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Dissipative formulation of initial boundary value problems for

Friedrichs’ systems

Clément Mifsud, Bruno Després, Nicolas Seguin

October 14, 2014

Abstract

In this article we present a dissipative definition of a solution for initial boundary value problems
for Friedrichs’ systems posed in the space L2

t,x. We study the information contained in this definition
and prove an existence and uniqueness theorem in the non-characteristic case and with constant
coefficients. Finally, we compare our choice of boundary condition to previous works, especially on
the wave equation.
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1 Introduction

The aim of this paper is to present a notion of solution for initial boundary value problems in the case of
linear hyperbolic systems. This problem has been studied by many different authors [9, 10, 15, 14, 2, 18, 7]
and there are still a lot of open questions for this kind of problem (in particular in the case of variable
multiplicities : see [16]). In addition, many physical systems can recast in a Friedrichs’ framework :
linear elasticity theory [19], isotropic Maxwell equations [8], linearized Euler equations, MHD [16].

Having in mind dissipative problems such as viscoplastic problems for which boundary conditions
play a important mechanical role and their associated limit plastic problems, which can develop singu-
larities and discontinuities, our initial goal was to give a new definition of solution that requires minimal
regularity and in particular, the solution does not need a trace on the boundary. In [5], a new formula-
tion for Friedrichs’ systems on the whole space is proposed, very similar to the Kruzhkov’s definition of
entropy solutions of scalar quasilinear equations [11] and to dissipative solutions introduced by Lions for
incompressible Euler equations [13]. In [17], Otto extends the concept of entropy solutions to bounded
domains with Dirichlet conditions, without requiring any assumption on the existence of traces of the
solutions (contrary to the theory developed in [1]). We aim to do the same for linear systems. In order
to verify that this original formalism contains enough information, we prove in the classical case of con-
stant coefficients in the half-plane that this formulation leads to a well-posed theory in L2

t,x and that our
formulation is equivalent to the usual strong formulation for sufficiently smooth solutions. Finally, since
different theories of boundary conditions are available in the literature, we compare our formulation to
other formulations on a simple example.
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This work is organized as follows. In the first section, we explain formally where the definition
comes from, how this definition can be extended in order to take account of non-homogeneous boundary
conditions and variable coefficients, and then we show in the case of constant coefficients when the
domain is a half-plane that a H1 solution of our weak formulation is a solution of the problem in the
strong sense. Then we prove that there exists a unique solution (in the sense of our definition) in the
non-characteristic setting for H1 initial data and L2 source term, again for constant coefficients and if
the spatial domain is a half-plane (the regularity of the initial data is necessary for our proof, but in
this case, the classical theory is valid for L2 initial data and L2 source term). Finally we compare our
approach of the boundary conditions to the literature (namely to [9],[3] and [6]) and we examine these
boundary conditions on the simple example of the wave equation in 1D with Dirichlet condition.

2 Definition and basic properties

2.1 Motivations and definitions

We are interested here in the following problem
∂tU +

n∑
i=1

Ai∂xiU = f, on (0, T )× Ω,

U(0, x) = U0(x), on Ω,
(A(ν(x))−M(ν(x)))U(t, x) = 0, on (0, T )× ∂Ω,

(1)

where Ω is a open domain (not necessarily bounded) of Rn with (smooth) boundary, denoted by ∂Ω,
U is a vector of size m, f ∈ L2((0, T ) × Ω)m , U0 ∈ L2(Ω)m (in the following L2((0, T ) × Ω)m will be

simply denoted by L2
t,x and L2(Ω)m by L2

x), the matrices Ai are symmetric, A(ν(x)) =

n∑
i=1

νiAi and

ν(x) = (ν1, ν2, . . . , νn) is the exterior unit normal of Ω at the point x ∈ ∂Ω, M(ν(x)) is a symmetric
non-negative matrix such that

kerA(ν(x)) ⊂ kerM(ν(x)) (2)

and
Rm = ker(A(ν(x))−M(ν(x))) + ker(A(ν(x)) +M(ν(x))). (3)

The symmetry of the matrix M is an important hypothesis in our approach. In the work of Friedrichs [9]
the matrix M does not need to be symmetric, but its symmetric part has to be non-negative (see
section 4). In his work, Friedrichs only considers matrices M such that the previous sum is direct (this
hypothesis is too restrictive, especially in the case where det(A(ν(x)) = 0), but one can see (using
lemma 1) that in the non-characteristic case (i.e. det(A(ν(x)) 6= 0) the sum is always direct. In the
following, the matrices Ai are independent of the space and time variables but our formulation can be
extended to matrices with variables coefficients (see remark 5).

Remark 1 To design a matrix M(ν(x)), we could consider an orthogonal matrix P (ν(x)) such that
tP (ν(x))A(ν(x))P (ν(x)) is a diagonal matrix and its diagonal terms are λ1,1 ≤ · · · ≤ λp,p < λp+1,p+1 =
0 = · · · = λq,q < · · · ≤ λm,m, then define

M(ν(x)) =t P (ν(x))diag(|λ1,1|, · · · , |λp,p|, 0, · · · , 0, λq+1,q+1, · · · , λm,m)P (ν(x)).

It means there is no information coming from the incoming characteristic (since we consider here an
homogeneous boundary condition). The hypothesis that M is symmetric still allows us to use a large
class of boundary conditions coming from the theory of characteristics.

To shorten notation, we write Aν instead of A(ν(x)) and M instead of M(ν(x)).

Remark 2 Here we denote by 〈. | .〉 the canonical scalar product on Rm.
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Lemma 1

Let Aν and M be symmetric matrices verifying the properties (2) and (3). The following statements
are true

1. We have the decomposition

Rm = kerAν ⊕ ((ker(Aν −M)) ∩ ImAν)⊕ ((ker(Aν +M)) ∩ ImAν) ,

and we denote k = k0 + k− + k+ the decomposition of k ∈ Rm over this sum.

2. M is positive on (ker(Aν +M)) ∩ ImAν .

3. For all k, κ ∈ Rm, 〈k |Aνκ〉 = 〈k− |Aνκ−〉+ 〈k+ |Aνκ+〉.

4. For all k ∈ Rm, 0 ≤ 〈k− |Mk−〉 ≤ 〈k |Mk〉 and 0 ≤ 〈k+ |Mk+〉 ≤ 〈k |Mk〉.

The proof of this lemma uses classical tools of linear algebra. It allows us to make some algebraic
manipulations (see below) to derive the following definition

Definition 1 We say that U ∈ L2
t,x is a dissipative solution of the system (1) if for all ϕ ∈ W 1,∞

c,+ , the

space of W 1,∞((0, T )× Ω) functions with non-negative values and compact supports (in Rn+1), and for
all k ∈ Rm the following inequality holds∫ T

0

∫
Ω

|U(t, x)− k|2 ∂tϕ(t, x)dxdt

+

∫ T

0

∫
Ω

n∑
i=1

〈U(t, x)− k |Ai(U(t, x)− k)〉 ∂xiϕ(t, x)dxdt

+

∫
Ω

|U0(x)− k|2 ϕ(0, x)dx+

∫ T

0

∫
Ω

2 〈f(t, x) |U(t, x)− k〉ϕ(t, x)dxdt

+

∫ T

0

∫
∂Ω

〈k+ |M(ν(x))k+〉ϕ(t, x)dxdt ≥ 0,

(4)

where k+ stands for the projection on (ker(Aν +M)) ∩ ImAν with respect to the decomposition of Rm
presented in lemma 1.

Remark 3 As Aν and M depend on x ∈ ∂Ω, k+ also depends on ∂Ω. In the case where Aν and M do
not depend on x, k+ is independent of x ∈ ∂Ω (see remark 8 for more details).

