ (n) = (V̄

(n)
tn
k

)0≤k≤n of the F (n)-adapted payoff processes F
(
tnk ,
[
In
(
X̄(σ),n

)]tn
k

)
,

k = 0, . . . , n, F
(
tnk ,
[
In
(
X̄(κ),n

)]tn
k

)
, k = 0, . . . , n, and F

(
tnk ,
[
In
(
X̄(θ),n

)]tn
k

)
, k = 0, . . . , n, satisfy

E Ūn
0 ≤ EK̄n

0 ≤ E V̄ n
0 . (4.27)

Note that it is always possible to define the Euler scheme associated to the function κ regardless of
its convergence toward the related SDE.

Step 2 (Convergence) First, set for convenience Ȳ
(n)
tn
k

= F
(
tnk ,
[
In
(
X̄(σ),n

)]tn
k

)
, k = 0, . . . , n, so that

Ū
(n)
tn
k

= P-supess
{
E(Ȳ (n)

τ | Ftn
k
), τ ∈ T (n)

tn
k
,T

}
, k = 0, . . . , n,

where T (n)
tn
k
,T =

{
τ : Ω→ {tnk , . . . , tnℓ , . . . , tnn}, F (n)-stopping time

}
; we also know that the (P,F)-Snell

envelope of the process Yt = F (t,Xt), t∈ [0, T ], is defined by

Ut = P-supess
{
E
(
Yτ | Ft

)
, τ ∈ T F

t,T

}
, t ∈ [0, T ],

where T F
t,T =

{
τ : Ω→ [t, T ], F-stopping time

}
. This Snell envelope is well-defined since ‖X‖sup lies

in every Lp(P), p∈ (0,+∞), which implies in turn that ‖Y ‖sup lies in every Lp(P). As the obstacle
process (F (t,Xt))t∈[0,T ] has continuous paths and is uniformly integrable, it is regular for optimal
stopping and t 7→ EUt is continuous (see [9, 26]. Hence, the super-martingale (Ut)t∈[0,T ] has a (non-
negative) càdlàg modification whose compensator is continuous (and non-decreasing). More generally,
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if a sequence os stopping times τn ↑ τ < +∞ and Uτ ∈ L1, then EUτn → EUτ . For technical purpose,
we introduce an intermediate quantity defined by

Ũtn
k
= P-supess

{
E(Yτ | Ftn

k
), τ ∈ T (n)

tn
k
,T

}
≤ Utn

k
, k = 0, . . . , n.

Our aim is to prove, after having canonically extended Ū (n) into a càdlàg stepwise constant process

by setting Ū
(n)
t = Ū

(n)
tn
k
, t ∈ [tnk , t

n
k+1), that Ū

(n)
t converges to Ut in L

p for every t∈ [0, T ]. We start

from the fact that
|Ut − Ū (n)

tn
| ≤ |Ut − Utn

|+ Utn
− Ũ (n)

tn
+ |Ũ (n)

tn
− Ū (n)

tn
|. (4.28)

Once again, regularity for optimal stopping of U implies in particular that (Ut)t∈[0,T ] is L
1-left

continuous in t. In particular E|Ut − Utn
k
| → 0 as n→ +∞.

As concerns the second term in the right hand side of (4.28), we proceed as follows

0 ≤ Utn
k
− Ũ (n)

tn
k
≤ P-supess

{
E
(
Yτ − Yτ (n) | F (n)

tn
k

)
, τ ∈ Ttn

k
,T

}

where τ (n) =
∑n

ℓ=k
ℓT
n
1
{ (ℓ−1)T

n
<τ≤ ℓT

n
}
=
∑n

ℓ=k t̄
n1{tn

ℓ−1<τ≤tn
ℓ
}∈ T (n)

tn
k
,T ⊂ Ttnk ,T so that

0 ≤ Utn
k
− Ũ (n)

tn
k
≤ E

(
sup
t≥tn

k

|Yt − Ytn | | Ftn
k

)
≤ E

(
sup

t∈[0,T ]
|Yt − Ytn | | Ftn

k

)
.

Doob’s Inequality applied to the martingale Mn = E
(
supt∈[0,T ] |Yt − Ytn | | Ftn

k

)
, n ≥ 1, implies that

for every p∈ (1,+∞),

∥∥∥ max
0≤k≤n

(Utn
k
n − Ũ (n)

tn
k
)
∥∥∥
p
≤ p

p− 1
‖Mn‖p =

p

p− 1

∥∥∥ sup
t∈[0,T ]

|Yt − Ytn |
∥∥∥
p
→ 0 as n→ +∞

since Xtn a.s. converges towards Xt for the sup-norm owing to the pathwise continuity of X. This in
turn, implies that F (t

n
,Xt

n

) a.s. converges toward F (t,Xt) since F is continuous. The Lp-convergence
follows by uniform integrability, still since ‖Y ‖sup has polynomial moments at any order.

Now we investigate the second term in the right hand side of (4.28).

|Ũ (n)
tn
k
− Ū (n)

tn
k
| ≤ supess

{
E
(
|Yτ − Ȳ (n)

τ | | Ftn
k

)
, τ ∈ T (n)

tn
k
,T

}

≤ E
(

max
0≤k≤n

|Ȳ (n)
tn
k
− Ytn

k
| | Ftn

k

)
.

On the other hand,

max
0≤k≤n

|Ȳ (n)
tn
k
− Ytn

k
| ≤ max

0≤k≤n

∣∣F
(
tnk , (In(X̄

(σ),n))t
n
k

)
− F

(
tnk , (X

(σ))t
n
k

)∣∣

≤ sup
t∈[0,T ]

∣∣F
(
t, (In(X̄

(σ),n))t
)
− F

(
t, (X(σ))t

)∣∣. (4.29)

Now, note that the functional α 7→
(
t 7→ F

(
t, αt

))
defined from (C([0, T ],R), ‖ . ‖sup) into itself is

continuous: if (tn, αn)→ (t, α) for the product topology on [0, T ]× (C([0, T ],R), then

‖αtn
n − αt‖sup ≤ ‖αn − α‖sup + w(α, |t − tn|)

so that (tn, α
tn)→ (t, αt). As a consequence, the functional F being continuous on [0, T ]×C([0, T ],R),

F (tn, α
tn) → F (t, αt) which in turn implies that supt∈[0,T ] |F (t, αt

n) − F (t, αt)| → 0. As In(α) → α
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for the sup norm as n→ +∞, we derive that if αn → α for the sup norm then sup
t∈[0,T ]

|F (t, In(αn)
t)−

F (t, αt)| → 0 as n→ +∞.
Then under the Lipschitz continuity assumption on σ, we know that the Euler scheme X̄(σ),x,n)→

X(σ),x P-a.s. as n→ +∞ a.s. (see e.g. [5], Theorem B.14, p.276). The (r, ‖ . ‖sup)-polynomial growth

assumption made on F and the the fact that sup
n≥1

E‖X̄(σ),x,n‖psup < +∞ for any p > r implies the

L1-convergence to 0 of the term in (4.29). Finally, this shows that

E Ūn
0 → u0(x) as n→ +∞.

