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The Goh necessary optimality conditions for the Mayer
problem with control constraints

Hélène Frankowska and Daniela Tonon∗†‡

Abstract

The well known Goh second order necessary op-
timality conditions in optimal control theory concern
singular optimal controls taking values in the interior
of a set of controls U. In this paper we investigate these
conditions for the Mayer problem when U is a convex
polytope or a closed subset of class C2 for an integrable
optimal control ū(·) that may take values in the bound-
ary of U. This is indeed a frequent situation in optimal
control and for this reason the understanding of this is-
sue is crucial for the theory of second order optimality
conditions. Applying the Goh transformation we derive
necessary conditions on tangent subspace to U at ū(t)
for almost all t’s.

In the presence of an endpoint constraint, if the
Mayer problem is calm, then similar second order nec-
essary optimality conditions are satisfied whenever the
maximum principle is abnormal. If it is normal, then
analogous results hold true on some smaller subspaces.

1. Introduction

Let U ⊂Rm, K ⊂Rn be closed, x0 ∈Rn, f : [0,1]×
Rn×Rm→ Rn and ϕ : Rn→ R be sufficiently regular.
Consider the Mayer optimal control problem

min
{

ϕ(x(1)) : x(·) ∈ S[0,1](x0), x(1) ∈ K
}
, (1)

where S[0,1](x0) is the set of all absolutely continuous
solutions of the control system

x′(t) = f (t,x(t),u(t)), u(t) ∈U, x(0) = x0. (2)
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Define the Hamiltonian H : [0,1]×Rn×Rn×Rm →
R :

H (t,x, p,u) = 〈p, f (t,x,u)〉.

We first consider the Mayer problem without endpoint
constraints:

min
{

ϕ(x(1)) : x(·) ∈ S[0,1](x0)
}
. (3)

Let (x̄(·), ū(·)) be a strong local minimizer of (3). By
the maximum principle, for an absolutely continuous
p : [0,1]→ Rn satisfying

−p′(t) = Hx(t, x̄(t), p(t), ū(t)) for a.e. t ∈ [0,1] (4)

and
−p(1) = ∇ϕ(x̄(1)) (5)

the following maximum principle holds true for a.e. t :

〈p(t), f (t, x̄(t), ū(t))〉= max
u∈U
〈p(t), f (t, x̄(t),u)〉. (6)

Thus for a.e. t ∈ [0,1] such that the optimal control ū(t)
lies in the interior of U , Hu[t] = 0 and the Legendre-
Clebsch condition Huu[t] ≤ 0 is satisfied, where [t] :=
(t, x̄(t), p(t), ū(t)). If ū(·) is singular, in the sense that
Huu[·] = 0, the Legendre-Clebsch condition doesn’t
bring any additional information about optimal con-
trols. Different, but related, definitions of singular con-
trols and discussions on their importance can be found
for instance in [1, 2, 3], and the references therein.

Assume that Huu[t] = 0 a.e. in [t1, t2]. According
to [4], if U is an open convex polytope, then the matrix
Hxu[t] fu[t] is symmetric and

R(t) :=
1
2

fu[t]∗Hxx[t] fu[t]−
1
2

d
dt

Hxu[t] fu[t]

−Hxu[t] fx[t] fu[t]+
1
2
Hxu[t]

d
dt

fu[t]

is negative definite for a.e. t ∈ [t1, t2]. The first prop-
erty, known in the literature as the Goh condition, in
the case of affine control systems reduces to a condition
on the Lie brackets of the flux functions, as we recall



in Remark 3.2. The second property can be seen as a
generalized Legendre-Clebsch condition.

To deal with closed control constraints Goh also
suggested to use variations of the optimal control which
are equal to zero when ū(t) ∈ ∂U . However, this can’t
be applied to recover second-order optimality condi-
tions when ū(t) ∈ ∂U almost everywhere.

We present here a different approach, based on
non-zero variations of the optimal control even when
ū(·) is a boundary control.

For every u ∈U let us consider the maximal sub-
space Pu contained in the tangent cone to U at u.

Below, Theorems 4.1 and 5.2 provide pointwise
second order necessary optimality conditions respec-
tively in the case when U is a convex polytope or a
subset of class C2 for a singular optimal control ū(·)
being merely integrable. Considering Hxu[t] fu[t] and
R(t) as bilinear operators on the subspace Pū(t), in both
cases, we still have symmetry of Hxu[t] fu[t]. In the for-
mer case we also get the negative definiteness of R(t)
on Pū(t).

