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Abstract

The paper reminds the basic ideas of stochastic calculus via regularizations in Ba-

nach spaces and its applications to the study of strict solutions of Kolmogorov path

dependent equations associated with “windows” of diffusion processes. One makes the

link between the Banach space approach and the so called functional stochastic calcu-

lus. When no strict solutions are available one describes the notion of strong-viscosity

solution which alternative (in infinite dimension) to the classical notion of viscosity

solution.
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1 Introduction

The present work is a survey (with some new considerations) of recent results on stochas-

tic integration in Banach spaces, with applications to Kolmogorov path-dependent partial

differential equations (PDEs).

The extension of Itô stochastic integration theory for Hilbert valued processes dates

only of a few decades, the results of which can be found in the monographs [38, 13] and

[52] with different techniques. Extension to nuclear valued spaces is simpler and was done

in [35, 50]. One of the most natural but difficult situations arises when the processes are

Banach space valued. Big steps forward have been made for instance in [51] when the space

is of UMD type; on the other hand the separable Banach space C([−T, 0]) of continuous

functions η : [−T, 0] → R (endowed with the supremum norm ‖η‖∞ := supx∈[−T,0] |η(x)|)

is not UMD. This context appears naturally in the study of path-dependent stochastic

differential equations (SDEs), as for instance delay equations. An example of such an

equation is given by

dXt = σ(t,Xt(·))dWt, (1.1)

where W is a Brownian motion and σ : [0, T ] × C([−T, 0]) → R is continuous and with

linear growth. Given a continuous real valued process X, X(·), also indicated by X, will

denote the so called window process associated with X, i.e. Xt(x) := Xt+x, x ∈ [−T, 0].

Since X is a continuous process, the natural state space for X is C([−T, 0]). However,

also due to the difficulty of stochastic integration and calculus in that space, most of the

authors consider X as valued in some ad hoc Hilbert space H, for example given by the

direct sum of L2([−T, 0]) and R, see for instance [5]. To avoid this artificial formulation,

a stochastic calculus with C([−T, 0])-valued stochastic integrators is needed. However,

if X = W is a classical Brownian motion (therefore we take σ ≡ 1 in (1.1)), then the

corresponding Brownian window process X = X(·) has no natural quadratic variation in

the sense of Dinculeanu [21] or Métivier and Pellaumail [39], see Proposition 4.7 in [20].

That quadratic variation is a natural generalization of the one coming from the finite

dimensional case. If B is a separable Banach space and X is a B-valued process, the notion

of quadratic variation (called tensor quadratic variation) of a process X introduced by [21]

is a process [X,X] taking values in the projective tensor product B⊗̂πB, see Definition 3.2.

If B = R
d and X = (X1, . . . ,Xd), [X,X] corresponds to the matrix [Xi,Xj ]1≤i,j≤d. As

mentioned, even though the window Brownian motion does not have a quadratic variation

in that sense, it has a more general quadratic variation, known as χ-quadratic variation,

first introduced in [17] together with the stochastic calculus via regularizations in Banach

spaces, for which we also refer to [18, 20, 15, 16, 19]. The first part of the paper will

be devoted to the presentation of the main ideas and results of stochastic calculus via

regularizations in Banach spaces, and also to the study of its relation with functional Itô

calculus recently introduced by [22] and [6, 7].

As an application of this infinite dimensional calculus, we will present a robust repre-

sentation of a random variable. For illustration, let fix X to be a real continuous process

with finite quadratic variation [X]t = t, such that X0 = 0. Then that representation can

be seen as a robust Clark-Ocone formula. More precisely, let h be a random variable given
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by h = G(XT ) for some functional G : C([−T, 0]) → R. We look for a representation (when

it is possible) of h of the following type (we remind that
∫ T

0 Zsd
−Xs is the forward integral

via regularizations defined first in [45], which will be recalled in the next section)

G(XT ) = Y0 +

∫ T

0
Zsd

−Xs, (1.2)

which, for all 0 ≤ t ≤ T , can be written as

Yt = G(XT )−

∫ T

t

Zsd
−Xs, (1.3)

where the pair (Y,Z) = (Yt, Zt)t∈[0,T ] is required to be adapted to the canonical filtration of

X. The robust aspect is characterized by the fact that Y and Z are characterized in analytic

terms, i.e., through functions u, v : [0, T ]×C([−T, 0]) → R such that the representation (1.2)

becomes

G(XT ) = u(0,X0) +

∫ T

0
v(s,Xs)d

−Xs.

u and v only depend on the quadratic variation (volatility) of the process and it turns out

that they are related to the following infinite dimensional partial differential equation:

{
LU(t, η) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

U(T, η) = G(η), ∀ η ∈ C([−T, 0]),
(1.4)

where (we denote by D−t := {(x, x) : x ∈ [−t, 0]})

LU(t, η) = ∂tU(t, η) +

∫

]−t,0]
D⊥

dxU(t, η)d
−η(x) +

1

2

∫

D−t

D2
dx dyU(t+ x, η).

Equation (1.4) will be called Kolmogorov path-dependent PDEs. This is the same for all

(even non-semimartingale) processes X with the same quadratic variation [X]t = t. As a

consequence, this procedure provides a Clark-Ocone type representation formula for h which

is robust with respect to quadratic variation. In Chapter IV of [40] there is a characterization

of L as infinitesimal generator (in some weak sense) of the window process X, at least for a

subspace of the natural subspace that will be considered here. Indeed, the monograph [40]

by S.E.A. Mohammed constitutes an excellent early contribution to the theory of functional

dependent stochastic differential equations.

We shall also address the more general problem of characterizing analytically the pair

(Y,Z) solution to the following backward stochastic differential equation (here F : [0, T ] ×

C([−T, 0]) ×R× R → R is a given function)

Yt = G(XT ) +

∫ T

t

F (s,Xs, Ys, Zs)d[X]s −

∫ T

t

Zsd
−Xs,

which is a natural generalization of relation (1.3). Another interesting extension corre-

sponds to the case [X] =
∫ ·

0 σ
2(s,Xs)ds, for some function σ : [0, T ]× C([−T, 0]) → R.

The last part of the paper is devoted to study more in detail Kolmogorov path-dependent

PDEs of the form (1.4) and also of more general type, which naturally arise in stochas-

tic calculus via regularizations in Banach space. Even in the infinite dimensional case,
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Kolmogorov equations is a very active area of research between stochastic calculus and

the theory of partial differential equations. On this subject we refer to [2] and the ref-

erences therein, and also to [14] for processes taking values in separable Hilbert spaces,

to [29] for relations with stochastic control theory, to [27, 43] for applications to Navier-

Stokes equation, and to [12] for connections with infinite dimensional SDEs with irregular

drift. Recently, some interest was devoted to Kolmogorov equations related to Banach

space-valued processes, as for instance in [37, 3]. In the present paper we are interested in

Kolmogorov equations on the Banach space C([−T, 0]), so that the solution is a functional

defined on [0, T ] × C([−T, 0]). C([−T, 0]) is a natural state space when studying path-

dependent stochastic differential equations, as for instance delay equations (even though,

as already recalled, the choice of the space C([−T, 0]) is not usual in the literature, since it

is in general more convenient and simpler to work with an Hilbert state space).