It is worth pointing out that the formulation does not require much regularity on the solution, in
particular we do not use any traces of the solution either at the initial time or at the boundary. This
formulation is inspired by the one exposed in [5] for Friedrichs’ systems under constraints in the whole
space. Furthermore, this definition can be used in the case of variable coefficients (see remark 5) and
when the number of non-negative eigenvalues of Aν is not constant along ∂Ω, this is the case of variable
multiplicities (as long as we can find a matrix M that satisfies the hypotheses (2) and (3) and belongs to
L∞), these cases are of deep interest for applications (the condition of constant multiplicities is difficult
to insure for a general domain Ω, in particular for a bounded domain ∂Ω) and that is still an active
domain of research (see for example [16]).

We call this formulation dissipative since taking k = 0 and ϕ(t, x) = T − t in (4), we get the L2-norm
of a solution is non-increasing ∫ T

0

∫
Ω

|U |2(t, x)dtdx ≤ T
∫

Ω

|U0|2(x)dx.

This possible loss of energy of the solution allows us to call the solution dissipative (as P-L. Lions did
for Euler equations in [13]). The word dissipative also refers in the literature to special kind of boundary
conditions, our boundary condition can be called dissipative in that sense (see section 4).

3



Let us briefly explain where this formulation comes from. If we assume that the solution U is regular
and we use the fact that the derivatives of k cancel, we go from (1) to∫ T

0

∫
Ω

|U(t, x)− k|2∂tϕ(t, x)dxdt+

∫ T

0

∫
Ω

n∑
i=1

〈U(t, x)− k |Ai(U(t, x)− k)〉 ∂xiϕ(t, x)dxdt

+

∫ T

0

∫
Ω

2 〈f(t, x) |U(t, x)− k〉ϕ(t, x)dxdt−
∫ T

0

∫
∂Ω

〈U(t, x)− k |Aν(U(t, x)− k)〉ϕ(t, x)dσ(x)dt

+

∫
Ω

|U0(x)− k|2ϕ(0, x)dx−
∫

Ω

|U(T, x)− k|2ϕ(T, x)dx = 0,

by taking the scalar product with U −k and then integrating by parts. Then we write the decomposition
of k = k0 + k−+ k+ and observe that since U ∈ ker(Aν −M) at the boundary we know that U+ = 0 and
it follows that∫ T

0

∫
∂Ω

〈U(t, x)− k |Aν(U(t, x)− k)〉ϕ(t, x)dσ(x)dt

=

∫ T

0

∫
∂Ω

〈U(t, x)− k− |Aν(U(t, x)− k−)〉ϕ(t, x)dσ(x)dt+

∫ T

0

∫
∂Ω

〈k+ |Aνk+〉ϕ(t, x)dσ(x)dt

=

∫ T

0

∫
∂Ω

〈U(t, x)− k− |M(U(t, x)− k−)〉ϕ(t, x)dσ(x)dt−
∫ T

0

∫
∂Ω

〈k+ |Mk+〉ϕ(t, x)dσ(x)dt,

thanks to lemma 1. Consequently,∫ T

0

∫
Ω

|U(t, x)− k|2∂tϕ(t, x)dxdt+

∫ T

0

∫
Ω

n∑
i=1

〈U(t, x)− k |Ai(U(t, x)− k)〉 ∂xiϕ(t, x)dxdt

+

∫ T

0

∫
Ω

2 〈f(t, x) |U(t, x)− k〉ϕ(t, x)dxdt+

∫
Ω

|U0(x)− k|2ϕ(0, x)dx

+

∫ T

0

∫
∂Ω

〈k+ |Mk+〉ϕ(t, x)dσ(x)dt

=

∫ T

0

∫
∂Ω

〈U(t, x)− k− |M(U(t, x)− k−)〉ϕ(t, x)dσ(x) +

∫
Ω

|U(T, x)− k|2ϕ(T, x)dxdt

≥ 0.

Remark 4 Here we explain how to take account of an inhomogeneous boundary condition of the form

(Aν −M)(U(t, x)− Ub(t, x)) = 0, on (0, T )× ∂Ω,

where Ub ∈ L2((0, T )× ∂Ω)m. From the previous formal calculations, we want to eliminate the trace of
U in the term ∫ T

0

∫
∂Ω

〈U(t, x)− k |Aν(U(t, x)− k)〉ϕ(t, x)dσ(x)dt.

Since we know that, formally and using lemma 1,

〈U − k |Aν(U − k)〉
= 〈Ub − k |Aν(Ub − k)〉+ 〈U − Ub |Aν(U − Ub)〉+ 2 〈U − Ub |Aν(Ub − k)〉
= 〈(Ub − k)− |M(Ub − k)−〉 − 〈(Ub − k)+ |M(Ub − k)+〉

+ 〈U − Ub |M(U − Ub)〉+ 2 〈(U − Ub) |M(Ub − k)−〉
≥ − 〈(Ub − k)+ |M(Ub − k)+〉 ,

we just replace the term ∫ T

0

∫
∂Ω

〈k+ |Mk+〉ϕ(t, x)dtdσ(x),

by ∫ T

0

∫
∂Ω

〈(k − Ub)+ |M(k − Ub)+〉ϕ(t, x)dtdσ(x),

in the formulation.
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Remark 5 We also can write a definition of solution for symmetric matrices Ai that belong to the space
W 1,∞((0, T )×Ω)m×m (assuming that one can find a matrix M that satisfies the conditions (2) and (3)
and belongs to L∞((0, T )× ∂Ω)m×m). One just need to add the term∫ T

0

∫
Ω

n∑
i=1

〈U(t, x)− k | ∂xi [Ai] (U(t, x)− k)〉ϕ(t, x)dxdt,

to the left-hand side of the inequality (4).

Remark 6 One can see in the functions parametrized by k ∈ Rm

F (U) = |U − k|2 (5)

the analogue of the entropy functions of Kružkov [11] in the scalar case of quasilinear initial value
problems.

Example 1 In the scalar case (m = 1), the theory of initial boundary value problems is well known
([1],[17]). Using our theory, we see that if Aν ≥ 0 then M = Aν is the only choice for the boundary
matrix and it leads to the fact that there is no condition at that point (this corresponds exactly to the
case when the BLN condition [1] is automatically verified whatever the trace is at that point). In the case
Aν < 0, the choice for M is −Aν , it implies (at least formally) that U = 0 at this point of the boundary
(again this corresponds to the BLN condition).

2.2 What is the information contained in our formulation?

Our goal is here to show that dissipative solutions (which satisfy inequalities) satisfy the original equation,
initial condition and boundary condition in a weak sense (that are equalities). For technical reasons we
will nevertheless make the hypothesis that the spatial domain is a half-plane for the study of the boundary
condition.

First, we are going to show that if U ∈ L2
t,x is a solution of (1) in the sense of definition 1 then U is

a solution of the equation

∂tU +

n∑
i=1

Ai∂xiU = f,

in the sense of the distributions.
Lemma 2

A solution U in the sense of definition 1 verifies

∂tU +

n∑
i=1

Ai∂xiU = 0, in D′((0, T )× Ω).

Proof : Let ϕ be a function of D((0, T ) × Ω) with non-negative values. Then, from definition 1, we know
that ∫ T

0

∫
Ω

|U(t, x)− k|2 ∂tϕ(t, x)dxdt

+

∫ T

0

∫
Ω

n∑
i=1

〈U(t, x)− k |Ai(U(t, x)− k)〉 ∂xiϕ(t, x)dxdt ≥ 0.

Expanding the terms |U(t, x)− k|2 and 〈U(t, x)− k |Ai(U(t, x)− k)〉 and using the fact that the partial
derivatives of k vanish leads us to the following inequality∫ T

0

∫
Ω

[ (
|U(t, x)|2 − 2 〈k |U(t, x)〉

)
∂tϕ(t, x)

+

n∑
i=1

(〈U(t, x) |AiU(t, x)〉 − 2 〈U(t, x) |Aik〉) ∂xiϕ(t, x)

]
dxdt ≥ 0.

