
A Core Calculus for XQuery 3.0

Giuseppe Castagna, Hyeonseung Im, Kim Nguyn, Véronique Benzaken

To cite this version:

Giuseppe Castagna, Hyeonseung Im, Kim Nguyn, Véronique Benzaken. A Core Calculus for
XQuery 3.0: Combining Navigational and Pattern Matching Approaches. ESOP ’15 : 24th
European Symposium on Programming, 2015, London, United Kingdom. 2015, <10.1007/978-
3-662-46669-8 10>. <hal-01104872>

HAL Id: hal-01104872

https://hal.inria.fr/hal-01104872

Submitted on 19 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hal-Diderot

https://core.ac.uk/display/47091057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01104872

A Core Calculus for XQuery 3.0

Combining Navigational and Pattern Matching Approaches

Giuseppe Castagna1, Hyeonseung Im2, Kim Nguyễn3, and Véronique Benzaken3

1 CNRS, PPS, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
2 Inria, LIG, Univ. Grenoble-Alpes, Grenoble, France

3 LRI, Université Paris-Sud, Orsay, France

Abstract. XML processing languages can be classified according to
whether they extract XML data by paths or patterns. The strengths
of one category correspond to the weaknesses of the other. In this work,
we propose to bridge the gap between these two classes by considering
two languages, one in each class: XQuery (for path-based extraction) and
CDuce (for pattern-based extraction). To this end, we extend CDuce so as
it can be seen as a succinct core λ-calculus that captures XQuery 3.0. The
extensions we consider essentially allow CDuce to implement XPath-like
navigational expressions by pattern matching and precisely type them.
The elaboration of XQuery 3.0 into the extended CDuce provides a for-
mal semantics and a sound static type system for XQuery 3.0 programs.

1 Introduction

With the establishment of XML as a standard for data representation and ex-
change, a wealth of XML-oriented programming languages have emerged. They
can be classified into two distinct classes according to whether they extract XML
data by applying paths or patterns. The strengths of one class correspond to the
weaknesses of the other. In this work, we propose to bridge the gap between
these classes and to do so we consider two languages each representing a distinct
class: XQuery and CDuce.

XQuery [23] is a declarative language standardized by the W3C that relies
heavily on XPath [21,22] as a data extraction primitive. Interestingly, the latest
version of XQuery (version 3.0, very recently released [25]) adds several func-
tional traits: type and value case analysis and functions as first-class citizens.
However, while the W3C specifies a standard for document types (XML Schema
[26]), it says little about the typing of XQuery programs (the XQuery 3.0 recom-
mendation goes as far as saying that static typing is “implementation defined”
and hence optional). This is a step back from the XQuery 1.0 Formal Semantics
[24] which gives sound (but sometime imprecise) typing rules for XQuery.

In contrast, CDuce [4], which is used in production but issued from academic
research, is a statically-typed functional language with, in particular, higher-
order functions and powerful pattern matching tailored for XML data. Its key
characteristic is its type algebra, which is based on semantic subtyping [10] and
features recursive types, type constructors (product, record, and arrow types)

XQuery code

1 declare function get_links($page, $print) {

2 for $i in $page/descendant::a[not(ancestor::b)]

3 return $print($i)
4 }

5 declare function pretty($link) {

6 typeswitch($link)
7 case $l as element(a)

8 return switch ($l/@class)

9 case "style1"

10 return {$l/text()}

11 default return $l
12 default return $link
13 }

CDuce code

14 let get_links (page: <_>_) (print: <a>_ -> <a>_) : [<a>_ *] =

15 match page with

16 <a>_ & x -> [(print x)]

17 | < (_\‘b) > l -> (transform l with (i & <_>_) -> get_links i print)
18 | _ -> []

19 let pretty (<a>_ -> <a>_ ; Any\<a>_ -> Any\<a>_)

20 | l -> [l]

21 | x -> x

Fig. 1: Document transformation in XQuery 3.0 and CDuce

and general Boolean connectives (union, intersection, and negation of types) as
well as singleton types. This type algebra is particularly suited to express the
types of XML documents and relies on the same foundation as the one that un-
derpins XML Schema: regular tree languages. Moreover, the CDuce type system
not only supports ad-hoc polymorphism (through overloading and subtyping)
but also has recently been extended with parametric polymorphism [5,6].

Figure 1 highlights the key features as well as the shortcomings of both lan-
guages by defining the same two functions get_links and pretty in each language.
Firstly, get_links (i) takes an XHTML document $page and a function $print as
input, (ii) computes the sequence of all hypertext links (a-labelled elements) of
the document that do not occur below a bold element (b-labelled elements), and
(iii) applies the print argument to each link in the sequence, returning the se-
quence of the results. Secondly, pretty takes anything as argument and performs
a case analysis. If the argument is a link whose class attribute has the value
"style1", the output is a link with the same target (href attribute) and whose
text is embedded in a bold element. Otherwise, the argument is unchanged.

We first look at the get_links function. In XQuery, collecting every “a” ele-
ment of interest is straightforward: it is done by the XPath expression at Line 2:

$page/descendant::a[not(ancestor::b)]

2

In a nutshell, an XPath expression is a sequence of steps that (i) select sets
of nodes along the specified axis (here descendant meaning the descendants
of the root node of $page), (ii) keep only those nodes in the axis that have
a particular label (here “a”), and (iii) further filter the results according to a
Boolean condition (here not(ancestor::b) meaning that from a candidate “a”
node, the step ancestor::b must return an empty result). At Lines 2–3, the
for_return expression binds in turn each element of the result of the XPath
expression to the variable $i, evaluates the return expression, and concatenates
the results. Note that there is no type annotation and that this function would
fail at runtime if $page is not an XML element or if $print is not a function.

In clear contrast, in the CDuce program, the interface of get_links is fully
specified (Line 14). It is curried and takes two arguments. The first one is page
of type <_>_, which denotes any XML element (_ denotes a wildcard pattern
and is a synonym of the type Any, the type of all values, while <s>t is the
type of an XML element with tag of type s and content of type t). The second
argument is print of type <a>_→ <a>_, which is the type of functions that take
an “a” element (whose content is anything) and return an “a” element. The final
output is a value of type [<a>_ *], which denotes a possibly empty sequence
of “a” elements (in CDuce’s types, the content of a sequence is described by
a regular expression on types). The implementation of get_links in CDuce is
quite different from its XQuery counterpart: following the functional idiom, it is
defined as a recursive function that traverses its input recursively and performs
a case analysis through pattern matching. If the input is an “a” element (Line
16), it binds the input to the capture variable x, evaluates print x, and puts the
result in a sequence (denoted by square brackets). If the input is an XML element
whose tag is not b (“\” stands for difference, so _\‘b matches any value different
from b)4, it captures the content of the element (a sequence) in l and applies
itself recursively to each element of l using the transform_with construct whose
behavior is the same as XQuery’s for. Lastly, if the result is not an element (or
it is a “b” element), it stops the recursion and returns the empty sequence.

For the pretty function (which is inspired from the example given in §3.16.2
of the XQuery 3.0 recommendation [25]), the XQuery version (Lines 5–13) first
performs a “type switch”, which tests whether the input $link has label a. If so,
it extracts the value of the class attribute using an XPath expression (Line 8)
and performs a case analysis on that value. In the case where the attribute is
"style1", it re-creates an “a” element (with a nested “b” element) extracting the
relevant part of the input using XPath expressions. The CDuce version (Lines
19–21) behaves in the same way but collapses all the cases in a single pattern
matching. If the input is an “a” element with the desired class attribute, it
binds the contents of the href attribute and the element to the variables h and l,
respectively (the “..” matches possible further attributes), and builds the desired
output; otherwise, the input is returned unchanged. Interestingly, this function
is overloaded. Its signature is composed of two arrow types: if the input is an “a”
element, so is the output; if the input is something else than an “a” element, so

4 In CDuce, one has to use ‘b in conjunction with \ to denote XML tag b.

3

is the output (& in types and patterns stands for intersection). Note that it is
safe to use the pretty function as the second argument of the get_links function
since (<a>_→<a>_) & (Any\<a>_→Any\<a>_) is a subtype of <a>_→<a>_ (an
intersection is always smaller than or equal to the types that compose it).

Here we see that the strength of one language is the weakness of the other:
CDuce provides static typing, a fine-grained type algebra, and a pattern match-
ing construct that cleanly unifies type and value case analysis. XQuery provides
through XPath a declarative way to navigate a document, which is more concise
and less brittle than using hand-written recursive functions (in particular, at
Line 16 in the CDuce code, there is an implicit assumption that a link cannot
occur below another link; the recursion stops at “a” elements).

Contributions. The main contribution of the paper is to unify the navigational
and pattern matching approaches and to define a formal semantics and type
system of XQuery 3.0. Specifically, we extend CDuce so as it can be seen as a
succinct core λ-calculus that can express XQuery 3.0 programs as follows.

First, we allow one to navigate in CDuce values, both downward and upward.
A natural way to do so in a functional setting is to use zippers à la Huet [18] to
annotate values. Zippers denote the position in the surrounding tree of the value
they annotate as well as its current path from the root. We extend CDuce not
only with zipped values (i.e., values annotated by zippers) but also with zipped
types. By doing so, we show that we can navigate not only in any direction in a
document but also in a precisely typed way, allowing one to express constraints
on the path in which a value is within a document.

Second, we extend CDuce pattern matching with accumulating variables that
allow us to encode recursive XPath axes (such as descendant and ancestor).
It is well known that typing such recursive axes goes well beyond regular tree
languages and that approximations in the type system are needed. Rather than
giving ad-hoc built-in functions for descendant and ancestor, we define the
notion of type operators and parameterize the CDuce type system (and dynamic
semantics) with these operators. Soundness properties can then be shown in
a modular way without hard-coding any specific typing rules in the language.
With this addition, XPath navigation can be encoded simply in CDuce’s pattern
matching constructs and it is just a matter of syntactic sugar definition to endow
CDuce with nice declarative navigational expressions such as those successfully
used in XQuery or XSLT.

The last (but not least) step of our work is to define a “normal form” for
XQuery 3.0 programs, extending both the original XQuery Core normal form of
[24] and its recent adaptation to XQuery 3.0 (dubbed XQH) proposed by Benedikt
and Vu [3]. In this normal form, navigational (i.e., structural) expressions are
well separated from data value expressions (ordering, node identity testing, etc.).
We then provide a translation from XQuery 3.0 Core to CDuce extended with
navigational patterns. The encoding provides for free an effective and efficient
typechecking algorithm for XQuery 3.0 programs (described in Figure 9 of Sec-
tion 5.1) as well as a formal and compact specification of their semantics. Even
more interestingly, it provides a solid formal basis to start further studies on the

4

Pre-values w ::= c | (w,w) | µf (t→t;...;t→t)(x).e
Zippers δ ::= • | L (w)δ · δ | R (w)δ · δ
Values v ::= w | (v, v) | (w)δ
Expressions e ::= v | x | ẋ | (e, e) | (e)• | o(e, . . . , e)

| match e with p→ e| p→ e

Pre-types u ::= b | c | u× u | u→ u | u ∨ u | ¬u | 0
Zipper types τ ::= • | > | L (u)τ · τ | R (u)τ · τ | τ ∨ τ | ¬τ
Types t ::= u | t× t | t→ t | t ∨ t | ¬t | (u)τ

Pre-patterns q ::= t | x | ẋ | (q, q) | q|q | q&&& q | (x := c)
Zipper patterns ϕ ::= τ | L p · ϕ | R p · ϕ | ϕ|ϕ
Patterns p ::= q | (p, p) | p|p | p&&& p | (q)ϕ

Fig. 2: Syntax of expressions, types, and patterns

definition of XQuery 3.0 and its properties. A minima, it is straightforward to
use this basis to add overloaded functions to XQuery (e.g., to give a precise type
to pretty). More crucially, the recent advances on polymorphism for semantic
subtyping [5,6,7] can be transposed to this basis to provide a polymorphic type
system and type inference algorithm both to XQuery 3.0 and to the extended
CDuce language defined here. Polymorphic types are the missing ingredient to
make higher-order functions yield their full potential and to remove any residual
justification of the absence of standardization of the XQuery 3.0 type system.

Plan. Section 2 presents the core typed λ-calculus equipped with zipper-annotated
values, accumulators, constructors, recursive functions, and pattern matching.
Section 3 gives its semantics, type system, and the expected soundness prop-
erty. Section 4 turns this core calculus into a full-fledged language using several
syntactic constructs and encodings. Section 5 uses this language as a compila-
tion target for XQuery. Lastly, Section 6 compares our work to other related
approaches and concludes. Proofs and some technical definitions are given in
Appendix.

2 Syntax

We extend the CDuce language [4] with zippers à la Huet [18]. To ensure the
well-foundedness of the definition, we stratify it, introducing first pre-values
(which are standard CDuce values) and then values, which are pre-values possibly
indexed by a zipper; we proceed similarly for types and patterns. The definition
is summarized in Figure 2. Henceforth we denote by V the set of all values and
by Ω a special value that represents runtime error and does not inhabit any type.
We also denote by E and T the set of all expressions and all types, respectively.

2.1 Values and Expressions

Pre-values (ranged over by w) are the usual CDuce values without zipper an-
notations. Constants are ranged over by c and represent integers (1, 2, . . .),

5

characters (’a’, ’b’, . . .), atoms (‘nil, ‘true, ‘false, ‘foo, . . .), etc. A value
(w,w) represents pairs of pre-values. Our calculus also features recursive func-
tions (hence the µ binder instead of the traditional λ) with explicit, overloaded
types (the set of types that index the recursion variable, forming the interface of
the function). Values (ranged over by v) are pre-values, pairs of values, or pre-
values annotated with a zipper (ranged over by δ). Zippers are used to record
the path covered when traversing a data structure. Since the product is the only
construct, we need only three kinds of zippers: the empty one (denoted by •)
which intuitively denotes the starting point of our navigation, and two zippers
L (w)δ · δ and R (w)δ · δ which denote respectively the path to the left and right
projection of a pre-value w, which is itself reachable through δ. To ease the writ-
ing of several zipper related functions, we chose to record in the zipper the whole
“stack” of values we have visited (each tagged with a left or right indication),
instead of just keeping the unused component as is usual.

Example 1. Let v be the value ((1, (2, 3)))•. Its first projection is the value
(1)L ((1,(2,3)))•·• and its second projection is the value ((2, 3))R ((1,(2,3)))•·•, the
first projection of which being (2)L ((2,3))R ((1,(2,3)))•·•·R ((1,(2,3)))•·•

As one can see in this example, keeping values in the zipper (instead of pre-
values) seems redundant since the same value occurs several times (see how δ is
duplicated in the definition of zippers). The reason for this duplication is purely
syntactic: it makes the writing of types and patterns that match such values
much shorter (intuitively, to go “up” in a zipper, it is only necessary to extract
the previous value while keeping it un-annotated —i.e., having Lw · δ in the
definition instead of L (w)δ · δ— would require a more complex treatment to
reconstruct the parent). We also stress that zipped values are meant to be used
only for internal representation: the programmer will be allowed to write just
pre-values (not values or expressions with zippers) and be able to obtain and
manipulate zippers only by applying CDuce functions and pattern matching (as
defined in the rest of the paper) and never directly.