The conclusion follows from (4.27) in Step 1 by letting n → +∞ in the resulting inequality E Ūn
0 ≤

E V̄ n
0 . �

Applications to comparison theorems for American options in local volatility models.
By specifying our diffusion dynamics as a local volatility model as defined by (2.7), we can extend the
comparison result (2.8) to path-dependent American options provided the “payoff” functionals F (t, .)
are convex with polynomial growth as specified in the above theorem.

4.2.2 The case of jump martingale diffusions

In what follows the product space [0, T ]× ID([0, T ],R) is endowed with the product topology | . |⊗Sk.
The notation Xt(α) = α(t), α∈ ID([0, T ],R) still denotes the canonical process on ID([0, T ],R) and θ
denotes the canonical random variable on [0, T ] (i.e. θ(t) = t, t∈ [0, T ]).

Let (Ft)t∈[0,T ] be a right continuous filtration on a probability space (Ω,A,P) and let Y be an
(Ft)t∈[0,T ]-adapted càdlàg process defined on this probability space. We introduce the so-called (H)-
assumption (also known as filtration enlargement assumption) which reads as follows:

(H) ≡ ∀H : Ω→ R, bounded and FY
T
-measurable, E

(
H | Ft

)
= E

(
H | FY

t

)
P-a.s.

This filtration enlargement assumption is equivalent to the following more tractable condition: there
exists D ⊂ [0, T ], everywhere dense in [0, T ], with T ∈ D, such that

∀ n ≥ 1, ∀ t1, . . . , tn∈ D, ∀h∈ C0(Rn,R), E
(
h(Yt1 , . . . , Ytn) | Ft

)
= E

(
h(Yt1 , . . . , Ytn) | FY

t

)
P-a.s.

where C0(Rn,R) = {f ∈ C(Rn,R) such that lim|x|→+∞ f(x) = 0}. We still consider the jump diffusions
of the form (2.10) i.e.

dXt = κ(t,Xt−)dZt

where κ : [0, T ]× R→ R is a continuous function, Lipschitz continuous in x uniformly in t∈ [0, T ].
The aim of this section is to extend the result obtained for convex order for Brownian diffusions

to such jump diffusions. We will rely on an abstract convergence result for réduites established in [25]
(Theorem 3.7 and the remark that follows) that we recall below. To this end, we need to recall two
classical definitions on stochastic processes.

Definition 4.1. (a) Class (D) processes: A càdlàg process (Yt)t∈[0,T ] is of class (D) if
{
Yτ , τ ∈ T[0,T ]

}
is uniformly integrable. (4.30)

(b) Aldous’s tightness criterion (see e.g. [18], Chapter VI, Theorem 4.5, p.356): A sequence of Fn-
adapted càdlàg processes Y n = (Y n

t )t∈[0,T ], n ≥ 1, defined on filtered stochastic spaces (Ωn,An,Fn,Pn),
n ≥ 1, satisfies Aldous’s tightness criterion with respect to the filtrations Fn, n ≥ 1, if

∀ η > 0, lim
δ→0

lim sup
n

sup
τn≤τ ′n≤(τn+δ)∧T

Pn
(
|Y n

τn
− Y n

τ ′n
| ≥ η

)
= 0 (4.31)
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where τnand τ
′
n run over [0, T ]-valued FY n

-stopping times.
Then, the sequence (Y n)n≥1 is tight for the Skorokhod topology.

Theorem 4.1. (a) Let (Xn)n≥1 be a sequence of adapted quasi-left càdlàg processes (1) defined on a
probability spaces (Ωn,Fn,Pn) of class (D) and satisfying the above Aldous tightness criterion (4.31).
For every n ≥ 1, let

un0 = sup {EXn
τ , τ [0, T ]-valuedFn-stopping time}

denote the Fn-réduite of Xn. Let (τ∗n)n≥1 be a sequence of
(
FXn

,Pn)-optimal stopping times(2).
Assume furthermore that (Xn)n≥1 satisfies

Xn L−→ P, P probability measure on (ID([0, T ],R),DT ) such that EP sup
t∈[0,T ]

|Xt| < +∞.

If every limiting value Q of L(Xn, τ∗n) on ID([0, T ],R)× [0, T ] satisfies the (H) property, then the
(Fn,Pn)-réduites un0 of Xn converge toward the (D,P)-réduites u0 of X i.e.

lim
n
un0 = u0.

Moreover, if the optimal stopping problem related to (X,Q,Dθ) has a unique solution in distribution,

i.e. θ
d
= µ∗τ∗, not depending on Q, then τ∗n

L([0,T ])−→ µ∗τ∗.
(b) The same result holds when considering a sequence of companion processes Y n having values in
a Polish metric space (E, d

E
) i.e. we consider that the filtration of interest at finite range n is now

(F (Xn,Y n)
t )t∈[0,T ]. We assume that Xn is quasi-left continuous with respect to this enlarged filtration.

We will only ask the couple (Xn, Y n) to converge for the product topology i.e. on (ID([0, T ],R), SkR)×
(ID([0, T ], E), SkE ) since this product topology spans the same Borel σ-field as the regular Skorokhod
topology on ID([0, T ],R × E).

The main result of this section is the following:

Theorem 4.2. Let Z = (Zt)t∈[0,T ] be a martingale Lévy process with Lévy measure ν satisfying

ν(|z|p) < +∞ for p ∈ [2,+∞), so that the process Z is an L2-martingale null at 0. Let X(κi,x),
i = 1, 2, be the martingale jump diffusions driven by Z starting at (the same) x ∈ R. Let F :
[0, T ] × ID([0, T ],R) → R+ be a convex functional satisfying the following local Lipschitz assumption
(w.r.t. to the sup norm) combined with a Skorokhod continuity assumption, namely

{
(i) F : [0, T ]× ID([0, T ],R)→ R+ is Sk-continuous,

(ii) |F (t, β) − F (s, α)| ≤ C
(
|t− s|ρ′ + ‖α− β‖ρsup

(
1 + ‖α‖r−ρ

sup + ‖β‖r−ρ
sup

))
, ρ, ρ′∈ (0, 1], r∈ [1, p),

(4.32)
Let U (κi) denote the Snell envelopes of the processes

(
F (t, (Xκi))t

)
t∈[0,T ]

, i = 1, 2 respectively.