Since k is independent of t and x, we rewrite the previous inequality as∫ T

0

∫
Ω

[
|U(t, x)|2 ∂tϕ(t, x) +

n∑
i=1

〈U(t, x) |AiU(t, x)〉 ∂xiϕ(t, x)

]
dxdt ≥

2

〈
k

∣∣∣∣∣
∫ T

0

∫
Ω

U(t, x)∂tϕ(t, x) +

n∑
i=1

AiU(t, x)∂xiϕ(t, x)dxdt

〉
.
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The left-hand side of the inequality is independent of k, thus the previous inequality implies that∫ T

0

∫
Ω

U(t, x)∂tϕ(t, x) +

n∑
i=1

AiU(t, x)∂xiϕ(t, x)dxdt = 0. (6)

It remains to show that equation (6) is true for all ϕ ∈ D((0, T )×Ω). Let ϕ be a function in D((0, T )×Ω),
then ϕ = ϕ+−ϕ− where ϕ+ (resp. ϕ−) is the positive part (resp. negative part) of ϕ and ϕ+ (resp. ϕ−)
is an element of W 1,∞

c,+ ((0, T )×Ω). Equation (6) is true for ϕ+ (resp. ϕ−) and thus the lemma is proven.

Remark 7 The previous and following lemmas are also true in the case of variable coefficients and when
Ω is a general domain with smooth boundary.

Now, we focus our attention on the initial condition and the boundary condition.

Lemma 3

Let ξ ∈W 1,∞
c,+ (Ω). We have

lim
τ→0

lim
α→0

1

α

∫ τ

τ−α

∫
Ω

|U(t, x)− U0(x)|2ξ(x)dxdt = 0.

Proof : For convenience, we take f = 0. The same conclusion can be drawn for a general f ∈ L2
t,x. Let

ξ ∈W 1,∞
c,+ (Ω) and ρεn be the classical positive n-dimensional mollifier with ε > 0. Let α > 0 and τ ∈ (α, T ).

We define the function ϕ : [0, T ]× Ω× Ω→ R+ by

ϕ(t, x, y) = ξ(x)ηα(t)ρεn(x− y),

where ηα(t) = max(0,min(1, (τ − t)/α)). Observe that η′α(t) ≤ 0 and η′α −→
α→0+

−δτ in the distributional

sense. Using the Cauchy-Schwarz inequality, we have

|U(t, x)− U0(y)|2

= |U(t, x)− U0(x)|2 + |U0(x)− U0(y)|2 + 2 〈U(t, x)− U0(x) |U0(x)− U0(y)〉
≥ |U(t, x)− U0(x)|2 + |U0(x)− U0(y)|2 − 2|U(t, x)− U0(x)||U0(x)− U0(y)|.

From the inequality ∂tϕ ≤ 0, we get for almost every (t, x, y),

|U(t, x)− U0(y)|2∂tϕ(t, x, y)

≤ |U(t, x)− U0(x)|2∂tϕ(t, x, y) + |U0(x)− U0(y)|2∂tϕ(t, x, y)
−2|U(t, x)− U0(x)||U0(x)− U0(y)|∂tϕ(t, x, y).

We integrate this inequality over [0, T ] × Rn × Rn (we extend U and U0 by zero outside of Ω) to get,
thanks to Fubini’s theorem,∫ T

0

∫
Rn

∫
Rn
|U(t, x)− U0(y)|2∂tϕ(t, x, y)dxdydt

≤
∫ T

0

∫
Rn

∫
Rn
|U(t, x)− U0(x)|2∂tϕ(t, x, y)dxdydt−

∫
Rn

∫
Rn
|U0(x)− U0(y)|2ξ(x)ρεn(x− y)dxdy

−2

∫
Rn

∫
Rn
|U0(x)− U0(y)|ξ(x)ρεn(x− y)

∫ T

0

|U(t, x)− U0(x)|η′α(t)dtdxdy.

We take k = U0(y) and use the above-defined test function ϕ(t, x, y) in the definition of a dissipative
solution and integrate with respect to y to obtain∫ T

0

∫
Rn

∫
Rn
|U(t, x)− U0(y)|2∂tϕ(t, x, y)dxdydt

≥ −
∫ T

0

Rα,ε(t)dt−
∫
Rn

∫
Rn
|U0(x)− U0(y)|2ξ(x)ρεn(x− y)dxdy,

where Rα,ε belongs to L1(0, T ) and is for almost every time t defined by

Rα,ε(t) =

∫
Rn

∫
Rn

n∑
i=1

〈U(t, x)− U0(y) |Ai(U(t, x)− U0(y))〉 ηα(t)∂xi (ξ(x)ρεn(x− y)) dxdy

+

∫
Rn

∫
∂Ω

〈U0(y)+ |MU0(y)+〉 ξ(x)ηα(t)ρεn(x− y)dσ(x)dy.

(7)
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Using these two inequalities, we get

−
∫ T

0

Rα,ε(t)dt ≤
∫ T

0

∫
Rn

∫
Rn
|U(t, x)− U0(x)|2∂tϕ(t, x, y)dxdydt

−2

∫
Rn

∫
Rn
|U0(x)− U0(y)|ξ(x)ρεn(x− y)

∫ T

0

|U(t, x)− U0(x)|η′α(t)dtdxdy.

Using the fact that for (a, b) ∈ R2, ab ≤ b2 +
a2

4
and, since ∂tϕ ≤ 0,

−|U0(x)− U0(y)||U(t, x)− U0(x)|ξ(x)ρεn(x− y)η′α(t)
= |U0(x)− U0(y)||U(t, x)− U0(x)||∂tϕ(t, x, y)|

≤ |U0(x)− U0(y)|2ξ(x)ρεn(x− y)|η′α(t)| − |U(t, x)− U0(x)|2

4
∂tϕ(t, x, y).

By integration of this inequality over [0, T ]× Rn × Rn, it follows

−
∫ T

0

Rα,ε(t)dt ≤ 3

4

∫ T

0

∫
Rn

∫
Rn
|U(t, x)− U0(x)|2∂tϕ(t, x, y)dxdydt

+

∫
Rn

∫
Rn
|U0(x)− U0(y)|2ξ(x)ρεn(x− y)dxdy.

We are going to send α to 0. By the definition of ηα (and since η0 = 1[0,τ ]) and equation (7), we have∣∣∣∣∫ T

0

[Rα,ε(t)−R0,ε(t)] dt

∣∣∣∣
≤

∫ τ

τ−α

∫
Rn

∫
Rn

n∑
i=1

|〈U(t, x)− U0(y) |Ai(U(t, x)− U0(y))〉 ∂xiϕ(t, x, y)|dxdydt

+2

∫ τ

τ−α

∫
Rn

∫
∂Ω

〈U0(y)+ |MU0(y)+〉ϕ(t, x, y)dσ(x)dydt.

We now use the fact that, if k = k0 + k− + k+ with k± ∈ ker(A ± M) ∩ ImA and k0 ∈ kerA, then
〈k− |Mk+〉 = 0 and consequently 0 ≤ 〈k+ |Mk+〉 ≤ 〈k |Mk〉. Therefore we know that the right-hand
side of the previous inequality belongs to L1(0, T ), so the dominated convergence theorem implies that

lim
α→0

∫ T

0

Rα,ε(t)dt =

∫ T

0

R0,ε(t)dt.

It follows that, when α→ 0,

lim
α→0

1

α

∫ τ

τ−α

∫
Rn

∫
Rn
|U(t, x)− U0(x)|2ξ(x)ρεn(x− y)dxdydt

≤ 4

3

∫ T

0

R0,ε(t)dt+ 4

∫
Rn

∫
Rn
|U0(x)− U0(y)|2ξ(x)ρεn(x− y)dxdy.

But, by Fubini’s theorem, we remark that for every ε > 0,∫
Rn

∫
Rn
|U(t, x)− U0(x)|2ξ(x)ρεn(x− y)dxdy =

∫
Rn
|U(t, x)− U0(x)|2ξ(x)dx.