Expressions include values (as previously defined), variables (ranged over by
x , y , . . .), accumulators (which are a particular kind of variables, ranged over
by ẋ , ẏ , . . .), and pairs. An expression (e)• annotates e with the empty zipper
•. The pattern matching expression is standard (with a first match policy) and
will be thoroughly presented in Section 3. Our calculus is parameterized by a set
O of built-in operators ranged over by o. Before describing the use of operators
and the set of operators defined in our calculus (in particular the operators for
projection and function application), we introduce our type algebra.

2.2 Types

We first recall the CDuce type algebra, as defined in [10], where types are in-
terpreted as sets of values and the subtyping relation is semantically defined by
using this interpretation (i.e., JtK = {v | ` v : t} and s ≤ t def⇐⇒ JsK ⊆ JtK).

Pre-types u (as defined in Figure 2) are the usual CDuce types, which are
possibly infinite terms with two additional requirements:

6

1. (regularity) the number of distinct subterms of u is finite;
2. (contractiveness) every infinite branch of u contains an infinite number of

occurrences of either product types or function types.

We use b to range over basic types (int, bool, . . .). A singleton type c denotes
the type that contains only the constant value c. The empty type 0 contains
no value. Product and function types are standard: u1 × u2 contains all the
pairs (w1, w2) for wi ∈ ui, while u1 → u2 contains all the (pre-)value functions
that when applied to a value in u1, if such application terminates then it re-
turns a value in u2. We also include type connectives for union and negation
(intersections are encoded below) with their usual set-theoretic interpretation.
Infiniteness of pre-types accounts for recursive types and regularity implies that
pre-types are finitely representable, for instance, by recursive equations or by
the explicit µ-notation. Contractiveness [2] excludes both ill-formed (i.e., un-
guarded) recursions such as µX.X as well as meaningless type definitions such
as µX.X ∨X or µX.¬X (unions and negations are finite). Finally, subtyping is
defined as set-theoretic containment (u1 is a subtype of u2, denoted by u1≤u2,
if all values in u1 are also in u2) and it is decidable in EXPTIME (see [10]).

A zipper type τ is a possibly infinite term that is regular as for pre-types and
contractive in the sense that every infinite branch of τ must contain an infinite
number of occurrences of either left or right projection. The singleton type • is
the type of the empty zipper and > denotes the type of all zippers, while L (u)τ ·τ
(resp., R (u)τ · τ) denotes the type of zippers that encode the left (resp., right)
projection of some value of pre-type u. We use τ1 ∧ τ2 to denote ¬(¬τ1 ∨ ¬τ2).

The type algebra of our core calculus is then defined as pre-types possibly
indexed by zipper types. As for pre-types, a type t is a possibly infinite term that
is both regular and contractive. We write t ∧ s for ¬(¬t ∨ ¬s), t \ s for t ∧ ¬s,
and 1 for ¬0; in particular, 1 denotes the super-type of all types (it contains
all values). We also define the following notations (we use ≡ both for syntactic
equivalence and definition of syntactic sugar):

– 1prod ≡ 1× 1 the super-type of all product types
– 1fun ≡ 0→ 1 the super-type of all arrow types
– 1basic ≡ 1 \ (1prod∨1fun∨(1)>) the super-type of all basic types
– 1NZ ≡ µX.(X ×X)∨(1basic ∨ 1fun) the type of all pre-values (i.e., Not Zipped)

It is straightforward to extend the subtyping relation of pre-types (i.e., the
one defined in [10]) to our types: the addition of (u)τ corresponds to the addition
of a new type constructor (akin to → and ×) to the type algebra. Therefore, it
suffices to define the interpretation of the new constructor to complete the defi-
nition of the subtyping relation (defined as containment of the interpretations).
In particular, (u)τ is interpreted as the set of all values (w)δ such that ` w : u
and ` δ : τ (both typing judgments are defined in Appendix B.1). From this we
deduce that (1)> (equivalently, (1NZ)>) is the type of all (pre-)values decorated
with a zipper. The formal definition is more involved (see Appendix A) but the
intuition is simple: a type (u1)τ1 is a subtype of (u2)τ2 if u1 ≤ u2 and τ2 is a
prefix (modulo type equivalence and subtyping) of τ1. The prefix containment

7

translates the intuition that the more we know about the context surrounding a
value, the more numerous are the situations in which it can be safely used. For
instance, in XML terms, if we have a function that expects an element whose
parent’s first child is an integer, then we can safely apply this function to an
element whose type indicates that its parent’s first child has type (a subtype of)
integer and that its grandparent is, say, tagged by a.

Finally, as for pre-types, the subtyping relation for types is decidable in
EXPTIME. This is easily shown by producing a straightforward linear encoding
of zipper types and zipper values in pre-types and pre-values, respectively (the
encoding is given in Definition 16 in Appendix A).

2.3 Operators and Accumulators

As previously explained, our calculus includes accumulators and is parameterized
by a set O of operators. These have the following formal definitions:

Definition 2 (Operator). An operator is a 4-tuple (o, no,
o
;,

o→) where o is
the name (symbol) of the operator, no is its arity, o

; ⊆ Vno × E ∪ {Ω} is its
reduction relation, and o→ : T no → T is its typing function.

In other words, an operator is an applicative symbol, equipped with both a
dynamic (;) and a static (→) semantics. The reason for making o

; a relation
is to account for non-deterministic operators (e.g., random choice). Note that an
operator may fail, thus returning the special value Ω during evaluation.

Definition 3 (Accumulator). An accumulator ẋ is a variable equipped with
a binary operator Op(ẋ) ∈ O and initial value Init(ẋ) ∈ V.

2.4 Patterns

Now that we have defined types and operators, we can define patterns. Intu-
itively, patterns are types with capture variables that are used either to extract
subtrees from an input value or to test its “shape”. As before, we first recall the
definition of standard CDuce patterns (here called pre-patterns), enrich them
with accumulators, and then extend the whole with zippers.

A pre-pattern q, as defined in Figure 2, is either a type constraint t, or a cap-
ture variable x , or an accumulator ẋ , or a pair (q1, q2), or an alternative q1|q2, or
a conjunction q1 &&& q2, or a default case (x := c). It is a possibly infinite term that
is regular as for pre-types and contractive in the sense that every infinite branch
of q must contain an infinite number of occurrences of pair patterns. Moreover,
the subpatterns forming conjunctions must have distinct capture variables and
those forming alternatives the same capture variables. A zipper pattern ϕ is a
possibly infinite term that is both regular and contractive as for zipper types.
Finally, a pattern p is a possibly infinite term with the same requirements as
pre-patterns. Besides, the subpatterns q and ϕ forming a zipper pattern (q)ϕ
must have distinct capture variables. We denote by Var(p) the set of capture
variables occurring in p and by Acc(p) the set of accumulators occurring in p.

8

E ::= [] | (E, e) | (e, E) | (E)• | match E with p1→ e1| p2→ e2 | o(e, ..., E, ..., e)

(v1, . . . , vno)
o
; e

o(v1, . . . , vno) ; e

{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p1)};2 ` v/p1 ; σ, γ

match v with p1→ e1| p2→ e2 ; e1[σ; γ]

{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p1)};2 ` v/p1 ; Ω {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p2)};2 ` v/p2 ; σ, γ

match v with p1→ e1| p2→ e2 ; e2[σ; γ]

e; e′

E [e] ; E [e′] e; Ω

(
if no other rule applies
and e is not a value

)
Fig. 3: Operational semantics (reduction contexts and rules)

3 Semantics

In this section, the most technical one, we present the operational semantics and
the type system of our calculus, and state the expected soundness properties.

3.1 Operational Semantics

We define a call-by-value, small-step operational semantics for our core calculus,
using the reduction contexts and reduction rules given in Figure 3, where Ω is
a special value representing a runtime error.

Of course, most of the actual semantics is hidden (the careful reader will
have noticed that applications and projections are not explicitly included in the
syntax of our expressions). Most of the work happens either in the semantics
of operators or in the matching v/p of a value v against a pattern p. Such a
matching, if it succeeds (i.e., if it does not return Ω), returns two substitutions,
one (ranged over by γ) from the capture variables of p to values and the other
(ranged over by δ) from the accumulators to values. These two substitutions are
simultaneously applied (noted ei[σ; γ]) to the expression ei of the pattern pi that
succeeds, according to a first match policy (v/p2 is evaluated only if v/p1 fails).
Before explaining how to derive the pattern matching judgments “_ ` v/p; _”
(in particular, the meaning of the context on the LHS of the turnstile “`”), we
introduce a minimal set of operators: application, projections, zipper erasure,
and sequence building (we use sans-serif font for concrete operators). We only
give their reduction relation and defer their typing relation to Section 3.2.

Function application: the operator app(_,_) implements the usual β-reduction:

v, v′
app
; e[v/f ; v

′
/x] if v = µf (...)(x).e

and v, v′
app
; Ω if v is not a function. As customary, e[v/x] denotes the capture-

avoiding substitution of v for x in e, and we write e1 e2 for app(e1, e2).

Projection: the operator π1(_) (resp., π2(_)) implements the usual first (resp.,
second) projection for pairs:

(v1, v2)
πi
; vi for i ∈ {1, 2}

The application of the above operators returns Ω if the input is not a pair.

9

Zipper erasure: given a zipper-annotated value, it is sometimes necessary to
remove the zipper (e.g., to embed this value into a new data structure). This is
achieved by the following remove rm(_) and deep remove drm(_) operators:

(w)δ
rm
; w

v
rm
; v if v 6≡ (w)δ

w
drm
; w

(w)δ
drm
; w

(v1, v2)
drm
; (drm(v1), drm(v2))

The former operator only erases the top-level zipper (if any), while the latter
erases all zippers occurring in its input.

Sequence building: given a sequence (encoded à la Lisp) and an element, we define
the operators cons(_) and snoc(_) that insert an input value at the beginning
and at the end of the input sequence:

v, v′
cons
; (v, v′) v, ‘nil

snoc
; (v, ‘nil)

v, (v′, v′′)
snoc
; (v′, snoc(v, v′′))

The applications of these operators yield Ω on other inputs.

To complete our presentation of the operational semantics, it remains to
describe the semantics of pattern matching. Intuitively, when matching a value
v against a pattern p, subparts of p are recursively applied to corresponding
subparts of v until a base case is reached (which is always the case since all values
are finite). As usual, when a pattern variable is confronted with a subvalue, the
binding is stored as a substitution. We supplement this usual behavior of pattern
matching with two novel features. First, we add accumulators, that is, special
variables in which results are accumulated during the recursive matching. The
reason for keeping these two kinds of variables distinct is explained in Section 3.2
and is related to type inference for patterns. Second, we parameterize pattern
matching by a zipper of the current value so that it can properly update the
zipper when navigating the value (which should be of the pair form).

These novelties are reflected by the semantics of pattern matching, which is
given by the judgment σ; δ? ` v/p ; σ′, γ, where v is a value, p a pattern, γ a
mapping from Var(p) to values, and σ and σ′ are mappings from accumulators
to values. δ? is an optional zipper value, which is either δ or a none value 2 (we
consider (v)2 to be v). The judgment “returns” the result of matching the value
v against the pattern p (noted v/p), that is, two substitutions: γ for capture
variables and σ′ for accumulators. Since the semantics is given compositionally,
the matching may happen on a subpart of an “outer” matched value. Therefore,
the judgment records on the LHS of the turnstile the context of the outer value
explored so far: σ stores the values already accumulated during the matching,
while δ? tracks the possible zipper of the outer value (or it is 2 if the outer value
has no zipper). The context is “initialized” in the two rules of the operational
semantics of match in Figure 3, by setting each accumulator of the pattern to
its initial value (function Init()) and the outer zipper to 2.

Judgments for pattern matching are derived by the rules given in Figure 4.
The rules pat-acc, pat-pair-zip, and zpat-* are novel, as they extend pattern
matching with accumulators and zippers, while the others are derived from [4,9].

10

(` v : t)

σ; δ? ` v/t; σ,∅
pat-type

σ; δ? ` v/ẋ ; σ[Op(ẋ)(vδ? , σ(ẋ))/̇x],∅
pat-acc

σ; δ? ` v/x ; σ, {x 7→ vδ?}
pat-var

σ; δ? ` v/(x := c) ; σ, {x 7→ c}
pat-def

σ;2 ` v1/p1 ; σ′, γ1 σ′;2 ` v2/p2 ; σ′′, γ2

σ;2 ` (v1, v2)/(p1, p2) ; σ′′, γ1 ⊕ γ2
pat-pair

σ; L (w1, w2)δ · δ ` w1/p1 ; σ′, γ1 σ′;R (w1, w2)δ · δ ` w2/p2 ; σ′′, γ2

σ; δ ` (w1, w2)/(p1, p2) ; σ′′, γ1 ⊕ γ2
pat-pair-zip

σ; δ? ` v/p1 ; σ′, γ

σ; δ? ` v/p1| p2 ; σ′, γ
pat-or1

σ; δ? ` v/p1 ; Ω σ; δ? ` v/p2 ; σ′, γ

σ; δ? ` v/p1| p2 ; σ′, γ
pat-or2

σ; δ? ` v/p1 ; σ′, γ1 σ′; δ? ` v/p2 ; σ′′, γ2

σ; δ? ` v/p1&&& p2 ; σ′′, γ1 ⊕ γ2
pat-and

σ; δ ` w/q ; σ′, γ1 σ′ ` δ/ϕ; σ′′, γ2

σ;2 ` (w)δ/(q)ϕ ; σ′′, γ1 ⊕ γ2
pat-zip

(` δ : τ)
σ ` δ/τ ; σ,∅

zpat-type

σ;2 ` (w)δ/p; σ′, γ1
σ′ ` δ/ϕ; σ′′, γ2 γ = γ1 ⊕ γ2
σ ` L (w)δ · δ/L p · ϕ; σ′′, γ

zpat-left

σ;2 ` (w)δ/p; σ′, γ1
σ′ ` δ/ϕ; σ′′, γ2 γ = γ1 ⊕ γ2
σ ` R (w)δ · δ/R p · ϕ; σ′′, γ

zpat-right

σ ` δ/ϕ1 ; σ′, γ

σ ` δ/ϕ1|ϕ2 ; σ′, γ
zpat-or1

σ ` δ/ϕ1 ; Ω σ ` δ/ϕ2 ; σ′, γ

σ ` δ/ϕ1|ϕ2 ; σ′, γ
zpat-or2

(otherwise)

σ; δ? ` v/p; Ω
pat-error

(otherwise)

σ ` δ/ϕ; Ω
zpat-error

where γ1 ⊕ γ2
def
= {x 7→ γ1(x) | x ∈ dom(γ1)\dom(γ2)}
∪ {x 7→ γ2(x) | x ∈ dom(γ2)\dom(γ1)}
∪ {x 7→ (γ1(x), γ2(x)) | x ∈ dom(γ1) ∩ dom(γ2)}

Fig. 4: Pattern matching

There are three base cases for matching: testing the input value against a type
(rule pat-type), updating the environment σ for accumulators (rule pat-acc),
or producing a substitution γ for capture variables (rules pat-var and pat-def).
Matching a pattern (p1, p2) only succeeds if the input is a pair and the matching
of each subpattern against the corresponding subvalue succeeds (rule pat-pair).
Furthermore, if the value being matched was below a zipper (i.e., the current
zipper context is a δ and not—as in pat-pair— 2), we update the current zipper
context (rule pat-pair-zip); notice that in this case the matched value must be a
pair of pre-values since zipped values cannot be nested. An alternative pattern
p1|p2 first tries to match the pattern p1 and if it fails, tries the pattern p2 (rules
pat-or1 and pat-or2). The matching of a conjunction pattern p1 &&& p2 succeeds if
and only if the matching of both patterns succeeds (rule pat-and). For a zipper
constraint (q)ϕ, the matching succeeds if and only if the input value is annotated
by a zipper, e.g., (w)δ, and both the matching of w with q and δ with ϕ succeed

11

(rule pat-zip). It requires the zipper context to be 2 since we do not allow nested
zipped values. When matching w with q, we record the zipper δ into the context
so that it can be updated (in the rule pat-pair-zip) while navigating the value.

