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ABSTRACT
In this paper, we propose two algorithms to solve a large
class of linear inverse problems when the observations are
corrupted by various types of noises. A proper data fidelity
term (log-likelihood) is introduced to reflect the statistics of
the noise (e.g. Gaussian, Poisson, multiplicative, etc.) inde-
pendently of the degradation operator. On the other hand,
the regularization is constructed through different terms re-
flecting a priori knowledge on the images. Piecing together
the data fidelity and the prior terms, the solution to the
inverse problem is cast as the minimization of a composite
non-smooth convex objective functional. We establish the
well-posedness of the optimization problem, characterize the
corresponding minimizers for different kind of noises. Then
we solve it by means of primal and primal-dual proximal
splitting algorithms originating from the field of non-smooth
convex optimization theory. Experimental results on decon-
volution, inpainting and denoising with some comparison to
prior methods are also reported.

Keywords
Inverse Problems, Poisson noise, Gaussian noise, Multiplica-
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1. INTRODUCTION
Previous work A lot of works have already been dedicated
to linear inverse problems with Gaussian noise (see [16] for
a comprehensive review), while linear inverse problems in
presence of other kind of noise such as Poisson noise have
attracted less interest, presumably because noises properties
are more complicated to handle. Such inverse problems have
however important applications in imaging such as restora-
tion (e.g. deconvolution in medical and astronomical imag-
ing), or reconstruction (e.g. computerized tomography).

Since the work for Gaussian noise by [9], many other meth-
ods have appeared for managing linear inverse problem with
sparsity regularization. But they limited to the Gaussian

case. In the context of Poisson linear inverse problems using
sparsity-promoting regularization, a few recent algorithms
have been proposed. For example, [11] stabilize the noise
and proposed a family of nested schemes relying upon prox-
imal splitting algorithms (Forward-Backward and Douglas-
Rachford) to solve the corresponding optimization problem.
The work of [4] is in the same vein. These methods may be
extended to other kind of noise. However, nested algorithms
are time-consuming since they necessitate to sub-iterate.
Using the augmented Lagrangian method with the alter-
nating method of multipliers algorithm (ADMM), which is
nothing but the Douglas-Rachford splitting applied to the
Fenchel-Rockafellar dual problem, [13] presented a deconvo-
lution algorithm with TV and sparsity regularization, and [1]
a denoising algorithm for multiplicative noise. This scheme
however necessitates to solve a least-square problem which
can be done explicitly only in some cases.

Contributions In this paper, we propose a framework for
solving linear inverse problems when the observations are
corrupted by various types of noise. In order to form the
data fidelity term, we take the exact likelihood associated
to the noise model. As a prior, the images are assumed
to comply with several regularity properties or/and con-
straints reflecting knowledge about the original image. The
solution to the inverse problem is cast as the minimization
of a composite non-smooth convex functional, for which we
prove well-posedness of the optimization problem, character-
ize the corresponding minimizers, and solve them by means
of primal and primal-dual proximal splitting algorithms orig-
inating from the realm of non-smooth convex optimization
theory. Convergence of the algorithms is also shown. Ex-
perimental results and comparison to other algorithms on
deconvolution are finally conducted.

Notation and terminology Let H a real Hilbert space,
here a finite dimensional vector subspace of R

n. We denote
by ‖.‖ the norm associated with the inner product in H,
and I is the identity operator on H. ‖.‖p , p ≥ 1 is the ℓp
norm. x and α are respectively reordered vectors of image
samples and transform coefficients. We denote by ri C the
relative interior of a convex set C. A real-valued function f
is coercive, if lim‖x‖→+∞ f (x) = +∞, and is proper if its
domain is non-empty dom f = {x ∈ H | f(x) < +∞} 6=
∅. Γ0(H) is the class of all proper lower semicontinuous
(lsc) convex functions from H to (−∞,+∞]. We denote

by |||M||| = maxx6=0
‖Mx‖
‖x‖

the spectral norm of the linear

operator M, and ker(M) := {x ∈ H : Mx = 0, x 6= 0} its



kernel.

