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OUTL INE

T Standard Model (SM) of the electroweak and strong interactions has been very successful in de-
scribing many different elementary particle processes at various energy scales, but suffers, on the

other hand, from various severe problems.
For instance, if one considers the interplay between particle physics and cosmology, it is immediately

clear that the observed matter/antimatter asymmetry in the universe can not be explained only in terms
of the fundamental interactions described by the Standard Model, but requires in general an extension
that includes a larger particle spectrum. The latter is also needed to explain the observed dark matter
content of the universe. Moreover the SM does not include neutrino masses and mixing and, on the
more theoretical side, it suffers from the ”hierarchy problem” (i.e. the fact that quantum corrections to
the Higgs boson mass have a quadratic dependence on the UV cutoff used in the computation) and from
the fact that the gauge and Yukawa structure is not explained but assumed.

Aside from these issues, now that the Higgs boson has been discovered a quest has started to under-
stand if its properties are compatible with the predictions of the Standard Model.

The Large Hadron Collider (LHC) has been designed to explore all these different questions, provid-
ing the necessary tools to search and understand the Higgs boson and allowing the production of new
particles in the TeV mass range, if they exist. The very successful first run of the accelerator has been
accompanied by an already large amount of high-quality data. From the first analysis of these data, it
seems that there are no apparent important deviations from the Standard Model. This in turn makes the
use of this huge amount of data to perform precision physics the next logic step. Such a class of studies
requires not only a very high accuracy in experimental measures but also a control over the uncertainties
in theoretical computations.

In light of this, during my graduate studies I have been involved in a series of projects whose aim
was to improve either the accuracy of predictions, accounting for new effects, or the control over the
uncertainties of theoretical calculations.

Among the theoretical uncertainties, a prominent role is occupied by the always-present problem, in
precise calculations in quantum field theory, of how to estimate the contributions from missing higher
orders in the perturbative expansion, the so-called Missing Higher Order Uncertainty (MHOU). Tra-
ditionally, these uncertainties have been estimated by varying the unphysical scales present in the result
around their central values. Various prescriptions for this procedure are conventionally used by the com-
munity, however all are based on arbitrary choices and fail in giving a statistical meaning to the inter-
val they produce. With M. Cacciari (LPTHE) and A. Guffanti and L. Jenniches, both at the N. Bohr
Institute in Copenhagen, we studied the extension of the Cacciari-Houdeau (CH) Bayesian model to
hadronic observables, with the specific aim of giving a more consistent estimate of the MHOU for LHC
observables in general, and Higgs-boson production in particular [1]. The CH model tries to address the
shortcomings of the standard prescription used to evaluate MHOU, the scale variation procedure. It is
based on a totally different approach, where the behavior of the perturbative series is understood in the
context of Bayesian probability. The advantage of this framework is its coherent theoretical formulation
and the fact that it produces an uncertainty interval with an intrinsic statistical interpretation in terms
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2 Outline

of Degree of Belief (DoB), which can be then consistently plugged in the machinery that experimental
physicists use to analyze LHC data. As a byproduct of this study, we also revisited the application of the
model to observables without initial state hadrons, its original field of definition and applicability, and
we also studied statistically the performances of the scale variation procedure. The final outcome of this
project is presented in Part I of the thesis.

Due to the importance of Higgs boson physics in the context of the LHC research program, it is of
primary importance to have precise predictions of Higgs observables that are measured at the LHC and
to have a deep understanding of the uncertainties that characterize them. My studies have been focused
along two main lines. The first one is the study of the theoretical uncertainties of the total inclusive cross
section for Higgs production in gluon fusion and bottom annihilation in the Minimal Supersymmetric
Standard Model (MSSM). These include not only MHOU but also PDF+αs uncertainty, renormal-
ization scheme choices for the bottom Yukawa and the range of validity of the approximations used in
the computation of supersymmetric corrections. This work was done in collaboration with R. Harlan-
der (U. Wuppertal), S. Liebler (U. Hamburg), H. Mantler (CERN), P. Slavich (LPTHE) and A. Vicini
(U. Milano) and it recently led to a publication in the Journal of High Energy Physics [2].

For a few years, with G. Degrassi (U. Roma 3), P. Slavich and A. Vicini I have been studying Higgs-
boson production in gluon fusion process in the POWHEG-BOX framework, with specific attention to
the problem of including the complete top and bottom amplitudes and of studying their effects on the
calculation of the Higgs transverse-momentum distribution. The POWHEG method provides a system-
atic recipe to obtain the matching of a Next-to-Leading Order (NLO) calculation with a Parton Shower.
These matched computations are extremely important to correctly and realistically simulate physical pro-
cesses in a collider, with the possibility of imposing in a flexible way experimental acceptance cuts and
to have, at the end, a sensible comparison between data and theoretical predictions. Our contribution
was well appreciated by the experimental collaborations of ATLAS and CMS, which are now using our
program and results in their analyses. Furthermore, it has created a rich debate in the community and it
has led to several meetings between experimentalists and theorists on the issue. The work was originally
done for the Standard Model and for the light Higgs of the MSSM and was published in [3]. It was then
extended to the heavy and the pseudoscalar Higgs of the MSSM [4, 5] and to the Two Higgs-doublet
model (2HDM). All code is freely available in the POWHEG-BOX Subversion (SVN) tree. More recently I
have studied with Alessandro Vicini the issue of the uncertainties related to the matching procedure in
the computation of this observable [6]. All these precision Higgs-phenomenology studies are presented
in part II.

While it is not included in this thesis, during my graduate studies I have also participated in the compu-
tation of threshold corrections in split-Super Symmetry (SUSY) and high-scale SUSY models. The idea
at the base of split-SUSY is that the mass scale m̃ of the scalar superpartners of the SM is much higher
than the Electro Weak (EW) scale. The only remaining superpartners at the EW scale are higgsinos and
gauginos. In high-scale SUSY also the latter are supposed to be at the high scale m̃. To properly study
these theories and their predictions at the weak scale, it is necessary to define an effective theory where
the heavy particles are integrated out. This and the use of Renormalization Group (RG) methods, allow
to properly resum the large logarithms of the ratio of the m̃ over the weak scale that otherwise spoil the
accuracy of the prediction. This technical computation is part of an ongoing study of the prediction of
the Higgs mass in these models. The Higgs mass can indeed be used as a proxy to derive an estimate of
the mass scale m̃ and hence to perform a phenomenological study of the two models. The work was

Emanuele Angelo Bagnaschi (LPTHE)
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performed in collaboration with G. Giudice (CERN), P. Slavich (LPTHE) and A. Strumia (U. Pisa) [7].
As a complementary preparation I also served a three months internship at Wolfram Research in Cham-
paign (Illinois, USA), during which I have written a top-level implementation of Mathieu functions in
Mathematica.

All my work was supported by the Research Executive Agency (REA) of the European Commission
under the Grant Agreements PITN-GA-2010-264564 (LHCPhenoNet).

Precision phenomenology at the LHC and characterization of theoretical uncertainties





B IBL IOGRAPHY

[1] E. Bagnaschi, M. Cacciari, A. Guffanti, and L. Jenniches. “An extensive survey of theoretical uncer-
tainty estimates in perturbative observables”. In preparation.

[2] E. Bagnaschi, R.V. Harlander, S. Liebler, H. Mantler, P. Slavich, et al. Towards precise predictions
for Higgs-boson production in the MSSM. JHEP, 06:167, 2014. doi: 10.1007/JHEP06(2014)167.

[3] E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini. Higgs production via gluon fusion in
the POWHEG approach in the SM and in the MSSM. JHEP, 1202:088, 2012. doi: 10.1007/
JHEP02(2012)088.

[4] S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, et al. Handbook of LHC Higgs
Cross Sections: 2. Differential Distributions. 2012. doi: 10.5170/CERN-2012-002.

[5] S Heinemeyer et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. 2013. doi:
10.5170/CERN-2013-004.

[6] E. Bagnaschi and A. Vicini. “Matching uncertainties in the computation of the resummed transverse
momentum distribution of the Higgs boson in gluon fusion in the POWHEG framework”. In
preparation.

[7] Emanuele Bagnaschi, Gian F. Giudice, Pietro Slavich, and Alessandro Strumia. Higgs Mass and
Unnatural Supersymmetry. arXiv:1407.4081, 2014.

5





Part I

A BAYES IAN APPROACH TO MISS ING HIGHER ORDER THEORET ICAL

UNCERTA INT IES IN QCD

We consider two approaches to estimate and characterize the theoretical uncertainties stem-
ming from the missing higher orders in perturbative calculations in Quantum Chromody-
namics (QCD), the traditional one based on renormalization and factorization scale varia-
tion, and the Bayesian framework proposed recently by Cacciari and Houdeau. We estimate
uncertainties with these two methods for about thirty different observables in perturba-
tive QCD and, when higher orders are known, we discuss their performance in estimating
correctly the size of the missing terms. We find that scale variation with the conventional
choice of varying scales within a factor of two of a central scale gives uncertainty intervals
that tend to be somewhat too small to be interpretable as ”68%-confidence-level-heuristic”
ones. A slightly modified version of the Bayesian approach of Cacciari and Houdeau tends
to perform well for non-hadronic observables and, after an empirical tuning of the relevant
expansion parameter for the perturbative series, for hadronic ones too.





1 INTRODUCT ION

P phenomenology of the kind aimed for by the Large Hadron Collider (LHC) physics pro-
gram requires accuracy not only in experimental measurements but also in theoretical predictions.

Once accuracy becomes high, and theoretical and experimental uncertainties are similar, it becomes im-
portant to be able to assess quantitatively the importance of missing higher order terms in perturbative
calculations.

In QCD calculations, which we take as a model here given their importance in LHC physics, the the-
oretical uncertainty stemming from missing higher orders in the perturbative series is usually estimated
by varying the unphysical renormalization and factorization scales that appear in the calculation. This
approach has served well the QCD community for more than thirty years, and should still be regarded
as the most effective way to quickly estimate the Missing Higher Order Uncertainties (MHOUs). It suf-
fers, however, from some drawbacks. Chiefly among them the fact that the uncertainty intervals that it
returns cannot be statistically characterized and therefore cannot be combined in a meaningful way with,
e.g., likelihood profiles for other uncertainties, for instance of experimental origin.

M. Cacciari and N. Houdeau tried in [1] to overcome this limitation by proposing to estimate MHOUs
in a Bayesian framework, so as to obtain a statistically meaningful probability density profile of the un-
certainty interval. The Cacciari-Houdeau approach led to a model (henceforth CH) that relies on simple
priors that, at their core, try to mimic assumptions that are anyway implicitly made when one employs
the scale variation method.

The purpose of this study is twofold. On the one hand, we wish to revisit the CH model, and propose a
slightly modified version (which we will denote CH) that will trade some of the simplicity of the original
CH model for a better adaptability to a broader class of observables, namely those related to hadron-
initiated processes. On the other hand, we wish to study the results of both the scale variation and the
CH model on a large number of perturbatively calculated observables, so as to be able to assess their
performance in a (frequentist) statistically meaningful way. For the scale variation approach, this means
that one can attempt to characterize its uncertainty intervals a posteriori, in terms of some confidence
level, that they correctly describe the MHOU. For the Bayesian approach with the CH model, this study
will allow one to either test that the ‘Degree of Belief’s (DoBs) that CH returns for the Missing Higher
Order (MHO) uncertainty intervals are correct or, where needed, to estimate the appropriate expansion
parameter that ensures that this will be the case.

The structure of the study is the following. In chapter 2 we introduce the basic concepts behind the
Bayesian approach to probability and we illustrate the logic behind its use in the context of the estimation
of the systematic uncertainties. Chapter 3 reviews the scale variation approach and the Bayesian method
introduced in [1], and describes the modifications to the CH model that lead to the formulation of the
CH model used in this study. Chapter 4 gives the methodology that we have followed in our study of
the performances of the scale variation and the CH approaches, introduces the list of perturbative ob-
servables used in the survey, and presents its results. Chapter 5 compares the results of the scale variation
and the CH method for the MHOUs of a small number of processes that we consider either particularly
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10 Introduction

relevant for LHC physics or simply quite iconic, namely e+e− → hadrons, Higgs decay to two gluons
and to two photons, W and Z production in pp collisions via Drell-Yan process, pp → tt̄ and Higgs
production in proton-proton collisions. A concluding section follows, while a few appendices collect
technical details and the numerical values of the perturbative coefficients of the observables used in the
survey and the benchmarking.

Emanuele Angelo Bagnaschi (LPTHE)



2 A BR IEF INTRODUCT ION TO BAYES IAN

PROBAB I L I TY

B starting our study of MHOUs, we briefly recall the main concepts behind the Bayesian ap-
proach to probability since they will be important to understand properly the CH model, which

is the cornerstone of our study. Moreover it will allow us to introduce the basic Bayesian lexicon which
will be used in the subsequent chapters. For a complete introduction to probability theory see for exam-
ple the book by E.T. Jaynes [2], while for a critical introduction to Bayesian reasoning see D’ Agostini’s
book [3].

2.1 The concept of probability

Thefrequentistdefinition The standard frequentist approach to probability is built conceptually around
the idea of a repeated experiment. Indeed, a textbook definition of probability could be:

Probability is the ratio of the number of times the event under scrutiny occurs in a test series
to the total number of trials in the series, in the limit of infinite number of trials.

A more careful analysis of the statement reveals that, by using this definition, the concept of probability
is not carefully and precisely specified. Indeed, what this statement defines is not probability but the
relative frequency with which an event occurred in the past. To use the relative frequency as a definition
of probability we have to implicitly assume another hypothesis, that the event occurred in the past and it
will occur in the future with the same probability. However this is an assumption that it is made and not
accounted for in any explicit way. Moreover it also implies some degree of circularness in the definition
itself.

We would like to stress that the scope of the frequentist framework, exactly because of its construction
around the definition of probability given above, is limited to statements about the relative frequencies
of experiments. Indeed probability distributions are defined only with respect to these. While it is com-
mon use to make frequentist statements about the true values that are approximately measured in the
experimental repetitions, these are beyond the appropriate usage of the framework. Indeed, in a frequen-
tist context the true values are fixed and not associated with any specific probability distribution.

TheBayesiandefinition At the core of the Bayesian approach to probability lies the notion of “subjective
probability”. It means that very same concept of probability is not something defined on the basis of a
controlled experiment (like in the frequentist formulation), rather it is assumed as primitive and based
on the beliefs of the subject performing the measurements. In other words, probability is a measure of
the DoB of the subject that any well defined statement will turn out to be true.

To better elucidate this concept we use the notion, first introduced by De Finetti[4], of the “coher-
ent bet”. Suppose that the higher the degree of belief that an event will occur, the bigger the amount of
moneyA that a rational bettor is willing to pay in order to receive a sum of moneyB if this event occurs.

11



12 A brief introduction to Bayesian probability

The bet is required to be “coherent”, i.e. it must be acceptable in both directions by the subjects taking
it. This is translated into the conditionA ⩽ B andA ⩾ 0. The caseA = 0 indicates that the event is
considered to be always false/non-occurring, whileA = Bmeans that event is considered to be true/al-
ways occurring. It follows that if a subject thinks that an event E has a probability p, he will betA = pB

to get B if the event occurs, and it is willing to lose pB if it does not. From this reasoning it follows that
the condition of “coherence” implies that 0 ⩽ p ⩽ 1.
Moreover it is demonstrated that this definition of probability respects all the standard axioms:

1. 0 ⩽ P(E) ⩽ 1 .

2. P(Ω) = 1 .

3. P(E1 ∪ E2) = P(E1) + P(E2), if P(E1 ∩ E2) = 0 .

In these formulae E, E1 and E2 indicate the events that are the objects of the probability statements and
Ω is the ”universe“ set of all possible events.

2.2 Exemplificationof thedifferencesbetweentheBayesianandthe frequentist

approaches

Following [5], we now show with an example what are the implications of the different approach to
probability in the Bayesian and the frequentist frameworks.

The frequentist approach Suppose that we are measuring a quantity x whose probability distribution
is a Gaussian with central value µ and standard deviation σ. We are now interested in trying to estimate
from the repeated observations {x1, x2, x3, . . . , xn} the unobservable parameter µ.

We first define an estimator1 µ̂ for µ. The simplest estimator is given by the arithmetic mean x̄

x̄ ≡
n
∑

i=1

xi/n . (1)

Hence we define µ̂(x1, x2, . . . , xn) = x̄. We observe that this estimator is unbiased: independently of
the value of µ we have always that Exp{x̄(x)} = µ, where with the notation Exp{f(x)} =

∫

f(x)g(x)dx

we refer to the expectation value of f(x) over the probability distributiong(x), where in our case theg(x)

is a Gaussian distribution.
From the central limit theorem we have that, in the limit of a large number n of repetitions of the

averaging process, the distribution of the random variables x̄ tends to a Gaussian with central value µ
and standard deviation σ/

√
n. Hence it follows that

Exp{(µ̂− µ)2} = σ2/n . (2)

1 By estimator we simply mean a rule to “estimate” the quantity we are interested in, starting from observed data.
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2.2 Exemplification of the differences between the Bayesian and the frequentist approaches 13

However we are not only interested in giving a single value for our estimation of µ, but a range of
plausible values which are consistent with our data. From the properties of the Gaussian distribution we
have that

Prob{|x̄− µ|⩽ 2σ/
√
n} = 0.95 . (3)

This is equivalent to

Prob{µ− 2σ/
√
n ⩽ x̄ ⩽ µ + 2σ/

√
n} = 0.95 . (4)

The interval defined as [x̄− 2σ/
√
n, x̄ + 2σ/

√
n] is called, using the frequentist lexicon, “a 95% Confi-

dence Level (CL) interval” forµ. It is important to stress that, while usually it is assumed to be a result on
the true value of µ, it follows from eq. (4) that it is a statement on x̄. Indeed the proper interpretation is
that, in the long series of independent repetitions of the experiment (and therefore for many values of x̄)
the interval defined in eq. (4) covers the true value µwith a frequency of 95%. Moreover, also the other
results such as eq. (2) and the definition of unbiased estimator are inherently frequentist in nature. Fi-
nally, it is here manifest the fundamental role of the hidden assumption that µ is fixed in the repetitions
of the experiment, otherwise it would not have been feasible to relate the distribution of the x̄ variables
to the true value µ.

The Bayesian approach As we have seen, in the frequentist approach the true value µ is considered to
be an unknown but fixed value. We now suppose that µ itself is an uncertain2 variable, known to be
normally distributed with meanm and standard deviation s, where the value ofm and s are supposed
to be known to the experimenter. The a priori knowledge of the subject performing the measurement is
formalized, in a Bayesian context, in what is called the “prior” distribution. To understand in detail what
this means we specialize our example.

Suppose that µ is the true I.Q. of a person randomly chosen from a population we are studying. We
know, a priori (from previous studies for example), that µ is distributed according to a Gaussian with
m = 100 and s = 15. This is indeed our prior for the measurement we are performing. The perfor-
mance of the I.Q. test we are using, which represents our experimental apparatus, is known and can be
quantified by defining the conditional probability3 of observing the value x̄ for a given value ofµ (i.e. the
experimental likelihood). We assume that f(x̄|µ) is a Gaussian distribution N:

f(x̄|µ) ≡ N(µ, σ/
√
n) , (5)

where µ is the true value, σ is given and fixed by the test performance and n the number of repetitions
of the test.

We are now interested in computing our belief on the true value µ. Bayes theorem is a mathematical
construction that allows one to combine the a priori information of the subject, represent by the prior,

2 The variables that appear in frequentist probability distributions are called random variables since they assume diferent values
in diferent repetitions of the experiment; here we call the Bayesian variable appearing in a credibility distribution uncertain
variable to underline that in the Bayesian context the uncertainty is not linked to experiment realization but to the informa-
tion available to the subject performing the measurement.

3 We recall that the conditional probability f(E|F) is the probability that the event E occurs if the event F has occurred with
certainty.
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14 A brief introduction to Bayesian probability

with our knowledge of the measurement process, represented by the experimental likelihood, to obtain
a probabilistic statement on the true value µ. In general terms we have the following derivation:

1. The conditional probability of µ given the data x̄ is given by

f(µ|x̄) =
f(x̄, µ)

f(x̄)
=

f(x̄, µ)
∫

f(x̄, µ)dµ
, (6)

where f(x̄, µ) is the joint probability distribution for x̄ and µ.

2. Usually the double distribution f(x̄, µ) is not known, but we can compute it from f(x̄|µ) and
f(µ). We have then

f(x̄, µ) = f(x̄|µ)f(µ) . (7)

Again we stress that f(x̄|µ) quantifies our knowledge of the experimental apparatus, while f(µ) is
our a priori knowledge of the true valueµ. If we know the experimental apparatus quite well, as is
usually the case, the f(x̄|µ) distribution will be narrow while the major source of uncertainty will
be in f(µ).

3. Combining all the previous steps leads us to the explicit form of the Bayes theorem

f(µ|x̄) =
f(x̄|µ)f(µ)

∫

f(x̄|µ)f(µ)dµ
. (8)

It represents the best way to compute f(µ|x̄) given our knowledge, both a priori (as given by the
prior) and a posteriori after the updates from the experiment. This is usually called the “posterior”
of the model and it is the result of the process of Bayesian inference.

It is important to stress again that in the Bayesian context, at variance with the frequentist case, it is
possible to define a probability distribution for µ, since the latter was assumed from the start to be an
uncertain variable as all the other quantities which appear in the measurement process. On the other
hand, in the frequentist case, µ was supposed to be fixed to a value and therefore, while it is indeed
unknown to experimenter, no probability distribution can be formally assigned to it. Hence, we can
conclude that in the Bayesian case the averaging process is inversed with respect to the frequentist one,
since data are held fixed and µ is the uncertain variable.

Applied to our case, Bayes theorem gives

f(µ|x̄) = N
(
m +C(x̄−m),

√
D
)
, (9)

where the two factorsC andD are given by

C =
n/σ2

1/s2 +n/σ2
, D =

1

1/s2 +n/σ2
. (10)
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Figure 1: Graphical representation of the prior and the posterior distribution for the Bayesian analysis and of the
frequentist distribution for x̄.

We also define a Bayesian estimator for µ. The most natural one is given by the mean of the posterior
distribution f(µ|x̄)

µ∗(x̄) = m +C(x̄−m) . (11)

We also define an analogous of the frequentist confidence interval, called the Credibility Interval (CI). In
our Gaussian case we have:

Prob{µ∗(x̄) − 2
√
D ⩽ µ ⩽ µ∗(x̄) + 2

√
D|x̄} = 0.95 . (12)

This interval quantifies our DoB for the true value µ.
We now perform a quantitative comparison between the Bayesian approach and the frequentist one

in the case of our example. Suppose that x̄ = 160, m = 100, s = 15 and σ/
√
n = 7.5. We have

then that 95% DoB C.I. interval is Prob{µ∗(x̄) − 2/
√
D ⩽ µ ⩽ µ∗(x̄) + 2/

√
D|x̄} = 0.95 and the

best Bayesian estimate is µ∗ = 148. On the other hand using the frequentist estimator defined in the
previous section, we have that the best estimate is given by µ̂ = x̄ = 160. In the latter case, the only
probability distribution defined is the one for x̄ from which we have a 95% C.L. interval of [145, 175].
We see therefore that the inclusion of our prior knowledge on the quantity we are measuring changes our
inference of the value of µ quite substantially. While the measured value of x̄ is 160, the fact that in the
Bayesian context we are using the information from our prior implies a much lower estimation of µ. In
figure 1 we show the prior distribution, the posterior distribution and the frequentist distribution for x̄.
We can see that the Bayesian posterior distribution is shifted to lower values of I.Q. with respect to the
frequentist result which is peaked around the value of x̄ = 160, due to information coming from the
prior.

We underline that in the Bayesian approach it is impossible to avoid the usage of priors. Their role is
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16 A brief introduction to Bayesian probability

to encode all the knowledge that the subject possesses and that it is not used in the traditional frequentist
analysis. The fact that priors are subjective is often considered to be a weakness of the Bayesian approach,
to be corrected with the use of some “objective prior” to be determined with the aid of an external and
objective criterion. With respect to this issue, there are different schools of Bayesian thoughts.

One, labeled by the adjective “subjective”, refuses this criticism and proposes to always asses the exper-
imenter knowledge beforehand by using the concept of “coherent bet” that was introduced in section
2.1. This approach is very useful when the subject performing the experiment has already an opinion
about the true value µ behind the measurement. A classic example that shows its power is the case of
the “loaded dice”. Suppose that we are playing dice with a person we know is prone to cheating and on
fifteen rolls we get fifteen sixes. Should we not include our a priori knowledge on the possibility that
the dice is loaded into the computation of the probability distribution for the dice rolls? It seems very
reasonable to do so.

Other schools instead try to opt for a more objective approach to the definition of the priors. For
example, in absence of a strong a priori knowledge, they propose to produce an uninformative, objective,
prior which represents a completely neutral opinion with respect to µ. In the case of the I.Q. estimation
process, that prior would be in the form of a Gaussian N(0,∞). It is interesting to observe that by
using this prior the posterior distribution has the same form of the frequentist distribution for x̄, namely
N(x̄, σ/

√
n) and that moreover now the Bayes estimator is equal to the frequentist one, µ∗ = µ̂ = x̄.

Finally, we point out another feature of the the Bayesian approach. Since all quantities are associated
to a probability density distribution, the Bayesian framework is particularly suited to the treatment of
complex problems. For example, if we are interested in knowing the posterior distribution for a quantity
µ3, which depends on other two quantitiesµ1, µ2, we can simply use the rules of probability to combine
the distributions. Indeed, in the most general case we have

f(µ3) =

∫

f(µ1)f(µ2)δ
(
µ3 − g(µ1, µ2)

)
dµ1dµ2 , (13)

where g(µ1, µ2) gives the value of the dependent quantityµ3 in terms ofµ1 andµ2. In exactly the same
way we can account for systematic uncertainties, though various approaches are possible in this case (for
an exhaustive analysis on how to include them we refer to the literature [3]).

2.3 Missing higher order uncertainties as ameasurement problem in aBayesian

context

In the previous section we have briefly introduced the Bayesian probability framework and we have
shown how it works with the aid of a simple example. We now specialize it to the problem of the de-
termination of MHOUs, by following the idea of Cacciari and Houdeau [1].

The Cacciari-Houdeau framework tries to address the issue of estimating the MHOUs for a pertur-
bative observable. The estimation of the uncertainty due to uncomputed perturbative corrections can
be interpreted as the problem of determining our uncertainty on the convergence behavior of the series
given the computed coefficients. Hence it belongs to the class of problems where the aim is to determine
an unknown and uncertain parameter (which we suppose parameterizes the behavior of the series) rather
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Bayesian framework Cacciari-Houdeau

Figure 2: Schematic relation between the general elements of a Bayesian framework and their specialization in the
Cacciari-Houdeau model.

than evaluating a fixed quantity by repeated experiments. Hence the Bayesian approach seems best suited
for the task.

Suppose now that we are studying an observable whose perturbative expansion known up to order k
is given as

Ok =

k
∑

n=1

αn
s cn , (14)

The core hypothesis around which the model is built is that the absolute values of the series coefficients
cn share a common upper bound that we call c̄. The true value of c̄ is unknown and its role is equivalent
to theµ parameter of the previous sections. Since we are in a Bayesian framework, we associate a prior to
this unknown quantity and we update our “credibility” with the information coming from the known
coefficients {c1, . . . , ck}. The latter correspond to the measured values xi of the previous sections. We
can think of them as probes for the value of c̄. In figure 2 we graphically represent the logical relationship
between the general Bayesian framework discussed in the previous section and the Cacciari-Houdeau
model. The likelihood f(cn|c̄) is also part of the model definition. After having built the conditional
density f(c̄|c1, . . . , ck) by using Bayesian inference and f(cn|c1, . . . , ck) for n > k, we can build the
probability density for ∆k =

∑∞
n=k+1 α

n
s cn given the known coefficients, f(∆k|c1, . . . , ck), which is

exactly what quantifies our theoretical uncertainty due to missing higher order contributions.
It is important to underline that with this procedure we get a MHOU uncertainty interval intrinsically

defined in terms of Bayesian credibility. Hence the interval has a full and coherent statistical interpreta-
tion that allows it to be readily used in other analyses, for example experimental ones, which is exactly
one the reason that led to the creation of the model. A complete and detailed description of the Cacciari-
Houdeau model follows in section 3.2.
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3 EST IMAT IONS OF THEORET ICAL UNCERTA INT IES IN

QCD

W wish to survey two different approaches to the estimation of the MHOUs of a perturbatively
calculated observable:

• the variation within a given range and around a chosen central value of the unphysical scales (i.e.
the renormalization and the factorization scales) that appear in higher order perturbative calcula-
tions;

• the Bayesian approach introduced by Cacciari and Houdeau in [1], with its modification that will
be discussed in section 3.3.

We now review how these two methods work, and also set the appropriate notations.

3.1 Uncertainty estimation by scale variation

The truncated perturbative expansion of an arbitrary observable O at a fixed order will contain an un-
physical higher-order dependence on some scales due to the renormalization procedures used in QFT
calculations (e.g. renormalization or factorization scale, here all collectively denoted by µ),

Ok(Q,µ) =

k
∑

n=l

αn
s (µ)cn(Q,µ) , (15)

whereQ is the characteristic hard scale and l is the starting order inαs of the processes. The standard ap-
proaches to estimate the MHOUs are all based on the idea of varying the scaleµ in an interval [Q/r, rQ],
where r is an arbitrary factor often chosen to be equal to 2. The values of the observable obtained at dif-
ferent scales are then used to derive an uncertainty interval according to a defined prescription.

This strategy to evaluate the uncertainties is based on the specific structure of the residual scale depen-
dence at any given order. The latter is fixed by the renormalization group equation for the observable. It
follows that all the terms that are added and do not cancel out between orders when the scales are varied
have a structure that is the same of genuine higher order terms multiplied by a logarithm of the ratio of
the new scale over the central one. This can be easily seen in the case of the renormalization scale varia-
tion. We assume that the only implicit dependence on the scale is inαs and there are no other parameters
(e.g. quark masses) that depend on the scale. Suppose we have an observable that can be expanded as in
eq. (15). The evolution equation that governs the dependence on the renormalization scale forαs is given
by

dαs

d lnµ2
= β(αs) = −α2

s

∞
∑

j=0

αj
sβj , (16)

19
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where β(αs) is the strong coupling beta-function. Due to the explicit structure of the coefficient cn
dependence on µ (fixed by the RGE equation) the terms that depend on the scale at order less than k
cancel out. Then what is left is a higher order variation dominated by the term that comes from the
product of the variation of αs at the order k times ck, whose magnitude is then approximately given
by kαk+1

s β0ck. This term is indeed part of the genuine (k + 1)-order contribution, where it comes
from the loop correction diagrams that contribute to the αs renormalization. Notice that at the same
order in αs there are also terms of the form (k − j)βjck−j, with 0 < j ⩽ k. However, due to the
relative magnitude among theβj coefficients and assuming that all cn are of the same order, they can be
considered subleading in the variation. We refer to the appendix of ref. [1] for more details.

A similar structure supports using factorization scale variation to estimate uncertainties in the case
of observables with initial state hadrons (along with the independent variation of the renormalization
scale). However the evolution equation for αs is replaced by the Dokshitezer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations and the role of the βi coefficients is assumed by the Altarelli-Parisi splitting
functions.

In the community different recipes have been used to implement scale variation. Writing the uncer-
tainty interval as [O−

k , O
+
k], around the central-scale valueOk (not necessarily centered around it), the

most common choices are:

1.

O−

k = min{Ok(Q,Q/r), Ok(Q, rQ), Ok(Q,Q)} ,

O+
k = max{Ok(Q,Q/r), Ok(Q, rQ), Ok(Q,Q)} . (17)

2.

O−

k = min
µ∈[Q/r,rQ]

{Ok(Q,µ)} , O+
k = max

µ∈[Q/r,rQ]
{Ok(Q,µ)} . (18)

3.

O±
k = Ok ± δk

2
, (19)

where we have defined

δn ≡ |Ok(Q, rQ) −Ok(Q,Q/r)| . (20)

4. Same as eq. (19) but with

δk ≡ max
µ∈[Q/r,rQ]

{Ok(Q,µ)}− min
µ∈[Q/r,rQ]

{Ok(Q,µ)} . (21)

The main issue with the scale variation approach is that it does not provide a probability distribution
for the uncertainty interval, which therefore has no statistical meaning. It is also worth noting that the
common choice r = 2 is merely a convention, and that the value of the central scale around which to
perform the variation is also largely arbitrary. Indeed, in some cases this central scale is deliberately chosen
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away from the characteristic scale of the process to satisfy other criteria. For example, this is the case for
Higgs production in gluon fusion where the central scale is often chosen equal tomH/2 to mimic the
result obtained when performing soft-gluon resummation [6], and because around this value the cross
section shows reduced sensitivity to the scale choice and an improved convergence of the perturbative
series [7].

Generalization to the case of two or more scales is straightforward and follows along the same lines.
The most commonly used prescription, which we will also use in our study, is an extension of eq. (17),
i.e. varying both the renormalization scale µr and the factorization one µf as indicated there, but with
the additional constraint 1/r ⩽ µr/µf ⩽ r, to avoid the appearance of unnaturally large logarithms.

3.2 The Cacciari-Houdeau Bayesian approach

As we have already seen in section 2.3, the approach of Cacciari and Houdeau [1] is a recently introduced
Bayesian probability framework to compute MHOUs. It is based on various assumptions on the behav-
ior of the coefficients of a series of the form

Ok(Q,Q) =

k
∑

n=l

αn
s (Q)cn(Q,Q) ≡

k
∑

n=l

αn
s cn , (22)

for a perturbative observable that starts at order l of αs and it is known up to order k. The unphysical
scales have been set to the central valueQ and we have also implicitly defined αs ≡ αs(Q) and cn ≡
cn(Q,Q).

The model postulates as its basic assumption that all the perturbative coefficients have similar magni-
tudes. This can be quantitatively translated into the statement that all the perturbative coefficients cn
share an upper bound to their absolute value that we denote c̄. This and other assumptions are encoded
into specific Bayesian priors and likelihoods, and in the choice of the expansion parameter, taken to be
αs, and allow one to determine an uncertainty density profile (the posterior of the model) as a function
of the size of the unknown remainder of the series ∆k ≡

∑∞
n=k+1 α

n
s cn. They are:

• The hypothesis that all the perturbative coefficients {cl, cl+1, cl+2, . . .} are of the same order of
magnitude, O(cl) ≃ O(cl+1) ≃ · · ·, is encoded in the use of a step function for the conditional
density distribution of the coefficients on the hidden parameter c̄

f(cn|c̄) =
1

2c̄

{

1 if |cn|⩽ c̄
0 if |cn|> c̄

. (23)

One could also use a density distribution that does not vanish anywhere, like a Gaussian distri-
bution. The specific choice of eq. (23) was dictated by a requirement of simplicity in the original
formulation and to ease the analytic study of the model.

• The density distributions of the perturbative coefficients when c̄ is known are assumed to be in-
dependent

f({ci, i ∈ I}|c̄) =
∏

i∈I

f(ci|c̄) . (24)
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Figure 3: Plot of the posterior distribution for the ∆2 in the CH model, for a toy observable with c̄k = 1 and
αs = 0.1 as shown in [1]. The red curve is the analytic approximation of eq. (26) while the black curve
represents the exact result.

This implies that c̄ is the only parameter that contains the information shared by the coefficients
and that, when it is known, the residual uncertainties of the perturbative coefficients are then
mutually independent.

• We do not have any information on the order of magnitude of the hidden parameter c̄ as long
as we have not computed any coefficient. In theory c̄ could assume any positive real value and
therefore all of its values for its order of magnitude are a priori equally probable. Therefore, a
non-informative prior on the hidden parameter c̄, a log-uniform distribution, is chosen

fϵ(c̄) =
1

2|ln ϵ|
1

c̄
χϵ⩽c̄⩽1/ϵ , (25)

where ϵ is taken to zero at the end of the computation.

From these three hypotheses and with the use of Bayesian inference it is possible to derive the conditional
densities f(c̄|cl, . . . , ck) and f(cn|cl, . . . , ck) forn > k. Finally, from these two densities it is possible
to build the probability distribution for the residual theoretical uncertainty, f(∆k|cl, . . . , ck).

If the expansion parameter is sufficiently small, we can assume that the remainder of the series is dom-
inated by the first unknown order, i.e. ∆k ≃ αk+1

s ck+1. Then the posterior of the model for ∆k can be
computed analytically and expressed in a simple form

f(∆k|cl, . . . , ck) ≃
(

nc

nc + 1

)
1

2αk+1
s c̄(k)











1 if |∆k|⩽ α
k+1
s c̄(k)

(
αk+1

s c̄(k)

|∆k|

)nc+1

if |∆k|> α
k+1
s c̄(k)

, (26)

where c̄(k) ≡ max(|cl|, · · · , |ck|) andnc = k− l + 1 is the number of known perturbative coefficients.
From eq. (26) and figure 3 it is possible to appreciate the characteristics of the posterior distribution for
this model: a flat, central, plateau with power suppressed tails. The existence of such a probability density
distribution for the uncertainty interval represents the main difference with the scale-variation procedure,
that gives only an interval without a credibility profile.

In the same approximation, ∆k ≃ αk+1
s ck+1, one can also calculate the smallest credibility interval

Emanuele Angelo Bagnaschi (LPTHE)



3.3 Themodified Cacciari-Houdeau approach (CH) 23

æ

æ
æ

à

à
à

ì

ì
ì

e
+
+ e
-
® hadrons

æ Λ = 0.7, p = 0.683

à Λ = 1.0, p = 0.683

ì Λ = 1.3, p = 0.683

LO NLO NNLO
Σk,QCD0.025

0.030

0.035

0.040

0.045

0.050

Figure 4: Effect of the λ parameter on the uncertainty interval size.

for ∆k with a DoB equal to p% (where p% ≡ p/100 and p ∈ [0, 100]), i.e. such that ∆k is expected
to be contained within the interval [−d

(p)
k , d

(p)
k ] with p% credibility:

d
(p)
k =











αk+1
s c̄(k)

nc+1
nc
p% if p% ⩽ nc

nc+1

αk+1
s c̄(k) [(nc + 1)(1 − p%)]

(−1/nc) if p% > nc

nc+1

. (27)

3.3 Themodified Cacciari-Houdeau approach (CH)

The CH model described above relies on a specific form of the perturbative expansion, namely eq. (22).
As a result, its estimation for the uncertainty is not invariant under a rescaling of the expansion parameter
from αs to αs/λ. In figure 4 we show the uncertainty bars for e+e− → hadrons for three different
choices of λ.

Another connected issue is that, as we have seen in the previous section, the model assumes that the
expansion parameter is such that all the perturbative coefficients cn are of the same order O(c1) ≃
O(cl+1) ≃ · · ·. A priori this could not be the case for the simple expansion in αs.

Attempts have been made to reformulate the model in a rescaling-invariant way to avoid both of these
problems. Ultimately, none of them turned out to be satisfactory, to the extent that each required formu-
lating priors much too informative, which shaped excessively the final posterior. We eventually settled
instead on a slightly modified version of the CH model.
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In the modified model, henceforth denoted as Modified Cacciari-Houdeau (CH), we rewrite the per-
turbative expansion in the form

Ok =

k
∑

n=l

αn
s

λn
(n− 1)!

λncn

(n− 1)!
≡

k
∑

n=l

(αs

λ

)n
(n− 1)! bn , (28)

with
bn ≡ λncn

(n− 1)!
, (29)

and submit the new coefficients bn to the same priors originally used for the cn. This leads to the un-
certainty probability density profile

f(∆k|bl, . . . , bk) ≃
(

nc

nc + 1

)
1

2k! (αs/λ)k+1b̄k











1 if |∆k|⩽ k!
(
αs

λ

)k+1
b̄k

(
k!(αs/λ)k+1b̄k

|∆k|

)nc+1

if |∆k|> k!
(
αs

λ

)k+1
b̄k

,

(30)
and to the credibility interval

d
(p)
k =











k!
(
αs

λ

)k+1
b̄k

nc+1
nc
p% if p% ⩽ nc

nc+1

k! (αs

λ )k+1b̄k [(nc + 1)(1 − p%)]
(−1/nc) if p% > nc

nc+1

. (31)

The (n− 1)! factor, which represents the main modification with respect to the original CH model, can
be justified on the ground that such a factor is expected to appear in higher order perturbative calculations,
e.g. those in the large-β0 limit and in connection with renormalons [8–11]. In appendix B we show that
indeed removing the factorial term leads to worse performances of the model.

The factor λ is free and needs to be determined a posteriori. The best choice for the rescaling factor
λ can be determined empirically by observing how the model fares in describing the uncertainties of
observables that are known at a perturbative order beyond where we use the model. We will see that
an optimal value turns out to be λ ≃ 1 for observables that do not involve hadrons in the initial state,
while a value of λ ≃ 0.6 is favored in hadron-initiated processes. This method of determining λ (further
detailed below) brings of course some frequentist contamination in the Bayesian approach. We consider
this drawback acceptable at the present stage, but we note that one could in principle further update
the model instead, by introducing an additional prior for the value of λ and thus avoid the frequentist
contamination. The frequentist study on λ performed in this work can then perhaps be used as a guide
for the formulation of such an additional prior.

Extension to hadronic observables

The original CH model was formulated with non-hadronic observables1 in mind. It is not a straightfor-
ward task to extend it to observables with initial state hadrons, henceforth denoted hadronic observables.

1 Bynon-hadronic observableswemeanobservableswithout hadrons in the initial states and therefore devoid of the dependence
on the factorization scale
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3.3 Themodified Cacciari-Houdeau approach (CH) 25

A generic hadronic observable (e.g. a total cross section) can be written as a convolution integral

Ok(τ,Q) =

∫ 1

τ

dz

z
L
(τ
z
,Q
) k
∑

n=l

αn
s Cn(z,Q) ≡ L(Q) ⊗

k
∑

n=l

αn
s Cn(Q) , (32)

whereL is the parton-parton luminosity,Cn(Q) is the hard-scattering coefficient function, τ is an appro-
priate hadronic scaling variable andQ is the characteristic energy scale of the process. All the unphysical
renormalization and factorization scales are taken to be equal toQ, as in the non-hadronic case, and they
are not explicitly shown. In eq. (32) the perturbative coefficient functions Cn are distributions, and
not simple numbers like the coefficients cn of the non-hadronic observables. This means that it is not
possible to directly apply the CH method described in section 3.3 to hadronic observables of the form
(32).

One can overcome this problem in two ways.

1. A first approach is to express the hadronic cross section as a series whose coefficients include the
convolution with the parton-parton luminosities, i.e. we can rewrite eq. (32) in the form

Ok(τ,Q) = L(Q) ⊗
k
∑

n=l

αn
s Cn(Q) ≡

k
∑

n=l

(
αs

λh

)n

(n− 1)! Hn(τ,Q) , (33)

where we have defined

Hn(τ,Q) ≡ λnh
(n− 1)!

L(Q) ⊗Cn(Q) . (34)

One then proceeds like in the non-hadronic case, applying the Bayesian priors to the coefficients
Hn. In practice, one is assuming that the non-perturbative physics contained in the parton-parton
luminosity brings order by order roughly the same contribution, or more generally that its pres-
ence does not spoil the assumptions of the model. This is supposed also to be true from the pertur-
bative contributions that come from DGLAP evolution. In our studies, to reflect these assump-
tions, we always use the same PDFs at all orders. This approach has also been adopted in a number
of papers that have made use the original CH model, e.g. [12, 13].

Note that in eq. (33) we have introduced a parameter λh that is potentially different from the λ
employed in the expansion of non-hadronic observables.

2. A second approach consists in translating the observable to Mellin space, and write

Ok(N,Q) = L(N + 1)

k
∑

n=l

(
αs

λh

)n

(n− 1)! Bn(N,Q) , (35)

where
Bn(N,Q) ≡ λnh

(n− 1)!

∫ 1

0

dx xN−1Cn(x,Q) . (36)

is the Mellin transform of the short-distance coefficient function Cn, rescaled by the usual fac-
tors adopted in CH, and L(N + 1) is the Mellin transform of the parton-parton flux. One then
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observes that, if the Mellin inversion integral can be shown to be dominated by a single Mellin
momentN∗, one can simply apply the priors of the CH approach to the short-distance numbers
Bn(N∗, Q) and find the relevant uncertainty, which can then be transported back to the full result
by rescaling it appropriately.