Then, we let τ going to 0 in the last inequality, and we use that for all ε, we know that∣∣∣∣∫ T

0

R0,ε(t)dt

∣∣∣∣ ≤ ∫ τ

0

∫
Rn

∫
Rn

n∑
i=1

Ci(|U0|2(x) + |U0|2(y))∂xi [ξ(x)ρεn(x− y)] dxdydt

+

∫ τ

0

∫
Rn

∫
∂Ω

C|U0|2(y) ‖ξ‖∞ dσ(x)dydt,

where Ci and C respectively depend on Ai and M . By the dominated convergence theorem, we get

lim
T→0

lim
α→0

1

α

∫ τ

τ−α

∫
Ω

|U(t, x)− U0(x)|2ξ(x)dxdt = lim
T→0

lim
α→0

1

α

∫ τ

τ−α

∫
Rn
|U(t, x)− U0(x)|2ξ(x)dxdt

≤ 4

∫
Rn

∫
Rn
|U0(x)− U0(y)|2ξ(x)ρεn(x− y)dxdy.

The left-hand side is independent of ε and the right-hand side goes to 0 as ε goes to 0.
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We now discuss the boundary condition in the special case of the n-dimensional half-place

Ω = Rn− = {(x1, x2, · · · , xn) = (x′, xn) , xn < 0} . (8)

In the following, we assume that Ω = Rn− and that the matrices Ai and M are independent of the
space and time variables (see remark 8 for more details).

Lemma 4

Assume Ω is a half-space (8). If U ∈ L2
t,x is a solution of (1) in (0, T )×Rn− in the sense of definition 1,

then U satisfies the following condition at the boundary

lim
ε→0

1

ε

∫
Rn−1

∫ 0

−ε

∫ T

0

U(t, x)+ψ(t)λ(x′)dtdxndx′ = 0,

for every ψ ∈W 1,∞((0, T )) and λ ∈W 1,∞(Rn−1) with compact supports (resp. in R and in Rn−1).

Proof : Using the fact that any function of W 1,∞ with compact support is the sum of its positive part
and the opposite of its negative part (that belong to W 1,∞

c,+ ), we may suppose that ψ ∈ W 1,∞
c,+ ((0, T ))

and λ ∈ W 1,∞
c,+ (Rn−1). We take in the formulation of a solution in definition 1 the function φ(x, t) =

aε(xn)ψ(t)λ(x′) where aε(xn) = max(0, (xn + ε)/ε). We get∫
Rn−1

∫ 0

−ε

∫ T

0

|U(t, x)− k|2aε(xn)λ(x′)ψ′(t)dtdxndx′

+
1

ε

∫
Rn−1

∫ 0

−ε

∫ T

0

〈U − k |An(U − k)〉ψ(t)λ(x′)dtdxndx′

+

∫
Rn−1

∫ 0

−ε

∫ T

0

n−1∑
i=1

〈U − k |Ai(U − k)〉ψ(t)aε(xn)∂xiλ(x′)dtdxndx′

+

∫ T

0

∫
Rn−1

〈k+ |Mk+〉ψ(t)λ(x′)dtdx′ ≥ 0,

then we use the fact that for all vector v ∈ Rn we know that

〈v |Av〉 = 〈v− |Mv−〉 − 〈v+ |Mv+〉 ,

and we apply this identity in the second integral to get∫
Ωε

∫ T

0

|U(t, x)− k|2aε(x)ψ′(t)λ(x′)dtdxndx′

+

∫
Ωε

∫ T

0

n−1∑
i=1

〈U − k |Ai(U − k)〉ψ(t)aε(xn)∂xiλ(x′)dtdxndx′

+
1

ε

∫
Ωε

∫ T

0

〈(U(t, x)− k)− |M(U(t, x)− k)−〉ψ(t)λ(x′)dtdxndx′

−1

ε

∫
Ωε

∫ T

0

〈(U(t, x)− k)+ |M(U(t, x)− k)+〉ψ(t)λ(x′)dtdxndx′

+

∫ T

0

∫
Rn−1

〈k+ |Mk+〉ψ(t)λ(x′)dtdx′ ≥ 0,

where Ωε = Rn−1 × (−ε, 0). The linearity of the projector and the fact that k+ and M are independent
of x leads us to∫

Ωε

∫ T

0

|U(t, x)− k|2aε(x)ψ′(t)λ(x′)dtdxndx′

+
1

ε

∫
Ωε

∫ T

0

〈(U(t, x)− k)− |M(U(t, x)− k)−〉ψ(t)λ(x′)dtdxndx′

+

∫
Ωε

∫ T

0

n−1∑
i=1

〈U − k |Ai(U − k)〉 aε(x)ψ(t)∂xiλ(x′)dtdxndx′ ≥

1

ε

∫
Ωε

∫ T

0

〈U(t, x)+ |MU(t, x)+〉ψ(t)λ(x′)dtdxndx′ − 2

ε

∫
Ωε

∫ T

0

〈U(t, x)+ |Mk+〉ψ(t)λ(x′)dtdxndx′.
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Now, we set k = −αk0 where k0 =
1

ε

∫
Ωε

∫ T

0

U(t, x)+ψ(t)λ(x′)dtdxndx′ and α ∈ R is to be chosen later.

Observe that k0 ∈ ker(A + M) ∩ ImA and consequently k− = 0, using that k in the previous inequality
we obtain

2α 〈k0 |Mk0〉 ≤ 2α2C1

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T

0

|k0|2aε(x)dtdxndx′

+2C2

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T

0

|U(t, x)|2aε(x)dtdxndx′

+
1

ε

∫
Ωε

∫ T

0

〈U(t, x)− |MU(t, x)−〉ψ(t)λ(x′)dtdxndx′,

where C1 and C2 are positive number depending on Ai, λ and ψ. We now choose α to be equal to

α =
〈k0 |Mk0〉

2C1

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T
0
|k0|2aε(x)dtdxn

, (9)

and consequently we get that

2α 〈k0 |Mk0〉 − 2α2C1

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T

0

|k0|2aε(x)dtdxndx′ = α 〈k0 |Mk0〉 ,

and we obtain

α 〈k0 |Mk0〉 ≤ 2C2

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T

0

|U(t, x)|2aε(x)dtdxndx′

+
1

ε

∫
Ωε

∫ T

0

〈U(t, x)− |MU(t, x)−〉ψ(t)λ(x′)dtdxndx′.

Since M is coercive on ker(A+M)∩ ImA (we denote by γ the constant of coercivity of M) , equation (9)
implies

α ≥ γ|k0|2

2|k0|2C1

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T
0
aε(x)dtdxn

.

We see that α and ε are related by the following inequality

α ≥ C

ε
,

where C = C(ψ,M,Ai, λ). Finally,

〈k0 |Mk0〉 ≤ 2
C1ε

C

∫ 0

−ε

∫
Rn−1∩supp λ

∫ T

0

|U(t, x)|2aε(x)dtdxndx′

+
1

C

∫
Ωε

∫ T

0

〈U(t, x)− |MU(t, x)−〉ψ(t)λ(x′)dtdxndx′.

Since U ∈ L2
t,x, the first term of the right hand side of the inequality goes to 0 as ε goes to 0. The dominated

convergence and the fact that 〈U(t, x)− |MU(t, x)−〉 ≤ 〈U(t, x) |MU(t, x)〉 ≤ C|U(t, x)|2 show us that
the second term also goes to 0 as ε goes to 0. Observe that M is coercive on ker(A + M) ∩ ImA, so by
the definition of k0 we get the claim.

Remark 8 In the proof of the previous lemma, we crucially use the fact that we were in the case
of constant coefficients to get some information on the boundary conditions when we say that k0 ∈
ker(Aν + M) ∩ ImAν . For the initial conditions, we always have some information since the boundary
at the time t = 0 is flat and the boundary matrix for t = 0 is the identity matrix. On the contrary,
recovering some information in the case where the matrices Aν and M depending on x and t seems more
tricky and is left for further studies.

Using the previous lemmas, we will show that a regular solution in the sense of definition 1 is a
solution of the problem 1:
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Theorem 1

Assume that Ω is a half-plane (8). Assume that U is a dissipative solution and U is a H1
t,x. Then U

is a solution of 1 in the classical sense, i.e.

1. ∂tU +

n∑
i=1

Ai∂xiU = f in L2
t,x,

2. U(0, x) = U0(x) in L2
x,

3. (Aν −M)U(t, x) = 0 in L2((0, T )× ∂Ω).

