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Abstract Bootstrap methods are used in many disciplines to estimate the uncertainty of parameters, in-

cluding multi-level or linear mixed-effects models. Residual-based bootstrap methods which resample both

random effects and residuals are an alternative approach to case bootstrap, which resamples the individuals.

Most PKPD applications use the case bootstrap, for which software is available. In this study, we evaluated

the performance of three bootstrap methods (case bootstrap, nonparametric residual bootstrap and para-

metric bootstrap) by a simulation study and compared them to that of an asymptotic method in estimating

uncertainty of parameters in nonlinear mixed-effects models (NLMEM) with heteroscedastic error. This

simulation was conducted using as an example of the PK model for aflibercept, an anti-angiogenic drug.

As expected, we found that the bootstrap methods provided better estimates of uncertainty for parameters

in NLMEM with high nonlinearity and having balanced designs compared to the asymptotic method, as

implemented in MONOLIX. Overall, the parametric bootstrap performed better than the case bootstrap as

the true model and variance distribution were used. However, the case bootstrap is faster and simpler as

it makes no assumptions on the model and preserves both between subject and residual variability in one

resampling step. The performance of the nonparametric residual bootstrap was found to be limited when ap-

plying to NLMEM due to its failure to reflate the variance before resampling in unbalanced designs where

the asymptotic method and the parametric bootstrap performed well and better than case bootstrap even

with stratification.

Keywords Bootstrap · Nonlinear mixed-effects models · Pharmacokinetics · Uncertainty of parameters ·
MONOLIX

1 Introduction

Nonlinear mixed-effects models (NLMEM) have been widely used in the field of pharmacokinetics (PK)

and pharmacodynamics (PD) to characterize the profile of drug concentrations or treatment response over

time for a population. NLMEM not only provides the estimates of fixed-effect parameters in the studied

population but also describes their variability quantified by the variance of the random effects in a single

estimation step. This approach was introduced by Lewis Sheiner and Stuart Beal and has now become an
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integral part of drug development since the first application of NLMEM in population PKPD in the late

1970s [1]. The parameters of NLMEM are often estimated by the maximum likelihood (ML) method.

These models are complex, not only structurally but also statistically, with a number of assumptions

about the model structure and variability distributions. The uncertainty of parameters in NLMEM is usu-

ally quantified by the standard errors (SE) obtained asymptotically by the inverse of the Fisher information

matrix (MF) and by the asymptotic confidence intervals (CI) which are assumed to be normal and symmet-

ric. However, this uncertainty might be biased when the assumption of asymptotic normality for parameter

estimates and their SE is incorrect, for example when the sample-size is small or the model is more than

trivially nonlinear. Sometimes, they cannot be even obtained due to the over-parameterization of the model

or numerical problems when evaluating the inverse of the MF.

The bootstrap is an alternative method to assess the uncertainty of parameters without making strong

distributional assumptions. It was first introduced by Efron (1979) for independent and identically dis-

tributed (iid) observations. The principal idea behind the bootstrap is to repeatedly resample the observed

data with replacement to create new datasets having the same size as the original dataset, then fit each boot-

strap dataset to construct the distribution of an estimator or a statistic of interest [2,3]. In standard linear

regression, the most simple and intuitive method is the case bootstrap which consists of resampling the

pairs of observations with replacement. However, other bootstrap methods exist; for example the residual

bootstrap and the parametric bootstrap [4,5,6,7]. The residual bootstrap resamples the observed residuals

obtained after model fitting then constructs the bootstrap samples. The parametric bootstrap adopts the prin-

ciple of the residual bootstrap but simulates the residuals from the estimated distribution obtained by the

fitting of the original data, e.g the normal distribution. In the mixed-effects models setting, the case boot-

strap consists of resampling the whole vector of observations in one subject with replacement. Classical

bootstrap methods used in linear regression with just one level of variability have been extended to take

into account the characteristics of mixed-effects models with two levels of variability (between-subject and

residual variability) [8]. Resampling random effects was proposed to be coupled with resampling residuals

[8,9,10,11].

In a previous study [12], we conducted a simulation study to evaluate different bootstrap methods

that could be used for linear mixed-effects models (LMEM) with homoscedastic residual error, a simple

case before moving to NLMEM. The study demonstrated the adequate performance of the nonparamet-

ric/parametric random effect and residual bootstrap which resamples directly two levels of variability and

the case bootstrap which is considered to preserve both of them in all evaluated designs. On the other hand,

the bootstrap methods which resample only the residuals performed poorly with a large underestimation of

the SE of parameters and poor estimates of coverage rates. This is because the between-subject variability

of parameters in the evaluated designs were not taken into account. The worse performance was also ob-

tained for the bootstraps combining case and residual, in which the residual variability is considered already

resampled in the case bootstrap.

In order to understand the use of bootstrap in the field of population PKPD, we conducted a literature re-

search in PUBMED with the keywords "bootstrap AND population AND (pharmacokinetics OR pharmaco-

dynamics OR pharmacokinetic-pharmacodynamic OR pharmacokinetic/pharmacodynamic) AND (NON-

MEM OR MONOLIX OR nonlinear mixed effects)" and recovered 90 papers up to November 2012. All of

them used the case bootstrap as a model evaluation tool, and only one of them used the parametric bootstrap,

as a complement to the case bootstrap. The purpose of using bootstrap in PKPD was mainly for comparing

the parameter estimates obtained from the bootstrap datasets with those obtained in the original dataset and

estimating SE and/or constructing CI (in 90% papers). It was less frequently used for covariate selection (in

6.7% papers) and structural model selection (in 3.3% papers). Both nonparametric case bootstrap and para-

metric bootstrap are implemented in programs, Wings for NONMEM and Pearl-speaks-NONMEM (PsN)

[13,14]. While the case bootstrap has been mostly used in population PKPD, there have been very few stud-

ies in the literature to evaluate its performance, especially in comparison with the nonparametric/parametric

random effect and residual bootstrap which may better approach the "true" data generating process.

In the present paper, we evaluated the performance of different bootstrap methods by a simulation study

and compared them to that of the asymptotic method in estimating uncertainty of parameters in NLMEM

with heteroscedastic error. This simulation design was based on real PK data collected from two clinical

trials of aflibercept, an anti-VEGF drug, in cancer patients.
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2 METHODS

2.1 Statistical models

Let yij denote the observation j of subject i at time tij , where i = 1, ..., N ; j = 1, ..., ni, yi = (yi1, yi2, ..., yini
)
T

regroups the (ni×1) vector of measurements in subject i, ξi = (ti1, ti2, ..., tini
)
T

presents the design vector

of subject i, y = (y1, ...,yN ) regroups all the measurements from N subjects, ntot =
∑N

i=1 ni denotes the

total number of observations. We define an NLMEM as follows:





yi = f(ξi,ϕi) + g(ξi,ϕi,σ)ϵi

ϕi = h(µ,ηi)

ηi ∼ N(0, Ω)

ϵi ∼ N(0, 1)

(1)

where f is the structural model, g is the residual error model, σ is the vector of parameters in the residual

error model, ϵi = (ϵi1, ..., ϵini
) are standardized errors which are normally distributed with mean zero and

variance 1, ϕi is the (p×1) vector of individual regression parameters, µ is the (p×1) vector of fixed effects,

h is the function of individual parameters ϕi, ηi is the (q × 1) vector containing the random effects and Ω
is the (q × q) covariance matrix of the random effects. The random effects ηi and the residual errors ϵi are

assumed to be independent for different subjects and to be independent of each other for the same subject.