If there exist κi : [0, T ] × R → R, i = 1, 2, two continuous functions with linear growth in x,
uniformly in t∈ [0, T ], and a partitioning function κ : [0, T ]×R→ R, convex in x for every t∈ [0, T ],
such that

κ1 ≤ κ ≤ κ2.
Then

U
(κ1)
0 ≤ U (κ2)

0 .

1A càdlàg (Ft)t∈[0,T ]-adapted process X = (Xt)t∈[0,T ] is quasi-left continuous with respect to the right continuous
filtration F = (Ft)t∈[0,T ] if for every F-stopping time τ having values in [0, T ]∪ {+∞} and every increasing sequence of
F-stopping times (τk)k≥1 with limit τ , limk Xτk = Xτ on the event {τ < +∞} (see e.g. [18], Chapter I.2.25, p.22).

2i.e. satisfying EXn
τ∗

n
= un

0 .
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Remarks. • Note that, since p ≥ 2,

ν(|z|p) < +∞←→ ν(|z|p1{|z|≥1}) < +∞←→ Zt∈ Lp ←→ sup
t∈[0,T ]

|Zt|∈ Lp.

• One proves likewise that, for every t∈ [0, T ],

E(U (κ1)
t ) ≤ E(U (κ2)

t ).

• If the functions κ(t, .), t∈ [0, T ] are all convex (but possibly not the functions κi(t, .)) then the same
proof shows by coupling (κ1, κ) and (κ, κ2) that

E(U (κ1)
0 ) ≤ E(U (κ)

0 ) ≤ E(U (κ2)
0 ).

Lemma 4.1. Let X = (Xt)t∈[0,T ] be an (Ft)t∈[0,T ]-adapted càdlaàg process defined on a probability
space (Ω,A,P) where (Ft)t∈[0,T ] is a càd filtration. Let G : [0, T ]× ID([0, T ],R)→ R+ be a Skorokhod
continuous functional such that |G(α)| ≤ C(1+‖α‖rsup), r∈ (0, p). If X is quasi-left continuous and if
‖X‖sup∈ Lp, then the “obstacle process” (G(t,Xt))t∈[0,T ] is regular for optimal stopping i.e. as soon
as τ < +∞ P-a.s. EG(τn,Xτn)→ EG(τ,Xτ ).

Proof. First one easily proves by coming back to the very definition of Skorokhod topology that

αn
Sk−→ α and tn → t ∈ Cont(α) then αtn

n
Sk−→ αt. Let (τn)n≥1 be a sequence of Ft-stopping times

satisfying τn ↑ τ < +∞ P-a.s., then Xτ = Xτ− P-a.s. i.e. τ(ω)∈ Cont(X(ω)) P(dω)-a.s.. It follows

that (τnX
τn) → (τ,Xτ ) P-a.s.. The continuity assumption made on G implies that G(τn,X

τn)
Sk−→

G(τ,Xτ ). One concludes by a uniform integrability argument that EG(τn,Xτn) → EG(τ,Xτ ) since
‖X‖sup∈ Lp implies that

(
G(τn,X

τn)
)
n≥1

is L
p

r -bounded. �

Proof. Step 1 Aldous tightness criterion. We still consider the stepwise constant Euler scheme
X̄n = (X̄n

t )t∈[0,T ] with step T
n
defined by

X̄n
tn
k
= X̄n

tn
k−1

+ κ(tnk−1, X̄
n
tn
k−1

)(Ztn
k
− Ztn

k−1
), k = 1, . . . , n, X̄n

0 = X0

and i.e. X̄n
t = X̄n

tn
. Let σn, τn∈ T Fn

[0,T ], such that σn ≤ τn ≤ (σn+δ)∧T . In fact, following Lemma 2.3,

we may assume without loss of generality that σn and τn take values in {tnk , k = 0, . . . , n}. Then,
owing to (4.32),

E
∣∣F (τn, (X̄n)τn)− F (σn, (X̄n)σn)

∣∣ ≤ Cδρ′ + C E
(
‖(X̄n)τn − (X̄n)σn‖ρsup(1 + 2‖X̄n‖r−ρ

sup )
)
.

Hölder Inequality applied with the conjugate exponents a = r
ρ
and b = r

r−ρ
yields

E
(
‖(X̄n)τn − (X̄n)σn‖ρsup

(
1 + 2‖X̄n‖r−ρ

sup

))
≤

∥∥∥ sup
σn≤s≤(σn+δ)∧T

|X̄n
s − X̄n

σn
|
∥∥∥
ρ

r

(
1 + 2

∥∥ sup
t∈[0,T ]

|X̄n
t |
∥∥r−ρ

r

)
.

As ν(z2) < +∞, we can decompose the Lévy process Z into Zt = aWt + Z̃t, a ≥ 0 where W is a
standard Brownian motion and Z̃ is a pure jump square integrable martingale Lévy process.
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• If r∈ [1, 2]: it follows from the B.D.G. Inequality applied to the local martingale (X̄σn+
iT
n

− X̄n
σn
)i≥0

that

∥∥∥ sup
σn≤tn

k
≤(σn+δ)∧T

|X̄n
tn
k
− X̄n

σn
|
∥∥∥
r

r
≤ cra

r
∥∥∥

∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Wtn

k
−Wtn

k−1

)2∥∥∥
r
2

L
r
2

+cr

∥∥∥
∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Z̃tn

k
− Z̃tn

k−1

)2∥∥∥
r
2

L
r
2

≤ cra
r
∥∥∥

∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Wtn

k
−Wtn

k−1

)2∥∥∥
r
2

L2

+crE

(
∑

k

1{σn<tn
k
≤(σn+δ)∧T}|κ(tnk−1, X̄

n
tn
k−1

)|r|Ztn
k
− Ztn

k−1
|r
)
.