Let x ∈ H be a n-pixels image. x can be written as the
superposition of elementary atoms ϕγ parameterized by γ ∈
I such that x =

P

γ∈I αγϕγ = Φα, |I| = L, L > n. We

denote by Φ : H′ → H the dictionary (typically a frame of
H), whose columns are the atoms all normalized to a unit
ℓ2-norm

2. PROBLEM STATEMENT
Consider the image formation model where an input image
of n pixels x is indirectly observed through the action of a
bounded linear operator H : H → K, with K a real Hilbert
space (usually a subspace of R

m, m > 0), and contaminated
by a noise ε through a composition operator ⊙ (e.g. addi-
tion),

y ∼ Hx⊙ ε . (1)

The linear inverse problem at hand is to reconstruct x from
the observed image y.

A natural way to attack this problem would be to adopt a
maximum a posteriori (MAP) bayesian framework with an
appropriate likelihood function — the distribution of the ob-
served data y given an original x — reflecting the statistics
of the noise. As a prior, the image is supposed to be eco-
nomically (sparsely) represented in a pre-chosen dictionary
Φ as measured by a sparsity-promoting penalty Ψ supposed
throughout to be convex but non-smooth, e.g. the ℓ1 norm.

2.1 Gaussian noise case
For Gaussian noise, we consider the following formation model,

y = Hx+ ε , (2)

where ε ∼ N (0, σ2).

>From the probability density function, the negative log-
likelihood writes:

fGaussian : η ∈ H 7→ ‖η − y‖2
2 /(2σ

2) . (3)

>From this function, we can directly derive the following
result,

Proposition 1. fGaussian is a proper, strictly convex and
lsc function.

2.2 Poisson noise case
The observed image is then a discrete collection of counts
y = (y[i])16i6n which are bounded, i.e. y ∈ ℓ∞. Each
count y[i] is a realization of an independent Poisson random
variable with a mean (Hx)i. Formally, this writes in a vector
form as

y ∼ P(Hx) . (4)

>From the probability density function of a Poisson random
variable, the likelihood writes:

p(y|x) =
Y

i

((Hx)[i])y[i] exp (−(Hx)[i])

y[i]!
. (5)

Taking the negative log-likelihood, we arrive at the following
data fidelity term:

fPoisson : η ∈ H 7→
nX

i=1

fp(η[i]), (6)

if y[i] > 0, fp(η[i]) =


−y[i] log(η[i]) + η[i] if η[i] > 0,
+∞ otherwise,

if y[i] = 0, fp(η[i]) =


η[i] if η[i] ∈ [0,+∞),
+∞ otherwise.

Using classical results from convex theory, we can show that,

Proposition 2. fPoisson is a proper, convex and lsc func-
tion. fPoisson is strictly convex if and only if ∀i ∈ {1, . . . , n},
y[i] 6= 0.

2.3 Multiplicative noise
We consider here the same context of multiplicative as in [1].
With multiplicative noise, a usual approach to improve the
signal to noise ratio consists in averaging independent obser-
vation of the same resolution. When considering SAR/SAS
system, this method is called multilook, i.e. M -look in the
case of the averaging of M images. For fully developed
speckle, the averaged images are Gamma distributed,

y = xε, ε ∼ Γ(M, 1/M) . (7)

In order to simplify the problem, the logarithm of the ob-
servation is considered,

log(y) = log(x) + log(ε) = z + ω . (8)

And in [1], the authors proof that the anti log-likelihood
yields,

fMulti : η ∈ H 7→M

nX

i=1

(z[i] + exp(log(y[i]) − z[i]) . (9)

Using classical results from convex theory, we can directly
derive,

Proposition 3. fMulti is a proper, strictly convex and lsc
function.