In Corollary 4.2 we prove that if U is a closed con-
vex polytope in Rm and f is affine with respect to u:

f (x,u) = f0(x)+g(x)u, (7)

with g(·) ∈ C2(Rn;M(n×m) and if gk(x) denotes the
k−th column of the matrix g(x), then the matrix valued
mapping Θ : [0,1]→M(m×m), given by

θk,l(t) := 〈p(t), [gk,gl ](x̄(t))〉 ∀k, l ∈ {1, . . . ,m},

enjoys the following property: for a.e. t ∈ [0,1], the
subspace Θ(t)

(
Pū(t)

)
(the image of Pū(t) by the linear

operator Θ(t)) is orthogonal to the subspace Pū(t). In
particular we recover the well known Goh condition in
the geometric optimal control: Θ(t) = 0 for a.e. t such
that ū(t) ∈ Int U .

For the Mayer problem with the endpoint constraint
K, we assume calmness at x̄(·). This allows to reduce
the problem to the one without endpoint constraints but
involving a nondifferentiable cost function and so the
classical first and second order necessary conditions are
not satisfied. Still we are able to derive second order
conditions through a variational approach similar to the
one without end point constraints.

Since the very first work by Goh, [4], the Goh con-
dition was investigated by many researchers in the ge-
ometric optimal control theory following fundamental
works by Krener, cf. [5] and [6], on the Goh condi-
tion (and its higher order extensions) when the opti-
mal control is piecewise C∞. His approach was taken
over by several authors and the Goh condition became
mostly known in the form involving Lie brackets, as a

second-order necessary optimality condition for the ab-
normal maximum principle. See for instance [7, 8] and
[3, pp.314-319].

Several authors made an extensive use of the Goh
transformation to recover necessary and sufficient sec-
ond order optimality conditions in an integral and a
pointwise form, see for instance [9], [10] and the bib-
liographies contained therein. However, in these lat-
ter works many additional structural restrictions on the
control system, control sets and also on the optimal con-
trol are imposed, as for instance in Assumptions 1, 2
from [9] concerning the structure optimal controls .

The outline of this paper is as follows. In Section 2
we introduce some notations and provide some prelim-
inary results. Section 3 is devoted to the second order
necessary optimality conditions for an arbitrary set U
and any integrable optimal control at times when it be-
longs to the interior of U . Section 4 deals with the case
when U is a convex polytope and Section 5 with the
case when U is of class C2. The last section adresses
the second order necessary optimality conditions for the
Mayer problem involving endpoint constraints.

Most of results presented here are given without
proofs, because they are quite long and technical and
will be published elsewhere.

2. Preliminaries and notations

The norm in Rn is denoted by ‖ · ‖ and the inner
product by 〈·, ·〉. Let B̊ := {x ∈ Rn : ‖x‖ < 1} be the
open unit ball in Rn. For a nonempty subset K of Rn,
∂K denotes its boundary, Int K its interior and Kc its
complement. The distance function dK : Rn → R+ is
defined by dK(x) := infy∈K ‖x− y‖ for all x ∈ Rn and
the oriented distance bK : Rn → R from K 6= Rn by
bK(x) := dK(x)−dKc(x) for all x∈Rn. We set bK(·) = 0
if K = Rn. Finally, by M(k× r) we denote the space of
matrices having k lines and r columns.

Definition 2.1 Let C : Rm → Rm be a linear mapping
and F be a subspace of Rm. We say that C is symmetric
on F if 〈Cu,v〉 = 〈u,Cv〉 for all u,v ∈ F and that C is
negative definite on F if 〈Cu,u〉 ≤ 0 for all u ∈ F.

Let U be a nonempty closed subset of Rm. For u0 ∈
U the adjacent tangent cone to U at u0 is defined by

T [
U (u0) :=

{
u ∈ Rn : lim

h→0+

dU (u0 +hu)
h

= 0
}
.

The second-order adjacent subset to U at (u0,u) ∈
Rm×Rm is the set defined by

T [(2)
U (u0,u) :=

{
v ∈ Rn : lim

h→0+

dU (u0 +hu+h2v)
h2 = 0

}
.