Indeed, the dominant Mellin moment method is based on the following observation[14, 15]. Given
the observable in Mellin space, the observable in the physical x-space is given by the inverse Mellin
transform

Ok(τ,Q) =
1

2πi

∫ N̄−i∞

N̄−i∞
dNτ−NOk(N,Q) . (37)

We can rewrite eq. (37) as

Ok(τ,Q) =
1

2πi

∫ N̄+i∞

N̄−i∞
dNeE(τ,N,Q) , (38)

where we have defined

E(τ,N,Q) ≡ N ln
(1

τ

)
+ lnOk(N,Q) (39)

and where N̄ is larger than the real part of the rightmost singularity of Ok(N,Q). We recall
that Ok(N,Q) has a singularity on the real positive axis because of the parton luminosity and
to the right of this singularity it is a decreasing function of N, because the area below the curve
τN−1Ok(τ,Q) decreases as N increases. Therefore E(τ,N,Q) always has a minimum on the
real positive axis at some pointN = N∗. Hence the inversion integral is dominated by the region
ofN aroundN∗ and can be approximated by a saddle-point expansion ofE(τ,N,Q) aroundN∗.
Around the saddle point we have that

E(τ,N,Q) ≈ E(τ,N∗, Q) +
E ′′(τ,N∗, Q)

2!
(N−N∗)2 + O((N−N∗)3) , (40)

so that the Mellin inversion integral becomes

Ok(τ,Q) ≈ 1

2πi

∫N∗+i∞

N∗
−i∞

dNeE(τ,N∗,Q)+
E ′′(τ,N∗,Q)

2! (N−N∗)2

. (41)

We can then change the integration variable toN = N∗ + it and perform the Gaussian integration.
The result is

Ok(τ,Q) ≈ 1√
2π

eE(τ,N∗,Q)

√
E ′′(τ,N∗, Q)

. (42)

This approach is viable because one can show that at least in some cases (see e.g. [14, 15]) such a
dominant Mellin moment exists and eq. (42) gives a good approximation to the full result or at
least of the k-factors, that ultimately are what the model uses in the determination of the behavior
of the series.
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3.3 Themodified Cacciari-Houdeau approach (CH) 27

The main limitation of this procedure, which a priori would be preferred over the first one be-
cause it does not contaminate the coefficients that are run through the Bayesian model with non-
perturbative physics, is that it strongly relies on the predominance of not only a single Mellin
moment but also a single production channel (e.g. gluon-gluon fusion in Higgs production at
the LHC) at all orders. If this is not the case, the need to reweight the various dominant Mellin
moments in the different parton channels will reintroduce contamination from non-perturbative
physics.

A second, practical, limitation is that perturbative results are rarely available in Mellin space from
public codes, limiting the straightforward application of this method to very few cases.

Because of the limitations of the Mellin moment method we will use the first approach in our study, but
we will also present in appendix D two case studies for the Mellin moment method.
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4 GLOBAL SURVEY RESULTS

I this chapter we try to assess the quality of the scale variation procedure and of the CH model by
studying their performances as estimators of the MHOUs when applied to a set of observables. For

every observable in the set we consider two quantities:

1. the size of the uncertainty predicted at a given perturbative order n by the approach under con-
sideration;

2. the known perturbative result for the same observable at order n + 1.

For each of the observables we then calculate the global success rate of the approach in predicting the
uncertainty, i.e. the fraction of observables, for which the result of the perturbative order n + 1 actually
falls within the uncertainty interval predicted by the model at order n .

In the case of the Bayesian model we repeat the analysis described above for various values of λ and
DoB. This allows us to derive the optimal value of λ to be used in the CH model, that is defined as the
value of λ for which the model has a global success rate which is most similar to the requested DoB, for
every possible DoB.

In the case of the scale-variation method we vary the scaling factor r defined in section 3.1. Since this
method does not give statistically meaningful uncertainty intervals, we cannot determine an optimal
value of r from this analysis, like it is the case instead for λ in the Bayesian approach. Rather, we can only
assign an a posteriori heuristic confidence level (CL) value to the uncertainty intervals.

4.1 Setup

The observables used for the global survey have been divided into two groups.
A first group is composed of non-hadronic observables, defined as observables calculated from pro-

cesses that do not include hadrons in the initial state. Table 1 gives the complete list, with the available
perturbative accuracy (i.e. the maximum known QCD order) and a reference to original literature. To
extract results for these non-hadronic observables we have used the values of the coefficients as given in
the original references. If the zeroth order of these observables is entirely electroweak in nature, since we
are interested in a perturbative expansion in powers of the strong coupling, we shall not include the first
coefficient c0 in the analysis when using the CH approach, as was the case in [1].

A second group contains hadronic observables, i.e. processes that involve initial-state hadrons and it
is listed in table 2. In this case the perturbative coefficients were usually extracted from numerical results
obtained by running the software package which implements the calculation of a given observable. In
this case the leading order coefficient (i.e. the first one) is always also retained for the analysis with the
CH approach, independently of its order in αs. It is also worth noting that, in order to avoid biasing
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the analysis using different parton distribution functions (PDFs) at different orders, we will always use
Next-to-Next-Leading Order (NNLO) PDFs at all orders.

All the coefficients and the specific parameters for the simulations are given in appendix A, in tables
11 and 12. For all our analyses we have used a private Mathematica code.
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Non-Hadronic observables
Observable Leading order in αs Highest known order in αs Reference

R =
σ(e+e−→hadr)
σ(e+e−→µ+µ−)

0 3 [16]

Bjorken sum rule 0 3 [17]
GLS sum rule 0 3 [18]

Γ(b→ ceν̄e) 0 2 [19]

Γ(Z→ hadr) 0 4 [20]
Γ(Z→ bb̄) 0 3 [21]

3-jets Thrust 1 3 [22]
3-jets Heavy jet mass 1 3

3-jets Wide jet broadening 1 3
3-jets Total jet broadening 1 3

3-jets C parameter 1 3
3-to-2 jet transition 1 3

γ
(+)
ns(N = 2) 1 3 [23]
γqq(N = 2) 1 3
γqg(N = 2) 1 3

H→ bb̄|mb=0 0 4 [24]
H→ gg 2 5 [25]
H→ γγ 0 2 [26]

Table 1: List of non-hadronic observables used in the global survey. Note that when the leading term is purely elec-
troweak, this first coefficient, c0 is not used when studying these non-hadronic observables in the Bayesian
approach.

Hadronic observables
Observable Leading order Highest known Reference

in αs order in αs

pp→ H at
√
s = 8 TeV 2 4 HIGLU [27], [28]

bb̄→ H associated production at
√
s = 8 TeV 0 2 bbh@nnlo [29]

gg→ tt̄ at
√
s = 8 TeV 2 4 [30]

on-shell pp→ Z +X→ e+e− +X at
√
s = 8 TeV 0 2 DYNNLO [31]

on-shell pp̄→W± +X→ e±νe +X at
√
s = 8 TeV 0 2 DYNNLO [31]

Higgs strahlung production (W/Z) at
√
s = 8 TeV 0 2 [32]

bb̄ at
√
s = 8 TeV 2 3 MCFM

Z + j at
√
s = 8 TeV 1 2 MCFM

Z + 2j at
√
s = 8 TeV 2 3 MCFM[33]

W± + j at
√
s = 8 TeV 1 2 MCFM

W± + 2j at
√
s = 8 TeV 2 3 MCFM[33]

ZZ at
√
s = 8 TeV 0 1 MCFM[34]

WW at
√
s = 8 TeV 0 1 MCFM[34]

Table 2: List of hadronic observables used in the global survey.
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4.2 Results

Scale Variation

In this section we study the performance of the standard scale variation approach. One outcome of this
analysis will be a heuristic confidence level (CL) for the uncertainty intervals given by scale variation, as
a function of the scaling factor r that sets the range over which the unphysical scales are varied, µ ∈
[Q/r, rQ].

In the non-hadronic case we have decided to test two of the prescriptions given in section 3.1, which are
supposedly the most widely used ones: a) taking the maximum and the minimum of the cross sections
obtained with µ = rQ or µ = Q/r, as defined in eq. (17); b) taking the maximum and the minimum
when scanning the whole interval of scales betweenQ/r and rQ, as defined in eq. (18).

Results for the first prescription (i.e. only extreme values) are given in the left plot of figure 5. In this
figure ”LO” means that one evaluates the scale-variation uncertainty of the observable calculated up to
the first known QCD order, the Leading Order (LO), whereas ”NLO” means that the calculation of the
observable is used up to second known QCD order. We observe that, at LO, the heuristic CL of the
scale-variation uncertainty intervals for the conventional r = 2 value is of the order of 50%, and only
reaches a 68% level for r ≃ 3.5. At larger values of r the CL stabilizes around 80%. At NLO the CL is
still of the order of 50% at r = 2 but it increases more rapidly with r than at LO, and it is already around
68% for r ≃ 2.5-3 and it stabilizes again around 80%.

Results for the second scale-variation prescription (i.e. full scan) are given in the right plot of figure 5.
While the LO results are very similar, the NLO heuristic CLs are of order 80% for r = 3-4 and then they
are significantly larger, being of order 100% for r > 5. This behavior can probably be explained from
the fact that at NLO the scale variation of an observable is usually non monotonic, and therefore a full
scan captures better its overall variation than the evaluation of only two or three fixed points.

We perform the same study for the scale-variation uncertainties of hadronic observables. Since hadronic
cross sections depend on two scales, the factorization and renormalization scales, we vary them indepen-
dently to obtain the scale variation interval. As often done in the literature, we do not perform a full scan
(too computationally expensive) but rather evaluate observables only at the center and at the extremes of
a scale range, avoiding combinations that generate large logarithms, as explained at the end of section 3.1.

Figure 6 shows the results of the hadronic analysis. We have calculated the cross sections both using
always NNLO PDFs (left) and order-matched ones (right), i.e. using LO PDFs at LO, NLO ones at
NLO, etc. At every fixed order, the two choices are equivalent up to higher order terms. We have chosen
to use the NNPDF2.3 PDF for NNLO and NLO, while at LO we used NNPDF2.1 since no NNPDF2.3
equivalent is available for the order-matched study, while the NNPDF2.3 NNLO set is used for the fixed
NNLO PDF analysis. We used the strong coupling constant value as given by the PDF sets, for which
we have αs(mZ) = 0.1191.

In both cases we see that, as common wisdom dictates, the LO scale variation is very poorly predictive
of the true magnitude of the NLO result. At NLO the two prescriptions differ. Using always NNLO
PDFs (left plot) we observe a 40% CL for the standard scale variation with r = 2. The 68% level is
attained for rbetween 3 and 4, and the CL then stabilizes around 90% CL for r ⩾ 4. The order-matched

1 In some cases, like for Higgs production in gluon fusion, the strong coupling is run at the central scale by the software that
computes the cross section. In other cases the strong coupling is evolved using the facilities ofered by LHAPDF.
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PDF prescription shows a very small CL (less than 30%) for r ⩽ 3. The CL reaches 68% for r a bit over
4 and then stabilizes around 75% for r ⩾ 4.5. Note that in the case of NNPDF the value of αs is fixed
at all orders and it is not allowed to float during the PDF fitting. This probably explains why the usually
used order-matched prescription is a much worse player, since for equal values ofαs(Q), it misses higher-
order contributions.

These two analyses for hadronic observables suggest that, in order to obtain a reasonably conservative
uncertainty interval from scale variations, with a CL at least as large as 68%, in many cases one should use
a rescaling factor r equal at least to three or four.
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Figure 5: Fractions of observables within the uncertainty band found for scale variations between µR = Q/r and
µR = rQ; following the prescription of taking the values at the extremes of the intervals (left), taking the
maximum and minimum of the values obtained by scanning the interval (right).
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Figure 6: Scale-variation scan for processes with initial state hadrons: NNLO PDF (left), order-matched PDF (right).
Combinations like µR = rQ, µF = Q/r are not included.
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Figure 7: Non-hadronic survey: comparisons between DoB and actual success rate, to determine the most appro-
priate value for λ. Left, histogram of the optimal λ value obtained with a DoB scan. Right, plot of the
success rate vs the requested DoB for six values of λ.

The modified Cacciari-Houdeau model (CH)

For each of the sets of observables listed in table 1 and 2, we have also performed an analysis of the per-
formance of the CH model in estimating the MHOUs. In this case the free parameter of the model is
the λ factor that defines the expansion parameter of the perturbative series as written in eq. (28). The
parameter λ plays a role analogous to that of r in the scale variation approach. However, since in the
Bayesian model the widths of the uncertainty intervals are associated to specific credibility values, one
can explicitly determine appropriate values for λ by asking that the model performs as expected, which
means that success rate of the model should be roughly equal to the requested DoB.

We first study the non-hadronic observable case. We show the results of this analysis graphically in fig-
ure (7) in two different and complementary ways. Both plots include all the 18 non-hadronic observables.
The right plot includes all the higher-order contributions up to NNLO, for a total of 37 elements, while
the histogram represents only the LO and NLO analysis. To obtain the histogram in figure 7 (left), we
vary the DoB between 0.05 and 0.95 in steps of 0.01. For each DoB value we determine the λ value which
gives the best agreement with the condition DoB = success rate. The resultingλ values are plotted in a his-
togram. Values between 0.6 and 0.8 are preferred at LO, while λ ≃ 1 is favored at NLO level. The plot
in figure 7 (right) shows instead how DoB and success rate compare, for different values of λ, in a global
analysis of LO and NLO observables. We see that for values of λ in the 0.9-1.1 range the requested DoB
agrees well with the observed success rate of the uncertainty prediction. Since we are interested in having
a λ value that could be equally used both at LO and subsequent orders, it follows that our prescription
is λ ∼ 0.9 − 1.1. This frequentist-like determination of λ is itself subject to an uncertainty due to the
finite size of the set of observables that we have used, which results in a statistical error on the observed
success rate (see Appendix C for an extended description of the error determination procedure). This
statistical error is displayed as a gray band in figure 7 (right). One can see how it roughly translates into
a limiting precision of ±0.2 in the determination of λ.

We also perform the same analysis for the hadronic observables set given in table 2. Figure 8 (left)
shows the histogram of the optimal values of λh following a DoB scan, for the global set of hadronic
observables. Smaller values than in the non-hadronic case are preferred, the histogram presenting a peak
around λh ≃ 0.5. In figure 8 (right) we plot the success rate as a function of the DoB predicted by
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Figure 8: Hadronic survey: comparison between DoB and actual success rate to determine the most appropriate
value for λ for all hadronic observables.

CH for various values of λh for all hadronic observables at LO and NLO. From this plot we see that
λh ≃ 0.5 is preferred for a range of DoBs less than 50%, while for higher values of DoB a λh around 0.6

is preferred. Since the most common use case for the model is characterized by the latter range of DoB
(i.e. DoB = 68%,95%), we opt to take λh = 0.6 for our analysis.

Hence, the results of the analyses presented in this section allow us to ‘tune’ the CH as follows: we
will use a parameter λ = 1 when considering non-hadronic observables (and we will not include in the
analysis the c0 coefficients), while we will use λh = 0.6 when considering hadronic observables2.

2 It may be tempting to speculate that the smaller value of λ in the hadronic case (and therefore a larger efective expansion
parameter for the series) may be explained by the generally larger number of gluons involved in these processes, and therefore
by an expansion parameter closer to αsCA than to αsCF, but we will refrain from doing so.
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5 BENCHMARK PROCESSES

I this section, we present the results for both the CH and the scale-variation prescription for some of
the most relevant processes at leptonic and hadronic colliders. These include decay rates and produc-

tion cross sections, most of them involving initial-state hadrons. We use the results obtained in the global
survey (see section 4) to fix the parameters of the models. For observables without initial-state hadrons,
the best-fit value for λ in the CH model is 1, for the integrated-coefficient extension of the model to
observables involving initial-state hadrons, the best fit value is λh = 0.6 . For the scale-variation prescrip-
tion, r ∼ 2.5 should be comparable to the 68% DoB for non-hadronic observables, while r of O(3 − 4)

should have the same role in the hadronic case. In addition, it is interesting to see how these prescriptions
compare to the conventional scale variation with r = 2.

In light of these considerations, we compute the scale-variation intervals for r = 2 and r = 4 for all
benchmark processes. On the other hand, for the CH model we present the results for the 68% DoB
and the 95% DoB intervals.

For every benchmark process we will show two different classes of plots:

1. An error-bar plot, where the x-axis represents the order of the observable, in power ofαs, at which
the calculation is done and the y-axis gives the corresponding value of the observable; error bars are
shown by using a thick dark-blue line for the CH 68% DoB interval, while we use a thin light-blue
line for the corresponding 95% DoB one. In red we plot the results for scale variation: the thick
dark-red line corresponds to scale variation with a rescaling factor r = 2, while the thin light-red
line is obtained with r = 4.

2. We show the posterior f(∆k|bl, . . . , bk) for each order at which the observable is available. The
profile of the distribution is plotted using a thick-blue line while a dark-blue (light-blue) filling is
used to indicate the area under the distribution that corresponds to 68% (95%) DoB. For compar-
ison we also plot the scale variation interval for r = 2 with a thin red line.

Finally, we also report a table, for every process, with the corresponding numerical values to appreciate
quantitatively the width of the error intervals.

5.1 Higgs decays

The recent discovery of what appears to be a Higgs boson at the LHC has spurred a lot of activities to
understand if its properties are or not the ones predicted by the Standard Model. The two first classes
of observables that are the most readily accessible discriminants for this purpose, are Higgs production
inclusive cross sections and decay rates. In this section we will focus on the latter, while we will show the
result for the gluon fusion production mechanism in section 5.5 .
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H→ gg
Order Γk[MeV] CH , 68% CH , 95% SVr=2(δ−k , δ

+
k) SVr=2, DoB

k = 2 0.185 ±0.065 ±0.420 (−0.032, 0.044) (19.2%, 26.0%)

k = 3 0.305 ±0.041 ±0.105 (−0.035, 0.040) (29.0%, 32.6%)

k = 4 0.342 ±0.017 ±0.031 (−0.019, 0.012) (38.5%, 24.5%)

k = 5 0.345 ±0.009 ±0.015 (−0.006, 0.0004) (21.7%, 1.6%)

Table 3: Analysis results forH→ gg. The meaning of the columns is described in the text at the beginning of the
section. The layout of the table is the following: the first column is the perturbative order expressed in
terms of the highest power k of αs that appears in the series expansion; in the second column we report
the value of the observable computed with the central scales at that order; in the third and forth column we
write the width of the interval computed by using the CH model for a DoB of 68% and 95% respectively;
in the fifth column we show the results for the scale variation prescription for r = 2; in the last column we
report the Bayesian DoB for the r = 2 scale-variation interval as computed in the CH model.

We focus our analysis on two specific decay channels: Higgs to two gluons and Higgs to two photons.
The first one, while not particularly interesting at the LHC due to the huge QCD backgrounds, is com-
puted up to N3LO and therefore it serves well as a showcase for the models; the second one, although
characterized by small QCD corrections, is very important phenomenologically, due to its sensitivity to
new charged particles and to the couplings of the Higgs to the top quark and the W boson.

Higgs to two gluons

The decay rate for the processH→ gg at the k-th order in perturbative QCD is given by

Γk(H→ gg) =

k
∑

n=2

αn
s cn (43)

In the numerical computation we have usedmH = 125 GeV as the central scale and the corresponding
strong coupling constant valueαs(mH) = 0.113. Corrections are available up to N3LO and hence it is
a perfect candidate for the study of the behavior of the perturbative QCD series. As the LO contribution
is mediated by a loop process involving strongly interacting particles both running in the loop and in the
final state, QCD corrections play a large role as can be seen in figure 9. The 68% DoB intervals obtained
with the CH model correspond roughly to a scale-variation interval obtained with an r between 2 and 4.
Furthermore, the NLO is contained neither in the 68% DoB interval of the LO observable nor in the scale
variation intervals with r = 2 or r = 4. This picture changes at higher orders. The observable at NNLO
is within the 68% DoB interval of the CH model at NLO and also within the scale-variation interval for
r = 2. The last contribution is contained in all plotted intervals. We can observe some features which
were manifest in the global survey. According to the results for the scale-variation prescription, r ∼ 2− 3

corresponds to a CL of 68%. We observe that for the LO and NLO the interval size for the 68% DoB
interval of the CH prescription is indeed a bit bigger than the r = 2 scale-variation interval and smaller
than r = 4 one.

We report in table 3 the numerical results of the intervals. In general, we can see that scale-variation
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Figure 9: Size of the uncertainty interval at LO, NLO, NNLO and N3LO for CH with λ = 1, compared to those
predicted by scale variation for the processH→ gg.

intervals are often very asymmetric while the CH intervals are by construction symmetric.
In figure 10 we show the results for the posterior distributions at all orders (thick blue line). In dark

blue we fill the area that corresponds to the 68% DoB, while in light blue the one that corresponds to
the 95% DoB. We also plot in red the scale variation interval for r = 2. We notice that the latter is always
contained in the flat plateau of the Bayesian posterior. We also observe how the posterior distribution
becomes more and more narrow as new orders are added. This especially reduces the size of the 95%

DoB interval compared to the 68% DoB one.
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Figure 10: Posterior distribution of the Bayesian model for ∆k =
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n=k+1 α
n
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(blue fill), 95% DoB interval (light-blue fill), scale variation interval for r = 2 (red solid) for the process
H→ gg.
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H→ γγ
Order Γk[KeV] CH , 68% CH , 95% SVr=2(δ−k , δ

+
k) SVr=2 DoB

k = 1 9.548 ±0.030 ±0.192 (−0.015, 0.019) (20.1%, 24.7%)

k = 2 9.556 ±0.004 ±0.011 (−0.003, 0.001) (26.2%, 7.3%)

Table 4: Analysis results forH→ γγ. The meaning of the columns is described in the caption of table 3.

Higgs to two photons

The decay rate for Higgs to two photons is given by

Γk(H→ γγ) =

k
∑

n=0

αn
s cn (44)

The process is purely electroweak at LO, where the decay is mediated by a top-quark and a W-boson loop.
QCD corrections are known up to O(α2

s).
Following our prescription for the applicability of the CH model to non-hadronic observables, we

apply the model only to QCD corrections. We can see from figure 11 that in this case the scale-variation
intervals with r = 4 have roughly the same size as the CH 68% DoB interval and that the r = 2 scale-
variation interval is strikingly smaller than the latter, at variance with what it could have been predicted
from the global survey.

We observe that the value of the observable at NLO is contained in the 68% DoB interval for CH
and in the r = 2 interval for scale variation, reflecting the smallness of QCD corrections. Looking at
the posterior distributions in figure 12, we note that the commonly used intervals for scale variation with
r = 2 are always contained in flat plateau of the CH density distribution. In addition, the posterior plots
show how the size of the 95% DoB interval is drastically reduced with respect to the 68% one, implying a
good convergence of the perturbative series.

Precision phenomenology at the LHC and characterization of theoretical uncertainties
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Figure 11: Size of the uncertainty interval at NLO and NNLO for CH with λ = 1, compared to those predicted by
scale variation.
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e+e− → γ∗ → hadrons
Order σ ′

k CH , 68% CH , 95% SVr=2(δ−k , δ
+
k) SVr=2 DoB

k = 1 0.03756 ±0.00693 ±0.04432 (−0.0035, 0.0044) (20.0%, 24.9%)

k = 2 0.03955 ±0.00107 ±0.00270 (−0.00084, 0.00025) (26.8%, 8.1%)

k = 3 0.03887 ±0.00034 ±0.00063 (−0.00032, 0.00006) (32.7%, 5.8%)

Table 5: Analysis results for hadroproduction in e+e− collisions. The meaning of the columns is described in the
caption of table 3.

5.2 Hadroproduction process in e+e− collisions

In this section we re-propose the same analysis that was included in the original Cacciari-Houdeau paper
[1], using the new CH model and comparing to SV also with r = 4.

The total cross section for the process σ(e+e− → γ∗ → hadrons) is considered one of the standard
candles of QCD physics and it is therefore an important test for our Bayesian model. To isolate QCD
corrections, to which we would like to apply the model as per our prescription, we rewrite the observable
in the following form

σk = σ0

(
1 +

k
∑

n=1

ciα
n
s

)
. (45)

We define the observable

σ ′
k ≡

k
∑

n=1

cnα
n
s =

σk

σ0
− 1 , (46)

which we use to compare scale-variation and CH intervals. In table 5 we report the values of σ ′
k, for

nf = 5 massless flavors. We have usedmZ as the central scale choice and αs(mZ) = 0.118.
In fig 13 we show the error bars for the CH model compared to the ones obtained with the scale-

variation prescription. We see that scale variation with r = 4 leads to intervals comparable in size with
the 68% DoB CH intervals and that the higher-order values of the observables are always contained in
both the 68% DoB interval and the r = 2 scale-variation interval.

In figure 14 we plot the full density profile for this observable. We can see that the scale variation
interval is always contained in the flat top section of the posterior distribution. As was the case for the
previous two observables we observe that, with respect to the width of the plateau, the width of the
95% DoB interval is reduced in greater amount with respect to the corresponding 68% width, as the
perturbative order increases.

Precision phenomenology at the LHC and characterization of theoretical uncertainties
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pp→W+ → e+νe
Order σk[nb] CH , 68% CH , 95% SVr=2 (δ−n , δ+

n) SVr=2 DoB

k = 0 3.328 ±1.051 ±6.729 (−0.362, 0.319) (13.4%, 11.9%)

k = 1 3.718 ±0.139 ±0.351 (−0.147, 0.095) (35.7%, 23.2%)

k = 2 3.704 ±0.050 ±0.094 (−0.077, 0.061) (45.5%, 40.9%)

pp→ Z→ e+e−

Order σk[nb] CH , 68% CH , 95% SVr=2 (δ−n , δ+
n) SVr=2 DoB

k = 0 0.4995 ±0.1548 ±0.9907 (−0.054, 0.047) (13.6%, 12.0%)

k = 1 0.5574 ±0.0201 ±0.0507 (−0.020, 0.012) (34.3%, 20.8%)

k = 2 0.5551 ±0.0071 ±0.0133 (−0.007, 0.010) (36.0%, 43.4%)

Table 6: Analysis results forpp→ Z→ e+e− andpp→W+ → e+νe. The meaning of the columns is described
in the caption of table 3.

5.3 TheDrell-Yan process at the LHC

Vector-boson production has large cross sections and clear signatures at hadron colliders like the LHC.
Therefore, precise theoretical predictions including reliable estimates for theoretical uncertainties are im-
portant for precision measurements of the Standard Model and for new physics searches.

We have used the DYNNLO code [31] to obtain the cross section

σk(pp→ V) =

k
∑

n=0

αn
s cn , (47)

where V = W+ or V = Z, at the LHC with a center of mass energy of 8 TeV. For the computation we
have used the NNLO NNPDF2.3 at all orders, with the corresponding values of αs, while the central
scale has been set to the mass of the weak boson produced in the process. As already mentioned earlier,
hadronic observables already show scale dependence through the PDFs at LO and we have decided to
include the first coefficient, even if purely electroweak, also in the Bayesian analysis.

We observe a similar behavior for W+ and Z production as depicted in figures 15 and 17. The CH
prescription with a DoB of 68% leads to larger intervals than the scale-variation prescription with the
considered r values at LO, the two prescriptions give similar intervals at NLO while at NNLO situation
is inverted with the CH model with a CL of 68% yielding smaller intervals than the r = 2 scale variation.

Concerning the success rate, higher order corrections are always included in the previous order 68%

DoB intervals for the CH model at both NLO and NNLO while for for the r = 2 interval for scale
variation this is valid only for the NNLO value.

Posterior distributions are reported in figure 16 and 18. We observe that also for this observable the
scale variation intervals for r = 2 are contained in the flat plateau for LO and NLO, while they are not
fully contained at NNLO. We also see that the good convergent behavior of the series is reflected in the
narrowing of the posterior distribution.

Precision phenomenology at the LHC and characterization of theoretical uncertainties
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Figure 15: Size of the uncertainty interval at LO, NLO and NNLO for CH with λ = 0.6, compared to those
predicted by scale variation for pp→W+ → e+νe.
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Figure 17: Size of the uncertainty interval at LO, NLO and NNLO for CH with λh = 0.6, compared to those
predicted by scale variation for pp→ Z→ e+e−.

pp ® Z

CH H Λh = 0.6 L

DoB = 0.68

DoB = 0.95

Scale Variation r=2

-0.4 -0.2 0.2 0.4
D0@nbD

0.5

1.0

1.5

2.0

2.5

f HD0ÈH0 L

k = 0

-0.4 -0.2 0.2 0.4
D1@nbD

5

10

15

f HD1ÈH0 ,H1 L

k = 1

-0.4 -0.2 0.2 0.4
D2@nbD

10

20

30

40

50

f HD2ÈH0 ,H1 ,H2 L

k = 2

Figure 18: Posterior distribution of the Bayesian model for ∆k =
∑∞

n=k+1 cn (blue solid), 68% DoB interval (blue
fill), 95% DoB interval (light-blue fill), scale variation interval (red solid) for pp→ Z→ e+e−.
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pp→ tt̄
Order σk[pb] CH , 68% CH , 95% SVr=2 (δ−n , δ+

n) SVr=2 DoB

k = 2 146.32 ±82.61 ±528.76 (−34.32, 51.08) (16.2%, 24.1%)

k = 3 217.38 ±39.32 ±99.46 (−26.89, 26.94) (23.3%, 23.3%)

k = 4 244.36 ±25.24 ±47.61 (−13.52, 10.42) (18.2%, 14.0%)

Table 7: Analysis results for pp→ tt̄. The meaning of the columns is described in the caption of table 3.

5.4 tt̄ production at the LHC

The cross section for top-quark-pair production at hadron colliders is now known up to NNLO [30].
This allows for an important comparison between theoretical prediction and experimental results at the
LHC. Not only is top-pair production an important background process in BSM searches, but it is also
an interesting observable by itself as a probe of the SM and for the precise measurement of the top-quark
mass, one of the fundamental SM parameters needed to understand the stability of the EW vacuum. We
used the tool top++ to compute the cross sections at LO, NLO and NNLO for

√
s = 8 TeV at the LHC,

with NNPDF2.3 NNLO PDF set used at all orders. We have always used the values of αs coming from
the PDF set and the top mass as the central scale for the process.

By looking at figure 19, we observe that the NLO cross section is contained in the LO 68% DoB interval
of the CH prescription, while it is not contained in the scale-variation interval with r = 2. The NNLO
cross section is outside both mentioned LO intervals but is within the 68% CH NLO intervals and nearly
inside the r = 2 scale variation one. It is also worth mentioning that CH intervals with a DoB of 68%
are similar in size to the scale-variation intervals with r = 4 for this observable. Scale-variation intervals
with r = 2 are always contained in the CH 68% DoB intervals.

In figure 20 we show the posterior distribution for the CH model. We see that for this observable the
scale variation result for r = 2 is always contained in the flat plateau. By comparing the shape of the
distribution at different orders, one can appreciate the convergence behavior of the perturbative series.
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Figure 19: Size of the uncertainty interval at LO, NLO and NNLO for CH with λh = 0.6, compared to those
predicted by scale variation for pp→ tt̄.
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Figure 20: Posterior distribution of the Bayesian model for ∆k =
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n
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pp→ H
Order σk[pb] CH , 68% CH , 95% SVr=2 (δ−n , δ+

n) SVr=2 DoB

k = 2 5.6 ±3.35 ±21.46 (−0.98, 1.26) (11.39%, 14.64%)

k = 3 13.3 ±4.51 ±11.42 (−2.17, 2.74) (16.37%, 20.69%)

k = 4 18.37 ±3.52 ±6.65 (−2.06, 2.00) (19.88%, 19.32%)

Table 8: Analysis results for pp(gg) → H. The meaning of the columns is described in the caption of table 3.

5.5 Higgs boson production at the LHC

At hadronic colliders, the dominant production channel of the Higgs boson is gluon fusion. In this pro-
cess the coupling of the Higgs to the gluons is mediated by a loop of colored particles. QCD corrections
are known to be very large and the perturbative series is known to have a poorly-convergent behavior.

We compute the cross section for a 125 GeV Higgs at LHC with a center-of-mass energy of 8 TeV, using
NNPDF2.3 as the PDF set at all orders. The values of αs used in the hard scattering part of the cross
section is given by αs(mZ) = 0.119 and then evolved by HIGLU, giving a value of αs(125.) ≃ 0.115.
The results have been obtained with HIGLU 4.0 for a top mass of 172.5 GeV and a bottom mass of 4.75

GeV.
We see from table 8 that the NLO contributions cause an increase of the cross section of 137% com-

pared to LO and the NNLO contributions increase the cross section by another 37% compared to the
NLO result.

Again, we compute the uncertainty intervals with the scale-variation prescription for r = 2, 4 and
with the CH model with λh = 0.6. We show the results in figure 21. Scale variation with r = 2 does not
seem to provide a reliable error estimate for this observable, since both the NLO and NNLO results are
outside the bands computed at the previous order. We note on the other hand the following behavior
for the CH model: at LO the 68% DoB interval does not contain the NLO contribution; conversely, at
NLO, the NNLO result is very close to the upper end of the 68% DoB band. In general we also observe
that the 68% DoB intervals are comparable in size with scale variation intervals at r = 4.

To see how the 68% CL intervals compare to the 95% ones, we plot the posterior distribution in figure
22. We can see that just as for previous benchmark processes, the size of the 95% uncertainty intervals
is reduced more drastically than the size of the 68% interval from LO to NNLO. We also note that the
r = 2 intervals are always contained in the flat plateau part of the distribution at every order.
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Figure 21: Size of the uncertainty interval at LO, NLO and NNLO for CH with λh = 0.6, compared to those
predicted by scale variation.
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n
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(blue fill), 95% DoB interval (light-blue fill), scale variation interval (red solid)
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6 CONCLUS IONS AND OUTLOOKS

N that we are entering the era of precision physics at the LHC, it will be extremely important to
have not only a qualitative but also a quantitative control over uncertainties, both experimental

and theoretical. With regard to the former, the community of the experimenters bears the responsibility
of assessing them. Concerning the latter and focusing on the uncertainties coming from uncomputed
higher order corrections, which are the object of our study, the theoretical community has relied for the
past 20 years on a heuristic recipe, namely the scale-variation method. However this procedure is not
built on robust theoretical foundations and it fails to provide a thorough statistical definition in term of
Confidence Level (CL) of the intervals it provides. The latter is required to properly interpret the error
bands and combine them with uncertainties of different origin. Moreover, up to this moment, there
were no dedicated studies to understand its behavior on a wide set of observables.

The scope of this work was to improve our knowledge of the problem by performing a complete inves-
tigation of the commonly used prescription of scale variation and also by evaluating the performance of a
much more modern method, the one introduced recently by Cacciari and Houdeau [1]. As a byproduct
we also produced a modified version of the latter, which we named CH . We also extended the applica-
tions of the CH method to observables with initial state hadrons.

Hence we produced the first survey of the statistical behavior of these two methods. We moved along
two complementary lines of analysis. First, we performed a global survey on a wide set of observables,
categorized by their initial state being with or without initial state hadrons. Then we considered in de-
tails the results for a specific set of observables that we deemed significant from the phenomenological
viewpoint.

With respect to the scale variation procedure, we have found that the factor of two usually used to
determine the scale variation-range is not associated with a 68% heuristic-CL but with a lower value.
This is true for the non-hadronic and, more markedly, for hadronic observables. A rescaling factor of
the order of 3 − 4 is probably a more conservative choice in both cases. It should be noticed that, with
respect to Higgs specific observables, a similar conclusion was already reached in ref. [35, 36].

With regards to the Bayesian CH model, we have shown that it is capable of capturing the fundamen-
tal behavior of both non-hadronic and hadronic observables. While the general performance trend is
good, it is probably possible to improve the model by restricting its definition (and tuning) to smaller
(and more homogeneous) classes of observables. Moreover, our modification introduces in the model
a new free parameter, λ, that needs to be determined with the aid of an external procedure. Indeed we
used a frequentist analysis of the model performance to set it. However this introduces a frequentist
contamination in the Bayesian framework that should probably be avoided for consistency. Naturally, a
potential development is the replacement of the a posteriori determination of λwith an ad-hoc Bayesian
prior included in the model, with the aim of later marginalizing over it when computing the posterior
distribution for the uncertainty interval. Other future developments include also the extension to dif-
ferential observables, which is absolutely needed to fully exploit the phenomenological potential of the
model.
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54 Conclusions and outlooks

Our conclusion is that for scale variation the commonly used factor of r = 2 can often lead to an
underestimation of the real MHOU. Moreover, the newly introduced Bayesian framework by Cacciari
and Houdeau, in its realization in the form of the CH model, provides an interesting alternative, being
able to produce what appears to be a realistic estimation of the uncertainty intervals and, at the same
time, a precise statistical interpretation in terms of Bayesian credibility. In light of this, it could be used
to provide the estimation of missing higher order uncertainties alongside scale variation.
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Part II

PREC IS ION HIGGS PHENOMENOLOGY AT THE LHC

We study the inclusive total cross section and the transverse momentum distribution of the
Higgs boson at the LHC.

With respect to the former, we focus on the production of scalar and pseudoscalar Higgs
bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the
NNLO-QCD calculation implemented in the public code SusHi , we provide precise pre-
dictions for the Higgs-production cross section in six benchmark scenarios compatible with
the LHC searches. We also provide a detailed discussion of the sources of theoretical uncer-
tainty in our calculation. We examine the dependence of the cross section on the renormal-
ization and factorization scales, on the precise definition of the Higgs-bottom coupling and
on the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge
of the SUSY contributions through NNLO. In particular, a potentially large uncertainty
originates from uncomputed higher-order QCD corrections to the bottom-quark contri-
butions to gluon fusion.

On the other hand, the transverse momentum analysis is focused on the gluon fusion pro-
duction process only. We present results in the SM, in the 2HDM and in the MSSM. We
discuss the sources of uncertainties that arise during the computation of this observable in
matched fixed order-resummed computations, with specific emphasis on the issues that de-
rive from the inclusion of the bottom quark contribution. We discuss the problem in the
SM and in the 2HDM. We will rely on the use of our POWHEG-BOX event generator and on
the code HRES to perform the numerical analysis.





1 INTRODUCT ION

T discovery of a scalar resonance with mass around 125.5 GeV by the ATLAS and CMS experiments
at the Large Hadron Collider (LHC) [37, 38] puts new emphasis on the need for precise theoretical

predictions for Higgs production and decay rates, both in the Standard Model (SM) and in plausible ex-
tensions of the latter such as the Minimal Supersymmetric Standard Model (MSSM). The role of these
very accurate theoretical results is to be the basis for the ongoing investigations to determine the proper-
ties of the newly discovered resonance and to test its compatibility with the Higgs boson of the Standard
Model (SM). In detail, the comparison between the experimental measurements and the theoretical pre-
dictions of the total production cross section and of the branching ratios in the different allowed decay
channels will provide the basis to appreciate if and with which strength the new state couples to fermions
and to the gauge bosons of the SM. Other studies target the kinematic of the decay products to try to
distinguish among the various spin-parity combinations. Finally, further work will be necessary to clarify
the nature of the scalar potential by measuring the accessible self-couplings of the Higgs bosons. The cur-
rent status of these calculations is summarized in the reports of the LHC Higgs Cross Section Working
Group (LHC-HXSWG) [39–41].

As we have already stressed in the first part of the thesis, a high degree of control over theoretical
uncertainties is as important as the control over experimental ones. Our aim is therefore to provide a
new insight on the theoretical uncertainties that enter the observables that are currently at the base of the
experimental Higgs boson analysis. We will use state-of-the art results and computing tools to achieve
this purpose.

The structure of the study is the following. At first, in chapter 2, we introduce briefly the three models
whose Higgs sector observables we are going to study. This is needed to swiftly recall the physics behind
our analysis and to fix the notation. Then, in chapter 3 we will delve briefly into the mechanisms of the
two processes that we are going to study in detail, gluon fusion and bottom quark annihilation.

The first part of our original work is in chapter 4, where we present a precise study of scalar and pseu-
doscalar Higgs production in the MSSM. The chapter is divided according to the following structure.

In section 4.1 we show the predictions for the total inclusive cross section for Higgs production in six
benchmark scenarios compatible with the LHC results, focusing in particular on a scenario with relatively
light stops where the effect of the SUSY contributions can be significant.

In section 4.2 we provide a detailed discussion of the sources of theoretical uncertainty in the calcula-
tion of the total cross section for Higgs-boson production in the MSSM. We examine the dependence of
the cross sections for gluon fusion and bottom-quark annihilation on the renormalization and factoriza-
tion scales, on the precise definition of the Higgs-bottom coupling and on the choice of PDFs, as well as
the uncertainty associated to our incomplete knowledge of the SUSY contributions through NNLO. In
particular, we point out a potentially large uncertainty arising from uncomputed higher-order QCD cor-
rections to the bottom-quark contributions to gluon fusion, which can affect the interpretation of the
searches for the MSSM Higgs bosons in scenarios where their couplings to bottom quarks are enhanced
with respect to the SM.
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58 Introduction

In chapter 5 we present the problem of computing the transverse momentum distribution of the Higgs
boson in the SM, in the POWHEG-BOX framework. We will then present a thorough analysis of the so-
called matching uncertainties for the computation of the transverse momentum spectrum of the Higgs
boson. Our study has an emphasis on the issues that derive from the use of the matrix elements with
full dependence of the quark masses. We rely on the use of our POWHEG-BOX event generator and on
the code HRES to perform the numerical analysis. Next we study the same issues in the context of the
two Higgs doublet model. Moreover we present our results for transverse momentum spectrum for the
light, heavy and the pseudoscalar boson of the MSSM [39, 41], although we will leave the discussion of
its uncertainties to a future study.

Finally, In chapter 6 we present our conclusions and sketch possible future areas of improvements.
In the appendix we report another possible technical approach to the problem of the inclusion of the

complete quark amplitudes in the POWHEG-BOX and we list the cross sections and uncertainties for the
production of the three neutral Higgs bosons in selected points of the parameter space for the light stop
scenario that was the focus of the analysis in chapter 4.
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2 THE H IGGS SECTOR

T problem of introducing mass terms for gauge bosons and chiral fermions in a gauge theory can be
resolved using the so-called Higgs mechanism. In its simplest form, it involves the introduction of a

scalar potential into the model Lagrangian, whose field (charged under the gauge symmetries that would
be broken by the mass terms) acquires a non-zero vacuum expectation value. By suitably choosing the
properties of the newly added scalar field and its interaction with matter fields, it is possible to generate
the mass terms without violating the gauge symmetry of the original Lagrangian. We will now briefly
review how this works in the SM, 2HDM and in the MSSM. For a complete review of these models we
refer, for the SM and the MSSM to ref. [42] and ref. [43, 44] respectively; a complete introduction to
the 2HDM can be found in ref. [45].

2.1 The StandardModel

The Standard Model (SM) is an SU(3)c × SU(2)L ×U(1)Y gauge theory whose Lagrangian is given by

LSM = −
1

4
Ga

µνG
µν
a −

1

4
Wa

µνW
µν
a −

1

4
BµνB

µν (48)

+ Lii /DLi + eRii /DeRi +Qii /DQi + uRii /DuRi + dRii /DdRi. (49)

whereDµ is the SU(3)c × SU(2)L ×U(1)Y covariant derivative; the field strength tensor for the gluon
is Ga

µν, the one for the W field is Wa
µν and the one for the B field is Bµν. The summation over the

index i is intended to be over the families. The matter content of the theory is the following: Li is the
leptonic left handed SU(2) doublet; eRi is the leptonic right handed SU(2) singlet; Qi is the quark
left handed SU(2) doublet; uRi and dRi are the right handed SU(2) singlet for up-type and down-
type quark respectively. There are no right handed neutrinos in the SM. While it would be possible to
introduce mass terms for the quarks if the only gauge symmetry present would beSU(3)c, it is impossible
to introduce mass terms for the gauge bosons and for the chiral fermions (i.e. fermions whose left handed
and right handed component lives in different representation of the gauge group) without violating the
SU(2)L ×U(1)Y gauge symmetry of the Lagrangian. The Higgs mechanism addresses this issue. In the
SM it is implemented in its simplest form, with the introduction of a singleSU(2) doublet of scalars field

Φ =

(
ϕ+

ϕ0

)
, Yϕ = +1 . (50)

We can then add the scalar doublet to the SM by adding the following terms to the original Lagrangian

LS = (Dµ
Φ)†(DµΦ) − µ2

Φ
†
Φ − λ(Φ†

Φ)2 , (51)
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60 TheHiggs sector

where the covariant derivative is given by

DµΦ =

(
∂µ − igτaWa

µ − ig ′Yq
2
Bµ

)
Φ . (52)

HereBµ is the gauge field of theU(1)Y group (with generator Yq/2) while theWa
µ are the gauge fields

of the SU(2)L gauge group (with generator τa = σa/2, where σa are the Pauli matrix). We denote
with g ′ and g respectively the coupling constant of the U(1)Y and SU(2)L gauge group. If we take
µ2 < 0 the neutral component (with respect to the electric chargeQ = T3 + Yϕ/2 where T3 is the third
component of the isospin) of the scalar doublet develops a non-zero vacuum expectation value (vev)

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√

2

)
with v =

(
−
µ2

λ

)1/2

. (53)

We then expand the scalar doublet around the vev v , at first order, by writing it in terms of four fields
θ1,2,3(x) andH(x):

Φ(x) =

(
θ2 + iθ1

1√
2
(v +H) − iθ3

)
≃ eiθa(x)τa(x)/v

(
0

1√
2
(v +H(x))

)
. (54)

We then perform a gauge transformation and move to the unitary gauge to isolate the physical degrees of
freedom. After doing so we have

(Φ(x))unitary gauge = e−iθa(x)τa

Φ(x) =
1√
2

(
0

v +H(x)

)
. (55)

TheH(x) is the remaining physical degree of freedom, i.e. the Higgs boson. We can now substitute the
expansion in the kinetic term of eq. (51), obtaining

|DµΦ|2=
1

2
(∂µH)2 +

1

8
g2(v +H)2|W1

µ + iW2
µ|

2+
1

8
(v +H)2|gW

3
µ − g ′Bµ|

2 . (56)

We now rewrite this expression in terms of the fieldsW±
µ ,Zµ andAµ, defined by

W± =
1√
2

(W1
µ ∓ iW2

µ) , (57)

Zµ =
gW

3
µ − g ′Bµ√
g2 + g ′2

, (58)

Aµ =
gW

3
µ + g ′Bµ√
g2 + g ′2

. (59)

We have then

|DµΦ|2=
1

2
(∂µH)2 +

[(g
2

)2

Wµ+Wµ−
+

1

2

(g2 + g ′2)

4
ZµZµ

]
(v +H)2 (60)
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2.1 The StandardModel 61

After expanding the last terms, we can isolate the mass terms for theW±
µ and theZµ bosons, which now

have acquired masses equal to

MW =
1

2
vg , MZ =

1

2
v
√
g2 + g ′2 (61)

while the photon is still massless, accordingly to our desire to keep theU(1)Q symmetry unbroken. From
the same Lagrangian we can extract the couplings of the Higgs boson to vector bosons. They are, written
in terms of the masses of the particle coupled to the Higgs:

gHVV = 2
M2

V

v
gHHVV = 2

M2
V

v2
(62)

As we can see, the coupling is proportional to the mass: the more massive particles couple more strongly
to the Higgs boson.