Now

E
[ ∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Wtn

k
−Wtn

k−1

)2]
=

T

n
E
[ ∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
]

≤ T

n
E|ZT

n

|rE
[
max
1≤k≤n

|κ(tnk−1, X̄
n
tn
k−1

)|2×card{k :σn<tnk≤(σn + δ)∧T}
]

≤ T

n
E
[
max
1≤k≤n

|κ(tnk−1, X̄
n
tn
k−1

)|r
]δn
T

= δ
∥∥∥ max
1≤k≤n

|κ(tnk−1, X̄
n
tn
k−1

)|
∥∥∥
2

2

On the other hand,

∥∥∥
∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Z̃tn

k
− Z̃tn

k−1

)2∥∥∥
r
2

L
r
2
≤ E

∑

k

1{σn<tn
k
≤(σn+δ)∧T}|κ(tnk−1, X̄

n
tn
k−1

)|r|Z̃tn
k
− Z̃tn

k−1
|r

= E|Z̃tn
k
− Z̃tn

k−1
|rE
[∑

k

1{σn<tn
k
≤(σn+δ)∧T}|κ(tnk−1, X̄

n
tn
k−1

)|r
]

= E|Z̃T
n

|rE
[
max
1≤k≤n

|κ(tnk−1, X̄
n
tn
k−1

)|r×card{k :σn<tnk≤(σn + δ)∧T}
]

≤ E|Z̃T
n

|rE
[
max
1≤k≤n

|κ(tnk−1, X̄
n
tn
k−1

)|r
]δn
T

≤ δ
( n
T
E|Z̃T

n

|r
)
E
[

max
0≤k≤n−1

|κ(tnk−1, X̄
n
tn
k−1

)|r
]

≤ C
κ,Z̃,T

δ
∥∥∥ max
1≤k≤n

|κ(tnk−1, X̄
n
tn
k−1

)|
∥∥∥
r

r

where we used that t 7→ 1
t
E|Z̃t|r remains bounded on the whole interval (0, T ].

Under the assumptions ν(z2) < +∞ and κ with linear growth (in x uniformly in t ∈ [0, T ]), it
follows form Proposition B.2 in Appendix B that supn≥1

∥∥ sup0≤k≤n |κ(tnk , X̄n
tn
k
)|
∥∥
r
< +∞ since r ≤ 2

(see the first remark below the statement of the theorem), we get

∥∥∥ sup
σn≤tn

k
≤(σn+δ)∧T

|X̄n
tn
k
− X̄n

σn
|
∥∥∥
r
≤ Cρ,r,κ,Z,T

(
δ

1
4 + δ

1
r

)
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where the real constant Cρ,r,κ,Z,T does not depend on n, σn, τn and δ. This implies in turn that

lim
δ→0

lim sup
n

sup
σn<τn≤(σn+δ)∧T

E
∣∣F (τn, X̄n,τn)− F (σn, X̄n,σn)

∣∣ = 0

and the conclusion follows.

• If r∈ [2, 4]: One writes

∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Ztn

k
− Ztn

k−1

)2
=

∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2(
(
Ztn

k
− Ztn

k−1

)2 − E|ZT
n

|2)

+E|ZT
n
|2

∑

σn<tn
k
≤(σn+δ)∧T

κ(tnk−1, X̄
n
tn
k−1

)2
(
Ztn

k
− Ztn

k−1

)2
.

The second term of the sum in the right hand side of the above equality can be treated as above
(it corresponds to r = 2). As concerns the first one, note that the i.i.d. sequence

(
(Ztn

k
− Ztn

k−1
)2 −

E|ZT
n

|2
)
1≤k≤n

is centered and lies in L
r
2 (P) with r

2 ∈ [1, 2]. Hence it can be controlled like the former

case. Carrying on the process by a cascade induction as detailed e.g. in the proof of Proposition B.2
in Appendix B, one can lower r to r/2, . . . , r/2ℓr ∈ (1, 2] by induction, owing to B.D.G. inequality.

Step 2. It follows from Step 1 of Theorem 2.2 (adapted to a 2-dimensional framework with (κ,1) as
a drift) that (

X̄n, In(Z)
)

L(Sk)−→ (X,Z) as n→ +∞.

If we consider the discrete time Optimal Stopping problem(s) related to the Euler schemes X̄(n,κi),
i = 1, 2, which turns out the be the same as in Step 1 of the proof of Proposition 4.2, the existence

of optimal stopping times τ
(i)
n , i = 1, 2, taking values in {tnk , k = 0, . . . , n} is straightforward owing to

the finite horizon of these problems (see [29], Chapter VI for more details).

Step 3: Let Ωc = ID([0, T ],R)2 × [0, T ] be the canonical space of the distribution of the sequence
(X̄n, In(Z), τ

∗
n)n≥1. For every (α, u) ∈ ID([0, T ],R)2 × [0, T ], the canonical process is defined by

Ξt(α, u) = α(t) = (α1(t), α2(t)) ∈ R2 and the canonical random times is given by θ(α, u) = u.
Furthermore we will denote by Ξ = (Ξ1,Ξ2) the two components of Ξ.

Let

Dθ
t = ∩s>tσ(Ξu, {θ ≤ u}, 0 ≤ u ≤ s} if t∈ [0, T ) and Dθ

T = σ
(
Ξs, {θ ≤ s}, 0 ≤ s ≤ T

)

denote the canonical right-continuous filtration on Ωc. This canonical space Ωc is equipped with the
product metric topology Sk⊗2 ⊗ |.| where |.| denotes the standard topology on [0, T ] induced by the
absolute value.

In order to conclude to the convergence of the réduites, we need, following Theorem 4.1 estab-
lished in [25], to show that any limiting distribution Q = limn P((X̄n,In(Z)),τ∗n)

on the canonical space(
ID([0, T ],R2)× [0, T ], Sk⊗2 ⊗ |.|

)
satisfies the (H)-assumption, namely

EQ
(
H | Dθ

t

)
= EQ

(
H | Dt

)
Q-a.s.

for every random variable H defined on Ωc.

Let AtomQ(θ) = {s ∈ [0, T ], Qθ({s}) > 0} be the set, possibly empty, of Q-atoms of θ. Let
Φ : ID([0, T ],R2) → R and Ψ : ID([0, T ],R) → R two bounded functionals, Sk⊗2- and Sk-continuous
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respectively and let u /∈ AtomQ(θ), u ≤ s ≤ T . Noting that Ψ(In(Z)
s)1{τ∗n≤u} is Fn

s -measurable, we
get

EQ
(
Φ(Ξ)Ψ(Ξ2,s)1{θ≤u}

)
= lim

n
E
(
Φ(X̄n, In(Z))Ψ(In(Z)

s)1{τ∗n≤u}

)

= lim
n

E
(
E
[
Φ(X̄n, In(Z))|FZ

s

]
Ψ(In(Z)

s)1{τ∗n≤u}

)
.

Up to an extraction (n′), we may assume that E
[
Φ(X̄n′

, In′(Z))|FZ
s

]
weakly converges to E

[
Φ(X,Z)|FZ

s

]

since Φ(X̄n′

, In′(Z)) weakly converges toward Φ(X,Z). Up to a second extraction, still denoted
(n′), we may assume that Ψ(In(Z)

s) a.s. converges toward Ψ(Zs) for the Skorokhod topology since
P(∆Zs 6= 0) = 0 (the stopping operator at time s, α 7→ αs, is Sk-continuous at functions α which are
continuous at s).