For any u ∈U we denote by

Pu the largest subspace contained in T [
U (u).

Let f : [0,1]×Rn×Rm→ Rn, f ′(t,x,u) be the deriva-
tive of f (t, ·, ·) at (x,u), fx(t,x,u) and fu(t,x,u) be the
partial derivatives of f with respect to x and u; f ′′(t,x,u)
denotes the Hessian of f (t, ·, ·) at (x,u), while fxx, fxu
and fuu denote the second-order partial derivative of f
with respect to x and u.

Fix a trajectory-control pair (x̄(·), ū(·)) of (2) and
set f [t] = f (t, x̄(t), ū(t)). Let fu[t], fx[t] and f ′′[t] be
defined in a similar way. Throughout the whole paper
we impose the following assumptions : For some δ > 0

(a) f (t, ·, ·) ∈C2 on
(
x̄(t)+δ B̊

)
×
(
ū(t)+δ B̊

)
, ∀ t;

(b) ‖ fu[·]‖, ‖ f ′[·]‖, ‖ f ′′[·]‖ ∈ L1([0,1];R+) and
∃ a(·) ∈ L1([0,1];R+) such that the mappings
f ′(t, ·, ·) and f ′′(t, ·, ·) are a(t)-Lipschitz on
(x̄(t)+δ B̊)× (ū(t)+δ B̊) for a.e. t ∈ [0,1];

(c) f (t,x,U) is closed for all t ∈ [0,1], x ∈ x̄(t)+δ B̊;

(d) ϕ(·) ∈C2 on x̄(1)+δ B̊.

Recall that (x̄(·), ū(·)) is a strong local minimizer for (3)
(resp. (1)) if there exists η > 0 such that x̄(·) minimizes
ϕ over all x(·)∈ S[0,1](x0) (resp. over all x(·)∈ S[0,1](x0)
with x(1) ∈ K) satisfying ‖x̄(·)− x(·)‖∞ ≤ η .

Remark 2.2 Results contained in Sections 3-5 below
are stated only for strong local minimizers. However
they are also valid for the so called weak local mini-
mizers. In contrast, Section 6 concerns only strong lo-
cal minimizers. Not to switch between these different
notions, in this paper we investigate only strong local
minimizers.

Theorem 2.3 (Maximum Principle, [11]) Let
(x̄(·), ū(·)) be a strong local minimizer of the Mayer
problem (3). Then there exists an absolutely continuous
p : [0,1]→ Rn satisfying (4), (5) and (6). Furthermore,
for a.e. t ∈ [0,1] and for any u ∈ Pū(t) we have
Hu[t]u = 0.

Define A := {t ∈ [0,1] : ū(t) ∈ ∂U, Hu[t] 6= 0} and

UA = {u(·) ∈ L∞([0,1];Rm) : ∃c > 0, h0 > 0 s.t.

∀h ∈ [0,h0], ∀ t ∈ A, dU (ū(t)+hu(t))≤ ch2}.

Note that for any u(·) ∈UA, u(t) ∈ T [
U (ū(t)) a.e. in A.

Theorem 2.4 (Integral second order conditions)
Consider a strong local minimizer (x̄(·), ū(·))
of the Mayer problem (3). Then for all

u(·), v(·) ∈ L∞([0,1];Rm) such that u(·) ∈ UA

and v(t) ∈ T [(2)
U (ū(t),u(t)) for a.e. t ∈ A, and for p(·)

as in the maximum principle either
∫ 1

0 Hu[t]u(t)dt < 0
or Hu[t]u(t) = 0 a.e. in [0,1] and

0≥
∫ 1

0
(
Hu[t]v(t)+ 1

2 y(t)∗Hxx[t]y(t)

+u(t)∗Hxu[t]y(t)+ 1
2 u(t)∗Huu[t]u(t))dt

− 1
2 y(1)∗ϕ ′′(x̄(1))y(1) ,

(8)

where y(·) solves the linear system{
y′(t) = fx[t]y(t)+ fu[t]u(t)
y(0) = 0. (9)

The proof follows the same lines as the one in [12].

3. Second order conditions in the interior
of control constraints

Consider a strong local minimizer (x̄(·), ū(·)) of the
Mayer problem (3) and p(·) as in the maximum princi-
ple of Theorem 2.3. Let the matrix valued mapping R(t)
be defined as in the introduction.