2.4 Optimization problem
Our aim is then to solve the following optimization prob-
lems, under a synthesis-type sparsity prior1 where H′ is the
Hilbert space defined by the dictionary,

argmin
α∈H′

J(α),

J : α 7→ f1 ◦ H ◦ Φ(α) +

KX

i=1

Ri(α) .
(Pf1,γ,ψ)

The data fidelity term f1 reflect the noise statistics and the
Ri, 1 6 i 6 K the K prior terms. In this paper, we restrict
to the case K = 2, with K1 = Ψ, the penalty function Ψ :
α 7→

PL
i=0 ψi(α[i]) which is positive, additive, and chosen

1Our framework and algorithms extend to an analysis-type
prior just as well.



to enforce sparsity, γ > 0 is a regularization parameter and
K2 = ıC ◦ Φ the indicator function of the convex set C (e.g.
the positive orthant for Poissonian data).

For the rest of the paper, we assume that f1 is a proper, con-
vex and lsc function, i.e. f1 ∈ Γ0(H). This is true for many
kind of noises including Poisson, Gaussian, Laplacian. . . (see
[3] for others examples).

>From the objective in (Pf1,γ,ψ), we get the following,

Proposition 4.

(i) f1 is a convex functions and so are f1◦H and f1◦H◦Φ.
(ii) Suppose that f1 is strictly convex, then f1 ◦ H ◦ Φ re-

mains strictly convex if Φ is an orthobasis and ker(H) =
∅.

(iii) Suppose that (0,+∞) ∩ H ([0,+∞)) 6= ∅. Then J ∈
Γ0(H).

2.5 Well-posedness of (Pf1,γ,ψ)
Let M be the set of minimizers of problem (Pf1,γ,ψ). Sup-
pose that Ψ is coercive. Thus J is coercive. Therefore, the
following holds:

Proposition 5.

(i) Existence: (Pf1,γ,ψ) has at least one solution, i.e. M 6=
∅.

(ii) Uniqueness: (Pf1,γ,ψ) has a unique solution if Ψ is
strictly convex, or under (ii) of Proposition 4.

3. ITERATIVE MINIMIZATION

ALGORITHMS
3.1 Proximal calculus
We are now ready to describe the proximal splitting algo-
rithms to solve (Pf1,γ,ψ). At the heart of the splitting frame-
work is the notion of proximity operator.

Definition 6 ([14]). Let F ∈ Γ0(H). Then, for every
x ∈ H, the function y 7→ F (y) + ‖x− y‖2

2 /2 achieves its
infimum at a unique point denoted by proxF x. The operator
proxF : H → H thus defined is the proximity operator of F .

Then, the proximity operator of the indicator function of a
convex set is merely its orthogonal projector. One important
property of this operator is the separability property:

Lemma 7 ([7]).
Let Fk ∈ Γ0(H), k ∈ {1, · · · ,K} and let G : (xk)16k6K 7→
P

k Fk(xk). Then proxG = (proxFk
)16k6K .

For Gaussian noise, we can easily prove that with f1 as de-
fined in (3),

Lemma 8. Let y be the observation, the proximity op-
erator associated to fGaussian (i.e. the Gaussian anti log-
likelihood) is,

proxβfGaussian
x =

βy + σ2x

β + σ2
. (10)

The following result can be proved easily by solving the prox-
imal optimization problem in Definition 6 with f1 as defined
in (6), see also [5].

Lemma 9. Let y be the count map (i.e. the observa-
tions), the proximity operator associated to fPoisson (i.e. the
Poisson anti log-likelihood) is,

proxβfPoisson
x =

 

x[i] − β +
p

(x[i] − β)2 + 4βy[i]

2

!

16i6n

.

(11)

As with multiplicative noise fMulti involves the exponential,
we need the W-Lambert function [8] in order to derive a
closed form of the proximity operator,

Lemma 10. Let y be the observations, the proximity op-
erator associated to fMulti is,

proxβfMulti
x =

`
x[i] − βM−

W (−βM exp(x[i] − log(y[i]) − βM))
´

16i6n
,

(12)

where W is the W-Lambert function, i.e. the function such
that W(a) exp(W(a)) = a, a ∈ R.