The generation of the fermion masses is achieved by writing Yukawa interaction terms with Φ (for the
type-down quarks and the leptons) and with the isodoublet Φ̃ = iτ2Φ

∗ (for the up-type quarks). For
every fermion generation one introduces the following Yukawa Lagrangian:

LF = −λe L̄Φ eR − λd Q̄ΦdR − λu Q̄ Φ̃uR + h. c. (63)

To get the masses and the couplings of the fermions to the Higgs, we have to expand the Higgs field
around its vev. For example, taking the electron field one obtains the following relevant term:

−
1√
2
λe (ν̄e, ēL)

(
0

v +H

)
eR = (64)

= −
1√
2
λe (v +H) ēLeR (65)

The valueme = λe v√
2

is identified as the mass of the particle. Repeating the same for the first generation
quarks we have:

mu =
λu v√

2
md =

λd v√
2

(66)

From the same Lagrangian we can extract the couplings of the fermions to the Higgs boson. We have in
general that:

gHff =
mf

v
(67)

With the same isodoublet of scalar fields we have therefore generated the masses of the weak vector bosons
and of the fermions. The SU(2)xU(1) gauge symmetry is now spontaneously broken or hidden, while
theU(1)Q and the SU(3)C symmetry are still unbroken.
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Figure 23: Leading order diagram for gluon fusion in the SM (left) and in the HQEFT where the top quark has
been integrated out (right).

2.1.1 Heavy quark effective Lagrangian for the Higgs-gluons coupling

Since the Higgs boson is not charged under the color gauge group SU(3)c, it does not interact with
gluons directly. Indeed its coupling to the gluons is mediated by a loop of color-charged fermions, i.e.
quarks. Since, as we have seen above, in the SM the coupling of the fermions to the Higgs boson is pro-
portional to the mass, the main contribution comes from the heaviest colored fermion, the top quark.
We will see in chapter 3 that the most important Higgs boson production at hadronic collider is indeed
gluon initiated, due to the very high gluon parton luminosity. This process, called gluon fusion, is al-
ready described by one loop diagrams at first order in perturbation theory. It is possible to simplify the
calculation by introducing a Heavy Quark Effective Field Theory (HQEFT) where the top quark degrees
of freedom are integrated out from the Lagrangian and leave an effective operator that couples directly
the Higgs to the gluons,

LHQEFT =
αs

12π

H

v
Tr
[
Ga

µνG
a
µν

]
. (68)

By following this approach, gluon fusion starts as a tree level process and the computation simplifies sig-
nificantly. However this approximation loses validity as soon as the other relevant scales of the process
reach the top quark threshold. For inclusive production this happens when the mass of the Higgs reaches
the 2×mt threshold. It is found however that even beyond the threshold it is possible to use this approx-
imation for NLO and NNLO corrections, by rescaling the result by a factor LO(top)/LO(mt → ∞)

with good accuracy with respect to the full SM result. For differential distributions the validity range is
again limited by the top mass scale: as soon as one of the scales (for example thepT ) reaches it, deviations
from the HQEFT start to appear.

2.2 The TwoHiggs DoubletModel

The two Higgs Doublet Model (2HDM) is one of the simplest extension of the SM. At the Lagrangian
level, the only difference is an extended scalar sector, with two SU(2)L doublets instead of one. The mo-
tivations behind it are numerous ranging from axion models (it is possible to impose the Peccei-Quinn
U(1) symmetry to the Lagrangian only if the latter contains two doublets) to the baryon asymmetry
of the Universe (the 2HDM model provides additional sources of CP violation). Finally it could also
be taken as an effective implementation of the Higgs sector of the MSSM, which indeed has the same

Emanuele Angelo Bagnaschi (LPTHE)



2.2 The TwoHiggs DoubletModel 63

structure as we will see in section 2.3. The most general formulation of the 2HDM contains fourteen
additional parameters and can have CP-conserving, CP-violating and charge-violating minima. For our
purpose, we make several simplifying assumptions: CP is conserved in the Higgs sector, CP is not sponta-
neously broken and finally we impose discrete symmetries to remove from the scalar potential all quartic
terms that are odd in either of the doublets (though we will keep open the possibility of softly broken
them by considering all possible real quadratic coefficients). Hence, callingH1 andH2 two Higgs dou-
blets with hypercharge +1 we have that the scalar potential is given by

V0 = m2
11H

†
1H1 +m2

22H
†
2H2 −m

2
12

(
H†

1H2 +H†
2H1

)
+
λ1

2

(
H†

1H1

)2

+
λ1

2

(
H†

2H2

)2

+ λ3H
†
1H1H

†
2H2 + λ4H

†
1H2H

†
2H1 +

λ5

2

[(
H†

1H2

)2

+
(
H†

2H1

)2]
(69)

where all parameters are real. The two complex scalar doublets can be explicitly decomposed in eight
fields

Hi =

(
H+

i

(vi + ρi + iηi)/(
√

2)

)
, i = 1, 2 (70)

where we have supposed that the two doublets get a non-zero vacuum expectation value

⟨H1 ⟩0 ≡ ⟨ 0 |H1 | 0 ⟩ =

(
0
v1√

2

)
, ⟨H2 ⟩0 ≡ ⟨ 0 |H2 | 0 ⟩ =

(
0
v2√

2

)
. (71)

Three of the eight fields are eaten by theW± and Z gauge bosons to acquire mass. The remaining five
degrees of freedom appear in the physical spectrum. Hence the latter contains a charged scalar, two
neutral CP-even scalars and one neutral CP-odd scalar. We now proceed to diagonalize the mass matrices
of the physical degree of freedoms. Given the above minimization condition, we have that the mass
matrix for the charged Higgs sector is given by

Lϕ±,mass =
[
m2

12 − (λ4 + λ5)v1v2

]
(H−

1 , H
−

2 )

(
v2

v1
−1

−1 v1

v2

)(
H+

1

H+
2

)
. (72)

One of the eigenvalues of the mass matrix is zero: this corresponds to the would-be electrically charged
Goldstone bosonG± which is going to get eaten by theW± bosons. The other eigenvalue is the mass
of the charged Higgs field: m2

± =
[
m2

12/(v1v2) − (λ4 + λ5)
]

(v2
1 + v2

2). The pseudoscalar mass matrix
is instead given by

Lη,mass =
[
m2

12/(v1v2) − 2λ5

]
(η1 , η2)

(
v2

2 −v1v2

−v1v2 v2
1

)(
η1

η2

)
. (73)

Again, one of the eigenvalues of the mass matrix is zero, corresponding to the would-be Goldstone boson
that gets eaten by theZboson. The other eigenvalue corresponds to the mass of the physical pseudoscalar
state, m2

A = [m2
12/(v1v2) − 2λ5](v2

1 + v2
2). The rotation angle that diagonalizes the mass matrices of
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the charged and pseudoscalar fields is the same and it is usually called β. It is linked to the vacuum
expectation values of the two Higgs doublets by the following fundamental relation

tanβ =
v2

v1
(74)

Finally, for the mass matrix of the scalar states, we have

Lρ,mass = −(ρ1 , ρ2)

(
m2

12
v2

v1
+ λ1v

2
1 −m2

12 +
(
λ3 + λ4 + λ5

)
v1v2

−m2
12 +

(
λ3 + λ4 + λ5

)
v1v2 m2

12
v1

v2
+ λ2v

2
2

)(
ρ1

ρ2

)
.

(75)

The rotation angle that diagonalizes the matrix is conventionally called α and it is another important
phenomenological parameter.

It is important to notice that if we redefine the original doublets as

H ′
1 = cosβH1 + sinβH2 (76)

H ′
2 = − sinβH1 + cosβH2 (77)

(78)

one finds that

⟨H ′
1 ⟩0 ≡ ⟨ 0 |H ′

1 | 0 ⟩ =

(
0
v√

2

)
, ⟨H ′

2 ⟩0 ≡ ⟨ 0 |H ′
2 | 0 ⟩ =

(
0

0

)
. (79)

where v =
√
v2

1 + v2
2, as in the SM. The two diagonalization angles α and β parametrize the way that

the couplings to gauge bosons and fermions are rescaled with respect to the SM. Indeed we can write
v1 = v cosβ and v2 = v sinβ. We have now that the eigenstates of the neutral sector mass matrices are:

• For the pseudoscalar sector

G0 = η1 cosβ + η2 sinβ (80)
A = η1 sinβ− η2 cosβ. (81)

• For the neutral scalar sector

h = ρ1 sinα− ρ2 cosα (82)
H = −ρ1 cosα− ρ2 sinα. (83)

On the other hand, the SM-like Higgs boson would be

HSM = ρ1 cosβ + ρ2 sinβ = h sin(α−β) −H cos(α−β) (84)

It can be demonstrated that one can choose without loss of generality to take v1 and v2 as non-negative
real numbers, thus having aβ angle in first quadrant. On the other hand, in the 2HDM, the angleα can
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be taken either in the fourth or in the first quadrant.
The most general form of the Yukawa couplings of the quarks to the two Higgs doublets is given by

LY = (y1)ij ψ̄iψjH1 + (y2)ij ψ̄iψjH2. (85)

where theψi are four-component Dirac spinors and the sum over the indices i and j is understood to be
over the quark generations. The mass matrix for the quarks is then given by

Mij = (y1)ij
v1√

2
+ (y2)ij

v2√
2
. (86)

In the most general form of the 2HDM, the two matrices y1 and y2 will not be simultaneously diago-
nalizable. In this case, the neutral Higgs scalars will mediate tree-level flavor changing neutral currents
(FCNC), at variance with the SM. Due to experimental results, which put high constraints on this pro-
cesses, this is not desirable. It was demonstrated by Paschos, Glashow and Weinberg (PGW) that a nec-
essary and sufficient condition for the absence of FCNC at tree level is that all fermions of a given charge
and helicity transform according to the same irreducible representation of SU(2), corresponds to the
same eigenvalue of T3 and that a basis exists such that they receive contributions in the mass matrix from
a single source. This is already true in the SM. In the 2HDM the same requirement can be enforced by
introducing symmetries (discrete or continuous).

In the quark case we have only two possibilities. The first one, the so-called “type I” 2HDM, all quarks
couple to one of the Higgs doublets, which by convention is taken to be H2. It can be constructed by
requiring a discrete H1 → −H1 symmetry. The other possibility is the “type II” 2HDM, where the
Q = 2/3 right-handed quarks couple to one Higgs doublet, conventionallyH2, and theQ = −1/3 right
handed quarks couple instead toH1. It can be obtained by imposing theH1 → −H1 and diR → −diR
discrete symmetry to the Lagrangian or by other requirements like supersymmetry.

Regarding the leptons, there are various possibilities, all allowed by the PGW theorem: the conven-
tional one is that right handed leptons have the same symmetry as thediR and therefore they couple to the
same Higgs asQ = −1/3 quarks; in the “lepton specific” model we have that the right handed quarks
couple toH2 while right handed leptons toH1; in the “flipped” model right handed withQ = 2/3 and
right handed leptons couple toH2 while right handed quarks with chargedQ = −1/3 couple toH1.

We can then write the Yukawa part of the Lagrangian in the following way

LYukawa = −
∑

f=u,d,l

mf

v

(
λhf f̄fh + λHf f̄fH− iλAf f̄γ5fA

)

−

{√
2Vud

v
ū
(
muλ

A
uPL +mdλ

A
d PR

)
dH+ +

√
2mlλ

A
l

v
n̄uLlRH

+ + h.c.

}

. (87)

All the cases discussed above can be then expressed in terms of various values for the λ parameters. The
explicit values are given in table 9.

With respect to the couplings to two gauge bosons, in all varieties of 2HDM we the couplings is the
SM one rescaled by a factor sin(β−α) for h and by a factor cos(α−β) for H. Instead the couplings of
A to two gauge bosons vanishes.

For the type II 2HDM, a particularly important parameter point choice for phenomenological reasons
is the so called decoupling limit. We have that when α = β− π/2 the couplings of h to fermions and
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Higgs couplings in the 2HDM
Coupling Type I Type II Lepton specific Flipped

λhu cosα/sinβ cosα/sinβ cosα/sinβ cosα/sinβ
λhd cosα/sinβ − sinα/cosβ cosα/sinβ − sinα/cosβ
λHu sinα/sinβ sinα/sinβ sinα/sinβ sinα/sinβ
λHd sinα/sinβ cosα/cosβ sinα/sinβ cosα/cosβ
λAu cotβ cotβ cotβ cotβ
λAd − cotβ tanβ − cotβ tanβ

λhl cosα/sinβ − sinα/cosβ − sinα/cosβ cosα/sinβ
λHl sinα/sinβ cosα/cosβ cosα/cosβ sinα/sinβ
λAl − cotβ tanβ tanβ − cotβ

λhV sin(β−α) sin(β−α) sin(β−α) sin(β−α)

λHV cos(β−α) cos(β−α) cos(β−α) cos(β−α)

λAV 0 0 0 0

Table 9: Rescaling factors for the couplings to quarks (top section), leptons (middle section) and to two gauge
bosons (bottom section) for the neutral Higgs bosons in four different types of 2HDM.

gauge bosons are equal to the SM ones and theH coupling to two gauge bosons goes to zero. If the mass
of H and A are much heavier than h, one can integrates out these two fields from the Lagrangian and
recover the SM as an effective theory.

2.3 TheMinimal Supersymetric StandardModel

The Minimal Supersymmetric Standard Model (MSSM) is the simplest supersymmetric extension of
the SM. Its gauge group is the same as the SM one, SU(3)c × SU(2)L ×U(1)Y , the particle content is
composed of the SM fermions (three generations of quarks and leptons without right handed neutrinos)
and their spin zero counterparts. Moreover, R-parity is assumed and supersymmetry is broken with the
explicit addition of soft-breaking1 terms to the Lagrangian. In the MSSM the Higgs sector is enlarged.
Indeed, the requirement of the holomorphicity of the superpotential, to respect supersymmetry, and of
the cancellation of the anomalies, dictates the introduction of two SU(2)L doublet Higgs, with oppo-
site hypercharges. The structure of the interactions – and therefore also of the SUSY-conserving masses
after spontaneous breaking of the EW symmetry – between these two doublets and the matter fields is
contained into superpotential. In its simplest form, hypothesizing R-parity conservation, we can write
it as

W = heH1LE
c + hdH1QD

c + huQH2U
c − µH1H2 (88)

1 The soft breaking of supersymmetry does not spoil the cancellation of quadratic divergences in radiative corrections

Emanuele Angelo Bagnaschi (LPTHE)



2.3 TheMinimal Supersymetric StandardModel 67

where Q,Uc,Dc are the quark superfields, L, Ec are the lepton superfields and H1, H2 are the two
Higgs superfields. Soft SUSY-breaking mass and interaction terms for MSSM scalars are on the other
hand contained in the scalar potential

Lsoft−breaking = m2
H1
H†

1H1 +m2
H2
H†

2H2 +m2
QQ

†Q +m2
LL

†L

+m2
uũ

∗
RũR +m2

dd̃
∗
Rd̃R +m2

eẽ
∗
RẽR

+
(
TeH1Lẽ

∗
R + TdH1Qd̃

∗
R + TuQH2ũ

∗
R +BµH1H2 + h.c.

)
. (89)

In all these expressions we have left implicit the summation over families and the contraction of SU(2)L
and SU(3)C indices. Finally, the Lagrangian also contains the soft SUSY-breaking mass terms for the
gauginos, the superpartners of the gauge bosons

LG =
1

2

(
M1b̃b̃ +M2w̃w̃ +M3g̃g̃

)
+ h.c. . (90)

With respect to the Higgs sector, if we keep only the neutral component of the two Higgs doublets,
we have that the resulting expression for the tree level Higgs scalar potential is

V0 = m2
1 |H

0
1|

2
+m2

2 |H
0
2|

2
+Bµ(H0

1H
0
2 + h.c.) +

g2 + g ′2

8

(
|H0

1|
2
− |H0

2|
2
)2 (91)

where m2
1 = m2

H1
+ |µ|2 and m2

2 = m2
H2

+ |µ|2 while g and g ′ are the SU(2)L and U(1)Y gauge
coupling constant. The first three terms in this expression come fromW andLsoft−breaking while the last
one is a D-term contribution. The two Higgs doublets acquire non-zero vacuum expectation values, v1

and v2, which can be assumed to be real and positive without loss of generality once it is defined, as we
do, to haveBµ real and non-negative (this is always possible by reabsorbing the phases in the fields). We
can then decompose the two doublets as

H0
1 =

1√
2
(v1 + S1 + iP1) , H0

2 =
1√
2
(v2 + S2 + iP2) (92)

Exactly as in the SM case, we can then replace the Higgs fields in the Lagrangian with this expression to
find the values for the gauge bosons and fermions masses. Indeed we havem2

W = g2v2/4 andm2
Z =

(g2 + g ′2)v2/4, where we have defined v2 ≡ v2
1 + v2

2. For the fermions, we have that up-type quarks get
masses in the form ofmu = hu

v2√
2

, while down type quarks and charged leptons havemd,e = hd,e
v1√

2
,

where here hi is one of the eigenvalues of the i Yukawa matrix.

At variance with the SM, here the masses of the physical spectrum of Higgs bosons are not arbitrary
parameters and they are determined by the model. We have that the mass matrix for the pseudoscalar
state is diagonalized by an angle β such that tanβ = v2/v1. Of the two eigenstates of the mass matrix,
one,G0 is the would-be Goldstone boson which is eaten by theZ boson to acquire mass, while the other
is a physical pseudoscalar state with a tree level mass equals to

m2
A =

Bµ

cosβ sinβ
. (93)

The same angle β diagonalizes also the charged components of the two Higgs doublets. Of the four
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eigenstates, two,G±, are the two would-be Goldstone bosons that get eaten by the twoW±, while the
other two,H± are physical states with massesm2

H± = m2
A +m2

W .
On the other hand, with respect to the CP-even neutral Higgs, we first use the minimum condition

of the tree level Higgs potentialV0 to replace the two parameterm2
1 andm2

2 with a combination ofm2
A

and tanβ. We can then rewrite the tree-level mass matrix, in the (S1, S2) basis, as

M0 =

(
m2

A sin2 β +m2
Z cos2 β −(m2

A +m2
Z) sinβ cosβ

−(m2
A +m2

Z) sinβ cosβ m2
A cos2 β +m2

Z sin2 β

)
. (94)

The matrix is diagonalized by an angle α given by

tan 2α =

(
m2

A +m2
Z

m2
A −m2

Z

)
tan 2β (95)

Its eigenstates are calledh andH. The lightest one,h, at tree level cannot be heavier thanm2
Z cos2 2β <

m2
Z. However the mass ofh receives huge radiative corrections which allow its value to be pushed up to

and to be compatible with the observed one of ∼ 125.5 GeV.
We now take a look at how the couplings between the Higgs and the SM fields are changed in the

MSSM, where the role of the SM Higgs boson is shared by the two scalars h andH. With respect to the
gauge bosons, we have

ghVV =
2m2

V

v
sin(β−α), gHVV =

2m2
V

v
cos(β−α), (96)

while the couplings to the quarks and leptons are given by

ghuu =
cosα
sinβ

mu

v
, ghdd,hee = −

sinα
cosβ

md,e

v
(97)

gHuu =
sinα
sinβ

mu

v
, gHdd,hee =

cosα
cosβ

md,e

v
(98)

The pseudoscalar instead does not couple to two gauge bosons, while its couplings to quarks and leptons
are given by

gAuu = cotβ
mu

v
, gAdd,Aee = tanβ

md,e

v
(99)

Also in the MSSM, as was the case in the 2HDM, we can tune the parameters to have the decoupling
of H and A from fermions and gauge bosons. When mA ≫ mZ, the mixing angle in the CP-even
sector becomes α ≃ β− π/2. Then we have that mh ≃ mZ|cos 2β| and the couplings of h to SM
fermions and gauge bosons become SM-like. In the same limit, the mass of the heaviest scalar becomes
mH ≃ mA, the couplings ofH to gauge bosons vanish and the ones to two up-type (down-type) SM
fermions are suppressed (enhanced) by a tanβ factor. In other words, in this limit we have a light SM-like
Higgs boson with a heavy and mass-degenerates multiplet (H,A,H±) decoupled from the gauge bosons.

With respect to the sfermions, the Higgs Yukawa couplings matrices (he, hd, hu) introduce another
source of mass terms beside the ones coming from the soft-SUSY breaking terms (m2

Q,m
2
L,m

2
U,m

2
D,m

2
E)

and the trilinear interaction terms (Te, Td, Tu) already present inLsoft−breaking. We notice that the trilin-
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ear couplings and µ introduce a mixing between the superpartners of the right-handed and left-handed
SM fermions. The physical degrees of freedom are the eigenstates of the result 6 × 6 mass matrices. For
our consideration, we will neglect any intergeneration mixing. In this case, the only mixing to be taken
into account is the one between the superpartners of the left-handed and right-handed squarks. Un-
der this assumption, we can decompose the trilinear Higgs-squark interactions in a production of two
flavor-diagonal matrices, Tq = hqAq, with q = u, d. Hence we have that the mass matrices for the
third generation squarks, in (q̃L, q̃R), are

Mt̃ =

(
m2

Q +m2
t + ( 1

2
− 2

3
sin2 θW)m2

Z cos 2β mt(At − µ cotβ)

mt(At − µ cotβ) m2
U +m2

t + 2
3

sin2 θWm
2
Z cos 2β

)
(100)

and

Mb̃ =

(
m2

Q +m2
b − ( 1

2
− 1

3
sin2 θW)m2

Z cos 2β mb(Ab − µ tanβ)

mb(Ab − µ tanβ) m2
D +m2

t −
1
3

sin2 θWm
2
Z cos 2β

)
(101)

where the soft-SUSY breaking massesmQ,mU,mD, At andAb are the entries (3, 3) in the correspond-
ing and now diagonal (in flavor space) matrices, while θW is the Weinberg angle. The rotation angles
that diagonalize the two matrices are θt̃ and θb̃ respectively for the stop and sbottom matrices. The
eigenstates are denoted with (t̃1, t̃2) and (b̃1, b̃2). The mixing term (i.e. the off-diagonal entry in the
mass matrix) is related to the mixing angle with the following relation

sin 2θt =
2mtXt

m2
t̃1
−m2

t̃2

, sin 2θb =
2mbXb

m2
b̃1

−m2
b̃2

(102)

where we have defined Xt = At − µ cotβ andXb = Ab − µ tanβ.

Finally, the two Higgs superpartners, the higgsinos, mix with the superpartners of the SU(2)L ×
U(1)Y gauge bosons. With respect to the charges higgsinos and winos, the latter defined as w̃± = (w1 ∓
iw̃2), we have

Mcharginos = −
(
−iw̃ h̃−1

)
(
M2 g v2√

2

g v1√
2

µ

)(
−iw̃+

h̃+
2

)
+ h.c. . (103)

where we have been using a two-component formalism for the spinors. The matrix Mcharginos is diago-
nalized by two unitary matricesU and V such that

U∗McharginosV
† =

(
mχ±

1
0

0 mχ±
2

)
. (104)

The two two-component physical chargino states are given by

χ+
i = Vij

(
−iw̃+

h̃+
2

)

j

, χ−i = Uij

(
−iw̃−

h̃−1

)

j

, (105)

withmχ+
i
⩽ mχ−

i
. If we take all the entries in the chargino mass matrix as real, we have that then also
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U and V are real matrices. However the eigenvalues of chargino mass matrices should then be allowed
to take on negative signs.

The neutral gauginos, b̃ and w̃0, mix with the neutral higgsinos h̃0
1 and h̃0

2. The mass matrices, in the
two-component spinor formalism, can be written as

Mneutralinos = −
1

2

(
−ib̃ − iw̃0 h̃0

1 h̃
0
2

)



M1 0 −g ′ v1

2
g ′ v2

2

0 M2 gv1

2
−gv2

2

−g ′ v1

2
gv1

2
0 −µ

g ′ v2

2
−gv2

2
−µ 0







−ib̃

−iw̃0

h̃0
1

h̃0
2


 . (106)

The neutralino mass matrix is diagonalized by a single unitary matrixN. We have then that the physical
eigenstates are given by

χ0
i = Nij




−ib̃

−iw̃0

h̃0
1

h̃0
2


 . (107)

As in the case of charginos, if we assume that all the entries in the neutralino mass matrix are real and we
allow the eigenvalues to pick up negative signs, we have that also the diagonalization matrix N is itself
real.

The gluino, being a singlet under SU(2)L × U(1)Y and not mixing with any other fermion, has a
tree-level mass that coincides with the Soft-SUSY breaking mass,mg̃ = M3.
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T main production processes at hadron colliders are: gluon fusion, where the Higgs is produced by
coupling to gluons through a loop of colored particles (figure 24a); vector boson fusion, where the

Higgs is produced in the fusion of two weak bosons (figure 24b); Higgs-bremsstrahlung where the Higgs
is emitted from a weak boson produced in a Drell-Yan process (figure 24c); quark-associated production,
where the Higgs boson is produced in association with two quarks in the final state (figure 24d). The
relative importance of these processes in the SM can be seen from figure 25. In the next few sections,
we focus only on the two Higgs production processes that we have studied during our work, the gluon
fusion and bottom associated production processes. While the former is important both in the SM and
its extension, due to the very large gluon luminosity at the LHC, the latter assumes an important – and
possibly dominant – role only in beyond SM models where the bottom Yukawa coupling is enhanced.
This is the case of the MSSM, for which we indeed provide a thorough analysis.

g

g

H

Q

(a) Gluon fusion

q

q′

q

q′

H

V ∗

V ∗

(b) Vector boson fusion

q

q̄

H

V

V ∗

(c) Higgs-strahlung

g

g

Q

Q̄

H

(d) Quark associated production

Figure 24: Main production channels at hadronic colliders
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Figure 25: Total cross section for the four main Higgs production processes at the LHC,
√
s = 8 TeV in the SM.

3.1 Gluon fusion

3.1.1 Standardmodel

In the SM, the main production mode of the Higgs boson at hadron colliders is the gluon fusion sub-
process. Here the coupling of the Higgs boson to the gluons is mediated by a loop of colored particles.
Since in the SM the coupling of a particle to the Higgs boson is proportional to its mass, the largest con-
tribution comes from a top quark loop. The gluon fusion cross section is very well approximated by a
heavy quark effective field theory (HQEFT), where the mass of the top quark is taken to infinity. The
latter is then integrated out from the Lagrangian, leaving an effective operator which couples the Higgs
boson to two, three and four gluons, as have seen in section 2.1.1. The coupling of the Higgs boson to
gluons is then proportional to the Fermi constant and the strong coupling, but is independent of all the
Yukawa couplings. In this approach, corrections up to the next-to-next-to-leading order (NNLO) QCD
are available [7, 46]. Recently estimations of the next-to-next-to-next-to-leading order (N3LO) QCD
contributions have appeared in the literature [47]. The calculation using the complete SM Lagrangian,
accounting then for finite mass effects from the top and for the bottom contribution, was done up to
NLO-QCD [48]. The inclusion of the complete contribution from the top, bottom and charm quark
gives a suppression of O(−5%), for a light Higgs of mass aroundmH = 125 GeV. Moreover finite top-
mass effects at NNLO-QCD have been estimated and found to be of the orderO(1%) [27, 49–51]. Quark
mass effects, as we will see, impart also a non-trivial change in the shape of the transverse momentum dis-
tribution of the Higgs boson. The presence of various sources of theoretical uncertainty (uncomputed
higher order corrections, PDF and αs uncertainties) affects the prediction for the total cross section in
a larger way than mass effects, making their appreciation quite challenging. Available are also soft-gluon
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resummation effects [52]; the first-order electroweak (EW) contributions [53–57] and estimates of the
mixed QCD-EW contributions [58].

The cross section at NLO in the SM

We now briefly recall the explicit structure of the cross section. This allows us to introduce the theoretical
elements that are used in the computational tools used in the study. Moreover, we will point out where
exactly the differences between the HQEFT and the full calculation appear.

The hadronic cross section for an Higgs of massmH at hadronic center-of-mass energy of
√
s in gluon

fusion can be written as

σ(h1 + h2 → H +X) =
∑

a,b

∫ 1

0

dx1dx2 fa,h1
(x1, µ

2
F) fb,h2

(x2, µ
2
F) ×

×
∫ 1

0

dz δ

(
z−

τH

x1x2

)
σ̂ab(z) , (108)

whereτH = m2
h/s,µF is the factorization scale, fa,hi

(x, µ2
F), the parton density of the colliding hadron

hi for the parton of type a, (a = g, q, q̄) and σ̂ab the cross section for the hard partonic subprocess
ab→ H +X at the partonic center-of-mass energy ŝ = x1x2s = m2

h/z. The latter can be written as :

σ̂ab(z) = σ(0) zGab(z) , (109)

where

σ(0) =
Gµα

2
s(µ2

R)

128
√

2π

∣∣∣∣∣∣

∑

i=t,b

G
(1l)

1/2

2

∣∣∣∣∣∣

2

(110)

is the Born-level contribution. The sum is defined over the quarks that run in the triangle loop. The
explicit form of LO the matrix element amplitude is

G
(1l)

1/2
= −4y1/2

[
2 −

(
1 − 4y1/2

)
H(0, 0, x1/2)

]
, (111)

where we have defined
y ≡

m2
q

m2
h

, x ≡
√

1 − 4y− 1√
1 − 4y + 1

(112)

The amplitude in eq. (111) is defined in terms Harmonic Polylogarithms (HPLs). HPLs are a class of
special functions which can be used to express amplitudes in a form which is particularly suited for nu-
merical evaluation by computer programs. Indeed they are used in our implementation of the gluon
fusion process in the POWHEG-BOX framework. Following the standard notation, we have thatH(0, 0, z)

labels a HPL of weight 2 that results to be1

H(0, 0, z) =
1

2
log2(z) . (113)

1 All the analytic continuations are obtained with the replacement−m2
h → −m2

h − iϵ
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In the heavy quark mass limit, wheremq → ∞, G(1l)

1/2
tends to −4/3.

Up to NLO terms, we can write

Gab(z) = G
(0)
ab(z) +

αs(µ2
R)

π
G

(1)
ab(z) , (114)

with

G
(0)
ab(z) = δ(1 − z) δag δbg , (115)

G(1)
gg(z) = δ(1 − z)

[
CA

π2

3
+β0 ln

(
µ2
R

µ2
F

)
+ G(2l)

]

+Pgg(z) ln
(
ŝ

µ2
F

)
+CA

4

z
(1 − z + z2)2 D1(z) +CARgg , (116)

G
(1)
qq̄(z) = Rqq̄ , (117)

G(1)
qg(z) = Pgq(z)

[
ln(1 − z) +

1

2
ln
(
ŝ

µ2
F

)]
+ Rqg . (118)

At NLO we have the following contributions

• The gg channel (Eq. (116)) involves virtual and real corrections. The former, regularized by the
infrared singular part of the cross section gg → Hg, are displayed in the first row of Eq. (116)
whereβ0 = (11CA − 2nf)/6, withnf the number of active quark flavors, is the first coefficient
in the expansion of the β-function for the strong coupling αs. The function G(2l) containing
the mass-dependent contribution of the two-loop virtual corrections, can be cast in the following
form:

G(2l) = 2 Re
(

G
(2l)

1/2

G
(1l)

1/2

)
(119)

where G(2l)

1/2
contains the two-loop contributions. Explicit analytic expressions for G(2l)

1/2
given in

terms of HPLs can be found in ref. [51]. In the case of single heavy quark G
(2l)

1/2
becomes inde-

pendent of the renormalized mass chosen and goes to −3/2CF + 5/2CA = 11/2, that can be
also obtained via an effective theory calculation [48]. The second row of Eq. (116) contains the
non-singular contribution from the real gluon emission in the gluon fusion process where

Di(z) =

[
lni(1 − z)

1 − z

]

+

(120)

are the plus distributions and

Pgg(z) = 2CA

[
D0(z) +

1

z
− 2 + z(1 − z)

]
(121)
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is the LO Altarelli-Parisi splitting function. The function Rgg can be written as

Rgg =
1

z(1 − z)

∫ 1

0

dv

v(1 − v)











8 z4
∣∣Agg(ŝ, t̂, û)

∣∣2
∣∣∣G(1l)

1/2
/2

∣∣∣
2 − (1 − z + z2)2











, (122)

where t̂ = −ŝ(1− z)(1− v), û = −ŝ(1− z)v. The explicit expression for |Agg(s, t, u)|
2, which

represents the unsubtracted real emission matrix element, can be found in [51]. In themq → ∞
limit we have Rgg → −11(1 − z)3/(6z).

• The qq̄→ Hg annihilation channel, Eq. (117), can be written as

Rqq̄ =
128

27

z (1 − z)
∣∣Aqq̄(ŝ, t̂, û)

∣∣2
∣∣∣G(1l)

1/2
/2

∣∣∣
2 , (123)

with the expression for Aqq̄(s, t, u) again found in [51]. In the limit of heavy quark we have
Rqq̄ → 32(1 − z)3/(27z).

• Finally we consider the quark-gluon scattering channel, qg → qH. In Eq. (118) Pgq is the LO
Altarelli-Parisi splitting function

Pgq(z) = CF
1 + (1 − z)2

z
, (124)

while the function Rqg can be written as

Rqg = CF

∫ 1

0

dv

(1 − v)











1 + (1 − z)2v2

[1 − (1 − z)v]2

2 z
∣∣Aqg(ŝ, t̂, û)

∣∣2
∣∣∣G(1l)

1/2
/2

∣∣∣
2 −

1 + (1−z)2

2z











+
1

2
CFz , (125)

where
Aqg(ŝ, t̂, û) = Aqq(t̂, ŝ, û). (126)

In the HQEFT limit we have that Rqg → 2 z/3 − (1 − z)2/z.

The cross section at NNLO in the HQEFT

The cross section at NNLO is known only in the HQEFT, only the top contribution is therefore known.
At this order, the coefficient function has the form

Gab(z) = G
(0)
ab(z) +

αs(µ2
R)

π
G

(1)
ab(z) +

(
αs(µ2

R)

π

)2

G
(2)
ab(z). (127)

The contributions at this order are
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Figure 26: Relative difference between the gluon fusion total cross section in the SM (black) and the one in the
HQEFT with LO rescaling (red).

• G(2)
gg(z) contains the two loop virtual diagrams for the subprocess gg → H; the one loop real

emission diagram for subprocessgg→ Hg; the tree level double real emission diagrams forgg→
Hgg and gg→ Hqq̄.

• G(2)
qg(z) contains the one loop correction to the process gq → Hq; the tree level double real

emission diagrams for the subprocess gq→ Hgq.

• G(2)
qq̄(z) contains the one loop correction to the process qq̄ → Hg; the tree level double real

emission diagrams for qq̄→ Hgg and qq̄→ Hqq̄.

• The new channel G(2)
qq ′(z) appears at this order. Its contribution comes from the tree level dia-

grams for double parton emission qq ′ → Hqq ′.

Complete expressions for these contributions can be found in the literature, see ref. [7, 46].

Range of validity of the HQEFT

As we have seen in subsection 2.1.1, in the SM it is possible to define an effective field theory (HQEFT)
where the top quark degree of freedom is integrated out of the Lagrangian and the gluons couple di-
rectly to the Higgs field through an effective operator. In this approximation, as we have seen in the
section above, the computation and the expressions for the gluon fusion cross section simplify signif-
icantly. It is known that the total cross section computed in the HQEFT and rescaled by the factor
k = LO(mt,mb)/LO(mt → ∞) gives a good approximation of the complete result. In figure 26 we
show the quality of the numerical agreement at NLO between the result in the HQEFT rescaled by the
factor k (red line) with respect to the SM one, with both the top and bottom contributions included
(black line). We observe that the HQEFT approximation is remarkably good, since in a mass range from
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Figure 27: Example of two topologies contributing to the EW corrections at two loop order

100 to 800 the NLO top and bottom effects give a deviation of at most +4% formh = 100 GeV and
about −7% formH = 800 GeV.

Electro-Weak corrections

In the SM the dominant EW corrections to the gluon fusion production cross-section come from light
fermion contributions. These are given by two-loop diagrams which consist of a quark loop which cou-
ples to the Higgs particle through electroweak gauge bosons. In this way, light colored fermions can
contribute to the process, avoiding their direct Higgs coupling suppression due to their low masses. The
contribution from electroweak corrections that we include is obtained by: summing over the diagrams
over the first two generations of quarks; adding the bottom quark contribution by the including the di-
agrams with theZ boson only, which is by itself finite and gauge invariant. The δew correction factor is
given by:

δew =
2α

|G
(1l)

1/2
|2

[
Re(G

(1l)

1/2
)Re(G2l

lf) + Im(G
(1l)

1/2
)Im(G2l

lf)
]

(128)

where

G2l
lf =

(mW − iΓW/2)2

4πs2m2
H

[
2

c4

(
5

4
−

7

3
s2 +

22

9
s4

)
A1(xZ) + 4A1(xW)

]
(129)

. We have also defined:

s2 = sin2 θW c2 = 1 − s2 (130)

xW = −
m2

H

(mW − iΓW/2)2
xZ = −

m2
H

(mZ − iΓZ/2)2
(131)

The function A1 is defined in ref. [54]. The top quark contribution can produce significant effects if
the Higgs boson being considered is heavy. Indeed, as can been seen from figure 28, the light quarks
approximation is valid only within specific mass ranges.
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Figure 28: The δEW contributions across the Higgs mass range 50-520 GeV as calculated by POWHEG in its two
possible mode of operation: contributions from light fermions only or full correction with top contri-
bution included [56].

3.1.2 2HDM

As we have seen in section 2.2, the difference between the SM and the 2HDM is an enlarged scalar sector
which results in a broader physical spectrum of Higgs bosons, consisting in two neutral CP-even scalars,
h andH, one neutral CP-odd scalar and two charged scalars,H±. The couplings of the physical states to
the matter fields and to the gauge boson are different from the ones in the SM. They can indeed deviate
quite enough and lead, for some parameter choices, to gluon fusion cross sections dominated by the
bottom quark, at variance with the SM where the cross section is always top dominated. The bottom-
quark contributions are subject to large QCD corrections enhanced by powers of ln(m2

ϕ/m
2
b), where

ϕ denotes a generic Higgs boson, and so far they have been computed only at the NLO [27, 49–51]. As a
result, the uncomputed higher-order QCD corrections to the bottom-quark contributions can become
the dominant source of uncertainty in the cross section for the production of heavy 2HDM Higgs bosons
in gluon fusion. The cross section for the production ofh andH can be simply obtained by introducing
an appropriate rescaling factor λ in the expressions that were introduced in the previous subsection for
the SM, to account for the modified Yukawa coupling. For example, we have at LO

σ(0) =
Gµα

2
s(µ2

R)

128
√

2π

∣∣∣∣∣∣

∑

i=t,b

G
(1l)

1/2

2

∣∣∣∣∣∣

2

→ Gµα
2
s(µ2

R)

128
√

2π

∣∣∣∣∣∣

∑

i=t,b

λi
G

(1l)

1/2

2

∣∣∣∣∣∣

2

(132)

The rescaling factor λi are analogously introduced at NLO and NNLO. Their explicit form was given in
table 9. For pseudoscalar production, the structure of the cross section is the same, although the explicit
form of the matrix elements is different [27].
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3.1.3 MSSM

As outlined in section 2.3, the Higgs sector of the MSSM consists of two SU(2) doublets, H1 and H2,
whose relative contribution to electroweak symmetry breaking is determined by the ratio of vacuum
expectation values of their neutral components, tanβ ≡ v2/v1. The spectrum of physical Higgs bosons
is richer than in the SM, consisting of two neutral scalars,h andH, one neutral pseudoscalar,A, and two
charged scalars, H±. The couplings of the MSSM Higgs bosons to matter fermions differ from those
of the SM Higgs, and they can be considerably enhanced or suppressed depending on tanβ. For the
neutral Higgs bosons, one of the most important production process is still gluon fusion. However, the
coupling of the Higgs boson to the gluon is mediated by loops involving not only the top and bottom
quarks but also from loops their superpartners, the stop and sbottom squarks.

If the third-generation squarks have masses around one TeV or even larger, their contributions to the
gluon-fusion process are suppressed, and a sufficiently accurate determination of the cross section can be
achieved by rescaling the SM results for the top- and bottom-quark contributions by appropriate Higgs-
quark effective couplings, exactly as was done in the 2HDM case. If, on the other hand, some of the
squarks have masses of the order of a few hundred GeV – a scenario not yet excluded by the direct searches
at the LHC – a precise calculation of the contributions to the gluon-fusion cross section from diagrams
involving squarks becomes mandatory. The NLO-QCD contributions to scalar production arising from
diagrams with colored scalars and gluons were first computed in the vanishing-Higgs-mass limit (VHML)
in ref. [59], and the full Higgs-mass dependence was included in later calculations [50, 51, 60]. For what
concerns pseudoscalar production, the NLO-QCD contributions arising from diagrams with quarks
and gluons are known [27, 49–51] while diagrams involving only squarks and gluons do not contribute
to the gluon-fusion process due to the structure of the pseudoscalar couplings to squarks. In contrast,
a full calculation of the contributions to either scalar or pseudoscalar production arising from two-loop
diagrams with quarks, squarks and gluinos – which can involve up to five different particle masses – is
still missing. Calculations based on a combination of analytic and numerical methods were presented in
refs. [61, 62], but neither explicit analytic formulae nor public computer codes implementing the results
of those calculations have been made available so far.

Approximate results for the quark-squark-gluino contributions can however be obtained assuming
the presence of some hierarchy between the Higgs mass and the masses of the particles running in the
loops. If the Higgs boson is lighter than all the particles in the loops, it is possible to expand the result in
powers of the Higgs mass, with the first term in the expansion corresponding to the VHML. This limit
was adopted in refs. [63–65] for the calculation of the top-stop-gluino contributions to scalar produc-
tion and in refs. [66, 67] for the analogous calculation of pseudoscalar production. Refs. [65, 67] also
discussed the reliability of the VHML by considering the next term in the expansion in the Higgs mass.

While an expansion in the Higgs mass is a viable approximation in the computation of the top-stop-
gluino contributions to the production of the lightest scalar h, it might not be applicable to the produc-
tion of the heaviest scalarH and of the pseudoscalarA, if their mass is comparable to the mass of the top
quark. Moreover, an expansion in the Higgs mass is certainly useless in the calculation of the bottom-
sbottom-gluino contributions, due to the presence of a light bottom quark. All of these limitations can,
however, be overcome with an expansion in inverse powers of the superparticle masses. Since it does not
assume any hierarchy between the Higgs mass and the mass of the quark in the loop, such an expansion
is applicable to both top-stop-gluino and bottom-sbottom-gluino contributions, as long as the squarks
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and the gluino are heavier than the considered Higgs boson and the top quark. Results for scalar produc-
tion based on an expansion in the superparticle masses were presented in refs. [68–70], and analogous
results for pseudoscalar production were presented in ref. [67].