We first consider strict solutions, namely smooth solutions, to Kolmogorov path-dependent

PDEs, for which we discuss uniqueness results which are also valid in the case that σ is

path-dependent. We recall existence results proved in [10] and in [16] in the prolongation

of [17]. Recently, a new approach for existence theorems of smooth solutions has been

described in [28]. Since, however, strict solutions require quite strong assumptions, we also

introduce a weaker notion of solution, called strong-viscosity solution, first introduced in

[10] (we also refer to [9] for some new results in this direction), for which we provide a

well-posedness result. A strong-viscosity solution is defined, in a few words, as the point-

wise limit of classical solutions to perturbed equations. This definition is similar in spirit

to the vanishing viscosity method, which represents one of the primitive ideas leading to

the conception of the modern definition of viscosity solution. This justifies the presence of

the term viscosity in the name of strong-viscosity solution together with the fact that, as

shown in Theorem 3.7 of [10], in the finite dimensional case we have an equivalence result

between the notion of strong-viscosity solution and that of viscosity solution.

The paper is organized as follows. In Section 2 we recall the notion of forward stochastic

integral via regularizations for real processes, together with the notion of covariation, and

we state the Itô formula; we end Section 2 with some results on deterministic calculus via

regularizations. Section 3 is devoted to the introduction of stochastic calculus via regu-

larizations in Banach spaces, with a particular attention to the case of window processes;

in Section 3 we also discuss a robust Clark-Ocone formula. Finally, in Section 4 we study

linear and semilinear Kolmogorov path-dependent equations, we introduce the notions of

strict and strong-viscosity solutions, and we investigate their well-posedness.

2 Stochastic calculus via regularizations

2.1 Generalities

Let T ∈]0,∞[ and consider a probability space (Ω,F ,P). We denote by C([−T, 0]) the

usual non-reflexive Banach space of continuous functions η : [−T, 0] → R endowed with

the supremum norm ‖η‖ := supx∈[−T,0] |η(x)|. Given a real-valued continuous stochastic

process X = (Xt)t∈[0,T ] on (Ω,F ,P), we extend it to all t ∈ R as follows: Xt = X0, ∀ t < 0,
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and Xt = XT , ∀ t > T . We then introduce the so-called window process X = X(·)

associated with X, which is a C([−T, 0])-valued stochastic process given by

Xt := {Xt+x, x ∈ [−T, 0]}, t ∈ R.

Stochastic calculus via regularizations in the finite dimensional framework has been

largely investigated in the two last decades. It was introduced in [44, 45] and then developed

in several papers (see [48] for a survey on the subject). In that calculus, the central object

is the forward integral. In the present context we will make us of a slightly more general

(improper) form.

Definition 2.1 Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] be two real-valued stochastic pro-

cesses on (Ω,F ,P), with X continuous and
∫ T

0 |Yt|dt < ∞ P-a.s.. Suppose that there exists

a real continuous process A = (At)t∈[0,T ] given by

At := lim
ε→0+

∫ t

0
Ys

Xs+ε −Xs

ε
ds, ∀ t ∈ [0, T [, (2.1)

where the convergence holds in probability.

(1) The process A will be said forward integral (process) of Y with respect to X

(on [0, T [) and it will be denoted by
∫ ·

0 Y d−X or
∫ ·

0 Ysd
−Xs.

(2) If the limit AT = limt→T− At holds P-a.s., then AT will be said (improper) forward

integral of Y with respect to X (on [0, T ]) and it will be denoted by
∫ T

0 Y d−X

or
∫ T

0 Ysd
−Xs.

(3) For completeness we also remind the (proper) forward integral of Y with respect

to X (on [0, T ]) as AT if, in addition to previous two items, we have

AT = lim
ε→0+

∫ T

0
Ys

Xs+ε −Xs

ε
ds,

where the convergence holds in probability.

Definition 2.2 If I is a real subinterval of [0, T ], we say that a family of processes (H
(ε)
t )t∈[0,T ]

converges to (Ht)t∈[0,T ] in the ucp sense on I, if supt∈I |H
(ε)
t −Ht| goes to 0 in probability,

as ε → 0+. If the interval I will not be mentioned it will be I = [0, T ].

Remark 2.1 If the limit (2.1) holds in the ucp sense on [0, T [ (resp. on [0, T ]), then the

forward integral
∫ ·

0 Y d−X of Y with respect to X exists on [0, T [ (resp. ([0, T ]).

We remind now the key notion of covariation. Let us suppose that Y , as X, is a

continuous process.

Definition 2.3 The covariation of X and Y (whenever it exists) is given by a contin-

uous process (denoted by [X,Y ]) such that

[X,Y ]t = lim
ε→0+

1

ε

∫ t

0
(Xs+ε −Xs)(Ys+ε − Ys)ds, (2.2)
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whenever the limit exists in probability for any t ∈ [0, T ].

If X = Y , X is called finite quadratic variation process and we denote [X] := [X,X].

If the convergence in (2.2) holds in the ucp sense then [X,Y ] exists. We remark that,

when X = Y , the convergence in probability of (2.2) for any t ∈ [0, T ] to [X,X] implies

that the convergence in (2.2) is also ucp, see Lemma 2.1 of [47].

Forward integral and covariation are generalizations of the classical Itô integral and the

covariation for semimartingales, as the following result shows (for a proof we refer, e.g., to

[48]). We fix a filtration F = (Ft)t∈[0,T ], FT ⊂ F , satisfying the usual conditions.

Proposition 2.1

(i) Consider two continuous F-semimartingales S1 and S2. Then, [S1, S2] coincides with

the standard bracket [S1, S2] = 〈M1,M2〉 (M1 and M2 denote the local martingale

parts of S1 and S2, respectively).

(ii) Consider a continuous F-semimartingale S and a càdlàg F-predictable stochastic pro-

cess Y , then the forward integral
∫ ·

0 Y d−S exists and equals the Itô integral
∫ ·

0 Y dS.

We finally provide Itô formula in the present finite dimensional setting of stochastic

calculus via regularizations, which extends the well-known result for semimartingales to

the case of finite quadratic variation processes (see Theorem 2.1 in [46] for a proof).

Theorem 2.1 (Itô formula) Let F ∈ C1,2 ([0, T ] × R;R) and consider a real-valued con-

tinuous stochastic process X = (Xt)t∈[0,T ] with finite quadratic variation. Then, P-a.s., we

have

F (t,Xt) = F (0,X0) +

∫ t

0
∂tF (s,Xs)ds +

∫ t

0
∂xF (s,Xs)d

−Xs (2.3)

+
1

2

∫ t

0
∂2
xxF (s,Xs)d[X]s,

for any 0 ≤ t ≤ T .

2.2 The deterministic calculus via regularizations

In the sequel, it will be useful to consider a particular case of finite dimensional stochastic

calculus via regularizations, namely the deterministic case which arises when Ω is a sin-

gleton. Let us first fix some useful notations. In this setting we make use of the definite

integral on an interval [a, b], where a < b are two real numbers (generally, a = −T or a = −t

and b = 0). We introduce the set M([a, b]) of finite signed Borel measures on [a, b]. We

also denote by BV ([a, b]) the set of càdlàg bounded variation functions on [a, b], which is a

Banach space when equipped with the norm

‖η‖BV ([a,b]) := |η(b)| + ‖η‖Var([a,b]), η ∈ BV ([a, b]),

where ‖η‖Var([a,b]) = |dη|([a, b]) and |dη| is the total variation measure associated to the

measure dη ∈ M([a, b]) generated by η: dη(]a, x]) = η(x)− η(a), x ∈ [a, b]. Every bounded
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variation function f : [a, b] → R is always suppose to be càdlàg. Moreover, for every function

f : [a, b] → R we will consider the following two extensions to the entire real line:

fJ(x) :=





f(b), x > b,

f(x), x ∈ [a, b],

f(a), x < a,

fJ(x) :=





f(b), x > b,

f(x), x ∈ [a, b],

0, x < a,

where J := ]a, b].