The proof of this theorem follows from the discussion below. First, observe that lemmas 2 and (3)
imply respectively the first and the second point of this lemma. Secondly, we need two lemmas to prove
that the third point of the previous lemma is true.

Lemma 5

Assume Ω is a half-space (8). Let U ∈W 1,p((0, T )×Ω) (1 < p <∞), λ ∈ D((0, T )) and β ∈ D(Rn−1).
Then the limit when ε→ 0 of

1

ε

∫ 0

−ε

∫ T

0

∫
Rn−1

U(t, x′, xn)λ(t)β(x′)dx′dtdx,

is ∫ T

0

∫
Rn−1

U(t, x′, 0)λ(t)β(x′)dx′dt.

Proof : First, observe that the modulus of the quantity

1

ε

∫ 0

−ε

∫ T

0

∫
Rn−1

U(t, x′, xn)λ(t)β(x′)dx′dtdxn −
∫ T

0

∫
Rn−1

U(t, x′, 0)λ(t)β(x′)dx′dt,

is bounded above by

1

ε

∫ 0

−ε

∫ T

0

∫
Rn−1

∣∣U(t, x′, xn)− U(t, x′, 0)
∣∣λ(t)β(x′)dx′dtdxn

≤
∫ 0

−ε

∫ T

0

∫
Rn−1

∣∣∣∣U(t, x′, xn)− U(t, x′, 0)

xn

∣∣∣∣λ(t)β(x′)dx′dtdxn

≤ ‖λ‖∞ ‖β‖∞
∫ T

0

∥∥∥∥U(t, x′, xn)− U(t, y, 0)

xn

∥∥∥∥
L2((−ε,0)×Rn−1)

dx′dtdxn,

But using Hardy’s inequality (proved in [20]), we know that for all t ∈ (0, T )∥∥∥∥U(t)− U(t, xn = 0)

xn

∥∥∥∥
Lp(Rn−)

≤ p

p− 1
‖∂xnU(t)‖Lp(Rn−) ,

and consequently (t, x′, xn) 7→ U(t, x′, xn)− U(t, x′, 0)

xn
belongs to L2

t,x. The lemma follows from the

dominated convergence theorem.

To apply the previous result to U+, we need the following lemma

Lemma 6

Assume Ω is a half-space (8). Suppose that AνU ∈ H1((0, T )× Ω). Then U+ ∈ H1((0, T )× Ω).

Proof : Since kerAν ⊂ kerM , there exists a matrix B such that M = BAν and consequently MU also
belongs to H1((0, T )× Ω). But

(Aν −M)U = (Aν −M)(U0 + U− + U+) = (Aν −M)U+ = −2MU+.

We know that M is non-singular on ker(Aν +M) ∩ ImAν , so U+ belongs to H1.
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Since U ∈ H1
t,x, AνU also belongs to H1

t,x and thanks to the previous lemma, U+ ∈ H1
t,x. Now using

lemmas 5 and 4, we deduce that∫ T

0

∫
Rn−1

U(t, x′, 0)+λ(t)β(x′)dx′dt = 0,

for every λ and β test-functions. Consequently,

U+ = 0, a.e on (0, T )× {xn = 0},

the boundary condition is satisfied in the strong sense. Similar arguments apply to the case of the initial
condition thanks to lemma 3.

3 Existence and uniqueness result in the half-plane

This section is devoted to prove the following theorem

Theorem 2

Suppose that Ω = Rn−, the matrices Ai and M are supposed to be constant and An is non singular.
For every f ∈ L2

t,x and U0 ∈ L2
x, there exists a dissipative solution of (1). If U0 ∈ H1

x, the dissipative
solution is unique.

Remark 9 In the previous theorem, we need the H1 regularity for the initial condition to satisfy the
hypothesis of the theorem 6 but also to know that the function g, defined by (17), is L2. But, if one
can obtain a comparison principle for L2 data, as in the case developed in [5] for the whole space, the
uniqueness would be easy to obtain. For now, the H1 regularity allows us to avoid technical problem
about traces on the boundary.

The existence is proven thanks to the classical theory of Friedrichs’ systems for regular data and the
uniqueness result makes use of mollification in the tangential directions (i.e in the time direction and in
the x′-direction). In order to use the regularity theory (developed in [15]), we assume that

Aν = An is non singular. (10)

In order to prove the existence result, one can use, for example, the theory developed in [3] and [15]
for Friedrichs’ systems. To do so, we need a matrix B ∈ Mp×n(R) where p is the number of negative
eigenvalues of Aν and examine the following initial boundary value problem

∂tU +

n∑
i=1

Ai∂xiU = f, on (0, T )× Ω,

U(0, x) = U0(x), on Ω,
BU(t, x) = 0, on (0, T )× ∂Ω,

(11)

where f ∈ H1([0, T ] × Ω) and U0 ∈ H1(Ω). We suppose that U0 obeys to the following compatibility
condition

∀x ∈ ∂Ω, BU0(x) = 0. (12)

To connect our boundary condition and the boundary condition using a matrix B, we need that kerB =
ker(Aν −M).

For example, since ker(Aν −M) ⊕ ker(Aν + M) = Rn, one can take the matrix B that gives the
coordinates in a basis of ker(Aν + M) of the projection into the space ker(Aν + M). Since here we are
dealing with constant matrices (Aν and M), B is also constant.

Under all these assumptions, we can say that there exists a unique solution to the problem (11) and
this solution belongs to the space C1([0, T ], L2

x) ∩ C0([0, T ], H1
x). Consequently, the initial condition is

satisfied in a strong sense and the partial differential equation in (11) has to be understood as an equality
in C0([0, T ], L2

x). The boundary condition is satisfied in C0([0, T ], L2(∂Ω)m).
This result can be found in [3] (theorem 9.16). The normality condition and the uniform Kreiss-

Lopatinskĭi condition (cf [3]) are automatically fulfilled since B is a strictly dissipative and we are
dealing with a symmetric system (cf proposition 4.4 in [3]).

The following theorem tells us that the regular solution of the problem (11) is in fact a regular
dissipative solution of (1).
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Theorem 3

Assuming that f ∈ H1([0, T ] × Ω), U0 ∈ H1(Ω) and condition (12), there exists a solution to
problem (1) in the sense of definition 1.

Proof : As we said before, we have

∂tU +

n∑
i=1

Ai∂xiU = f, in C0((0, T ), L2
x), (13)

BU(t, x) = 0, in C0((0, T ), L2
x). (14)

If k is a vector of Rn independent of t and x, then we also have the following equality

∂t(U − k) +

n∑
i=1

Ai∂xi(U − k) = f, in C0((0, T ), L2
x). (15)

Consequently, if ϕ ∈W 1,∞
c,+ ((0, T )× Ω),∫ T

0

∫
Ω

〈∂t(U − k) |U − k〉 (t, x)ϕ(t, x)dxdt+

∫ T

0

∫
Ω

n∑
i=1

〈U − k |Ai∂xi(U − k)〉 (t, x)ϕ(t, x)dxdt

=

∫ T

0

∫
Ω

〈f |U − k〉 (t, x)ϕ(t, x)dxdt.

Since for almost every x ∈ Ω, the function t 7→ 〈∂t(U − k) |U − k〉 (t, x) belongs to C1(0, T ), the Green
formula and Fubini’s theorem give us∫ T

0

∫
Ω

〈∂t(U − k) |U − k〉 (t, x)ϕ(t, x)dxdt =

1

2

(∫
Ω

|U(T, x)− k|2 ϕ(T, x)dx−
∫

Ω

|U0(x)− k|2 ϕ(0, x)dx−
∫ T

0

∫
Ω

|U − k)|2 (t, x)∂tϕ(t, x)dxdt

)
.