We now turn to proxγΨ which is given by Lemma 7 and the
following result:

Theorem 11 ([12]). Suppose that ∀ i: (i) ψi is convex
even-symmetric, non-negative and non-decreasing on R

+,
and ψi(0) = 0; (ii) ψi is twice differentiable on R \{0}; (iii)
ψi is continuous on R, and admits a positive right derivative

at zero ψ
′

i+(0) = limh→0+
ψi(h)
h

> 0. Then, the proximity
operator proxδψi

(β) = α̂(β) has exactly one continuous so-
lution decoupled in each coordinate β[i] :

α̂[i] =

(

0 if |β[i]| 6 δψ
′

i+(0)

βi − δψ
′

i(α̂[i]) if |β[i]| > δψ
′

i+(0)
(13)

Among the most popular penalty functions ψi satisfying the
above requirements, we have ψi(α[i]) = |α[i]| , ∀ i, in which
case the associated proximity operator is soft-thresholding,
denoted ST in the sequel.

3.2 Splitting on the primal problem

3.2.1 Splitting for sums of convex functions
Suppose that the objective to be minimized can be expressed
as the sum of K functions in Γ0(H), verifying domain qual-
ification conditions:

argmin
x∈H

 

F (x) =
KX

k=1

Fk(x)

!

. (14)

Proximal splitting methods for solving (14) are iterative al-
gorithms which may evaluate the individual proximity oper-
ators proxFk

, supposed to have an explicit convenient struc-
ture, but never proximity operators of sums of the Fk.



Splitting algorithms have an extensive literature since the
1970’s, where the case K = 2 predominates. Usually, split-
ting algorithms handling K > 2 have either explicitly or
implicitly relied on reduction of (18) to the case K = 2 in
the product space HK . For instance, applying the Douglas-
Rachford splitting to the reduced form produces Spingarn’s
method, which performs independent proximal steps on each
Fk, and then computes the next iterate by essentially aver-
aging the individual proximity operators. The scheme de-
scribed in [6] is very similar in spirit to Spingarn’s method,
with some refinements.

3.2.2 Application to noisy inverse problems
Problem (Pf1,γ,ψ) is amenable to the form (14), by wisely
introducing auxiliary variables. As (Pf1,γ,ψ) involves two
linear operators (Φ and H), we need two of them, that we
define as x1 = Φα and x2 = Hx1. The idea is to get rid
of the composition of Φ and H. Let the two linear opera-
tors L1 = [I 0 − Φ] and L2 = [−H I 0]. Then, the
optimization problem (Pf1,γ,ψ) can be equivalently written:

argmin
(x1,x2,α)∈H×K×H′

f1(x2) + ıC(x1) + γΨ(α)
| {z }

G(x1,x2,α)

+ (15)

ıkerL1
(x1, x2, α) + ıkerL2

(x1, x2, α) , (16)

where ıkerLi
are the indicatrice function of the kernel space

of the operator Li, in others words these two indicatrice
functions will enforce the equality constraints x1 = Φα and
x2 = Hx1. Notice that in our case K = 3 by virtue of
separability of the proximity operator of G in x1, x2 and α;
see Lemma 7.

Algorithm 1: Primal scheme for solving (Pf1,γ,ψ).

Parameters: The observed image y, the dictionary Φ,
number of iterations Niter, µ > 0 and regularization
parameter γ > 0.
Initialization:
∀i ∈ {1, 2, 3}, p(0,i) = (0, 0, 0)T. z0 = (0, 0, 0)T.
Main iteration:
For t = 0 to Niter − 1,

• Data fidelity (Lemmas 8, 9 and 10):
ξ(t,1)[1] = proxµf1/3(p(t,1)[1]).

• Sparsity-penalty (Lemma 11):
ξ(t,1)[2] = proxµγΨ/3(p(t,1)[2]).

• Positivity constraint: ξ(t,1)[3] = PC(p(t,1)[3]).
• Auxiliary constraints with L1 and L2: (Lemma 12):
ξ(t,2) = PkerL1

(p(t,2)), ξ(t,3) = PkerL2
(p(t,3)).

• Average the proximity operators:
ξt = (ξ(t,1) + ξ(t,2) + ξ(t,3))/3.

• Choose θt ∈]0, 2[.
• Update the components:

∀i ∈ {1, 2, 3}, p(t+1,i) = p(t,i) + θt(2ξt − zt − ξ(t,i)).
• Update the coefficients estimate:
zt+1 = zt + θt(ξt − zt).