In a significant part of the MSSM parameter space, the couplings of the heavier neutral Higgs bosons
H and A to bottom quarks are enhanced by tanβ with respect to the corresponding coupling of the
SM Higgs, while their couplings to top quarks are suppressed by tanβ. When that is the case, the
bottom-quark contributions to the gluon-fusion process – which for a SM-like Higgs with mass around
125.5 GeV amount to roughly 7% of the cross section – can dominate over the top-quark contributions.
As in the 2HDM case, the fact that these contributions are known only up to NLO can become one of
the dominant source of uncertainty in the computation of the cross section.

The structure of the cross section at NLO

Using the same formalism that we have used in the SM case, we can write the structure of the cross
section for scalar and pseudoscalar Higgs production in the MSSM. The hadronic cross section for an
Higgsϕ = h,H,A of massmϕ at hadronic center-of-mass energy of

√
s in gluon fusion can be written

as

σ(h1 + h2 → ϕ +X) =
∑

a,b

∫ 1

0

dx1dx2 fa,h1
(x1, µ

2
F) fb,h2

(x2, µ
2
F) ×

×
∫ 1

0

dz δ

(
z−

τϕ

x1x2

)
σ̂ab(z) , (133)

whereτϕ = m2
ϕ/s,µF is the factorization scale, fa,hi

(x, µ2
F), the parton density of the colliding hadron

hi for the parton of type a, (a = g, q, q̄) and σ̂ab the cross section for the hard partonic subprocess
ab→ H +X at the partonic center-of-mass energy ŝ = x1x2s = m2

ϕ/z. The latter can be written as :

σ̂ab(z) = σ(0) zGab(z) , (134)

where now we have

σ(0) =
Gµα

2
s(µ2

R)

128
√

2π

∣∣∣∣∣∣

∑

i=t,b

λi
G

(1l)

1/2

2
+

∑

i=t̃,b̃

λ̃i
G

(1l)
0

2

∣∣∣∣∣∣

2

(135)

as the Born-level contribution. In the case of CP-even scalar production, i.e. ϕ = h,H, we also have,
besides the sum over the quarks that run in the triangle loop with the rescaled coupling λi, the contribu-
tion from the squarks, whose coupling is parametrized by λ̃i and whose leading order matrix element is
given by

G
(1l)
0 = 4y0 [1 + 2y0H(0, 0, x0)] (136)

We have defined analogously to the quark case the two variables

y ≡
m2

q̃

m2
h

, x ≡
√

1 − 4y− 1√
1 − 4y + 1

(137)
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Figure 29: Example of tanβ enhanced Feynman diagram that can be resummed in an effective Higgs-bottom-
bottom coupling.

and we recall that
H(0, 0, z) =

1

2
log2(z) . (138)

In the case of pseudoscalar ϕ = A production, λ̃i = 0, since there are no LO diagrams with squarks
running in the loop. Though the global structure of the NLO contribution is the same as the one that
enters the equivalent SM contribution, SUSY-QCD corrections show up in several terms

• G(2l) contains not only the two loop corrections to diagrams with quarks and gluons, but also the
two loop diagrams with squarks and gluons and the ones with squarks and gluino. The computa-
tion of the latter is extremely difficult due to high number of scales present in the diagrams and it
is now available only in approximated form, as was discussed above.

• The real termsRgg,Rqg,Rqq̄ also include the contribution from one loop diagrams with squarks
and the emission of one additional parton besides the SM ones.

The structure of the cross section beyond NLO-QCD

In order to improve the accuracy of the MSSM prediction for the gluon-fusion cross section, and to al-
low for a meaningful comparison with the SM prediction, several contributions beyond the NLO in
QCD should be included. The NNLO-QCD contributions to scalar production arising from diagrams
with top quarks and the subset of EW contributions arising from diagrams with light quarks can be ob-
tained from the corresponding SM results with an appropriate rescaling of the Higgs couplings to quarks
and to gauge bosons. The NNLO-QCD top-quark contributions to pseudoscalar production have also
been computed [71]. Approximate results beyond the NLO in QCD also exist for the contributions of
diagrams involving superparticles. A first estimate of the NNLO-QCD contributions of diagrams in-
volving stop squarks was presented in ref. [72], and an approximate calculation of those contributions,
assuming the VHML and specific hierarchies among the superparticle masses, was recently presented in
refs. [73, 74]. Furthermore, a subset of potentially large tanβ-enhanced contributions from diagrams in-
volving sbottom-gluino or stop-chargino loops can be resummed in the LO cross section by means of an
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effective Higgs-bottom coupling [75–77]. Indeed this amounts to replacing the MSSM bottom Yukawa
coupling λib i = h,H,Awith

λ ′
h
b =

λhb
1 + ∆b

(
1 − ∆b

cotα
tanβ

)
, (139)

λ ′
H
b =

λHb
1 + ∆b

(
1 + ∆b

tanα
tanβ

)
, (140)

λ ′
A
b =

λAb
1 + ∆b

(
1 − ∆b

1

tan2 β

)
(141)

where ∆b contains the resummation of higher order sbottom contributions coming from diagrams as
the one in figure 29.

3.2 Bottom quark associated production

The computation of Higgs boson production in association with bottom quarks can be performed in two
ways. The first one is by using the so-called the four-flavor scheme (4FS), where one does not consider
the bottom quarks as partons in the proton, the process is initiated by two gluons or by a light quark-
antiquark pair, and the cross section is known at the NLO in QCD [78]. This is the same scheme that
one uses when computing top-quark associated production. However, while in the top associated case
the top mass and the Higgs boson mass can be considered of the same magnitude, in the case of the
bottom quark we have that the ratiomb/mH can be quite sizable and therefore more attention should
be reserved to collinear logarithms of the form ln(mb/mH). A way to address this issue is to use the five-
flavor scheme (5FS), where the bottom quarks are in the initial partonic state. The cross section in this case
is known up to the NNLO in QCD [29, 79]. The use of bottom-quark parton density functions (PDFs)
in the 5FS indeed allows to resum terms enhanced by ln(m2

ϕ/m
2
b) that would arise in the 4FS when one

or both bottom quarks are collinear to the incoming partons. For our studies we limited ourselves to the
5FS computation.

3.2.1 StandardModel

In the SM the cross section is extremely small and the process is usually not even considered feasible for an
experimental search. However we briefly recall here the basic structure of the cross section up to NNLO
in the 5FS, since it will be the same also in the 2HDM and in the MSSM. The bottom is always assumed
to be massless, aside from the Yukawa coupling. The hadronic cross section for an Higgs of massmH at
hadronic center-of-mass energy of

√
s can be written as

σ(h1 + h2 → (bb̄)H +X) =
∑

a,b

∫ 1

0

dx1dx2 fa,h1
(x1, µ

2
F) fb,h2

(x2, µ
2
F) ×

×
∫ 1

0

dz δ

(
z−

τH

x1x2

)
σ̂ij(z) , (142)
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whereτH = m2
H/s,µF is the factorization scale, fa,hi

(x, µ2
F), the parton density of the colliding hadron

hi for the parton of type a, (a = g, q, q̄) and σ̂ij the cross section for the hard partonic subprocess
ij → H +X at the partonic center-of-mass energy ŝ = x1x2s = m2

ϕ/z. The partonic cross section can
then be written as

σ̂ij(z) = σ0∆ij(z), (143)

where the normalization factor is given by

σ0 =
π

12

1

m2
H

. (144)

We can then expand ∆(z) as a series in αs. Up to NNLO we have

∆ij(z) = ∆
(0)
ij (z) +

αs

π
∆

(1)
ij (z) +

(αs

π

)2

∆
(2)
ij (z). (145)

In details we have:

• The bb̄ subprocess.
∆

(0)

bb̄
(z) contains the tree level, purely electroweak, bottom quark annihilation process bb̄ → H.

∆
(1)

bb̄
(z) contains contributions coming from the one loop corrections to the tree level diagrams

and the contributions from the real emission process bb̄→ Hg. At NNLO, to compute ∆
(2)
ij (z),

we have also to include tree level diagrams for the bb̄ → Hgg, bb̄ → Hqq̄ and bb̄ → Hbb̄

subprocess.

• The bg subprocess.
The subprocess appears at NLO, contributing at three level to the ∆

(1)
bg(z) correction to the coeffi-

cient function. At NNLO, ∆
(2)
bg(z) includes the one loop corrections to thebg→ Hb subprocess

and the tree level emission diagram bg→ Hgb.

• At NNLO we have also the tree level contributions to ∆
(2)
ij (z) from the following subprocess:bb→

Hbb; bq→ Hbq; gg→ Hgg; qq̄→ Hbb̄.

Complete expressions for the coefficient function can be found in [29].

3.2.2 2HDM

For large values of the tanβ parameter, in the type II 2HDM, bottom associated production can be
sizable and even be bigger than gluon fusion. The global structure of the cross section is the same as
in the SM, with the only difference being in the Yukawa coupling of the Higgs to the bottom quark.
It can be demonstrated that the cross section for the pseudoscalar Higgs boson is the same as the one
for its CP-even counterparts. Therefore the cross section can be computed starting from the SM one

Precision phenomenology at the LHC and characterization of theoretical uncertainties



84 Higgs production processes

and then rescaling it with the appropriate factor to match the 2HDM Yukawa coupling, by making the
substitution

σ0 =
π

12

1

m2
H

→ π

12

λ2
b

m2
ϕ

(146)

where λb is the rescaling factor for the bottom Yukawa.

3.2.3 MSSM

As in the 2HDM, when the couplings to bottom quarks are sufficiently enhanced, the production of
MSSM Higgs bosons through bottom-quark annihilation dominates over gluon fusion. As in the case
of gluon fusion, the tanβ-enhanced contributions from diagrams involving superpartners can be re-
summed in the LO result by means of an effective Higgs-bottom coupling. The remaining one-loop
contributions from superpartners have been found to be small [80]. We can then obtain the cross sec-
tion by making, as in the 2HDM case, the following substitution

σ0 =
π

12

1

m2
H

→ π

12

λ2
b

m2
ϕ

(147)

where λb is the rescaling factor for the bottom Yukawa. The latter can also be made to include the re-
summed tanβ-enhanced contributions, using the same formulas reported at the end of subsection. 3.1.3.
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4 TOTAL INCLUS IVE CROSS SECT ION FOR HIGGS

PRODUCT ION IN THE MSSM

I this section we discuss the production of scalar and pseudoscalar Higgs bosons via gluon fusion and
bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in

the public code SusHi, we provide precise predictions for the Higgs-production cross section in six bench-
mark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources
of theoretical uncertainty in our calculation. We examine the dependence of the cross section on the
renormalization and factorization scales, on the precise definition of the Higgs-bottom coupling and on
the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge of the SUSY con-
tributions through NNLO. In particular, a potentially large uncertainty originates from uncomputed
higher-order QCD corrections to the bottom-quark contributions to gluon fusion.

4.1 Higgs boson production in viableMSSM scenarios

Since no superparticles have been found during the first run of the LHC, Higgs boson studies are as
important as direct-search efforts to pin down the exclusion regions of the MSSM parameter space. In our
study we focused on the total inclusive cross section, carefully specializing our computations to scenarios
that are not yet excluded by other constraints. Precise predictions of the cross section allow to test the
compatibility of the discovered neutral scalar resonance with the corresponding MSSM one and also
to restrict the MSSM parameter space by using the experimental limits on the production of the other
Higgses of the model.

4.1.1 The tools

A considerable effort has been devoted over the years to making the existing calculations of Higgs pro-
duction available to the physics community in the form of public computer codes. In the case of the
SM, NNLO-QCD predictions of the total cross section for gluon fusion, including various refinements
such as EW corrections and finite top-mass effects, are provided, e.g., by HIGLU [28], ggh@nnlo [81],
HNNLO [82] and iHixs [83]. The code bbh@nnlo [84] provides instead a NNLO-QCD prediction of
the total cross section for Higgs production in bottom-quark annihilation in the 5FS. For what concerns
the production of MSSM Higgs bosons via gluon fusion, HIGLU implements the results of ref. [60] for
the NLO-QCD contributions arising from diagrams with squarks and gluons, as well as the results of
refs. [76, 77] for the resummation of the tanβ-enhanced squark contributions in an effective Higgs-
bottom coupling. More recently, two codes that compute the cross section for Higgs production includ-
ing approximate results for the contributions of diagrams with quarks, squarks and gluinos have become
available. As described in ref. [85], the NLO-QCD [51, 65, 67, 68, 70] and EW [54, 57] contributions to
Higgs-boson production via gluon fusion in the SM and in the MSSM have been implemented in a
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module for the so-called POWHEG-BOX [86], a framework for consistently matching NLO-QCD com-
putations of matrix elements with parton-shower Monte Carlo generators, avoiding double counting
and preserving the NLO accuracy of the calculation. The code SusHi [87] computes the cross section
for Higgs-boson production in both gluon fusion and bottom-quark annihilation, in the SM, in the
2HDM and in the MSSM. In the case of gluon fusion, SusHi includes the exact results of ref. [49] for
the NLO-QCD contributions of two-loop diagrams with top and bottom quarks, and the approximate
results of refs. [64, 67, 70] and refs. [67, 68] for the NLO-QCD contributions of two-loop diagrams
with stop and sbottom squarks, respectively. The NLO-QCD contributions of one-loop diagrams with
emission of an additional parton are taken from ref. [69]. The NNLO-QCD contributions from dia-
grams with top quarks are included via a call to ggh@nnlo, and the corresponding contributions from
diagrams with stop squarks are estimated following ref. [72]. Finally, the known SM results for the EW
contributions [54, 56, 57] are adapted to the MSSM by rescaling the Higgs couplings to top quarks and
to gauge bosons. In the case of bottom-quark annihilation, SusHi obtains from bbh@nnlo the NNLO-
QCD result valid in the SM, then rescales it by an effective Higgs-bottom coupling that accounts for the
tanβ-enhanced squark contributions [75, 76].

4.1.2 The benchmark scenarios

The discovery of a neutral scalar with mass around 125.5 GeV puts the studies of the Higgs sector of
the MSSM in an entirely new perspective. In order to remain viable, a point in the MSSM parameter
space must now not only pass all the experimental bounds on superparticle masses, but also lead to the
prediction of a scalar with mass, production cross section and decay rates compatible with those measured
at the LHC. In particular, the relatively large mass of the SM-like scalar discovered at the LHC implies
either stop masses of the order of 3 TeV – which would result in a negligible stop contribution to the
production cross section – or a large value of the left-right mixing term in the stop mass matrix (see, e.g.,
refs. [88, 89]). In the latter case, at least one of the stops could have a mass as low as a few hundred GeV,
and induce a significant contribution to the gluon-fusion cross section. In view of these considerations,
we will focus on the set of MSSM scenarios compatible with the LHC findings that has recently been
proposed in ref. [90].

The SM parameters entering our calculations include the Z-boson mass mZ = 91.1876 GeV, the
W-boson massmW = 80.398 GeV, the Fermi constantGF = 1.16637×10−5 and the strong coupling
constant αs(mZ) = 0.119 [91]. For the masses of the top and bottom quarks we take the pole mass
mt = 173.2 GeV [92] and the SM running mass (in the MS scheme)mb(mb) = 4.16 GeV [93].

At the tree level, the MSSM neutral scalar massesmh andmH and the scalar mixing angle α can be
computed in terms ofmZ, tanβ and the pseudoscalar massmA only. However, the radiative corrections
to the tree-level predictions can be substantial, and they bring along a dependence on all of the other
MSSM parameters. To compute the masses and the couplings of Higgs bosons and superparticles in a
given point of the MSSM parameter space we use the public code FeynHiggs [94], which includes the
full one-loop [95] and dominant two-loop [96–100] corrections to the neutral Higgs masses. Since the
theoretical uncertainty of the Higgs-mass calculation in FeynHiggs has been estimated to be of the
order of 3 GeV [101],1 we consider as phenomenologically acceptable the points in the MSSM parameter

1 To reduce this uncertainty, it would be necessary to include in the mass calculation the remaining two-loop efects [102] and
at least the dominant three-loop efects [103, 104]. Note also that there is an additional uncertainty of approximately 1 GeV
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Scenario MS [GeV] Xt [GeV] µ [GeV] M2 [GeV]
mmax

h 1000 2000 200 200

mmod+
h 1000 1500 200 200

mmod−
h 1000 −1900 200 200

light stop 500 1000 400 400

light stau 1000 1600 500 200

tau-phobic 1500 3675 2000 200

Table 10: Choices of MSSM parameters for the benchmark scenarios proposed in ref. [90].

space where FeynHiggs predicts the existence of a scalar with mass between 122.5 GeV and 128.5 GeV
and with approximately SM-like couplings to gauge bosons.

In addition to tanβ and mA, the MSSM parameters most relevant to the prediction of the masses
and production cross sections of the Higgs bosons are: the soft SUSY-breaking masses for the stop and
sbottom squarks, which for simplicity we set all equal to a common mass parameterMS; the soft SUSY-
breaking gluino massmg̃; the soft SUSY-breaking Higgs-squark-squark couplingsAt andAb; the super-
potential Higgs-mass parameterµ. In our convention for the sign of the latter, the left-right mixing terms
in the stop and sbottom mass matrices are Xt ≡ At − µ cotβ and Xb ≡ Ab − µ tanβ, respectively.
It should be noted that in our analysis the soft SUSY-breaking squark masses and trilinear couplings are
expressed in an “on-shell” (OS) renormalization scheme, as described in refs. [96, 97] for the stop sector
and in refs. [68, 98, 99] for the sbottom sector. Since the two-loop calculation of the Higgs masses imple-
mented in FeynHiggs and the NLO-QCD calculation of the production cross section implemented
in SusHi employ the same OS scheme, the input values of the soft SUSY-breaking parameters can be
passed seamlessly from the Higgs-mass calculation to the cross-section calculation. Concerning the pa-
rameters tanβ, µ andmA, their definition is relevant to the Higgs-mass calculation only. In particular,
tanβ and µ are expressed in the DR scheme, at a renormalization scale that FeynHiggs takes by de-
fault equal tomt, whilemA is identified with the pole mass of the pseudoscalar. Finally, the choice of
renormalization scheme for mg̃ amounts to a higher-order effect, because the gluino mass enters only
the two-loop part of the corrections.

A detailed description of the six benchmark scenarios adopted in our analysis can be found in the paper
where they were originally proposed, ref. [90]. All of the scenarios are characterized by relatively large
values of the ratio Xt/MS, ensuring that the mass of the SM-like Higgs falls within the required range
without the need for extremely heavy stops. In addition, the masses of the gluino and of the first-two-
generation squarks are set to 1.5 TeV, large enough to evade the current ATLAS [105, 106] and CMS [107–
109] bounds. The prescriptions of ref. [90] for the parametersMS,Xt,µ and for the soft SUSY-breaking
wino massM2 are listed in table 10. We vary the parameters tanβ andmA within the ranges

2 ⩽ tanβ ⩽ 50 , 90 GeV ⩽ mA ⩽ 1 TeV . (148)

In all scenarios the Higgs-sbottom-sbottom coupling Ab is set equal to At, the left-right mixing of
the first-two-generation squarks is neglected and the bino mass M1 is obtained from the GUT rela-
tion M1/M2 = (5/3)(m2

Z/m
2
W − 1), with the exception of the fourth scenario where we set M1 =

stemming from the uncertainty of the SM input parameters, especiallymt.
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340 GeV.2 Finally, the choices of ref. [90] for the soft SUSY-breaking parameters in the slepton sector
have a very small impact on the predictions for the Higgs masses and production cross sections, therefore
we do not report them here.

The fourth scenario in table 10, denoted as light stop, deserves a special discussion. In this scenario
the two stop masses are 324 GeV and 672 GeV; the sbottom masses depend on tanβ, but the lightest
sbottom is always heavier than 450 GeV, while the heaviest one is always lighter than 550 GeV. With
such relatively low masses, loops involving squarks can give a sizable contribution to the cross section
for Higgs production, but we have to worry about the exclusion bounds from the LHC. Indeed, the
ATLAS and CMS collaborations have presented preliminary results for the searches of direct stop- and
sbottom-pair production, based on the full 8-TeV data sample, considering the decay chains

t̃1 → t χ0
1 → bW χ0

1 [110, 111] , t̃1 → bχ±1 → bW χ0
1 [110, 111] , t̃1 → c χ0

1 [112, 113] ,

b̃1 → bχ0
1 [107, 114] , b̃1 → t χ±1 → tW χ0

1 [105, 108] .

The allowed values of the stop and sbottom masses depend on the chargino and neutralino masses,
as well as on the branching ratios for the different squark decays. With the choice of parameters in table
10, M2 = µ = 400 GeV, together with M1 = 340 GeV, the masses for the lightest chargino and neu-
tralino have a mild dependence on tanβ, but they stay within the rangesmχ±

1
≈ 341 – 346 GeV and

mχ0
1
≈ 316 – 320 GeV for tanβ > 10. In this case the lightest stop decays almost entirely through the

loop-induced, flavor-violating channel t̃1 → c χ0
1. This channel has been investigated by ATLAS [112]

and CMS [113], but the resulting bounds only reach to values ofmt̃1
around 250 GeV. For the lightest

sbottom, the two-body decays b̃1 → t̃1W and b̃1 → bχ0
j (with j up to 3 or 4) are kinematically open.

The direct decay of b̃1 to the lightest neutralino would be constrained by the searches in refs. [107, 114],
but i) that channel is never dominant in the considered range of parameters and ii) the experimental
bounds only reach to values of mχ0

1
below 280 GeV. Finally, the heaviest stop and sbottom can decay

through a multitude of channels, and their direct decays to χ0
1 or χ±1 are significantly suppressed.

4.1.3 Cross section for Higgs production

We are now ready to present our precise predictions for the production of MSSM Higgs bosons at the
LHC. As mentioned earlier, we rely on the code SusHi ,3 which includes all of the available NLO-QCD
contributions to the gluon-fusion process, supplemented with the known SM results for the NNLO-
QCD contributions in the heavy-top limit and for the EW contributions (both adapted to the MSSM by
appropriately rescaling the Higgs couplings). While the results implemented in SusHi for the NNLO-
QCD top contributions are strictly valid only for a Higgs mass below the top threshold,mϕ < 2mt, a
comparison with the NLO results suggests that they provide a decent approximation also for larger values
of the Higgs mass [115, 116]. The NNLO-QCD contributions from stop loops are estimated following
ref. [72], i.e., neglecting the contributions of three-loop diagrams but retaining the NNLO contributions
that arise from the product of lower-order terms. We have also checked that, when all of the NNLO-
QCD contributions are omitted, the results of SusHi for the gluon-fusion cross section agree with

2 The choiceM1 = 350 originally proposed in ref. [90] would result in a stop LSP for tanβ >∼ 20.
3 For a detailed description of the cross-section calculation implemented in SusHi we refer to the code’s manual [87].
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those of the calculation implemented in the POWHEG-BOX [85], which includes the same NLO-QCD
and EW contributions. For what concerns the bottom-quark annihilation process, SusHi includes
the NNLO-QCD results valid in the SM within the 5FS, also rescaled by the effective Higgs-bottom
couplings of the MSSM.

In our study, we fix the center-of-mass energy of the proton-proton collisions to 8 TeV. While the
numerical value of the total cross section for Higgs production does obviously depend on the collision
energy, we have checked that the relative importance of the various contributions to the production pro-
cesses and their qualitative behavior over the MSSM parameter space do not change substantially if we
set the energy to 13 TeV. By default, we use the MSTW2008 set of PDFs [117], and we fix the renormal-
ization and factorization scales entering the gluon-fusion cross section to µR = µF = mϕ/2 [6, 7],
whereϕ = {h,H,A} denotes the considered Higgs boson. For bottom-quark annihilation, the central
values of the scales are chosen as µR = mϕ and µF = mϕ/4 [29, 79, 118]. In the calculation of the
gluon-fusion cross section we relate the bottom Yukawa coupling to the pole massMb, computed at the
three-loop level [119] from the input value for the running mass,mb(mb). In the case of bottom-quark
annihilation, on the other hand, we relate the bottom Yukawa coupling tomb(mϕ), in turn obtained
frommb(mb) via four-loop renormalization-group evolution [120]. In both cases, the tanβ-enhanced
SUSY corrections to the relation between mass and Yukawa coupling of the bottom quark are included
following refs. [75, 76]. The theoretical uncertainties associated to the choice of PDFs, to the variation
of the renormalization and factorization scales and to the definition of the bottom Yukawa coupling will
be discussed in detail in section 4.2.

In figures 30 and 31 we show the total cross section – i.e., the sum of gluon fusion and bottom-quark
annihilation – for the production of the scalars (h,H) and of the pseudoscalar (A), respectively, as con-
tour plots in the mA– tanβ plane. For the other MSSM parameters, we adopt the light-stop scenario
described in section 4.1.2.MSSM and SM Tables for the numerical values of the cross section (and the
corresponding uncertainties) in all of the six benchmark scenarios are given in the appendix. In the two
plots of figure 30, referring to h (left) andH (right) production, the red lines are contours of equal mass
for the corresponding scalar. In this scenario, the prediction for the mass of the lightest scalar reaches a
maximum of 123.8 GeV at large tanβ. The heaviest-scalar mass grows withmA, and we show only the
contour corresponding to 126 GeV to avoid clutter (for largemA, the contours are roughly atmH ≈ mA

and independent of tanβ). The x-axis of the plot for h production ends atmA = 300 GeV because, for
larger values, the cross section becomes essentially independent of mA. The x-axis of the plots for H
andA ends atmA = 500 GeV because the expansion in the SUSY masses used to approximate the two-
loop squark contributions in SusHi becomes unreliable when the Higgs mass approaches the lowest
squark-mass threshold, which in the light-stop scenario corresponds to 2mt̃1

≈ 650 GeV. The theoreti-
cal uncertainty associated with this approximation will be discussed in section 4.2.4.

The qualitative behavior of the cross sections in figures 30 and 31 can be easily interpreted considering
the relations between the scalar and pseudoscalar masses in the MSSM Higgs sector, and how each of
the Higgs bosons couples to the top and bottom quarks (the squark contributions are generally sub-
dominant, as will be discussed below). In the so-called decoupling limit,mA ≫ mZ, the lightest scalar
h has SM-like couplings to quarks, while its mass is essentially independent ofmA and, for tanβ >∼ 10,
depends only weakly on tanβ. The cross section forh production (left plot in figure 30) varies very little
in this region, and differs from the SM result for a Higgs boson of equal mass only because of the squark
contributions to the gluon-fusion process. FormA

<
∼ 130 GeV, on the other hand, the couplings of h
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Figure 30: Total cross section in pb for the production of h (left) andH (right), as a function ofmA and tanβ in
the light-stop scenario. The solid red lines are contours of equal mass for each scalar.
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Figure 31: Total cross section in pb for the production of the pseudoscalarA.
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to top (bottom) quarks are non-standard, being suppressed (enhanced) by tanβ. In this narrow region
the total cross section for h production is dominated by the contributions of the diagrams that involve
the Higgs-bottom coupling, and it grows significantly with tanβ.

The behavior of the cross section for H production in themA– tanβ plane (right plot in figure 30)
is different from – and somewhat complementary to – the one for h production. In the strip where
mA

<
∼ 130 GeV, the heaviest scalar has a mass around 125 GeV and significant couplings to both top

and bottom quarks, and the cross section for its production grows with tanβ. For larger mA, on the
other hand,mH grows together withmA, and the couplings ofH to top (bottom) quarks are suppressed
(enhanced) by tanβ. The total cross section forH production is therefore dominated, already for mod-
erate tanβ, by the contributions of the diagrams that involve the Higgs-bottom coupling. The latter
grow significantly with tanβ, but decrease withmA, being suppressed by powers of the ratiom2

b/m
2
H.

Finally, the pseudoscalar couplings to top (bottom) quarks are suppressed (enhanced) by tanβ for all
values ofmA. Therefore, the behavior of the cross section forA production in themA– tanβ plane, see
figure 31, resembles the behavior of h production whenmA

<
∼ 130 GeV, and the one ofH production

for largermA: in both cases, the cross section grows with tanβ, but decreases withmA.
To disentangle the effects of the two main production channels for the MSSM Higgs bosons, we show

in figures 32 and 33 the ratio between the gluon-fusion cross section and the sum of gluon-fusion and
bottom-quark-annihilation cross sections in the light-stop scenario, again as contour plots in the mA–
tanβ plane. Predictably, the plots reflect the behavior of the coupling of the considered Higgs boson
to bottom quarks. The left plot in figure 32 shows that, when mA is large enough that the couplings
of the lightest scalar are SM-like, gluon fusion is by far the dominant process for h production, and
the contribution of bottom-quark annihilation amounts only to a few percent. Only in the strip with
mA

<
∼ 130 GeV and tanβ >∼ 8, where the coupling of h to bottom quarks is sufficiently enhanced

by tanβ, does bottom-quark annihilation become the dominant process. Conversely, bottom-quark
annihilation gives the largest contribution to the cross section forH production (right plot in figure 32)
whenmA

>
∼ 130 GeV and tanβ >∼ 6, while in the case ofA production (figure 33) the cross section is

dominated by bottom-quark annihilation already formA
>
∼ 100 GeV, as long as tanβ >∼ 5 – 8.

To assess the relevance of the squark contributions to the gluon-fusion cross section in the light-stop
scenario, we show in figures 34 and 35 the ratio of the total gluon-fusion cross section over the cross
section computed including only the contributions of quarks (with appropriate rescaling of the Higgs-
quark couplings). The left plot of figure 34 shows that – in this scenario characterized by relatively light
squarks – the interference between the top and stop contributions can reduce the cross section for h
production by as much as 20% in the decoupling region with largemA and tanβ. Remarkably, in this
region the partial NNLO-QCD contributions from stop loops that we include following ref. [72] ac-
count by themselves for a 6% suppression of the cross section. The theoretical uncertainty associated
to these contributions will be discussed in section 4.2.4. For what concernsH production (right plot of
figure 34), the squark contributions reduce the cross section by up to 30% for low values of mA, and
the suppression becomes even stronger with increasing pseudoscalar mass. In particular, near the lower-
right corner of the plot, where mA

>
∼ 420 GeV and tanβ ranges between 6 and 20, the interference

between the quark and squark contributions induce a suppression of the cross section by 70 – 80%. In
this region the top contribution is suppressed by tanβ, while the bottom contribution is suppressed by
m2

b/m
2
H and only moderately enhanced by tanβ, so they both become comparable in size with the stop

contribution. The resulting gluon-fusion cross section is rather small, of the order of a few femtobarns.
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Figure 32: Ratio of gluon-fusion cross section over total cross section for the production of h (left) andH (right),
as a function ofmA and tanβ in the light-stop scenario.
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Figure 33: Same as figure 32 for the production of the pseudoscalarA.

Emanuele Angelo Bagnaschi (LPTHE)



4.1 Higgs boson production in viableMSSM scenarios 93

 10

 20

 30

 40

 50

 100  150  200  250  300

ta
n

 β

mA [GeV]

σgg
q+q~

/σgg
q
  , light-stop scenario

h

1

0.95

0.9
0.85

0.81

0.80.8

 10

 20

 30

 40

 50

 100  200  300  400  500

ta
n

 β

mA [GeV]

σgg
q+q~

/σgg
q
  , light-stop scenario

H

0.2
0.3

0.4
0.5

0.60.70.80.9
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cross section neglecting squark contributions, as a function ofmA and tanβ in the light-stop scenario.
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Figure 36: Ratio of gluon-fusion cross section for the production of h (left) andH (right) over the corresponding
cross section neglecting EW contributions, as a function ofmA and tanβ in the light-stop scenario.

Finally, figure 35 shows that, in the case of A production, the effect of the squark contributions on the
cross section for gluon fusion in the light-stop scenario is always less than 10%. This is due to the fact
that the pseudoscalar couples only to two different squark-mass eigenstates, while gluons couple only to
pairs of the same squarks. Therefore, there is no squark contribution to the gluon-fusion process at the
LO, and the whole effect in figure 35 arises from two-loop diagrams.

For a SM Higgs boson sufficiently lighter than the top threshold, the EW corrections to gluon fusion
are well approximated [56, 57] by the contributions of two-loop diagrams in which the Higgs couples to
EW gauge bosons, which in turn couple to the gluons via a loop of light quarks (including the bottom).
In SusHi , these contributions are incorporated in the MSSM calculation of the gluon-fusion cross sec-
tion by rescaling the two-loop EW amplitude given in ref. [57] with the appropriate Higgs-gauge boson
couplings.4 In figure 36 we investigate the impact of the light-quark EW contributions on the produc-
tion of the scalars h and H, plotting the ratio of the gluon-fusion cross sections computed with and
without those contributions, in themA– tanβ plane for the light-stop scenario. The figure shows that
the EW corrections tend to increase the cross section, and their impact depends mainly on the strength
of the coupling of the considered scalar to gauge bosons. In the case of h production (left plot) the EW
corrections become fairly constant, around 6%, in the region of sufficiently largemA where the lightest
scalar has SM-like couplings. Conversely, in the case of H production (right plot) the EW corrections
reach a comparable value only in the strip of very lowmA, and they quickly drop below 1% as soon as
mA

>
∼ 150 GeV. On the other hand, since the pseudoscalar does not couple to two gauge bosons at tree

level, there are no EW contributions from light-quark loops to its production.
For what concerns the remaining sources of EW corrections to gluon fusion, those arising from two-

loop diagrams involving top quarks are known to be small for a SM-like Higgs with mass around 125

4 In fact, SusHi implements two alternative procedures for including the EW contributions in the total cross section for
gluon fusion. We follow the one described in eq. (37) of the code’s manual [87].
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GeV [56], while in the case ofH andA they are suppressed in most of the parameter space by the small (or
vanishing) Higgs couplings to top quarks and to gauge bosons. On the other hand, the EW corrections
involving the bottom Yukawa coupling, which have not yet been computed because they are negligible
for the SM Higgs, could become relevant for the production ofH andA. In addition, a full computation
of the EW corrections should include the contributions of diagrams involving superparticles. The non-
decoupling SUSY effects that dominate at large tanβ are indeed included in an effective Higgs-bottom
coupling, as discussed in section 4.2.2, but the remaining contributions, so far uncomputed, could be-
come relevant if some of the superparticles are relatively light.

Results for the Higgs-production cross section in the other benchmark scenarios listed in table 10 can
be found in the appendix. In the four scenarios denoted asmmax

h ,mmod+
h ,mmod−

h and light stau, the cou-
plings of the Higgs bosons to top and bottom quarks and to gauge bosons are rather similar to the ones
in the light-stop scenario. Thus, the discussion given above for the qualitative behavior in themA– tanβ
plane of the total cross section, of the EW corrections and of the relative importance of gluon fusion and
bottom-quark annihilation applies to those four scenarios as well. However, all of the third-generation
squarks have masses around 1 TeV, therefore the impact of the SUSY contributions on the gluon-fusion
cross section is considerably smaller than in the case of the light-stop scenario. The suppression of the
cross section for h production in the decoupling limit never goes beyond 6%. For what concerns H
production, the effect of the interference between quark and squark contributions becomes significant
only for very large mA and moderate tanβ, where the gluon-fusion cross section is tiny anyway. The
largest effect, a suppression by 30 – 40%, is found in the light-stau scenario for mA

>
∼ 850 GeV and

10 <∼ tanβ <∼ 20, where the cross section is of the order of a tenth of a femtobarn. The SUSY contri-
butions toA production, already small in the light-stop scenario because they only arise at two loops, are
further suppressed in themmax

h ,mmod+
h ,mmod−

h and light-stau scenarios.

In the last scenario in table 10, denoted as tau-phobic, the MSSM parameters are arranged in such a way
that, for certain values of mA and tanβ, the radiative corrections to the (1, 2) element of the CP-even
Higgs mass matrix suppress significantly the mixing angle α, so that the coupling of h to taus – which
is proportional to sinα – is in turn suppressed with respect to its SM value. However, the couplings
of the scalars to top and bottom quarks are modified as well, in particular the coupling of h to bottom
quarks is suppressed. As a result, in the tau-phobic scenario the behavior in the mA– tanβ plane of
the various contributions to the Higgs-production cross section differs from the one found in the other
scenarios. The total cross section for h production shows some enhancement with tanβ even for large
values ofmA, while for smallmA the total cross section forH production has a milder dependence on
tanβ than in the other scenarios. Also, the suppression of the h coupling to bottom quarks makes the
contribution of bottom-quark annihilation to h production smaller than in the other scenarios. Finally,
the tau-phobic scenario is characterized by third-generation squark masses around 1.5 TeV, and by a value
of the superpotential Higgs-mass parameter,µ = 2 TeV, much larger than in the other scenarios. Sinceµ
enters the couplings of the Higgs bosons to squarks, the impact of the SUSY contributions on the cross
section for scalar production is – despite the heavier squarks – somewhat larger than in themmax

h ,mmod+
h ,

mmod−
h and light-stau scenarios, and in the case of pseudoscalar production it is even larger than in the

light-stop scenario.
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4.2 Sources of theoretical uncertainty

Like any other quantity evaluated perturbatively, the cross sections for Higgs production in gluon fusion
and bottom-quark annihilation suffer from an intrinsic theoretical uncertainty due to the truncation at
finite order in the coupling constants. Typically, the residual dependence on the renormalization and
factorization scales is used as an estimate of this uncertainty. In section 4.2.1 we discuss our study of the
scale dependence of the cross sections.

In addition, there are sources of uncertainty that are more specific to the Higgs-production processes
considered in this study. As we discuss in section 4.2.2, one of the most important sources of uncertainty
in the production of Higgs bosons with non-standard couplings to quarks is the dependence of the cross
section on the precise definition of the bottom-quark mass and Yukawa coupling. The numerical dif-
ference between the pole bottom mass and the running mass computed at a scale of the order of the
Higgs mass is more than 40%, and – in a fixed-order calculation of the cross sections – the effect of such
a large variation cannot be compensated by the large logarithms that are induced at NLO by countert-
erm contributions. Furthermore, it is well known that the relation between the bottom mass and the
corresponding Yukawa coupling is affected by potentially large, tanβ-enhanced SUSY corrections that
must be properly resummed. The dependence of the cross sections on the details of the resummation
procedure constitutes a further source of uncertainty.

In section 4.2.3 we discuss the uncertainties associated to the choice of PDF sets. We also investigate
the issue of consistency between the pre-defined value of the bottom mass in the PDFs and the value of
the mass used to extract the bottom Yukawa coupling.

Finally, in section 4.2.4 we discuss two sources of uncertainty arising from our incomplete knowledge
of the SUSY contributions to gluon fusion. In particular, we assess the validity of the expansion in in-
verse powers of the SUSY masses used to approximate the contributions of two-loop diagrams involving
superparticles. We also estimate the uncertainty associated to the fact that SusHi does not include the
contributions of three-loop diagrams involving superparticles.

4.2.1 Scale dependence of the cross section

In this section we study the dependence of the cross section for Higgs production on the renormalization
scale µR at which the relevant couplings in the partonic cross section are expressed, and on the factoriza-
tion scaleµF entering both the PDFs and the partonic cross section. We recall that, although the complete
result for the hadronic cross section does not depend on µR and µF, its approximation at a given pertur-
bative order retains a dependence on those scales, which is formally one order higher than the accuracy
of the calculation. In a given calculation at fixed order, the two scales are arbitrary, and they are typi-
cally fixed at some central values µ̄R and µ̄F characteristic of the hard scattering process. The variation
of the scales around their central values provides an estimate of the size of the uncomputed higher-order
contributions.

We discuss separately the cases of gluon fusion (section 4.2.1) and of bottom-quark annihilation (sec-
tion 4.2.1). In the former,µR denotes the scale at which we express the strong gauge coupling entering the
partonic cross section already at the LO, while in the latter it denotes the scale at which we express both
the bottom Yukawa coupling entering at the LO and the strong gauge coupling entering at the NLO. We
postpone to section 4.2.2 a discussion of the dependence of the gluon-fusion cross section on the scale at
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which we express the bottom Yukawa coupling.

Gluon fusion

The natural hard scale in the production of a Higgs bosonϕ is obviously of the order ofmϕ. In our study
of gluon fusion we take µ̄R = µ̄F = mϕ/2 as central values for the renormalization and factorization
scales, because, with this choice, the cross section shows a reduced sensitivity to scale variations and an
improved convergence of the perturbative expansion [7]. Moreover, it has been observed that this choice
allows to mimic the effects of soft-gluon resummation in the total cross section [6].

We study the impact of the scale variation around the central choice (µ̄R, µ̄F) following the LHC-
HXSWG prescription [39]: we consider seven combinations of renormalization and factorization scales,
defined as the set Cµ of the pairs (µR, µF) obtainable from the two sets µR = {mϕ/4, mϕ/2, mϕ}

and µF = {mϕ/4, mϕ/2, mϕ}, with the additional constraint that 1/2 ⩽ µR/µF ⩽ 2 (i.e., we treat
the variations of the ratioµR/µF on the same footing as the variations of the individual scales, discarding
the two pairs where the ratio varies by a factor of four around its central value). We then determine the
maximal and minimal values of the cross section on the setCµ,

σ− ≡ min
(µR,µF)∈Cµ

{σ(µR, µF)} , σ+ ≡ max
(µR,µF)∈Cµ

{σ(µR, µF)} , (149)

and define the relative scale uncertainty of the cross section as ∆µ ≡ ∆
+
µ − ∆

−

µ , where

∆
+
µ ≡ σ+ − σ(µ̄R, µ̄F)

σ(µ̄R, µ̄F)
, ∆

−

µ ≡ σ− − σ(µ̄R, µ̄F)

σ(µ̄R, µ̄F)
. (150)

In figures 37 and 38 we show the contours of equal ∆µ for scalar and pseudoscalar production in the
mA– tanβ plane, fixing the MSSM parameters as in the light-stop scenario. The qualitative features of
the plots can be understood by considering that the top, bottom, SUSY and EW contributions to the
gluon-fusion cross section are known at different orders in the perturbative expansion. In particular,
the top contribution is included in SusHi with full mass dependence through O(α

3
s) (i.e., NLO) and

in the VHML at O(α
4
s) (i.e, NNLO). Its residual scale dependence amounts to an O(α

5
s) effect, with

the exception of some mass-dependent effects at O(α
4
s), which are known to be numerically small [121].

The bottom and sbottom contributions are included at the NLO and they account for an O(α
4
s) effect.

The stop contributions are included through the NNLO, see section 4.2.4, but their effect on scale depen-
dence is also ofO(α

4
s) because we neglect the genuine three-loop terms. Finally, while the EW corrections

are computed at O(αα2
s), their inclusion as a fully factorized term at the NLO causes their effect on scale

variation to be of O(αα
4
s), numerically very small. As a consequence of the varying accuracy of the dif-

ferent contributions, the scale uncertainty for the production of a given Higgs boson depends on which
contribution plays the dominant role in the considered region of themA– tanβ plane. The uncertainty
is lowest, around 10 – 20%, where the top contribution dominates: this is the case forh production (left
plot in figure 37) in the decoupling region, where the uncertainty stabilizes to roughly 16% at largemA

(i.e., slightly smaller than the 18% we obtain for the same Higgs mass in the SM); forHproduction (right
plot in figure 37) in the strip with mA

<
∼ 120 GeV, as well as when tanβ <∼ 10 and mA

<
∼ 400 GeV;

forA production (figure 38) in the strip with tanβ <∼ 10. In contrast, the scale uncertainty exceeds 20%

in the regions where the bottom contribution is enhanced or downright dominant: at large tanβ forH
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Figure 37: Relative scale uncertainty ∆µ (in percent) for h production (left) and H production (right) in gluon
fusion.
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Figure 38: Same as figure 37 for the production of the pseudoscalarA.
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andA production, and at smallmA for h production.
The plots forH andA production in figures 37 and 38 show additional structures. In the case ofH

production, the scale uncertainty becomes very large for 8 <∼ tanβ <
∼ 16 and mA

>
∼ 460 GeV. As

appears from figure 34, this region is characterized by a significant cancellation between the top, bottom
and stop contributions to the gluon-fusion amplitude, resulting in a very small NLO cross section and an
enhanced sensitivity to higher-order effects. In the case ofA production, the structure visible formA ≈
350 GeV is associated to the cusp-like behavior of the top contribution to the gluon-fusion amplitude
around the thresholdmA = 2mt. Another feature ofH andA production, partially overshadowed by
the structures described above, is a tendency towards smaller scale uncertainties for larger pseudoscalar
(and hence scalar) masses. This is due to the fact that the strong gauge coupling – which controls the size
of the higher-order effects that we are estimating – is evaluated at a scale proportional to the mass of the
considered Higgs boson, and gets smaller when the scale increases.

The other scenarios were studied following the same procedure, and the results are qualitatively sim-
ilar. However, for h production, the scale dependence in the decoupling region is similar to, or even
bigger than, the one in the SM. For H production, due to the different interplay of quark and squark
contributions, the cancellations that in the light-stop scenario cause the region of very large uncertainty
for 8 <∼ tanβ <∼ 16 andmA

>
∼ 460 GeV occur at higher values ofmA.