Definition 2.4 Let f : [a, b] → R be a càdlàg function and g : [a, b] → R be in L1([a, b]).

(i) Suppose that the following limit

∫

[a,b]
g(s)d−f(s) := lim

ε→0+

∫

R

gJ(s)
fJ(s+ ε)− fJ(s)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b] gd

−f and called

(deterministic) forward integral of g with respect to f (on [a, b]).

(ii) Suppose that the following limit

∫

[a,b]
g(s)d+f(s) := lim

ε→0+

∫

R

gJ(s)
fJ(s)− fJ(s− ε)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b] gd

+f and called

(deterministic) backward integral of g with respect to f (on [a, b]).

Definition 2.5 Let f : [a, b] → R be a càdlàg function and g : [a, b] → R be in L1([a, b]).

(i) Suppose that the following limit

∫

]a,b]
g(s)d−f(s) := lim

ε→0+

∫ b

a

gJ (s)
fJ(s+ ε)− fJ(s)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b] gd

−f and called

(deterministic) forward integral of g with respect to f (on ]a, b]).

(ii) Suppose that the following limit

∫

]a,b]
g(s)d+f(s) := lim

ε→0+

∫ b

a

gJ (s)
fJ(s)− fJ(s − ε)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b] gd

+f and called

(deterministic) backward integral of g with respect to f (on ]a, b]).

Notice that when the two deterministic integrals
∫
[a,b] gd

+f and
∫
]a,b] gd

+f exist, they

coincide.

Remark 2.2 (i) Let f ∈ BV ([a, b]) and g : [a, b] → R be a càdlàg function. Then, the

forward integral
∫
]a,b] gd

−f exists and is given by

∫

]a,b]
g(s)d−f(s) =

∫

]a,b]
g(s−)df(s),
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where the integral on the right-hand side denotes the classical Lebesgue-Stieltjes integral.

(ii) Let f ∈ BV ([a, b]) and g : [a, b] → R be a càdlàg function. Then, the backward integral∫
]a,b] gd

+f exists and is given by

∫

]a,b]
g(s)d+f(s) =

∫

[a,b]
g(s)df(s) =

∫

]a,b]
g(s)df(s) + g(a)f(a),

where the integral on the right-hand side denotes the classical Lebesgue-Stieltjes integral.

2

Let us now introduce the deterministic covariation.

Definition 2.6 Let f, g : [a, b] → R be continuous functions and suppose that 0 ∈ [a, b].

The (deterministic) covariation of f and g (on [a, b]) is defined by

[f, g] (x) = [g, f ] (x) = lim
ε→0+

1

ε

∫ x

0
(f(s+ ε)− f(s))(g(s + ε)− g(s))ds, x ∈ [a, b],

if the limit exists and it is finite for every x ∈ [a, b]. If f = g, we set [f ] := [f, f ] and it is

called quadratic variation of f (on [a, b]).

We denote by V 2 the set of continuous functions f : [−T, 0] → R having a deterministic

quadratic variation.

Finally, we shall need the following generalization of the deterministic integral when

the integrand g = g(ds) is a measure on [a, b] (when the measure g(ds) admits a density

with respect to the Lebesgue measure ds on [a, b], we retrieve the deterministic integral

introduced in Definition 2.5).

Definition 2.7 Let f : [a, b] → R be a càdlàg function and g ∈ M([a, b]).

(i) Suppose that the following limit
∫

]a,b]
g(ds)d−f(s) := lim

ε→0+

∫

[a,b]
g(ds)

fJ (s+ ε)− fJ(s)

ε
,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b] gd

−f and called

(deterministic) forward integral of g with respect to f (on ]a, b]).

(ii) Suppose that the following limit
∫

]a,b]
g(ds)d+f(s) := lim

ε→0+

∫

[a,b]
g(ds)

fJ (s)− fJ(s− ε)

ε
,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b] gd

+f and called

(deterministic) backward integral of g with respect to f (on ]a, b]).

Indeed, for the sequel, we need to reinforce previous notion.

Definition 2.8 1. We define the following set associated to η ∈ C([−T, 0])

Kη =
{
γ ∈ C([−T, 0]) : γ(x) = η(x− ε), x ∈ [−T, 0], ε ∈ [0, 1]

}
. (2.4)

We observe that Kη is a compact subset of C([−T, 0]).
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2. Let Γ ⊂ C([−T, 0]). Let G : [0, T ]×C([−T, 0]) → M([−T, 0]), G be weakly measurable

and bounded. We say that

I−(t, η) :=

∫

]−t,0]
Gdx(t, η)d

−η(x), t ∈ [0, T ], (2.5)

Γ-strongly exists if the following holds for any η ∈ Γ.

(i)
∫
]−t,0]Gdx(t, η)d

−η(x) exists for every t ∈ [0, T ].

(ii) Kη is a subset of Γ. For ε > 0, t ∈ [0, T ], we set I−(t, η, ε) :=
∫
[−t,0]Gdx(t, η)

η(x+ε)−η(x)
ε

dx.

We suppose that for any η ∈ Γ, there is Iη : [0, T ] → R, Lebesgue integrable with

respect to t ∈ [0, T ] and such that

|I−(t, γ, ε)| ≤ Iη(t), for all ε ∈ [0, 1], t ∈ [0, T [, and γ ∈ Kη. (2.6)

Typical choices of Γ are the following.

1. Γ = C([−T, 0]);

2. Γ = V 2;

3. Γ is the linear span of the support of the law of a process X.

Sufficient conditions and examples of strong existence of the integrals above are provided

in Section 7 of [15].

We conclude this section by a refinement of the notion of real finite quadratic variation

process. If Γ = V 2, a typical example of process X such that X(·) tales values in Γ is

for instance the a γ-Hölder continuous process with γ > 1
2 , typically a fractional Brownian

motion with Hurst index H > 1
2 . If X is a Brownian motion, then X(·) has also a pathwise

finite quadratic variation, see for instance [32]. Consequently, if X is the sum of a Wiener

process and a Hölder continuous process with index γ > 1
2 , X(·) takes values in V 2. A real

process X is said to be of pathwise finite quadratic variation if dP(ω)-a.s. η = X(ω)

belongs to V 2 Informally we can say that the trajectories of X have a.s. a 2-variation.

3 Stochastic calculus via regularizations in Banach spaces

3.1 General calculus

In this section we recall briefly basic notions of stochastic calculus for processes X with

values in a Banach space B and its application to window processes X = X(·), see [17, 20,

19] where those notions were introduced. A key ingredient of the stochastic calculus via

regularizations in Banach spaces is the notion of Chi-subspace χ, and related χ-covariation.

We recall that a Chi-subspace χ is a (continuously injected) subspace of (B⊗̂πB)∗, see

Definition 3.3 below.