The individual PK parameters are often assumed to follow log-normal distribution ϕi = µ exp(ηi). Special

cases for g include g = σa (constant/homoscedastic error model) and g = σpf(ξi,ϕi) (proportional error

model).

2.2 Estimation methods

The parameters of NLMEM are estimated by maximizing the log-likelihood function L(y|θ) of the response

y, with θ = (µ,Ω,σ) the (l × 1) vector of all parameters of the model. This function is given by:

L(y|θ) =

N∑

i=1

L(yi|θ) =

N∑

i=1

log

(∫
p(yi,ϕi; θ)dϕi

)

=

N∑

i=1

log

(∫
p(yi|ϕi; θ)p(ϕi; θ)dϕi

) (2)

where p(yi|ϕi; θ) is the conditional density of the observations given the random effects, p(ϕi; θ) is

the density of the individual parameters and p(yi,ϕi; θ) is the likelihood of the complete data (yi,ϕi) of

subject i.

As the random effects are unobservable and the regression function is nonlinear, the likelihood of

NLMEM has no closed form and cannot be evaluated analytically. The likelihood is usually approximated

by linearisation of the function f , such as First Order (FO) and First Order Conditional Estimation (FOCE)

methods implemented in NONMEM [15]. These methods linearise the structural model either around the

expectation of the random effects (FO) or around the individual predictions of the random effects (FOCE).

Although the linearisation methods are numerically efficient, they have the potential of producing inconsis-

tent estimates when the between-subject variability is high [16,17]. An alternative method to linearisation

is to use the Stochastic Approximation Expectation-Maximization (SAEM) algorithm as an exact ML com-

putation [18]. This algorithm consists, at each iteration, in successively simulating the random effects with

the conditional distribution (E step) using Markov Chain Monte-Carlo procedure and updating the unknown

parameters of the model (M step). In this simulation study, we used the SAEM algorithm implemented in

MONOLIX 4.1.2 (Matlab version) as the estimation method.
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The ML estimate θ̂ of θ is asymptotically normally distributed with mean θ and asymptotic estima-

tion covariance matrix given by the inverse of MF. MF is computed as the negative Hessian of the log-

likelihood in all the model parameters:

MF =
N∑

i=1

−∂2L(yi|θ)

∂θ∂θ′

As the likelihood has no closed form, a linearisation of the model around the conditional expectation

of the individual Gaussian parameters has been proposed to derive an approximate expression of the MF,

computed as the expectancy of the derivative of minus twice the log-likelihood with respect to the parame-

ters. This approach is implemented in MONOLIX where the MF of this Gaussian model is a block matrix

with no correlations between estimated fixed-effects and the estimated variances. The gradient of f is nu-

merically computed. This method, called MF by linearisation, was used in this simulation study to calculate

the SE of parameters.

The asymptotic SE of parameters are then estimated as the square root of the diagonal element of the

estimated covariance matrix.

When the parameters of the model have been estimated, empirical Bayes estimates (EBEs) of the indi-

vidual parameters ϕi can be obtained as the mode of the posterior distribution of ϕi:

m(ϕi|yi; θ̂) = Argmaxφ
i
p(ϕi|yi; θ̂)

2.3 Bootstrap methods

The principle of the bootstrap is to repeatedly generate pseudo datasets by resampling with replacement

from the original sample. The unknown original distribution of parameters may be replaced by the empirical

distribution of the sample, which refers to the nonparametric bootstrap [19] or simulated from a parametric

distribution, which refers to the parametric bootstrap. In this study, we are interested in bootstrap methods

in regression.

Let B be the number of bootstrap samples to be drawn from the original dataset, a general bootstrap

algorithm in regression is:

1. Generate a bootstrap sample by resampling from the data and/or from the estimated model

2. Obtain the estimates for all parameters of the model for the bootstrap sample

3. Repeat steps 1 & 2 B times to obtain the bootstrap distribution of parameter estimates and then compute

mean, standard deviation, and 95% CI of this distribution as described below

Let θ̂∗b be the vector of parameters estimated for the bth bootstrap sample. The bootstrap parameter

estimate θ̂B is calculated as the median of the parameter estimates from the B bootstrap samples.

The bootstrap standard error of the lth component of θ̂B is obtained as the standard deviation of the

estimated parameters from the B bootstrap samples:

ŜE
(l)

B =

√√√√ 1

B − 1

B∑

b=1

(θ̂∗
(l)

b − θ̂
(l)
B )2 (3)

A 95% bootstrap confidence interval of the lth component of θ can be constructed by calculating the

2.5th and 97.5th percentiles of the bootstrap distribution. The bootstrap samples are first sorted into ascend-

ing order and these percentiles are respectively given by the (B + 1)α
th

and (B + 1)(1− α)
th

elements of

the ordered bootstrap samples where α=0.025. When (B + 1)α does not equal a whole number, interpola-

tion must be used [20].
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An alternative approach is to use a normal approximation to construct a bootstrap confidence interval

(CI), using the estimated ŜEB:

[θ̂
(l)
B − ŜE

(l)

B · z1−α/2; θ̂
(l)
B + ŜE

(l)

B · z1−α/2] (4)

z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution (z0.975 = 1.96). However, it is

preferable to use bootstrap percentile CI rather than the normal approximation CI using the bootstrap SD.

[5,20]. In this study, we used empirical percentiles, but other methods dealing with skewed distributions,

such as the bias-corrected percentile method [5], could also be investigated.

In the present study, we evaluated the three bootstrap methods which showed a good performance in

LMEM [12]: the case bootstrap Bcase, the nonparametric bootstrap of random effects and global residuals

Bη,GR and the parametric bootstrap BPη,PR. The individual residual bootstrap was not evaluated in this

study because this method appeared not to be consistent with the non-correlated structure of residuals,

although it had provided similar results to the global residual bootstraps in the LMEM. All the bootstrap

methods which did not perform well in LMEM were not evaluated in this NLMEM study.

The detailed algorithms of the evaluated bootstrap methods to obtain a bootstrap sample (bootstrap

generating process) are presented below.

2.3.1 Case bootstrap (Bcase)

This method consists of resampling with replacement the entire subjects, that is the joint vector of design

variables and corresponding responses (ξi, yi) from the original data before modeling. It is also called the

paired bootstrap. It is the most obvious way to do bootstrapping and makes no assumptions on the model.

2.3.2 Nonparametric random effect and residual bootstrap (Bη,GR)

This method consists of resampling with replacement the random effects obtained after model fitting, as

well as the residuals globally. The bootstrap sample is obtained as follows:

1. Fit the model to the data then estimate the random effects η̂i from {ϕ̂i} and the standardized residuals

ϵ̂ij = (yi − f(tij , ϕ̂i))/g(tij , ϕ̂i, σ̂)

2. Draw a sample {η∗

i } of size N with replacement from {η̂i} by assigning an equal probability 1
N to each

value

3. Draw a sample {ϵ∗}={ϵ̂i∗j∗} of size ntot with replacement globally from {ϵ̂ij}

4. Generate the bootstrap responses y∗

i = f(ξi, µ̂,η
∗

i ) + g(ξi, µ̂,η
∗

i , σ̂)ϵ
∗

i

Note that in mixed-effects modeling, the raw random effects and residuals do not necessarily have

a zero mean, and their variance/ covariance matrix does not match the model-estimated residual vari-

ance/covariance matrices. That’s why the nonparametric bootstrap of the raw residuals yields downwardly

biased variance parameter estimates [5,6,21]. Therefore, they both must be rescaled by being centred and

then transformed to have empirical variance/covariance matrices equal to those estimated by the model.