Consequently, going back on the canonical space Ωc, we obtain

(
E
[
Φ(X̄n, In(Z))|FZ

s

]
, Ψ(In(Z)

s), 1{τ∗n≤u}

)
L−→ LQ

(
E
[
Φ(Ξ)|FΞ2

s

]
,Ψ(Ξ2,s),1{θ≤u}

)
.

which ensures that

EQ
(
Φ(Ξ)ψ(Ξ2,s)1{θ≤u}

)
= EQ

(
EQ
[
Φ(Ξ)|Ds−

]
Ψ(Ξ2,s)1{θ≤u}

)
.

One concludes by standard functional monotone approximation arguments that the equality holds
true for any bounded measurable functional Φ, Ψ and any u∈ [0, T ]. Then, by considering a sequence
sn ↓ s, sn > s, we derive that

EQ

(
Φ(Ξ) | Dθ

s

)
= EQ

(
Φ(Ξ) | Ds

)
.

This shows that the (H)-assumption is fulfilled so that by Theorem 4.1, Un
0 converges toward U0. �
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son, Paris, xiv+286 pp.

[8] N. El Karoui, M. Jeanblanc, S. Shreve (1998). Robustness of the Black-Scholes formula, Mathematical
Finance, 8(2):93-126.

40



[9] N. El Karoui (1981). Les aspects probabilistes du contrôle stochastique. (French) [The probabilistic aspects
of stochastic control] 9th Saint Flour Probability Summer School, 1979 (Saint Flour, 1979), pp.73-238, Lecture
Notes in Math., 876, Springer, Berlin-New York.

[10] B. Hajek (1985). Mean stochastic comparison of diffusions, Probability and Related Fields, 68(3):315-329,
DOI: 10.1007/BF00532643.

[11] O. Hernández-Lerma, W.J. Runggaldier (1994). Monotone approximations for convex stochastic
control problems, Journal of Mathematical Systems, Estimation, and Control, 4(4):99-140.

[12] F. Hirsch, C. Profeta, B. Roynette, M. Yor (2010). Applying Itô’s motto: “look at the infinite
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[29] J. Neveu (1972). Martingales à temps discret, Masson, Paris, 218 pp. English translation: Discrete-
parameter martingales, North-Holland, New York, 1975, 236 pp.

[30] Pagès G. (2014). Introduction to Numerical Probability and Applications to Finance, to appear, coll.
Universitext, Springer. Preliminary version available at www.proba.jussieu.fr/pageperso/pages.html.

[31] G. Pagès (2013). Functional co-monotony of processes with an application to peacocks, Séminaire de
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A Appendix: Euler scheme for Brownian martingale diffusions

Proposition A.1. Let (X̄n
t )t∈[0,T ] be the genuine Euler scheme of step T

n
of the SDE dXt = σ(t,Xt)dWt, X0 =

x defined as the solution to
dX̄n

t = σ(tn, X̄
n
tn
)dWt, X̄

n
0 = x.

If σ : [0, T ]× R→ R is continuous and satisfies the linear growth assumption

∀ t∈ [0, T ], ∀x∈ R, |σ(t, x)| ≤ Cσ(1 + |x|)

Then the sequence (X̄n)n≥1 is C-tight on C([0, T ],R) and any of its limiting distribution is a weak solution to

the above SDE. In particular if a weak uniqueness assumption holds, then X̄n (‖ . ‖sup)−→ X.

Following e.g. [5] (Lemma B.1.2, p.275, see also [24, 30]), we first show that, owing to the linear growth
assumption |σ(t, x)| ≤ Cσ(1 + |x|) made on σ, the non-decreasing function ϕp,n(t) = E sups∈[0,t] |X̄n

s |p, p ∈
[1,+∞) is finite for every t∈ [0, T ]. Using Doob’s Inequality and Gronwall’s Lemma, it follows that there exists
a real constant C = C′

p,σ > 0 such that

ϕp,n(t) ≤ ϕp(t) := CeCt(1 + |x|p).

Consequently, it follows from the the successive application of the Lp-B.D.G. and Hölder inequalities for p ∈
(2,+∞) that, for every s, t∈ [0, T ], s ≤ t,

E|X̄n
t − X̄n

s |p ≤ cppE

(∫ t

s

|σ(un, X̄n
un

)|2du
) p

2

≤ cpp|t− s|
p
2

(
1 + ϕp(T )

)
.

Kolmogorov’s criterion (see [1], Theorem 12.3, p.95) implies that the sequence Mn = (Wt, X̄
n
t )t∈[0,T ] is C-

tight (i.e. tight as (C([0, T ],R), ‖ . ‖sup)-valued random variables). From now on, we mainly rely on the results

established in [20]. Let n′ be a subsequence such that (X̄n′

,W ) functionally weakly converges to a probability
Q on (C([0, T ],R2), ‖ . ‖sup), hence it satisfies the U.T. (for Uniform Tightness) assumption (see Proposition 3.2
in [20]). The function σ being continuous on [0, T ]×R, the sequence (σ(tn, X̄n

tn
))n≥1 is C-tight on the Skorokhod

space since
(
(tn, X̄

n
tn
)t∈[0,T ]

)
n≥1

clearly is. One derives that, up to a new extraction still denoted (n′), we may
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assume that
(
σ(tn′ , X̄n′

tn′
)t∈[0,T ], X̄

n′

,W
)
n≥1

functionally converges toward a probability P on ID([0, T ],R3). By

Theorem 2.6 from [20] for the functional convergence of stochastic integrals, we know that

(
σ(tn′ , X̄n′

tn′
), (X̄n′

t ,Wt),

∫ t

0

σ(sn′ , X̄n′

sn′
)dWs

)

t∈[0,T ]

L(Sk)−→ Q as n→ +∞

where Q is a probability distribution on ID([0, T ],R4) such that the canonical process Y = (Y i)i=1:4 satisfies

Y
L∼
(
Y 1, (Y 2, B),

∫ .

0 Y
2
s dBs) where B : Y 3 is a standard Q-Brownian motion with respect to the Q-completed

right continuous canonical filtration (D4
t )t∈[0,T ] on ID([0, T ],R4). Furthermore, we know that Y 1 = σ(., Y 2)

Q-a.s. since supt∈[0,T ] |σ(tn′ , X̄n′

tn′
)− σ(t, X̄n′

t )| converges to 0 in probability. The former claim follows from the

facts that supt∈[0,T ] |X̄n
t | is tight and σ(t, ξ) is uniformly continuous on every compact set of [0, T ] × R with

linear growth in ξ uniformly in t ∈ [0, T ]. On the other hand, we know that X̄n′

= x +
∫ .

0
σ(sn′ , X̄n′

sn′
)dWs

which in turn implies that Y2,. = x+
∫ .