We begin extending the notion of forward integral introduced in Section 2 for real-

valued stochastic processes to the Banach space case. Let B be a separable Banach space

equipped with its norm | · |. Given a B-valued continuous stochastic process X = (Xt)t∈[0,T ]

we extend it to all t ∈ R as follows: Xt = X0, ∀ t < 0, and Xt = XT , ∀ t > T .

9



Definition 3.1 Consider a B-valued stochastic process X = (Xt)t∈[0,T ] and a B∗-valued

stochastic process Y = (Yt)t∈[0,T ] on (Ω,F ,P), with X continuous and
∫ T

0 ‖Yt‖B∗dt < ∞

P-a.s. Suppose that there exists a real continuous process A = (At)t∈[0,T ] such that

At := lim
ε→0+

∫ t

0

∣∣∣
B∗

〈
Ys,

Xs+ε − Xs

ε

〉
B
ds, ∀ t ∈ [0, T [, (3.1)

where the convergence holds in probability. Then, the process A will be said forward

integral (process) of Y with respect to X (on [0, T [) and it will be denoted by∫ ·

0 B∗〈Ys, d
−
Xs〉B, or simply by

∫ ·

0 〈Ys, d
−
Xs〉 when the spaces B and B∗ are clear from

the context.

When B = R, given a continuous process X = (Xt)t∈[0,T ] and a P-a.s. integrable process

Y = (Yt)t∈[0,T ], we denote
∫ ·

0 R〈Y, d
−X〉R simply by

∫ ·

0 Y d−X, so we retrieve the forward

integral process of Y with respect to X on [0, T [ introduced in Definition 2.1(1).

Let us now introduce some useful facts about tensor products of Banach spaces.

Definition 3.2 Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two Banach spaces.

(i) We shall denote by E ⊗ F the algebraic tensor product of E and F , defined as the

set of elements of the form v =
∑n

i=1 ei ⊗ fi, for some positive integer n, where e ∈ E and

f ∈ F . The map ⊗ : E × F → E ⊗ F is bilinear.

(ii) We endow E ⊗ F with the projective norm π:

π(v) := inf

{ n∑

i=1

‖ei‖E‖fi‖F : v =

n∑

i=1

ei ⊗ fi

}
, ∀ v ∈ E ⊗ F.

(iii) We denote by E⊗̂πF the Banach space obtained as the completion of E ⊗ F for the

norm π. We shall refer to E⊗̂πF as the tensor product of the Banach spaces E and

F .

The definition below was given in [17].

Definition 3.3 Let E be a Banach space. A Banach subspace (χ, ‖ · ‖χ) continuously in-

jected into (E⊗̂πE)∗, i.e., ‖·‖χ ≥ ‖·‖(E⊗̂πE)∗, will be called a Chi-subspace (of (E⊗̂πE)∗).

As already mentioned, the notion of Chi-subspace plays a central role in the present

Banach space framework, as well as the notion of χ-quadratic variation associated to a

Chi-subspace χ, for which we refer to Section 3.2 in [20], and in particular to Definitions

3.8 and 3.9. If X is a process admitting χ-quadratic variation, then there exist two maps

[X] : χ → C ([0, T ]) and [̃X] : Ω× [0, T ] → χ∗ such that [X] is linear and continuous, [̃X] has

P-a.s. bounded variation and [̃X] is a version of [X].

We now present some results of this calculus to window processes, i.e., when B =

C([−T, 0]) and X = X(·) where Xt(x) = Xt+x, ∀x ∈ [−T, 0]. A first result about an

important integral appearing in the Itô formula, in relation with deterministic forward

integral via regularizations, is the following.
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Proposition 3.1 Let Γ ⊂ C([−T, 0]). Let X = X(·) be the window process associated with

a continuous process X = (Xt)t∈[0,T ] such that X ∈ Γ a.s. Let G be weakly bounded and

measurable. Suppose that the forward deterministic integral

I−(t, η) :=

∫

]−t,0]
Gdx(t, η)d

−η(x), ∀ t ∈ [0, T ],

Γ-strongly exists. Then

∫ t

0
〈G(s,Xs), d

−
Xs〉 =

∫ t

0
I−(s,Xs)ds. (3.2)

We will concentrate now on the Chi-subspace χ0
Diag, which is the following subspace of

C([−T, 0])⊗̂πC([−T, 0]).

χ0
Diag :=

{
µ ∈ M([−T, 0]2) : µ(dx, dy) = g1(x, y)dxdy + λδ0(dx)⊗ δ0(dy)

+ g2(x)dx⊗ δ0(dy) + δ0(dx)⊗ g3(y)dy + g4(x)δy(dx)⊗ dy,

g1 ∈ L2([−T, 0]2), g2, g3 ∈ L2([−T, 0]), g4 ∈ L∞([−T, 0]), λ ∈ R
}
.

In general, we refer to the term g4(x)δy(dx)⊗ dy as the diagonal component.

According to Sections 3 and 4 of [20], see also [16], one can calculate χ-quadratic

variations of a window process associated with a finite quadratic variation real process. In

particular, we have the following result.

Proposition 3.2 Let X be a real finite quadratic variation process and X = X(·) its as-

sociated window process. Then X = X(·) admits a χ0
Diag-quadratic variation which equals

(we denote by D−t := {(x, x) : x ∈ [−t, 0]})

[̃X]t(µ) = µ({(0, 0)})[X]t +

∫ 0

−t

g4(x)[X]t+xdx =

∫

D−t

dµ(x, y)[X]t+x, (3.3)

where µ is a generic element in χ0
Diag with diagonal component of type g4(x)δy(dx)dy, g4 in

L∞([−T, 0]). In particular, if [X]t =
∫ t

0 Zsds for an adapted real valued process (Zs)s∈[0,T ],

then

[̃X]t(µ) =

∫ t

0

(∫

D−s

dµ(x, y)Zs+x

)
ds. (3.4)

This allows to state the following theorem, which is an application to window processes

X = X(·) of the infinite dimensional Itô formula stated in Theorem 5.2 in [20]. In the

sequel, σ : [0, T ] ×C([−T, 0]) → R is a continuous map.

Theorem 3.1 Let X be a real finite quadratic variation process and X = X(·) its associated

window process. Let B = C([−T, 0]) and F : [0, T ] × B → R in C1,2 ([0, T [×C([−T, 0])) in

the Fréchet sense, such that (t, η) 7→ D2F (t, η) is continuous with values in χ := χ0
Diag.

1. We have

F (t,Xt) = F (0,X0) +

∫ t

0
〈D⊥

dxF (s,Xs), d
−
Xs〉+

∫ t

0
Dδ0F (s,Xs)d

−Xs (3.5)
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+
1

2

∫ t

0
〈D2F (s,Xs), d[̃X]s〉, t ∈ [0, T [,

whenever either the first or the second integral in the right-hand side exists.

2. If [X]t =
∫ t

0 σ
2(s,Xs(·))ds then, if t ∈ [0, T [,

∫ t

0
〈D2F (s,Xs), d[̃X]s〉 =

∫ t

0

(∫

D−s

D2
dx dyF (s,Xs)σ

2(s+ x,Xs+x)

)
ds. (3.6)

Remark 3.1 Notice that when the map F in Theorem 3.1 satisfies F (t, η) = F (t, η(0)),

for all (t, η) ∈ [0, T ] × C([−T, 0]), so that it does not depend on the “past” but only on the

“present value” of the path η, then we retrieve Itô formula (2.3).