In linear mixed-effects models, Carpenter et al. proposed to center the random effects and residuals and

then transform them using correction matrices accounting for the differences between their corresponding

estimated and empirical variance-covariance matrices (shrinkage) [21,22]. The correction matrices were

calculated using the Cholesky decomposition of both estimated and empirical variance-covariance matri-

ces.

In this study, we extended the correction of Carpenter et al. for NLMEM by using Eigen Value De-

composition (EVD), a special case of Singular Value Decomposition (SVD) for square symmetric matrices

[23], instead of the Cholesky decomposition. This extension was done to deal with the numeric problems

sometimes seen in nonlinear models where some eigenvalues of the variance-covariance matrix are very

close to zero. The detailed transformation of random effects and residuals is presented in Appendix.
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2.3.3 Parametric random effect and residual bootstrap (BPη,PR)

This method resamples both random effects and residuals by simulating from the estimated distributions

after model fitting. The bootstrap sample is obtained as follows:

1. Fit the model to the data

2. Draw a sample {η∗

i } of size N from a multivariate normal distribution with mean zero and covariance

matrix Ω̂

3. Draw N samples {ϵ∗i } of size ni from a normal distribution with mean zero and variance one

4. Generate the bootstrap responses y∗

i = f(ξi, µ̂,η
∗

i ) + g(ξi, µ̂,η
∗

i , σ̂)ϵ
∗

i

Of note that, the simulation of random effects from a multivariate normal distribution can raise problem

when Ω̂ contains one or some eigenvalues close to zero. We proposed to construct pseudo matrix of Ω̂ using

EVD: Ω̂′ = VΩ̂DΩ̂
′VΩ̂

T where VΩ̂ is the orthogonal matrix resulting from EVD of Ω̂, DΩ̂
′ is the diagonal

matrix containing eigenvalues of Ω̂ in diagonal entries, of which eigenvalues smaller than a tolerance (10−6)

was set to zero.

2.4 Bootstrap methods with stratification

The nonparametric bootstrap methods described above preserve the structure and the characteristics of the

original data when the data is homogenous. In the case of unbalanced designs, different groups in the

original data should be defined and resampling in each group should be done to maintain a similar structure

of the original data in the bootstrap sample [14]. For example when a study includes different numbers of

observations in each subject, the case bootstrap will generate the bootstrap samples having different total

number of observations. The nonparametric residual bootstrap preserves the same structure of the original

data but does not take in to account the different shrinkages of random effects and residuals for groups

with different designs. Bootstrap with stratification can be done for these two methods in this example as

follows:

Case stratified bootstrap (Bstrat
case ). This method consists in resampling the entire subjects in each group.

Nonparametric residual stratified bootstrap (Bstrat
η,GR). This method applies the correction for shrink-

age and bootstrapping the random effects and the residuals separately in each group. An example of the

correction for shrinkage with two data groups with different designs is presented in Appendix.

3 SIMULATION STUDIES

3.1 Motivating example

As an illustrative example, data from two clinical trials of aflibercept, an anti-angiogenic drug for cancer

patients were used. The first trial was a phase I dose-escalation study of aflibercept in combination with

docetaxel and cisplatin in patients with advanced solid tumors [24]. The second trial was a randomised con-

trolled phase III study of aflibercept and docetaxel versus docetaxel alone after platinum failure in patients

with advanced or metastatic non-small-cell lung cancer [25]. Aflibercept was administered intravenously

every 3 weeks in combination with docetaxel at dose levels ranging from 2 to 9 mg/kg in the phase I trial

and at dose of 6 mg/kg in the phase III trial. In the phase I trial, blood samples were collected at 1, 2, 4,

8, 24, 48, 168, 336 hours after the start of aflibercept administration and before the administration of all

subsequent cycles. In the second trial, blood samples were taken pre-dose and at the end of aflibercept infu-

sion on day 1 (cycle 1) and every odd cycles before treatment administration and at approximately 30 and

90 days after the last aflibercept treatment. The free plasma aflibercept concentrations were measured in all

samples using enzyme-linked immunosorbent assay (ELISA) method. The limit of quantification (LOQ)

for free aflibercept in plasma was 15.6 ng/ml and data below LOQ for both studies (6.3% for the phase I

trial and 9.1% for the phase III trial) were omitted.



Bootstrap methods in nonlinear mixed-effects models 7

For this simulation study, we focused mainly on the data after the first dose of the phase I trial and the

data after the two first doses of the phase III trial disregarding potential interoccasion variability. All the

patients having at least two observations were included in this analysis. This subset contains 344 patients

including 53 patients from the phase I trial with an average of 9 observations per patient (rich design group)

and 291 patients from the phase III trial with 2 observations per patient (sparse design group).

To describe the PK of free aflibercept, we analysed jointly the data of all patients using MONOLIX

4.1.2 (Matlab version) and the SAEM algorithm for estimating parameters. A two-compartment infusion

PK model with first-order linear elimination described the aflibercept concentrations in this subset. The

between-subject variability was modeled using an exponential model. The residual variability was chosen

among the additive, proportional or combined models using the log-likelihood (LL) test. We examined the

SAEM convergence graph and the goodness-of-fit plots to evaluate the chosen model.

The proportional error model was the best residual model. With respect to the model of random effects,

there was a high correlation between CL and Q (0.9), which decreased 47 point in -2LL, compared to

the model without this correlation. The variability of V2 was small so it was fixed to zero to have a better

convergence of parameters. This did not change significantly the log-likelihood. The parameter estimates of

this model are presented in first column of Table 3. All the parameters were estimated with good precision

(RSE < 15%) obtained by the asymptotic MF method. With the chosen model, the goodness-of-fit was

satisfactory.

3.2 Simulation settings

In this simulation, we aimed to evaluate the performance of bootstrap in different designs using the first-

order elimination PK model and their parameter estimates developed in the real data (section 3.1): a frequent

sampling design, a sparse sampling design and an unbalanced design with mixing of the frequent and the

sparse observation designs during resampling. We also aimed to evaluate the bootstraps in models with

higher nonlinearity; a mixed-order (Michaelis-Menten) elimination model was used to illustrate this case.

For the balanced designs, the sampling times were identical for all subjects.

First-order elimination frequent sampling design. We simulated N=30 subjects with n=9 observations

per subject at 1, 2, 4, 8, 24, 48, 168, 336, 503 hours after administration of aflibercept. In this design, we

used the same model developed for the real data, except for a smaller correlation between CL and Q (0.5

instead of 0.9) to avoid the convergence problems.

First-order elimination sparse sampling design. We simulated N=70 subjects with n=4 observations per

subject at 1, 24, 48, 503 hours after administration of aflibercept. These 4 sampling times were selected

among those in the frequent sampling design using D-optimality with PFIM software [26]. In this design,

we removed the correlation between CL and Q as well as the variability for Q (which created convergence

problems) and the variability on V2 could then be estimated. The variability of other parameters was set to

30%.

Mixed-order (Michaelis-Menten) elimination frequent sampling design. We simulated N=30 subjects

with n=9 observations per subject at 1, 2, 4, 8, 24, 48, 168, 336, 503 hours after administration of aflibercept.

In this design, we used the same model of the linear sparse design but replaced first-order elimination

(CL=0.04 (l/h)) by mixed-order elimination (Vmax=2 (mg/h) with ωVmax
=30% and Km=20 mg/l with

ωKm
=0%) to increase the nonlinearity of the model. The values of Vmax and Km were chosen based on the

changes in the partial derivatives with respect to these parameters, to increase nonlinearity of the function

f while providing similar concentration profiles compared with those in the first-order frequent design.