0
σ(s, Y2,s)dWs. This shows the existence of a weak solution to the SDE

Xt = x+
∫ t

0 σ(s,Xs) dWs, t∈ [0, T ].
Under the weak uniqueness assumption, this distribution is unique hence is the only functional weak limiting

distribution for the tight sequence (X̄n)n≥1, hence we get the convergence in distribution on C([0, T ],R). �

Remark. If the original SDE has a unique strong solution, the same proof leads to the establish the convergence
in probability of the Euler scheme toward X . One just has to add the process X itself to the sequence(
(σ(tn, X̄

n
tn
))t∈[0,T ], X̄

n,W
)
n≥1

B Appendix: Euler scheme for a Lévy driven martingale diffusion

We consider the following SDE driven by a martingale Lévy process Z with Lévy measure ν

Xt = x+

∫

(0,t]

κ(s,Xs−)dZs, X0 = x (B.33)

(where κ is a Borel function on [0, T ]× R) and its genuine Euler scheme defined by

X̄n
tk+1

= X̄n
tk

+ κ(tk, X̄tk)(Ztk+1
− Ztk), k = 1, . . . , n, X̄0 = X0 = x (B.34)

at discrete times tnk and extended into a continuous time process by setting X̄t = X̄n
tn

so that

X̄n
t = x+

∫

(0,t]

κ(sn−, X̄
n
sn−

)dZs. (B.35)

B.1 Convergence of the Euler scheme toward a solution to Lévy driven SDE

Proposition B.1. (a) Assume that ν(|z|p) < +∞ for a p∈ (1, 2], has no Brownian component and κ(t, ξ) has
linear growth in ξ uniformly in t∈ [0, T ]. Then

sup
n≥1

∥∥ sup
t∈[0,T ]

|X̄n
t |
∥∥
p
+
∥∥ sup

t∈[0,T ]

|Xt|
∥∥
p
< +∞.

If moreover κ is continuous, the SDE (2.10) has at least one weak solution and, as soon as weak uniqueness
holds for (B.33),

X̄n
t

L(Sk)−→ X.

(b) If ν(z2) < +∞, the same result remains true mutatis mutandis if Z has a non-zero Brownian component.

Remark. In fact, as soon as (B.33) has a strong solution; one shows by the same argument as those developed
below the stronger result

sup
t∈[0,T ]

|X̄n
t −Xt| P−→ 0 as n→ +∞.
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We refer to [16] for a proof when κ is homogeneous and C3.

Proof. (a) We consider the Lévy-Khintchine decomposition of the Lévy process Z = (Zt)t∈[0,T ], namely

Zt = Z̃t + Z1, t∈ [0, T ],

where Z̃η is a pure jump square integrable martingale with jumps of size at most 1 and Lévy measure ν( .∩{|z| ≤
1}) (having a second moment by construction) and Z1 is a compensated (hence martingale) Poisson process
with (finite) Lévy measure ν( . ∩ {|z| > 1}).

It is clear from (B.34) that X̄n
tn
k
∈ Lp for every k = 0 . . . , n. Then, as ν(|z|p) < +∞, it follows classically

that supu∈[tn
k
,tn

k+1]
|Zu| d∼ sup[0,T

n
] |Zu|∈ Lp (see e.g. [34]). Combining these two results implies that ϕp,n(t) :=∥∥ sups∈[0,t] |X̄n

s |
∥∥
p
is finite for every t∈ [0, T ].

It follows from Equation (B.35) satisfied by X̄ that, for every t∈ [0, T ],

sup
s∈[0,t]

|X̄n
s | ≤ |x|+ sup

s∈[0,t]

∣∣∣∣∣

∫

(0,s]

κ(un−, X̄
n
un−

)dZu

∣∣∣∣∣ .

Consequently

ϕp,n(t) ≤ |x|+
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∣

∫

(0,s]

κ(un−, X̄
n
un−

)dZu

∣∣∣∣∣

∥∥∥∥∥
p

The Lp-B.D.G Inequality implies (since p > 1)

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∣

∫

(0,s]

κ(un, X̄un−
)dZu

∣∣∣∣∣

∥∥∥∥∥
p

≤ cp

∥∥∥∥∥∥

∑

0<s≤t

κ(sn, X̄sn−

)2(∆Zs)
2

∥∥∥∥∥∥

1
2

p
2

.

As p∈ (1, 2], p
2 ≤ 1 which implies

∥∥∥∥∥∥

∑

0<s≤t

κ(sn, X̄sn−

)2(∆Zs)
2

∥∥∥∥∥∥

1
2

p
2

≤



E
∑

0<s≤t

|κ(sn, X̄sn−

)|p|∆Zs|p




1
p

=

(
ν(|z|p)E

∫ t

0

|κ(sn, X̄sn−

)|pds
) 1

p

≤ Cp
κ,pν(|z|p)

1
p

(∫ t

0

(1 + ϕ(s)p)ds

) 1
p

where Cκ,p is a real constant satisfying |κ(s, ξ)| ≤ C(1 + |ξ|p) 1
p , (s, ξ)∈ [0, T ]× R.

Finally, there exists a real constant C′ = C′
κ,p,ν such that the function ϕp,n satisfies

ϕp,n(t)
p ≤ C′

(
|x|p + t+

∫ t

0

ϕ(s)pds

)

which in turn implies by Gronwall’s Lemma

∀ t∈ [0, T ], ϕp,n(t)
p ≤ eC′tC′(1 + |x|p)

or, equivalently,
∀ t∈ [0, T ], ϕp,n(t) ≤ ϕ(t) = eC

′′tC′′(1 + |x|) where C′′ = C′/p.

To establish the Skorokhod tightness of the sequence (X̄n)n≥1, we rely on the Aldous tightness criterion
(see Definition 4.1(b) or [18], Theorem 4.5, p.356). Let ρ∈ (0, 1]. Let σ and τ be two [0, T ]-valued FZ-stopping
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stopping times such that σ ≤ τ ≤ (σ + δ) ∧ T .