Remark 3.2 As already mentioned, Itô formula (3.5) holds if either the first or the second

integral in the right-hand side exists. This happens for instance in the two following cases.

1. X is a semimartingale.

2. X(·) takes values in some subset Γ of C([−T, 0]) and
∫
]−t,0]D

⊥
dxF (t, η)d−η(x) Γ-

strongly exists in the sense of Definition 2.8. In that case, Proposition 3.1 implies

that
∫ t

0 B∗〈D⊥F (s,Xs), d
−
Xs〉B =

∫ t

0 I
−(s,Xs)ds as in (3.2).

Proof of Theorem 3.1.

Proposition 3.2 states that X admits a χ0
Diag-quadratic variation [X] with version [̃X]. Item

1. is a consequence of Theorem 5.2 in [20] for X = X(·). This implies that the forward

integral
∫ t

0 B∗〈DF (s,Xs), d
−
Xs〉B , t ∈ [0, T [, exists and it decomposes into the sum

∫ t

0
Dδ0F (s,Xs)d

−Xs +

∫ t

0
B∗〈D⊥F (s,Xs), d

−
Xs〉B , (3.7)

provided that at least one of the two addends exists.

Suppose now that [X]t =
∫ t

0 σ
2(s,Xs(·))ds. Then [̃X]t(µ) =

∫
D−t

[X]t+xdµ(x, y) for any

µ ∈ χ0
Diag. If µ ∈ χ0

Diag, by (3.4) setting Zs = σ2(s,Xs(·)), we get

[̃X]t(µ) =

∫

D−t

(∫ t+x

0
σ2(s,Xs(·))ds

)
dµ(x, y) =

∫ t

0

(∫

D−s

dµ(x, y)σ2(s,Xs(·))

)
ds.

(3.8)

Finally, by elementary integration arguments in Banach spaces it follows

∫ t

0
〈D2F (s,Xs), d[̃X]s〉 =

∫ t

0

(∫

D−s

D2
dx dyF (s,Xs)σ

2(s+ x,Xs+x)

)
ds, (3.9)

and the result is established. 2

Now we introduce an important notation.
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Definition 3.4 Let U : [0, T ] × C([−T, 0]) → R be in C1,2([0, T [×C([−T, 0])). Provided

that, for a given η ∈ C([−T, 0]), η ∈ C([−T, 0),
∫
]−t,0]D

⊥
dxU(t, η)d

−η(x) Γ-strongly exists

for any t ∈ [0, T [, η ∈ Γ, we define

LU(t, η) = ∂tU(t, η) +

∫

]−t,0]
D⊥

dxU(t, η)d
−η(x) (3.10)

+
1

2

∫

D−t

D2
dx dyU(t+ x, η)σ2(t+ x, η(x+ ·)).

Proposition 3.3 Let Γ ⊂ C([−T, 0]). Let F : [0, T ] × C([−T, 0]) → C([−T, 0]) be of class

C1,2 ([0, T [×C([−T, 0])) fulfilling the following assumptions.

(i)
∫
]−t,0]D

⊥
dxF (t, η)d−η(x), t ∈ [0, T [, Γ-strongly exists.

(ii) D2F : [0, T [×C([−T, 0]) → χ0
Diag exists and it is continuous.

Let X be a finite quadratic variation process such that X(·) a.s. lies in Γ.

[X]t =

∫ t

0
σ2(s,Xs)ds. (3.11)

Then, the indefinite forward integral
∫ t

0 D
δ0F (s,Xs)d

−Xs, t ∈ [0, T [, exists and

F (t,Xt) = F (0,X0) +

∫ t

0
Dδ0F (s,Xs)d

−Xs +
1

2

∫ t

0
LF (s,Xs)ds, (3.12)

where LF (t, η) is introduced in Definition 3.4, see (3.10).

Proof. The proof follows from Theorem 3.1, which applies Itô formula for window processes

to u(s,Xs(·)) between 0 and t < T . 2

Proposition 3.3, i.e., the Itô formula, can be used, in this paper, in two applications.

1. To characterize probabilistically the solution of the Kolmogorov equation when X is

a standard stochastic flow. In particular this is useful to prove uniqueness of strict

solutions.

2. To show the robustness representation of a random variable, when X is a general

finite quadratic variation process.

3.2 Link with functional Itô calculus

Recently a new branch of stochastic calculus has appeared, known as functional Itô calculus,

introduced by [22] and then rigorously developed by [6, 7, 8]. It is a stochastic calculus for

functionals depending on the all path of a stochastic process, and not only on its current

value as in the classical Itô calculus. One of the main issue of functional Itô calculus is

the definition of the functional (or pathwise or Dupire) derivatives, i.e., the horizontal and

vertical derivatives. Roughly speaking, the horizontal derivative looks only at the past

values of the path, while the vertical derivative looks only at the present value of the path.
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In the present section, we shall illustrate how functional Itô calculus can be interpreted

in terms of stochastic calculus via regularizations for window processes. To this end, it

will be useful to work within the setting introduced in [10], where functional Itô calculus

was developed by means of stochastic calculus via regularizations. It is worth noting that

this is not the only difference between [10] and the work [6] together with [7, 8]. For more

information on this point we refer to [10]. Here, we just observe that in [6] it is essential

to consider functionals defined on the space of càdlàg trajectories, since the definition

of functional derivatives necessitates of discontinuous paths. Therefore, if a functional

is defined only on the space of continuous trajectories (because, e.g., it depends on the

paths of a continuous process as Brownian motion), we have to extend it anyway to the

space of càdlàg trajectories, even though, in general, there is no unique way to extend it.

In contrast to this approach, in [10] it is introduced an intermediate space between the

space of continuous trajectories C([−T, 0]) and the space of càdlàg trajectories D([−T, 0]),

denoted C ([−T, 0]), which allows to define functional derivatives. C ([−T, 0]) is the space

of bounded trajectories on [−T, 0], continuous on [−T, 0[ and possibly with a jump at 0.

C ([−T, 0]) is endowed with a topology such that C([−T, 0]) is dense in C ([−T, 0]) with

respect to this topology. Therefore, any functional U : [0, T ]× C([−T, 0]) → R, continuous

with respect to the topology of C ([−T, 0]), admits a unique extension to C ([−T, 0]), denoted

u : [0, T ] × C ([−T, 0]) → R. In addition, the time variable and the path have two distinct

roles in [10], as for the time variable and the space variable in the classical Itô calculus.

This, in particular, allows to define the horizontal derivative independently of the time

derivative, so that, the horizontal derivative defined in [6] corresponds to the sum of the

horizontal derivative and of the time derivative in [10]. We mention that an alternative

approach to functional derivatives was introduced in [1].

In the following, we work within the framework introduced in [10]. In particular, given

a functional U : C([−T, 0]) → R we denote by DHU and DV U its horizontal and vertical

derivatives, respectively (see Definition 2.11 in [10]). Our aim is now to illustrate how the

functional derivatives can be expressed in terms of the Fréchet derivatives characterizing

stochastic calculus via regularizations for window processes. In particular, while it is clear

that the vertical derivative DV U corresponds to Dδ0U , the form of the horizontal derivative

DHU is more difficult to guess. This latter point is clarified by the following two results,

which were derived in [10], see Propositions 2.6 and 2.7.