For the unbalanced design, we used the first-order elimination model in the sparse balanced design and

simulated two groups of patients: N1=15 with n1=9 observations per subject at 1, 2, 4, 8, 24, 48, 168, 336,

503 hours after administration of aflibercept, and N2=75 with n2=2 observations per subject at 1, 503 hours

after administration of aflibercept. The ratio of patients with frequent and sparse sampling was similar to

that in the real data (16.7% subjects have rich sampling times with an average of 9 observations and 83.3%

subjects have only 2 observations).

All the designs had approximately the same total number of observations (∼ 280 observations).
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For each design, we simulated K=100 replications. The SAEM algorithm implemented in the MONO-

LIX 4.1.2 was used to fit the data. The fixed-effects parameters were estimated with no transformation and

the variability terms were estimated as standard deviations (SD). The asymptotic SE of parameters were

obtained by the inverse of MF, computed as the negative Hessian of log-likelihood (described previously

in Methods section). The bootstrap algorithms were implemented in R 2.14.1. All the bootstrap datasets

were fitted with the initial values obtained from estimates from the original data.

Examples of simulated data for each given design are illustrated in Figure 1.

3.3 Evaluation of bootstrap methods

We drew B= 999 bootstrap samples for each replication of simulated data and for each bootstrap method.

B=999 was chosen to directly estimate the quantiles for 95% CI without interpolation [5,20]. For each

method, we therefore performed 99900 fits (100 simulated datasets × 999 bootstrap datasets).

For the kth simulated dataset and for a given bootstrap method, we computed the bootstrap parameter

estimate θ̂
(l)
B;k as the median of parameter estimates from 999 bootstrap samples, and the bootstrap SE

estimate ŜE
(l)

B;k as in equation (3) as well the CI, for the lth component of θ. The relative bootstrap bias

(RBBias) of the lth component of bootstrap estimate θ̂B was obtained by comparing the bootstrap estimate

θ̂
(l)
B;k and the estimate θ̂

(l)
k as follows:

RBBias(θ̂
(l)
B ) =

1

K

K∑

k=1

( θ̂(l)B;k − θ̂
(l)
k

θ̂
(l)
k

× 100
)

(5)

The average bootstrap SE was obtained by averaging the SE from equation (3) over the K=100 datasets.

The true SE is unknown, but we can get an empirical estimate from the standard deviation of the estimated

parameters over the K simulated datasets:

ŜE
(l)

empirical =

√√√√ 1

K − 1

K∑

k=1

(θ̂
(l)
k −

¯̂
θ(l))2 (6)

where
¯̂
θ(l) is the mean of K values for the lth component of the estimate θ̂.

The relative bias (RBias) on SE of the lth component of θ̂B was then obtained by comparing the average

SE to the empirical SE:

RBias(ŜE
(l)

B ) =
1
K

∑K
k=1 ŜE

(l)

B;k − ŜE
(l)

empirical

ŜE
(l)

empirical

× 100 (7)

The coverage rate of the 95% bootstrap confidence interval (CI) was defined as the percentage of the

K=100 datasets in which the bootstrap CI contains the true value of the parameter.

The bootstrap approaches were compared in terms of the Rbias on the bootstrap parameter estimates, the

Rbias on SE, and the coverage rate of the 95% CI of all parameter estimates from all bootstrap samples. The

performance of the bootstrap methods were also compared to the performance of the asymptotic method

(Asym) in terms of the Rbias on SE and the coverage rate of the 95% CI. The relative bias of asymptotic

SE estimate was defined in the same way as equation (7), but with respect to ŜE
(l)

k being the asymptotic

SE of θ̂
(l)
k instead of ŜE

(l)

B;k. The coverage rate of the 95% asymptotic CI was defined as the percentage of

datasets in which the asymptotic CI contains the true value of the parameter.

The relative estimation bias (REBias) of the lth component of the estimate θ̂ was obtained by comparing

the estimate θ̂
(l)
k and the true value θ

(l)
0 as follows:
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REBias(θ̂(l)) =
1

K

K∑

k=1

( θ̂(l)k − θ
(l)
0

θ
(l)
0

× 100
)

(8)

The bootstrap parameters estimates and their SE were defined as unbiased when relative bias was within

±10%, moderately biased (relative bias from ±10% to ±20%) or strongly biased (relative bias > ±20%).

The coverage rate of the 95% CI was considered to be good (from 90% to 100%), low (from 80% to 90%) or

poor (< 80%). A good bootstrap was defined as a method providing unbiased estimates for the parameters

and their corresponding SE, and ensuring a good coverage rate of the 95% CI. The same criteria were used

to evaluate the performance of the asymptotic method.

3.4 Application to real data

All the bootstrap methods evaluated in the simulations studies were then applied to the real data with B=999

replications. The parameter and SE estimates obtained by the bootstrap methods were compared to those

obtained by the asymptotic approach.

4 RESULTS

4.1 Simulation studies

Performance of bootstrap in balanced designs

The performance of the three bootstrap methods as well as the asymptotic method regarding the relative

bias of parameters, their SE and the coverage rate of 95% CI are presented in Figure 2 and Table 1. In

the frequent sampling setting with first-order elimination, all bootstrap methods showed essentially no bias

for all parameters. In terms of SE estimation, the case bootstrap (Bcase) yielded moderate bias for SE of

Q (22.1%); the nonparametric random effect and residual bootstrap (Bη,GR) showed a small bias for SE

of ωQ and σp (< 13.2%) while the parametric random effect and residual bootstrap (BPη,PR) estimated

correctly all the SE. In terms of coverage rate, all the bootstrap methods provide good coverage rate for

all parameters, except for low coverage rate of the correlation between CL and Q (ρ) (83%) observed for

Bη,GR. The asymptotic method performed however less well than the bootstrap methods with a greater bias

for SE of several parameters (V1, Q, ωQ, ρ) and poorer coverage rates for V1, Q, and ρ.

In the first-order elimination sparse sampling setting where the correlation between CL and Q was

omitted and the variability of parameters was set to 30%, the Bcase and the BPη,PR showed no bias in

parameter estimates, SE and provided good coverage rates for all parameters except for a large bias for SE

of Q (> 100%). The Bη,GR not only provided large bias for SE of Q, but also gave a bias for SE of ωV1

and σ and poor coverage rates for ωV1
and ωV2

. The asymptotic method, however, performed very well and

better than the bootstrap methods.

Higher nonlinearity was evaluated in the mixed-order elimination frequent sampling setting. In this

design, all bootstrap methods estimate correctly all the parameters except for a moderate bias on ωV2 ob-

served for Bη,GR. In terms of SE estimation, the bootstrap methods provided good estimates for the SE

of all parameters, with the exception for underestimation of SE of Km observed for all methods (-17.6 to

-13.6%). In addition, the Bcase underestimated SE of σp and Bη,GR underestimated SE of ωV2 . In terms of

coverage rate, the bootstrap methods provided good coverage rates for first-order elimination parameters

but gave poor to low coverage rates for more highly nonlinear parameters (87% for Vmax and 71-77% for

Km). Compared to the bootstrap methods, the asymptotic method showed higher bias for SE of almost all

parameters, especially for nonlinear parameters, e.g Km (-89.3%); which leads to extremely poor coverage

rate for Km (19%). However, the CI of Km was very narrow and distance from the CI to the true value was

small across all the simulated data. This bias may therefore be considered as negligible in practical terms.