The matching of a zipper pattern ϕ against a zipper δ (judgments σ ` δ/ϕ;

σ′, γ derived by the zpat-* rules) is straightforward: it succeeds if both ϕ and δ are
built using the same constructor (either L or R) and the componentwise matching
succeeds (rules zpat-left and zpat-right). If the zipper pattern is a zipper type,
the matching tests the input zipper against the zipper type (rule zpat-type),
and alternative zipper patterns ϕ1|ϕ2 follow the same first match policy as
alternative patterns. If none of the rules is applicable, the matching fails (rules
pat-error and zpat-error). Note that initially the environment σ contains Init(ẋ)
for each accumulator ẋ in Acc(p) (rules for match in Figure 3).

Intuitively, γ is built when returning from the recursive descent in p, while σ is
built using a fold -like computation. It is the typing of such fold-like computations
that justifies the addition of accumulators (instead of relying on plain functions).
But before presenting the type system of the language, we illustrate the behavior
of pattern matching by some examples.

Example 4. Let v ≡ (2, (‘true, (3, ‘nil))), Init(ẋ) = ‘nil, Op(ẋ) = cons, and
σ ≡ {ẋ 7→ ‘nil}. Then, we have the following matchings:
1. σ;2 ` v/(int, (x ,_)) ; ∅, {x 7→ ‘true}
2. σ;2 ` v/µX.((x &&& int|_, X)|(x := ‘nil)) ; ∅, {x 7→ (2, (3, ‘nil))}
3. σ;2 ` v/µX.((ẋ , X)|‘nil) ; {ẋ 7→ (3, (‘true, (2, ‘nil)))},∅

In the first case, the input v (the sequence [2 ‘true 3] encoded à la Lisp)
is matched against a pattern that checks if the first element has type int (rule
pat-type), binds the second element to x (rule pat-var), and ignores the rest of
the list (rule pat-type, since the anonymous variable “_” is just an alias for 1).

The second case is more involved since the pattern is recursively defined.
Because of the first match policy of rule pat-or1, the product part of the pattern
is matched recursively until the atom ‘nil is reached. When that is the case, the
variable x is bound to a default value ‘nil. When returning from this recursive
matching, since x occurs both on the left and on the right of the product (in
x &&& int and in X itself), a pair of the binding found in each part is formed (third
set in the definition of ⊕ in Figure 4), thus yielding a mapping {x 7→ (3, ‘nil)}.
Returning again from the recursive call, only the “_” part of the pattern matches
the input ‘true (since it is not of type int, the intersection test fails). Therefore,
the binding for this step is only the binding for the right part (second case of
the definition of ⊕). Lastly, when reaching the top-level pair, x &&& int matches 2
and a pair is formed from this binding and the one found in the recursive call,
yielding the final binding {x 7→ (2, (3, ‘nil))}.

The third case is more intuitive. The pattern just recurses the input value,
calling the accumulation function for ẋ along the way for each value against
which it is confronted. Since the operator associated with ẋ is cons (which builds
a pair of its two arguments) and the initial value is ‘nil, this has the effect of
computing the reversal of the list.

12

Note the key difference between the second and third case. In both cases,
the structure of the pattern (and the input) dictates the traversal, but in the
second case, it also dictates how the binding is built (if v was a tree and not
a list, the binding for x would also be a tree in the second case). In the third
case, the way the binding is built is defined by the semantics of the operator
and independent of the input. This allows us to reverse sequences or flatten tree
structures, both of which are operations that escape the expressiveness of regular
tree languages/regular patterns, but which are both necessary to encode XPath.

3.2 Type System

The main difficulty in devising the type system is to type pattern matching and,
more specifically, to infer the types of the accumulators occurring in patterns.

Definition 5 (Accepted input of an operator). The accepted input of an
operator (o, n,

o
;,

o→) is the set I(o), defined as:
I(o) = {(v1, ..., vn)∈Vn | (((v1, ..., vn)

o
;e) ∧ (e;∗v))⇒ v 6=Ω}

Definition 6 (Exact input). An operator o has an exact input if and only if
I(o) is (the interpretation of) a type.

We can now state a first soundness theorem, which characterizes the set of
all values that make a given pattern succeed:

Theorem 7 (Accepted types). Let p be a pattern such that for every ẋ
in Acc(p), Op(ẋ) has an exact input. Then, the set of all values v such that
{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)};2 ` v/p 6; Ω is a type. We call this set the accepted
type of p and denote it by *p+.

We next define the type system for our core calculus, in the form of a judg-
ment Γ ` e : t which states that in a typing environment Γ (i.e., a mapping from
variables and accumulators to types) an expression e has type t. This judgment
is derived by the set of rules given in Figure 10 in Appendix. Here, we show only
the most important rules, namely those for accumulators and zippers:

Γ ` ẋ : Γ (ẋ)

` w : t ` δ : τ t ≤ 1NZ

Γ ` (w)δ : (t)τ

` e : t t ≤ 1NZ

Γ ` (e)• : (t)•

which rely on an auxiliary judgment ` δ : τ stating that a zipper δ has zipper
type τ . The rule for operators is:

∀i = 1..no, Γ ` ei : ti t1, . . . , tno

o→ t

Γ ` o(e1, . . . , eno) : t
for o ∈ O

which types operators using their associated typing function. Last but not least,
the rule to type pattern matching expressions is:

t ≤ *p1+ ∨ *p2+
t1 ≡ t ∧ *p1+ t2 ≡ t ∧ ¬*p1+
Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)}

Γ ` e : t
Γi ≡ 2∼ ti/pi Γ ′i ≡ Σi;2∼ ti�pi
Γ ∪ Γi ∪ Γ ′i ` ei : t′i

Γ ` match e with p1→ e1| p2→ e2 :
∨

{i | ti 6'0}

t′i
(i = 1, 2)

13

This rule requires that the type t of the matched expression is smaller than
*p1+ ∨ *p2+ (i.e., the set of all values accepted by any of the two patterns), that
is, that the matching is exhaustive. Then, it accounts for the first match policy
by checking e1 in an environment inferred from values produced by e and that
match p1 (t1 ≡ t ∧ *p1+) and by checking e2 in an environment inferred from
values produced by e and that do not match p1 (t2 ≡ t ∧ ¬*p1+). If one of these
branches is unused (i.e., if ti ' 0 where ' denotes semantic equivalence, that is,
≤ ∩ ≥), then its type does not contribute to the type of the whole expression
(cf. §4.1 of [4] to see why, in general, this must not yield an “unused case” error).
Each right-hand side ei is typed in an environment enriched with the types
for capture variables (computed by 2∼ ti/pi) and the types for accumulators
(computed by Σi;2∼ ti�pi). While the latter is specific to our calculus, the
former is standard except it is parameterized by a zipper type as for the semantics
of pattern matching (its precise computation is described in [9] and already
implemented in the CDuce compiler except the zipper-related part: see Figure 11
in Appendix for the details). As before, we write τ ? to denote an optional zipper
type, i.e., either τ or a none type 2, and consider (t)2 to be t.

To compute the types of the accumulators of a pattern p when matched
against a type t, we first initialize an environment Σ by associating each ac-
cumulator ẋ occurring in p with the singleton type for its initial value Init(ẋ)
(Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)}). The type environment is then computed by
generating a set of mutually recursive equations where the important ones are
(see Figure 12 in Appendix for the complete definition):

Σ; τ ?∼ t�ẋ = Σ[s/̇x] if (t)τ? , Σ(ẋ)
Op(ẋ)→ s

Σ; τ ?∼ t�p1| p2 = Σ; τ ?∼ t�p1 if t ≤ *p1+

Σ; τ ?∼ t�p1| p2 = Σ; τ ?∼ t�p2 if t ≤ ¬*p1+

Σ; τ ?∼ t�p1| p2 = (Σ; τ ?∼ (t ∧ *p1+)�p1)
⊔

(Σ1; τ ?∼ (t ∧ ¬*p1+)�p2) otherwise

When an accumulator ẋ is matched against a type t, the type of the accumulator
is updated in Σ, by applying the typing function of the operator associated with
ẋ to the type (t)τ? and the type computed thus far for ẋ , namely Σ(ẋ). The other
equations recursively apply the matching on the subcomponents while updating
the zipper type argument τ ? and merge the results using the “t” operation. This
operation implements the fact that if an accumulator ẋ has type t1 in a subpart
of a pattern p and type t2 in another subpart (i.e., both subparts match), then
the type of ẋ is the union t1 ∨ t2.

The equations for computing the type environment for accumulators might be
not well-founded. Both patterns and types are possibly infinite (regular) terms
and therefore one has to guarantee that the set of generated equations is finite.
This depends on the typing of the operators used for the accumulators. Before
stating the termination condition (as well as the soundness properties of the type
system), we give the typing functions for the operators we defined earlier.

14

Function application: it is typed by computing the minimum type satisfying
the following subtyping relation: s, t

app→ min{t′ | s ≤ t→ t′}, provided that
s ≤ t→ 1 (this min always exists and is computable: see [10]).

Projection: to type the first and second projections, we use the property that
if t ≤ 1 × 1, then t can be decomposed in a finite union of product types (we
use Πi to denote the set of the i-th projections of these types: see Lemma 19 in
Appendix B for the formal definition): t πi→

∨
s∈Πi(t)

s, provided that t ≤ 1×1.

Zipper erasure: the top-level erasure rm→ simply removes the top-level zipper
type annotation, while the deep erasure drm→ is typed by recursively removing
the zipper annotations from the input type. Their precise definition can be found
in Appendix B.4.

Sequence building: it is typed in the following way:

t1, ‘nil
cons→ µX.((t1 ×X) ∨ ‘nil)

t1, µX.((t2 ×X) ∨ ‘nil)
cons→ µX.(((t1 ∨ t2)×X) ∨ ‘nil)

t1, ‘nil
snoc→ µX.((t1 ×X) ∨ ‘nil)

t1, µX.((t2 ×X) ∨ ‘nil)
snoc→ µX.(((t1 ∨ t2)×X) ∨ ‘nil)

Notice that the output types are approximations: the operator “cons(_)” is less
precise than returning a pair of two values since, for instance, it approximates
any sequence type by an infinite one (meaning that any information on the length
of the sequence is lost) and approximates the type of all the elements by a single
type which is the union of all the elements (meaning that the information on the
order of elements is lost). As we show next, this loss of precision is instrumental
in typing accumulators and therefore pattern matching.

Example 8. Consider the matching of a pattern p against a value v of type t:

p ≡ µX.((ẋ &&& (‘a|‘b))|‘nil|(X,X))
v ≡ (‘a, ((‘a, (‘nil, (‘b, ‘nil))), (‘b, ‘nil)))
t ≡ µY.((‘a× (Y × (‘b× ‘nil))) ∨ ‘nil)

where Op(ẋ) = snoc and Init(ẋ) = ‘nil. We have the following matching and
type environment:

{ẋ 7→ ‘nil};2 ` v/p ; {ẋ 7→ (‘a, (‘a, (‘b, (‘b, ‘nil))))},∅
{ẋ 7→ ‘nil};2∼ t�p = {ẋ 7→ µZ.(((‘a ∨ ‘b)× Z) ∨ ‘nil)}

Intuitively, with the usual sequence notation (precisely defined in Section 4),
v is nothing but the nested sequence [[[‘a [[[‘a [[[]]] ‘b]]] ‘b]]] and pattern matching
just flattens the input sequence, binding ẋ to [[[‘a ‘a ‘b ‘b]]]. The type environ-
ment for ẋ is computed by recursively matching each product type in t with
the pattern (X,X), the singleton type ‘a or ‘b with ẋ &&& (‘a|‘b), and ‘nil
with ‘nil. Since the operator associated with ẋ is snoc and the initial type is
‘nil, when ẋ is matched against ‘a for the first time, its type is updated to
µZ.((‘a× Z) ∨ ‘nil). Then, when ẋ is matched against ‘b, its type is updated

15

to the final output type which is the encoding of [[[(‘a ∨ ‘b)∗]]]. Here, the approx-
imation in the typing function for snoc is important because the exact type of ẋ
is the union for n∈N of [[[‘an ‘bn]]], that is, the sequences of ‘a’s followed by the
same number of ‘b’s, which is beyond the expressivity of regular tree languages.

We conclude this section with statements for type soundness of our calculus
(see Appendix C for more details).

Definition 9 (Sound operator). An operator (o, n,
o
;,

o→) is sound if and
only if ∀v1, . . . , vno ∈ V such that ` v1 : t1, . . . , ` vno : tno , if t1, . . . , tno

o→ s

and v1, . . . , vno

o
; e then ` e : s.

Theorem 10 (Type preservation). If all operators in the language are sound,
then typing is preserved by reduction, that is, if e; e′ and ` e : t, then ` e′ : t.
In particular, e′ 6= Ω.

Theorem 11. The operators app, π1, π2, drm, rm, cons, and snoc are sound.

4 Surface Language

In this section, we define the “surface” language, which extends our core calculus
with several constructs:

• Sequence expressions, regular expression types and patterns
• Sequence concatenation and iteration
• XML types, XML document fragment expressions
• XPath-like patterns

While most of these traits are syntactic sugar or straightforward extensions, we
took special care in their design so that: (i) they cover various aspects of XML
programming and (ii) they are expressive enough to encode a large fragment of
XQuery 3.0.

Sequences: we first add sequences to expressions

e ::= . . . | [[[e · · · e]]]

where a sequence expression denotes its encoding à la Lisp, that is, [[[e1 · · · en]]]
is syntactic sugar for (e1, (. . ., (en, ‘nil))).

Regular expression types and patterns: regular expressions over types and pat-
terns are defined as

(Regexp. over types) R ::= t | R|R | RR | R∗ | ε
(Regexp. over patterns) r ::= p | r|r | r r | r∗ | ε

with the usual syntactic sugar: R? ≡ R|ε and R+ ≡ RR∗ (likewise for regexps
on patterns). We then extend the grammar of types and patterns as follows:

t ::= . . . | [[[R]]] p ::= . . . | [[[r]]]

Regular expression types are encoded using recursive types (similarly for reg-
ular expression patterns). For instance, [[[int∗ bool?]]] can be rewritten into the
recursive type µX.‘nil ∨ (bool× ‘nil) ∨ (int×X).

16

Sequence concatenation is added to the language in the form of a binary infix
operator _@_ defined by:

‘nil, v
@
; v

(v1, v2), v
@
; (v1, v2 @ v)

[[[R1]]], [[[R2]]]
@→ [[[R1R2]]]

Note that this operator is sound but cannot be used to accumulate in patterns
(since it does not guarantee the termination of type environment computation).
However, it has an exact typing.