Since the function x 7→ U(t, x) belongs to H1(Ω) for every t ∈ [0, T ], it implies that the function x 7→
〈U |AiU〉 belongs to W 1,1(Ω,R) (with ∂xi1/2 〈U |AiU〉 = 〈U |Ai∂xiU〉 and consequently admits a trace
on ∂Ω (in L1(∂Ω)). The Green formula (applied to a W 1,1(Ω,R) function and a W 1,∞(Ω,R+) function)
tells us that∫

Ω

〈U − k |Ai∂xi(U − k)〉 (t, x)ϕ(t, x)dx

= −1

2

∫
Ω

〈U − k |Ai(U − k)〉 (t, x)∂xiϕ(t, x)dx+
1

2

∫
∂Ω

νiT1,1 〈U − k |Ai(U − k)〉 (t, x)ϕ(t, x)dσ(x).

Here T1,1 (resp. T1,2) is the classical trace operator from W 1,1(Ω) to L1(∂Ω) (resp. from W 1,2(Ω) to
L2(∂Ω)). By definition of the trace operator and by the density of C1(Ω) in W 1,1(Ω) (resp. W 1,2(Ω)), we
know that for almost every x ∈ ∂Ω

T1,1 〈U − k |Ai(U − k)〉 (t, x) = 〈T1,2U − k |Ai(T1,2U − k)〉 .

Consequently,
n∑
i=1

∫ T

0

∫
Ω

〈U − k |Ai∂xi(U − k)〉 (t, x)ϕ(t, x)dxdt

= −1

2

n∑
i=1

∫ T

0

∫
Ω

〈U − k |Ai(U − k)〉 (t, x)∂xiϕ(t, x)dxdt

+
1

2

∫ T

0

∫
∂Ω

〈T1,2U − k |Aν(T1,2U − k)〉 (t, x)ϕ(t, x)dσ(x)dt.

Since we know that kerB = ker(Aν − M), we can conclude that T1,2U(x, t) ∈ ker(Aν − M) almost
everywhere on (0, T )× ∂Ω. Lemma 1 tells us that∫ T

0

∫
∂Ω

〈T1,2U − k |Aν(T1,2U − k)〉 (t, x)ϕ(t, x)dσ(x)dt

=

∫ T

0

∫
∂Ω

〈T1,2U − k− |M(T1,2U − k−)〉 (t, x)dσ(x)dt−
∫ T

0

∫
∂Ω

〈k+ |Mk+〉 (t, x)dσ(x)dt.
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Finally we deduce from the facts that∫ T

0

∫
∂Ω

〈T1,2U − k− |M(T1,2U − k−)〉 (t, x)dσ(x)dt ≥ 0,

and ∫
Ω

|U(T, x)− k|2 ϕ(T, x)dx ≥ 0,

that we have a dissipative solution to the problem (1) i.e. ∀k ∈ Rn, ∀ϕ ∈ W 1,∞
c,+ ((0, T )× Ω) we have the

following inequality∫ T

0

∫
Ω

|U(t, x)− k|2∂tϕ(t, x) +

n∑
i=1

〈U − k |Ai(U − k))〉 (t, x)∂xiϕ(t, x)dxdt

+

∫ T

0

∫
Ω

2 〈f |U − k〉 (t, x)ϕ(t, x)dxdt+

∫
Ω

|U0(x)− k|2ϕ(0, x)dx

+

∫ T

0

∫
∂Ω

〈k+ |Mk+〉 (t, x)dσ(x)dt ≥ 0.

Using this result, we can compare regular solutions.

Theorem 4

Let U and Ũ be two solutions (in the sens of definition 1) associated with (f, U0) (resp. (f̃ , Ũ0)). We
suppose that U and Ũ are H1

t,x. Then there exists a constant C > 0 (depending only on T ) such that∥∥∥U − Ũ∥∥∥2

L2
t,x

≤ C
(∥∥∥f − f̃∥∥∥2

L2
t,x

+
∥∥∥U0 − Ũ0

∥∥∥2

L2
x

)
.

Proof : Using the results of the section 2, we know that U and Ũ are solutions of the problem (1) in the
classical sense. Consequently, one has∫ T

0

∫
Ω

〈
∂t(U − Ũ)

∣∣∣U − Ũ〉 (t, x)ϕ(t, x)dxdt+

∫ T

0

∫
Ω

n∑
i=1

〈
Ai∂xi(U − Ũ)

∣∣∣U − Ũ〉 (t, x)ϕ(t, x)dxdt

=

∫ T

0

∫
Ω

〈
f − f̃

∣∣∣U − Ũ〉 (t, x)ϕ(t, x)dxdt,

Taking the function ϕ : (t, x) 7→ (T − t)/T , we get

1

2T

∫ T

0

∫
Ω

∣∣∣U − Ũ ∣∣∣2 (t, x)dxdt+
1

2

∫ T

0

〈
U − Ũ

∣∣∣Aν(U − Ũ)
〉

(t, 0)ϕ(t, 0)dt

=

∫ T

0

∫
Ω

〈
f − f̃

∣∣∣U − Ũ〉 (t, x)ϕ(t, x)dxdt+
1

2

∫
Ω

〈
U − Ũ

∣∣∣U − Ũ〉 (0, x)dx,

Using the fact that Aν(U − Ũ) = M(U − Ũ) on the boundary xn = 0, we obtain thanks to the fact that
M is non-negative

2

∫
ΩT

〈
f − f̃

∣∣∣U − Ũ〉 (t, x)ϕ(t, x)dxdt+

∫
Ω

|U0 − Ũ0|2(x)dx ≥ 1

T

∫
ΩT

|U − Ũ |2(t, x)dxdt.

The Cauchy-Schwarz inequality leads us to

1

T

∥∥∥U − Ũ∥∥∥2

L2
t,x

≤ 2
∥∥∥f − f̃∥∥∥

L2
t,x

∥∥∥U − Ũ∥∥∥
L2
t,x

+
∥∥∥U0 − Ũ0

∥∥∥2

L2
x

.

Finally,
1

2T

∥∥∥U − Ũ∥∥∥2

L2
t,x

≤ 2T
∥∥∥f − f̃∥∥∥2

L2
t,x

+
∥∥∥U0 − Ũ0

∥∥∥2

L2
x

.

The assertion of the lemma follows easily.

This contraction principle leads to the existence theorem.
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Theorem 5

If f ∈ L2
t,x and U0 ∈ L2

x, then there exists a solution of system 1 in the sense of definition 1.

Proof : We regularize the problem by taking fn ∈ D((0, T )×Ω) and U0,n ∈ D(Ω) (remark that automatically
we have BU0,n = 0 on ∂Ω) such that fn (resp. U0,n) tends to f in L2

t,x (resp. to U0 in L2
x), we denote by

Un the solution given by theorem 3. Then the previous lemma ensures that (Un)n∈N is a Cauchy sequence
in L2

t,x hence it converges to a function U ∈ L2
t,x. Passing to the limit when n goes to infinity in the

inequality (4) leads to the existence of a solution.

Now, we are going to show a uniqueness result in the case where U0 ∈ H1
x and f ∈ L2

t,x. Here, we

take a solution U ∈ L2
t,x a solution of (1) associated with the function f ∈ L2

t,x and U0 ∈ H1
x. We are

going to regularize U ∈ L2
t,x in the tangential variables (i.e. the variable (t, x′)), so that we will be able

to use the tools of theorem 6 which needs more regular solutions.
Now we use convolution in time (with support in [−ε,−ε/2] and 0 < ε < 1) and classical convolution in

the x′ = (x1, · · · , xn−1) variables. We denote by ρε,l the time convolution kernel, ρε,x′ the x′-convolution
kernel. First we extend U for negative times and we denote by V the function U1(0,T )×Ω +U01(−∞,0)×Ω,
then we define the function Vε as

Vε(t, x
′, xn) = V ?t,x′ ρ̌ε(t, x)

= V ?t ˇρε,l ?x ρ̌ε(t, x)

= V ?t ˇρε,l ?x ρε(t, x)

=

∫
Rn
V (s, y, xn)ρε,l(s− t)ρε(y − x′)dsdy,

where f̌ is the function defined by f̌(x) = f(−x).