The asymptotic method also provided poor coverage rate for Q (77%).
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The boxplots of the relative error of SE of all parameter estimates obtained by the bootstrap methods and

the asymptotic method in all evaluated designs are shown in Figure 3. The range of relative errors of boot-

strap SE across the K=100 replications did not show any practically relevant differences across the bootstrap

methods. The range of relative errors was however different between the asymptotic method and the boot-

strap methods. In the sparse sampling design, the estimates of SE obtained by the asymptotic method were

more accurate and precise, especially for Q. On the contrary, the asymptotic method performed less well

than the bootstrap methods in frequent sampling designs with underestimation of SE of several parameters,

especially SE of Km in the mixed-order design where SE of V2 and Vmax were also overestimated.

Performance of bootstrap in the unbalanced design

In the fourth simulation setting, we considered a highly unbalanced design where 16.7% subjects have

rich sampling times with average 9 observations and 83.3% subjects have only 2 observations. Figure 4

and Table 2 present the results of the bootstrap methods with and without stratification and the asymptotic

method in this simulation. All the non-stratified bootstrap methods estimated correctly the parameters, ex-

cept for a slight overestimation of ωV2 observed in the BPη,PR. In terms of SE estimation, the case bootstrap

did not estimate well the SE of Q with a bias of 34.3%; there were also a high bias on SE of ωV1 (40.8%),

ωCL (20%), σp (21.1%) for the Bη,GR. In terms of coverage rates, the nonparametric bootstrap methods

provided overly wide CI (coverage rates over 97%) for the parameters whose SE were over-estimated, ex-

cept for ωCL in the Bη,GR. The overly wide confidence intervals could be due to more extreme values in

the parameter estimates than expected for bootstrapped datasets because the 50% CI retained a reasonably

good coverage rate (Table S1 in Appendix). On the other hand, the parametric bootstrap provided good

coverage rates for most parameters, except for overly wide CI for V1 and lower coverage rate of σp which

was also seen in Bcase. The asymptotic method performed reasonably well in this unbalanced design with

only a small bias on SE of V2 and lower coverage rate of Q.

The stratified bootstrap methods were also evaluated in this unbalanced design in order to maintain the

same structure of the original dataset. The stratified case bootstrap Bstrat
case reduced the bias in SE of Q but

this bias was still high (21.7 vs 34.3%). The stratified residual bootstrap Bstrat
η,GR reduced the bias in SE of

ωV1 and σp but overestimated SE of Q and gave lower coverage rates for almost all parameters compared

to the non-stratified version.

Figure 5 presents the boxplots of the relative error of SE of all parameter estimates obtained by the

bootstrap methods and the asymptotic method in the unbalanced design. The Bcase and Bstrat
case estimated

with less precision the SE of Q with a very large variability compared to other bootstrap methods. The

BPη,PR and the asymptotic method estimate most correctly and precisely the SE of all parameter estimates.

More information on whether the confidence intervals provided by the asymptotic method and the boot-

strap methods (non-stratified version) missed on the lower (L) or upper (U) side of the true value for each

parameter and for 4 evaluated designs is shown in Figure S1 in Appendix. For the Km parameter in the

MM balanced design, the CI provided by the asymptotic method missed on both the lower and upper sides

of the true value; while those of the bootstrap methods missed on the lower side.

Of note that, 100% simulated and bootstrap datasets converged in all evaluated designs.

4.2 Application to real data

Table 3 presents the median of the parameter estimates obtained by the bootstrap methods for the real

dataset and the bootstrap relative standard errors with respect to the original parameter estimates. We found

that all the bootstrap methods had similar medians of parameter estimates, except for Q with the difference

between BPη,PR and the other methods. In terms of precision estimation, the bootstrap methods provided

good RSE for all parameters (<24%). However, there were some differences for the estimation of RSE of

Q and variance parameters. Similar to the simulation results in the unbalanced design, Bη,GR and Bstrat
η,GR

gave higher RSE for the variance parameters compared to the other methods. The asymptotic method and

BPη,PR had very similar estimates for almost all parameters in terms of both parameter and RSE estimation,

including RSE of σp which was larger for other methods.

The bootstrap confidence intervals for each parameter are shown in Figure 6. The parameter estimates

of the real dataset were contained within the CI obtained by all bootstrap methods, with the exception of σp
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which lay outside the CI of Bη,GR and Bstrat
η,GR. For Bstrat

η,GR, the estimates of V1, Q, ωV1 were located on the

boundary of the bootstrap CI. Compared to the asymptotic CI, the CI of Bcase and Bstrat
case for all parameters

were similar except for Q while the CI of Bη,GR and Bstrat
η,GR were different, especially for the stratified

version.

5 DISCUSSION

In the present paper, we evaluated the performance of the case bootstrap and the nonparametric/parametric

bootstrap of random effects and residuals by a simulation study and compared them to that of the asymptotic

method in estimating uncertainty of parameters in NLMEM with heteroscedastic error. This simulation was

based on a real PK data collected from two clinical trials of aflibercept, a novel anti-angiogenic drug, in

cancer patients.

When dealing with NMLEM, we should consider other factors which influence the bootstrap, such as

the nonlinearity of the model and the heteroscedasticity. It should be noted that bootstrapping nonlinear

models is done in the same manner as bootstrapping linear models. However, the nonlinearity makes the

estimation process much more difficult and laborious. The bootstrap becomes time consuming because

we need to perform a nonlinear estimation for each bootstrap sample. The complexity increases when the

residual error model is heteroscedastic (the variance of residuals errors is not constant) because the residuals

can not be interchangeable. The algorithm for bootstrapping the residuals will not be valid because the

bootstrapped dataset might not have the same variance model as the original data. To overcome this issue,

the residuals errors need to be standardized to have the same variance before bootstrapping [27]. However,

heteroscedasticity is not a problem for the case bootstrap because heteroscedasticity will be preserved after

bootstrapping.

Another issue which is very important when applying the nonparametric residual bootstrap in NLMEM

is the transformation of the raw residuals to avoid the underestimation in variance parameter estimates [5,

6,21]. The shrinkage correction using the ratio matrix between the empirical and the estimated variance

covariance matrices was proposed by Carpenter et al., using the Cholesky decomposition for a positive

definite matrix [21,22]. This correction performed very well for LMEM [12]. In NLMEM, the numerical

problems make the empirical and/or estimated variance-covariance matrices sometimes closer to a semi-

positive definite matrix with one or several eigenvalues close to zero. We used the EVD, a special case of

SVD for square symmetric matrices [23], to obtain the ratio matrix by creating the pseudoinverse matrices

if the variance-covariance matrices are not strictly positive definite.

Our simulation study evaluated the bootstrap methods in both balanced and unbalanced designs, with

first-order or mixed-order elimination PK models, representing low and higher degrees of nonlinearity. In

the frequent sampling balanced designs with first-order or mixed-order elimination with a small number of

patients (30 subjects), the studied bootstraps improved the description of uncertainty of some parameters

compared to the asymptotic method, particularly for parameters which enter the model most non-linearly

such as Vmax and Km. The case bootstrap and the parametric bootstrap performed similarly, except for a

higher bias on SE of Q observed for the case bootstrap. The nonparametric bootstrap of random effects and

residuals, however, performed less well with higher bias for some variance parameters and their SE, leading

to poorer coverage rates for these parameters. In the sparse sampling design with first-order elimination, the

bootstrap methods performed less well than the asymptotic method because they yielded very high bias for

SE of Q (>100%). This may due to the skewed distributions of estimates of Q obtained by all the bootstrap

methods and the sensitivity of bootstrap methods to extreme values. One strategy for dealing with this

problem is to bootstrap with Winsorization by giving less weight to values in the tails of distribution and

paying more attention to those near the center [28]. The Winsorization approach set all outliers to a specified

percentile of the data before computing the statistics. Note that, it is not equivalent to simply throwing some

of the data away. This approach, however, was not evaluated in this study.