Sequence iteration is added to iterate transformations over sequences without
resorting to recursive functions. This is done by a family of “transform”-like
operators trsp1,p2,e1,e2(_), indexed by the patterns and expressions that form
the branches of the transformation (we omit trs’s indexes in trs

;):

‘nil
trs
; ‘nil

(v1, v2)
trs
; (match v1 with p1→ e1| p2→ e2) @ trsp1,p2,e1,e2(v2)

Intuitively, the construct “transform e with p1→ e1| p2→ e2” iterates all the
“branches” over each element of the sequence e. Each branch may return a se-
quence of results which is concatenated to the final result (in particular, a branch
may return “‘nil” to delete elements that match a particular pattern).

XML types, patterns, and document fragments: XML types (and thus patterns)
can be represented as a pair of the type of the label and a sequence type rep-
resenting the sequence of children, annotated by the zipper that denotes the
position of document fragment of that type. We denote by <t1>t2τ the type
(t1 × t2)τ , where t1 ≤ 1basic, t2 ≤ [[[1∗]]], and τ is a zipper type. We simply write
<t1>t2 when τ = >, that is, when we do not have (or do not require) any in-
formation on the zipper type. The invariant that XML values are always given
with respect to a zipper must be maintained at the level of expressions. This is
ensured by extending the syntax of expressions with the construct:

e ::= . . . | <e>e

where <e1>e2 is syntactic sugar for (e1, drm(e2))•. The reason for this encoding
is best understood with the following example:

Example 12. Consider the code:

1 match v with
2 (<a>[[[_ x _∗]]])> -> [[[x]]]
3 | _ -> <c>[[[]]]

According to our definition of pattern matching, x is bound to the second XML
child of v and retains its zipper (in the right-hand side, we could navigate from
x up to v or even above if v is not the root). However, when x is embedded
into another document fragment, the zipper must be erased so that accessing
the element associated with x in the new value can create an appropriate zipper
(with respect to its new root [[[. . .]]]).

17

self0{x | t} ≡ ẋ &&& t |

self{x | t} ≡ (self0{x | t})>
child{x | t} ≡ (< >[[[(self0{x | t})∗]]] |)>

desc-or-self0{x | t} ≡ µX.(self0{x | t}&&& < >[[[X∗]]]) |

desc-or-self{x | t} ≡ (desc-or-self0{x | t})>
desc{x | t} ≡ (< >[[[(desc-or-self0{x | t})∗]]] |)>

foll-sibling{x | t} ≡ ()L (, [[[(self0{x | t})∗]]])>·>

parent{y | t} ≡ ()L ·µX.((R (ẏ&&& t|)>· (L ·>|•)) | R ·X) |

prec-sibling{y | t} ≡ ()L ·µX.(R (ẏ&&& t,)>·X) | (R ·(L ·>|•)) |

anc{y | t} ≡ ()L ·µX.µY.((R (ẏ&&& t|)>·(L ·X|•)) | R ·Y) |

anc-or-self{y | t} ≡ (self{y | t}&&& anc{y | t}) |

where Op(ẋ) = snoc, Init(ẋ) = ‘nil, Op(ẏ) = cons, and Init(ẏ) = ‘nil

Fig. 5: Encoding of axis patterns

XPath-like patterns are one of the main motivations for this work. The syntax
of patterns is extended as follows:

(Patterns) p ::= . . . | axis{x | t}

(Axes) axis ::= self | child | desc | desc-or-self | foll-sibling
| parent | anc | anc-or-self | prec-sibling

The semantics of axis{x | t} is to capture in x all fragments of the matched docu-
ment along the axis that have type t. We show in Appendix D how the remaining
two axes (following and preceding) as well as “multi-step” XPath expressions can
be compiled into this simpler form. We encode axis patterns directly using recur-
sive patterns and accumulators, as described in Figure 5. First, we remark that
each pattern has a default branch “. . .| ” which implements the fact that even if
a pattern fails, the value is still accepted, but the default value ‘nil of the accu-
mulator is returned. The so-called “downward” axes —self, child, desc-or-self, and
desc— are straightforward. For self, the encoding checks that the matched value
has type t using the auxiliary pattern self0, and that the value is annotated with
a zipper using the zipper type annotation (_)>. The child axis is encoded by
iterating self0 on every child element of the matched value. The recursive axis
desc-or-self is encoded using the auxiliary pattern desc-or-self0 which matches
the root of the current element (using self0) and is recursively applied to each
element of the sequence. Note the double recursion: vertically in the tree using a
recursive binder and horizontally at a given level using a star. The non-reflexive
variant desc evaluates desc-or-self0 on every child element of the input.

The other axes heavily rely on the binary encoding of XML values and are
better explained on an example. Consider the XML document and its binary
tree representation given in Figure 6. The following siblings of a node (e.g., <c>)
are reachable by inspecting the first element of the zipper, which is necessarily
an L one. This parent is the pair representing the sequence whose tail is the
sequence of following siblings (R3 and R2 in the figure). Applying the self{x | t}
axis on each element of the tail therefore filters the following siblings that are

18

<>

a
L4

(,)

<>

b

(,)

<>

c

‘nil

(,)

<>

d

‘nil

(,)

<>

e

(,)

<>

f

‘nil
L1

‘nil
R1L2

‘nil
R2R3R4L3

‘nil
R5

Fig. 6: A binary tree representation of an XML document
doc = <a>[[<c>[] <d>[] <e>[<f>[]]]]

sought (<d> and <e> in the figure). The parent axis is more involved. Consider
for instance node <e>. Its parent in the XML tree can be found in the zipper
associated with <e>. It is the last R component of the zipper before the next
L component (in the figure, the zipper of <e> starts with L2, then contains its
previous siblings reachable by R2 and R3, and lastly its parent reachable by R4

(which points to node). The encoding of the parent axis reproduces this walk
using a recursive zipper pattern, whose base case is the last R before the next L,
or the last R before the root (which has the empty zipper •). The prec-sibling axis
uses a similar method and collects every node reachable by Rs and stops before
the parent node (again, for node <e>, the preceding siblings are reached by R2

and R3). The anc axis simply iterates the parent axis recursively until there is
no L zipper anymore (i.e., until the root of the document has been reached). In
the example, starting from node <f>, the zippers that denote the ancestors are
the ones starting with an R, just before L2, L3, and L4 which is the root of the
document. Lastly, anc-or-self is simply a combination of anc and self.

For space reasons, the encoding of XPath into the navigational patterns is
given in Appendix D. We just stress that, with that encoding, the CDuce version
of the “get_links” function of the introduction becomes as compact as in XQuery:

let get_links (page: <_>_) (print: <a>_ -> <a>_) : [<a>_ *] =
transform page/desc::a[not(anc::b)] with x -> [(print x)]

As a final remark, one may notice that patterns of forward axes use snoc (i.e.,
they build the sequence of the results in order), while reverse axes use cons
(thus reversing the results). The reason for this difference is to implement the
semantics of XPath axis steps which return elements in document order.

5 XQuery 3.0

This section shows that our surface language can be used as a compilation target
for XQuery 3.0 programs. We proceed in two steps. First, we extend the XQuery
1.0 Core fragment and XQH defined by Benedikt and Vu [3] to our own XQuery
3.0 Core, which we call XQ+

H . As with its 1.0 counterpart, XQ+
H

1. can express all navigational XQuery programs, and

19

query ::= () | c | <l>query</l> | query, query | x | x/axis::test
| for x in query return query | some x in query statisfies query

| query(query, . . . ,query) | fun x1 : t1 , . . . , xn : tn as t. query

| switch query
case c return query
default return query

| typeswitch query
case t as x return query
default return query

test ::= node() | text() | l (node test)

where t ranges over types and l ranges over element names.

Fig. 7: Syntax of XQ+
H

2. explicitly separates navigational aspects from data value ones.

We later use the above separation in the translation to straightforwardly map
navigational XPath expressions into extended CDuce pattern matching, and to
encode data value operations (for which there can be no precise typing) by built-
in CDuce functions.

5.1 XQuery 3.0 Core

Figure 7 shows the definition of XQ+
H , an extension of XQH. To the best of our

knowledge, XQH was the first work to propose a “Core” fragment of XQuery
which abstracts away most of the idiosyncrasies of the actual specification while
retaining essential features (e.g., path navigation). XQ+

H differs from XQH by the
last three productions (in the yellow/gray box): it extends XQH with type and
value cases (described informally in the introduction) and with type annotations
on functions (which are only optional in the standard). It is well known (e.g.,
see [24]) that full XPath expressions can be encoded using the XQuery fragment
in Figure 7 (see Appendix E for an illustration).

Our translation of XQuery 3.0, defined in Figure 8, thus focuses on XQ+
H and

has following characteristics. If one considers the “typed” version of the standard,
that is, XQuery programs where function declarations have an explicit signature,
then the translation to our surface language (i) provides a formal semantics and
a typechecking algorithm for XQuery and (ii) enjoys the soundness property
that the original XQuery programs do not yield runtime errors. In the present
work, we assume that the type algebra of XQuery is the one of CDuce, rather
than XMLSchema. Both share regular expression types for which subtyping is
implemented as the inclusion of languages, but XMLSchema also features nom-
inal subtyping. The extension of CDuce types with nominal subtyping is beyond
the scope of this work and is left as future work.

In XQuery, all values are sequences: the constant “42” is considered as the
singleton sequence that contains the element “42”. As a consequence, there are
only “flat” sequences in XQuery and the only way to create nested data structures
is to use XML constructs. The difficulty for our translation is thus twofold:
(i) it needs to embed/extract values explicitly into/from sequences and (ii) it

20

J()KXC = ‘nil

JcKXC = [[[c]]]

J<l>q</l>KXC = [[[<l>JqKXC]]]
Jq1, q2KXC = Jq1KXC @ Jq2KXC

J$xKXC = x

u

v
switch q1

case c return q2
default return q3

}

~

XC

=
match Jq1KXC with
[[[c]]]→ Jq2KXC

| _ → Jq3KXCu

v
typeswitch q1

case t as $x return q2
default return q3

}

~

XC

=
match Jq1KXC with
x &&& seq(t)→ Jq2KXC

|_→ Jq3KXC

J$x/axis::testKXC = transform x with axis{y | t(test)}→ y

Jfor $x in q1 return q2KXC = transform Jq1KXC with x → Jq2KXC
Jsome $x in q1 statisfies q2KXC = match (transform Jq1KXC with

x → match Jq2KXC with
[[[‘true]]] → [[[‘dummy]]]

| [[[‘false]]]→ [[[]]])
with ‘nil→ [[[‘false]]] | _ → [[[‘true]]]

Jfun $x1 : t1 , . . . , $xn : tn as t. qKXC = µ_seq(t1)×...×seq(tn)→seq(t)(x0).
match x0 with (x1, (. . . , xn))→ JqKXC

Jq(q1, . . . , qn)KXC = JqKXC (Jq1KXC , (. . . , JqnKXC))

where seq(t) ≡ (t ∧ [[[1∗]]]) ∨ ([[[t \ [[[1∗]]]]]])
and t(node()) ≡ 1, t(text()) ≡ String, t(l) ≡ <l>1

Fig. 8: Translation of XQ+
H into CDuce

also needs to disambiguate types: an XQuery function that takes an integer as
argument can also be applied to a sequence containing only one integer.

The translation is defined by a function J_KXC that converts an XQuery query
into a CDuce expression. It is straightforward and ensures that the result of a
translation JqKXC always has a sequence type. We assume that both languages
have the same set of variables and constants. An empty sequence is translated
into the atom ‘nil, a constant is translated into a singleton sequence contain-
ing that constant, and similarly for XML fragments. The sequence operator is
translated into concatenation. Variables do not require any special treatment.
An XPath navigation step is translated into the corresponding navigational pat-
tern, whereas “for in” loops are encoded similarly using the transform construct
(in XQuery, an XPath query applied to a sequence of elements is the concatena-
tion of the individual applications). The “switch” construct is directly translated
into a “match with” construct. The “typeswitch” construct works in a similar way
but special care must be taken with respect to the type t that is tested. Indeed,
if t is a sequence type, then its translation returns the sequence type, but if
t is something else (say int), then it must be embedded into a sequence type.
Interestingly, this test can be encoded as the CDuce type seq(t) which keeps
the part of t that is a sequence unchanged while embedding the part of t that
is not a sequence (namely t \ [[[1∗]]]) into a sequence type (i.e., [[[t \ [[[1∗]]]]]]). The
“some $x in q1 statisfies q2” expression iterates over the sequence that is the result
of the translation of q1, binding variable x in turn to each element, and evaluates
(the translation of) q2 in this context. If the evaluation of q2 yields the single-

21

Γ `xq q : s s ≤ t
Γ `xq q : t

Γ `xq q1 : [[[s∗]]] Γ, x : [[[s]]] `xq q2 : t t ≤ [[[1∗]]]
Γ `xq for $x in q1 return q2 : t

{ẏ 7→‘nil};2∼ s�axis{y | t(test)} = {ẏ 7→ t}
Γ `xq x : [[[s∗]]] t ≤ [[[1∗]]] t′ = min{t′ | t ≤ [[[t′∗]]]}

Γ `xq $x/axis::test : [[[t′∗]]]
typ-path

Γ `xq q : t

{
t 6≤ ¬[[[c]]] ⇒ Γ `xq q1 : s
t 6≤ [[[c]]] ⇒ Γ `xq q2 : s

Γ `xq

switch q
case c return q1
default return q2

: s

t1 = s ∧ seq(t) Γ, x : t1 `xq q1 : t′1
Γ `xq q : s t2 = s ∧ ¬seq(t) Γ `xq q2 : t′2

Γ `xq

typeswitch q
case t as $x return q1
default return q2

:
∨
{i | ti 6'0} t

′
i

Γ `xq q1 : [[[s∗]]] Γ, x : [[[s]]] `xq q2 : [[[bool]]]

Γ `xq some $x in q1 statisfies q2 : [[[bool]]]

Γ, x1 : seq(t1), · · · , xn : seq(tn) `xq q : seq(t)

Γ `xq fun $x1 : t1 , . . . , $xn : tn as t. q : seq(t1)× · · · × seq(tn)→ seq(t)

Γ `xq q : t1 × · · · × tn → t Γ `xq qi : ti (i = 1..n)

Γ `xq q(q, . . . , q) : t

Fig. 9: Typing rules for XQ+
H

ton sequence true, then we return a dummy non-empty sequence; otherwise,
we return the empty sequence. If the whole transform yields an empty sequence,
it means that none of the iterated elements matched satisfied the predicate q2
and therefore the whole expression evaluates to the singleton false, otherwise
it evaluates to the singleton true. Abstractions are translated into CDuce func-
tions, and the same treatment of “sequencing” the type is applied to the types of
the arguments and type of the result. Lastly, application is translated by building
nested pairs with the arguments before applying the function.

Not only does this translation ensure soundness of the original XQuery 3.0
programs, it also turns CDuce into a sandbox where one can experiment various
typing features that can be readily back-ported to XQuery afterwards.

5.2 Toward and Beyond XQuery 3.0

We now discuss the salient features and address some shortcomings of XQ+
H . First

and foremost, we can define a precise and sound type system directly on XQ+
H

as shown in Figure 9 (standard typing rules are omitted and for the complete
definition, see Appendix E). While most constructs are typed straightforwardly
(the typing rules are deduced from the translation of XQ+

H into CDuce) it is in-
teresting to see that the rules match those defined in XQuery Static Semantics
specification [24] (with the already mentioned difference that we use CDuce types
instead of XMLSchema). Two aspects however diverge from the standard. Our
use of CDuce’s semantic subtyping (rather than XMLSchema’s nominal subtyp-
ing), and the rule typ-path where we use the formal developments of Section 3
to provide a precise typing rule for XPath navigation. Deriving the typing rules
from our translation allows us to state the following theorem:

22

Theorem 13. If Γ `xq query : t, then Γ ` JqueryKXC : t.