Theorem 3.1 Assume that for some 0 ≤ t1 < t2 ≤ 1,
ū(·) is integrable on [t1, t2] and

Huu[t] = 0 a.e. in [t1, t2];
Hxu[·], fu[·] are Lipschitz on [t1, t2];
Hxx[·], fx[·] are essentially bounded on [t1, t2].

(10)

Then, for a.e. t ∈ [t1, t2] such that ū(t) ∈ Int U, the ma-
trix Hxu[t] fu[t] is symmetric and R(t)≤ 0.

The statement of the above theorem is proved for the
Lebesgue points t of (ū(·),R(·)) such that ū(t) ∈ Int U .
The proof is long and technical and will be published
elsewhere. It involves the Goh transformation and some
advanced properties of Lebesgue points.

Remark 3.2 If f is affine with respect to controls, the
symmetry of the matrix Hxu[t] fu[t] implies that the ad-
joint state is orthogonal to the Lie brackets of the flux.
Indeed let f be as in (7), where g(·)∈C2(Rn;M(n×m))
and U is a closed nonempty subset of Rm and let gk(x)
denote the k−th column of g(x). Then for all t such that
Hxu[t] fu[t] is symmetric and for any k, l ∈ {1, . . . ,m},

0 = (Hxu[t] fu[t]− fu[t]∗Hxu[t]∗)k,l

=
n

∑
j=1

p j(t)
n

∑
s=1

(
∂g j,k

∂xs
[t]gs,l [t]−

∂g j,l

∂xs
[t]gs,k[t]

)
,

where g j,k is the j-th element of gk. Hence for any k, l ∈
{1, . . . ,m},〈

p(t),
∂gk

∂x
[t]gl [t]−

∂gl

∂x
[t]gk[t]

〉
= 〈p(t), [gk,gl ][t]〉= 0.



4. Second order conditions on convex poly-
topes

A nonempty subset U ⊂ Rm is called a convex
polytope in Rm if U is an intersection of a finite fam-
ily of affine half-spaces of Rm. Then the adjacent tan-
gent cone T [

U (u0) is equal to the tangent cone of convex
analysis to U for any u0 ∈U .

Theorem 4.1 Let U ⊂ Rm be a convex polytope in Rm.
Consider a strong local minimizer (x̄(·), ū(·)) of the
Mayer problem (3) and p(·) as in the maximum prin-
ciple of Theorem 2.3. Assume that ū(·) is integrable on
[t1, t2] for some 0≤ t1 < t2≤ 1 and (10) holds true. Then
Hxu[t] fu[t] is symmetric on the subspace Pū(t) and R(t)
is negative definite on Pū(t) for a.e. t ∈ [t1, t2].

The proof follows the same lines as the proof of Theo-
rem 3.1, but a change of base is involved and the control
variations take values in the tangent to U at ū(t).

The following corollary generalizes the classical
Goh condition to boundary controls.

Corollary 4.2 Under all the assumptions of Theo-
rem 4.1 suppose that f is as in (7), where g(·) ∈
C2(Rn;M(n×m)) and U is a closed convex polytope in
Rm and let gk(x) denote the k−th column of g(x). Con-
sider the matrix valued mapping Θ : [0,1]→M(m×m),
whose elements are

θk,l(t) := 〈p(t), [gk,gl ](x̄(t))〉 ∀k, l ∈ {1, . . . ,m}.

Then for a.e. t ∈ [t1, t2], the subspace Θ(t)
(
Pū(t)

)
is or-

thogonal to Pū(t). In particular, Θ(t) is equal to zero for
a.e. t ∈ [t1, t2] such that ū(t) ∈ Int U.

Proof. By Theorem 4.1 for a.e. t ∈ [t1, t2], Hxu[t] fu[t] is
symmetric on Pū(t). Fix such t. Since for all a, b ∈ Pū(t),
a∗(Hxu[t] fu[t]− (Hxu[t] fu[t])∗)b = 0, we get

0 =
m

∑
k=1

m

∑
l=1

ak(Hxu[t] fu[t]− fu[t]∗Hxu[t]∗)k,lbl .