Proposition 3.4 Consider a continuously Fréchet differentiable map U : C([−T, 0]) → R.

We make the following assumptions.

(i) ∀ η ∈ C([−T, 0]) there exists Dac
x U(η) ∈ BV ([−T, 0]) such that

D⊥
dxU(η) = Dac

x U(η)dx.

(ii) There exist continuous extensions (necessarily unique)

u : C ([−T, 0]) → R, Dac
x u : C ([−T, 0]) → BV ([−T, 0])

of U and Dac
x U , respectively.
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Then, ∀ η ∈ C([−T, 0]),

DHU(η) =

∫

[−T,0]
Dac

x U(η)d+η(x). (3.13)

In particular, the horizontal derivative DHU(η) and the backward integral in (3.13) exist.

Proposition 3.5 Consider a continuous path η ∈ C([−T, 0]) with finite quadratic variation

on [−T, 0]. Consider a twice continuously Fréchet differentiable map U : C([−T, 0]) → R

satisfying

D2U : C([−T, 0]) −→ χ0 ⊂ (C([−T, 0])⊗̂πC([−T, 0]))∗ continuously with respect to χ0.

Moreover, assume the following.

(i) D
2,Diag
x U(η), the diagonal component of D2

xU(η), has a set of discontinuity which has

null measure with respect to [η] (in particular, if it is countable).

(ii) There exist continuous extensions (necessarily unique):

u : C ([−T, 0]) → R, D2
dx dyu : C ([−T, 0]) → χ0

of U and D2
dx dyU , respectively.

(iii) The horizontal derivative DHU(η) exists at η.

Then

DHU(η) =

∫

]−T,0]
D⊥

dxU(η)d
+η(x) −

1

2

∫

[−T,0]
D2,Diag

x U(η)d[η](x). (3.14)

In particular, the backward integral in (3.14) exists.

4 Kolmogorov path-dependent PDE

4.1 The framework

We fix Γ ⊂ C([−T, 0]). Let us consider the following semilinear Kolmogorov path-dependent

equation:
{
LU(t, η) + F (t, η,U , σ(t, η)Dδ0U) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

U(T, η) = G(η), ∀ η ∈ C([−T, 0]),
(4.1)

where G : C([−T, 0]) → R and F : [0, T ] × C([−T, 0]) × R × R → R are Borel measurable

functions, while the symbol LU(t, η) is introduced in Definition 3.4, see (3.10). In the

sequel, we think of L as an operator on C([0, T ] × C([−T, 0])) with domain

D(L) :=

{
U ∈ C1,2([0, T [×C([−T, 0])) ∩ C([0, T ]× C([−T, 0])) :

∫

]−t,0]
D⊥

dxU(t, η) d
−η(x) Γ-strongly exists ∀ t ∈ [0, T [

}
.

In the sequel, we will consider the case σ ≡ 1 and give references for more general cases,

which are however partly under investigation. When σ ≡ 1 we refer to L as path-dependent

heat operator.
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4.2 Strict solutions

We provide the definition of strict solution for equation (4.1) and we study its well-

posedness.

Definition 4.1 We say that U : [0, T ]×C([−T, 0]) → R is a strict solution to the semi-

linear Kolmogorov path-dependent equation (4.1) if U belongs to D(L) and solves equation

(4.1).

Concerning the existence and uniqueness of strict solutions, we first consider the linear

Kolmogorov path-dependent PDE:

{
LU(t, η) + F (t, η) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

U(T, η) = G(η), ∀ η ∈ C([−T, 0]).
(4.2)

We have the following uniqueness and existence results for equation (4.2), for which we need

to introduce some additional notations. In particular, we consider a complete probability

space (Ω,F ,P) and a real Brownian motion W = (Wt)t≥0 defined on it. We denote by

F = (Ft)t≥0 the natural filtration generated by W , completed with the P-null sets of F .

Definition 4.2 Let t ∈ [0, T ] and η ∈ C([−T, 0]). Then, we define the stochastic flow:

W
t,η
s (x) =

{
η(x+ s− t), −T ≤ x ≤ t− s,

η(0) +Wx+s −Wt, t− s < x ≤ 0,

for any t ≤ s ≤ T .

Theorem 4.1 Let Γ = V 2. Consider a strict solution U to (4.2) and suppose that there

exist two positive constants C and m such that

|G(η)| + |F (t, η)| + |U(t, η)| ≤ C
(
1 + ‖η‖m∞

)
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]). (4.3)

Then, U is given by

U(t, η) = E

[
G(Wt,η

T ) +

∫ T

t

F (s,Wt,η
s )ds

]
, ∀ (t, η) ∈ [0, T ] ×C([−T, 0]).

In particular, there exists at most one strict solution to the semilinear Kolmogorov path-

dependent equation (4.1) satisfying a polynomial growth condition as in (4.3).

Proof. Fix (t, η) ∈ [0, T [×C([−T, 0]) and T0 ∈ [0, T [. Applying Itô formula (3.5) to

U(s,Wt,η
s ) between t and T0, and using (3.6), we obtain

U(t, η) = U(T0,W
t,η
T0
)−

∫ T0

t

LU(s,Wt,η
s )ds−

∫ T0

t

Dδ0U(s,Wt,η
s )dWs.

Since U solves equation (4.2), we have

U(t, η) = U(T0,W
t,η
T0
) +

∫ T0

t

F (s,Wt,η
s )ds −

∫ T0

t

Dδ0U(s,Wt,η
s )dWs. (4.4)
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Consider now the process M = (Ms)s∈[t,T0] given by

Ms :=

∫ s

t

Dδ0U(s,Wt,η
s )dWs, ∀ s ∈ [t, T0].

Using the polynomial growth condition of U and F , and recalling that, for any q ≥ 1,

E

[
sup

t≤s≤T

‖Wt,η
s ‖q∞

]
< ∞, (4.5)

we see that M satisfies

E

[
sup

s∈[t,T0]
|Ms|

]
< ∞.

This implies that M is a martingale. Therefore, taking the expectation in (4.4), we find

U(t, η) = E

[
U(T0,W

t,η
T0
) +

∫ T0

t

F (s,Wt,η
s )ds

]
. (4.6)

From the polynomial growth condition (4.3), together with (4.5), we can apply Lebesgue’s

dominated convergence theorem and pass to the limit in (4.6) as T0 → T−, from which the

claim follows. 2

We remark that previous proof can be easily adapted to the more general case when σ

is not necessarily constant.

Theorem 4.2 We suppose Γ = C([−T, 0]). Let F ≡ 0 and G admits the cylindrical repre-

sentation

G(η) = g

(∫

[−T,0]
ϕ1(x+ T )d−η(x), . . . ,

∫

[−T,0]
ϕN (x+ T )d−η(x)

)
, (4.7)

for some functions g ∈ C2
p(R

N ) (g and its first and second derivatives are continuous

and have polynomial growth) and ϕ1, . . . , ϕN ∈ C2([0, T ]), with N ∈ N\{0}, where the

deterministic integrals in (4.7) are defined according to Definition 2.4(i). Then, there exists

a unique strict solution U to the path-dependent heat equation (4.2) satisfying a polynomial

growth condition as in (4.3), which is given by

U(t, η) = E
[
G(Wt,η

T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

Proof. The proof can be done along the lines of Theorem 3.2 in [10]. We simply notice

that the idea of the proof is first to show that U , as G, admits a cylindrical representation.