A corollary of this theorem is the soundness of the XQ+
H type system (since the

translation of a well-typed XQ+
H program yields a well-typed CDuce program

with the same type).
While the XQ+

H fragment we present here is already very expressive, it does
not account for all features of XQuery. For instance, it does not feature data
value comparison or sorting (i.e., the order by construct of XQuery) nor does
it account for built-in functions such as position(), node identifiers, and so
on. However, it is known that features such as data value comparison make
typechecking undecidable (see for instance [1]). We argue that the main point
of this fragment is to cleanly separate structural path navigation from other
data value tests for which we can add built-in operators and functions, with an
hardcoded, ad-hoc typing rule.

Lastly, one may argue that, in practice, XQuery database engines do not
rely on XQuery Core for evaluation but rather focus on evaluating efficiently
large (multi-step, multi-predicate) XPath expressions in one go and, therefore,
that normalizing XQuery programs into XQ+

H programs and then translating the
latter into CDuce programs may seem overly naive. We show in Appendix D
that XPath expressions that are purely navigational can be rewritten in a single
pattern of the form: axis{x | t} which can then be evaluated very efficiently
(that is, without performing the unneeded extra traversals of the document that
a single step approach would incur).

6 Related Work and Conclusion

Our work tackles several aspects of XML programming, the salient being: (i)
encoding of XPath or XPath-like expressions (including reverse axes) into regular
types and patterns, (ii) recursive tree transformation using accumulators and
their typing, and (iii) type systems and typechecking algorithms for XQuery.

Regarding XPath and pattern matching, the work closest to ours is the im-
plementation of paths as patterns in XTatic. XTatic [11] is an object-oriented
language featuring XDuce regular expression types and patterns [16,17]. In [12],
Gapeyev and Pierce alter XDuce’s pattern matching semantics and encode a
fragment of XPath as patterns. The main difference with our work is that they
use a hard-coded all-match semantics (a variable can be bound to several sub-
terms) to encode the accumulations of recursive axes, which are restricted by
their data model to the “child” and “descendant” axes. Another attempt to use
path navigation in a functional language can be found in [19] where XPath-like
combinators are added to Haskell. Again, only child or descendant-like naviga-
tion is supported and typing is done in the setting of Haskell which cannot readily
be applied to XML typing (results are returned as homogeneous sequences).

Our use of accumulators is reminiscent of Macro Tree Transducers (MTTs,
[8]), that is, tree transducers (tree automata producing an output) that can also
accumulate part of the input and copy it in the output. It is well known that
given an input regular tree language, the type of the accumulators and results

23

may not be regular. Exact typing may be done in the form of backward type
inference, where the output type is given and a largest input type is inferred [20].
It would be interesting to use the backward approach to type our accumulators
without the approximation introduced for “cons” for instance.

For what concerns XQuery and XPath, several complementary works are of
interest. First, the work of Genevès et al. which encodes XPath and XQuery in
the µ-calculus ([14,15] where zippers to manage XPath reverse axes were first
introduced) supports our claim. Adding path expressions at the level of types
is not more expensive: subtyping (or equivalently satisfiability of particular for-
mulæ of the µ-calculus which are equivalent to regular tree languages) remains
EXPTIME, even with upward paths (or in our case, zipper types). In contrast,
typing path expressions and more generally XQuery programs is still a challeng-
ing topic. While the W3C’s formal semantics of XQuery [24] gives a polynomial
time typechecking algorithm for XQuery (in the absence of nested “let” or “for”
constructs), it remains far too imprecise (in particular, reverse axes are left un-
typed). Recently, Genevès et al. [13] also studied a problem of typing reverse
axes by using regular expressions of µ-calculus formulæ as types, which they call
focused-tree types. Since, as our zipped types, focused-tree types can describe
both the type of the current node and its context, their type system also gives
a precise type for reverse axis expressions. However, while focused-tree types
are more concise than zipper types, it is difficult to type construction of a new
XML document, and thus their type system requires an explicit type annotation
for each XML element. Furthermore, their type system does not feature arrow
types. That said, it will be quite interesting to combine their approach with ours.

We are currently implementing axis patterns and XPath expressions on top
of the CDuce compiler. Future work includes extensions to other XQuery con-
structs as well as XMLSchema, the addition of aggregate functions by associating
accumulators to specific operators, the inclusion of navigational expressions in
types so as to exploit the full expressivity of our zipped types (e.g., to type
functions that work on the ancestors of their arguments), and the application of
the polymorphic type system of [5,6] to both XQuery and navigational CDuce
so that for instance the function pretty defined in the introduction can be given
the following, far more precise intersection of two arrow types:
(γ -> [γ])

& (α\_ -> α\_)

This type (where α, β, and γ denote universally quantified type variables) pre-
cisely describes, by the arrow type on the first line, the transformation of the
sought links, and states, by the arrow on the second line, that in all the other
cases (i.e., for every type α different from the sought link) it returns the same
type as the input. This must be compared with the corresponding type in Fig-
ure 1, where the types of the attribute href, of the content of the a element, and
above all of any other value not matched by the first branch are not preserved.

Acknowledgments. We want to thank the reviewers of ESOP who gave de-
tailed suggestions to improve our presentation. This work was partially sup-
ported by the ANR TYPEX project n. ANR-11-BS02-007.

24

References

1. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
typechecking revisited. In PODS, pages 138–149. ACM, 2001.

2. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., 15(4):575–631, 1993.

3. M. Benedikt and H. Vu. Higher-order functions and structured datatypes. In
WebDB, pages 43–48, 2012.

4. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose
language. In ICFP, pages 51–63, 2003.

5. G. Castagna, K. Nguyễn, Z. Xu, and P. Abate. Polymorphic functions with set-
theoretic types. Part 2: Local type inference and type reconstruction. In POPL,
pages 289–302, 2015.

6. G. Castagna, K. Nguyễn, Z. Xu, H. Im, S. Lenglet, and L. Padovani. Polymorphic
functions with set-theoretic types. Part 1: Syntax, semantics, and evaluation. In
POPL, pages 5–17, 2014.

7. G. Castagna and Z. Xu. Set-theoretic foundation of parametric polymorphism and
subtyping. In ICFP, pages 94–106, 2011.

8. J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci.,
31(1):71–146, 1985.

9. A. Frisch. Théorie, conception et réalisation d’un langage adapté à XML. PhD
thesis, Université Paris 7 Denis Diderot, 2004.

10. A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. J. ACM,
55(4):1–64, 2008.

11. V. Gapeyev, F. Garillot, and B. C. Pierce. Statically typed document transforma-
tion: An Xtatic experience. In PLAN-X, 2006.

12. V. Gapeyev and B. C. Pierce. Paths into patterns. Technical Report MS-CIS-04-25,
University of Pennsylvania, Oct. 2004.

13. P. Genevès, N. Gesbert, and N. Layäıda. Xquery and static typing: Tackling the
problem of backward axes. Available at http://hal.inria.fr/hal-00872426, July
2014.

14. P. Genevès and N. Layäıda. Eliminating dead-code from XQuery programs. In
ICSE, 2010.

15. P. Genevès, N. Layäıda, and A. Schmitt. Efficient static analysis of XML paths
and types. In PLDI, 2007.

16. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. J.
Funct. Program., 13(6):961–1004, 2003.

17. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Trans. Internet Technol., 3(2):117–148, 2003.

18. G. Huet. The Zipper. J. Funct. Program., 7(5):549–554, 1997.
19. R. Lämmel. Scrap your boilerplate with XPath-like combinators. In POPL, 2007.
20. S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree

transducers. In PODS, 2005.
21. W3C: XPath 1.0. http://www.w3.org/TR/xpath, 1999.
22. W3C: XPath 2.0. http://www.w3.org/TR/xpath20, 2010.
23. W3C: XML Query. http://www.w3.org/TR/xquery, 2010.
24. XQuery 1.0 and XPath 2.0 Formal Semantics (Second Edition). http://www.w3.

org/TR/xquery-semantics/, 2010.
25. W3C: XQuery 3.0. http://www.w3.org/TR/xquery-3.0, 2014.
26. W3C: XML Schema. http://www.w3.org/XML/Schema, 2009.

25

http://hal.inria.fr/hal-00872426
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-3.0
http://www.w3.org/XML/Schema

Appendix

A Subtyping

In order to formally extend the subtyping relation defined in [10] to the types of
Section 2.2, it suffices to modify Definition 4.3 of [10] as done by Definition 15
(the reader can refer to [10] for the complete definitions of the notations used
there). However, before extending the subtyping relation, we need some auxiliary
definitions to give an interpretation of zipper types that is compatible with their
infinite nature.

Let T Z denote the set of zipper types. First of all, notice that the contrac-
tiveness condition on zipper types implies that the binary relation . ⊆ T Z ×T Z
defined by τ1 ∨ τ2 . τi and ¬τ . τ is Noetherian (that is, strongly normalizing).
This gives an induction principle on T Z that we use below.

Let D be a set and J_K : T → P(D) be a set-theoretic interpretation (as
defined in Definition 4.1 in [10], where T denotes the set of all types and P(D)
is the powerset of D). Let Z denote {Ld | d ∈ D} ∪ {Rd | d ∈ D}. We use Z∗ to
denote the free monoid on Z.

We define a binary predicate (s ∈JK τ) that is parametric in the set-theoretic
interpretation JK where s ∈ Z∗ and τ ∈ T Z . The truth value of (s ∈JK τ)
is defined by induction on the pair (s, τ) ordered lexicographically, using the
inductive structure for elements of Z∗ (these are finite sequences s of decorated
elements of D) and the induction principle we mentioned above for zipper types.
Here is the definition:

s ∈JK > = true
ε ∈JK • = true

R d · s ∈JK R (u)τ · τ = (s ∈JK τ) and (d ∈ JuK)
L d · s ∈JK L (u)τ · τ = (s ∈JK τ) and (d ∈ JuK)

s ∈JK τ1 ∨ τ2 = (s ∈JK τ1) or (s ∈JK τ2)
s ∈JK ¬τ = not(s ∈JK τ)
s ∈JK τ = false otherwise

This predicate is then used to define the following interpretation of zipper types:

Definition 14 (Zipper type interpretation). Let D be a set, J_K : T →
P(D) be a set-theoretic interpretation, and Z denote {Ld | d ∈ D}∪{Rd | d ∈ D}.
The interpretation JτK of a zipper type τ with respect to J_K is defined as:

JτK = {s ∈ Z∗ | s ∈JK τ}

Subtyping for zipper types is defined as τ <: τ ′
def
= JτK ⊆ Jτ ′K.

Finally, the interpretation of zipper types is used to extend Definition 4.3 of
[10] to our new types, as follows.

Definition 15 (Extensional interpretation). Let J_K : T → P(D) be a set-
theoretic interpretation in some set D. Let Z def

= {Ld | d ∈ D} ∪ {Rd | d ∈ D}
and Z∗ denote the free monoid on Z.

27

We define the associated extensional interpretation as the unique set-theoretic
interpretation

E(_) : T → P(ED)

(where ED = C +D2 + P(D ×DΩ) + (P(D)×Z∗)) such that:

E(b) = BJbK ⊆ C
E(t1 × t2) = Jt1K× Jt2K ⊆ D2

E(t1 → t2) = Jt1K→ Jt2K ⊆ P(D ×DΩ)
E((u)τ) = JuK× JτK ⊆ P(D)×Z∗

All the other definitions of [10] remain unchanged, in particular, those of a well-
founded model and of its induced subtyping relation.

In order to decide the subtyping relation induced by a model, a possibility
is to extend the definitions of Section 6 in [10] to account for the new zipper
type constructor. A simpler way is to use a well-founded model, encode both
zipper types and zipper values in the types and values of [10] (our pre-type and
pre-values) via the encoding function Enc(_) below, and prove that Jτ1K ⊆ Jτ2K
if and only if Enc(τ1) ≤ Enc(τ2).

Definition 16 (Encoding of zippers). Zippers and zipper types are encoded
(inductively) into pairs and (coinductively) into product types, respectively, as
follows:

Enc(L (w)δ · δ) ≡ ((‘L, w),Enc(δ))
Enc(R (w)δ · δ) ≡ ((‘R, w),Enc(δ))

Enc(•) ≡ ‘nil

Enc(L (u)τ · τ) ≡ (‘L× u)× Enc(τ)
Enc(R (u)τ · τ) ≡ (‘R× u)× Enc(τ)

Enc(>) ≡ µX.((‘L ∨ ‘R)× 1)×X ∨ ‘nil

Enc(•) ≡ ‘nil

Enc(¬τ) ≡ Enc(>) \ Enc(τ)
Enc(τ1 ∨ τ2) ≡ Enc(τ1) ∨ Enc(τ2)

The termination of the subtyping algorithm in [10] implies the termination of the
subtyping algorithm on (the encoding of) our extended type algebra. Since the
encoding is linear on the size of terms, both algorithms have the same complexity.

As an aside, note that the whole calculus presented in this paper can be
faithfully encoded in CDuce without affecting the complexity of the algorithms:
it is straightforward to extend the encodings of Definition 16 to E and T .

All it remains to prove is the soundness and completeness of the encoding,
namely:

Theorem 17. Let ≤ be a subtyping relation for the calculus in [10] induced by a
well-founded model. Then, there exist a set D and a set-theoretic interpretation
J_K : T → P(D) such that for all τ1, τ2 ∈ T Z , the following holds:

Jτ1K ⊆ Jτ2K ⇐⇒ Enc(τ1) ≤ Enc(τ2)

28

Proof. Let us use λFCB to denote the λ-calculus defined in [10]. Let ≤ be any
subtyping relation for λFCB induced by a well-founded model. Theorem 5.5 in [10]
states that Enc(τ1)≤Enc(τ2) if and only if JEnc(τ1)KV ⊆ JEnc(τ2)KV , where J_KV
is the value interpretation for the types of λFCB defined as JtKV

def
= {v | ` v : t}

(where v and t respectively range over the values and types of λFCB).
The simplest way to prove this theorem, then, is to produce a set D and

interpretation J_K : T → P(D) such that there is a one-to-one correspondence
between JτK and JEnc(τ)KV .

To that end, take as D the set of all values of λFCB, that is, J1KV , and as
interpretation any interpretation that on the pre-values of our calculus (which
are the values of λFCB) behaves as J_KV , that is, JwK = JwKV for every pre-
value w. Next, we define an embedding function f : Z∗ ↪→ JEnc(>)KV from the
resulting Z∗ to set of values of type Enc(>), by induction on the length of the
elements of Z∗ as follows:

f(ε) = ‘nil
f(Lw · s) = ((‘L, w), f(s))
f(Rw · s) = ((‘R, w), f(s))

We can prove that f is injective by induction on Z∗ and surjective by induction
on JEnc(>)KV (recall that, contrary to types, values are inductively defined).

Since s ∈ JτK ⇐⇒ s ∈JK τ , then to prove that f is a one-to-one mapping
from JτK to JEnc(τ)KV , it suffices to prove that for all s ∈ Z∗ and τ ∈ T Z ,
s ∈JK τ ⇐⇒ f(s) ∈ JEnc(τ)KV . This can be easily proved by induction on
the pair (s, τ) ordered lexicographically, by performing a case analysis on the
definition of ∈JK .