Compared to the results in LMEM, the performance of the evaluated bootstrap methods are shown to

be more different in NLMEM: the case bootstrap is more sensitive to the skewed distribution in parameter

estimates, the nonparametric residual bootstrap yields more bias for the uncertainty of variance parameters

while the parametric bootstrap has the best performance in estimating uncertainty of all parameters in a

setting where simulation and resampling distributions were identical and the true model was used, but the

robustness in the case of random effect/residual variance misspecification should be investigated.
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The large bias in the estimate of the SE for Km in the mixed-order design does not appear to be due

to the linearisation method used to compute MF, since we obtained similarly poor asymptotic SE results

using the stochastic estimation method in MONOLIX (results not shown).

In the unbalanced design with first-order elimination (containing 83.3% subjects with only 2 observa-

tions), the case bootstrap was more sensitive to extreme values, giving highest bias for SE of Q and had

poorer coverage rates for σp. The stratification on the design with the case bootstrap reduced the bias on

SE but it was still high. The nonparametric residual bootstrap was less sensitive to the extreme values, but

overestimated SE of variance parameters, leading to overly wide CI with the coverage rate over 97%. As

the shrinkages for random effects in the frequent and the sparse sampling groups are different, the global

correction of random effects may not be a good solution. We tested the most simple stratification, first in the

correction step in which we correct the empirical variance matrix in each group with respect to the estimated

variance matrix, and second in the resampling step. This stratification did not improve much the bias on SE

of parameters; in addition, it provided low to poor coverage rates of almost all parameters. Compare to the

nonparametric bootstrap methods, a better performance was observed for the parametric residual bootstrap

and the asymptotic method with only a slight lower coverage rate of σp in BPη,PR and lower coverage rate

of Q for the asymptotic method.

In this study, we expected that the random effect and residual bootstrap would have good performance

in NLMEM, especially in real-life unbalanced designs because they maintain the original data structure.

However, the performance of this method was poor compared to other methods. One of the reasons could be

the apparent correlation between the individual random effects obtained in the empirical Bayes estimation

step. This correlation is more important in unbalanced design with rich and sparse data and may not be

sufficiently accounted for by the transformation. Stratification in each group, besides being difficult to

implement in heterogenous designs, did not prove a good option and did not show a benefit of this novel

method over the case bootstrap. Moreover, the real-life data in the PKPD field often contains more than

two groups and had other factors to be considered (e.g gender, continuous covariate). Stratifying these

types of data before resampling in both the case bootstrap and the nonparametric residual bootstrap is then

impractical. This problem is more obvious for small sample size data when there are very few data in a

given group. It is less noticeable for larger sample size data but the asymptotic method often works well in

this case.

The bootstrap methods were applied to real PK data of aflibercept from two clinical trials in cancer

patients. The medians of parameter estimates obtained by all bootstrap methods were generally in agreement

with the original parameter estimates using the chosen PK model, except for lower values of Q estimated

with almost all bootstrap methods. This difference may be related to the high correlation between CL and Q
in the original data, which was reduced or omitted in the simulation study. The results of the nonparametric

bootstrap of random effects and residuals in the real dataset were similar to the simulation findings in the

unbalanced design, the larger SE of variance parameters and the failure of the simple stratification for this

method based on rich/sparse design in both correction and resampling steps. Similarly, the case bootstrap

with and without stratification provided different confidence intervals for Q, the parameter having the largest

RSE, compared to the asymptotic and the parametric bootstrap method. Also, they gave higher RSE for the

residual variance, which may be the results of large amount of the sparse data in the real dataset.

In conclusion, our simulation study showed that the asymptotic method performed well in most cases

while the bootstrap methods provided better estimates of uncertainty for parameters with high nonlinearity.

Overall, the parametric bootstrap performed better than the case bootstrap, although it should be noted that

our simulation is a best-case scenario for this method since the true model and variance distribution were

used for both simulation and resampling. On the other hand, the case bootstrap is faster and simpler as

it makes no assumptions on the model and preserves both between subject and residual variability in one

resampling step. The performance of the nonparametric residual bootstrap was found to be limited when

applying to NLMEM due to its failure to correct for variance shrinkage before resampling in unbalanced

designs. However, the bootstrap methods may face several problems. They can generate a wrong estimate

of SE of a parameter with a skewed distribution when the estimation is poor. In addition, nonparametric

bootstrap in unbalanced designs is much more challenging, and stratification may be insufficient to correct

for heterogeneity especially in very unbalanced designs. This study gave us a clearer picture about the

statistical properties of bootstrap methods in NLMEM for estimating the uncertainty of parameters in case of

small size datasets where the asymptotic approximation may not be good. The bootstrap behaviour for large

dataset should indeed be better but then will not have advantages over the asymptotic method. However,
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some issues raised through our results will need to be addressed in further studies, such as bootstrapping

in presence of extreme values for providing more robust SE and performance of bootstraps in case of

misspecification in model structure or parameter distributions.
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Table 1: Relative estimation bias, relative bootstrap bias, relative bias of standard error (SE) estimates and coverage rate obtained by the asymptotic method (Asym) via the MF and the three bootstrap methods

for the studied balanced designs

Design Parameters Relative estimation bias (%)
Relative bootstrap bias (%) Relative bias of SE (%) Coverage rate (%)