Lemma 7

The function Vε verifies the following properties

1. Vε goes to U in L2
t,x when ε→ 0.

2. Vε verifies (in the sense of distribution)

∂tVε +

n∑
i=1

Ai∂xiVε = fε.

3. for all ε, Vε ∈ H1((0, T )× Ω).

4. for all ε, Vε(t = 0) = U0,ε = U0 ?x′ ρε (straightforward with the support of ρε,l).

5. Vε+ = 0 on (0, T )× ∂Ω.

Proof : Let ϕ be in W 1,∞
c,+ ((−∞, T ) × Ω). The key observation is the following one : if U is a dissipative

solution of (1) with data f and U0 then the function V verifies the following inequality∫ T

−∞

∫
Ω

(
|V |2 − 2 〈V | k〉

)
(t, x)∂tϕ(t, x)dxdt

+

∫ T

−∞

∫
Ω

n∑
i=1

(〈V |AiV 〉 − 2 〈V |Aik〉) (t, x)∂xiϕ(t, x)dxdt

+

∫ T

−∞

∫
Ω

2 〈g |V − k〉 (t, x)ϕ(t, x)dxdt+

∫ 0

−∞

∫
∂Ω

〈U0 |An(U0 − k)〉 (t, x′, 0)ϕ(t, x′, 0)dx′dt

+

∫ T

0

∫
∂Ω

〈k− |Mk−〉 (t, x′, 0)ϕ(t, x′, 0)dx′dt

≥ 0,

(16)
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where

g = f1(0,T )×Ω + 2

n∑
i=1

Ai∂xiU01(−∞,0)×Ω. (17)

Why (16) is true? We know that U is a solution and consequently, the following inequality is true by
definition:∫ T

−∞

∫
Ω

(
|U |2 − 2 〈U | k〉

)
(t, x)∂tϕ(t, x)dtdx+

∫ T

−∞

∫
Ω

n∑
i=1

(〈U |AiU〉 − 2 〈U |Aik〉) (t, x)∂xiϕ(t, x)dtdx

+

∫ T

−∞

∫
Ω

2 〈f |U − k〉 (t, x)ϕ(t, x)dxdt+

∫
Ω

(
|U0|2 − 2 〈U0 | k〉

)
(0, x)ϕ(0, x)dx

+

∫ T

0

∫
∂Ω

〈k− |Mk−〉 (t, x′, 0)ϕ(t, x′, 0)dx′dt ≥ 0.

But since U0 is regular, independent of t, we have∫ 0

−∞

∫
Ω

(
|U0|2 − 2 〈U0 | k〉

)
(t, x)∂tϕ(t, x) +

n∑
i=1

(〈U0 |AiU0〉 − 2 〈U0 |Aik〉) (t, x)∂xiϕ(t, x)dtdx

=

∫
Ω

(
|U0|2 − 2 〈U0 | k〉

)
(0, x)ϕ(0, x) + 2

∫ 0

−∞

∫
Ω

n∑
i=1

(〈Ai∂xiU0 |U0 − k〉) (t, x)ϕ(t, x)dxdt

+

∫ 0

−∞

∫
∂Ω

〈AnU0 |U0 − k〉 (t, x′, 0)ϕ(t, x′, 0)dx′dt.

Adding this two inequalities and using the definition of V and g gives us (16). Then the tangential
regularization gives us a function Vε satisfying the following inequality∫

Rn+1

(
|Vε|2 − 2 〈Vε | k〉

)
(t, x)∂tϕ(t, x)dtdx+

∫
Rn+1

n∑
i=1

(〈Vε |AiVε〉 − 2 〈Vε |Aik〉) (t, x)∂xiϕ(t, x)dtdx

+

∫
Rn+1

2 〈gε |Vε − k〉 (t, x)ϕ(t, x)dtdx+

∫ 0

−∞

∫
Rn
〈AnU0,ε |U0,ε − k〉 (t, x′, 0)ϕε(t, x

′, 0)dx′dt

+

∫ T

0

∫
Rn
〈k− |Mk−〉 (t, x′, 0)ϕε(t, x

′, 0)dx′dt

≥
∫
Rn+1

(
|Uε|2 − |U |2 1ΩT ?t,x′ ρ̌ε

)
(t, x)∂tϕ(t, x)dtdx

+

∫ T

0

∫
Rn

n∑
i=1

(〈Uε |AiUε〉 − 〈U |AiU〉1ΩT ?t,x′ ρ̌ε) (t, x)∂xiϕ(t, x)dxdt

+

∫
Rn+1

2 (〈gε |Uε〉 − 2 〈g |U〉1ΩT ?t,x′ ρ̌ε) (t, x)ϕ(t, x)dtdx

+

∫ 0

−∞

∫
Rn

[
〈AnU0,ε |U0,ε〉 − (〈AnU0 |U0〉 ?x′ ρ̌ε) (t, x′, 0)ϕε

]
(t, x′, 0)dx′dt.

The following lemma and its proof ensure that points 2 and 3 are true. As in the proof of lemma 4, we
obtain that Vε+ = 0 on (0, T )× ∂Ω.

The following lemma explains why we only need to regularize in the (t, x′)-directions to get the full
H1-regularity.
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Lemma 8

Assume that An is non singular. Let U be in L2
t,x such that ∂tU , ∂1U ,...,∂n−1U belong to L2

t,x and

we suppose that the following inequality holds for every k ∈ Rm and ϕ ∈W 1,∞
c,+ ((0, T )× Ω),∫ T

0

∫
Ω

|U(t, x)− k|2 ∂tϕ(t, x)dxdt+

∫ T

0

∫
Ω

n∑
i=1

〈U(t, x)− k |Ai(U(t, x)− k)〉 ∂xiϕ(t, x)dxdt

+2

∫ T

0

∫
Ω

〈f |U − k〉ϕ(t, x)dxdt+

∫
Ω

|U0(x)− k|2 ϕ(0, x)dx

+

∫ T

0

∫
∂Ω

〈k+ |M(ν(x))k+〉ϕ(t, x)dxdt

≥
∫ T

0

∫
Ω

gt(U)∂tϕ(t, x) +

n∑
i=1

gi(U)∂xiϕ(t, x)dxdt+

∫
Ω

g0(U)ϕ(0, x)dx.

where gt(U), gi(U) and g0(U) belong to L2
t,x and are independent of k. Then U ∈ H1((0, T )× Ω).

Proof : Following the proof of the fact that a solution in the sense of definition 1 is a weak solution, we get
that U is a weak solution to the PDE

∂tU +

n∑
i=1

Ai∂xiU = f.

Consequently, since Aν is non-singular by hypothesis, we get that

∂xnU = A−1
n

(
f − ∂tU +

n−1∑
i=1

Ai∂xiU

)
∈ L2

t,x.

This implies that U ∈ H1((0, T )× Ω).

Remark 10 The hypothesis that Aν is invertible is important. In fact in the singular case, there is a
loss of regularity for the solution (see [18]).

Theorem 6

Let U and Ũ be two L2
t,x solutions (in the sense of definition 1) associated with (f, U0) ∈ L2

t,x ×H1
x

and (f̃ , Ũ0) ∈ L2
t,x×H1

x respectively. Then there exists a constant C > 0 (depending only on T ) such
that ∥∥∥U − Ũ∥∥∥2

L2
t,x

≤ C
(∥∥∥f − f̃∥∥∥2

L2
t,x

+
∥∥∥U0 − Ũ0

∥∥∥2

L2
x

)
.

Remark 11 From the previous theorem, we deduce that there exists a unique solution in the sense of
definition 1 of the problem (1) for f ∈ L2

t,x and U0 ∈ H1
x.

Proof : From U and Ũ , we construct their approximations Vε and Ṽε, lemma 7 allows us to mimic the proof
of the theorem 6 to get ∥∥∥Vε − Ṽε∥∥∥2

L2
t,x

≤ C
(
‖gε − g̃ε‖2L2

t,x
+
∥∥∥U0,ε − Ũ0ε

∥∥∥2

L2
x

)
.