E|X̄n
τ − X̄n

σ |ρ = E
∣∣∣
∑

σ<u≤τ

κ(un, X̄
n
un−

)∆Zu

∣∣∣
ρ

≤ E
( ∑

σ<u≤τ

|κ(un, X̄n
un−

)|ρ|∆Zu|ρ
)

= ν(|z|ρ)E
∫ (σ+δ)∧T

σ

|κ(un, X̄n
un−

)|ρ

≤ δ ν(|z|ρ)E sup
t∈[0,T ]

|κ(t, X̄n
t )|ρ

≤ δ ν(|z|ρ)Cκ(1 + ϕp(T ))
ρ
p

where we used that ρ ≤ 1 ≤ p and ν(|z|ρ) ≤ ν(|z|2 ∧ 1) + ν(|z|p) < +∞. Then

sup
{
E|X̄τ − X̄σ|ρ + E|Zτ − Zσ|ρ, σ ≤ τ ≤ (σ + δ) ∧ T, FZ-stopping times

}
≤ ν(|z|ρ)(1 + Cκ(1 + ϕp(T ))

ρ
p

)
δ

which goes to 0 as δ → 0. This implies that the sequenceMn = (X̄n, Z), n ≥ 1, is Sk-tight. Moreover, following
Proposition 3.2 from [20], the sequence (Mn)n≥1 satisfies the U.T. condition it is Sk-tight and

E sup
t∈[0,T ]

(
|∆X̄n| ∨ |∆Zt|

)
≤

[
E
( ∑

0<t≤T

|∆X̄n
t |p + |∆Zt|p

)] 1
p

≤
[
ν(|z|p)E

∫ T

0

(
1 + |κ(tn, X̄n

tn
)|p
)
dt
] 1

p

≤
(
ν(|z|p)

) 1
p
(
T + Cp

κ,p(1 + ϕp(T ))
) 1

p < +∞.

On the other hand, the sequence
(
(κ
(
tn, X̄

n
tn
))t∈[0,T ],Mn

)

n≥1
is Sk-tight owing to the following lemma.

Lemma B.1. Let V+
[0,T ] be the set of functions µ : [0, T ] → [0, T ] such that µ(0) = 0 and µ(T ) = T endowed

with the sup norm. Assume κ : [0, T ]× R → R is continuous. Then the mapping Ψ : V+
[0,T ] × ID([0, T ],Rd) →

ID([0, T ],R1+d) defined by Ψ(µ, α) =
(
κ(µ(.), α1(.)), α

)
is continuous (α = (α1, . . . , αd)) for the product topology.

Proof (of the lemma). Let (λn)n≥1 be a sequence of homeomorphisms of [0, T ] such that λn → Id[0,T ] and

αn ◦ λn → α uniformly and let µn → µ in V+
[0,T ] where Id[0,T ] denotes the identity of [0, T ] to [0, T ]. Then

the closure of (αn ◦ λn(t))n≥1,t∈[0,T ] is a compact set K of Rd hence the function κ is uniformly continuous on
[0, T ]×K. On the other hand

‖µn ◦ λn − Id[0,T ]‖sup ≤ ‖µn − Id[0,T ]‖sup + ‖λn − Id[0,T ]‖sup as n→ +∞

and ‖αn ◦ λn − α‖sup → 0 as n→ +∞. The conclusion follows. �

Up to an extraction, we may assume that the triplet
((
κ(tn′ , X̄n′

tn′

)
t∈[0,T ]

,Mn′

)
n≥1

weakly converges for the

Skorokhod topology toward a probability P on the canonical Skorokhod space (ID([0, T ],R3), (Dt)t∈[0,T ]).
By Theorem 2.6 from [20] for the functional convergence of stochastic integrals, we know that

(
κ(tn′ , X̄n′

tn′
), (X̄n′

t , Zt),

∫ t

0

κ(sn′−, X̄
n′

sn′
−

)dZs

)

t∈[0,T ]

L(Sk)−→ Q

probability distribution on ID([0, T ],R4) such that the canonical process Y = (Y i)i=1:4 satisfies Y
L∼
(
Y 1, (Y 2, Z),

∫ .

0
Y 2
s dZs)

where Y 3 is a Lévy process with respect to the Q-completed right continuous canonical filtration (DQ
t )t∈[0,T ] on

ID([0, T ],R4) having the distribution of Z (i.e. QY 3 = L(Z)). Furthermore, we know that Y 1 = κ(., Y 2.) Q-a.s.
since the mapping (µ, (αi)i=1:4) 7→ α1 − κ(µ, α2) is continuous from V+

[0,T ] × ID([0, T ],R4) to ID([0, T ],R) (and

tn converges uniformly to Id[0,T ]).

On the other hand we know that X̄n′

t = x +
∫ t

0 κ(sn′−, X̄
n′

sn′
−

)dZs, t ∈ [0, T ] which in turn implies that

(Y 2
t = x +

∫ t

0 κ(s, Y
2
s−

)dZs, t ∈ [0, T ]) Q-a.s.. This shows the existence of a weak solution to the SDE Xt =

x+
∫ t

0
κ(s,Xs−)dZs, t∈ [0, T ].
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Under the weak uniqueness assumption, the distribution QY 2 of Y 2 is unique equal, say, to PX .

(b) We assume that the Lévy measure has a finite second moment ν(z2) < +∞ on the whole real line. Then
one can decompose Z as

Zt = aWt + Z̃t, t∈ [0, T ], (a ≥ 0)

where κ ≥ 0 and Z̃ is a pure jump martingale Lévy process with Lévy measure ν. Then one shows like in the
Brownian case that ϕ(t) = E sups∈[0,t] |X̄n

s |2 is finite over [0, T ] using that all X̄tk are square integrable and

E sups∈[tk,tl+1) |Zs − Ztk |2 = E sups∈[0,T
n
] |Zs|2 < +∞. Then, using Doob’s Inequality, we show that

ϕ(t) ≤ 4C2
κ(a

2 + ν(z2)
)(

t+

∫ t

0

ϕ(s)ds

)

where Cκ is a real constant satisfying κ(t, ξ) ≤ Cκ(1 + |ξ|2) 1
2 , ξ∈ R.

To establish the Skorokhod tightness of the sequence, we rely on the Aldous tightness criterion (see Defini-
tion 4.1(b) or[18], Theorem 4.5, p.356). Let σ and τ be two [0, T ]-valued FZ -stopping stopping times such that

σ ≤ τ ≤ (σ+ δ)∧T . Then applying Doob’s Inequality, this time to the martingale
( ∫ σ+s

σ
κ(un, X̄un−

)dZu

)

s≥0
,

we get

E|X̄τ − X̄σ|2 ≤ 4a2E

(∫ τ

σ

|κ(un, X̄n
un−

)|2du
)
+ 4E




∑

σ<u≤τ

|κ(un, X̄n
un−

)|2|∆Zu|2




= 4
(
a2 + ν(z2)

)
E

(∫ τ

σ

|κ(un, X̄n
un−

)|2du
)

≤ 4
(
a2 + ν(z2)

)
E

(∫ (σ+δ)∧T

σ

|κ(un, X̄n
un−

)|2du
)

≤ 4(a2 + ν(z2)
)
δ C2

κ(1 + ϕ(T )).