29

Zipper typing rules ` δ : τ

[ZT-Root]

` • : •

[ZT-Sub]

` δ : τ τ <: τ ′

` δ : τ ′

[ZT-Left]

` w : t ` δ : τ
` L (w)δ · δ : L (t)τ · τ

[ZT-Right]

` w : t ` δ : τ
` R (w)δ · δ : R (t)τ · τ

Typing rules Γ ` e : t

[T-Cst]

Γ ` c : bc

[T-Var]

Γ ` x : Γ (x)

[T-Acc]

Γ ` ẋ : Γ (ẋ)

[T-Zip-Val]

` w : t ` δ : τ t ≤ 1NZ

Γ ` (w)δ : (t)τ

[T-Zip-Expr]

` e : t t ≤ 1NZ

Γ ` (e)• : (t)•

[T-Pair]

Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2

[T-Sub]

Γ ` e : s s ≤ t
Γ ` e : t

[T-Op]

∀i = 1..no, Γ ` ei : ti t1, . . . , tno

o→ t

Γ ` o(e1, . . . , eno) : t
for o ∈ O

[T-Fun]

t =
∧

i=1..n

(ti → si) ∧
∧
j

¬(t′j → s′j) t 6' 0 ∀i = 1..n, Γ ∪ {f 7→ t, x 7→ ti} ` e : si

Γ ` µf (t1→s1;...;tn→sn)(x).e : t

[T-Match]

t ≤ *p1+ ∨ *p2+
t1 ≡ t ∧ *p1+ t2 ≡ t ∧ ¬*p1+
Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)}

Γ ` e : t
Γi ≡ 2∼ ti/pi Γ ′i ≡ Σi;2∼ ti�pi
Γ ∪ Γi ∪ Γ ′i ` ei : t′i

Γ ` match e with p1→ e1| p2→ e2 :
∨

{i | ti 6'0}

t′i
(i = 1, 2)

Fig. 10: Typing rules

B Type System

B.1 Typing Rules

Figure 10 shows typing rules for our calculus in the form of judgments ` δ : τ
and Γ ` e : t where the former is for typing zippers and the latter for typing
expressions.

Theorem 18 (Accepted types). Let p be a pattern such that for every ẋ in
Acc(p), Op(ẋ) has an exact input. Then, the set of all values v such that

{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)};2 ` v/p 6; Ω

is a type. We call this set the accepted type of p and denote it by *p+. It can be
computed by solving the following guarded system of equations (the variables are

30

respectively the *p′+ and *ϕ+ for the subterms p′ and ϕ of p).

*t+ = t
*x+ = 1
*ẋ+ = I(Op(ẋ))
*(p1, p2)+ = *p1+× *p2+
*p1| p2+ = *p1+ ∨ *p2+
*p1 &&& p2+ = *p1+ ∧ *p2+
*(x := c)+ = 1
*(q)ϕ+ = (*q+)*ϕ+

*τ+ = τ
*L p · ϕ+ = L *p+ · *ϕ+
*R p · ϕ+ = R *p+ · *ϕ+
*ϕ1|ϕ2+ = *ϕ1+ ∨ *ϕ2+

Below, we introduce a technical notation for the matching of product types.
Indeed, the most general type for any pair is a finite union of products (or, said
differently, while it is possible to push intersections below product constructors,
it is not possible to do it for unions without introducing an approximation since
in general: (a× b) ∨ (c× d) � (a ∨ c)× (b ∨ d)).

Lemma 19 (Product decomposition). Let t be a type such that t ≤ 1× 1.
Then there exists a finite set of pairs of types

Π(t) =
⋃
i≤n

{(ti1, ti2)}

such that
t '

∨
(t1,t2)∈Π(t)

t1 × t2

Furthermore, given a decomposition Π(t), we define the first and second type
projection as:

Πi(t) =
⋃

(t1,t2)∈Π(t)

{ti}

There exist many such product decompositions. For instance, one decomposi-
tion is obtained by taking the syntactic expression given for a product type t
and pushing intersections below products until only unions remain at top-level.
More complex decompositions (which yield more precise typing or more efficient
pattern matching) are described in [9]. As zipped types (u)τ and zipper types of
the form L t · τ and R t · τ are essentially product types, we also introduce similar
decompositions for such types.

Lemma 20 (Zipped type decomposition). Let t be a type such that t ≤ (1)>.
Then there exists a finite set of pairs of types

Z(t) =
⋃
i≤n

{(ui, τi)}

such that
t '

∨
(u,τ)∈Z(t)

(u)τ

31

Furthermore, given a decomposition Z(t), we define the first and second type
projection as

Z1(t) =
⋃

(u,τ)∈Z(t)

{u} Z2(t) =
⋃

(u,τ)∈Z(t)

{τ}

Note that zipped types are just a special form of product types and therefore
we can use the same product decomposition method for zipped typed decompo-
sition.

We also need another product decomposition called zipper type decomposition
for zipper types

∨
i≤n L (ui)τi · τi and

∨
j≤m R (u′j)τ ′j · τ

′
j . Note that they are also

a special form of product types.

Lemma 21 (Zipper type decomposition). Let τ be a zipper type such that
τ ≤ L1 ·>. Then there exists a finite set of pairs of types and zipper types

ZL(τ) =
⋃
i≤n

{(ti, τi)}

such that
τ '

∨
(ti,τi)∈ZL(τ)

L ti · τi

As before, we define the first and second type projection of ZL(τ) as

ZL
1 (τ) =

⋃
(t,τ ′)∈ZL(τ)

{t} ZL
2 (τ) =

⋃
(t,τ ′)∈ZL(τ)

{τ ′}

We similarly define decomposition operations ZR(τ) and ZR
i (τ) for a zipper type

τ such that τ ≤ R1 ·>.

Lemma 22 (Optional zipper types). We write τ ? to denote an optional zip-
per type, which is either τ or a none zipper type 2.

τ? ::= τ | 2

For notational simplicity, we consider (t)2 to be equivalent to t.

B.2 Type Environment for Capture Variables

Figure 11 defines a set of recursive equations of the forms (τ?∼ t/p)(x) = t′ and
(τ/ϕ)(y) = t′′ with the following implicit assumptions: t ≤ *p+, x ∈ Var(p),
τ ≤ *ϕ+, and y ∈ Var(ϕ). Basically, given a type t, a pattern p, and an optional
zipper type τ ?, τ ?∼ t/p computes a type environment for capture variables used
in the pattern p and similarly for τ/ϕ. In the figure, in order to properly update
zipper types for navigational patterns (i.e., pair patterns), we use the following
additional projection operations.

32

For types:

(τ?∼ t/x)(x) = (t)τ?

(τ?∼ t/(p1, p2))(x) =
∨

(t1,t2)∈Π(t)

(Π1(t1 × t2, τ?)∼ t1/p1)(x) if x ∈ Var(p1)\Var(p2)

(τ?∼ t/(p1, p2))(x) =
∨

(t1,t2)∈Π(t)

(Π2(t1 × t2, τ?)∼ t2/p2)(x) if x ∈ Var(p2)\Var(p1)

(τ?∼ t/(p1, p2))(x) =
∨

(t1,t2)∈Π(t)

(Π1(t1 × t2, τ?)∼ t1/p1)(x)× (Π2(t1 × t2, τ?)∼ t2/p2)(x)

if x ∈ Var(p1) ∩Var(p2)

(τ?∼ t/p1| p2)(x) = (τ?∼ (t ∧ *p1+)/p1)(x) ∨ (τ?∼ (t ∧ ¬*p1+)/p2)(x)

(τ?∼ t/p1&&& p2)(x) = (τ?∼ t/pi)(x) if x ∈ Var(pi)

(τ?∼ t/(x := c))(x) = tc if t 6' 0

(τ?∼ t/(x := c))(x) = 0 if t ' 0

(2 ∼ t/(q)ϕ)(x) =
∨

(u,τ)∈Z(t)

(τ∼u/q)(x) if x ∈ Var(p)

(2 ∼ t/(q)ϕ)(x) = (Z2(t)/ϕ)(x) if x ∈ Var(ϕ)

For zipper types:

(τ/L p · ϕ)(x) = (2∼ZL
1(τ)/p)(x) if x ∈ Var(p)\Var(ϕ)

(τ/L p · ϕ)(x) = (ZL
2(τ)/ϕ)(x) if x ∈ Var(ϕ)\Var(p)

(τ/L p · ϕ)(x) =
∨

(t,τ ′)∈ZL(τ)

((2∼ t/p)(x))× ((τ ′/ϕ)(x)) if x ∈ Var(p) ∩Var(ϕ)

(τ/R p · ϕ)(x) = (2∼ZR
1 (τ)/p)(x) if x ∈ Var(p)\Var(ϕ)

(τ/R p · ϕ)(x) = (ZR
2 (τ)/ϕ)(x) if x ∈ Var(ϕ)\Var(p)

(τ/R p · ϕ)(x) =
∨

(t,τ ′)∈ZR(τ)

((2∼ t/p)(x))× ((τ ′/ϕ)(x)) if x ∈ Var(p) ∩Var(ϕ)

(τ/ϕ1|ϕ2)(x) = ((τ ∧ *ϕ1+)/ϕ1)(x) ∨ ((τ ∧ ¬*ϕ1+)/ϕ2)(x)

Fig. 11: Computing the type environment for capture variables

33

Definition 23. Let t be a type and τ ? an optional zipper type. Then, Πi(t, τ
?)

computes the left projection of the zipped type (t)τ? when i = 1 and the right
projection when i = 2 as follows:

Π1(u, τ)
def
= L (u)τ · τ

Π2(u, τ)
def
= R (u)τ · τ

Πi(t,2)
def
= 2

Although the equations in Figure 11 seem to be much more complicated than
those in [9], if we ignore the zipper-related part, they are exactly the same. For ex-
ample, when τ ? = 2 and x ∈ Var(p1)\Var(p2), the equation (τ ?∼ t/(p1, p2))(x)
amounts to

∨
(t1,t2)∈Π(t)(t1/p1)(x), which is equal to (Π1(t)/p1)(x) as in [9]. Of

course, even in the presence of zipper types, we can have a simpler equation
such as (τ ?∼ t/(p1, p2))(x) = (Π1(t, τ?)∼Π1(t)/p1)(x) at the expense of more
precise typing.

Unfortunately, the set of equations in Figure 11 is not well-founded. The
main source of the problem is the equations for pair patterns and the use of
the projection function Πi(_,_) defined in Definition 23. More precisely, given
a zipped recursive type and a zipped recursive pattern, those equations may in
general generate an infinite number of new equations. For instance, consider an
integer list type, defined as a recursive equation X = (int×X)∨‘nil, a recursive
pattern Y = (y , Y)|(y := ‘nil), and a matching of a zipped type (X)> against
a zipped pattern (Y)>, that is, 2∼ (X)>/(Y)>. Then, the matching generates
the following infinite set of equations:

(2∼ (X)>/(Y)>)(y) = (>∼X/Y)(y)
= (>∼ (int×X)/(y , Y))(y) ∨ ‘nil
= ((Π1(int×X,>)∼ int/y)(y)× (Π2(int×X,>)∼X/Y)(y)) ∨ ‘nil
= ((int)L (int×X)>·> × (R (int×X)> ·>∼X/Y)(y)) ∨ ‘nil
= (. . . × ((R (int×X)> ·>∼ int×X/(y , Y))(y)) ∨ ‘nil)) ∨ ‘nil
= . . .

The intuition behind this infinite sequence of equations is as follows. Given a
sequence of integers, zipper annotations specify for each integer its order in the
sequence. Furthermore, the integer list type (i.e., X in the above equations)
represents infinitely many sequences of integers of an arbitrary length and for
each sequence of a fixed length there is the unique most precise type with zipper
annotations (one that the equations in Figure 11 try to compute). Therefore, the
computation of (2∼ (X)>/(Y)>)(y) generates an infinite sequence of equations
and does not terminate.

To remedy this problem, we simply introduce an approximation of Πi(_,_)
in Definition 24, which guarantees the termination of the computation of a type
environment. Note that in the above example equations, Πi(_,_) computes a
new zipper type (by adding some prefix to the argument zipper type, that is, the
second argument) which is used as an argument of Πi(_,_) in another equation,
thus generating a new equation.

34

Definition 24. Given an optional zipper type τ ?, we define an idempotent op-
eration clos(τ ?) as follows:

clos(2)
def
= 2

clos(τ)
def
= µX.((L1 ·X) ∨ (R 1 ·X)) ∨ τ (X fresh)

Intuitively clos(τ) adds a possibly infinite sequence of L1 and R 1 to the given
τ . Note that applying clos(_) multiple times yields the same result as its initial
application.

To ensure the termination of the computation of a type environment, we can
use clos(τ ?) instead of Πi(t, τ

?) in the equations for pair patterns in Figure 11
when both the input type and pattern are recursively defined (if either the input
type or pattern is not recursive, the computation trivially terminates and the
set of equations in Figure 11 computes a precise type for each capture variable).
In practice, we may use Πi(_,_) up to a certain number of times and then from
that point use clos(_) to guarantee that the set of generated equations is finite.

B.3 Type Environment for Accumulators

Figure 12 defines a set of recursive equations of the forms Σ; τ ?∼ t�p = Σ′ and
Σ∼ τ�ϕ = Σ′ with the following implicit assumptions: t ≤ *p+ and τ ≤ *ϕ+.
Basically, given a type t, a pattern p, an optional zipper type τ ?, and an input
type environment Σ for accumulators, Σ; τ?∼ t�p computes a type environment
for accumulators by updating Σ (for example, see the third equation in the
figure) and similarly for Σ∼ τ�ϕ. Due to the same reason as the equations in
Figure 11, the set of equations in Figure 12 is not well-founded, and in order to
ensure the termination of the computation of a type environment, we use the
same technique as before: we use clos(_) instead of Πi(_,_) in the equations.

B.4 Zipper Erasure

The top-level erasure simply removes the top-level zipper type annotation, while
the deep erasure is typed by recursively removing the zipper annotations from
the input type as follows:

(t)τ
rm→ t if t ∧ (1)> ' 0

t
rm→ (t ∧ ¬(1)>) ∨ s where t ∧ (1)>

rm→ s

t
drm→ t if t ≤ 1NZ

t
drm→ t ∧ (1basic ∨ 1fun)

∨
∨

(t1,t2)∈Π(t∧ 1prod)

t′1 × t′2 where ti
drm→ t′i

∨ s where t ∧ (1NZ)>
rm→ s

35

There are two cases for the deep erasure. If an input type does not contain any
zipper type annotation (in-depth), it is left unchanged. Otherwise, the type is
split into three parts. The first part consists of basic types and arrow types
and is “copied” unchanged in the output type. The second part corresponds to
the product type components of the union, and in this case the output type
is the union of the products formed from the erasure of each component. The
third part corresponds to zipped types in which the zipper type annotations are
removed using the top-level erasure rm. We need to ensure that the drm function
terminates, that is, given a type t, the number of ti in the second part is finite
and this property is shown in Section C).