This in turn allows to express U in terms of a function defined on a finite dimensional space:

Ψ: [0, T ]×R
N → R. Using the regularity of g, together with the property of the Gaussian

density, we can prove that Ψ is a smooth solution to a certain partial differential equation

on [0, T ] × R
N . Finally, using the relation between U and Ψ, we conclude that U solves

equation (4.2). 2

Remark 4.1 An alternative existence result for strict solutions is represented by Proposi-

tion 9.53 in [17]. We suppose (4.7) with ϕ1, . . . , ϕN ∈ C2([−T, 0]) such that
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• g : RN → R
N in only continuous and with linear growth;

• the matrix Σt = (
∫ T

t
ϕi(s)ϕj(s)ds)1≤i,j≤N , ∀ t ∈ [0, T ], has a strictly positive deter-

minant for all t ∈ [0, T ].

Then, it follows from Proposition 9.53 in [17] that the functional U given by

U(t, η) = E
[
G(Wt,η

T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]),

is still the unique strict solution to the path-dependent heat equation (4.2) satisfying a

polynomial growth condition as in (4.3).

Another existence result is given below. It is stated and proved in [16] and its proof is an

adaptation of the proof of Theorem 9.41 in [17].

Theorem 4.3 We suppose Γ = C([−T, 0]). Let G ∈ C3 (C([−T, 0])) such that D3G has

polynomial growth. Let U be defined by U(t, η) = E
[
G
(
W

t,η
T

)]
.

1) Then u ∈ C0,2([0, T ]× C([−T, 0])).

2) Suppose moreover

i) DG(η) ∈ H1([−T, 0]), i.e., function x 7→ DxG(η) is in H1([−T, 0]), every fixed

η;

ii) DG has polynomial growth in H1([−T, 0]), i.e., there is p ≥ 1 such that

η 7→ ‖DG(η)‖H1 ≤ const (‖η‖p∞ + 1) . (4.8)

iii) The map

η 7→ DG(η) considered C([−T, 0]) → H1([−T, 0]) is continuous.

(4.9)

Then U ∈ C1,2([0, T ]× C([−T, 0])) and U is a strict solution of (4.1) in the sense of

Definition 4.1.

For more existence results concerning strict solutions, with σ not necessarily identically

equal to 1 and possibly even degenerate, we refer to [16] and [9].

We end this section proving a uniqueness result for the general semilinear Kolmogorov

path-dependent PDE (4.1). To this end, we shall rely on the theory of backward stochastic

differential equations, for which we need to introduce the following spaces of stochastic

processes.

• S
2(t, T ), 0 ≤ t ≤ T , the family of real continuous F-adapted stochastic processes

Y = (Ys)t≤s≤T satisfying

‖Y ‖2
S2(t,T )

:= E

[
sup

t≤s≤T

|Ys|
2
]

< ∞.
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• H
2(t, T ), 0 ≤ t ≤ T , the family of Rd-valued F-predictable stochastic processes Z =

(Zs)t≤s≤T satisfying

‖Z‖2
H2(t,T )

:= E

[ ∫ T

t

|Zs|
2ds

]
< ∞.

Theorem 4.4 Suppose that there exist two positive constants C and m such that

|F (t, η, y, z) − F (t, η, y′, z′)| ≤ C
(
|y − y′|+ |z − z′|

)
,

|G(η)| + |F (t, η, 0, 0)| ≤ C
(
1 + ‖η‖m∞

)
,

∀ (t, η) ∈ [0, T ]×C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R. Consider a strict solution U to (4.1),

satisfying

|U(t, η)| ≤ C
(
1 + ‖η‖m∞

)
, ∀ (t, η) ∈ [0, T ] × C([−T, 0]). (4.10)

Then

U(t, η) = Y
t,η
t , ∀ (t, η) ∈ [0, T ] × C([−T, 0]),

where (Y t,η
s , Z

t,η
s )s∈[t,T ] = (U(s,Wt,η

s ),Dδ0U(s,Wt,η
s )1[t,T [(s))s∈[t,T ] ∈ S

2(t, T ) × H
2(t, T ) is

the solution to the backward stochastic differential equation: P-a.s.,

Y t,η
s = G(Wt,η

T ) +

∫ T

s

F (r,Wt,η
r , Y t,η

r , Zt,η
r )dr −

∫ T

s

Zt,η
r dWr, t ≤ s ≤ T.

In particular, there exists at most one strict solution to the semilinear Kolmogorov path-

dependent equation (4.1).

Proof. The proof can be done along the lines of Theorem 3.1 in [10], simply observing

that the role of the vertical derivative DV U in [10] is now played by Dδ0U . 2

4.3 A robust BSDE representation formula

Let X = (Xt)t∈[0,T ] be a real process such that its corresponding window process X = X(·)

takes values in Γ = V 2, i.e. X is a pathwise finite quadratic variation process. For simplicity

we suppose that [X]t = t and X0 = 0. Conformally to what we have mentioned in the

introduction, given a random variable h = G(XT ) for some functional G : C([−T, 0]) → R,

we aim at finding functionals u, v : [0, T ] ×C([−T, 0]) → R such that

Yt = u(t,Xt), Zt = v(t,Xt)

and

Yt = G(XT ) +

∫ T

t

F (s,Xs, Ys, Zs)ds−

∫ T

t

Zsd
−Xs,

for all t ∈ [0, T ]. In particular, h admits the representation formula

h = u(0,X0)−

∫ T

0
F (s,Xs, u(s,Xs), v(s,Xs))ds +

∫ T

0
v(s,Xs)d

−Xs.

As a consequence of Itô formula in Proposition 3.3, we have the following result.
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Proposition 4.1 Suppose that G and F are continuous and u ∈ C1,2([0, T [×C([−T, 0]))∩

C([0, T ] × C([−T, 0])). In addition, assume that items (i) and (ii) of Proposition 3.3 hold

with u in place of F . Suppose that u solves the Kolmogorov path-dependent PDE (4.1).

Then

h = Y0 −

∫ T

0
F (s,Xs, u(s,Xs), v(s,Xs))ds +

∫ T

0
Zsd

−Xs, (4.11)

with

Y0 = u(0,X0), Zs = Dδ0u(s,Xs).

We refer to (4.11) as robust BSDE representation formula for h, and, when F ≡ 0, as

robust Clark-Ocone formula.

4.4 Strong-viscosity solutions

As we have seen in Section 4.2, we are able to prove an existence result for strict solutions

only when the coefficients are regular enough. To deal with more general cases, we need

to introduce a weaker notion of solution. We are in particular interested in viscosity-type

solutions, i.e., solutions which are not required to be differentiable.