Consequently 〈p(t),∑m
k=1 ∑

m
l=1 ak[gk,gl ](x̄(t))bl〉 = 0

and therefore 0 = ∑
m
k=1 ∑

m
l=1 ak〈p(t), [gk,gl ](x̄(t))〉bl =

〈a,Θ(t)b〉, as claimed.

5. Second order conditions for smooth con-
trol constraints

In this section we consider a proper closed set U ⊂
Rm of class C2, see for instance [13]. For a strong local
minimizer (x̄(·), ū(·)) of the Mayer problem (3) define
the following matrix valued mapping C(·) on [0,1]

C(t) =
{

b′′U (ū(t)) if ū(t) ∈ ∂U
0 otherwise

Remark 5.1 If U is of class C2, then
a) ∀ u0 ∈ ∂U there exists a neighborhood W (u0) of

u0 such that the oriented distance bU (·) ∈ C2(W (u0)),
see for instance Theorem 4.3 in [13];

b) ∀ u0 ∈ ∂U, T [
U (u0) = {v ∈ Rm : 〈∇bU (u0),v〉 ≤

0} and the subspace

Pu0 := {v ∈ Rm : 〈∇bU (u0),v〉= 0}= ∂T [
U (u0)

has the dimension equal to m−1.
c) ∀ u0 ∈ ∂U, ∇bU (u0) is the unit outward normal

to U at u0 and, applying the inverse mapping theorem
to bU , it is not difficult to show that for any u∈ ∂T [

U (u0)

we have − 1
2 〈b
′′
U (u0)u,u〉∇bU (u0) ∈ T [(2)

U (u0,u).

For a trajectory-control pair (x̄(·), ū(·)) and for every
t ∈ [0,1] such that ∇bU (ū(t)) does exist, define the m−1
dimensional subspace

S(t) := {u ∈ Rm : 〈∇bu(ū(t)),u〉= 0}.

Theorem 5.2 Let U be of class C2. Consider a strong
local minimizer (x̄(·), ū(·)) of the Mayer problem (3)
and p(·) as in the maximum principle of Theorem 2.3.
Assume that for some 0≤ t1 < t2 ≤ 1, ū(·) is integrable
on [t1, t2].

Then for a.e. t ∈ [t1, t2] such that ū(t) ∈ ∂U and for
some δt > 0

u∗ (Huu[s]−‖Hu[t]‖b′′U (ū(s)))u = 0
for all u ∈ S(s) and for a.e. s ∈ [t−δt , t +δt ]
satisfying ||ū(t)− ū(s)|| ≤ δt ;

Hxu[·], fu[·] are Lipschitz on [t−δt , t +δt ];
Hxx[·], fx[·] are essentially bounded on [t−δt , t +δt ],

we have Hxu[t] fu[t] is symmetric on the subspace Pū(t).

6. Mayer’s problem with the endpoint con-
straints

Let K be a proper closed nonempty subset of Rn of
class C2. Then bK(·)∈C2 on a neighborhood of ∂K, cf.
[13]. We study here the Mayer optimal control problem
(1) involving the end point constraints.

Let (x̄(·), ū(·)) be a strong local minimizer of the
above problem and Pū(t) be defined as in Section 2. If
x̄(1) belongs to IntK, then the previously developed
second order variational analysis does apply as though
there were no endpoint constraints. This is due to the
fact that small perturbations of ū(·) lead to feasible tra-
jectories. For this reason we have to investigate only the
case x̄(1) ∈ ∂K. We deduce, for instance from [14], the
following maximum principle.



Theorem 6.1 Consider a strong local minimizer
(x̄(·), ū(·)) of (1) with x̄(1) ∈ ∂K. Then there exists
an absolutely continuous function p : [0,1]→ Rn and
λ ∈ {0,1}, µ ≥ 0, satisfying λ +µ > 0, (4), (6) and the
transversality condition

−p(1) = λ∇ϕ(x̄(1))+µ∇bK(x̄(1)) .

The above maximum principle may be abnormal, that
is λ = 0. In this case p(1) may be taken equal to
−∇bK(x̄(1)).

Lemma 6.2 Consider a strong local minimizer
(x̄(·), ū(·)) of (1) with x̄(1) ∈ ∂K for which an abnor-
mal maximum principle of Theorem 6.1 holds true for
some µ > 0. Then for every measurable bounded se-
lection u(t) ∈ Pū(t) a.e. in [0,1], the solution y(·) of (9)
satisfies 〈∇bK(x̄(1)),y(1)〉= 0 and 〈p(t), fu[t]u(t)〉= 0
a.e. in [0,1].