Finally, a study of independent variations of the renormalization and factorization scales shows that,
in a large fraction of the parameter space, the former yield a much larger uncertainty than the latter. The
factorization-scale uncertainty is smaller in size than the renormalization-scale uncertainty already at the
LO, and it is further reduced by the inclusion of higher-order terms.

Bottom-quark annihilation

In SusHi , the cross section for Higgs production in bottom-quark annihilation is implemented at
NNLO-QCD in the 5FS. Our default choice for the central scales is µ̄R = mϕ and µ̄F = mϕ/4, fol-
lowing the observation that radiative corrections are particularly small for this value of the factoriza-
tion scale [29, 79, 118]. To study the uncertainty associated to the variation of the scales, we consider
seven combinations corresponding to all possible pairings of µR = {mϕ/2,mϕ, 2mϕ} and µF =

{mϕ/8,mϕ/4,mϕ/2}, with the additional constraint that 2 ⩽ µR/µF ⩽ 8 (again, we discard the
two pairs with the largest variation of µR/µF around its central value, which in this case is 4 ). We then
determine the scale uncertainty ∆µ in analogy to eqs. (149) and (150).

Differently from the case of gluon fusion, the scale uncertainty of bottom-quark annihilation depends
very weakly on tanβ. This is due to the fact that, in eq. (150), the tanβ-dependence of the cross section
via the effective Higgs-bottom coupling cancels out in the ratio, leaving only a mild, indirect dependence
– only for scalar production – via the value of the Higgs mass that determines µR and µF.

In figures 39 and 40 we show the scale dependence of the cross section for scalar and pseudoscalar
production, respectively, as a function of mA in the light-stop scenario with tanβ = 20. In the upper
part of each plot, the solid line denotes the cross section for bottom-quark annihilation computed with
the central scale choice (µ̄R, µ̄F), while the yellow band around the solid line is delimited by the maximal
and minimal cross sections σ+ and σ−, defined in analogy to eq. (149). The lower part of each plot
shows the relative variation of the cross section with respect to the central value (i.e., the total width of
the yellow band corresponds to ∆µ). While the values of the total cross section do of course depend on
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Figure 39: Scale uncertainty of the cross section for h production (left) andH production (right) in bottom-quark
annihilation, in the light-stop scenario with tanβ = 20.

Figure 40: Same as figure 39 for the production of the pseudoscalarA.
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the chosen benchmark scenario, the relative scale variation is essentially the same in all scenarios, due to
the above-mentioned cancellation of the dependence on the effective Higgs-bottom coupling.

The left plot in figure 39 shows that the relative scale uncertainty of the cross section forh production
can be as large as 30% for low values ofmA, then it stabilizes to roughly 18% in the decoupling region
wheremh becomes independent ofmA. In contrast, the relative scale uncertainty of the cross section for
the production ofH (right plot in figure 39) andA (figure 40) decreases asmA (and hencemH) increases.
As already mentioned for the case of gluon fusion, this behavior is due to the fact that the higher-order
effects that we are estimating are controlled by the strong gauge coupling, and the latter decreases when
the scale at which it is computed, which is proportional to the Higgs mass, increases.

Finally, an independent variation the renormalization and factorization scales shows that, in this case,
the dominant uncertainty is given by the dependence on the factorization scale.

4.2.2 Definition of the Higgs-bottom coupling

In the production of a SM-like Higgs boson, the contribution of bottom-quark annihilation and the
effect of the bottom-quark loops in gluon fusion amount to a few percent of the total cross section.
Therefore, in that case the theoretical uncertainty associated to the definition of the Higgs coupling to
bottom quarks is negligible compared to other sources of uncertainty. On the other hand, this uncer-
tainty becomes significant in scenarios where the Higgs-bottom coupling is enhanced with respect to its
SM counterpart, YSM

b =
√

2mb/v (here v ≈ 246 GeV). In the MSSM the tree-level couplings of the
neutral Higgs bosons to bottom quarks are modified as follows:

Yhb = −
sinα
cosβ

YSM
b , YH

b =
cosα
cosβ

YSM
b , YA

b = tanβ YSM
b , (151)

where α is the mixing angle in the CP-even Higgs sector. In the decoupling limit, mA ≫ mZ, the
mixing angle simplifies to α ≈ β− π/2, so that the coupling of h to bottom quarks is SM-like, while
the couplings ofH andA are both enhanced by tanβ.

In this section we discuss two issues that affect the precise definition of the Higgs-bottom couplings:
the first concerns the choice of renormalization scheme – and scale – for the bottom mass from which
the couplings are extracted; the second concerns higher-order effects in the procedure through which the
tanβ-enhanced SUSY contributions are resummed in effective Higgs-bottom couplings.

Scheme and scale dependence of the bottom mass

The parametermb enters the expression for the gluon-fusion amplitude with two distinct roles: as the
actual mass of the bottom quarks running in the loops, and as a proxy for the Higgs-bottom coupling
Y
ϕ
b , whereϕ = {h,H,A}. The numerical value ofmb depends strongly on the renormalization scheme

and scale: an MS mass mb(mb) = 4.16 GeV corresponds to a pole mass Mb = 4.92 GeV at three-
loop level, whereas evolvingmb(mb) up to a scale of the order of the typical energy of the gluon-fusion
process decreases significantly its value. For example, if we evolve at four-loop level the bottom mass
up to the scale at which we express the strong gauge coupling, µR = mϕ/2, we obtainmb(mϕ/2) =

2.93 GeV for mϕ = 125 GeV. While any change in the definition of the bottom mass and Yukawa
coupling entering the one-loop part of the amplitude is formally compensated for, up to higher orders,
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by counterterm contributions in the two-loop part, the numerical impact of such strong variations on
the prediction for the gluon-fusion cross section can be significant.

To illustrate this point, we identify the mass of the bottom quarks in the loops with the pole massMb,
and consider the dependence of the gluon-fusion cross section on the prescription for the Higgs-bottom
coupling Yϕb , focusing on ϕ = {h,H}. In the light-stop scenario withmA = 130 GeV and tanβ = 40,
where both Higgs scalars are relatively light and have enhanced couplings to the bottom quark, the effect
of extracting Yϕb from the MS mass mb(mb) instead of the pole mass Mb leads to a 17% decrease
in the cross section for h production, and a 24% decrease in the cross section for H production. The
use ofmb(mϕ/2) would instead decrease the cross section for h production by 34%, and the one for
H production by 51%, with respect to the values obtained withMb. As a second example, we take the
light-stop scenario withmA = 300 GeV and tanβ = 10, where the lightest scalarhhas SM-like couplings
to quarks. In this case the cross section for h production varies by less than 2% when choosing among
the three options discussed above for the definition of Yhb . For the heaviest scalarH, on the other hand,
the changes in the cross section relative to the value derived withMb amount to−22% and−50% when
YH

b is extracted frommb(mb) andmb(mH/2), respectively.
The strong sensitivity of the production of non-standard Higgs bosons on the choice of renormaliza-

tion scheme (and scale) for the bottom mass and Yukawa coupling has been discussed in the past, see
e.g. refs. [27, 83, 122]. However, unlike many other processes for which there are theoretical arguments
in favor of one or the other choice, for Higgs production in gluon fusion we are not aware of any such
arguments that go beyond heuristic. As was already noted in ref. [27], the options of relating Yϕb toMb

or tomb(mb) might seem preferable to the one of usingmb(mϕ/2), in that they lead to smaller two-
loop contributions. If in the one-loop part of the amplitude for scalar production we identify the mass
of the bottom quark withMb and the bottom Yukawa coupling withmb(µb), where µb is a generic
renormalization scale, the contribution of diagrams with bottom quarks and gluons to the two-loop part
of the amplitude reads

A2ℓ
b (τ) ∝ CF

[
FCF

(τ) + F1ℓ
1/2(τ)

(
1 −

3

4
ln
m2

b

µ2
b

)]
+ CA FCA

(τ) , (152)

where CF = 4/3 and CA = 3 are color factors, τ = 4m2
b/m

2
ϕ, and we omit an overall multiplicative

factor. Truncating the functions at the first order in an expansion in powers of τ, one finds [51]

F1ℓ
1/2(τ) = −2 τ

(
1 −

1

4
L2
bϕ

)
+ O(τ2) , (153)

FCF
(τ) = −τ

[
5 +

9

5
ζ2

2 − ζ3 − (3 + ζ2 + 4 ζ3)Lbϕ + ζ2 L
2
bϕ +

1

4
L

3
bϕ +

1

48
L

4
bϕ

]
+ O(τ2) ,(154)

FCA
(τ) = −τ

[
3 −

8

5
ζ2

2 − 3 ζ3 + 3 ζ3 Lbϕ −
1

4
(1 + 2 ζ2)L2

bϕ −
1

48
L

4
bϕ

]
+ O(τ2) , (155)

with
Lbϕ ≡ ln(−4/τ) = ln(m2

ϕ/m
2
b) − i π . (156)

The equations above show that the two-loop bottom contribution to the gluon-fusion amplitude
contains powers of ln(m2

ϕ/m
2
b), and that the choice µb = mb does eliminate some of the logarithmi-

cally enhanced terms. Similarly, relating the coupling entering the one-loop part of the amplitude to the

Emanuele Angelo Bagnaschi (LPTHE)



4.2 Sources of theoretical uncertainty 103

pole massMb eliminates the whole piece proportional to F1ℓ
1/2

(τ) in eq. (152). Each of the two remain-
ing terms, CF FCF

(τ) and CA FCA
(τ), also contains powers of ln(m2

ϕ/m
2
b), but for realistic values

of mϕ the two terms largely cancel out against each other, resulting in a small two-loop contribution
from bottom quarks. However, such cancellation should be considered accidental: there is no argument
suggesting that it persists at higher orders in QCD, or that it is motivated by some physical property of
the bottom contribution to gluon fusion. To illustrate this point, we can consider the case of Higgs de-
cay to two photons: the one-loop bottom contribution to the amplitude has the same structure as the
corresponding contribution to gluon fusion, but the two-loop bottom-gluon contribution is obtained
from eq. (152) by dropping the term proportional to CA, which originates from diagrams with three-
and four-gluon interactions. In that case no significant cancellation occurs, and the amplitude is not
minimized when Yϕb is extracted frommb(mb) orMb. In fact, it was also noted in ref. [27] that the
two-loop bottom-gluon contribution to the amplitude for Higgs decay to photons is minimized when
the one-loop contribution is fully expressed in terms ofmb(mϕ/2).

In the case of the Higgs coupling to photons, the problems related to the ambiguity in the definition
of Yϕb have been solved with a resummation of the leading and next-to-leading logarithms of the ratio
m2

ϕ/m
2
b [123]. Until a similar calculation is performed for the Higgs coupling to gluons, there is no ob-

vious reason to favor one choice of renormalization scheme (and scale) for the bottom Yukawa coupling
over the others. In our study we choose to relate the coupling to the pole massMb, and we consider the
difference between the results obtained using Mb and those obtained using mb(mϕ/2) as a measure
of the uncertainty associated with the uncomputed higher-order QCD corrections. For the production
of a SM-like Higgs with mass around 125.5 GeV, this procedure – also advocated by the LHC-HXSWG
in ref. [39] – results in an uncertainty of 1 – 2% in the gluon-fusion cross section. On the other hand, as
we show in figures 41 and 42 for scalar and pseudoscalar production in the light-stop scenario, the cross
section could be reduced by more than 60% in the regions of the mA– tanβ plane where the gluon-
fusion process is dominated by the bottom-quark contribution. It is however worth recalling that, as
shown in figures 32 and 33, in such regions the total cross section for Higgs production is dominated by
bottom-quark annihilation. In the 5FS, the cross section for the latter process is known at the NNLO in
QCD [29, 79], and it is free of large logarithms of the ratiom2

ϕ/m
2
b when Yϕb is related tomb(mϕ).

The theoretical uncertainty of the cross section for bottom-quark annihilation associated to reasonable
variations around this scale choice is already included in the uncertainty bands shown in figures 39 and 40
in the previous section.

Resummation of tanβ-enhanced corrections

It is well known that, in the MSSM, loop diagrams involving superparticles induce tanβ-enhanced cor-
rections to the couplings of the Higgs bosons to bottom quarks [124]. If all superparticles are consider-
ably heavier than the Higgs bosons they can be integrated out of the MSSM Lagrangian, leaving behind
a two-Higgs-doublet model with effective Higgs-bottom couplings

Ỹb
h

=
Yhb

1 + ∆b

(
1 − ∆b

cotα
tanβ

)
, Ỹb

H

=
YH

b

1 + ∆b

(
1 + ∆b

tanα
tanβ

)
, Ỹb

A

=
YA

b

1 + ∆b
(1 − ∆b cot2 β) ,

(157)
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Figure 41: Variation (in percent) of the gluon-fusion cross section for the production ofh (left) andH (right) when
the Higgs-bottom coupling Yϕb is extracted frommb(mϕ/2) instead ofMb, as a function ofmA and
tanβ in the light-stop scenario.
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Figure 42: Same as figure 41 for the production of the pseudoscalarA.
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where Yϕb are the tree-level Higgs-bottom couplings defined in eq. (151), and, retaining only the O(αs)

contribution from diagrams with sbottoms and gluinos, the tanβ-enhanced term ∆b reads

∆b =
2αs

3π

mg̃ µ tanβ
m2

b̃1
−m2

b̃2

(
m2

b̃1

m2
b̃1

−m2
g̃

ln
m2

b̃1

m2
g̃

−
m2

b̃2

m2
b̃2

−m2
g̃

ln
m2

b̃2

m2
g̃

)
. (158)

In the limit mA ≫ mZ, where cotα ≈ − tanβ, the superparticle contributions encoded in ∆b

decouple from the coupling of the lightest scalar, while the couplings of the heaviest scalar and of the
pseudoscalar are both rescaled by a factor (1 − ∆b cot2 β)/(1 + ∆b).

In refs. [75, 76] it was shown that, in the calculation of processes that involve the Higgs-bottom cou-
plings, the tanβ-enhanced corrections can be resummed to all orders in the expansion in powers of ∆b

by inserting the effective couplings of eq. (157) in the lowest-order amplitude for the considered process.
In the case of gluon fusion, this amounts to using Ỹb

ϕ
in the bottom contribution to the one-loop part

of the amplitude. However, when this resummation procedure is combined with the actual calculation
of the superparticle contributions to the one- and two-loop amplitude for gluon fusion, care must be
taken to avoid double counting. To this effect, we must subtract from the full result for the two-loop
amplitude the contribution obtained by replacing Ỹb

ϕ
in the resummed one-loop amplitude with the

O(∆b) term of the expansion of Ỹb
ϕ

in powers of ∆b. Depending on the choice of renormalization
scheme for the parameters in the sbottom sector, additional tanβ-enhanced terms could be induced
in the two-loop amplitude by the counterterm of the Higgs-sbottom coupling that enters the sbottom
contribution to the one-loop amplitude. To avoid the occurrence of large two-loop corrections, which
would put the validity of the perturbative expansion into question, we employ for the sbottom sector
the OS renormalization scheme described in ref. [68].

An ambiguity in the procedure for the resummation of the ∆b terms concerns the treatment of the
Higgs-bottom couplings entering the two-loop part of the gluon-fusion amplitude. The difference be-
tween the results obtained using eitherYϕb or Ỹb

ϕ
in the two-loop part is formally of higher order, i.e., it

amounts to three-loop terms that are suppressed by a factorAb/(µ tanβ) with respect to the dominant
three-loop terms of O(∆2

b) accounted for by the resummation. Nevertheless, in our study we choose to

identify the Higgs-bottom couplings in both the one- and two-loop parts of the amplitude with Ỹb
ϕ

.
We found that this choice allows us to reproduce – after an expansion in powers of ∆b – the three-loop
result that can be inferred from ref. [76], where the sub-dominant terms proportional toAb were also
resummed in the effective couplings.

For large values of tanβ, the factor ∆b can even become of order one, unless the superpotential param-
eterµ is suppressed with respect to the soft SUSY-breaking masses. The effect of the SUSY correction on
the effective Higgs-bottom couplings depends crucially on the sign of ∆b. For positive ∆b the correction
suppresses the couplings, reducing the overall relevance of the bottom contribution to gluon fusion. On
the other hand, for negative ∆b the correction enhances the couplings, which diverge as ∆b approaches
−1. As a consequence, when ∆b is large and negative the result for the gluon-fusion cross section is ex-
tremely sensitive to the precise value of ∆b, and a refined calculation of the latter becomes mandatory to
reduce the uncertainty associated to the bottom contribution.

The first obvious step to improve the calculation of ∆b consists in including other one-loop contri-
butions that are not shown in eq. (158). In particular, the diagrams with stops and charginos induce a
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contribution, controlled by the top Yukawa coupling, that can be comparable in size with the O(αs)

contribution in eq. (158). In our numerical analysis we use by default the full one-loop result for ∆b as
computed by FeynHiggs , which allows us to resum in our prediction for the Higgs-production cross
section also the tanβ-enhanced corrections of electroweak origin.

Another improvement in the calculation would come from the inclusion of the dominant two-loop
contributions to ∆b, which have been computed in ref. [77] but are not yet implemented in Feyn-
Higgs . Indeed, it was shown in ref. [77] that the one-loop result for ∆b is particularly sensitive to
changes in the renormalization scales at which the strong-gauge and top-Yukawa couplings are expressed,
and that the inclusion of the two-loop contributions stabilizes this scale dependence. In particular, both
the one-loop sbottom-gluino and stop-chargino contributions to ∆b vary by roughly ±10% when the
renormalization scales are lowered or raised by a factor of two around their central values, which are cho-
sen as the average of the masses of the relevant superparticles. We can therefore estimate the uncertainty
of the gluon-fusion cross section associated to the one-loop computation of ∆b by varying by±10% the
result provided by FeynHiggs .

In general, the impact of the uncertainty of ∆b on the total uncertainty of the gluon-fusion cross sec-
tion depends on the considered point in the MSSM parameter space. As was the case also for the scheme
and scale dependence of Yϕb discussed in the previous section, the ∆b uncertainty can be significant only
if the bottom contribution to the cross section is substantially enhanced with respect to the SM case. For
illustration, we consider again the light-stop scenario withmA = 130 GeV and tanβ = 40, where both
Higgs scalars have enhanced couplings to bottom quarks. The superpotential parameter µ has positive
sign, and the ∆b corrections suppress the effective couplings Ỹb

ϕ
. We find that the cross sections for h

andH production in gluon fusion increase by 4% and 7%, respectively, if the value of ∆b is reduced by
10%, while they decrease by 4% and 6%, respectively, if ∆b is increased by 10%. The effect is larger if µ
is taken negative, so that the ∆b corrections enhance the effective couplings. In that case the dependence
on ∆b is reversed: if we consider the same point in the light-stop scenario but flip the sign of µ, the cross
sections for h andH production in gluon fusion decrease by 17% and 16%, respectively, when |∆b| is
reduced by 10%, while they increase by 23% and 21%, respectively, when |∆b| is increased by 10%.

Finally, we stress that a similar uncertainty affects the cross section for Higgs production via bottom-
quark annihilation, where the tree-level amplitude is computed in terms of the effective couplings Ỹb

ϕ
.

Also in this case, we can estimate the uncertainty by varying by ±10% the value of ∆b provided by
FeynHiggs .

4.2.3 Uncertainties from the PDFs andαs

The prediction for the total cross section at hadron level is affected by our imperfect knowledge of the
proton PDFs. This uncertainty has different sources: the PDFs cannot be computed from first principles
but they rather have to be fitted from data, and the experimental error of the latter affects the outcome
of the fit and propagates to the prediction of any observable. Also, the choices related to the fitting
methodology and to the mathematical representation of the PDFs induce an ambiguity in the results,
as can be appreciated by comparing the PDF parameterizations provided by three collaborations that
perform a global fit of low- and high-energy data: MSTW2008 [117], CT10 [125] and NNPDF2.3 [126].
These uncertainties will be discussed in section 4.2.3, together with the parametric dependence of the
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cross section on the value of the strong coupling constant. Another source of uncertainty is related to the
available perturbative-QCD information on the scattering processes from which the PDFs are extracted.
Among these perturbative effects, an issue that is particularly relevant in the case of Higgs production
via bottom-quark annihilation is the consistent inclusion of the bottom-mass effects in the evolution of
the PDFs according to the DGLAP equations. The transition between four and five active flavors in the
proton occurs at a matching scale that is set equal to the bottom mass. The bottom density in the proton
depends parametrically on this matching scale, which in turn affects the predictions for the cross section.
The phenomenological implications of this issue will be discussed in detail in section 4.2.3. A systematic
discussion of further sources of theoretical uncertainty – such as, e.g., the dependence of the PDFs on
the choice of renormalization and factorization scale in the matrix elements that are used to perform the
fit – is not yet available in the literature, and goes beyond the scope of this study.

Combination of PDF andαs uncertainties

The uncertainty associated to the experimental errors of the data from which the PDFs are extracted
is represented by the PDF collaborations with the introduction of NR different PDF sets (replicas), all
equivalent from the statistical point of view in the description of the data. Any observable has to be
computed NR times with the different sets, and the spread of the results can be interpreted as the er-
ror induced by the PDF due to the data and to the fitting methodology. The replicas are determined
by the PDF collaborations following the Hessian (for MSTW2008 and CT10) or the Monte Carlo (for
NNPDF2.3) approaches, and the PDF error has to be computed accordingly. In QCD the cross sections
are also affected by a parametric uncertainty associated to the input value of the strong coupling con-
stant. This dependence is particularly relevant in the gluon-fusion cross section, which is proportional
to α2

s at the LO and is subject to very large QCD corrections, of O(α
3
s), at the NLO. Each PDF collab-

oration recommends a different central value forαs(mZ), generating a spread of the central predictions
for the Higgs-production cross section. The combination of the PDF and αs uncertainties (henceforth,
PDF+αs) and their correlation was first discussed in ref. [127]. A conservative approach to combine
the different predictions obtained using the MSTW2008, CT10 and NNPDF2.3 PDF sets is known as
PDF4LHC recipe, and it amounts to taking the envelope of the PDF+αs uncertainty bands of the three
collaborations, where for each group the preferredαs(mZ) central value is adopted [128]. Following this
reference we take ∆αs = ±0.0012 for the experimental error on the strong coupling constant.

Due to the very steep behavior of the PDFs for increasing values of the final-state invariant mass, the
gluon-fusion process receives its dominant contribution from the threshold production region, with a
very important role played by the virtual corrections and by the universal, factorizable, soft-gluon correc-
tions. Consequently, the cross section is dominated by the LO-kinematics configurations also at higher
perturbative orders. At the LO, the gluon-fusion cross section depends on the rapidity of the Higgs bo-
son only through the PDFs, therefore the relative size of the PDF+αs uncertainty does not depend on
the details of the partonic process, but only on the value of the Higgs-boson mass. As a consequence, the
relative PDF+αs uncertainty, for a given value of the Higgs mass, can be read directly from the tables
of the SM predictions reported in the appendix B of the latest LHC-HXSWG report [41]. Differences
with respect to the SM predictions may originate from hard, process-dependent radiative corrections,
but their impact on the relative PDF+αs uncertainty is at the sub-percent level.

To assess the PDF+αs uncertainty of the cross section for Higgs production in bottom-quark annihi-
lation we adopt again the PDF4LHC recipe. The bottom density in the proton does not have an intrinsic
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component, but it is generated dynamically, via gluon splittings, by the DGLAP evolution of the PDFs.
Therefore, the uncertainties of the bottom and gluon PDFs are strongly correlated.

Similarly to the case of gluon fusion, for a given value of the Higgs mass the relative PDF+αs un-
certainty of the cross section for bottom-quark annihilation differs very little between the SM and the
MSSM, because the radiative corrections involving SUSY particles affect the kinematics of the process
only at higher orders.5 We find that the uncertainty has an almost constant behavior when the massmϕ

of the produced Higgs boson is lighter than 300 GeV, and that it increases for larger mass values: for
example, at the NNLO, the PDF+αs uncertainty of the cross section for bottom-quark annihilation
amounts to ± 6/6/8/21% formϕ = 124/300/500/1000 GeV.

Bottom-mass dependence of the PDFs

The calculation of hadronic cross sections involves the convolution of the partonic cross sections with
the PDFs, which have an intrinsic dependence on the bottom mass. For example, the central set of
MSTW2008 [117], which we use as default for our analysis, assumes a pole massMb = 4.75 GeV. Con-
verted to the MS mass via a three-loop QCD calculation, this corresponds to mb(mb) = 4.00 GeV,
which differs both from the value recommended by the LHC-HXSWG,mb(mb) = 4.16 GeV [91, 93],
and from the current PDG value,mb(mb) = 4.18 GeV [129].

In addition to their dependence through the PDFs, the cross sections for Higgs production also de-
pend on the bottom mass at the partonic level, i.e., through the bottom Yukawa coupling, the bottom-
quark propagators and the phase space. In the regions of the MSSM parameter space where the bottom-
quark contributions to Higgs production are enhanced, it becomes vital to evaluate the partonic cross
sections with the correct input value for the bottom mass, which, as mentioned above, may not necessar-
ily correspond to the value used in the PDFs. In this section we will examine the uncertainty that arises
when we choose the bottom mass entering the partonic cross sections independently from the PDF set.

The MSTW2008 PDFs come in seven sets obtained withMb ranging from 4 GeV to 5.5 GeV in steps
of 0.25 GeV. In ref. [130] the MSTW collaboration studied the sensitivity of the PDFs on the value of the
bottom mass, showing that the PDFs for the gluon and for the four lightest quarks are almost insensitive
toMb, whereas the bottom PDF exhibits quite a strong dependence. As shown in figure 6 of ref. [130],
a variation by ±0.5 GeV around the central valueMb = 4.75 GeV leads to changes in the bottom PDF
that exceed the 90% C.L. uncertainty, even for the relatively large value of the factorization scale relevant
to Higgs production, µF ≈ 100 GeV.

The cross section for Higgs production via gluon fusion is mostly sensitive to the gluon PDF, and
receives only a small contribution, starting at the NLO, from diagrams with initial-state bottom quarks.
As a result, when we evaluate the gluon-fusion cross section with the seven PDF sets – while fixing the
bottom mass in the partonic cross section – we find that the result changes only at the per mil level,
independently of the phenomenological scenario under consideration. We conclude that, for this process,
the formal inconsistency of choosing different values for the bottom mass in the partonic cross section
and in the PDFs induces only a negligible uncertainty.

In contrast, the hadronic cross section for Higgs production in bottom-quark annihilation, when
computed in the 5FS, depends directly on the bottom PDF. As a result, we expect this process to show

5 In SusHi the SUSY corrections to bottom-quark annihilation enter only through the efective couplings Ỹb
ϕ
, therefore

our estimate of the PDF+αs uncertainty for a given Higgs mass is exactly the same in the SM and in the MSSM.
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Figure 43: (Left) Cross section for pseudoscalar Higgs production in bottom-quark annihilation as a function of
mA for the light-stop scenario with tanβ = 20. (Right) Relative variation of the cross section for dif-
ferent choices of the pole bottom mass used in the PDFs and of the running mass used in the partonic
cross section. Red: PDF variation, Ỹb

A
fixed; black: PDF fixed, Ỹb

A
varies; blue: PDF and Ỹb

A
vary

simultaneously.

a significant dependence on the value of the bottom mass used in the PDFs, and the issue of consistency
with the bottom mass used in the definition of the bottom Yukawa coupling becomes unavoidable.

In figure 43 we investigate the bottom-mass dependence of the hadronic cross section for pseudoscalar
production in bottom-quark annihilation (we find similar behaviors for the production of the scalars,
both light and heavy). The plot on the left shows the hadronic cross section as a function of the pseu-
doscalar mass mA, in the light-stop scenario with tanβ = 20. As in section 4.1, the renormalization
and factorization scales are set to µR = mA and µF = mA/4. The central (black) solid line in the left
plot is computed with our default settings, namely we use the PDF set with Mb = 4.75 GeV and we
relate the Yukawa coupling Ỹb

A

to mb(mA), which we obtain from the input mb(mb) = 4.16 GeV
via renormalization-group evolution. The plot on the right of figure 43 represents the variation of the
cross section relative to this default setting, when we change the bottom mass in the PDFs and/or in the
Yukawa coupling.

In both plots, the red band between dot-dashed lines indicates the spread in the cross section obtained
with the extreme PDF sets – corresponding to Mb = 4 GeV and Mb = 5.5 GeV, respectively – with
Ỹb

A

fixed to the default value. As expected, the impact of the bottom mass used in the PDFs is significant:
it amounts to about (+20/–15)% at largemA, with larger values ofMb corresponding to smaller cross
sections. This anti-correlation is a consequence of the fact that, for larger bottom masses, the reduced
available phase space for the splitting of gluons into bottom pairs leads to a suppression of the bottom
PDF. On the other hand, the bottom Yukawa coupling is directly correlated with the magnitude of the
cross section. Simultaneously adjusting the bottom mass entering the bottom Yukawa coupling and the
one entering the bottom PDF should therefore lead to some degree of compensation between these two
effects.
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Converting the pole-mass valuesMb = 4 GeV andMb = 5.5 GeV to the MS scheme at three-loop
level, one obtainsmb(mb) = 3.32 GeV andmb(mb) = 4.69 GeV, respectively. Using these numbers
to calculate Ỹb

A

while fixing the PDF set to the default (i.e., the set withMb = 4.75 GeV) results in the
gray band between dashed lines in the right plot of figure 43. It turns out that this band is about twice as
large as the red band arising from PDF variation. However, the gray band is rather asymmetric, because
the pole massMb = 4.75 GeV for the default PDF set corresponds at the three-loop level tomb(mb) =

4.00 GeV, which is significantly smaller than our default input for Ỹb
A

, i.e.mb(mb) = 4.16 GeV. The
net effect on the cross section of a simultaneous variation of the bottom mass in the PDFs and in Ỹb

A

,
shown as a blue band between solid lines in both the left and the right plots, is thus also asymmetric, and
it is of the order of (+15/–30)% at largemA.

Our procedure to estimate the uncertainty of the cross section for bottom-quark annihilation aris-
ing from the bottom-mass dependence of the PDFs is similar to the one in ref. [122]. We fix the bot-
tom Yukawa coupling to the value implied by mb(mb) = 4.16 GeV, as recommended by the LHC-
HXSWG, and we use as uncertainty the spread in the cross section caused by the variation ofMb in the
PDFs around the central value of 4.75 GeV. However, the full variation of ±0.75 GeV allowed by the
MSTW2008 PDFs, which would correspond to the red band in figure 43, seems overly conservative for
our purposes. A variation of ±0.25 GeV is in fact sufficient to encompass the value Mb = 4.92 GeV,
which corresponds at the three-loop level to the recommended MS mass mb(mb) = 4.16 GeV. This
variation finally leads to an estimate of the uncertainty of about ±6%. A similar estimate is obtained
from NNPDF2.1 [131], which also provides PDF sets with different values ofMb.

4.2.4 Higher-order SUSY contributions to gluon fusion

In this section we discuss two sources of uncertainty affecting the SUSY contributions to the cross section
for gluon fusion. The first is the validity of the expansion in the heavy superparticle masses of the two-
loop SUSY contributions; the second is the impact of the three-loop SUSY contributions that are not
included in SusHi .

Validity of the expansion in the SUSY masses

The results implemented in SusHi for the two-loop stop contributions to lightest-scalar production
rely on the VHML, while the results for the remaining two-loop SUSY contributions rely on expansions
in inverse powers of the superparticle masses. The latter include terms up to O(m2

ϕ/M
2), O(m2

t/M
2),

O(mb/M) and O(m2
Z/M

2), where mϕ denotes a Higgs mass and M denotes a generic superparticle
mass. Therefore, the validity of the results for the two-loop SUSY contributions is limited to the region
where the mass of the produced Higgs boson is smaller than the lowest-lying SUSY-particle threshold
of the Feynman diagrams involved. In all of the six benchmark scenarios considered in our study, the
lightest-scalar mass lies comfortably below this limit. Since we considermA ⩽ 1 TeV, the same applies
also to the masses of the heaviest scalar and of the pseudoscalar in the five scenarios in which the squark
masses are themselves of the order of 1 TeV. In the light-stop scenario, on the other hand, the lowest-lying
SUSY threshold is at 2mt̃1

≈ 650 GeV, hence our need to limit our analysis tomA ⩽ 500 GeV.
To assess the quality of our approximation in the vicinity of the threshold, we multiply the two-

loop stop and sbottom contributions to the gluon-fusion amplitude by test factors tq̃ ≡ A1ℓ
q̃1
/A

1ℓ, exp
q̃1

,
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with q̃ = {t̃, b̃}. Specifically, A1ℓ
q̃1

is the lightest-squark contribution to the one-loop part of the scalar-
production amplitude including the full mass dependence, whileA1ℓ, exp

q̃1
includes only the leadingO(m−2

q̃1
)

terms in the expansion in the lightest-squark mass. Assuming that the expanded two-loop contributions
deviate from the full ones by an amount comparable to that seen in the one-loop contributions, the varia-
tion in the gluon-fusion cross section resulting from the introduction of the test factors can be considered
as an estimate of the uncertainty associated to the expansion in the SUSY masses.

The contour plots in figure 44 show the effect of introducing these test factors on the cross section
for the production of the heaviest scalar (left plot) and of the pseudoscalar (right plot) in the light-stop
scenario. In the case of H production, the variation of the cross section at large mA amounts to a few
percent when tanβ is sufficiently large, but it can exceed 20% when 8 <∼ tanβ <∼ 16. As can be seen
in the right plot of figure 34, in this region the one-loop quark and squark contributions to the gluon-
fusion amplitude largely cancel each other, with the result that the total cross section becomes small and
particularly sensitive to variations in the two-loop contributions. This sensitivity to higher-order effects
manifests also as the large scale uncertainty, up to 50%, visible in the right plot of figure 37. In the case
ofA production, on the other hand, no such cancellations occur, because the squarks do not contribute
to the one-loop amplitude for gluon fusion.6 The variation of the cross section at largemA is therefore
limited to a few percent even for moderate tanβ.

We performed the same analysis on the other five benchmark scenarios, where the squark masses are of
the order of 1 TeV. As expected, we found that the effect of rescaling the two-loop SUSY contributions by
test factors tq̃ is much smaller than in the light-stop scenario, and it is certainly negligible when compared
to the scale uncertainty of the cross section. In particular, in the tau-phobic scenario – where the squark
contributions to the gluon-fusion amplitude are enhanced by the large value of the parameter µ – the
effect on H production reaches the few-percent level only when mA approaches 1 TeV, for moderate
tanβ. In the remaining four scenarios the effect is even smaller.

The SUSY contributions at the NNLO

The QCD corrections to the gluon-fusion cross section are large, typically exceeding 100% at the energy
of the LHC. In the SM, an excellent approximation to these corrections is obtained in the VHML (or
heavy-top limit) [7, 46, 121], where a perturbative K-factor is calculated in the effective theory that re-
sults from neglecting the bottom Yukawa coupling and integrating out the top quark, leaving behind a
point-like Higgs-gluon interaction termLggH = −(1/4v)C(αs)HGµνG

µν, with v ≈ 246 GeV. The
Wilson coefficient

C(αs) = C(0) +
αs

π
C(1) +

(αs

π

)2

C(2) (159)

accounts for heavy particles that mediate the Higgs-gluon coupling in the underlying theory. In the SM,
this is just the top quark; it is easy to see, though, that the inclusion of stop squarks (and gluinos) only
affects C(αs), while the form of LggH remains unchanged. A comparison with the full result at the
NLO suggests that, within the SM, the VHML provides a decent approximation of the NNLO top
contributions also for rather large Higgs masses [115, 116]. Therefore, SusHi includes the NNLO effects
in the cross sections for the production of all three neutral Higgs bosons of the MSSM.

6 For the same reason, we cannot deine test factors analogous to tq̃ in terms of the pseudoscalar-production amplitude. To
estimate the accuracy of the mass expansion forA production we use the same test factors tq̃ as forH production.
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Figure 44: Variation of the gluon-fusion cross section for the production ofH (left) andA (right) in the light-stop
scenario when the two-loop SUSY contributions are rescaled by tq̃ ≡ A1ℓ

q̃1
/A

1ℓ, exp
q̃1

.

Within the effective theory, theK-factor at the NNLO takes the form

K = 1 +
αs

π

1

C(0) Σ(0)

[
C(0)

Σ
(1) + 2C(1)

Σ
(0) (160)

+
αs

π

(
C(0)

Σ
(2) + 2C(1)

Σ
(1) + (C(1))2

Σ
(0) + 2C(2)

Σ
(0)
)]
,

where Σ
(n) is the nth-order term in the perturbative expansion of the hadronic cross section based on

LggH|C(αs)≡1. Note that, in the NNLO part of the K-factor in eq. (160), the only genuine three-loop
term that depends on the underlying theory is C(2). This observation was exploited in ref. [72] to de-
rive an estimate of the NNLO top/stop contribution to the gluon-fusion cross section in the MSSM. In
particular, it was shown that the final result depends only very weakly on the numerical value of C(2).
Consequently, once the two-loop stop contributions are included inC(1), the unknown three-loop stop
contributions to C(2) induce an uncertainty in the cross section much smaller than the residual uncer-
tainty derived from scale variation. It was suggested to use the top contributionC(2)

t for the wholeC(2),
and to estimate the related uncertainty by varying that coefficient within the interval [0, 2C

(2)
t ].

In ref. [72] the hadronic cross section was obtained, in analogy to the SM NNLO result, by reweight-
ing its exact LO expression with the K-factor of eq. (160):

σNNLO = K |A1ℓ
tt̃|

2
Σ0 , (161)

where A1ℓ
tt̃

≡ A1ℓ
t + A1ℓ

t̃
is the one-loop amplitude including both the top and stop contributions

with the exact Higgs-mass dependence (in particular, A1ℓ
tt̃

→ C(0) in the VHML, i.e. for mϕ → 0).
However, as was discussed also in the previous section, there exist so-called gluophobic regions of the
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MSSM parameter space in which the top and stop contributions to the amplitude can cancel each other
to a large extent. Since the precise values of the MSSM parameters where this cancellation is maximal
differ between the full calculation and the VHML, the ratio |A1ℓ

tt̃
|/C(0) entering the cross section – see

eqs. (160) and (161) – can become spuriously large whenC(0) ≈ 0. In order to evade this effect, we replace
C(0) in eq. (159) with A1ℓ

tt̃
. This leads to the following expression for the cross section:

σNNLO = |A1ℓ
tt̃|

2
Σ

(0) +
αs

π

(
|A1ℓ

tt̃|
2

Σ
(1) + 2C(1)

Σ
(0) ReA1ℓ

tt̃

)

+
(αs

π

)2 [
|A1ℓ

tt̃|
2

Σ
(2) + 2

(
C(1)

Σ
(1) +C(2)

Σ
(0)
)

ReA1ℓ
tt̃ + (C(1))2

Σ
(0)
]
. (162)

This formula applies to both MSSM scalars. The effective Lagrangian for the gluonic interaction of the
pseudoscalar involves an additional operator which contributes at the NNLO [71], but it can be treated
in a completely analogous way.

In SusHi , the NNLO top and stop contributions to the gluon-fusion cross section in the VHML
are isolated by subtracting from the σNNLO in eq. (162) the same quantity truncated at the NLO (and
computed with NLO PDFs). The result is then added to the full NLO cross section, which accounts
also for the bottom and sbottom contributions and for the known Higgs-mass dependence of the two-
loop amplitude. The 6% suppression of the cross section for the production of a SM-like scalar induced
by the NNLO stop contributions in the light-stop scenario – see section 4.1.3 – can be ascribed to the effect
of the term 2C(1)

Σ
(1) ReA1ℓ

tt̃
in the second line of eq. (162). Indeed, the large value of the (normalized)

NLO term of the cross section in the effective theory, Σ
(1)/Σ

(0) ≈ 26, compensates for the suppression
byαs/π, with the result that the effect of the two-loop stop contribution toC(1) at the NNLO is roughly
as large as the corresponding effect at the NLO.

To assess the uncertainty arising from the fact that we neglect the three-loop SUSY contributions to
C(2), we make use of a recent calculation of those contributions in the VHML [73, 74]. The calculation
is based on an expansion of the relevant Feynman diagrams in terms of certain hierarchies among the
different masses, similar to the strategy that was pursued in ref. [104] for the calculation of the 3-loop
corrections to the Higgs mass in the MSSM. The results of ref. [74] are available in the form of a Mathe-
matica file, which provides the basis for the expansion ofC(2) in various hierarchies of the massesmt̃1

,
mt̃2

, mg̃, mt, and mq̃, combined with expansions in differences of these masses. Following an algo-
rithm suggested in ref. [74], these expansions should allow one to derive a numerical approximation for
C(2) in any viable MSSM scenario.

Applying this approach to the scenarios defined in table 10, we find that the deviation of the wholeC(2)

from the top contributionC(2)
t is rather small, and the second-order coefficient certainly stays within the

range [ 0, 2C
(2)
t ]. Varying C(2) within this interval, we estimate that the effect of the three-loop SUSY

contributions to the gluon-fusion cross section does not exceed 1% in all of the scenarios considered in
this study. It is therefore a viable strategy to follow ref. [72] and set C(2) = C

(2)
t , attributing an uncer-

tainty of ±1% to the final result for the cross section.
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5 THE TRANSVERSE MOMENTUM SPECTRUM OF THE

HIGGS BOSON IN GLUON FUS ION

The computation of the transverse momentum distribution of the Higgs boson requires particular atten-
tion. In the region of small pT the presence of large log(pT/mH) terms spoils the accuracy of the fixed
order results. To have a physically meaningful prediction these logarithms have to be resummed. In the
HQEFT framework, the corrections up to NLO-QCD have been analytically computed and matched
with the resummation at NNLL accuracy. The results have been originally implemented in the computer
code HqT [132] and later in the parton Monte Carlo software HRES [133]. In the context of matched
NLO1 computation with Parton Shower (PS) Monte Carlo event generators, which implement the re-
summation at LL algorithmically, the result in the HQEFT has been available for a long time. More
recently, the exact matrix elements retaining the full dependence on the quark masses have been imple-
mented in POWHEG [85] and also MC@NLO , allowing for the inclusion of the bottom quark contribution.
An analytic approach to include the latter has been presented in ref. [82] and in ref. [134], using the same
theoretical framework originally developed for HqT.

5.1 Considerations on the resummed computation of the transverse momen-

tum distribution

5.1.1 Analytic resummation and the collinear limit

The Higgs boson acquires a transverse momentum pT because of its recoil against QCD radiation. In
fixed-order perturbation theory the emission of initial state massless gauge bosons yields, in the collinear
limit, a logarithmic divergence of the Higgs transverse momentum distribution, signaling a breakdown
of the perturbative approach, with an effective expansion parameter αs(pT ) log(pT/mH) ∼ 1 in the
phase space region of vanishing pT . The analytic resummation to all orders of the terms
(αs(pT ) log(pT/mH))

n is performed by exploiting the universal properties of QCD radiation in the
collinear limit and restores an acceptable physical behavior (the Sudakov suppression) of the Higgs trans-
verse momentum distribution in the limit pT → 0.

In the collinear limit pT → 0 the amplitude for the real emission process gg → gH diverges and
can be written as Mexact = Mdiv/pT + Mreg. The second term can be neglected and it is possible to
recognize that Mdiv is proportional to the Born amplitude times the appropriate radiation term. This
factorization of the amplitude, after Mreg has been neglected, is the starting point for the resummation
of the collinear emission to all orders. Indeed, we can iterate this factorization in the case of the ampli-
tude for the emission of n additional partons. In parameter space, this procedure leads to a factorized
expression with n divergent emission factors times a term proportional to the Born amplitude. The ex-

1 In the context of NLO+PS computation, NLO is the order of normalization of the distribution. The transverse momentum
spectrum is at LO, since at Born level in gluon fusion the Higgs boson has no transverse momentum.
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pression for the approximated amplitude describing the emission of up to n partons can be cast in the
form of an exponential series, which can thus be summed to all orders. The resummation procedure is
valid (accurate and explicitly demonstrated) if and only if the Mreg term can be neglected.

The resummed partonic cross section has a factorized structure given by the product of a universal
exponential factor that accounts for the resummation to all orders of the logarithmically divergent terms,
multiplied by a process dependent function, that describes the details of the hard scattering process. This
factorization requires the introduction of a scale µres, called resummation scale. The latter defines the
region where the resummation is applied and it is usually set to a value between 0 and the hard-scattering
scale, e.g. the Higgs boson mass. A customary choice in the literature isµres = mh/2. The precise choice
of this value will be further discussed in the next sections.

The matching procedure requires that the integral of the Higgs transverse momentum distribution
be equal to a constant, which is conventionally set to the value of the fixed order total cross section. This
constraint holds exactly for any choice of µres, so that any variation of the resummation scale modifies
the shape of the distribution but not its integral and yields thus a correlation between low- and high-pT
regions.