Passing to the limit, since V and g are in L2
loc((−∞, T ) × Ω)m then Vε and gε tends to V and g in

L2((0, T )× Ω)m (see for example [12]), we get the result.

4 Comparison with other formulations

In the literature, there are several ways for taking into account the boundary condition for linear hy-
perbolic system, for example the initial approach of Friedrichs [9], the formulation developed in [6] by
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Dubois and Le Floch and the maximal and strictly dissipative theories (summarized in the book of
Benzoni-Gavage and Serre [3]). We first describe these different approaches which are slightly different
from the algebraic point of view, and then compare these formulations on a simple example: the wave
equation in 1D. We will see on this example that, except for the maximal dissipative theory, the theory
must be modified to take into account the classical Dirichlet boundary condition. This modification can
be performed at least formally with the use of a small parameter such that the homogeneous Dirichlet
condition is recovered at the limit of a family of dissipative solutions in the sense of definition 1.

4.1 Friedrichs’ approach

In the seminal work of Friedrichs [9], the boundary condition takes the following form : first he assumes
a decomposition of Aν = β− + β+, M is now the matrix β+ − β− and the boundary condition is
(Aν −M)U = 0. Friedrichs also assumes that three conditions (denoted by III0, III1 and III2 in [9]) are
fulfilled by the matrices β− and β+

1. ker(β−)⊕ ker(β+) = Rm.

2. Im(β−) ∩ Im(β+) = {0}.

3. tM +M ≥ 0.

From lemma 1 and the hypothesis that we made on the matrix M , we see that all Friedrichs’ hypothesis
are satisfied in the non-characteristic case (we have already said that the first hypothesis was too restric-
tive in the characteristic case for example take all the matrices Ai equal to zero). As far as assumption
3 is concerned, we have made a restrictive hypothesis : we suppose that M is a symmetric matrix.

4.2 Dubois-Le Floch’s formulation

Now we describe Dubois-Le Floch’s formulation. In order to define admissible boundary condition for
nonlinear hyperbolic systems, Dubois and Le Floch (in [6]) also define admissible boundary condition for
linear strictly hyperbolic systems. To take account of inhomogeneous boundary condition, they say that
the space of admissible condition (for the problem in (0, T )× Rn−) is

Ub + Vect {rk, k = p+ 1, · · · ,m} , (18)

where rk is an eigenvector associated with the eigenvalue λk (for k ≥ p + 1, λk ≥ 0 and for k < p + 1,
λk < 0) of the boundary matrix Aν . Using our formalism, we can rewrite this space of admissible
boundary condition as

U − Ub ∈ ker(Aν −M),

where M is the matrix constructed in the remark 1 with the matrix P associated with the eigenvectors
chosen in (18) (recall that these eigenvectors are orthogonal and we may assume without loss of generality
that they are orthonormal and consequently that the matrix P is orthogonal). Therefore the type of
boundary condition discussed by Dubois and Le Floch is contained in our formalism of boundary condition
(in fact strictly contained, see the example of the wave equation).

4.3 Maximal dissipative and strictly dissipative theories

We have already used the fact that our formalism can be transformed to use strictly dissipative theory.
In these two theories, the boundary condition is taking into account thanks to a matrix B ∈ Mp×n(R)
where p is the number of negative eigenvalues of Aν . We say that the matrix B is maximal dissipative
(in the non-characteristic case) if

U ∈ kerB ⇒ 〈AνU |U〉 ≥ 0, (19)

and B is maximal for that property, i.e. kerB is not a proper subspace of vector space V such that

U ∈ V ⇒ 〈AνU |U〉 ≥ 0,

to get L2-well-posedness (theorem 3.2 of [3]).
This boundary condition (or equivalently the boundary condition used in the work of Rauch, for

example in [18]) contains more possibilities than the one we use in this paper (in fact, we’ll see in the
next example that the formalism of [3] allows more boundary conditions than the Friedrichs’ approach).

There is also a more stronger condition (see for example [3]): the notion of strictly dissipative bound-
ary condition. A matrix B is strictly dissipative (in the non-characteristic case) if

17



1. U ∈ kerB ⇒ 〈AνU |U〉 > 0, if U 6= 0.

2. kerB is maximal for the previous property.

3. B is onto.

4.4 A simple example: the wave equation in 1D

We consider here the wave equation problem

∂ttw − ∂xxw = 0, on (0, T )× R−,

that we rewrite as an hyperbolic problem in dimension m = 2 as

∂t

(
u
p

)
−A∂x

(
u
p

)
= 0, (20)

where u = ∂tw, p = ∂xw and A =

(
0 1
1 0

)
. It is classical (see for example [4] section 10.3) that the wave

equation is well-posed with the natural following conditions

w(x, 0) = f(x), on {t = 0} × R−,
∂tw(x, 0) = g(x), on {t = 0} × R−,
w(0, t) = 0, on (0, T )× {x = 0}.

Now that the unknowns in (20) are u = ∂tw and p = ∂xw, it seems natural to know if one can obtain
the boundary condition

u(0, t) = 0, on (0, T )× {x = 0} (21)

We are going to show that this kind of boundary condition is not contained in our formalism, Friedrichs’
formalism or Dubois-Le Floch’s formalism but it can be obtain with the use of a maximal dissipative
boundary condition.

First, we are going to show that one can not find two matrices β− and β+ such that kerβ− ={(
0
p

)
, p ∈ R

}
and the conditions 1,2,3 are satisfied. Let β− be the matrix

(
a b
c d

)
.

In fact, the condition kerβ− =

{(
0
p

)
, p ∈ R

}
implies that b = d = 0. The condition 3 rewrites as

tM +M = β+ − β− +t β+ −t β− =

(
−2a −2c− 2
−2c− 2 0

)
≥ 0,

and consequently, it imposes that c = 1, but then β+ =

(
−a −1
−2 0

)
is invertible and consequently, the

condition 1 can not be fulfilled.
It means that such the boundary condition (21) can not be directly use in the Friedrichs’ framework.

Since our framework and Dubois-Le Floch’s formalism are contained in Friedrichs’ framework, one can
not expect to use this boundary condition in these theories.

In this particular example, one can see that our framework contains more possibility for the boundary
condition than the theory of characteristics of Dubois-Le Floch. Indeed, if we take the example of
homogeneous boundary condition, the only possibility from Dubois-Le Floch is that u + p = 0 on the
boundary x = 0.

Let’s determine all the possible matrices M for the wave equation in 1D that fulfill the conditions
of section 2. Necessarily, we have dim ker(A ±M) = 1 otherwise, either A −M = 0 or A + M = 0,
these two equalities can not happen since A is neither non-positive nor non-negative. In particular,
det(A±M) = 0 = ac− (−1± b)2, subtracting this two equalities tells us that b = 0. If b = 0, to insure

that det(A±M) = 0, we get that a =
1

c
). In our formalism, all the matrices M possible are

Mc =

(
c 0

0
1

c

)
, with c > 0.
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The matrix Mc is associated with the following boundary condition

u+
p

c
= 0, on (0, T )× {x = 0}.

It allows an infinite number of boundary condition for the wave equation in one dimension, parameterized
by c.

Finally, we examine the maximal and strictly dissipative boundary conditions in the case of the
wave equation. First to use a maximal dissipative boundary condition, one only need to find a matrix
B ∈M1×2(R) it simply means that dim kerB = 1. In fact, any matrix B of the form

(
a 0

)
is maximal

dissipative and give the boundary condition (21). One can easily see that the boundary condition u = 0
can not be strictly dissipative and that in fact the boundary condition (in the general case) that we are
considering is such that the space ker(Aν −M) ∩ ImAν is strictly dissipative in the sense that the first
two previous condition are verified.

Nevertheless, one way to get a formulation that is valid for a L2
t,x solution in this particular example

would be to send c to +∞ in the dissipative formulation to get a non-dissipative weak formulation. This
is very similar to penalization procedure.

One could also modify the definition 1 by restricting the test vectors k to the ones satisfying k+ = 0
if the support of ϕ touches ∂Ω. This formulation seems nevertheless less general than the one studied in
this work.
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