Then E|X̄τ − X̄σ|2 + E|Z̄τ − Z̄σ|2 ≤ 4(a2 + ν(z2)
)
ν(z2)(1 + ϕ(T )

)
δ which clearly implies the Sk-tightness

of the sequence Mn = (X̄n, Z), n ≥ 1.
The sequence satisfies the U.T. condition from [20] since (Mn)n≥1 is Sk-tight and (see Proposition 3.2

from [20])

E sup
t∈[0,T ]

(
|∆X̄n| ∨ |∆Zt|

)
≤

(
E
∑

0<t≤T

|∆X̄n
t |2 + |∆Zt|2

) 1
2

≤
(
ν(z2)E

∫ T

0

(1 + |κ(tn, X̄n
tn
)|2dt

) 1
2

≤ ν(z2)(1 + Cκ(1 + ϕ(T ))) < +∞.

From this point, the proof is quite similar to that of claim (a). �

B.2 Higher moments

Let Zt = aWt + Z̃t, t∈ [0, T ], be the decomposition of the Lévy process Z where W is a standard B.M. and Z̃
is an independent pure jump Lévy process.

Proposition B.2. If ν(|z|p) < +∞ for p∈ [2,+∞), then

sup
n≥1

∥∥∥ sup
t∈[0,T ]

|X̄n
t |
∥∥∥
p
< +∞.

Proof. If p∈ (1, 2], the claim follows from the above Proposition B.1. Assume from now on p∈ [2,+∞). Let
ϕp,n(t) = E

(
supt∈[0,T ] |X̄n

t |p
)
. Let ℓp be the unique integer defined by the inequality 2ℓp < p ≤ 2ℓp+1. It is
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straightforward using the same arguments as above that ϕp,n(T ) < +∞ since supt∈[0,T ] |Zt|p ∈ L1 (see [34],

Theorem 25.18, p. 166) and Xtk ∈ Lp by induction using (B.34). For convenience, we denote κs− = κ(sn, X̄
n
sn−

).

Now, combining the (integral and regular) Minkowski and the B.D.G. Inequalities implies

ϕp,n(t)
1
p ≤ |x|+ cp

∥∥∥a2
∫ t

0

κ2s−ds+
∑

0<s≤t

κ2s−(∆Zs)
2
∥∥∥

1
2

p
2

≤ |x|+ cp

(
a
∥∥∥
∫ t

0

κ2s−ds
∥∥∥

1
2

p
2

+
∥∥∥
∑

0<s≤t

κ2s−(∆Zs)
2
∥∥∥

1
2

p
2

)
(B.36)

where we used in the second inequality that
√
u+ v ≤ √u +

√
v, u, v ≥ 0. First note that by two successive

applications of Hölder Inequality to dt and dP, we obtain

∥∥∥∥
∫ t

0

κ2s−ds

∥∥∥∥

1
2

p
2

≤ T 1
2−

1
p

(∫ t

0

E |κs− |pds
) 1

p

(B.37)

Now using that for every ℓ ∈ {1, . . . , ℓp},
∑

0<s≤t

|κs− |2
ℓ |∆Zs|2

ℓ −
∫ t

0

|κs− |2
ℓ

ds ν(|z|2ℓ), t ∈ [0, T ], is a true

martingale, we have by combining the Minkowski inequality, the B.D.G. Inequality applied with p
2ℓ
> 1 and the

elementary inequality (u+ v)r ≤ ur + vr, u, v ≥ 0, r∈ (0, 1], yield

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2
ℓ

(∆Zs)
2ℓ

∥∥∥∥∥∥

1

2ℓ

p

2ℓ

≤

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2
ℓ

(∆Zs)
2ℓ −

∫ t

0

|κs− |2
ℓ

ds ν(|z|2ℓ)

∥∥∥∥∥∥

1

2ℓ

p

2ℓ

+

∥∥∥∥
∫ t

0

|κs− |2
ℓ

ds

∥∥∥∥

1

2ℓ

p

2ℓ

ν(|z|2ℓ) 1

2ℓ

≤ c
1

2ℓ
p

2ℓ

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2
ℓ+1

(∆Zs)
2ℓ+1

∥∥∥∥∥∥

1

2ℓ+1

p

2ℓ+1

+

∥∥∥∥
∫ t

0

|κs− |2
ℓ

ds

∥∥∥∥

1

2ℓ

p

2ℓ

ν(|z|2ℓ) 1

2ℓ .

Then two applications of Hölder Inequality applied to dt and dP successively imply

∥∥∥∥
∫ t

0

|κs− |2
ℓ

ds

∥∥∥∥

1

2ℓ

p

2ℓ

≤ T 1

2ℓ
− 1

p

(∫ t

0

E |κs− |pds
) 1

p

.

Summing up these inequalities in cascade finally yields a positive real constant K(0) = Kp,ν,a,T such that

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2(∆Zs)
2

∥∥∥∥∥∥

1
2

p
2

≤ K(0)



(∫ t

0

E |κs− |pds
) 1

p

+

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2
ℓp+1

(∆Zs)
2ℓp+1

∥∥∥∥∥∥

1

2
ℓp+1

p

2
ℓp+1


 .

Now, as p

2ℓp+1 ≤ 1, one gets by the compensation formula

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2
ℓp+1 |∆Zs|2

ℓp+1

∥∥∥∥∥∥

1

2
ℓp+1

p

2
ℓp+1

≤



E
∑

0<s≤t

|κs− |p(∆Zs)
p





1
p

=

(∫ t

0

E|κs− |pds
) 1

p

ν(|z|p) 1
p .

Hence, there exists a real constant K1) = K
(1)
p,ν,a,T > 0

∥∥∥∥∥∥

∑

0<s≤t

|κs− |2(∆Zs)
2

∥∥∥∥∥∥

1
2

p
2

≤ K(1)
p,ν,a,T

(∫ t

0

E|κs− |pds
) 1

p

. (B.38)

47



Finally, plugging (B.37) and (B.38) in (B.36), there exist positive real constants K(ℓ) = K
(ℓ)
p,ν,a,T , ℓ = 2, 3, such

that

ϕp,n(t)
1
p ≤ K

(2)
p,ν,a,T

(
|x|+

(∫ t

0

E|κs− |pds
) 1

p

)

≤ K
(3)
p,ν,a,T

(
|x|+ 1 +

(∫ t

0

ϕp,n(s)ds

) 1
p

)

(where we used in the second inequality that κ has linear growth) so that

ϕp,n(t) ≤ 2p−1(K
′(3)
p,ν,a,T )

p
((
|x|+ 1

)p
+

∫ t

0

ϕp,n(s)ds
)
.

Gronwall’s lemma completes the proof since it implies that

ϕp,n(t) ≤ e2
p−1(K

′(3)
p,ν,a,T

)p t2p−1(K
′(3)
p,ν,a,T )

p(|x| + 1)p. �
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