36

For types:

Σ; τ?∼ t�t′ = Σ

Σ; τ?∼ t�x = Σ

Σ; τ?∼ t�ẋ = Σ[s/̇x] if (t)τ? , Σ(ẋ)
Op(ẋ)→ s

Σ; τ?∼ t�(p1, p2) =
⊔

(t1,t2)∈Π(t)

(Σ;Π1(t1 × t2, τ?)∼ t1�p1);Π2(t1 × t2, τ?)∼ t2�p2

Σ; τ?∼ t�p1| p2 = Σ; τ?∼ t�p1 if t ≤ *p1+

Σ; τ?∼ t�p1| p2 = Σ; τ?∼ t�p2 if t ≤ ¬*p1+

Σ; τ?∼ t�p1| p2 = (Σ; τ?∼ (t ∧ *p1+)�p1)
⊔

(Σ1; τ
?∼ (t ∧ ¬*p1+)�p2)

otherwise

Σ; τ?∼ t�p1&&& p2 = (Σ; τ?∼ t�p1); τ?∼ t�p2

Σ; τ?∼ t�(x := c) = Σ

Σ;2∼ t�(q)ϕ =
⊔

(u,τ)∈Z(t)

(Σ; τ∼u�q)∼ τ�ϕ

For zipper types:

Σ∼ τ�τ ′ = Σ

Σ∼ τ�L p · ϕ =
⊔

(t,τ ′)∈ZL(τ)

(Σ;2∼ t�p)∼ τ ′�ϕ

Σ∼ τ�R p · ϕ =
⊔

(t,τ ′)∈ZR(τ)

(Σ;2∼ t�p)∼ τ ′�ϕ

Σ∼ τ�ϕ1|ϕ2 = Σ∼ τ�ϕ1 if τ ≤ *ϕ1+

Σ∼ τ�ϕ1|ϕ2 = Σ∼ τ�ϕ2 if τ ≤ ¬*ϕ1+

Σ∼ τ�ϕ1|ϕ2 = (Σ∼ (t ∧ *ϕ1+)�ϕ1)
⊔

(Σ∼ (t ∧ ¬*ϕ1+)�ϕ2) otherwise

(Σ1

⊔
Σ2)(ẋ) =

Σ1(ẋ) if ẋ ∈ dom(Σ1) \ dom(Σ2)
Σ2(ẋ) if ẋ ∈ dom(Σ2) \ dom(Σ1)
Σ1(ẋ) ∨ Σ2(ẋ) if ẋ ∈ dom(Σ1) ∩ dom(Σ2)

Fig. 12: Computing the type environment for accumulators

37

C Soundness Proofs

We first show that the algorithms we defined (such as the equations of Figure 12)
or the typing of operator “drm(_)” terminates, even for infinite (regular) input.
To this end, we define the notion of plinth.

Definition 25 (Plinth). Let O be a set of operators. A plinth iO ⊂ T over O
is a set of types with the following properties:

Finiteness iO is finite;
Boolean closure iO contains 1 and 0 and is closed under Boolean connectives

(∧,∨,¬);
Stability w.r.t. operators for all operators o ∈ O and types t1, . . . , tno ∈ iO,

if t1, . . . , tno

o→ t then t ∈ iO.

Intuitively, the plinth is the approximation of the set of types that can be found
by saturating an initial set with the operators of O. This means that any algo-
rithm visiting types produced by the application of such operators will visit only
a finite number of types and therefore terminate.

Lemma 26. Let OZ be the set

OZ ≡ {Z1,Z2,ZL
1 ,ZL

2 ,ZR
1 ,ZR

2 }

For all type t, there exists a plinth over OZ that contains t.

Proof. We assume here (see [9] for the proof) that given a finite set S of types,
there exists a finite set S′ ⊇ S that is closed under ∨ and ¬ (and therefore also
closed under ∧ which can be expressed in terms of union and negation).

We consider the initial set S0 = {t,0,1, •, L1 · >,R1 · 1,>}. Its saturation
S′0 with respect to ∨,∧,¬ is also finite. We now compute

S1 = S′0 ∪
⋃

t∈{t∈S′0 | t≤ (1)>}

(Z1(t) ∪ Z2(t))

By construction, S1 is finite and so is its saturation S′1 since zipper annotations
cannot be nested. Then we compute

S2 = S′1 ∪
⋃

τ ∈{τ ∈S′1 | τ ≤ L 1·>}

(ZL
1 (τ) ∪ ZL

2 (τ)) ∪
⋃

τ ∈{τ ∈S′1 | τ ≤R 1·>}

(ZR
1 (τ) ∪ ZR

2 (τ))

By construction, S2 is finite and so is its saturation S′2 due to the regularity
condition on both types and zipper types. Finally, we compute S3 by extending
S′2 using the Z1 operator, which is the plinth that we want. Note that Z1 is
idempotent and that S′2 is already saturated by Z2 because for any t ∈ S′2, there
are only two cases: if t ∈ S′0 then Z2(t) ⊂ S1 ⊂ S′2; otherwise, t ∈ S2 and it
should be obtained from either L t · τ ∈ S′1 or R t · τ ∈ S′1, which implies the fact
that t is of the form (u)τ and τ is already included in S2 and therefore S′2 by
either ZL

2 (_) or ZR
2 (_).

38

Lemma 27. Let OCDuce be the set

OCDuce ≡ OZ ∪ {π1, π2, rm, cons, snoc}

For all type t, there exists a plinth over OCDuce that contains t.

Proof. Let S0 be a plinth over OZ that contains t, which can be computed by
using Lemma 26. Then we compute

S1 = S0 ∪
⋃

t∈{t∈S0|t≤ 1prod}

π1(t)

By construction, S1 is finite and so is its saturation S′1 thanks to the regularity
condition on types and zipper types. We similarly construct S′2 (saturation of
the closure by π2) and S′3 (saturation of the closure by rm). Next, consider the
set T ⊆ S′3 of types of the form [[[(t1 ∨ . . . ∨ tn)∗]]] that are valid for the second
argument of cons and snoc. We compute

S4 = S′3 ∪
⋃

[[[(t1∨...∨tn)∗]]]∈T,U⊆S′3

[[[((
∨
s∈U

s) ∨ t1 ∨ . . . ∨ tn)∗]]]

This saturates S′3 with respect to cons and snoc (which have the same typing
function). Lastly, we compute the saturated set S′4, which is the plinth we seek.
The crucial point here is that since [[[(t1 ∨ . . . ∨ tn)∗]]] ∈ S′3 which is in particular
already saturated by π1 and π2, t1 ∨ . . . ∨ tn and ‘nil are already in S′3, and so
is
∨
s∈U s (since U ⊆ S′3). Since S

′
3 is saturated with respect to ∨, (

∨
s∈U s) ∨

t1 ∨ . . . ∨ tn ∈ S′3 and therefore S′4 remains saturated by πi; and there is no need
to iterate the process again.

Corollary 28. The typing of operator drm terminates.

Proof. Lemma 27 ensures that during the computation of drm, the operators π1,
π2, and rm used in the definition of drm produce only a finite set of types. In
other words, given a type t, drm needs to inspect only a finite set of types and
this ensures the termination of drm.

Corollary 29. For any type t and pattern p such that

∀ẋ ∈ Acc(p),Op(ẋ) ∈ OCDuce

the computation of Σ;2∼ t�p terminates, where

Σ ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)}

Proof. We consider the type t′ = t× t0 × . . .× tn where ti = Init(ẋi). Thanks to
Lemma 27, there is a plinth containing t′ and therefore the rules in Figure 12
only generate a finite set of equations, the solution of which is a set of (mutually
recursive) types.

39

Lemma 30. All operators OCDuce have exact input.

Proof. We consider each operator separately. The zipper projection operator Zi
is defined for every zipped type, so its accepted input is the type (1)>. Similarly,
ZL
i (resp., ZR

i) is defined for every left (resp., right) projection zipper type, so its
accepted input is the zipper type L1 ·> (resp., R 1 ·>). The projection operator
πi is defined for every pair, so its accepted input is the type 1×1. The top-level
erasure rm is defined for every value and thus its accepted input is the type 1.
The operator cons does not fail for any pair of values, so its accepted input is
the type 1 × 1. Finally, snoc never fails for the first argument and fails only if
its second argument is not a sequence. Therefore, the accepted input of snoc is
the type 1× [[[1∗]]].

Note that the set of operators we consider do not include, e.g., the function
application operator. Indeed, in general, this operator is not stable with respect
to a given set of types. Of course, it does not mean that our calculus does not fea-
ture function application, but only —and this is a rather reasonable restriction—
that function application cannot be used as an operator for accumulators.

C.1 Auxiliary Definitions and Lemmas

Before stating the soundness property for the whole language, we first state
various auxiliary definitions and lemmas.

Lemma 31 (Strengthening). Let Γ1 and Γ2 be two typing environments such
that for any x ∈ dom(Γ1), we have Γ2(x) ≤ Γ1(x). If Γ1 ` e : t, then Γ2 ` e : t.

Proof. By induction on the derivation of Γ1 ` e : t. We simply introduce an
instance of the subsumption rule below each instance of the [T-Var] rule.

Lemma 32 (Admissibility of the intersection rule). If Γ ` e : t1 and
Γ ` e : t2, then Γ ` e : t1 ∧ t2.

Proof. By induction on the structure of the two typing derivations.

Lemma 33. Let Γ be a typing environment and e an expression that is well
typed under Γ . Then the set

S = {t ∈ T | Γ ` e : t ∨ Γ ` e : ¬t}

contains 0 and closed under ∨ and ¬ (and thus ∧).

Proof. By definition, S is clearly closed under ¬. We have Γ ` e : 1 ' ¬0 and
thus 0 ∈ S. To show that S is closed under ∨, consider two types t1 and t2 in
S. If Γ 6` e : t1 ∨ t2, then due to subsumption, we get Γ 6` e : t1 and Γ 6` e : t2.
Because t1 and t2 are in S, we must have Γ ` e : ¬t1 and Γ ` e : ¬t2. By
Lemma 32, we have Γ ` e : ¬t1 ∧ ¬t2 and ¬t1 ∧ ¬t2 ' ¬(t1 ∨ t2). Therefore,
either Γ ` e : t1 ∨ t2 or Γ ` e : ¬(t1 ∨ t2) holds, which completes the proof.

40

Lemma 34 (Substitution). Let e, e1, . . . , en be expressions, x1, . . . , xn dis-
tinct variables, t, t1, . . . , tn types, and Γ a typing environment. Then:{

Γ, (x1 : t1), . . . , (xn : tn) ` e : t
∀i = 1..n, Γ ` ei : ti

=⇒ Γ ` e[e1/x1; . . . ; en/xn] : t

For simplicity, in this lemma, we do not distinguish variables from accumulators,
writing both using the metavariable x.

Proof. By induction on the derivation of Γ, (x1 : t1), . . . , (xn : tn) ` e : t. We
simply replace every instance of the rule [T-Var] or [T-Acc] for variable xi with
a copy of the derivation of Γ ` ei : ti.

Definition 35. We write JtKV for {v | ` v : t}.

Lemma 36. If t ≤ s, then JtKV ⊆ JsKV . In particular, if t ' s, then JtKV = JsKV .

Proof. Consequence of the subsumption rule.

Lemma 37. J0KV = ∅.

Proof. We prove that ` v : t implies t 6' 0 by induction on the typing derivation.

Lemma 38. Jt1 ∧ t2KV = Jt1KV ∩ Jt2KV .

Proof. By Lemma 36, Jt1 ∧ t2KV ⊆ JtiKV for i = 1, 2 and thus Jt1 ∧ t2KV ⊆
Jt1KV ∩ Jt2KV . Lemma 32 gives the opposite inclusion.

Lemma 39 (Inversion).

Jt1 × t2KV = {(v1, v2) | ` v1 : t1, ` v2 : t2}
JbKV = {c | bc ≤ b}
Jt→ sKV = {µf (t1→s1;...;tn→sn(x).e ∈ V |

∧
i=1..n

ti → si ≤ t→ s}

J(t)τ KV = {(w)δ | ` w : t, ` δ : τ}

Proof. For all four equalities, proving the ⊇ inclusion is straightforward. We
prove the ⊆ inclusion by analyzing the typing derivation ` v : t, where t is
instantiated to t1 × t2, b, t→ s, or (t)τ in each equality case.

Lemma 40. J¬tKV = V \ JtKV .

Proof. Note that t∧¬t ' 0 and thus JtKV∩J¬tKV = Jt∧¬tKV = J0KV = ∅. Hence,
it remains to prove that JtKV ∪ J¬tKV = V, that is: ∀v,∀t, ` v : t ∨ ` v : ¬t. We
prove this statement by induction over the pair (v, t).

Lemma 41. Jt1 ∨ t2KV = Jt1KV ∪ Jt2KV .

Proof. By Lemmas 36, 38, and 40.

41

Lemma 42. Let p and ϕ respectively be a well-formed pattern and a zipper
pattern. Let v and δ respectively be a closed value and a closed zipper. Then:

(1) ∀σ, Acc(p) ⊂ dom(σ) ∧ σ; δ? ` v/p 6; Ω =⇒ ` v : *p+
(2) ∀σ, Acc(ϕ) ⊂ dom(σ) ∧ σ ` δ/ϕ 6; Ω =⇒ ` δ : *ϕ+

Proof. By simultaneous induction on derivations. Note that values are induc-
tively defined and patterns are regular and contractive.

Lemma 43. Let p be a well-formed pattern, t a type such that t ≤ *p+, x a
variable such that x ∈ Var(p), v a value, and δ? a zipper and τ ? a zipper type
such that ` δ? : τ ?. Then for σ0 such that Acc(p) ⊂ dom(σ0), the following hold:

∃v′, (` v′ : t) ∧ (σ0; δ? ` v′/p; σ, γ) ∧ (γ(x) = v)

=⇒ ∃t′, (τ ?∼ t/p)(x) = t′ ∧ ` v : t′

Proof. By induction on a derivation of σ0; δ? ` v′/p; σ, γ.

Lemma 44. Let p be a well-formed pattern, t a type such that t ≤ *p+, ẋ an
accumulator such that ẋ ∈ Acc(p), v a value, and δ? a zipper and τ ? a zipper type
such that ` δ? : τ ?. Then for σ0 and Σ0 such that Acc(p) ⊂ dom(σ0) = dom(Σ0)
and ∀ẋ ∈ dom(σ0), ` σ0(ẋ) : Σ0(ẋ), the following hold:

∃v′, (` v′ : t) ∧ (σ0; δ? ` v′/p; σ, γ) ∧ (σ(ẋ) = v)

=⇒ ∃Σ, Σ0; τ ?∼ t�p = Σ ∧ ` v : Σ(ẋ)

Proof. By induction on a derivation of σ0; δ? ` v′/p; σ, γ.

C.2 Type Preservation

We now define what it means for an operator to be sound and then show that
the set of operators we consider is sound.

Definition 45 (Sound operator). An operator (o, no,
o
;,

o→) is sound if and
only if for all v1, . . . , vno

∈ V such that ` v1 : t1, . . . , ` vno
: tno

, the following
holds:

if t1, . . . , tno

o→ s and v1, . . . , vno

o
; e, then ` e : s

This allows us to finally state the soundness of the whole language (through
type preservation, as usual).

Theorem 46 (Type preservation). If all operators in the language are sound,
then typing is preserved by reduction:

if e; e′ and ` e : t, then ` e′ : t

In particular, e′ 6= Ω.

Proof. By induction on the derivation of ` e : t. We proceed by a case analysis
on the last rule used in the derivation of ` e : t.

42

– [T-Cst]: the expression e is a constant (value). It cannot be reduced, which
contradicts the assumption, and thus the result follows.

– [T-Var]: the expression e is a variable. It cannot be well typed under the
empty context, which contradicts the assumption and thus the result follows.