The issue of providing a suitable definition of viscosity solutions for path-dependent

PDEs has attracted a great interest. We recall that [23], [24, 25], and [42] recently pro-

vided a definition of viscosity solution to path-dependent PDEs, replacing the classical

minimum/maximum property, which appears in the standard definition of viscosity solu-

tion, with an optimal stopping problem under nonlinear expectation [26]. We also recall

that other definitions of viscosity solutions for path-dependent PDEs were given by [41]

and [49]. In contrast with the above cited papers, in the present section we shall adopt

the definition of strong-viscosity solution introduced in [10], which is not inspired by the

standard definition of viscosity solution given in terms of test functions or jets. Instead,

it can be thought, roughly speaking, as the pointwise limit of strict solutions to perturbed

equations. We notice that this definition is more similar in spirit to the concept of good

solution, which turned out to be equivalent to the definition of Lp-viscosity solution for

certain fully nonlinear partial differential equations, see, e.g., [4], [11], [33], and [34]. It

has also some similarities with the vanishing viscosity method, which represents one of the

primitive ideas leading to the conception of the modern definition of viscosity solution. This

definition is likewise inspired by the notion of strong solution, as defined for example in [2],

[30], and [31], even though strong solutions are required to be more regular than strong-

viscosity solutions. We also emphasize that a similar notion of solution, called stochastic

weak solution, has been introduced in the recent paper [36] in the context of variational

inequalities for the Snell envelope associated to a non-Markovian continuous process X.

A strong-viscosity solution, according to its viscosity nature, is only required to be

locally uniformly continuous and with polynomial growth. The term viscosity in its name

is also justified by the fact that in the finite dimensional case we have an equivalence result

between the notion of strong-viscosity solution and that of viscosity solution, see Theorem

3.7 in [10].

We now introduce the notion of strong-viscosity solution for the semilinear Kolmogorov

path-dependent equation (4.1), which is written in terms of Fréchet derivatives, while in
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[10] the concept of strong-viscosity solution was used for an equation written in terms

of functional derivatives. Apart from this, the definition we now provide coincides with

Definition 3.4 in [10]. First, we recall the notion of locally equicontinuous collection of

functions.

Definition 4.3 Let F be a collection of Rd-valued functions on [0, T ]×X, where (X, ‖·‖) is

a normed space. We say that F is locally equicontinuous if to any R, ε > 0 corresponds

a δ such that |f(t, x) − f(s, y)| < ε for every f ∈ F and for all pair of points (t, x), (s, y)

with |t− s|, ‖x− y‖ < δ and ‖x‖, ‖y‖ < R.

Definition 4.4 A function U : [0, T ] × C([−T, 0]) → R is called strong-viscosity solu-

tion to the semilinear Kolmogorov path-dependent equation (4.1) if there exists a sequence

(Un, Gn, Fn)n satisfying the properties below.

(i) Un : [0, T ]× C([−T, 0]) → R, Gn : C([−T, 0]) → R, and Fn : [0, T ]× C([−T, 0])× R×

R → R are locally equicontinuous functions such that, for some positive constants C

and m, independent of n,

|Fn(t, η, y, z) − Fn(t, η, y
′, z′)| ≤ C(|y − y′|+ |z − z′|),

|Un(t, η)|+ |Gn(η)|+ |Fn(t, η, 0, 0)| ≤ C
(
1 + ‖η‖m∞

)
,

for all (t, η) ∈ [0, T ] × C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R.

(ii) Un is a strict solution to

{
LUn = Fn(t, η,Un,D

δ0Un), ∀ (t, η) ∈ [0, T )× C([−T, 0]),

Un(T, η) = Gn(η), ∀ η ∈ C([−T, 0]).

(iii) (Un(t, η), Gn(η), Fn(t, η, y, z)) → (U(t, η), G(η), F (t, η, y, z)), as n tends to infinity,

for any (t, η, y, z) ∈ [0, T ]× C([−T, 0])× R× R.

The uniqueness result below for strong-viscosity solution holds.

Theorem 4.5 Let U : [0, T ]×C([−T, 0]) → R be a strong-viscosity solution to the semilin-

ear Kolmogorov path-dependent equation (4.1). Then

U(t, η) = Y
t,η
t , ∀ (t, η) ∈ [0, T ] × C([−T, 0]),

where (Y t,η
s , Z

t,η
s )s∈[t,T ] ∈ S

2(t, T ) × H
2(t, T ), with Y

t,η
s = U(s,Wt,η

s ), solves the backward

stochastic differential equation: P-a.s.,

Y t,η
s = G(Wt,η

T ) +

∫ T

s

F (r,Wt,η
r , Y t,η

r , Zt,η
r )dr −

∫ T

s

Zt,η
r dWr, t ≤ s ≤ T.

In particular, there exists at most one strong-viscosity solution to the semilinear Kolmogorov

path-dependent equation (4.1).
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Proof. Let us give only a sketch of the proof (for a similar argument and more details, see

Theorem 3.3 in [10]). Consider a sequence (Un, Gn, Fn)n satisfying conditions (i)-(ii)-(iii) of

Definition 4.4. For every n ∈ N and any (t, η) ∈ [0, T ]×C([−T, 0]), we know from Theorem

4.4 that (Y n,t,η
s , Z

n,t,η
s )s∈[t,T ] = (Un(s,W

t,η
s ),Dδ0Un(s,W

t,η
s ))s∈[t,T ] ∈ S

2(t, T ) × H
2(t, T ) is

the solution to the backward stochastic differential equation: P-a.s.,

Y n,t,η
s = Gn(W

t,η
T ) +

∫ T

s

Fn(r,W
t,η
r , Y n,t,η

r , Zn,t,η
r )dr −

∫ T

s

Zn,t,η
r dWr, t ≤ s ≤ T.

Thanks to a limit theorem for BSDEs (see Proposition C.1 in [10]), and using the hypotheses

on the coefficients, we can pass to the limit in the above backward equation as n → ∞,

from which the thesis follows. 2

We finally address the existence problem for strong-viscosity solutions in the linear case,

and in particular when F ≡ 0.

Theorem 4.6 Let F ≡ 0 and G : C([−T, 0]) → R be a locally uniformly continuous map

satisfying

|G(η)| ≤ C(1 + ‖η‖m∞), ∀ η ∈ C([−T, 0]),

for some positive constants C and m. Then, there exists a unique strong-viscosity solution

U to equation (4.1), which is given by

U(t, η) = E
[
G(Wt,η

T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

Proof. The proof can be done along the lines of Theorem 3.4 in [10]. Let us give an

idea of it. We first fix η ∈ C([−T, 0]) and derive a Fourier series expansion of η in terms

of a smooth orthonormal basis of L2([−T, 0]). This allows us to approximate G with a

sequence of functions (Gn)n, where Gn depends only on the first n terms of the Fourier

expansion of η. Noting that the Fourier coefficients can be written in terms of a forward

integral with respect to η, we see that every Gn has a cylindrical form. Moreover, even

if Gn is not necessarily smooth, we can regularize it. After this final smoothing, we end

up with a terminal condition, that we still denote Gn, which is smooth and cylindrical.

As a consequence, from Theorem 4.2 it follows that the corresponding Kolmogorov path-

dependent equation admits a unique strict solution Un given by

Un(t, η) = E
[
Gn(W

t,η
T )

]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

It is then easy to show that the sequence (Un, Gn)n satisfies points (i)-(ii)-(iii) of Definition

4.4, from which the thesis follows. 2
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‘
ech. Good and viscosity solutions of fully nonlinear elliptic

equations. Proc. Amer. Math. Soc., 130(2):533–542 (electronic), 2002.

[35] G. Kallianpur, I. Mitoma, and R. L. Wolpert. Diffusion equations in duals of nuclear spaces.

Stochastics and Stochastics Reports, 29(2):285–329, 1990.

[36] D. Leão, A. Ohashi, and A. B. Simas. Weak functional Itô calculus and applications. Preprint
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