5.1.2 Numerical resummation in the NLO+PS framework

Another approach to the resummation of terms enhanced by the factor log(pT/mH) is the one obtained
in the context of Parton Shower (PS) Monte Carlo, where the multiple emission of partons is numerically
simulated via the Shower algorithm. The matching between fixed order NLO-QCD results and the PS
has been discussed in [86, 135] and it is implemented in several tools regularly used in the experimental
analyses. In a sufficiently general way we can write the matching formula as

dσ = B̄s(ΦB)dΦB

{

∆
s
t0

+ ∆
s
t

Rs(Φ)

B(ΦB)
dΦr

}

+ RfdΦ + RregdΦ. (163)

The phase space is factorized into the product of the Born and the real emission components, dΦ =

dΦBdΦr. The Born squared matrix element is denoted by Bwhile B̄ is the NLO normalization factor.
The latter is defined as

B̄s(ΦB) = B(ΦB) + V̂in(ΦB) +

∫

R̂s(ΦB,Φr)dΦr . (164)

In this formula V̂in represents the UV- and IR-regularized virtual contribution. We use the hat to in-
dicate that an amplitude has been IR-regularized. The partonic subprocesses with the emission of an
additional real parton can be split in two groups: those that are divergent in the limit of collinear emis-
sion, called Rdiv, and the ones that are instead regular, Rreg. We can further subdivide the squared matrix
elements of the divergent subprocesses in two parts:

Rdiv = Rs + Rf. (165)
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The term Rs contains the collinear singularity of Rdiv, while Rf is a finite remainder. Finally, we use the
symbol ∆

s
t for the Sudakov form factor, with t as the showering ordering variable:

∆
s
t̄ = e−

∫

dt
t

Rs

B dΦrθ(t−t̄) . (166)

The splitting of Rdiv in eq. (165) is defined up to a finite part that can be reabsorbed in Rs. In the liter-
ature two different choices have been adopted: in POWHEG Rs = Rdiv, while in MC@NLO Rs ∝ αsPijB

is proportional to the product of the Born matrix elements times the relevant Altarelli-Parisi splitting
functions.

It is interesting to observe that different definitions forRs generate higher-order effects in the matched
differential cross section. The possibility of defining the finite partRf in an arbitrary way can be exploited
to parameterize the uncertainties related to the matching procedure as we will see in section 5.6.

5.2 POWHEG-BOX implementation ofgg→ ϕ

In this section we briefly discuss our implementation of the gluon-fusion Higgs production process in
the POWHEG-BOX framework, following closely ref. [85] (see also ref. [136, 137]).

The generation of the hardest emission is done in POWHEG by specializing eq. (163) to the gluon fusion
process:

dσ = B̄(Φ̄1)dΦ̄1

{

∆
(
Φ̄1, p

min
T

)
+ ∆ (Φ̄1, pT )

R (Φ̄1,Φrad)

B (Φ̄1)
dΦrad

}

+
∑

q

Rqq̄ (Φ̄1,Φrad)dΦ̄1dΦrad . (167)

In the equation above the variables Φ̄1 ≡ (M2, Y) denote the invariant mass squared and the rapidity
of the Higgs boson, which describe the kinematics of the Born (i.e., lowest-order) process gg→ ϕ. The
variables Φrad ≡ (ξ, y,ϕ) describe the kinematics of the additional final-state parton in the real emission
processes. In particular, denoting by k′2 the momentum of the final-state parton in the partonic center-
of-mass frame, or

k′2 = k′ 0
2 (1, sin θ sinϕ, sin θ cosϕ, cos θ), (168)

we have
k′ 0

2 =

√
s

2
ξ, y = cos θ , (169)

where s is the partonic center-of-mass energy squared.

Finally, the last term in eq. (167) describes the effect of the qq̄ → ϕg channel, which has been kept
apart in the generation of the first hard emission because it does not factorize into the Born cross section
times an emission factor.
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We now discuss the various terms appearing in eq. (167) in more detail. We have:

B̄(Φ̄1) = Bgg(Φ̄1) + Vgg(Φ̄1)

+

∫

dΦrad

{

R̂gg (Φ̄1,Φrad) +
∑

q

[
R̂gq (Φ̄1,Φrad) + R̂qg (Φ̄1,Φrad)

]
}

+ c. r. ,(170)

where

Bgg(Φ̄1) = Bgg(Φ̄1)Lgg , (171)
Vgg(Φ̄1) = Vgg(Φ̄1)Lgg , (172)

R̂gg(Φ̄1,Φrad) = R̂gg(Φ̄1,Φrad)Lgg , (173)
R̂gq(Φ̄1,Φrad) = R̂gq(Φ̄1,Φrad)Lgq , (174)
R̂qg(Φ̄1,Φrad) = R̂qg(Φ̄1,Φrad)Lqg , (175)

with Lab the luminosity for the partons a and b. In eq. (170) “ c. r.” denotes the collinear remnants
multiplied by the relevant parton luminosity. The remnants are the finite leftovers after the subtraction
of the initial-state collinear singularities into the parton distribution function is performed, and their
explicit expressions are given in eqs. (2.36), (2.37) and (3.7)–(3.10) of ref. [136].

The functionBgg(Φ̄1) in eq. (171) represents the squared matrix element of the Born contribution to
the process, averaged over colors and helicities of the incoming gluons, and multiplied by the flux factor
1/(2M2). It is given by

Bgg(Φ̄1) =
Gµ α

2
s(µ2

R )M2

256
√

2π2

∣∣G1ℓ
∣∣2 , (176)

where G is the form factor for the coupling of the Higgs boson with two gluons, whose explicit form
depends on the particle content of the model considered and will be detailed in the following sections. It
is decomposed in one- and two loop parts as

H = G1ℓ +
αs

π
G2ℓ + O(α2

s) . (177)

The regularized two-loop virtual contributions are contained in

Vgg(Φ̄1) =
αs

π

[
CA

π2

3
+β0 ln

(
µ2
R

µ2
F

)
+ 2 Re

(
G2ℓ

G1ℓ

)]
Bgg(Φ̄1) . (178)

In the equation above,µR andµF are the renormalization and factorization scale, respectively,CA = Nc

(Nc being the number of colors), andβ0 = (11CA − 2Nf)/6 (Nf being the number of active flavors)
is the one-loop beta function of the strong coupling.

The hatted functions R̂ij in eqs. (173)–(175) are the Frixione, Kunst and Signer [138, 139] infrared-
subtracted counterparts of Rij

R̂ij(Φ̄1,Φrad) =
1

ξ

{

1

2

(
1

ξ

)

+

[(
1

1 − y

)

+

+

(
1

1 + y

)

+

]} [
(1 − y2) ξ2 Rij(Φ̄1,Φrad)

]
, (179)
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where Rij are the squared amplitudes, averaged over the incoming helicities and colors and multiplied
by the flux factor 1/(2s), for the NLO partonic subprocesses (gg→ ϕg, gq→ ϕq, qg→ qϕ):

Rgg(Φ̄1,Φrad) =
3Gµ α

3
sM

8

√
2π 2 s

|Agg(s, t, u)|
2

stu
, (180)

Rgq(Φ̄1,Φrad) = −
Gµ α

3
sM

4

√
2π 6 s

s2 + u2

(s + u)2 t
|Aqg(s, t, u)|

2 , (181)

Rqg(Φ̄1,Φrad) = −
Gµ α

3
sM

4

√
2π 6 s

s2 + t2

(s + t)2 u
|Aqg(s, u, t)|2 , (182)

where s = M2/(1 − ξ), t = −(s/2) ξ (1 + y) and u = −(s/2) ξ (1 − y).
The complete real matrix elements that enter the POWHEG Sudakov form factor, eq. (166), read

R(Φ̄1,Φrad) = Rgg(Φ̄1,Φrad) +
∑

q

[Rgq(Φ̄1,Φrad) + Rqg(Φ̄1,Φrad)] , (183)

B(Φ̄1) = Bgg(Φ̄1) , (184)

where the functionsRab are the non-infrared-subtracted counterparts of eqs. (173)–(175). The probabil-
ity for the emission of the first and hardest parton is described with the exact matrix element in all the
phase space regions.

Finally, the contribution of the qq̄→ ϕg channel is

Rqq̄(Φ̄1,Φrad) = Rqq̄(Φ̄1,Φrad)Lqq̄, (185)

with

Rqq̄(Φ̄1,Φrad) =
4Gµ α

3
sM

4

√
2π 9 s

t2 + u2

(t + u)2 s
|Aqq̄(s, t, u)|

2 . (186)

The functions Agg, Aqg in eqs. (180)–(182) and Aqq̄ in eq. (186) are the same that appear in section
3.1.1.
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Figure 45: Transverse momentum distribution of the Higgs boson in the gluon fusion production. In red we plot
the distribution at fixed order, in black at LHEF level and in blue after showering with PYTHIA.

5.3 The transversemomentum spectrum of the Higgs boson in the SM

We now use our POWHEG-BOX implementation to study the pHT spectrum in the SM for an Higgs boson
with mass mH = 125 GeV. We use the MSTW2008 PDF set and the value of αs associated with it,
mt = 172.5 GeV andmb = 4.75 GeV. The renormalization and factorization scale are always assumed
equal tomH. In figure 45 we plot the transverse momentum of the Higgs boson in three approximations.
In red we show the fixed order calculation obtained with POWHEG at NLO. The distribution tends to
diverge in the pHT → 0 limit due to the potentially large terms of the form log(pHT /mH) that need to
be resummed2. The black curve represents the distribution at the Les Houches Event File (LHEF) level.
LHEF is a standardized file format used by MC event generators to write event records to files, with the
aim of helping interoperability between the software used in the field. In our case it stores the events after
the emission of the first, hardest, radiated parton. This result is not properly physical, however it can be
used to appreciate the effect of the POWHEG Sudakov form factor. Indeed, we can see here that the
Sudakov form factor has already restored the physical behavior of the distribution, with the distribution
going to zero in the pHT → 0 limit. The effect of subsequent emissions can be seen by looking at the
blue curve, which represents thepHT distribution after the full showering of the events by PYTHIA. The
distribution after parton shower, in absence of acceptance cuts, has the same qualitative features of the
LHEF one, though there are some quantitative differences due to the additional emission of radiation by

2 In this plot the collinear divergence of the real matrix amplitudes is already subtracted, moreover the irst bin contains also
the NLO virtual corrections to properly normalize the distribution to the NLO total inclusive cross section
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Figure 46: Ratio of the shape between the normalized pHT distribution in the SM with top and bottom (blue) and
only top (black) running in the loops with the one obtained in the HQEFT (red) at NLO (top) and after
showering (bottom).

the shower.

5.3.1 Top-mass effects and inclusion of the bottom contribution

As we have pointed out in subsection 2.1.1, in the SM the HQEFT gives a good approximation of the
total inclusive cross section for Higgs production in gluon fusion. However in the case of the pHT differ-
ential distribution the situation is more complex. In figure 46 we plot in blue the ratio of the shape3 of

3 By shape of the distributionwemean the distribution normalized to one, i.e. the distribution divided by the total cross section
at NLO.
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transverse momentum distribution computed in the SM with the top and bottom quark running in the
loops with respect to the one in the HQEFT; to separate the effects of the two quarks, in black we show
the ratio of the shape computed just with the top quark contribution included to the HQEFT one; on
the top we show the plot at NLO while on the bottom the curves are computed after the showering of
the events with PYTHIA.

At NLO, we can see that top quark effects start to be relevant once we come close to the top mass
threshold and result in a suppression of the differential cross section. The introduction of the bottom
quark, which adds another mass scale to the process, yields a suppression of the low-pHT tail of the distri-
bution up to an intermediate scale of about 80 GeV; after, the top quark influence starts to be dominant
and we recover the same shape of the case where only the top quark is running in the loop. It is important
to stress that in the SM the bottom quark bends the shape of the distribution through the interference
term with the top quark in the full amplitude.

From the right plot we can observe that the resummation of the collinear logarithms in the POWHEG-
BOX +PS framework enhances the effects already observed at fixed order. This behavior can be explained
in the following terms. As can be read from eq. (163), the probability of emitting the Higgs in associa-
tion with a parton depends on the product ∆ × R/B, where R is the squared matrix element for real-
parton emission, B is the Born amplitude, and ∆ is the Sudakov factor, which in turn is exponentially
suppressed by R/B, see eq. (166). In the HQEFT case, the emission probability is computed in terms of
the ratio R(t,∞)/B(t,∞). For small pHT , the Sudakov factor with exact top and bottom mass depen-
dence, ∆(t + b, exact), used in our implementation is smaller than the corresponding factor ∆(t,∞)

in the HQEFT, because R(t + b, exact)/B(t + b, exact) > R(t,∞)/B(t,∞). This inequality holds
for two reasons: first, the pHT distribution is proportional to R, and R(t + b, exact) > R(t,∞) for
pHT < 200 GeV [140]; second, the inclusion of the bottom contribution reduces the LO cross section
with respect to the result obtained in the HQEFT [27]. Thus, as shown in the right plot, for smallpHT the
Sudakov factor suppresses the pHT distribution by almost 10% with respect to the result obtained in the
current H implementation. Since the emission probability is also directly proportional to the ratio R/B,
starting from pHT ≃ 30 GeV this factor prevails over the Sudakov factor, and the distribution with exact
dependence on the quark masses becomes larger than the one in the HQEFT by up to ∼ 15%. Finally,
for pHT ≳ mt the inclusion of the full top-mass dependence leads to a negative correction, similar to
the one already observed in the pure NLO-QCD calculation. The inclusion of multiple gluon emission
with the PYTHIA QCD-PS (lower panels) does not change dramatically – in the absence of acceptance
cuts – the results obtained including only the hardest emission.

A comparison with MC@NLO shows that the specific structure of the Sudakov form factor is instrumen-
tal to the way the effect of the bottom loops is propagated to the final resummed distribution. Indeed
we can see from figure 47 that when the Sudakov form factor is proportional to the Altarelli-Parisi split-
ting function, the final distribution will not show a suppression for small pHT and the enhancement in
the intermediate region is suppressed with respect to the fixed order result. It is also interesting to point
out that on the other hand for the top quark only the two codes yield a similar distortion of the shape.
Finally, at variance with POWHEG , in the high-pHT tail the NLO behavior is recovered.

These differences between the two codes are an indication of the complexity of the problem, that now
includes four mass scales: one at the top mass; one at the Higgs mass; one at the bottom mass; and one
which is the pT of the emitted gluon. The appearance of the bottom mass scale changes the collinear
behavior of the real emission amplitude that, as we have seen in section 5.1.1, determines the choice of

Emanuele Angelo Bagnaschi (LPTHE)



5.3 The transversemomentum spectrum of the Higgs boson in the SM 123

Figure 47: Ratio between the transverse momentum distribution in the SM over the one in the HQEFT as com-
puted by MC@NLO (left) and POWHEG (right), for different values of the bottom mass (from a talk
by S.Frixione).

Figure 48: Ratio between the transverse momentum distribution in the SM over the one in the HQEFT as com-
puted by MC@NLO (left) and by Mantler et al. [134] (right), for both the top-only and the top-and-
bottom case (from a talk by S.Frixione).

the appropriate resummation scale for the process. In their default configuration the two codes differ
significantly in the way they fix the latter. In POWHEG the bottom scale is dynamically and automatically
included by the usage of the real matrix element in the POWHEG Sudakov form factor; in MC@NLO the
default choice for the resummation scale is fixed and of the order of mH/2 and therefore there is no
accounting for the bottom mass scale. Indeed, one obtains the same result of MC@NLO if an analytic
resummation with the same scale choice is performed [134], as can be seen from figure 48, with a variation
band of the order of 10% for the inclusion of both the top and bottom quark, to be compared with a
8% band for MC@NLO . In the case of the inclusion of only the top quark contribution, we see that again
the analytic resummation yields the same results as POWHEG and MC@NLO .

It is important to stress that all these discrepancies between the codes are due to higher-order effects
and that formally all the results fromPOWHEG andMC@NLOhave the same accuracy. Recently, a multi-scale
approach to the problem has been proposed in ref. [82]. In chapter 5.6 we will also address the issue of
the choice of multiple resummation scales more in detail, starting from the study the collinear behavior
of the real emission amplitude, and we will compare with the results of ref. [82]. Finally, in appendix E
we report of another approach to the study of the inclusion of the top mass effects and of the bottom
contribution in POWHEG , based on the idea of including them at fixed order, to compare more closely
with what happens with the standard MC@NLO configuration.
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5.4 The transversemomentum spectrum in the 2HDM

As we have seen in section 2.2, the 2HDM is characterized by the fact that the coupling of the Higgs boson
to the quarks can be enhanced/suppressed significantly. We want to understand how a modification of
the relative importance of the coupling of the top and bottom quark changes the shape of the transverse
momentum distribution. The kind of 2HDM befit for this purpose is type-II. At this level we are not
interested in a phenomenological study of the 2HDM, we will therefore take the neutral scalar mixing
angle equals to α = −π/4 for the light Higgs h and α = π/4 for the heavy HiggsH. This implies an
equal rescaling factor for the coupling of the quarks to the two Higgses, with respect to the dependence
on α. Hence, we can assume that the only dependence left on the 2HDM parameters is the one from
tanβ: for large values of tanβ, the bottom coupling will be enhanced, while for values of tanβ less
than one it is the top quark coupling that will be enhanced. We study the change of the shape of the
distribution for a light Higgs,mh = 125 GeV, and a heavy Higgs withmH = 500 GeV, for tanβ = 40

and tanβ = 0.1.
In figure 49 we show the results in the bottom enhanced scenario (tanβ = 40). For a light Higgs we

observe that raising the bottom coupling and suppressing the top one corresponds to an enhancement
of the low-end of phT distribution for a Higgs ofmh = 125 GeV, while it tends to slightly suppress the
same region formH = 500 GeV. It is important to underline that in this case, at variance with the SM,
the dominant effect of the bottom does not come from the interference term with the top amplitude but
from the pure squared modulus amplitude. In figure 50 we plot on the other hand the results for the
case where the top is enhanced and the bottom suppressed. We see again that in the light Higgs case this
yields an enhancement for low phT . In the case of the heavy Higgs, no substantial difference is observed.
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5.5 The transversemomentum spectrum in theMSSM

As for the type-II 2HDM, there are regions of the MSSM parameter space where the Higgs coupling to
bottom quarks is enhanced. For the correspondent parameter choices we expect the transverse-momentum
distribution of a scalar produced via gluon fusion to be distorted with respect to the corresponding dis-
tribution of a SM Higgs boson [141–143]. We now report the results that we published in ref. [41] for h
andH, with the addition of the the corresponding curve for the pseudoscalarA.

In order to investigate the changes to the pϕT distribution that occur in the MSSM, we consider the
point in the light stop scenario with MA = 130 GeV and tanβ = 40, characterized by the fact that
both scalars have non-standard couplings to quarks and masses in the vicinity of the LHC signal (indeed,
F H predicts Mh = 122.4 GeV and MH = 129.3 GeV). This point is likely to be already
excluded by the ATLAS and CMS searches for neutral Higgs bosons decaying into τ

+
τ
− pairs, but it can

still provide a useful illustration of the expected size of this kind of effects. The simulations are run for
the LHC with

√
s = 8 TeV. We used the MSTW2008-NLO PDF set and its corresponding values ofαs.

In figures 51 we show the ratio of the transverse-momentum distribution for a MSSM scalar produced
via gluon fusion over the corresponding distribution for a SM Higgs with the same mass. The plot on
the left refers to the lightest scalar h, while the plot on the right refers to the heaviest scalar H. In figure
52 we plot the same quantity for a MSSM pseudoscalar Higgs boson.

In each plot, the continuous (red) line represents the ratio of distributions computed at NLO by
SusHi , while the two histograms are computed with the POWHEG implementation of gluon fusion of
[85], modified by the adoption of the on-shell renormalization scheme for the squark parameters and
the inclusion of the results of [70] for the squark contributions to H production. In particular, the solid
(black) histogram represents the ratio of distributions computed in a pure (i.e., fixed-order) NLO calcu-
lation, while in the dashed (blue) histogram the distributions are computed with our POWHEG-BOX im-
plementation. As parton-shower we used PYTHIA[144]).

The plots in 51 and 52 show that, in this point of the MSSM parameter space, the enhancement of
the Higgs-bottom coupling results in both an enhancement of the total cross section and a distortion of
the transverse-momentum distribution, in particular for the heaviest scalar H (note the difference in the
scale between the left and the right plot). The effect of the resummation in POWHEG and the unitarity
constraint implemented in the matching procedure of NLO matrix elements with parton shower make
the transverse-momentum distribution of the Higgs bosons harder. The comparison between the solid
and dashed histograms shows that for h this effect is somewhat stronger than in the SM, while for H it is
somewhat weaker. On the other hand for the pseudoscalar we see that the distribution is softer than the
corresponding SM one.
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5.6 The choice of the resummation scale and uncertainty estimation

5.6.1 The role of the damping factorh in the POWHEG-BOX framework

We have seen in subsection 5.1.2 that there is an ambiguity in the definition of the finite part of the real
matrix element that enters the Sudakov form factor in the POWHEG formalism. Indeed, in the POWHEG-
BOX framework, the separation between Rs and Rf can be achieved in a dynamical way using the Dh

damping factor, that is defined as

Dh =
h2

h2 + (pT )2
. (187)
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The divergent and the regular part of Rdiv = Rs + Rf are then recast in the following form

Rs =
h2

h2 + (pT )2
Rdiv , Rf =

(pT )2

h2 + (pT )2
Rdiv. (188)

The role of the scale h is to separate the low transverse-momentum region from the high one and it
therefore specifies the range of momenta for which the Sudakov form factor is possibly different than 1.
In the limit of pT → 0 we obtain that Rs → Rdiv and that Rf → 0. In this limit the effect of multiple
parton radiation is sizable, because of the Sudakov form factor suppression. On the other hand, when
pT ≫ hwe have Rs → 0 and Rf → Rdiv and the Sudakov form factor tends to 1. In this latter regime
the emission of a real parton is described at fixed order by the pure matrix elements Rf = Rdiv.

The differential distribution generated according to eq. (163) contains higher order terms due to the
product of B̄× Rs. Indeed in the large pT region we have

dσ = B̄(ΦB)dΦB

{

∆t0
+ ∆t

Rs(Φ)

B(ΦB)
dΦr

}

+ RfdΦ + RregdΦ

≈ B̄(ΦB)
Rs(Φ)

B(ΦB)
dΦ + RfdΦ + RregdΦ

≡ K(ΦB)Rs(Φ)dΦ + RfdΦ + RregdΦ,

K(ΦB) :=
B̄(ΦB)

B(ΦB)
= 1 + O(αs). (189)
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Originally the factorDh was introduced to dampen the Rs contribution at large pT and to recover the
exact NLO result in this kinematic region.

In figure 53, it is possible to observe how well the resummed distribution recovers the NLO behavior
in the high-pT region for various values of the scale h. We see as expected that the lower the value of h,
the lower the value of pT at which this happens.

The total NLO cross-section is always preserved for any value of h, as can checked by integrating eq.
(163) over the whole phase space. This property implies in turn that the low- and high-pT region of the
differential cross section are correlated. Any increase of the distribution at low-pT translates in a decrease
of the high-pT tail and vice versa.

The role effectively played by scale h is analogous to the one described in subsection 5.1.1 for the re-
summation scale µres: indeed, for pT < h or for pT < µres the Sudakov suppression yields a regular
behavior of the Higgs transverse momentum distribution, whereas for pT larger than these scales the
fixed-order description is recovered. It should however be remarked that µres and h have a completely
different origin. The resummation scale µres necessarily appears as the scale at which the resummation
is defined and the factorization of the partonic cross section implemented; the damping factor Dh is
instead a convenient pT -dependent parameterization of the ambiguity in the definition of Rs.

5.6.2 Thegg→ Hg subprocess

As we have recalled in subsection 5.1.1 and subsection 5.1.2, to properly resum the collinear logarithms
we should be in a kinematic region where the collinear approximation accurately describes the emission
process. We now try to study this issue in a specific subprocess, namelygg→ Hg. This subprocess gives
the dominant contribution to the gluon fusion channel for Higgs production.

Helicity amplitudes and kinematic variables

We consider now the amplitude for this process in two approximations: the exact expression, M, and its
collinear divergent part Mdiv/pT . We define the ratioC(pT )

C(s, pT ,m
2
H) =

|M(s, pT ,m
2
H)|2

|Mdiv(s,m
2
H)/pT |2

, (190)

which represents how the exact squared matrix element differs from its collinear approximation as a func-
tion of pT . We observe that by construction we have that limpT→0C(pT ) = 1.

The regular part of the amplitude becomes non negligible with respect to its collinear counterpart for
values of p̄T such that

|C(s, p̄T ,m
2
H) − 1|> C̄. (191)

To fix the setup of our study we choose C̄ = 0.1. This value is arbitrary, but its order of magnitude
can be justified in the framework of a QCD calculation, since the size of the terms without a collinear
logarithmic enhancement is αs times a coefficient of order 1.

Precision phenomenology at the LHC and characterization of theoretical uncertainties
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The amplitude of the process gg→ Hg is a function of two independent kinematic variables, e.g. s
and pT . The production of a final state with a definite pT requires a minimum value for s of

smin = m2
H + 2(pT )2 + 2pT

√
(pT )2 +m2

H. (192)

We study the behavior of the amplitude as a function ofpT for s = smin + ssoft, where ssoft = (100 GeV)2

is necessary to avoid the soft divergence and focus only on the collinear behavior. The choice of a value
of s close to smin is phenomenologically motivated by the strong PDF suppression in the hadronic cross
section for increasing partonic s.

The scattering process is described by eight helicity amplitudes Mλ1,λ2,λ3(s, pT ,m
2
H), where λ1 =

±1, λ2 = ±1 are the helicities of the two incoming gluons and λ3 = ±1 is the helicity for the outgoing
one. The amplitudes are not all independent: indeed parity conservation implies that

Mλ1,λ2,λ3(s, pT ,m
2
H) = −M−λ1,−λ2,−λ3(s, pT ,m

2
H), (193)

leaving four independent amplitudes, M+++, M++−, M−+− and M−++, whose complete expressions
can be found for example in ref. [145]. We reorganize them as follows

Mλ1,λ2,λ3(s, pT ,m
2
H) = M

λ1,λ2,λ3

div (s,m2
H)/pT + M

λ1,λ2,λ3
reg (s, pT ,m

2
H) (194)

and we use this decomposition to compute the unpolarized squared matrix elements exactly or in the
collinear approximation.

Case study: the Standard Model

In the Standard Model the full amplitude is the sum of a top and a bottom contribution. The results for
the variableC(s, pHT ,m

2
H) for a Higgs boson withmH = 125 GeV andmH = 500 GeV are shown in

figure 54. We plot in red and green the behavior of the amplitudes computed including only the top or
the bottom. In black we show the behavior of the full amplitude that includes the sum of the top and
bottom contribution. In the same figure, formH = 125 GeV, we plot in blue the results obtained in the
HQEFT.

We first discuss the impact of the regular terms in the case of a light Higgs. We compare the results ob-
tained for the only-top case with the exact matrix elements with the ones in the HQEFT; we observe that
in both models a deviation by more than 10% from the collinear approximation occurs forpT > 55 GeV.
This effect should thus not be interpreted as a top mass effect; the latter becomes visible for pT > 170

GeV. From the analysis of the helicity amplitudes, we observe that this deviation from the collinear ap-
proximation stems from M−+−. For the bottom quark, the deviation from the collinear approximation
starts from pT greater than 20 GeV, when the bottom loops are resolved by the emitted gluons. In the
case of the full amplitude with the sum of the top and bottom quarks contributions, it is known that in
the SM there is a negative interference between the two groups of diagrams, which accidentally tends to
cancel the regular terms, extending the range of validity of the collinear approximation. This accidental
cancellation depends on the specific values of the quark masses and of the couplings in the SM. Hence,
it is more conservative to read the deviation from the collinear regime by studying the top and bottom
cases separately.
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Figure 54: Effect of the regular part of the amplitude compared to the collinear approximation on the sum of the
three collinear divergent helicity amplitudes, for a light Higgs ofmH = 125 GeV (left) and for a heavy
Higgs ofmH = 500 GeV (right). In red we plot the curve obtained with the top quark running in the
loop, in orange the one in the HQEFT, in blue the bottom quark one and in purple the sum of the top
and bottom quark amplitudes.

In the case of a heavy Higgs, the scale of the process is set by the mass of the boson,mh = 500 GeV,
all the quark loops are fully resolved and a HQEFT approximation of the amplitude is not valid. The
amplitude that includes only the top-quark diagrams deviates from its collinear approximation for pT
greater than 120 GeV 4. Instead, the amplitude that includes only the bottom-quark diagrams deviates
from its collinear approximation for pT greater than 60 GeV.

5.6.3 SM phenomenology

The resummation procedure is constrained by the correctness of the collinear approximation for the
matrix elements. In the previous section we have tried to find a procedure to quantitatively assess the
goodness of this approximation by looking at the behavior of the helicity amplitudes. However there is
always bound to be a degree of arbitrariness in defining the acceptable region; in our case this is repre-
sented by our choice to set C̄ = 0.1 in eq. (191).

We now want to perform an assessment of the uncertainties associated with the ambiguity linked to
the scale choice. We will use the analytic results, computed by Grazzini et al. [82] and provided in the
public code HRES [133] as comparison. As we have seen in subsection 5.1.1 the analytic resummation
procedure requires the introduction of a resummation scale. Analogously to what happens with the
renormalization and factorization scales, the physical results do not depend uponµres, but the truncation
to a fixed order of the perturbative expansion leaves a residual dependence on it, which can be used to
express the uncertainty of the matching procedure between the resummed and the fixed-order results; a
variation of this scale in the interval [µres/2, 2µres] is conventionally adopted.

We compare the analytic results with the one obtained in the NLO+PS POWHEG-BOX framework by
our gluon fusion event generator. We first show explicitly how it is possible to introduce the two separate
scales, one for the top and one for the bottom quark, in this framework; then we estimate the matching
uncertainties, by varying the value h which enters the damping factor Dh around the central values.
While the most conservative approach is to take two separate scales for the top and the bottom contri-

4 We remark that the collinear regime is not deined by an absolute value of the variable p̄T , but it is better characterized in
terms of the ratio r = p̄T /mh; in the case under discussion (only top diagrams) we ind r ≃ 1/4 whereas formh = 125 GeV
we have r ≃ 1/2.
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Figure 55: On the left mass effects in HRES and in the POWHEG-BOX for mH = 125 GeV; on the right relative
deviation of POWHEG with respect to HRES in the same case.

butions, we also show the results obtained by taking just one single scale (read from the combined top
and bottom amplitude) since, as we will see, in the SM case it provides a quite good approximation. The
single case approach is useful when trying to study the behavior of the distribution for many different
configurations since the runtime of a single simulation can be sizable.

In the numerical analysis we usedmtop = 172.5 GeV,mbot = 4.75 GeV and the PDF sets MSTW2008-
68cl with their corresponding values ofαs(mZ). We chose µR = µF = mH as the renormalization and
factorization scales. Unless stated otherwise, we used PYTHIA8 with the tune AU-CT10 to shower the
POWHEG-BOX events. The center of mass energy at the LHC has been assumed to be

√
s = 8 TeV.

Comparison of POWHEG and HRES in the two-scale approach

As we have shown in section 5.6.2, the presence of the bottom quark in the amplitude makes the gluon fu-
sion a four-scale problem from the point of view of the resummation of collinear algorithms. In ref. [82]
Grazzini et al proposed a new prescription to account for this. We show here our recipe to implement
the same reasoning in the POWHEG-BOX framework, complemented with the choice of the scales for the
processes that comes from our study of the helicity amplitudes. We rewrite the squared matrix element
as:

|M(top + bot)|2= |M(top)|2+ [|M(top + bot)|2−|M(top)|2] . (195)

where we have put in round bracket the quarks that run in the loops of the diagram. The square brackets
contain the top-bottom interference and the square of the modulus of the bottom amplitude. We recall
that in the POWHEG language, the resummation effects via Parton Shower (PS) are damped above the
scale h, by the factorDh as defined in eq. (187). Moreover by construction the total cross section does
not depend on the value of h. This allows us to write the following equation

σ(top + bot) = σ(top, h = ht) + [σ(top + bot, h = hb) − σ(top, h = hb)] , (196)

where we have introduced the notation σ(q, h) to indicate the total cross section evaluated with the
quark q in the internal loops and where h is the scale that enters the damping factor Dh. This equa-
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Figure 56: Mass effects in POWHEG in the two and in the one-scale approach. Higgs transverse momentum distribu-
tion (left plot) computed with different choices of the scales; relative deviation of the two-scale approach
with respect to the one-scale results obtained with h = ht = mH/1.2 (right).

tion is trivial for the total cross section, however it can and should also be used to compute differen-
tial observables, specifically the Higgs boson transverse momentum. We derive the values for the scales
ht and hb from our analysis of the helicity amplitudes. We can see from figure 54 that in the case of
only top-loop diagrams, the resummation can be safely applied up to a scaleht comparable to the Higgs
mass. Indeed common choices areht = mH/2, or, following the LHC-HXSWG recommendation [40],
ht = mH/1.2. In ref. [82], it is proposed to use mbot as the central value for the scale that limits the
inclusion of the resummation effects for the bottom amplitude contributions, whereas from figure 54
we can read that in the only-bottom case, the scale at which the collinear approximation fails at the 10%

level is of the O(20) GeV, i.e. hb ≃ 4mbot. We will compare, in the following, these two options for
the bottom-related part of the amplitude. A similar subdivision was studied in ref. [82] and then im-
plemented in HRES . In figure 55, left plot, we compare the predictions obtained with HRES with those
computed with the POWHEG-BOX . We plot the ratio of the Higgs transverse momentum distribution
with the full description that includes quark mass effects according to eq. (195) divided by one computed
in the HQEFT, in order to estimate the effect of the inclusion of the full mass dependent amplitude
for the top and the bottom quark. With different colors we show the results obtained with different
choices of the scale hb, with fixed ht = mH/1.2. Also in the HQEFT results we use the same ht. In
black we plot the analogous results obtained with the code HRES for a choice of the two resummation
scales Q1 = mH/2, Q2 = mbot. The same Q1 is used in the HQEFT computation by HRES as well.
In order to appreciate the agreement between the two codes, in right plot of 55 we show the ratio of the
POWHEG results over the HRES ones. We observe that, excluding the first bin, the POWHEG results evalu-
ated with hb = 4.75 GeV reproduce the HRES ones with an accuracy of better than 2%. One should
also keep in mind that the first bin of the distribution is depleted by the Sudakov suppression and any
small variation in the number of events of the whole distribution is reflected here in the a large percent
variation with respect to the HQEFT results. To a very large extent, the size of the quark-mass effects is
independent, formH = 125 GeV, of the specific value chosen for ht.
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Figure 57: On the left uncertainty band obtained with HRES by varying the resummation scale. On the right com-
parison between the HRES and the POWHEG uncertainty band.

Comparison of the one scale vs two-scale approach inPOWHEG

In the case of a light SM Higgs, it is interesting to check how well a single-scale computation of the pHT
distribution agrees with the two-scale one. In section 5.6.2 we have shown the results for the complete
amplitude which comes from the sum of the top and the bottom part. We will now consider two single-
scale cases withh = 50 GeV andh = mH/1.2 GeV, the first value comes from figure 54 while the second
one is again the one recommended by the LHC-HXSWG [40]. For the two scale case, we take ht equal
to these two values and we combine it with hb = {mbot, 4mbot}. The results are presented in figure 56.
In the left plot we show the Higgs transverse momentum distribution in the single and in the two scale
approach for these of values of h, ht and hb. We can see that ht plays a major role in determining the
shape of the distribution. This is a direct reflection of the dominant role of the top quark amplitude.
In the right plot we show the percent relative deviation from the one-scale results, for different choice
of hb. We observe that the bottom-quark corrections are almost independent of ht and that the two
approaches differ at most by 5% for pHT > 10 GeV.

Uncertainty band for thepHT distribution in POWHEG and in HRES

The uncertainty bands obtained with HRES due to the resummation scales Q1,Q2 variation, at fixed
renormalization and factorization scales, are presented in left plot of figure 57, at LO+NLL (light blue)
and at NLO+NNLL (red). In the left plot we show the minimum and maximum prediction obtained by
varying the scales in the intervalsmH/4 ⩽ Q1 ⩽ mH andmb/2 ⩽ Q2 ⩽ 2mbot. In the right plot we
show the percent width of the band, computed with respect to its mid-point (symmetrized uncertainty).
We want to identify, at NLO+NNLL QCD, a suitable range of the scales ht, hb that yields a similar
variation of the POWHEG prediction, which is rescaled by an appropriate KNNLO factor to account for
the different normalization. We perform the scan over the entire range of combinations of the scales
ht, hb by varying 50 ⩽ ht ⩽ 150 GeV in steps of 5 GeV and 2.5 ⩽ hb ⩽ 9.5 GeV in steps of 1 GeV.
We consider for each bin the minimum and the maximum value among the predictions. The resulting
band is plotted in green in the right plot of figure 57 and is well approximated by the curves computed
with ht = 80, hb = 2mbot (blue) and with ht = 150, hb = mbot/2 (gray). A simple indicator of the
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difference between the HRES and the POWHEG bands is given by the value of the integrated cross section
of the lower (upper) bound of the two uncertainties bands. The POWHEG value is 6% larger than the
HRES when considering the lower bounds and 2% smaller when comparing upper bounds.

5.6.4 Bottom effects in the 2HDM

We want now to understand the role of the scale hb when we compute a prediction for the Higgs trans-
verse momentum distribution in a beyond SM models where the coupling of the Higgs to the bottom
quark is possibly enhanced. Hence we choose the type-II 2HDM and set tanβ = 40. The CP-even
neutral mixing angle is taken in the decoupling limit, α = β− π/2. With such choices we have a light
Higgs h that is SM-like, that we assume with mh = 125 GeV, and an exotic heavy Higgs boson, for
which we setmH = 500 GeV. This corresponds to an interesting phenomenological case, which could
be compatible with the current observations from the LHC.

In figure 58 we show the results for the light Higgs for different choices of h. The h = ∞ choice as
expected produces a phT distribution with a raised tail with the respect to the NLO curve. All the other
choices have a compatible behavior for phT ⩾ 120 GeV and tend to the NLO curve in this region. In
the low- and middle-phT region, the three curves have different behavior, with a common crossing point
at around 30 GeV. The blue curve, which corresponds to the choice h = ∞, is over the other two for
pT ⩾ 30 GeV and then, as phT → 0, it stays below the others. This is not completely unexpected,
since due to the unitarity constraint and the fact that low values of h tend to suppress the high-phT tail,
the other two curves are bound to be higher in the low-phT region. We also check that, when taking the
same combination of scales, the behavior, given by the red curve, is at it should, identical to the SM one,
represented by the green curve.

In figure 59 we plot the results for a heavy HiggsHwith massmH = 500 GeV in the same parameter
space point. We notice that the standardly used scale choice ofmH/2 gives a substantially different result
from the ones obtained by using the scales coming from the helicity amplitude study. We also observe
that, since here the amplitude is completely dominated by the bottom quark, the black curve, where a
single scale equals to h = 60 GeV, and the red curve, with ht = 125 GeV and hb = 60 GeV, are almost
coincident. They also follow closely the NLO curve for pHT ⩾ 100 GeV.
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6 CONCLUS IONS

N that a SM-like Higgs boson has been discovered at the LHC, it will be of primary importance to
compare its measured properties with our theoretical expectations with the aim of understanding

its nature. To achieve this goal, it is fundamental to have a complete control over theoretical predictions,
by having very accurate computations and a thorough understanding of their uncertainties. Taking this
necessity into consideration, we focused on the study of two different observables that are relevant for
Higgs-related studies.

At first we discussed the total production rates for the production of the neutral Higgs bosons of the
MSSM in a set of scenarios compatible with the LHC results. These observables are one of the most im-
portant, since their values are indispensable to set exclusion limits for supersymmetric Higgs production,
or, in the case of discovered resonances, to understand if they are compatible with the MSSM.

We used the code SusHi [87], which implements state-of-the-art calculations for MSSM Higgs pro-
duction in gluon fusion and in bottom annihilation, to compute the total inclusive cross sections. We
observed that the latter can be substantially different from the SM prediction. Indeed in the MSSM
the importance of the top and bottom contributions – and their relative weight in the complete result
– can be substantially different from the SM and can lead to strikingly different results in some regions
of the MSSM parameter space. We have also found that, for scenarios with relatively light squarks, the
gluon-fusion cross section can be significantly suppressed due the presence of superparticles running in
the loops.

Next we studied the various uncertainties that affect the prediction of the cross section. Some of these
uncertainties, namely the ones associated to the choice of renormalization and factorization scales, to the
PDF parameterization and to the input value for the strong coupling constant, are relevant also for the
production of the SM Higgs, although their size may differ in the case of the production of non-standard
Higgs bosons. In contrast, the uncertainties associated to the definition of the bottom mass and Yukawa
coupling are practically negligible in the SM – where the bottom-quark contributions amount only to a
few percent of the total cross section – but they can become dominant in regions of the MSSM parameter
space where the couplings of the Higgs bosons to bottom quarks are enhanced. In the particular case of
heavy-scalar and pseudoscalar production at large tanβ, we found that legitimate variations in the renor-
malization scheme and scale of the bottom Yukawa coupling can suppress the gluon-fusion cross section
by more than 60%, due to the presence of large QCD corrections enhanced by logarithms of the ratio
m2

ϕ/m
2
b . Luckily, in this case the total cross section is dominated by the contribution of bottom-quark

annihilation, which is subject to a considerably smaller scale uncertainty. Finally, we studied the uncer-
tainties associated to our implementation of the SUSY contributions to gluon fusion at the NLO and,
partially, at the NNLO. With the exception of a gluophobic region in the light-stop scenario, these un-
certainties are generally small, reflecting the sub-dominant nature of the SUSY contributions themselves
for values of the squark masses compatible with the LHC bounds.

Then we turned our attention to another observable, the transverse momentum distribution of the
Higgs boson in gluon fusion. It is important for two reasons: the prediction, in all models, is required by
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experimenters to estimate the acceptance of their detectors to the process; moreover it represents another
opportunity to check for compatibility with the SM.

We have seen that the computation of the transverse momentum distribution requires the resumma-
tion of terms of the form log(pt/mH). This is usually achieved either by performing the analytic resum-
mation of these logarithms or by using a parton shower Monte Carlo. We followed the latter option and
we used our implementations (in the SM, 2HDM and MSSM) of the gluon fusion Higgs production
channel in the POWHEG-BOX framework.

At first we studied the differences between the complete SM prediction and the one obtained in the
mt → ∞ limit. We observe that, for a 125 GeV Higgs, the inclusion of the top-mass effects and of the
bottom contribution in POWHEG produces a characteristic distortion of the shape, with a suppression in
the low- and in the high-pT region. The former is caused by the top-bottom interference term while the
latter is a purely top amplitude effect. This behavior is already present at NLO and it is enhanced by the
specific structure of the POWHEG Sudakov form factor. Indeed, other computations like the one in the
MC@NLO framework or the analytic one show reduced effects. On the other hand, for a 500 GeV Higgs,
only the top quark is relevant and we observe only the suppression in the high-pT tail of the distribution.

Next we turned to the type-II 2HDM. In this case the quark couplings can be reduced/enhanced with
respect to the SM and we expect an effect due to this on the transverse momentum distribution. Indeed
we observe that, when the coupling to the bottom is enhanced, we have a softer (harder) distribution for
a light (heavy) Higgs. Here the effect, at variance with the SM, is due to squared bottom quark amplitude.
On the other hand, if we increase the importance of the top quark, the shape of the distribution of a light
Higgs is softer while the the one of a heavy Higgs is unchanged.

We have also analyzed thepT spectrum in the light stop scenario of the MSSM, for the light and heavy
scalars and for the pseudoscalar. Our parameter space point is characterized by an enhanced bottom
coupling. We have found that all the spectra show a distortion of the distribution, aside from a different
normalization. Forhwe have a non-trivial distortion of the shape, with suppression in both the low and
high-pT region and a central enhancement. ForH andAwe observe a softer distribution with respect to
the SM case.

Finally, spurred by the differences between our results, obtained with POWHEG , and the ones from
MC@NLO and the analytic computations, we performed a detailed analysis to understand the origin of
the discrepancies. We found that it lies in the different definition of the Sudakov form factor and in
the way the mass scales of the gluon fusion process are accounted for, especially the bottom one. We
implemented the correspondent of the recipe presented in [82], where separate resummation scales are
used for the top and the bottom contribution, in POWHEG , using an independent analysis based on the
study of the helicity amplitudes for the process gg → Hg to determine the values of the scales. We
have found that with our prescription POWHEG produces results in a very good agreement with the one
of ref. [82] for a SM Higgs withmH = 125 GeV. We also extended this prescription to a heavy Higgs
withmH = 500 GeV and we have also briefly studied how the choice of the scales affects the distribution
in the 2HDM, in the case when the coupling to the bottom is enhanced.