Bcase Bη,GR BPη,PR Asym Bcase Bη,GR BPη,PR Asym Bcase Bη,GR BPη,PR

V1 -0.0 -0.3 0.3 0.0 -17.5 -8.4 -10.7 -8.9 89 95 93 94

V2 -0.6 0.8 -1.4 -0.6 -2.3 8.8 4.0 7.9 94 97 95 97

Q -5.9 1.4 -2.6 -2.0 -22.1 22.7 0.7 7.3 87 95 94 94

CL -0.6 -0.0 -0.1 -0.1 2.8 4.0 1.5 3.5 95 97 94 97

First-order ωV1 -2.4 -4.4 -8.1 -4.8 0.4 8.4 3.3 6.0 97 91 91 93

frequent ωQ -9.6 -2.4 -7.6 -2.7 -14.3 -4.5 -13.2 -9.1 93 89 83 91

ωCL -3.7 -2.1 -4.9 -3.5 1.5 -1.4 -0.2 4.3 91 90 90 92

ρ 10.6 -1.0 8.7 6.8 -14.2 3.4 -1.4 -3.0 86 95 89 94

σp 0.3 -0.6 0.9 -0.6 0.3 2.6 13.0 4.3 94 94 96 95

V1 -0.4 -0.1 -1.3 -0.6 -6.2 0.5 -2.1 -1.8 94 94 92 92

V2 2.1 0.9 1.5 1.0 -1.0 11.5 9.5 8.8 95 95 94 94

Q 4.1 -0.7 4.3 1.3 -6.2 124.4 131.7 102.5 92 97 93 93

CL 0.6 0.2 -0.3 -0.0 3.0 5.8 3.0 5.1 97 96 97 97

First-order ωV1 -3.4 -1.1 -9.0 -1.6 8.7 10.4 15.9 10.0 97 93 86 94

sparse ωV2 6.7 -0.7 -13.9 2.2 -8.9 -5.4 -9.7 -8.3 94 96 86 98

ωCL 0.3 -0.8 -2.2 -1.0 3.8 7.5 6.0 8.0 94 95 92 95

σp 0.4 -1.1 5.1 -1.4 3.5 -1.0 24.5 -0.8 96 96 97 93

V1 -1.1 -0.1 0.1 0.1 -8.9 -5.5 -8.2 -6.6 91 93 92 94

V2 1.1 2.6 3.4 3.0 22.7 5.1 1.7 3.5 97 91 86 91

Q 2.9 -1.5 -2.1 -1.7 -25.8 8.3 -0.8 2.3 77 96 93 93

Vmax 0.1 -2.3 -3.3 -2.8 38.4 -6.1 -5.6 -7.2 100 87 87 87

Km -1.0 -4.9 -7.1 -6.1 -89.3 -15.2 -13.6 -17.6 19 71 75 77

Mixed-order ωV1 -2.9 -2.8 -6.1 -3.7 -2.4 -6.4 -5.4 -1.1 95 91 92 94

frequent ωV2
-10.2 -3.6 -14.1 -5.8 -15.1 -7.6 -12.8 -9.5 93 92 81 89

ωVmax
-2.1 -2.7 -5.0 -3.3 -2.1 -6.6 -5.1 -1.1 92 88 85 89

σp -1.1 -0.6 0.8 -0.7 -12.8 -11.4 0.3 -9.9 92 91 95 92

Relative bias > 10% and < -10% and coverage < 0.9 are typeset in bold font
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Table 2: Relative estimation bias, relative bootstrap bias, relative bias of standard error (SE) estimates and coverage rate obtained by the asymptotic method (Asym) via the MF and the three bootstrap methods

for the unbalanced design with first-order elimination

Relative estimation bias (%)
Relative bias of parameters (%) Relative bias of SE (%) Coverage rate (%)

Bcase Bstrat
case Bη,GR Bstrat

η,GR
BPη,PR Asym Bcase Bstrat

case Bη,GR Bstrat

η,GR
BPη,PR Asym Bcase Bstrat

case Bη,GR Bstrat

η,GR
BPη,PR

V1 0.1 -0.1 -0.1 -1.0 -4.6 -0.40 1.2 7.3 5.2 1.2 -2.1 4.0 97 98 98 97 77 98

V2 -3.6 0.2 0.3 -1.5 3.0 -2.4 -12.3 -5.4 -7.7 -0.1 1.5 -3.1 91 96 96 92 94 96

Q -5.7 0.5 0.5 1.3 8.1 0.1 -5.8 34.3 21.7 2.4 25.7 7.87 87 94 93 94 95 95

CL -0.3 -0.1 -0.1 -0.9 -2.0 -0.8 -3.4 0.1 -1.9 2.2 -1.4 0.4 95 98 97 97 83 96

ωV1 -2.9 -0.5 -0.6 -10.6 -7.9 -1.9 -6.0 2.3 0.9 40.8 13.9 0.4 94 94 94 94 88 93

ωV2 10.3 1.0 1.6 6.2 19.5 12.7 8.5 -6.8 -7.9 5.1 5.5 1.1 93 96 95 99 81 94

ωCL -2.7 -1.5 -1.5 -6.5 -6.0 -3.0 -6.8 -2.9 -4.1 20.0 5.3 -1.3 91 93 91 92 87 91

σp -1.2 -1.0 -0.9 5.0 6.1 -1.7 -9.3 -10.3 -12.3 21.1 15.9 -10.0 93 87 86 97 92 88

Relative bias > 10% and < -10% and coverage < 0.9 are typeset in bold font
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Table 3: Parameter estimates and their relative standard errors (RSE) obtained by the asymptotic method (Asym) via the MF and the

bootstrap methods (B=999 samples) for the real dataset

Median of parameter estimates (RSE*(%))

Asym Bcase Bstrat
case Bη,GR Bstrat

η,GR
BPη,PR

V1(l) 3.62 (1.9) 3.69 (2.2) 3.69 (2.1) 3.74 (2.1) 3.76 (2.0) 3.71 (2.0)

V2(l) 2.90 (5.3) 2.89 (6.4) 2.90 (6.0) 2.96 (6.0) 2.82 (5.9) 2.88 (6.2)

Q(l/h) 0.14 (14.9) 0.10 (18.0) 0.10 (16.7) 0.10 (23.1) 0.08 (18.0) 0.13 (15.9)

CL(l/h) 0.04 (2.3) 0.04 (2.6) 0.04 (2.6) 0.04 (2.6) 0.04 (2.7) 0.04 (2.5)

ωV1 (%) 20+(9.6) 21 (8.7) 21 (8.3) 17 (11.6) 16 (10.3) 19 (9.8)

ωQ(%) 111 (12.5) 110 (13.3) 110 (13.5) 95 (22.4) 99 (16.0) 100 (9.6)

ωCL(%) 29 (4.9) 29 (6.8) 29 (6.6) 30 (10.5) 29 (14.3) 29 (5.4)

ρCL,Q 0.90 (8.2) 0.87 (8.1) 0.86 (7.9) 0.84 (12.1) 0.88 (7.1) 0.94 (5.9)

σp(%) 25 (3.8) 24 (6.2) 24 (5.8) 29 (6.7) 29 (7.4) 26 (3.5)

* RSE=SE/asymptotic parameter estimates*100
+ The values for ω are presented in %, by multiplying the value in SD scale with 100, for example

20%=0.2*100
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7 FIGURES
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Fig. 1: Spaghetti plot of examples of simulated data for 4 studied designs: first-order frequent sampling balanced design (N =
30/n = 9) (top left), first-order sparse sampling balanced design (N = 70/n = 4) (top right), mixed-order frequent sampling design

(N = 30/n = 9) (bottom left) and first-order frequent sampling unbalanced design (N1 = 15/n1 = 9; N2 = 75/n2 = 2) (bottom

right).
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Fig. 2: Relative bias of parameter estimates (relative estimation bias and relative bootstrap bias) (left) , relative bias of standard error

(SE) estimates (middle) and coverage rate of 95% CI (right), for the asymptotic method (Asym) and the bootstrap methods in the three

balanced designs: first-order frequent sampling design (N = 30/n = 9) (top), first-order sparse sampling design (N = 70/n = 4)

(middle), mixed-order frequent sampling design (N = 30/n = 9) (bottom).
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Fig. 3: Boxplot of relative error of standard error (SE) estimates obtained by the asymptotic method (Asym) and the bootstrap methods

in the three studied balanced designs: first-order frequent sampling design (N = 30/n = 9) (top), first-order sparse sampling design

(N = 70/n = 4) (middle), mixed-order frequent sampling design (N = 30/n = 9) (bottom)
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Fig. 4: Relative bias of parameter estimates (relative estimation bias and relative bootstrap bias) (left), relative bias of standard error

(SE) estimates (middle) and coverage rate of 95% CI (right), for the asymptotic method (Asym) and the bootstrap methods in the

unbalanced design (N1 = 15/n1 = 9; N2 = 75/n2 = 2) with first-order elimination



22 Hoai-Thu Thai et al.

−
10

0
0

10
0

20
0

30
0

V1 V2 Q CL ωV1
ωV2ωCL σp

Asym
R

el
at

iv
e 

er
ro

r 
of

 S
E

 (
%

)

−
10

0
0

10
0

20
0

30
0

V1 V2 Q CL ωV1
ωV2 ωCL σp

Bcase

−
10

0
0

10
0

20
0

30
0

V1 V2 Q CL ωV1
ωV2 ωCL σp

Bcase
strat

−
10

0
0

10
0

20
0

30
0

V1 V2 Q CL ωV1
ωV2ωCL σp

Bη,GR

R
el

at
iv

e 
er

ro
r 

of
 S

E
 (

%
)

−
10

0
0

10
0

20
0

30
0

V1 V2 Q CL ωV1
ωV2ωCL σp

Bη,GR
strat

−
10

0
0

10
0

20
0

30
0

V1 V2 Q CL ωV1
ωV2ωCL σp

BPη,PR

Fig. 5: Boxplot of relative error of standard error (SE) estimates obtained by the asymptotic method (Asym) and the bootstrap methods

in the unbalanced design (N1 = 15/n1 = 9; N2 = 75/n2 = 2) with first-order elimination
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Fig. 6: Plot of median values and 95% confidence intervals of parameter estimates obtained by the asymptotic method (Asym) and

the bootstrap methods (B=999 samples) for all parameters of the real dataset. The broken line in each plot represents the value of the

parameter estimate obtained with the real dataset. The bootstrap confidence intervals are shown as lines in the plots.