If the maximum principle is abnormal, then the cost is
not involved into the first order optimality conditions.
To apply the variational approach developed in the pre-
vious sections, we use the exact penalization which al-
lows to deal with a normal maximum principle.

Definition 6.3 The Mayer problem (1) is called calm
at x̄(·) if there exist ε > 0 and M > 0 such that ∀ ν ∈
(0,ε) and x(·) ∈ S[0,1](x0) satisfying dK(x(1)) ≤ ν and
||x(·)− x̄(·)||∞ ≤ ε we have ϕ(x(1))≥ ϕ(x̄(1))−Mν .

If the Mayer problem (1) is calm at x̄(·), then by Propo-
sition 6.4.3 from [15], there exists k > 0 such that
(x̄(·), ū(·)) is a strong local minimizer of the following
minimization problem:

min
{

ϕ(x(1))+ kdK(x(1)) : x(·) ∈ S[0,1](x0)
}
. (11)

Since ϕ(·) + kdK(·) is no longer C2, we need the fol-
lowing (non smooth) maximum principle that can be
deduced, for instance, from [14].

Theorem 6.4 Consider a strong local minimizer
(x̄(·), ū(·)) of (11) with x̄(1) ∈ ∂K. Then there exists an
absolutely continuous function p : [0,1]→Rn satisfying
(4), (6) and the transversality condition

−p(1) ∈ ∇ϕ(x̄(1))+ k[0,∇bK(x̄(1))], (12)

where [0,∇bK(x̄(1))] = {µ∇bK(x̄(1)) : µ ∈ [0,1]}.

Denote by q1(·) the solution of (4) for p(1) =
−∇ϕ(x̄(1)) and by q2(·) the solution of (4) for p(1) =
−∇ϕ(x̄(1))− k∇bK(x̄(1). Note that qi(1) are extremal

points in the transversality condition (12). The map-
pings qi(·) do not satisfy, in general, the maximum prin-
ciple (6) but are used below to express the second order
necessary optimality conditions. Define for i = 1,2

ϕ
1(·) := ϕ(·), ϕ

2(·) := ϕ(·)+ kbK(·),

H i
xx[·] := Hxx(·, x̄(·),qi(·), ū(·)).

The mappings H i
xu[·] and H i

uu[·] are defined similarly.

Theorem 6.5 Consider a strong local minimizer
(x̄(·), ū(·)) of (11) with x̄(1) ∈ ∂K and p(·) as in Theo-
rem 6.4. Then for every u(·)∈UA such that Hu[·]u(·) =
0 and the corresponding solution y(·) of (9) verifies
〈∇bK(x̄(1)),y(1)〉= 0, and for any v(·)∈ L∞([0,1];Rm)

satisfying v(t)∈ T [(2)
U (ū(t),u(t)) for a.e. t ∈ A, there ex-

ists i ∈ {1,2} such that

0≥
∫ 1

0

(
H i

u [t]v(t)+
1
2

y(t)∗H i
xx[t]y(t)

+u(t)∗H i
xu[t]y(t)+

1
2

u(t)∗H i
uu[t]u(t))dt

− 1
2

y(1)∗(ϕ i)′′(x̄(1))y(1).

(13)

Consider the solution q(·) of the linear system (4) such
that q(1) =−∇bK(x̄(1)) and define the subspaces Tt ⊂
Pū(t)

Tt := {u ∈ Pū(t) : 〈q(t), fu[t]u〉= 0}.

By Lemma 6.2, if the abnormal maximum principle of
Theorem 6.1 holds true, then Tt = Pū(t) a.e. in [0,1]
and q(·) satisfies the maximum principle. Observe next
that for every measurable essentially bounded selection
u(t) ∈ Tt and the corresponding solution y(·) of (9)
we have 〈∇bK(x̄(1)),y(1)〉 = 0. Therefore, by Theo-
rem 6.5, (13) holds true for every u(·) ∈ UA such that
u(t) ∈ Tt a.e. in [0,1]. This and similar, but lengthly
proofs as those of results from Sections 3,4,5 allow to
deduce from (13) the following three theorems.