While in recent years the accuracy of theoretical predictions has constantly improved, many develop-
ments are still possible in the area of Higgs precision physics. With respect to the SM, N3LO approximate
computations in the HQEFT are starting to appear and they seem to indicate a quite substantial increase
over the NNLO result. Concerning the MSSM, the resummation of the QCD corrections enhanced by
ln(m2

ϕ/m
2
b), analogous to the one performed in ref. [123] for the Higgs decay to photons, will be neces-
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sary to reduce the large uncertainty in the production of non-standard Higgs bosons via gluon fusion (in-
cidentally, such calculation would benefit all models with enhanced Higgs couplings to bottom quarks,
whether they are supersymmetric or not). Implementing the existing results for the two-loop contribu-
tions to ∆b [77], in both the Higgs mass and cross-section calculations, will also reduce the uncertainty
in scenarios where the bottom contributions are relevant. Moreover, it could be worthwhile to improve
the calculation of the gluon-fusion cross section by taking into account the full Higgs-mass dependence
of the two-loop squark-gluon 1 contributions [50, 51, 60] – to cover scenarios in which the non-standard
Higgs bosons are heavier than the third-generation squarks – and by including the genuine three-loop
effects [73, 74].

1 As well as the two-loop quark-squark-gluino contributions [61, 62], when they become available.
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A OBSERVABLE TABLES

T 11 - 12 summarize the data that is analyzed in the course of this project. Table 11 contains the
higher order corrections for observables without initial state hadrons. Every non-hadronic observ-

able is written in the following form

Ok(Q,µr) =

k
∑

n=l

αs(µr)cn(Q,µr) , (197)

where µr is the renormalization scale of the strong coupling. We recall that for this class of observables,
the coefficients c0 are not used in the analysis. Every observable with initial state hadrons is written as

Ok(Q,µr, µf) =

k
∑

n=l

αs(µr, µf)cn(Q,µr, µf) , (198)

and we have always assumed µ ≡ µr = µf. The convolution of the parton luminosity with the hard
scattering coefficient function is implicit in the definition of cn.
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Non-Hadronic observables
Parameters Coefficients

Observable Q(GeV) αs(Q) l cl cl+1 cl+2 cl+3 cl+4

R =
σ(e+e−→hadr)
σ0(e+e−→hadr) 91.19 0.118 0 1 0.318 0.143 -0.413

Bjorken sum rule 91.19 0.118 0 1 -0.212 -0.238 -0.274
GLS sum rule 91.19 0.118 0 6. -1.910 -1.773 -1.117
Γ(b→ceν̄e)
Γ0(b→ceν̄e) 4.6 0.22 0 1 -0.566 -1.408
Γ(Z→ hadr)[GeV] 91.19 0.118 0 1.674 0.533 0.130 -0.837 -1.173

Γ(Z→bb̄)

Γ0(Z→bb̄)|mb=0
91.19 0.118 0 0.997 0.315 -0.156 -0.796

Γ(H→ gg) [MeV] 125 0.113 2 14.43 82.28 223.6 181.6
Γ(H→ bb̄)|mb=0[MeV] 125 0.113 0 1.850 3.338 5.465 2.492 -15.685
Γ(H→ γγ) [KeV] 125 0.113 0 9.379 1.494 0.627
⟨3-jets Thrust⟩ 91.19 0.118 1 0.030 0.149 0.686
⟨3-jets Heavy jet mass⟩ 91.19 0.118 1 0.030 0.069 0.141
⟨3-jets Wide jet broadening⟩ 91.19 0.118 1 0.054 0.098 0.166
⟨3-jets Total jet broadening⟩ 91.19 0.118 1 0.054 0.356 1.219
⟨3-jets C parameter⟩ 91.19 0.118 1 0.387 1.933 8.731
⟨3-to-2 jet transition⟩ 91.19 0.118 1 0.013 0.029 0.044
γ

(+)
ns(N = 2) 91.19 0.118 1 0.283 0.206 0.081
γqq(N = 2) 91.19 0.118 1 0.283 0.143 -0.068
γqg(N = 2) 91.19 0.118 1 -0.265 -0.239 0.058

Table 11: QCD perturbative corrections for observables without initial-state hadrons. The coefficients cn are de-
fined byOk =

∑k
n=l α

n
s cn, whereOk is an observable computed at thekth order in perturbative QCD.

Note that l = 0 coefficients are not used in the Bayesian non-hadronic analysis.

Emanuele Angelo Bagnaschi (LPTHE)



Observable tables 143

Hadronic observables
Parameters Coefficients

Observable (LHC,
√
s = 8 TeV) Q αs(Q) l cl cl+1 cl+2

σ(pp→ H) [pb] 125 0.115 2 424. 5072. 29097.
σ(pp→ bb̄→ H) 5FS [pb] 125 0.113 0 0.402 -0.854 -4.951
σ(pp→ Z∗ +X→ ZH +X) [pb] 216.2 0.105 0 0.332 0.587 2.734
σ(pp→W∗ +X→WH +X) [pb] 205.6 0.105 0 0.626 1.108 1.834
σ(pp→ bb̄) [µb] 20 0.155 2 5371. 31190.
σ(pp→ tt̄) [pb] 173.3 0.108 2 12449. 55769. 195299.
σ(pp→ Z +X→ e+e− [nb] 91.19 0.119 0 0.500 0.486 -0.164
σ(pp→ Z + j) [nb] 91.19 0.119 1 1.186 2.831
σ(pp→ Z + 2j) [nb] 91.19 0.119 2 3.659 5.138
σ(pp→ ZZ) [fb] 182.4 0.108 0 4.949 14.311
σ(pp→W− +X→ e− + νe +X) [nb] 80.4 0.121 0 2.241 2.108 -2.074
σ(pp→W+ +X→ e+ + ν̄e +X) [nb] 80.4 0.121 0 3.328 3.212 -0.922
σ(pp→W+ + j) [nb] 80.4 0.121 1 6.182 17.547
σ(pp→W− + j) [nb] 80.4 0.121 1 4.385 11.573
σ(pp→W+ + 2j) [nb] 80.4 0.121 2 19.450 28.868
σ(pp→W− + 2j) [nb] 80.4 0.121 2 12.993 20.632
σ(pp→W+W−) [pb] 160.8 0.109 0 0.175 0.742

Table 12: QCD perturbative corrections for observables with initial-state hadrons. The coefficients cn are defined
by Ok =

∑k
n=l α

n
s cn ≡

∑k
n=l α

n
s L ⊗ Cn, where Ok is an observable computed at kth order in

perturbative QCD. All observables have been computed for the LHC (proton-proton collisions at
√
s = 8

TeV) with the cuts given in table 13.

Hadronic analysis cuts
Cut Description

0 ⩽ mmin
34 ⩽ 14 TeV Invariant mass of particles 3 and 4 in the process

0 ⩽ mmin
34 ⩽ 14 TeV Invariant mass of particles 5 and 6 in the process

mT
34 ⩾ 0 GeV Transverse mass of particles 3 and 4 in the process

Anti-kT [146], R = 0.4 Jet algorithm
p
jet
T ⩾ 15 GeV Jet transverse momentum pT

0 ⩽ |ηjet|⩽ 3.5 Jet pseudorapidity
p
lept
T ⩾ 20 GeV Lepton transverse momentum

0 ⩽ |ηlept|⩽ 2.5 Lepton pseudorapidity
pmiss
T ⩾ 25 GeV Missing (neutrinos) transverse momentum
∆Rjj > 0.5 Jet-jet separation ∆Rjj =

√
∆η2

jj + ∆ϕ2
jj

∆Rjl > 0.4 Jet-lepton ∆Rjl =
√

∆η2
jl + ∆ϕ2

jl

∆Rll > 0.4 Lepton-lepton ∆Rll =
√

∆η2
ll + ∆ϕ2

ll

∆ηjj > 0 Jet-jet pseudorapidity separation
Table 13: Cuts used in the hadronic analysis.
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B CH MODEL WITHOUT FACTOR IAL

T CH model can also be defined without the factorial. Then, the series expansion is given by

O =

∞
∑

n=l

αn
s

λn
λncn ≡

∞
∑

n=0

(αs

λ

)n
an (199)

with
an ≡ λncn . (200)

If we submit the new coefficients an to the same priors originally used for bn we obtain the credibility
intervals

d
(p)
k =











(
αs

λ

)k+1
ā(k)

nc+1
nc
p% if p% ⩽ nc

nc+1

(
αs

λ

)k+1
ā(k) [(nc + 1)(1 − p%)]

(−1/nc) if p% > nc

nc+1

(201)

and the uncertainty density profile

f(∆k|al, . . . , ak) ≃
(

nc

nc + 1

)
1

2(αs/λ)k+1ā(k)











1 if |∆k|⩽
(
αs

λ

)k+1
āk

(
(αs/λ)k+1ā(k)

|∆k|

)nc+1

if |∆k|>
(
αs

λ

)k+1
āk

.

(202)
We then perform the same analysis as in section 4 for the group of non-hadronic observables. The results
of this survey are displayed in figure 60. We see that the performance of the modified CH are worse than
the original model. Indeed the peaks of the two histograms are more separated and at NLO the model
prefers the unnatural low value for non-hadronic observables of λ = 0.5 − 0.6.
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Figure 60: Comparisons between DoB and actual frequency, to determine the most appropriate value for λ at LO
and NLO for the CH model without the factorial.

145





C STAT I ST ICAL UNCERTA INTY IN THE λ

DETERMINAT ION PROCEDURE

I this appendix we discuss the estimation of the statistical uncertainty that surrounds the frequentist
determination of λ, following ref. [147]. We recall that we determine λ by measuring, for different

requested DoBs, the success rate of the Bayesian model on a finite set of test observables. The success rate
has statistical fluctuations that can be assumed following a binomial distribution, since it is equivalent
to a product of Bernoulli process (the subsequent order is either inside the computed band or not, i.e. a
stochastic binary system). We have then that

P(k,N, p) =
N!

k! (N− k)!
pk(1 − p)N−k, (203)

wherek is the number of subsequent orders contained in the DoB interval,N the number of observables
and p is the true value of the success rate (which is, of course, unknown) . Since we are interested in
determining a confidence interval, we shift to using the continuous version of the binomial distribution,
the beta-distribution:

B(a, b) =
(a + b− 1)!

(a− 1)! (b− 1)!
pa−1(1 − p)b−1 , (204)

with a = k + 1 and b = N− k + 1. As the true success rate p is unknown, we assume a uniform prior
π(p) = 1 for 0 < p < 1. We choose k such that the fraction k/N corresponds to the given DoB. As an
alternative, k can be chosen such that the fraction corresponds to the actual success rate. In this way, one
could obtain error bars for the ‘measured’ success rate. For a 68% confidence level, 68% of the error bars
of a given curve are expected to at least touch the ideal curve. The method has the disadvantage that the
size of the error bars has to be determined separately for each success rate. As long as the actual success
rate is close to the expected one, the credibility interval of the ideal curve (the one with a “success rate”
equals to the “requested DoB”) serves the same purpose. For a good choice of λ, roughly 68% of the
measured points should lie within the 1-σ interval around the ideal curve. The size of the 1-σ interval can
be calculated using Bayesian inference. For a nominal confidence levelCL = 1 −α, we use

pl
∫

0

dpπ(p)B(a, b) =

pl
∫

0

dpB(a, b) =
α

2
and

1
∫

pu

dpB(a, b) =
α

2
(205)

to determine the lower boundary pl and the upper boundary pu of the credibility interval.
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D MELL IN MOMENT ANALYS I S

T preferred extension of the CH to hadronic observables is the one based on the integrated coeffi-
cients method, due to its ability to capture effectively the complexity of the behavior of a process

with initial state hadrons. However it could be instructive to check and compare its results with the ex-
tension based on the Mellin moment method. In this section we review two processes: the gluon fusion
Higgs production process, where, as we will see, the Mellin method and the coefficient-based one are
substantially equivalent and the Drell-Yan process, where the Mellin method fails to capture the essence
of the process.

d.1 Higgs production in gluon fusion at the LHC

This process is characterized by the presence of a single strongly dominant channel, the gluon-gluon one.
The other channels which enters at NLO and at NNLO order are much less relevant. This is the optimal
application case for the application of the CH family of models, both the coefficient- and the Mellin-
based kind. Following the analysis of ref. [15], we have extracted the dominant moment from the Higgs
coefficient function in Mellin space taken from [148], where it is given in the limitmt → ∞.

We recall briefly that the estimation of the interval in Mellin space proceeds through the following
steps: at first the error bars interval are determined on the coefficient function in Mellin space, evaluated
at the dominant Mellin moment; then the relative width of the interval is used to determine the error
bar in the physical space for the complete result, to have the correct normalization. We stress that we
do not use the precise value of the cross section obtained with the saddle point approximation in the
determination of the bars.

We see from table 14 that the behavior of the coefficient function at the dominant Mellin moment at
the various order, is very similar to one of the coefficients extracted after the PDF convolution. Indeed
the resulting intervals in the two approaches agree very well.

pp→ H (Mellin)
Order σk[pb] C(N∗ = 2) CH Mellin, 68% CH Mellin, 95% CH , 68% CH , 95%

k = 2 5.6 1 ±3.35 ±21.46 ±3.35 ±21.46

k = 3 13.3 12.12 ±4.54 ±11.48 ±4.51 ±11.42

k = 4 18.38 71.19 ±3.70 ±6.99 ±3.52 ±6.65

Table 14: Analysis results for pp(gg) → Hwith the Mellin moment method. We recall that the total cross section
is the complete one and not the The meaning of the columns is the same as in section 5.
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Figure 61: Error bars for Higgs production in gluon fusion, with the coefficient method and the Mellin moment
method.

d.2 TheDrell-Yan process at the LHC

The analysis of [14] shows that a dominant Mellin moment exists also for the Drell-Yan process. In this
section we focus on the production of a Z boson and we discuss why the Mellin method fails in this case.

We know that the Drell-Yan process is dominated by the qq̄ channel both at LO (where it is the only
channel) and at NLO. At NLO we have the appearance of the gluon-quark channel, whose contribution
to the total cross section can be thought as negative, and at NNLO of the gluon-gluon initiated subpro-
cess, which is positively contributing though smaller in magnitude. It is known that the resulting effect
of the new channels on the total NNLO contribution is PDF dependent, due to the uncertainties that
plague the gluon PDF, and it is therefore positive or negative according to the PDF set used. In our case,
with NNLO NNPDF-2.3 set, we observe a NNLO negative contribution, due to the predominance of
the quark-gluon channel at this order.

On the other hand the behavior of the coefficient function for the channel that is used for the Mellin
analysis, theqq̄ channel, is such that the value of the coefficient function always increases order by order1.
Hence it is not able to capture the true pattern of the perturbative expansion for the process. Indeed we
see that, starting from the NLO, the uncertainty interval obtained with the Mellin method is systemati-
cally bigger than the one obtained with the standard coefficient-based one.

It would be possible to work around this issue by performing a Mellin analysis for each separate chan-
nel. However, to recombine the different uncertainties to get a single band for the complete cross section
requires the knowledge of the weight of the different channels in the complete result. This in turn re-
quires the use of the PDFs, rendering the Mellin moment method dependent again on the long-range
physics and therefore spoiling its main attractive feature.

1 Extracted again from [148]
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pp→ Z (Mellin)
Order σk C(N∗ = 2) CH Mellin, 68% CH Mellin, 95% CH , 68% CH , 95%

k = 0 0.499 1 ±0.155 ±0.991 ±0.155 ±0.991

k = 1 0.557 2.92 ±0.029 ±0.074 ±0.020 ±0.051

k = 2 0.555 7.53 ±0.014 ±0.027 ±0.007 ±0.013

Table 15: Analysis results for pp→ Zwith the Mellin moment method. The meaning of the columns is the same
as in section 5.
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Figure 62: Error bars for Z production at the LHC, with the coefficient method and the Mellin moment method.
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E ALTERNAT IVE PARAMETER IZAT ION OF THE

INCLUS ION OF THE FULL SM MATR IX ELEMENT IN

THE POWHEG-BOX

It is possible to perform a different rearrangement of the real emission contribution following the natural
hierarchy of the terms that are present in the matrix elements. For instance, for a light Higgs, the HQEFT
limit provides a good approximation of the full NLO-QCD result in the SM. We can rewrite the squared
real matrix element as

Rdiv = R
HQEFT
div +

[
Rdiv − R

HQEFT
div

]
. (206)

The squared brackets contain now the the correction due to the full dependence on the top quark mass
and the bottom contribution to the leading termRHQEFT

div . Following this remark, we can built an explicit
expression for the term Rs that enters the POWHEG Sudakov form factor and for the corresponding finite
remainder Rf. We have

Rs = cR
HQEFT
div + b

[
R

HQEFT
div − cR

HQEFT
div

]
, (207)

Rf = Rdiv − R
s = (1 − b)

[
Rdiv − cR

HQEFT
div

]
, (208)

c = B/BHQEFT , (209)

where the parameter is defined in the region b ∈ [0, 1]. When we set b = 0, the Sudakov form factor
contains only the HQEFT approximation of the real amplitude. The corrections due to the full depen-
dence on the quark mass are taken into account as a finite remainder. On the other hand, when we take
b = 1, we recover the default POWHEG implementation. Any other intermediate value of b offers an
interpolation between these two extrema. In figure 63 we can see the ratio between the pHT distribution
for various values of the parameter b formH = 120 GeV. It is interesting to point out the correlated be-
havior of the low- and high-pHT tails due to the unitarity constraint for different values of the parameter
b. We know that with the default choice of b = 1 the effect of the inclusion of the full matrix element
is to suppress the distribution for low pHT . Smaller values of b tends to restore the HQEFT behavior, i.e.
the ratio of the distributions tend to one for pHT → 0. This in turn implies a raise of the high-pHT tail, to
satisfy the constraint that the integral of the curve should be the same NLO cross section. An analogous
behavior can be seen in figure 64 for a heavy Higgs ofmH = 500 GeV. We remark that the use of b = 0

does not recover the exact NLO behavior in the large pHT limit of the distribution, since we have that the
Rs contribution is still multiplied by the ratio B̄/B. However, it could be probably recovered by using
a combination of the parameter b and the damping factorDh.
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F CROSS SECT IONS AND UNCERTA INT IES

In this appendix we include three tables, listing the cross sections and uncertainties for the production
at the LHC of the three neutral Higgs bosons in the light stop scenario. We use version . . of
SusHi , and provide separate results for gluon fusion and bottom-quark annihilation. Input files for
the six scenarios can be found on the code’s website [87]. We set

√
s = 8 TeV, mt = 173.2 GeV and

mb(mb) = 4.16 GeV, and we choose thirty combinations of the parametersmA and tanβ. The predic-
tions for the scalar masses are obtained with version . . of FeynHiggs. The uncertainties provided
in the tables are computed as follows:

• The renormalization- and factorization-scale uncertainties are summarized in the quantities ∆
±
µ ,

defined as in section 4.2.1, eq. (150). For gluon fusion we consider the seven combinations ob-
tained from µR = {mϕ/4, mϕ/2, mϕ} and µF = {mϕ/4, mϕ/2, mϕ}, where we discard
the two pairs with the largest variation of the ratio µR/µF with respect to the central choice. For
bottom-quark annihilation we proceed accordingly, using µR = {mϕ/2,mϕ, 2mϕ} and µF =

{mϕ/8,mϕ/4,mϕ/2}.

• The uncertainty δYb of the gluon-fusion process, related to the definition of the bottom Yukawa
coupling and discussed in section 4.2.2, is computed as the relative difference between the cross
section calculated with Yϕb ∝ mb(mϕ/2) and the cross section calculated with Yϕb ∝ Mb. In
the case of bottom-quark annihilation, the scale dependence ofYϕb is included in the computation
of ∆

±
µ .

• The uncertainty δ∆b, stemming from the resummation of tanβ-enhanced corrections toYϕb and
described in section 4.2.2, is computed by adding an uncertainty of ±10% to the value of ∆b

obtained from FeynHiggs.

The PDF uncertainties are not included in the tables, but they were extensively discussed in section 4.2.3.
In section 4.2.3 we pointed out that the relative size of the PDF+αs uncertainty depends mainly on the
value of the Higgs mass, thus it can be taken over directly from the existing estimates for the production
of the SM Higgs. Apart from the PDF+αs uncertainty, in the case of bottom-quark annihilation an
additional uncertainty of ±6% has to be added due to the dependence of the bottom-quark PDF on the
pole bottom mass (see section 4.2.3). The uncertainties associated to our incomplete knowledge of the
SUSY contributions to the gluon-fusion cross section can become sizable in the light-stop scenario, espe-
cially in the case ofH production at largemA and moderate tanβ. However we do not include them in
the tables, pointing the reader to the discussion in section 4.2.4.
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mA [GeV] tanβ mh [GeV] σggh [pb] ∆
±
µ [%] δYb [%] δ∆b [%] σbbh [pb] ∆

±
µ [%] δ∆b [%]

100 5 88.1 18.27 +17.4
−14.6 −37.3 +0.8

−0.8 12.88 +9.8
−18.8

+1.1
−1.1

100 10 94.3 41.55 +17.3
−14.4 −52.2 +2.2

−2.1 39.99 +9.1
−17.1

+2.2
−2.1

100 15 95.8 81.16 +16.7
−14.1 −53.6 +3.3

−3.1 79.26 +9.0
−16.7

+3.1
−3.0

100 20 96.4 130.2 +16.3
−13.9 −53.7 +4.2

−4.0 126.6 +8.9
−16.6

+4.0
−3.8

100 30 96.8 243.2 +15.9
−13.7 −53.5 +5.8

−5.4 235.0 +8.9
−16.4

+5.6
−5.2

100 50 97.0 484.8 +15.5
−13.5 −53.4 +8.4

−7.5 468.1 +8.8
−16.4

+8.1
−7.2

120 5 101.2 12.97 +13.5
−12.4 −13.9 +0.3

−0.3 6.357 +8.4
−15.4

+1.0
−1.0

120 10 110.5 16.39 +15.3
−13.3 −35.5 +1.5

−1.4 17.64 +7.7
−13.6

+2.1
−2.0

120 15 113.6 26.08 +15.9
−13.6 −47.5 +2.8

−2.7 34.69 +7.5
−13.1

+3.0
−2.9

120 20 115.0 40.03 +15.9
−13.6 −52.3 +4.0

−3.7 56.34 +7.4
−12.9

+3.9
−3.7

120 30 116.3 76.24 +15.4
−13.3 −54.9 +5.8

−5.4 108.8 +7.3
−12.7

+5.5
−5.1

120 50 117.1 161.4 +14.7
−13.0 −55.3 +8.5

−7.6 227.6 +7.3
−12.5

+8.0
−7.1

150 5 111.2 15.00 +9.8
−10.3 — —

— 2.282 +7.7
−13.5

+0.8
−0.8

150 10 119.6 14.84 +9.7
−10.1 −0.3 —

— 3.057 +7.1
−12.2

+1.6
−1.6

150 15 121.7 15.04 +9.6
−10.0 −0.4 —

— 3.313 +7.0
−11.9

+2.4
−2.3

150 20 122.6 15.13 +9.5
−9.9 −0.4 —

— 3.345 +7.0
−11.8

+3.0
−2.9

150 30 123.2 15.16 +9.3
−9.9 −0.5 —

— 3.210 +6.9
−11.7

+4.1
−3.8

150 50 123.7 15.11 +9.0
−9.7 −0.7 —

— 2.843 +6.9
−11.6

+5.8
−5.2

200 5 115.9 16.78 +8.3
−9.5 +1.8 —

— 0.837 +7.4
−12.7

+0.5
−0.5

200 10 121.5 15.99 +8.0
−9.3 +1.8 —

— 0.805 +7.0
−11.9

+1.0
−1.0

200 15 122.7 15.83 +7.9
−9.3 +1.7 —

— 0.781 +7.0
−11.7

+1.5
−1.4

200 20 123.1 15.76 +7.8
−9.2 +1.6 —

— 0.759 +6.9
−11.7

+1.9
−1.8

200 30 123.5 15.70 +7.8
−9.2 +1.3 —

— 0.720 +6.9
−11.6

+2.5
−2.3

200 50 123.8 15.63 +7.7
−9.1 +0.5 +0.1

−0.1 0.663 +6.9
−11.6

+3.4
−3.1

300 5 117.8 17.32 +7.7
−9.3 +1.7 —

— 0.421 +7.2
−12.4

+0.3
−0.3

300 10 122.1 16.36 +7.5
−9.1 +1.6 —

— 0.383 +7.0
−11.8

+0.5
−0.5

300 15 123.0 16.14 +7.6
−9.1 +1.6 —

— 0.371 +6.9
−11.7

+0.7
−0.7

300 20 123.3 16.08 +7.5
−9.1 +1.4 —

— 0.364 +6.9
−11.7

+0.9
−0.8

300 30 123.6 16.00 +7.5
−9.1 +1.0 —

— 0.354 +6.9
−11.6

+1.2
−1.1

300 50 123.8 15.92 +7.4
−9.0 +0.2 —

— 0.340 +6.9
−11.6

+1.5
−1.4

Table 16: Cross sections and uncertainties for lightest-scalar production in the light-stop scenario for
√
s = 8 TeV.

Uncertainties below 0.1% are not listed (—). For the PDF uncertainties see text.
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mA [GeV] tanβ mH [GeV] σggH [pb] ∆
±
µ [%] δYb [%] δ∆b [%] σbbH [pb] ∆

±
µ [%] δ∆b [%]

100 5 130.9 13.85 +5.9
−8.4 −5.0 +0.2

−0.2 0.650 +6.5
−10.7

+1.8
−1.7

100 10 125.9 17.64 +6.4
−8.7 −6.5 +0.4

−0.4 1.163 +6.8
−11.3

+3.2
−3.0

100 15 124.7 19.01 +6.6
−8.8 −6.7 +0.5

−0.5 1.287 +6.9
−11.5

+4.5
−4.3

100 20 124.3 19.53 +6.6
−8.8 −6.7 +0.7

−0.6 1.283 +6.9
−11.5

+5.8
−5.4

100 30 124.0 19.79 +6.6
−8.8 −6.7 +0.9

−0.8 1.184 +6.9
−11.6

+8.1
−7.4

100 50 123.9 19.64 +6.6
−8.8 −6.8 +1.2

−1.1 0.982 +6.9
−11.6

+12.0
−10.5

200 5 203.7 0.919 +4.6
−7.3 −23.8 +0.5

−0.5 0.715 +4.4
−5.7

+1.3
−1.3

200 10 199.9 1.266 +8.9
−9.7 −48.9 +2.0

−1.9 2.943 +4.5
−5.9

+2.3
−2.2

200 15 199.1 2.178 +10.4
−10.7 −54.6 +3.2

−3.0 6.144 +4.5
−5.9

+3.2
−3.1

200 20 198.9 3.341 +10.9
−11.0 −56.2 +4.2

−3.9 9.987 +4.5
−5.9

+4.1
−3.9

200 30 198.7 6.051 +11.2
−11.2 −57.1 +5.8

−5.4 18.77 +4.5
−5.9

+5.6
−5.2

200 50 198.5 11.88 +11.2
−11.1 −57.5 +8.5

−7.6 37.63 +4.5
−5.9

+8.1
−7.2

300 5 301.7 0.161 +2.9
−6.7 −20.3 +0.4

−0.4 0.150 +3.2
−3.2

+1.3
−1.2

300 10 299.6 0.137 +6.6
−9.3 −50.1 +1.9

−1.9 0.567 +3.2
−3.2

+2.3
−2.2

300 15 299.2 0.211 +8.6
−10.6 −57.7 +3.2

−3.1 1.159 +3.3
−3.2

+3.2
−3.1

300 20 299.1 0.315 +9.5
−11.0 −59.6 +4.3

−4.0 1.869 +3.3
−3.2

+4.1
−3.9

300 30 299.0 0.564 +10.1
−11.3 −60.5 +6.0

−5.5 3.493 +3.3
−3.2

+5.6
−5.2

300 50 298.9 1.107 +10.2
−11.4 −60.9 +8.7

−7.7 6.979 +3.3
−3.2

+8.1
−7.2

400 5 401.0 80.4×10-3 —
−4.2 −6.6 +0.1

−0.1 41.8×10-3 +2.6
−2.0

+1.2
−1.2

400 10 399.6 27.0×10-3 +0.6
−5.1 −39.5 +1.6

−1.5 0.154 +2.6
−2.0

+2.3
−2.2

400 15 399.3 31.4×10-3 +2.5
−7.1 −61.0 +3.4

−3.3 0.313 +2.6
−2.0

+3.2
−3.1

400 20 399.2 45.9×10-3 +5.2
−9.1 −65.4 +4.7

−4.4 0.504 +2.6
−2.0

+4.1
−3.9

400 30 399.1 84.9×10-3 +7.5
−10.6 −65.7 +6.5

−6.0 0.941 +2.6
−2.0

+5.6
−5.2

400 50 399.1 0.173 +8.8
−11.2 −64.9 +9.2

−8.1 1.878 +2.6
−2.0

+8.1
−7.2

500 5 500.4 23.6×10-3 +1.3
−9.1 +4.4 —

— 14.2×10-3 +2.3
−1.4

+1.2
−1.2

500 10 499.4 2.81×10-3 +18.6
−46.2 −1.3 +0.9

−0.9 51.6×10-3 +2.3
−1.4

+2.3
−2.2

500 15 499.3 2.47×10-3 +9.8
−32.2 −69.4 +5.2

−4.9 0.105 +2.3
−1.4

+3.2
−3.1

500 20 499.2 5.12×10-3 +1.2
−7.5 −80.8 +6.6

−6.1 0.169 +2.3
−1.4

+4.1
−3.9

500 30 499.2 13.4×10-3 +5.2
−9.3 −75.8 +7.8

−7.1 0.315 +2.3
−1.4

+5.6
−5.2

500 50 499.1 33.2×10-3 +8.3
−11.3 −70.6 +10.1

−8.9 0.628 +2.3
−1.4

+8.1
−7.2

Table 17: Cross sections and uncertainties for heaviest-scalar production in the light-stop scenario for
√
s = 8 TeV.

Uncertainties below 0.1% are not listed (—). For the PDF uncertainties see text.
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mA [GeV] tanβ σggA [pb] ∆
±
µ [%] δYb [%] δ∆b [%] σbbA [pb] ∆

±
µ [%] δ∆b [%]

100 5 9.685 +15.5
−13.5 −47.8 +1.2

−1.2 9.841 +8.6
−15.7

+1.2
−1.2

100 10 36.48 +15.5
−13.5 −54.1 +2.4

−2.3 35.29 +8.6
−15.7

+2.3
−2.2

100 15 76.79 +15.2
−13.3 −53.4 +3.4

−3.2 71.44 +8.6
−15.7

+3.2
−3.1

100 20 125.2 +15.0
−13.2 −53.1 +4.2

−4.0 114.8 +8.6
−15.7

+4.1
−3.9

100 30 235.2 +14.7
−13.1 −52.9 +5.8

−5.4 214.0 +8.6
−15.7

+5.6
−5.2

100 50 467.6 +14.3
−12.9 −52.9 +8.4

−7.5 426.8 +8.6
−15.7

+8.1
−7.2

200 5 0.534 +7.8
−9.1 −4.0 +0.2

−0.2 0.845 +4.5
−5.9

+1.2
−1.2

200 10 0.808 +12.7
−11.9 −57.8 +2.4

−2.4 3.030 +4.5
−5.9

+2.3
−2.2

200 15 1.831 +12.3
−11.7 −59.5 +3.5

−3.3 6.135 +4.5
−5.9

+3.2
−3.1

200 20 3.125 +11.9
−11.5 −58.6 +4.4

−4.1 9.859 +4.5
−5.9

+4.1
−3.9

200 30 6.097 +11.5
−11.3 −57.6 +5.9

−5.4 18.38 +4.5
−5.9

+5.6
−5.2

200 50 12.39 +11.0
−11.0 −57.0 +8.4

−7.5 36.65 +4.5
−5.9

+8.1
−7.2

300 5 0.310 +5.5
−8.0 +8.0 +0.1

−0.1 0.159 +3.2
−3.2

+1.2
−1.2

300 10 87.7×10-3 +8.5
−9.6 −27.2 +1.3

−1.2 0.568 +3.2
−3.2

+2.3
−2.2

300 15 0.150 +11.9
−12.0 −60.4 +3.6

−3.4 1.151 +3.2
−3.2

+3.2
−3.1

300 20 0.269 +12.0
−12.2 −62.9 +4.6

−4.3 1.849 +3.2
−3.2

+4.1
−3.9

300 30 0.564 +11.5
−12.0 −61.4 +6.1

−5.6 3.447 +3.2
−3.2

+5.6
−5.2

300 50 1.201 +10.7
−11.7 −59.8 +8.5

−7.6 6.874 +3.2
−3.2

+8.1
−7.2

400 5 0.334 +4.8
−7.8 −1.9 —

— 42.8×10-3 +2.6
−2.0

+1.2
−1.2

400 10 98.9×10-3 +9.0
−10.2 −14.5 +0.5

−0.5 0.154 +2.6
−2.0

+2.3
−2.2

400 15 73.4×10-3 +13.5
−12.8 −35.0 +1.8

−1.7 0.311 +2.6
−2.0

+3.2
−3.1

400 20 81.1×10-3 +14.7
−13.7 −48.4 +3.2

−3.0 0.500 +2.6
−2.0

+4.1
−3.9

400 30 0.123 +13.7
−13.5 −57.2 +5.4

−4.9 0.932 +2.6
−2.0

+5.6
−5.2

400 50 0.227 +11.7
−12.6 −59.7 +8.2

−7.3 1.858 +2.6
−2.0

+8.1
−7.2

500 5 96.7×10-3 +3.5
−7.0 −4.0 —

— 14.3×10-3 +2.3
−1.4

+1.2
−1.2

500 10 31.9×10-3 +7.1
−9.5 −17.7 +0.6

−0.5 51.4×10-3 +2.3
−1.4

+2.3
−2.2

500 15 23.9×10-3 +11.0
−11.9 −34.4 +1.7

−1.6 0.104 +2.3
−1.4

+3.2
−3.1

500 20 24.9×10-3 +12.4
−12.9 −45.8 +2.9

−2.8 0.167 +2.3
−1.4

+4.1
−3.9

500 30 33.9×10-3 +12.2
−13.1 −55.2 +5.0

−4.6 0.312 +2.3
−1.4

+5.6
−5.2

500 50 58.0×10-3 +10.8
−12.5 −59.3 +8.0

−7.1 0.622 +2.3
−1.4

+8.1
−7.2

Table 18: Cross sections and uncertainties for pseudoscalar production in the light-stop scenario for
√
s = 8 TeV.

Uncertainties below 0.1% are not listed (—). For the PDF uncertainties see text.
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PLAN DE LA THÈSE

L Modèle Standard (MS) des interactions électrofaibles et fortes a été très efficace dans la description
des plusieurs processus de collision des particules w échelles d’énergie différentes mais beaucoup de

problèmes restent ouverts. Par exemple, si on considère les relations entre la physique des particules et la
cosmologie, il est immédiatement clair que l’asymétrie entre la matière et l’antimatière dans l’Univers ne
peut pas être expliquée seulement en termes des interactions présentes dans le MS mais requiert d’une
extension avec un spectre des particules plus grand. Cette modification est aussi nécessaire pour expliquer
la présence de la matière noire observée dans l’univers. En plus, le MS ne comprend pas les masses des neu-
trinos et, de côte plus théorique, présente le problème “de la hiérarchie” (i.e. la dépendance quadratique
de la masse du boson de Higgs du cutoff UV utilisé dans la computation des corrections radiatives) et, en
plus, les structures de jauge et de Yukawa sont assumées et pas expliquées.

Au delw de ces problèmes, maintenant que le boson de Higgs a été découvert, le premier but est de com-
prendre si ses propriétés sont compatibles avec les prédictions du MS. Le Large Hadron Collider (LHC)
a été conçu pour répondre w toutes ces questions différentes, en produisant les instruments nécessaires
pour découvrir et comprendre le boson du Higgs et permettre la production de nouvelles particules de
masse dans la région du TeV, si elles existent. Le premier démarrage de l’accélérateur a fourni déjw beau-
coup de données de haute qualité. L’analyse des ces données w montré que, apparemment, il n’y a pas
de déviations concernant les prédictions du MS. La conséquence est que la prochaine étape logique est
l’usage de cette grande quantité de données pour faire des analyses de précision. Cette classe d’études a
besoin d’un fort contrôle pas seulement sur les incertitudes expérimentales mais aussi sur les incertitudes
théoriques.

Par conséquent, pendant mes études doctorales, j’ai participé w une série des projet qui avaient comme
but l’amélioration ou de la justesse des prédictions, en ajoutant des nouveaux effets, ou du contrôle sur
les incertitudes des calcules théoriques.

Entre tous les incertitudes théoriques, un rôle prédominant est occupé par le problème de l’estimation
des contributions des corrections perturbatives qui ne sont pas calculées, qui usuellement sont appelées
“Missing Higher Order Uncertainty” (MHOU). Traditionnellement, ces incertitudes ont été estimées
par la variation des échelles non-physiques, qui sont présentes dans le résultat, autour de leurs valeurs cen-
trales. En fait, il y a plusieurs prescriptions pour cette procédure, mais toutes sont basées sur des conven-
tions arbitraires et ne donnent pas une interprétation statistique aux intervalles qu’elles produisent. Avec
M.Cacciari (LPTHE), A.Guffanti et L.Jenniches (Institut N.Bohr w Copenhagen), nous avons étudié
l’extension du modèle Bayésien de Cacciari-Houdeau (CH) aux observables hadroniques, avec le but de
fournir des prédictions pour les incertitudes des observables du LHC en général et en particulier pour
celles du boson de Higgs. Le modèle CH cherche w fixer les défauts de la procédure standard d’évaluation
de MHOU, la variation d’échelle. Ce modèle est basé sur une approche totalement différente, avec la
quelle le comportement de la série perturbative est compris dans le contexte de la probabilité Bayésien.
L’avantage de ce système est la cohérence de la formulation théorique et le fait qu’il produise un intervalle
d’incertitude qui a une interprétation statistique en termes de Degré de Confiance (DdC) et qui peut être
directement inséré dans la machine que les physiciens expérimentaux utilisent pour analyser les données

175



176 Plan de la thèse

du LHC. Comme corollaire, on a aussi retravaillé l’application de ce modèle w les observables sans hadrons
dans l’état initial, qui ont le champ de définition originaire.

À cause de l’importance de la physique du boson de Higgs au LHC, il est de première importance
d’avoir des prédictions précises et le contrôle sur les incertitudes pour les observables du Higgs qui sont
mesurées au LHC. J’ai suivi deux lignes de recherche. La premier a été l’étude des incertitudes théoriques
de la section efficace totale pour la production du Higgs en fusion de gluons et en annihilation de bot-
tom quarks dans le “Minimal Supersymmetric Standard Model” (MSSM). Il s’agit non seulement des
MHOUs mais aussi des incertitudes PDF+αs , choix de l’échelle de renormalisation pour le Yukawa du
bottom et le domaine de validité des approximations utilisées dans le calcul des corrections supersymé-
triques. Ce travail a été réalisé en collaboration avec R. Harlander (U. Wuppertal), S. Liebler (U. Ham-
burg), H. Mantler (CERN), P. Slavich (LPTHE) et A. Vicini (U. Milano) et il a récemment mené w une
publication dans le Journal de Physique des Hautes Énergies [1].

Depuis quelques années, avec G. Degrassi (U. Roma 3), P. Slavich et A. Vicini, j’ai étudié la production
du boson de Higgs dans le processus de fusion de gluons, dans le cadre du POWHEG-BOX , avec une atten-
tion particulière au problème de l’inclusion des amplitudes complètes pour le top et le bottom quark, et
d’étudier leurs effets sur le calcul de l’impulsion transverse du Higgs. La méthode POWHEG fournit une
recette systématique pour obtenir la mise en correspondance d’un calcul NLO avec un Parton Shower
(PS). Ces calculs unifiés sont extrêmement importants pour simuler correctement et de façon réaliste les
processus physiques dans un collisionneur, avec la possibilité d’imposer de manière flexible les réductions
d’acceptation expérimental et d’avoir, w la fin, une comparaison raisonnable entre les données et les prédic-
tions théoriques. Notre contribution a été très appréciée par les collaborations expérimentales de ATLAS
et CMS, qui utilisent maintenant notre logiciel dans la cadre des leurs analyses. En outre, il a créé un riche
débat dans la communauté et a conduit w plusieurs réunions entre théoriciens et expérimentateurs sur
la question. Le travail a été fait originairement pour le MS et pour le Higgs léger des MSSM et a été pu-
blié dans [2]. Il a ensuite été étendu au Higgs lourd et au pseudoscalaire du MSSM [3, 4] et du “Two
Higgs Doublet Model” (2HDM). La totalité du code est librement disponible dans le répertoire SVN
du POWHEG-BOX . Plus récemment, j’ai étudié avec Alessandro Vicini la question des incertitudes liées w
la procédure de correspondance NLO+PS dans le calcul de cette observable [5].

Au cours de mes études doctorales j’ai également participé au calcul des corrections de seuil dans les
modèles de “split-SUSY” et “high-scale SUSY”, mais ces travaux n’apparaissent pas dans cette thèse. L’idée
w la base de split-SUSY est que l’échelle de masse m̃ des superpartenaires scalaires des MS est beaucoup
plus élevée que l’échelle électrofaible. Les superpartenaires qui restent w l’échelle électrofaible sont les
higgsinos et les gauginos. En “high-scale SUSY”, ces derniers sont aussi censés être w la grande échelle m̃.
Pour bien étudier ces théories et leurs prédictions w l’échelle EW, il est nécessaire de définir une théorie
efficace dans laquelle les particules lourdes ont été intégrées. Ceci et l’utilisation des méthodes du groupe
de renormalisation, permettent de resommer correctement les grands logarithmes du rapport de m̃ sur
l’échelle électrofaible, qu’autrement gycheraient la précision de la prédiction. Ce calcul technique fait par-
tie d’une étude de la prédiction de la masse du Higgs dans ces modèles. La masse du Higgs peut en effet
être utilisé comme un proxy pour obtenir une estimation de l’échelle de masse m̃ et donc effectuer une
étude phénoménologique de ces deux modèles. Le travail a été effectué en collaboration avec G. Giudice
(CERN), P. Slavich (LPTHE) et A. Strumia (U. Pisa) [6]. Comme préparation complémentaire j’ai aussi
fait un stage de trois mois chez Wolfram Research, w Champaign (Illinois, États-Unis), au cours du lequel
j’ai écrit une implémentation de haut niveau des fonctions de Mathieu dans Mathematica.
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1 LE MODÈLE CH ET L’APPROCHE BAYÉS IEN À

L’ EST IMAT ION DES MHOUS

L phénoménologie de précision visée par le programme de physique du LHC nécessite de la précision
pas seulement dans les mesures expérimentales mais aussi dans les prédictions théoriques. Une fois

que la précision devient élevée, et les incertitudes expérimentales et théoriques sont similaires, il devient
important d’être en mesure d’évaluer quantitativement l’importance des termes perturbatifs d’ordre su-
périeur qui ne sont pas disponibles dans les calculs.

Dans les calculs de QCD, que nous prenons comme modèle ici compte tenu de leur importance dans
la physique au LHC, l’incertitude théorique en raison des ordres supérieurs manquants est généralement
estimée en faisant varier les échelles non-physiques, celle de renormalisation et celle de factorisation, qui
apparaissent dans le calcul. Cette approche a bien servi la communauté de QCD pendant plus de trente
ans, et doit toujours être considérée comme le moyen le plus efficace pour estimer rapidement cette in-
certitude. Elle souffre toutefois de quelques inconvénients. Parmi ceux-ci, par exemple, le fait que les
intervalles d’incertitudes que cette approche produit ne peuvent pas être caractérisés statistiquement et
ne peuvent donc pas être combinés de façon significative avec, par exemple, les profils de vraisemblance
d’autres incertitudes, par exemple d’origine expérimentale.

M. Cacciari et N. Houdeau essayèrent dans [1], pour surmonter cette limitation, d’estimer les MHOUs
dans un cadre bayésien, de manière w obtenir un profil de densité de probabilité statistiquement signifi-
cative de l’intervalle d’incertitude. L’approche Cacciari-Houdeau conduit w un modèle (dénoté CH) qui
repose sur des lois a priori simples qui, w leur base, essaient d’imiter des hypothèses qui sont tout de même
implicitement fait quand on utilise la méthode de variation des échelles.