24 Hoai-Thu Thai et al.

APPENDIX

Appendix A: Transformations of random effects using Eigen Value Decomposition (EVD)

Let S and Ω̂ denote respectively the square symmetric empirical and estimated variance covariance matri-

ces. Let Û denote the matrix of rescaled raw estimated random effects (by centrering to ensure to have zero

mean) with the column entries corresponding to the random effects of each parameter. The empirical matrix

S of Û is then defined as:

S =
ÛT Û

N − 1
(A.1)

where N is the number of subjects

The transformed matrix of random effects Û ′ is defined using the correction matrix Aη:

Û ′ = ÛAη (A.2)

The matrix Aη is formed using the Eigen Value Decomposition (EVD) of the matrix S and the matrix Ω̂.

Since any square symmetric matrix M can be decomposed by EVD in an expression involving a diagonal

matrix (D) containing the eigenvalues of M in diagonal entries and a orthogonal matrix (V ) (V V T = I , I
is identity matrix) as follows: M = V DV T , we can write the EVD decomposition of S and Ω̂ as:

S = VSDSVS
T (A.3)

Ω̂ = VΩ̂DΩ̂VΩ̂
T (A.4)

where VΩ̂ and VS are respectively the orthogonal matrices of Ω̂ and S; DΩ̂ and DS are respectively the

diagonal matrices of Ω̂ and S, where theirs diagonal entries are respectively the eigenvalues of Ω̂ and S.

We propose the following solution of A which makes the variance covariance matrix of the transformed

matrix of random effects Û ′ equal to Ω̂:

Aη = VSDS
−1/2DΩ̂

1/2VΩ̂
T (A.5)

where DΩ̂
1/2 and DS

−1/2 are respectively the diagonal matrices where theirs diagonal entries are

respectively the root square of eigenvalues of Ω̂ and the inverse of root square of eigenvalues of S.

The transposed form of A is:

AT
η = VΩ̂D

1/2

Ω̂
DS

−1/2VS
T (A.6)

Indeed, the variance covariance matrix of Û ′ is equal to Ω̂, based on the following development:

Û ′T Û ′

N − 1
=

(ÛAη)
T ÛAη

N − 1
=

AT
η Û

T ÛAη

N − 1
= AT

η SAη

= VΩ̂D
1/2

Ω̂
DS

−1/2VS
TVSDSVS

TVSDS
−1/2DΩ̂

1/2VΩ̂
T

= VΩ̂D
1/2

Ω̂
[DS

−1/2(VS
TVS)DS(VS

TVS)DS
−1/2]DΩ̂

1/2VΩ̂
T

= VΩ̂D
1/2

Ω̂
[DS

−1/2DSDS
−1/2]DΩ̂

1/2VΩ̂
T

= VΩ̂D
1/2

Ω̂
DΩ̂

1/2VΩ̂
T

= VΩ̂DΩ̂VΩ̂
T

= Ω̂

(A.7)
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In case DS
−1/2 is not invertible (singular) due to some eigenvalues of DS are close to zero, a pseudo-

inverse matrix is used by inverting only the positive eigenvalues greater than a tolerance of 10−6 and setting

those lower to zero.

In balanced designs, the transformation of random effects was carried out in the following steps:

1. Center the raw estimated random effects: η̃i = η̂i − η̄
2. Calculate the correction matrix Aη . Let Ω̂ be the model estimated variance-covariance matrix of ran-

dom effects and S denote the empirical variance-covariance matrix of the centered random effects. The

correction matrix is formed using EVD of these two matrices: Aη = VSDS
−1/2DΩ̂

1/2VΩ̂
T

3. Transform the centered random effects using the ratio Aη: η̂
′

i = η̃iAη

In unbalanced designs, for example with two groups containing rich and sparse data, the transformation

of random effects was carried out in the following steps:

1. Center the raw estimated random effects: η̃i = η̂i − η̄ and divide them into two groups η̃G1
and η̃G2

presenting the centered random effects in group 1 (G1) and group 2 (G2).

2. Calculate the correction matrices Aη;G1 and Aη;G2 . Let Ω̂ be the model estimated variance-covariance

matrix of random effects, S1 and S2 denote the empirical variance-covariance matrix of the centered

random effects η̃G1
and η̃G2

respectively. The correction matrices Aη;G1 and Aη;G2 using EVD are

formed as follows:

Aη;G1 = VS1DS1

−1/2DΩ̂
1/2VΩ̂

T

Aη;G2 = VS2DS2

−1/2DΩ̂
1/2VΩ̂

T

where VS1 and VS2 are respectively the orthogonal matrices of S1 and S2; DS1 and DS2 are respectively

the diagonal matrices of S1 and S2.

3. Transform the centered random effects in each group:

η̂
′

i;G1
= η̃i;G1Aη;G1

η̂
′

i;G2
= η̃i;G2Aη;G2

Appendix B: Transformations of residuals

In balanced designs, the transformation of residuals was carried out in the following steps:

1. Center the raw estimated standardized residuals: ϵ̃ij = ϵ̂ij − ϵ̄
2. Calculate the correction factor Aσ

Aσ = 1/σemp

where σemp is simply the empirical standard deviation of the raw standardized residuals

3. Transform the centered residuals using the ratio Aσ: ϵ̂
′

ij = ϵ̃ijAσ

In unbalanced designs, for example with two groups containing rich and sparse data, the transformation

of residuals was carried out in the following steps:

1. Center the raw estimated standardized residuals: ϵ̃ij = ϵ̂ij − ϵ̄ and divide them into two groups ϵ̃G1 and

ϵ̃G2
presenting the centered residuals in group 1 (G1) and group 2 (G2).

2. Calculate the correction factors Aσ;G1 and Aσ;G2 .

Aσ;G1
=

1

σemp ;G1

Aσ;G2 =
1

σemp ;G2

where σemp ;G1 and σemp ;G2 are respectively the empirical standard deviation of the raw standardized

residuals in G1 and G2.
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3. Transform the centered residuals in each group:

ϵ̂
′

ij;G1
= ϵ̃ij;G1Aσ;G1

ϵ̂
′

ij;G2
= ϵ̃ij;G2Aσ;G2
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Supplementary tables

Table S1: Coverage rates of 50% CI of parameters in the unbalanced design

V1 V2 Q CL ωV1 ωV2 ωCL σp

Bcase 47 42 47 44 56 45 49 34

Bstrat
case 47 44 46 46 52 47 48 36

Bη,GR 44 42 43 43 38 59 39 40

Bstrat

η,GR
31 41 43 34 44 38 42 34

BPη,PR 48 39 46 41 46 50 47 42
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Figure S1:Percentage outside 95% CI of parameters obtained by the asymptotic method the bootstrap methods without stratification

(B=999 samples) for all parameters in 4 evaluated designs. L and U present the lower and upper sides of the true value.