Theorem 6.6 Consider a strong local minimizer
(x̄(·), ū(·)) of (1) such that x̄(1) ∈ ∂K. Assume that (1)
is calm at x̄(·), that for some 0 ≤ t1 < t2 ≤ 1, ū(·) is
integrable on [t1, t2] and for j = 1, 2

H j
uu[t] = 0 a.e. in [t1, t2];

H j
xu[·], fu[·] are Lipschitz on [t1, t2];

H j
xx[·], fx[·] are essentially bounded on [t1, t2].

(14)

Then for a.e. t ∈ [t1, t2] with ū(t) ∈ IntU there exists
i ∈ {1, 2} such that H i

xu[t] fu[t] is symmetric on Tt and

Ri(t) := 1
2 fu[t]∗H i

xx[t] fu[t]− 1
2

d
dt H

i
xu[t] fu[t]

−H i
xu[t] fx[t] fu[t]+ 1

2 H i
xu[t]

d
dt fu[t]

is negative definite on Tt .



Theorem 6.7 Let U be a convex polytope and
(x̄(·), ū(·)) be a strong local minimizer of (1) such that
x̄(1) ∈ ∂K. Assume that (1) is calm at x̄(·) and for some
0 ≤ t1 < t2 ≤ 1, ū(·) is integrable on [t1, t2] and (14)
holds true for j = 1, 2. Then for a.e. t ∈ [t1, t2] there
exists i ∈ {1, 2} such that H i

xu[t] fu[t] is symmetric on
Tt and Ri(t) is negative definite on Tt .

Corollary 6.8 Under all the assumptions of Theo-
rem 6.7 suppose that f is as in (7), where g(·) ∈
C2(Rn;M(n×m)) and U is a closed convex polytope in
Rm and let gk(x) denote the k−th column of g(x). For
i = 1, 2 define the matrix valued mappings Θi : [0,1]→
M(m×m), where

θ
i
k,l(t) := 〈qi(t), [gk,gl ](x̄(t))〉 ∀k, l ∈ {1, . . . ,m}.

Then for a.e. t ∈ [t1, t2] there exists i ∈ {1, 2} such that
Θi(t)(Tt) is orthogonal to Tt .

Consider subspaces S(s) defined as in Section 5.

Theorem 6.9 Let U be of class C2 and (x̄(·), ū(·)) be a
strong local minimizer of the Mayer problem (1) such
that x̄(1) ∈ ∂K. Assume that (1) is calm at x̄(·) and for
some 0≤ t1 < t2 ≤ 1, ū(·) is integrable on [t1, t2].

Then for a.e. t ∈ (t1, t2) such that ū(t) ∈ ∂U and
for some δt > 0 and j = 1, 2 the following relations are
satisfied:

u∗
(
H j

uu[s]−‖H j
u [s]‖b′′U (ū(s))

)
u = 0 ∀u ∈Ts

and a.e. s ∈ (t−δt , t +δt) with ||ū(t)− ū(s)|| ≤ δt ;
H j

xu[·], fu[·] are Lipschitz on (t−δt , t +δt);
H j

xx[·], fx[·] are essentially bounded on (t−δt , t +δt)

we can find i∈ {1,2} for which H i
xu[t] fu[t] is symmetric

on Tt .

Remark 6.10 Similar results can be obtained when K
is an intersection of a finite family of closed sets K j of
class C2. Then the assumptions and statements will in-
volve Hamiltonians H j for each active index j.

7. Conclusions and future works

For a nonlinear Bolza optimal control problem we
proposed pointwise second order necessary optimality
conditions extending those of Goh to the case of a
closed control constraint given by a polytope or by a
C2 subset of Rm and for integrable optimal controls that
may take values on the boundary of control constraints.
Furthermore, we have shown that on the interior of the
control constraints Goh conditions hold true for inte-
grable optimal controls without imposing any structural
properties on the control set.

This was done by investigating first the free end-
point problem and then, the calmness assumption al-
lowed us to reduce the Mayer problem with endpoint
constraints to the one without them, but involving a non-
differentiable cost function. For this equivalent problem
we obtained similar pointwise conditions using the de-
veloped variational approach for the free endpoint prob-
lems. Our future work will concern a larger class of
end-point constraints and more general control sets.
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