Le but de cette étude est double. D’une part, nous voulons revoir le modèle de CH, et proposer une
version légèrement modifiée (que nous noterons CH) qui change une partie de la simplicité du modèle
CH original pour une meilleure adaptabilité w une large classe d’observables, notamment ceux relatifs
aux processus avec des hadrons dans l’état initial. Aussi nous voulons étudier les résultats de la variation
d’échelle et de CH sur un grand nombre d’observables perturbatifs, afin d’être en mesure d’évaluer leur
performance dans une manière (fréquentiste) statistiquement significative. Pour l’approche de la varia-
tion de l’échelle, cela signifie que on peut tenter de caractériser ses intervalles d’incertitude a posteriori,
en termes d’un certain niveau de confiance. Pour l’approche bayésienne avec le modèle CH cette étude
permettra de tester si le Degré de Confiance (DdC) que CH renvoie pour les intervalles d’incertitude est
correct ou, le cas échéant, d’estimer le paramètre d’expansion approprié qui assure que ce sera le cas.
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182 Lemodèle CH et l’approche Bayésien à l’estimation desMHOUs

Figure 65 – Graphique de la distribution a posteriori pour le ∆2 dans le modèle CH, pour un jouet observable avec
c̄k = 1 et αs = 0, 1 comme indiqué dans [1]. La courbe rouge est le rapprochement analytique de
l’eq. (211) tandis que la courbe noire représente le résultat exact.

1.1 Lemodèle CH et ses développements

L’approche de Cacciari et Houdeau [1] est un modèle de probabilité bayésienne récemment introduit
pour calculer les MHOUs. Il est basé sur diverses hypothèses sur le comportement des coefficients d’une
série de la forme

Ok(Q,Q) =

k
∑

n=l

αn
s (Q)cn(Q,Q) ≡

k
∑

n=l

αn
s cn , (210)

pour une observable perturbative qui commence w l’ordre l de αs et il est connu jusqu’w l’ordre k. Les
échelles non physiques ont été mis w la valeur centraleQ, et nous avons également défini implicitement
αs ≡ αs(Q) et cn ≡ cn(Q,Q).

Le modèle postule comme hypothèse de base que tous les coefficients perturbatifs ont des magnitudes
similaires. Cela peut être quantitativement traduit dans la déclaration que tous les coefficients perturbatifs
cn partagent une limite supérieure w leur valeur absolue que nous noterons c̄. Ceci et d’autres hypothèses
sont codés dans les distributions a priori spécifiques du modèle, et dans le choix du paramètre d’expansion,
pris soit αs, et permettent de déterminer un profil de densité d’incertitude (le distribution a posteriori
du modèle) en fonction de la taille du reste inconnu de la série ∆k ≡

∑∞
n=k+1 α

n
s cn.

Si le paramètre de développement de la série est suffisamment faible, on peut supposer que le reste est
dominée par le premier ordre inconnu, c’est w dire ∆k ≃ αk+1

s ck+1. Ensuite, la distribution a posteriori
du modèle pour ∆k peut être calculé analytiquement et exprimé sous une forme simple

f(∆k|cl, . . . , ck) ≃
(

nc

nc + 1

)
1

2αk+1
s c̄(k)











1 if |∆k|⩽ α
k+1
s c̄(k)

(
αk+1

s c̄(k)

|∆k|

)nc+1

if |∆k|> α
k+1
s c̄(k)

, (211)

où c̄(k) ≡ max(|cl|, · · · , |ck|) et nc = k− l + 1 est le nombre de coefficients perturbatifs connus. De
eq. (211) et de la figure 65il est possible d’apprécier les caractéristiques de la distribution a posteriori pour
ce modèle : un plateau central avec des queues supprimées avec une loi w puissance. L’existence d’une telle
distribution de densité de probabilité pour l’intervalle d’incertitude représente la principale différence
avec la procédure de variation d’échelle, qui donne seulement un intervalle sans un profil de crédibilité.
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Dans la même approximation, ∆k ≃ αk+1
s ck+1, on peut aussi calculer le plus petit intervalle de

crédibilité pour ∆k avec un DdC égal w p% (où p% ≡ p/100 et p ∈ [0, 100]), c’est w dire tel que
∆k devrait être contenue w l’intérieur de l’intervalle [−d

(p)
k , d

(p)
k ] avec p% crédibilité :

d
(p)
k =











αk+1
s c̄(k)

nc+1
nc
p% if p% ⩽ nc

nc+1

αk+1
s c̄(k) [(nc + 1)(1 − p%)]

(−1/nc) if p% > nc

nc+1

. (212)

1.1.1 Lemodèle de Cacciari-Houdeaumodifiée (CH )

Le modèle de CH décrit ci-dessus repose sur une forme spécifique de la développement perturbatif, voire
eq. (210). En conséquence, son estimation de l’incertitude n’est pas invariant par changement du para-
mètre d’expansion, αs → αs/λ.

Une autre question connexe est que, comme on a vu dans la section précédente, le modèle suppose que
le paramètre d’expansion est tel que tous les coefficients perturbatifs cn sont du même ordre O(c1) ≃
O(cl+1) ≃ · · ·. A priori cela ne pouvait être le cas pour la simple expansion de αs.

Des tentatives ont été faites pour reformuler le modèle afin de résoudre ces deux problèmes. Enfin,
aucune d’entre elle était satisfaisante, dans la mesure où elles nécessitaient nécessaire la formulation des
hypothèses trop restrictives.

Nous avons finalement utilisé w la place une version légèrement modifiée du modèle de CH. Dans le
modèle modifié, désormais notée CH , on récrit le développement perturbatif sous la forme

Ok =

k
∑

n=l

αn
s

λn
(n− 1)!

λncn

(n− 1)!
≡

k
∑

n=l

(αs

λ

)n
(n− 1)! bn , (213)

avec
bn ≡ λncn

(n− 1)!
, (214)

et on utilise les nouveaux coefficients bn pour les mêmes distributions a priori utilisées w l’origine pour
le cn . Cela conduit w un profil de densité de probabilité pour l’incertitude

f(∆k|bl, . . . , bk) ≃
(

nc

nc + 1

)
1

2k! (αs/λ)k+1b̄k











1 if |∆k|⩽ k!
(
αs

λ

)k+1
b̄k

(
k!(αs/λ)k+1b̄k

|∆k|

)nc+1

if |∆k|> k!
(
αs

λ

)k+1
b̄k

,

(215)
et w l’intervalle de crédibilité

d
(p)
k =











k!
(
αs

λ

)k+1
b̄k

nc+1
nc
p% if p% ⩽ nc

nc+1

k! (αs

λ )k+1b̄k [(nc + 1)(1 − p%)]
(−1/nc) if p% > nc

nc+1

. (216)

Le facteur (n− 1)! , qui représente la principale modification par rapport au modèle CH original ,
peut être justifié par le fait qu’il devrait apparaître dans les ordres supérieurs des calculs perturbatifs, par
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exemple ceux dans le limite de gros-β0 et dans le cadre de renormalons [2–5].
Le facteur λ est libre et doit être déterminé a posteriori. Le meilleur choix pour déterminer λ peut être

de le faire empiriquement, en observant la façon dont le modèle s’accomplit en décrivant les incertitudes
des observables qui sont connus w un ordre perturbatif au-delw où nous utilisons le modèle. Nous allons
voir que la valeur optimale s’avère λ ≃ 1 pour observables qui n’impliquent pas hadrons dans l’état
initial, tandis qu’une valeur de λ ≃ 0, 6 est favorisée dans les processus avec des hadrons initiaux. Cette
méthode de détermination λ (plus détaillé ci-dessous) apporte évidemment une certaine contamination
fréquentiste dans l’approche bayésienne. Nous considérons cet inconvénient acceptable au stade actuel,
mais nous notons que l’on pourrait améliorer le modèle par l’introduction d’une distribution a priori
pour la valeur de λ et d’éviter ainsi la contamination fréquentiste. L’étude fréquentiste de λ effectuée
dans ce travail peut alors éventuellement être utilisée comme un guide pour la formulation d’une telle
distribution a priori.

1.1.2 Extension dumodèleCH à observables avec des hadrons dans l’état initial

Le modèle de CH original a été formulé pour les observables non-hadroniques 1. Ce n’est pas une tyche
facile de l’étendre w des observables avec hadrons dans l’état   initial (observables hadroniques).

Une observable hadronique générique (par exemple une section efficace totale) peut être écrit comme
une intégrale de convolution

Ok(τ,Q) =

∫ 1

τ

dz

z
L
(τ
z
,Q
) k
∑

n=l

αn
s Cn(z,Q) ≡ L(Q) ⊗

k
∑

n=l

αn
s Cn(Q) , (217)

où L est la luminosité parton-parton, cn(Q) est la fonction du coefficient de diffusion dure, τ est une
variable d’échelle hadronique appropriée etQ est l’échelle d’énergie caractéristique du processus. Toutes
les échelles de renormalisation et factorisation non physiques sont choisies être égal w Q, comme dans
le cas de non-hadronique, et elles ne sont pas explicitement indiquées. Dans eq. (217) les fonctions des
coefficients perturbatifs cn sont des distributions, et non de simples nombres, comme les coefficients cn
des observables non hadronique. Cela signifie qu’il n’est pas possible d’appliquer directement la méthode
CH décrit dans la section 1.1.1 pour les observables hadroniques de la forme (217).

On peut surmonter ce problème de deux manières :

i) Une première approche consiste w exprimer la section hadronique comme une série dont les co-
efficients incluent la convolution avec la luminosité partonique, c’est w dire que l’on peut réécrire
l’équation (217) sous la forme

Ok(τ,Q) = L(Q) ⊗
k
∑

n=l

αn
s Cn(Q) ≡

k
∑

n=l

(
αs

λh

)n

(n− 1)! Hn(τ,Q) , (218)

où on a définit
Hn(τ,Q) ≡ λnh

(n− 1)!
L(Q) ⊗Cn(Q) . (219)

1 Par “observables non-hadroniques”, nous entendons observables sans hadrons dans l’état initial et donc dépourvus de la dé-
pendance sur l’échelle de factorisation.
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On procède ensuite comme dans le cas des observables non-hadronique, w l’application des distri-
bution a priori bayésiens aux les coefficients Hn. Dans la pratique, on est en supposant que la
physique non-perturbative contenue dans la luminosité partonique met de l’ordre par ordre w peu
près la même contribution, ou, plus généralement, que sa présence ne gyte pas les hypothèses du
modèle. Ceci est censé également vrai de les contributions perturbatives qui viennent de évolution
DGLAP. Dans nos études, w tenir compte de ces hypothèses, nous utilisons toujours les mêmes
PDF w toutes les ordres. Cette approche a également été adoptée dans un certain nombre des ar-
ticles qui ont fait usage du modèle de CH d’origine, par exemple, [6, 7].

Notez que dans l’équation (218), nous avons introduit un paramètre λh qui est potentiellement
différent de λ employé dans l’expansion des observables non-hadronique.

ii) Une deuxième approche consiste w traduire l’observable w l’espace de Mellin, et écrire

Ok(N,Q) = L(N + 1)

k
∑

n=l

(
αs

λh

)n

(n− 1)! Bn(N,Q) , (220)

où
Bn(N,Q) ≡ λnh

(n− 1)!

∫ 1

0

dx xN−1Cn(x,Q) , (221)

est la transformation de Mellin de la fonction de coefficient courte distance CN, avec les mêmes
facteurs habituels adoptés dans le modèle CH , et L(N + 1) est la transformation de Mellin du
flux partonique On observe alors que, s’il peut être démontrer que l’inversion de la transforma-
tion de Mellin est dominée par un seul moment de MellinN∗, on peut simplement appliquer les
mêmes distributions w priori de l’approche CH aux numéros Bn(N∗,Q) et trouver l’incertitude
pertinente, qui peut ensuite être transportée vers le résultat complet avec un facteur multiplicatif
de manière appropriée.

Cette approche est viable, car on peut montrer que, au moins dans certains cas (voir par exemple
[8, 9]) un tel moment Mellin dominante existe et donne une bonne approximation du résultat
complet ou au moins des k-factors.

La principale limitation de cette procédure, qui a priori serait préférable w la première car elle
ne contamine pas les coefficients qui sont utilisés par le modèle bayésien avec la physique non-
perturbative, est qu’elle repose fortement pas seulement sur   la prédominance d’un seul moment
de Mellin, mais aussi sur l’existence d’un canal de production dominant w toutes les ordres (par
exemple la fusion de gluons et de gluons dans la production de Higgs au LHC). Si ce n’est pas le
cas, la nécessité de faire la moyenne pondérée entre les différents moments de Mellin dominantes,
dans les différents canaux, va réintroduire la contamination de la physique non-perturbative.

Une seconde limitation pratique est que les résultats perturbatifs sont rarement disponibles dans
l’espace de Mellin dans les codes publics.
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1.2 Résultats

Dans cette section, nous essayons d’évaluer la qualité de la procédure de variations de l’échelle et du mo-
dèle CH par l’étude de leurs performances comme estimateurs de la MHOUs lorsqu’il sont appliqués w
un ensemble d’observables. Pour chaque observable dans l’ensemble, nous considérons deux quantités :

i) la taille de l’incertitude prédite w un ordre perturbatif donné n par l’approche w l’étude ;

ii) le résultat perturbatif connu pour la même observable w l’ordre n + 1.

Pour chacun des observables nous calculons les taux de réussite global de la méthode en question, c’est
w dire la fraction d’observables, pour lesquels le résultat w l’ordre perturbatif n + 1 tombe effectivement
dans l’intervalle d’incertitude prédit par le modèle w l’ordre n.

Dans le cas du modèle bayésien nous répétons l’analyse décrite ci-dessus pour différentes valeurs de λ
et DdC. Cela nous permet de dériver la valeur optimale de λ w utiliser dans le modèle CH , qui est défini
comme la valeur de λ pour laquelle le modèle a un taux de réussite global qui est le plus proche du DdC
demandé, pour chaque DdC possible.

Dans le cas de la méthode de variation de l’échelle, on fait varier le facteur d’échelle r. Puisque cette
méthode ne donne pas des intervalles d’incertitude statistiquement significatifs, nous ne pouvons pas
déterminer une valeur optimale de r w partir de cette analyse, comme c’est le cas de λ dans l’approche
bayésienne. Plutôt, nous pouvons attribuer un niveau de confiance heuristique (dénotée par l’anglais
CL), a posteriori, aux intervalles d’incertitude pour chaque r.

1.2.1 Analyse globale

On a fait l’analyse des performances de la procédure de variation d’échelles et du modèle CH sur la liste
d’observables définis en appendis A w page 141. Les résultats sont reportés en figures 66 et 67 pour la
variation d’échelles non-hadronique et hadronique respectivement. Dans le graphique de gauche de la
figure 66 on a fait varier l’échelle de renormalisation dans l’intervalle [Q/r, rQ] et on a pris la valeur
maximale et minimale. Dans le graphique de droite on a pris simplement la valeur maximale ou minimale
de l’observable évaluée a µr = {Q,Q/r, rQ}. L’analyse w été faite au LO e au NLO. On peux voir qu’au
LO le valeur de r qui correspond w 68% CL est plutôt proche de 4 que la valeur usuel de 2. À NLO cette
valeur se réduit w la tranche de 2.5 − 3. On peux aussi dénoter que faire la scan dans l’intervalle donne
des CLs plus hauts pour de valeur de r > 3.5 que prendre simplement les valeurs extrêmes.

L’analyse hadronique a été faite en prenant seulement les valeur extrêmes. On a fait l’analyse en utili-
sant la même NNLO PDF w tous les ordres ou en prenant la PDF correspondante pour chaque ordre.
Les PDFs utilisées sont produites par la collaboration NNPDF. On a utilisé les version 2.3 pour la PDF
NNLO et NLO, et la 2.1 pour la PDF LO (il n’y a pas de version 2.3 pour la PDF LO disponible). Aussi
dans le cas hadronique, on peux voir que la variation d’échelles w LO est pas du tout fiable, comme at-
tendu. On peux aussi voir que le 68% CL est obtenu pour des valeurs de r plus hautes que le valeur usuel
de 2. En fait, on a besoin de r entre 3− 4 si on utilise la PDF NNLO w tous les ordre, ou de r entre 4− 5

si on change la PDF w chaque ordre.
Dans les figures 68 et 69 on présente les résultats de l’analyse du modèle CH . On utilise deux types

de graphiques. Le premier est un histogramme qui est construit dans la façon suivant : on prendre un
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intervalle des valeurs de DdC, entre 0.05 et 0.95, et pour chaque DdC on détermine le meilleur valeur
de λ, c’est w dire la valeur pour laquelle le DdC est égal au taux de succès. Le deuxième est un graphique
qui montre le taux de succès en fonction du DdC demandé, pour des valeurs différentes de λ. On a fait
l’analyse pour le cas non-hadronique et le cas hadronique. On voit que la meilleure estimation pour λ est
λ ≃ 1 dans le premier cas et λh ≃ 0.6 pour le deuxième.
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Figure 66 – Fraction des observables contenus dans la bande d’erreur pour la variation d’échelle entre µR = Q/r

et µR = rQ ; en prenant les valeurs aux extrêmes de l’intervalle de variation (gauche), en prenant le
maximum ou le minimum obtenu par le scan de l’intervalle de variation (droite).
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Figure 67 – Variation d’échelles pour les processus avec hadrons dans l’état initial : NNLO PDF w tous les ordres
(gauche), ordre-synchronisé PDF (droite). Les combinaisons comme µR = rQ, µF = Q/r ne sont pas
inclus.
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Figure 68 – Étude non-hadronique : comparaison entre le DdC et le taux de succès pour déterminer la meilleure
estimation de λ. À gauche, histogramme de λ obtenu avec un scan de DdC. À droite, graphique du taux
de succès vs le DdC pour six valeurs de λ.
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Figure 69 – Étude hadronique : comparaison entre le DdC et le taux de succès pour déterminer la meilleure estima-
tion de λ. À gauche, histogramme de λ obtenu avec un scan de DdC. À droite, graphique du taux de
succès vs le DdC pour six valeurs de λ.
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1.2.2 Exemples des processus

Dans cette section on présente comment le modèle CH fonctionne dans le cas de deux observables qui
sont particulièrement importantes.

Le première est la production de hadrons dans des collisions de e+ et e−, une des observables plus
bien connues des collisionneurs leptoniques. Dans figure 70 on montre les barres d’erreur calculées par
le modèle CH et par la procédure de variation de l’échelle. On peut voir que l’intervalle bayésien corres-
pondant au 68% DdC est plutôt comparable w l’intervalle r = 4 qu’w l’intervalle standard correspondant
au r = 2. Ce-ci n’est pas surprenant, en fait l’analyse globale a montrée que, pour la procédure de la varia-
tion de l’échelle, le 68% CL correspond w des valeurs de r dans la tranche 2.5 − 3 w NLO. En figure 71,
on montre la distribution a posteriori du modèle CH . On peux voir que l’intervalle correspondant w la
variation d’échelle r = 2 est toujours contenu dans le plateau de la distribution.

On montre les mêmes donnés pour un observable hadronique. On a choisi la production de Higgs
en fusion des gluons pour sa importance au LHC. Dans les figure 72 et figure 73 sont montrées les barre
d’erreur et la distribution a posteriori pour ∆k du modèle w chaque ordre. On peut voir que dans ce cas,
en raison de la mauvaise convergence de la série perturbative, la dimension des barres d’erreur ne rétrécit
pas tandis que les ordres augmentent.
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Figure 71 – Distribution a posteriori calculée par le modèle Bayésien pour ∆k =
∑∞

n=k+1 α
n
s cn (ligne bleu), in-

tervalle 68% DdC (zone bleu), intervalle 95% DdC (zone bleu clair), intervalle de la variation d’échelle
(rouge solide), pour la production des hadrons dans les collisions de e+ et e−.
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Figure 72 – Barres d’erreur w LO, NLO et NNLO pour CH avec λh = 0.6, comparées avec la prédiction obtenue
avec la procédure de variation d’échelle, pour la production du Higgs en fusion des gluons.
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Figure 73 – Distribution a posteriori calculée par le modèle Bayésien pour ∆k =
∑∞

n=k+1 α
n
s cn (ligne bleu), in-

tervalle 68% DdC (zone bleu), intervalle 95% DdC (zone bleu clair), intervalle de la variation d’échelle
(rouge solide), pour la production du Higgs en fusion des gluons.
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1.3 Conclusions

Maintenant que nous rentrons dans l’ère de la physique de précision au LHC, il sera extrêmement impor-
tant de n’avoir pas seulement un contrôle qualitatif mais aussi un contrôle quantitatif sur les incertitudes,
expérimentales et théoriques. En ce qui concerne le premier point, la communauté des expérimentateurs
porte la responsabilité de les évaluer. Concernant le seconde et mettant l’accent sur les incertitudes pro-
venant des corrections d’ordre supérieur qui ne sont pas calculées (et qui sont l’objet de notre étude), la
communauté théorique a compté pour les 20 dernières années sur une recette heuristique, w savoir la
méthode échelle de variation. Toutefois, cette procédure n’est pas construite sur des fondements théo-
riques solides et elle ne parvient pas w donner une définition statistique approfondie en terme de niveau
de confiance (CL) des intervalles qu’il fournit. Celui-ci est nécessaire pour interpréter correctement les
marges d’erreur et de combiner incertitudes d’origine différente. En outre, jusqu’w ce moment, il n’y avait
pas d’études spécialisées pour comprendre son comportement sur   un large ensemble d’observables.

La portée de ce travail était d’améliorer notre connaissance du problème en effectuant une enquête
complète de la prescription couramment utilisé (la variation d’échelle) et également par l’évaluation de
la performance d’une méthode beaucoup plus moderne, celle introduite récemment par Cacciari et Hou-
deau [1]. Comme sous-produit nous avons également créé une version modifiée de celui-ci, que nous
avons nommé CH . Nous avons également étendu les applications de la méthode CH aux observables
avec hadrons état   initial, qui n’était pas dans le domaine de définition original.

Par conséquent, nous avons produit la première enquête sur le comportement statistique de ces deux
méthodes. Tout d’abord, nous avons réalisé une étude sur un large ensemble d’observables, classés par leur
état initial étant avec ou sans hadrons. Ensuite, nous avons examiné en détail les résultats d’un ensemble
spécifique d’observables que nous avons jugé important du point de vue phénoménologique.

En ce qui concerne la procédure de variation de l’échelle, nous avons trouvé que le facteur de r = 2

habituellement utilisée pour déterminer l’incertitude, n’est pas associé avec un CL-heuristique de 68%

, mais avec une valeur inférieure. Cela est vrai pour les observables non-hadronique et, de façon plus
marquée, pour les observables hadroniques. Un facteur r de l’ordre de 3 − 4 est probablement un choix
plus conservateur dans les deux cas.

Relativement au modèle bayésienne CH , nous avons montré qu’il est capable de capturer le compor-
tement fondamental des observables non-hadroniques et hadroniques. Alors que la tendance générale de
la performance est bonne, il est probablement possible d’améliorer le modèle en limitant sa définition (et
le réglage) w des plus petites (et plus homogènes) classes d’observables. De plus, notre modification intro-
duit dans le modèle un nouvel paramètre libre,λ, qui doit être déterminé w l’aide d’une procédure externe.
En effet, nous avons utilisé une analyse fréquentiste de la performance du modèle pour le définir. Cepen-
dant, cela introduit une contamination fréquentiste dans le cadre bayésien qui devrait probablement être
évitée par souci de cohérence. Bien entendu, un potentiel de développement est le remplacement de la
détermination de λ a posteriori avec une distribution a priori ad-hoc, inclus directement dans le modèle,
dans le but de faire une marginalisation ultérieure sur elle lors du calcul de la distribution a posteriori de
l’intervalle d’incertitude. D’autres développements futurs incluent également l’extension aux observables
différentiels, ce qui est absolument nécessaire pour exploiter pleinement le potentiel phénoménologique
du modèle.

Notre conclusion est que, pour la variation de l’échelle, le coefficient couramment utilisé de r = 2 peut
souvent conduire w une sous-estimation de la vraie MHOU. En outre, le cadre bayésien nouvellement in-
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troduit par Cacciari et Houdeau, dans sa réalisation sous la forme du modèle de CH , offre une alternative
intéressante, que est capable de produire ce qui semble être une estimation réaliste des intervalles d’incer-
titude et, en même temps, une interprétation statistique précise en termes de crédibilité bayésien. À la
lumière des résultats, il peut être utilisé pour fournir l’estimation des incertitudes théoriques au côté de
la variation d’échelle.
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2 CARACTÉR I SAT ION DU BOSON DE HIGGS ET SES

INCERT ITUDES

L découverte d’une résonance scalaire de masse autour de 125.5 GeV par les expériences ATLAS et
CMS au Large Hadrons Collider (LHC) [10, 11] met un nouvel accent sur la nécessité de prédic-

tions théoriques précises pour les processus de production et pour les taux de désintégration du boson
de Higgs, w la fois dans le Modèle Standard (MS) et dans ses extensions plausibles comme le “Minimal
Supersymmetric Standard Model” (MSSM). Le rôle de ces résultats théoriques très précis est d’être w la
base des études en cours pour déterminer les propriétés de la résonance nouvellement découverte et de
tester sa compatibilité avec le boson de Higgs du MS. Dans le détail, la comparaison entre les mesures ex-
périmentales et les prédictions théoriques de la section efficace totale de production et des branchements
dans les différents canaux de désintégration serviront w apprécier si et avec quelle force le nouveau état se
couple aux fermions et aux bosons de jauge du MS. D’autres études visent la cinématique des produits de
désintégration pour essayer de distinguer entre les différents combinaisons de spin-parité. Enfin, d’autres
travaux seront nécessaires pour préciser la nature du potentiel scalaire en mesurant les couplages des bo-
sons de Higgs avec lui-même. L’état actuel de ces calculs est résumée dans les rapports de “Higgs Cross
Section Working Group” [12–14].

Comme nous l’avons déjw souligné dans la première partie de la thèse, un degré élevé de contrôle sur les
incertitudes théoriques est aussi important que le contrôle sur les résultats expérimentaux. Notre objectif
est donc de fournir un nouvel éclairage sur les incertitudes théoriques qui entrent dans les observables qui
sont actuellement w la base des analyses expérimentales du boson de Higgs. Nous utilisons les résultats et
les outils informatiques les plus récentes pour atteindre cet objectif.

Spécifiquement, nous allons w analyser deux observables qui sont relevant pour la caractérisation du
boson de Higgs au LHC. La première est la section efficace total pour la production des boson de Higgs
neutres w LHC. Les résultats sont présentés dans la section 2.1.

Un autre observable particulièrement important est l’impulsion transverse du boson de Higgs. Une
description correcte de cet observable a besoin d’utiliser une procédure de resommation des logarithmes
colineaires. Pour ce faire on utilise les générateurs d’événements Monte Carlo que nous avons développées
dans la cadre du POWHEG-BOX. La méthode POWHEG est une construction théorique-informatique
qui permet des faire la resommation des logarithmes colinéaires pour des calculs NLO en permettant leur
association au avec un logiciel Parton Shower (PS) Monte Carlo.

2.1 Production de bosons de Higgs dans de scénarios viables duMSSM

La découverte d’un scalaire léger avec une masse atour de 125.5 GeV met les études MSSM dans une
nouvelle perspective. Les scénarios MSSM ne doivent maintenant pas seulement éviter les limites sur
la production directe des particules supersymétriques mais aussi avoir une prédiction pour la masse du
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Scenario MS [GeV] Xt [GeV] µ [GeV] M2 [GeV]
mmax

h 1000 2000 200 200

mmod+
h 1000 1500 200 200

mmod−
h 1000 −1900 200 200

light stop 500 1000 400 400

light stau 1000 1600 500 200

tau-phobic 1500 3675 2000 200

Table 19 – Choix des paramétrés du MSSM pour les scénarios proposés en ref. [15].

Higgs correcte. Pour notre étude nous avons pris les scénarios publiés dans [15] et reportés en table 19.
Nous avons modifié le scénario “light stop” pour éviter l’exclusion expérimentale en raison des études de
recherche de production directe de stops et sbottoms en fixantM2 = µ = 400 GeV etM1 = 340 GeV.

Les processus de production que nous avons pris en considération sont la fusion de gluons et la pro-
duction en annihilation de bottom quarks. Nous avons étudié la section efficace total en utilisant le code
SusHi (qui comprend toutes les correction plus avancées disponibles) w LHC avec 8 TeV comme énergie
de centre de masse.

Les résultats de la section efficace totale pour le scénario light stop sont présentés dans la figure 74 pour
le scalaire léger et le scalaire lourd et dans la figure 75 pour le pseudoscalaire.

Le comportement qualitatif des sections dans les figures 74 et 75 peut être facilement w interprété
compte tenu des relations entre les masses de scalaires et la masse du pseudoscalaire dans le secteur de
Higgs du MSSM, et de la façon dont chacun des Higgs bosons se couplent aux quarks top et bottom (les
contributions de squark sont généralement sous-dominantes).

Par exemple, pour le scalaire léger, dans la limite de découplage,mA ≫ mZ, le scalaire plus léger ,h, a
des couplage aux quarks qui sont presque comme dans le MS, tandis que sa masse est essentiellement in-
dépendante demA et, pour tanβ >∼ 10, ne dépend que faiblement de   tanβ. La section efficace totale de
production pour h varie très peu dans cette région, et diffère du résultat du MS pour un boson de Higgs
de masse égale en raison des contributions des squarks au processus gluon-fusion. PourmA

<
∼ 130 GeV,

d’autre part, le couplage de h au quark top (bottom) n’est pas standard, puisque qu’il est est supprimées
(amélioré) par tanβ. Dans cette région étroite de la section totale de h la production est dominée par
les contributions des diagrammes qui impliquent le couplage Higgs-bottom quark, et il se développe de
manière significative avec tanβ.

On peux expliquer le comportement pourH etA de la même façon.
Même si ce n’est pas présenté dans ce résumé, nous avons aussi étudie l’importance du canal d’annihila-

tion de bottom en relation w la fusion de gluons et l’impact de particules supersymétriques sur la section
efficace.

2.1.1 Incertitudes théoriques de la section efficace

Pendant notre travaux nous avons étudié différentes sources d’incertitude :

• L’incertitude mesurées par la variation d’échelle, en fusion de gluon et annihilation des bottom
quarks. On a vu que la variation d’échelle de la fusion des gluon a un comportement non banal,
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qui dépend du la valeur précise des paramètres supersymétriques choisis (voir figure 76). Cela s’ex-
plique par le fait que la section efficace totale est la somme des contributions séparées qui sont
calculées w des ordres différentes (le top est w NNLO dans le limite mt → ∞ et exact w NLO,
le bottom est exact w NLO, les contributions supersymétriques sont exactes w LO, approximés w
NLO). Donc, selon la prédominance d’une contribution sur l’autre dans le planmA − tanβ, la
variation d’échelle est différente. Dans le cas de l’annihilation des bottom quarks, le comportement
est plus simple et est dépendant plus de la masse du Higgs que des paramètres supersymétriques.

• L’incertitude due w la définition du couplage de Yukawa du bottom quark dans le processus de
fusion des gluons. Nous avons montré qu’il y a un très grand différence si fait le calcul de la section
efficace total en utilisant la masse “on-shell” ou la masse MS. En fait il peut atteindre 60% dans les
régions où la section efficace est dominée par la contribution du bottom quark, même si on doit
rappeler que dans ces régions la contribution de la fusion des gluons est dominée par celle qui vient
de l’annihilation des bottom quarks.

• L’incertitude dans l’inclusion des corrections améliorées par tanβ. Nous avons étudié ces ambi-
guïtés en appliquant un facteur de test de 10% w la valeur utilisée par défaut.

• Les incertitudes qui dérivent des PDF et deαs. Ces incertitudes a été computées avec la procédure
standard de groupe PDF4LHC . Nous avons montré que elles sont plus grand lorsque la masse
du Higgs devient plus lourde. En plus, elle est la même que dans le MS.

• L’incertitude qui dérive de la dépendance de masse du bottom dans la PDF. Nous avons fait l’étude
en utilisant les PDF extraites avec différentes valeurs de la masse du bottom.

• L’incertitude qui vient de l’utilisation des approximations dans le calcul des corrections supersy-
métrique. Cette incertitude a été évaluée en utilisant un facteur de test. Nous avons vu qu’elle est
particulièrement importante pour le scalaire lourde dans la région gluophobique de l’espace des
paramètres MSSM, dans le scénario light stop.
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Figure 76 – Importance relative (en pourcentage) de la variation d’échelle pour la production de h (gauche) et H
(droite) dans le processus de fusion des gluons.

 10

 20

 30

 40

 50

 100  200  300  400  500

Scale uncertainty, light-stop scenario

ta
n
 β

mA [GeV]

30%

25% 25%

20%

15%

15%

10%

A

 10

 20

 30

 40

 50

 100  200  300  400  500

ta
n
 β

mA [GeV]

Figure 77 – Comme en figure 76 mais pour la production du pseudoscalaireA.
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2.2 L’impulsion transverse du boson deHiggs en fusion de gluons

Le boson de Higgs acquiert une dynamique transversalepT en raison de son recul contre le rayonnement
de la QCD. Dans la théorie des perturbations d’ordre fixe l’émission des bosons de jauge sans masse de
l’état initial donnent, dans la limite de colinéaires, une divergence logarithmique de la distribution en
impulsion transversale Higgs, signalant un défaut de l’approche perturbative, avec un paramètre de déve-
loppement efficace αs(pT ) log(pT/mH) ∼ 1 dans la région de l’espace des phases de disparition pT . La
resommation analytique w tous les ordres des termes αs(pT ) log (pT/mH))

n est réalisée en exploitant
les propriétés universelles du rayonnement de QCD dans la limite de colinéaires et rétablit un comporte-
ment physique acceptable (la suppression Sudakov) de la distribution d’impulsion transverse Higgs dans
la limite pT → 0.

On a étudié le calcul numérique de l’impulsion transverse dans la cadre du méthode POWHEG , avec les
générateurs des éventés que on a écrit dans le POWHEG-BOX . Nous avons prêté une attention spécifique
au problème de l’inclusion des masses du quarks, par rapport aux résultat dans le limitemt → ∞, dans
la cadre de la “Heavy Quark Effective Field Theory” (HQEFT). Nous avons déterminé les paramètres
optimaux pour calculer l’impulsion en respectant les propriétés de colinéarité de la QCD dans le SM, le
MSSM et le 2HDM.

2.2.1 Résultats

Nous avons utilisé le POWHEG-BOX pour étudier l’inclusion des amplitudes avec la dépendance complète
de masse du quark dans la fusion des gluons. Les résultat pour le MS avec la configuration de défaut de
POWHEG sont présentés dans les figures 46. On peut voir que l’inclusion du top quark modifie la distribu-
tion avec une suppression pour large pHT , tandis que l’inclusion du bottom quark a des effets aussi dans
la région de petit pHT . Dans la figure 47 on montre la différence entre POWHEG et MC@NLO . On peux voir
que les effets de masse du quark bottom sont plus marqués dans POWHEG . On peut montrer que la raison
est la structure particulière du facteur de forme de Sudakov en POWHEG et que si on utilise des échelles
de resommation égale la différence entre le deux se réduit très fortement.

Nous avons fait un étude similaire pour l’impulsion transverse dans le MSSM et dans le 2HDM. Le
choix des échelles dans ces deux modèles est encore plus important parce que le bottom quark joue un
rôle prédominant dans certaines régions de l’espace des paramètres.

2.3 Conclusions

Maintenant qu’un boson de Higgs avec des propriétés compatibles avec le MS a été découvert au LHC,
il sera très important de comparer ses propriétés mesurées avec nos attentes théoriques dans le but de
comprendre sa nature. Pour atteindre cet objectif, il est fondamental d’avoir un contrôle complet sur
les prédictions théoriques, en ayant des calculs très précis et une compréhension approfondie de leurs
incertitudes. Prenant en considération cette nécessité, nous nous sommes concentrés sur l’étude de deux
observables différents qui sont pertinents pour les études liées au boson de Higgs.

Au début, nous avons discuté les sections efficaces totales pour la production des bosons de Higgs
neutres des MSSM dans un ensemble de scénarios compatibles avec les résultats du LHC. Ces observables
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Figure 78 – Rapport des distributions de pHT normalisées dans le MS, avec le top et le bottom quark (bleu), seule-
ment le top (noir) sur la même distribution obtenue dans la limitemt → ∞ w NLO (au-sus) et après
le showering (au-sous).
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Figure 79 – Rapport des distributions de pHT normalisées dans le MS (top et bottom quarks) sur la même distribu-
tion dans l’HQEFT, calculé par MC@NLO (gauche) et POWHEG (droite), pour des valeurs différentes
de la masse du bottom quark (séminaire de S.Frixione).

sont entre les plus importants, car leurs valeurs sont indispensables pour afficher les limites d’exclusion
pour la production de Higgs supersymétrique, ou, dans le cas des résonances découvertes, de comprendre
si elles sont compatibles avec le MSSM.

Nous avons utilisé le code SusHi [16], qui met en œuvre les calculs les plus w jour pour la production
MSSM Higgs dans gluon fusion et w l’annihilation des quarks bottom, pour calculer les sections efficaces
totales. Nous avons observé que celles-ci peuvent être sensiblement différentes des prédictions du SM.
En effet, dans le MSSM l’importance de la contribution du top et de la contribution du bottom - et
leur poids relatif dans le résultat complet - peut être sensiblement différente du MS et peut conduire w
des résultats extrêmement différents dans certaines régions de l’espace des paramètres du MSSM. Nous
avons également constaté que, pour les scénarios avec des squarks relativement légers, la section efficace en
fusion de gluons peut être supprimée de manière significative en raison de la présence de superparticules
dans les boucles.

Ensuite, nous avons étudié les diverses incertitudes qui affectent la prédiction de la section efficace to-
tale. Certaines de ces incertitudes, notamment celles associées au choix des échelles de renormalisation et
factorisation, w la paramétrisation de PDF et w la valeur d’entrée pour la constante de couplage fort, sont
pertinentes également pour la production de la SM Higgs, bien que leur taille peut différer dans le cas de
la production de bosons de Higgs non standards. Au contraire, les incertitudes associées w la définition
de la masse et du couplage de Yukawa de quark bottom sont pratiquement négligeable dans le SM - où
la contribution du bottom quark ne s’élève qu’w quelques pour cents de la la section efficace totale - mais
il devient dominant dans les régions du espace des paramètres du MSSM où les couplages des bosons
de Higgs au bottom quark sont améliorés. Dans le cas particulier du scalaire lourd et de la production
du pseudoscalaire w grand tanβ, nous avons constaté que la variation du schéma de renormalisation et
de l’échelle de Yukawa du bottom peut supprimer la section gluon-fusion de plus de 60%, en raison de
la présence de grandes corrections QCD renforcée par les logarithmes du rapportm2

ϕ/m
2
b . Heureuse-

ment, dans ce cas, la section totale est dominée par la contribution qui vient de l’annihilation des bottom
quarks, qui est soumise w une incertitude d’échelle beaucoup plus petite. Enfin, nous avons étudié les in-
certitudes liées w notre mise en œuvre des contributions supersymétriques dans le processus de fusion des
gluons w NLO et, partiellement, w NNLO. A l’exception d’une région gluophobique dans le cas du scéna-
rio light stop, ces incertitudes sont généralement petites taille, ce qui reflète la nature sous-dominante des
contributions SUSY elles-mêmes pour des valeurs des masses compatibles avec les limites du LHC pour
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les squarks.
Puis nous avons tourné notre attention w l’autre observable désigné, la distribution d’impulsion trans-

verse du boson de Higgs dans la fusion de gluons. Il est important pour deux raisons : la prévision, dans
tous les modèles, est exigé par les expérimentateurs pour estimer l’acceptation de leurs détecteurs au pro-
cessus ; en outre, il représente une autre occasion de vérifier la compatibilité avec le SM.

Nous avons vu que le calcul de la distribution en impulsion transversale nécessite la resommation
de termes de la forme log(pt/mH). Ceci est généralement réalisé soit en effectuant une resommation
analytique de ces logarithmes ou en utilisant de Parton Shower Monte Carlo. Nous avons suivi cette
dernière option et nous avons utilisé nos implémentations (dans le SM, 2HDM et MSSM) du processus
de fusion des gluons dans le cadre de POWHEG-BOX .

Dans un premier temps, nous avons étudié les différences entre la prédiction complète SM et celle
obtenue dans la limite demt → ∞. Nous observons que, pour un boson de Higgs avec une masse de 125

GeV , l’inclusion des effets des quarks top et bottom dansPOWHEGproduit des distorsions caractéristiques
de la forme, avec une suppression dans la région de petit- et grand-pHT . La première distorsion est due ou
le terme d’interférence top-bottom tandis que la seconde est un effet purement du au top quark. Cette
distorsion est déjw présent w NLO et elle est renforcée par la structure spécifique du facteur de forme
de Sudakov utilisé en POWHEG . En effet, d’autres calculs comme celui dans le cadre de MC@NLO ou celui
analytique, montrent des effets réduits. D’autre part, pour un boson de Higgs de 500 GeV , seul le quark
top est pertinent et nous observons une suppression dans la queue w haut-pT de la distribution.

Ensuite, nous tournons w 2HDM de type II. Dans ce cas, les couplages des quarks peuvent être ré-
duits/améliorés par rapport au SM et nous nous attendons w un effet sur la distribution en impulsion
transverse. En effet on observe que, lorsque le couplage au bottom quark est renforcée, nous avons une
distribution plus douce (plus dure) pour un Higgs plus léger (lourd). Cette l’effet, en contradiction avec
le SM, est en raison de l’amplitude carré du bottom quark. D’autre part, si nous augmentons l’importance
du quark top, la forme de la distribution d’un Higgs léger est plus douce alors que le celui d’un Higgs
lourd est inchangée.

Nous avons également analysé le spectre du pT dans le scénario light stop du MSSM, pour le scalaire
léger, celui lourd et pour le pseudoscalaire. Notre point de l’espace des paramètres est caractérisé par un
couplage renforcé au bottom quark . Nous avons découvert que tous les spectres montrent une distorsion
de la distribution, en dehors de la normalisation. Pour h, nous avons une distorsion non négligeable de
la forme, avec la suppression w la fois la haute et basse-pT région et une amélioration central. PourH et
A on observe une distribution plus souple par rapport au SM.

Enfin, stimulée par les différences entre nos résultats, obtenus avec POWHEG , et ceux de MC@NLO et
des calculs analytiques, nous avons effectué une analyse détaillée de comprendre l’origine de ces diver-
gences. Nous avons trouvé qu’elle se trouve dans la définition différente du facteur de forme Sudakov et
de la manière dont les échelles de masse du processus de fusion de gluons sont comptabilisés, en parti-
culier celle du bottom quark. Nous avons mis le correspondant de la recette présentée dans [16],   où les
échelles de resommation distincts sont utilisés pour la contribution du top et la contribution du bottom,
dans POWHEG , en utilisant une analyse indépendante basée sur l’étude des amplitudes d’hélicité pour le
processus gg→ Hg afin de déterminer les valeurs des échelles. Nous avons constaté que notre prescrip-
tion POWHEG produit des résultats en très bon accord avec l’une des ref. [16], pour un Higgs du MS avec
mH = 125 GeV. Nous avons également étendu cette prescription w une Higgs lourd avec mH = 500

GeV et nous avons également étudié brièvement comment le choix des échelles affecte la distribution
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dans le 2HDM, dans le cas où le couplage au bottom quark est renforcée.
Bien que ces dernières années la précision des prédictions théoriques se soit constamment améliorée,

de nombreux développements sont encore possibles dans le domaine de la physique du précision du bo-
son de Higgs. En ce qui concerne le SM, des calculs approximatifs w N3LO dans le HQEFT commencent
w apparaître et ils semblent indiquer une augmentation très importante par rapport au résultat NNLO.
En ce qui concerne le MSSM, la resommation des corrections QCD renforcée par ln(m2

ϕ/m
2
b), ana-

logue w celle effectuée dans la référence [17] pour la désintégration du boson de Higgs en deux photons,
il sera nécessaire de réduire la grande incertitude dans la production de bosons de Higgs non standard
via gluon fusion (d’ailleurs, ce calcul serait bénéfique pour tous les modèles avec un couplage améliorée,
qu’ils soient supersymétrique ou non). La mise en œuvre des résultats existants pour les contributions
w deux boucles w ∆b [18], w la fois dans la masse du Higgs et de la section efficace, permettra également
de réduire l’incertitude dans les scénarios où les contributions de bottom sont pertinentes. En outre, il
pourrait être utile d’ améliorer le calcul de la section efficace gluon-fusion en prenant en compte de la
dépendance complète de la masse du Higgs dans les diagrammes squark-gluon w deux boucles 1 contri-
butions [21–23] - pour couvrir les scénarios dans lesquels les bosons de Higgs non standards sont plus
lourds que la troisième génération squarks - et en incluant les effets w trois-boucles [24, 25].

1 Et les contributions à deux boucles de quark-squark-gluino [19, 20], dès qu’ils seront disponibles
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