– [T-Acc]: similar to the [T-Var] case.
– [T-Zip-Val]: similar to the [T-Cst] case.
– [T-Zip-Expr]: let ` (e0)• : (s)• where e ≡ (e0)•, t ≡ (s)•, ` e0 : s,

and s ≤ 1NZ. Then, there exists an expression e′0 such that e0 ; e′0. We get
` e′0 : s by the induction hypothesis and then ` (e′0)• : (s)• by the rule

[T-Zip-Expr].
– [T-Pair]: let ` (e1, e2) : t1 × t2 where e ≡ (e1, e2), t ≡ t1 × t2, ` e1 : t1,

and ` e2 : t2. Then, there exists either an expression e′1 such that e1 ; e′1
or e′2 such that e2 ; e′2. If e1 ; e′1, we get ` e′1 : t1 by the induction
hypothesis and then ` (e′1, e2) : t1 × t2 by the rule [T-Pair]. The second
case is similar to the first.

– [T-Sub]: there exists a type s such that ` e : s and s ≤ t. Since e ; e′

by assumption, we have ` e′ : s by the induction hypothesis. Then, we get
` e′ : t by subsumption.

– [T-Op]: let e ≡ o(e1, . . . , eno
) where ∀i = 1..no, ` ei : ti and t1, . . . , tno

o→ t.
There are two cases to consider:
(1) Suppose o(e1, . . . , ei, . . . , eno) ; o(e1, . . . , e

′
i, . . . , eno) where ei ; e′i. We

get ` e′i : ti by the induction hypothesis and then ` o(e1, . . . , e′i, . . . , eno
) : t

by the rule [T-Op].
(2) Suppose all ei’s are values and (e1, . . . , eno

)
o
; e′. Since the operator

(o, n,
o
;,

o→) is sound, we get ` e′ : t by Definition 45.
– [T-Fun]: similar to the [T-Cst] case.
– [T-Match]: let e ≡ match e0 with p1→ e1| p2→ e2. We have two cases to

consider. First, suppose e0 ; e′0. Then, we complete the proof by using the
induction hypothesis and the rule [T-Match]. Now, suppose e0 is a value.
Then, either the matching e0/p1 succeeds or it fails and the matching e0/p2
succeeds. Here, we show only the proof of the first case; the second case is
similar. From Γ ` e : t, we have the following assumptions:

(1) ` e0 : s (2) s ≤ *p1+ ∨ *p2+ (3) s1 ≡ s ∧ *p1+
(4) s2 ≡ s ∧ ¬*p1+ (5) Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)}
(6) Γi ∪ Γ ′i ` ei : ti (7) Γi ≡ 2∼ si/pi (8) Γ ′i ≡ Σi;2∼ si�pi
(9) t ≡

∨
{i|si 6'0} ti

• Let {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p1)};2 ` e0/p1 ; σ, γ.
• We get ` e0 : *p1+ by Lemma 42.
• Then we get ` e0 : (s ∧ *p1+) ≡ s1 by Lemma 32.
• By rewriting (6), we have
{(x : Γ1(x)) | x ∈ Var(p1)} ∪ {(ẋ : Γ ′1(ẋ)) | ẋ ∈ Acc(p1)} ` e1 : t1.

• Furthermore, we have ∀x ∈ Var(p1), ` γ(x) : Γ1(x) by Lemma 43 and
∀ẋ ∈ Acc(p1), ` σ(ẋ) : Γ ′i (ẋ) by Lemma 44.

43

• Lemma 34 then gives us ` e1[σ; γ] : t1.
• Finally, by the rule [T-Sub], we get ` e1[σ; γ] : t.

Since we made a runtime error (the special value Ω) explicit in the dynamic
semantics, we do not need to show progress; showing type preservation is suffi-
cient because Ω does not inhabit any type. All it remains to prove is that the
operators we used are sound and whence deduce the soundness of the whole
calculus.

Corollary 47. The function application operator app is sound.

Proof. Follows from Lemma 34.

Theorem 48. The operators app, π1, π2, drm, rm, cons, and snoc are sound.

Proof. Corollary 47 proves the soundness of the function application operator
app. We prove the soundness of the operators π1, π2, rm, cons, and snoc by
exploiting the fact that the types in the domains of their corresponding typing
functions (especially for cons and snoc) are more precise than their exact input
(defined in Lemma 30). We prove the soundness of drm in a similar way, using
the soundness of rm.

Corollary 49. Let O be a set of operators {app, π1, π2, drm, rm, cons, snoc}. Our
core calculus equipped with O is sound in the sense that for any expression e, if
` e : t, then e 6;∗ Ω.

Proof. The result follows from Theorems 46 and 48.

D XPath Encoding

In this section, we give a translation of the so-called navigational XPath ex-
pressions into single patterns of the form axis{x | t}. We consider the following
fragment of XPath.

Definition 50 (XPath query). An XPath query is a finite term produced by
the following grammar:

path ::= step | path/step
step ::= axis::test[pred]
test ::= l | ∗
pred ::= path | not(pred) | pred and pred | pred or pred

where axis produces the axes defined in Section 4, l ranges over XML element
names (i.e., atoms), and ∗ is a wildcard test that denotes any label.

The semantics of XPath (as defined in [21]) relies on sets of nodes. Informally,
given an initial set of nodes N1 and a sequence of steps s1/ . . . /sn, the result of
the evaluation of an XPath query is the set Nn+1 obtained by

s1(N1) = N2

s2(N2) = N3

...
sn(Nn) = Nn+1

44

An application of a step a::l[p] to a set of nodes is computed as follows. First,
for each node n in N , we compute the set Na of nodes reachable through the
axis a from n. Next, we filter Na to keep only the set Nl of nodes whose label
is l. Then, we keep only the set Np of nodes of Nl for which the predicate p
evaluates to true. Lastly, we remove any duplicate from Np and return the nodes
in document order. The truth value of predicates with respect to a node n is
inductively defined as:

n path : (path({n}) 6= ∅)

n p : b

n not(p) : ¬b

n p1 : b1 n p2 : b2

n p1 or p1 : b1 ∨ b2
n p1 : b1 n p2 : b2

n p1 and p1 : b1 ∧ b2
Recalling the example given in the introduction (translated to the more concise
syntax given above), the path desc::a[not(anc::b)] returns all descendants of
the input that are labelled a and do not have an ancestor labelled b.

The biggest challenge in implementing the XPath semantics into patterns is
to stick to the set-based semantics, without introducing internal node identifiers
(that could be used to remove duplicates and sort the results in document or-
der).5 This precludes giving a compositional, step-by-step semantics of XPath
using the surface language. Indeed, consider the document:

d ≡ <a>[[[<a>[[[<a>[[[]]]]]]]]]

Applying desc-or-self::a to d yields three intermediate results:

N = {<a>[[[<a>[[[<a>[[[]]]]]]]]], <a>[[[<a>[[[]]]]]], <a>[[[]]]}

but applying desc-or-self::a again to N yields N itself, since the semantics is
set-based.

The solution we propose is based on two key observations:

i. Given a predicate [pred], we can write a CDuce type t such that for every
value v, v pred : true if and only if ` v : t (v has type t in CDuce);

ii. Any path p ≡ s1/ . . . /sn can be put in the form of a predicate [pred], such
that the set of nodes selected by p is exactly the set of nodes for which [pred]
holds.

Using (ii.) we can put an XPath query in the form of a predicate and using (i.)
we translate the predicate into a type t, and therefore express the whole XPath
query as a pattern:

desc-or-self{x | t}

5 We could introduce a “set” type constructor exploiting internal node identifiers and
new patterns for sets (besides sequences). However, this is merely the same as adding
a separate layer for XPath on top of CDuce. Rather, we chose to encode XPath into
CDuce patterns and thus benefit from the already existing static type system and
efficient execution model of CDuce.

45

When this pattern is matched against a value v, it selects all the subtrees of v
for which [pred] holds, that is, all the subtrees returned by p({v}).

Below, we first give a translation of XPath predicates into CDuce types and
then a translation of XPath queries into predicates, both of which are well known
in the literature (see Section 6 for more information).

Definition 51 (Encoding of XPath predicates into regular types). Given
a predicate φ (produced by the rule pred of Definition 50), we define the mutually
recursive functions Tpred, Tpath, Tstep, Taxis and Ttest as follows:

Tpred(p) = Tpath(p)
Tpred(φ1 or φ2) = Tpred(φ1) ∨ Tpred(φ2)
Tpred(φ1 and φ2) = Tpred(φ1) ∧ Tpred(φ2)
Tpred(not(φ)) = ¬Tpred(φ)

Tpath(s) = Tstep(s,1)
Tpath(s/p) = Tstep(s, Tpath(p))

Tstep(a::t[φ], τ) = Taxis(a, τ ∧ Ttest(t)) ∧ Tpred(φ)

Ttest(l) = <l>
Ttest(*) = < >

Taxis(self, τ) = τ
Taxis(child, τ) = < >[[[∗ τ ∗]]]
Taxis(desc-or-self, τ) = µX.τ ∨ < >[[[∗ X ∗]]]
Taxis(desc, τ) = Taxis(child, Taxis(desc-or-self, τ))
Taxis(foll-sibling, τ) = ()L (,[[[∗ τ ∗]]])·>
Taxis(parent, τ) = ()L ·µX.((R (τ,)·(L ·>|•))|R ·X)

Taxis(prec-sibling, τ) = ()L ·µX.((R (τ,)·R ·>)|R ·X)

Taxis(anc, τ) = ()L ·µX.((R (τ,)·(L ·>|•))|R ·X|L ·X)

Example 52. The XPath predicate

p ≡ parent::a or desc-or-self::b/child::c

is equivalent to the CDuce type t where:

t ≡ t1 ∨ t2
t1 ≡ (1)L ·µX.(R (<a>1)·L ·> | R ·X)

t2 ≡ µX.([[[1∗ (<c>1) 1∗]]] ∨ <1basic>[[[1∗ X 1∗]]])

Here, we see that the XPath operator or is translated into its set-theoretic
counterpart (likewise for and and not). Upward path expressions are translated
into zipper types, while downward path expressions are translated into recursive
XML types. Furthermore, the chaining of steps is achieved by nesting the type
obtained for the second step into the type obtained for the first step (see how
<c>1 is embedded in t2).

46

Now we formulate the translation of XPath queries of the form s1/ . . . /sn
into an XPath predicate as the following lemma:

Lemma 53 (XPath to predicate translation [15]). Let

p ≡ a1::l1[p1]/ . . . /an::ln[pn]

be an XPath query. It can be translated into the following predicate:

pn and self::ln/a
−1
n ::ln−1[pn−1]/ . . . /a−11 ::∗[isroot]

where a−1 is the inverse axis of a, defined as:

self−1 = self foll-sibling−1 = prec-sibling
child−1 = parent desc-or-self−1 = anc-or-self
parent−1 = child anc-or-self−1 = desc-or-self
desc−1 = anc prec-sibling−1 = foll-sibling
anc−1 = desc

and isroot ≡ not(parent::∗).

The key point of the translation is the fact that, for instance, the nodes selected
by an XPath query child::a/desc::b are all the nodes labelled b that have an
ancestor a, the parent of which is the root of the document. In other words, the
nodes selected by “child::a/desc::b” are all the nodes for which the predicate
“[self::b/anc::a/parent::∗[isroot]]” holds.

To conclude the encoding of XPath, we add to our surface language one last
extension to the syntax of expressions: “e/path” which is translated into:

match e with desc{x | tpath}→ x | → [[[]]]

where tpath is the type translation of the XPath query path. Note that the trans-
lation of e/path returns the results in document order since we use snoc for
the accumulator used in the axis pattern desc{x | tpath}, thus faithfully imple-
menting the semantics of XPath. With this extension, the CDuce version of the
“get_links” function given in the introduction becomes as compact as in XQuery:

let get_links (page: <_>_) (print: <a>_ -> <a>_) : [<a>_ *] =

transform page/desc::a[not(anc::b)] with x -> [(print x)]

47

E XQuery

It is well known (for example, see [24]) that full XPath expressions can be en-
coded using the XQuery fragment in Figure 7. In this section, we illustrate this
with the following example:

Query in XQuery 3.0

1 for $i in

2 /descendant::time[. = fn:dateTime()]/parent::elem

3 return i

Query in XQ+
H

4 for $d in document()

5 return

6 for $i in $d/descendant::time

7 return

8 switch

9 some $j in $i/self::node()

10 satisfies $j = fn:dateTime()

11 case true return for $k in $i/parent::elem

12 return $k
13 default return ()

The example query retrieves all time elements whose textual content is equal
to the current time (returned by a built-in function) and return all the parent
elem elements of such time elements. This query mixes within the path ex-
pression both navigational features (descendant and parent axes) with a data
value test (it uses the string equality =). In contrast, the equivalent XQ+

H query
makes an explicit, step by step navigation (navigational steps are highlighted
in orange). Path predicates (between square brackets in XQuery) are translated
into a conditional (the switch_case acting like an if_then_else) and use the
Boolean construct some $x in q1 statisfies q2 which evaluates to true if there
exists an element of the sequence q1 for which q2 evaluates to true ($x is bound
in turn to each element of q1 and may appear free in q2).

E.1 Typing Rules for XQ+
H

48

Γ `xq q : s s ≤ t
Γ `xq q : t

typ-sub
Γ `xq () : ‘nil

typ-nil
Γ `xq c : [[[c]]]

typ-con

Γ `xq q : t t ≤ [[[1∗]]]
Γ `xq <l>q</l> : [[[<l>t]]]

typ-xml
Γ `xq q1 : [[[t1∗]]] Γ `xq q2 : [[[t2∗]]]

Γ `xq q1, q2 : [[[t1∗ t2∗]]]
typ-seq

x : t ∈ Γ
Γ `xq $x : t

typ-var

{ẏ 7→‘nil};2∼ s�axis{y | t(test)} = {ẏ 7→ t}
Γ `xq x : [[[s∗]]] t ≤ [[[1∗]]] t′ = min{t′ | t ≤ [[[t′∗]]]}

Γ `xq $x/axis::test : [[[t′∗]]]
typ-path

Γ `xq q1 : [[[s∗]]] Γ, x : [[[s]]] `xq q2 : t t ≤ [[[1∗]]]
Γ `xq for $x in q1 return q2 : t

typ-for

Γ `xq q : t

{
t 6≤ ¬[[[c]]] =⇒ Γ `xq q1 : s
t 6≤ [[[c]]] =⇒ Γ `xq q2 : s

Γ `xq

switch q
case c return q1
default return q2

: s

typ-case

Γ `xq q : s
t1 = s ∧ seq(t)
t2 = s ∧ ¬seq(t)

Γ, x : t1 `xq q1 : t′1
Γ `xq q2 : t′2

Γ `xq

typeswitch q
case tas $x return q1
default return q2

:
∨
{i | ti 6'0} t

′
i

typ-tcase

Γ `xq q1 : [[[s∗]]] Γ, x : [[[s]]] `xq q2 : [[[bool]]]

Γ `xq some $x in q1 statisfies q2 : [[[bool]]]
typ-some

Γ, x1 : seq(t1), · · · , xn : seq(tn) `xq q : seq(t)

Γ `xq fun $x1 : t1 , . . . , $xn : tn as t. q : seq(t1)× · · · × seq(tn)→ seq(t)
typ-fun

Γ `xq q : t1 × · · · × tn → t Γ `xq qi : ti (i = 1..n)

Γ `xq q(q, . . . , q) : t
typ-app

49

	A Core Calculus for XQuery 3.0