End main iteration
Output: Reconstructed image x⋆ = zNiter

[0].

The proximity operators of f1 and Ψ are easily accessible
through Lemmas 8, 9, 10 and 11. The projector onto C
is trivial for most of the case (e.g. positive orthant, closed

interval). It remains now to compute the projector on kerLi,
i = 1, 2, which by well-known linear algebra arguments, is
obtained from the projector onto the image of L∗

i .

Lemma 12. The proximity operator associated to ıkerLi

is

PkerLi
= I − L∗

i (Li ◦ L∗
i )

−1Li . (17)

The inverse in the expression of PkerL1
is (I+Φ◦ΦT)−1 can

be computed efficiently when Φ is a tight frame. Similarly,
for L2, the inverse writes (I+H◦H∗)−1, and its computation
can be done in the domain where H is diagonal; e.g. Fourier
for convolution or pixel domain for mask.

Finally, the main steps of our primal scheme are summarized
in Algorithm 1. Its convergence is a corollary of [6][Theo-
rem 3.4].

Proposition 13. Let (zt)t∈N be a sequence generated by
Algorithm 1. Suppose that Proposition 4-(iii) is verified, and
P

t∈N
θt(2 − θt) = +∞. Then (zt)t∈N converges to a (non-

strict) global minimizer of (Pf1,γ,ψ).

3.2.3 Splitting on the dual: Primal-dual algorithm
Our problem (Pf1,γ,ψ) can also be rewritten in the form,

argmin
α∈H′

F ◦ K(α) + γΨ(α) (18)

where now K =

„
H ◦ Φ

Φ

«

and F : (x1, x2) 7→ f1(x1) +

ıC(x2). Again, one may notice that the proximity operator
of F can be directly computed using the separability in x1

and x2.

Recently, a primal-dual scheme, which turns to be a pre-
conditioned version of ADMM, to minimize objectives of the
form (18) was proposed in [2]. Transposed to our setting,
this scheme gives the steps summarized in Algorithm 2.

Adapting the arguments of [2], convergence of the sequence
(αt)t∈N generated by Algorithm 2 is ensured.

Proposition 14. Suppose that Proposition 4-(iii) holds.
Let ζ = |||Φ|||2 (1 + |||H|||2), choose τ > 0 and σ such that
στζ < 1, and let (αt)t∈R as defined by Algorithm 2. Then,
(α)t∈N converges to a (non-strict) global minimizer (Pf1,γ,ψ)
at the rate O(1/t) on the restricted duality gap.

3.3 Discussion
Algorithm 1 and 2 share some similarities, but exhibit also
important differences. For instance, the primal-dual algo-
rithm enjoys a convergence rate that is not known for the
primal algorithm. Furthermore, the latter necessitates two
operator inversions that can only be done efficiently for some
Φ and H, while the former involves only application of these
linear operators and their adjoints. Consequently, Algo-
rithm 2 can virtually handle any inverse problem with a
bounded linear H. In case where the inverses can be done
efficiently, e.g. deconvolution with a tight frame, both algo-
rithms have comparable computational burden. In general,



if other regularizations/constraints are imposed on the solu-
tion, in the form of additional proper lsc convex terms that
would appear in (Pf1,γ,ψ), both algorithms still apply by
introducing wisely chosen auxiliary variables.

Algorithm 2: Primal-dual scheme for solving (Pf1,γ,ψ).

Parameters: The observed image y, the dictionary Φ,
number of iterations Niter, proximal steps σ > 0 and τ > 0,
and regularization parameter γ > 0.
Initialization:
α0 = ᾱ0 = 0 ξ0 = η0 = 0.
Main iteration:
For t = 0 to Niter − 1,

• Data fidelity (Lemmas 8, 9 and 10):
ξt+1 = (I − σ proxf1/σ)(ξt/σ + H ◦ Φᾱt).

• Positivity constraint: ηt+1 = (I − σPC)(ηt/σ + Φᾱt).
• Sparsity-penalty (Lemma 11):

αt+1 = proxτγΨ
`
αt − τΦT (H∗ξt+1 + ηt+1)

´
.

• Update the coefficients estimate: ᾱt+1 = 2αt+1 − αt

End main iteration
Output: Reconstructed image x⋆ = ΦαNiter

.

4. EXPERIMENTAL RESULTS

4.1 Deconvolution under Poisson noise
Our algorithms were applied to deconvolution. In all ex-
periments, Ψ was the ℓ1-norm. Table 1 summarizes the
mean absolute error (MAE) and the execution times for
an astronomical image, where the dictionary consisted of
the wavelet transform (here the translation-invariant discret
wavelet transform which form a tight frame and so is a re-
dundant transform) and the PSF was that of the Hubble
telescope. Our algorithms were compared to state-of-the-
art alternatives in the literature. In summary, flexibility of
our framework and the fact that Poisson noise was handled
properly, demonstrate the capabilities of our approach, and
allow our algorithms to compare very favorably with other
competitors. The computational burden of our approaches
is also among the lowest, typically faster than the PIDAL
algorithm [13]. Fig. 1 displays the objective as a function of
the iteration number and times (in s). We can clearly see
that Algorithm 2 converges faster than Algorithm 1.

RL-MRS [15] RL-TV [10] StabG [11] PIDAL-FS [13]
MAE 63.5 52.8 43 43.6
Times 230s 4.3s 311s 342s

Alg. 1 Alg. 2
MAE 46 43.6
Times 183s 154s

Table 1: MAE and execution times for the deconvo-
lution of the sky image.

4.2 Inpainting with Gaussian noise
We also applied our algorithms to inpainting with Gaussian
noise. In all experiments, Ψ was the ℓ1-norm. Fig 2 sum-
marizes the results with the PSNR and the execution times
for the Cameraman, where the dictionary consisted of the
same wavelet transform as used for deconvolution and the
mask was create from a random process (here with about
34% of missing pixels). Notice that both algorithms leads
to the same solution which gives a good reconstruction of
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Figure 1: Objective function for deconvolution un-
der Poisson noise in function of iterations (left) and
times (right).

the image. Fig. 3 displays the objective as a function of the
iteration number and times (in s). Again, we can clearly see
that Algorithm 2 converges faster than Algorithm 1.

Original Masked and noisy (PSNR = 11.1)

Alg. 1 (PSNR = 25.8) Alg. 2 (PSNR = 25.8)

Figure 2: Inpainting results for the Cameraman us-
ing our two algorithms.

4.3 Denoising with Multiplicative noise
As imply by (8), the final estimate for each algorithm is
given by taking the exponential of the result. In all exper-
iments, Ψ was the ℓ1-norm. The Barbara image was set to
a maximal intensity of 30 and the minimal to a non-zero
value in order to avoid issues with the logarithm. The noise
was added using M = 10 which leads to a medium level of
noise. Fig 4 summarizes the results with the MAE and the
execution times for Barbara, where the dictionary consisted
of the curvelets transform. The difference between the vi-
sual results of the two algorithms can be explain be the fact
we did not stop at the convergence, but instead stop after
one thousand iterations. Our methods give correct recon-
struction of the image. Fig. 5 displays the objective as a
function of the iteration number and times (in s). Again,
we can clearly see that Algorithm 2 converges faster than
Algorithm 1.

5. CONCLUSION
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Figure 3: Objective function for inpainting with
Gaussian noise in function of iterations (left) and
times (right).

Original Masked and noisy (MAE = 3.6)

Alg. 1 (MAE = 3.2) Alg. 2 (MAE = 2.3)

Figure 4: Denoising results for Barbara using our
two algorithms.

In this paper, we proposed two provably convergent algo-
rithms for solving the linear inverse problems with a sparsity
prior. The primal-dual proximal splitting algorithm seems
to perform better in terms of convergence speed than the pri-
mal one. Moreover, its computational burden is lower than
most comparable of state-of-art methods. Inverse problems
with multiplicative noise does not enter currently in this
framework, we will consider its adaptation to such problems
in future work.
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