
Stellar granulation as seen in disk-integrated intensity

R. Samadi, K. Belkacem, H.-G. Ludwig, E. Caffau, T. L. Campante, G. R.

Davies, T. Kallinger, M. N. Lund, B. Mosser, A. Baglin, et al.

To cite this version:

R. Samadi, K. Belkacem, H.-G. Ludwig, E. Caffau, T. L. Campante, et al.. Stellar granulation
as seen in disk-integrated intensity. Astronomy and Astrophysics - A&A, EDP Sciences, 2013,
559, pp.A40. <10.1051/0004-6361/201220817>. <cea-01135465>

HAL Id: cea-01135465

https://hal-cea.archives-ouvertes.fr/cea-01135465

Submitted on 25 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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ABSTRACT

Context. A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is
interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (τeff) and the
root-mean-square (rms) brightness fluctuations (σ) associated with the granulation scale as a function of the peak frequency (νmax) of
the solar-like oscillations.
Aims. We aim at providing a theoretical background to the observed scaling relations based on a model developed in Paper I.
Methods. We computed for each 3D model the theoretical power density spectrum (PDS) associated with the granulation as seen in
disk-integrated intensity on the basis of the theoretical model published in Paper I. For each PDS we derived the associated charac-
teristic time (τeff) and the rms brightness fluctuations (σ) and compared these theoretical values with the theoretical scaling relations
derived from the theoretical model and the measurements made on a large set of Kepler targets.
Results. We derive theoretical scaling relations for τeff and σ, which show the same dependence on νmax as the observed scaling
relations. In addition, we show that these quantities also scale as a function of the turbulent Mach number (Ma) estimated at the pho-
tosphere. The theoretical scaling relations for τeff and σ match the observations well on a global scale. Quantitatively, the remaining
discrepancies with the observations are found to be much smaller than previous theoretical calculations made for red giants.
Conclusions. Our modelling provides additional theoretical support for the observed variations of σ and τeff with νmax. It also high-
lights the important role ofMa in controlling the properties of the stellar granulation. However, the observations made with Kepler on
a wide variety of stars cannot confirm the dependence of our scaling relations onMa. Measurements of the granulation background
and detections of solar-like oscillations in a statistically sufficient number of cool dwarf stars will be required for confirming the
dependence of the theoretical scaling relations withMa.

Key words. convection – turbulence – Sun: granulation – stars: oscillations – stars: atmospheres

1. Introduction

Since the launch of CoRoT (December 2006) and Kepler (March
2009), it is possible to accurately characterise the properties of
the stellar granulation in other stars than the Sun (Michel et al.
2008; Ludwig et al. 2009a; Kallinger & Matthews 2010; Chaplin
et al. 2011b; Mathur et al. 2011). A very large number of stars
has been observed on a long term by CoRoT and Kepler. A large
set of them clearly show both solar-like oscillations and a stel-
lar background signal, which is interpreted to be due to gran-
ulation at the surface of these stars. These observations show

� Appendices are available in electronic form at
http://www.aanda.org

that the characteristic time-scale of the granulation scales as the
inverse of the peak frequency (νmax) of the solar-like oscilla-
tion spectra detected in these stars (Kallinger & Matthews 2010;
Mathur et al. 2011). In turn, the peak frequency νmax is known to
scale as the cutoff-frequency νc of the atmosphere (Brown et al.
1991; Kjeldsen & Bedding 1995; Stello et al. 2009; Huber et al.
2009; Mosser et al. 2010; Belkacem et al. 2011). The observa-
tions of the stellar granulation background also reveal that the
rms brightness fluctuations (σ) associated with the granulation
scales approximately as ν−1/2

max (Mathur et al. 2011; Chaplin et al.
2011b).

The measurements made with Kepler on a large set of red gi-
ants have been compared in Mathur et al. (2011) with theoretical
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calculations performed on the basis of the Ludwig (2006) ab ini-
tio approach and using a grid of 3D hydrodynamical models of
the surface layers of red giants computed with the STAGGER
code (see a detailed description for instance in Trampedach
2004). Although these theoretical calculations reproduce the
measured scaling relations rather well in terms of their time-
scale τeff , and σ, large systematic differences were found with
observations, however. While for the parameter τeff the dis-
persion to the scaling ν−1

max is very small, a more appreciable
dispersion is observed for σ with respect to the scaling ν−1/2

max .
Eventually, Mathur et al. (2011) calculations were limited to red
giant stars. For main-sequence (MS) stars, such a modelling has
been performed and the results compared with observations for
a limited set of stars only (Trampedach et al. 1998; Svensson &
Ludwig 2005; Ludwig et al. 2009a; Guenther et al. 2008).

To justify the scaling relation between τeff and νc (or equiva-
lently νmax), Huber et al. (2009) have conjectured that the gran-
ules move proportionally to the sound speed (see also Kjeldsen
& Bedding 2011). The total brightness fluctuations σ are known
to scale as the inverse of the square root of the number of
granules over half the stellar surface (see e.g. Ludwig 2006).
This number in turn scales as νc M/T 3/2

eff (Kjeldsen & Bedding
2011; Mathur et al. 2011), where Teff is the effective tempera-
ture and M the mass of the star. However, σ is expected to de-
pend also on the intensity contrast of the granules and hence
on their temperature contrast (see e.g. Ludwig et al. 2009a).
Therefore, the theoretical scaling relations proposed for σ and
τeff (the “classical” scaling relations hereafter) still partially rely
on some simplified physical assumptions and need to be com-
pleted.

Samadi et al. (2013, hereafter Paper I) proposed a theoretical
model of the stellar granulation. This model predicts the power
density spectrum associated with the relative variation of the
disk-integrated flux due to the granulation at the surface of the
star. Compared with the Ludwig (2006) ab initio approach, this
theoretical model offers the advantage of testing separately sev-
eral properties of the turbulent convection and can be extensively
applied to a large set of stellar models. Our aim here is to derive
theoretical scaling relations for τeff and σ from this model and to
compare them with the observations made by Kepler on a large
set of targets. For this purpose, we applied the theoretical model
of stellar granulation of Paper I to a set of 3D hydrodynami-
cal models of the surface layers of stars with surface gravities
ranging from log g = 1.5 to log g = 4.5 and effective tempera-
tures ranging from Teff � 6700 K (F-type star) to Teff = 4000 K
(K-type star). For each 3D model we computed the theoretical
power density spectrum (PDS) associated with the granulation.
From each spectrum we then extracted the characteristic time
scale (τeff) and the brightness fluctuations (σ) associated with
the granulation in the same way as for the observations. We
compare theses quantities with the theoretical scaling relations
derived from the theoretical model and the characteristic times
and brightness fluctuations extracted from Kepler targets.

2. Theoretical model
The theoretical model presented in Paper I aims at modelling the
power density spectrum (PDS) associated with the relative vari-
ations of the bolometric flux emerging from the star in the direc-
tion of an observer and measured continuously during a given
duration. Here we use the theoretical PDS as a function of the
frequency (ν) given in Paper I

F (ν) =
∫ 1

0
dμ

∫ +∞

0
dτ e−2τ/μ

( 〈B〉t
F0

)2

Fτ(τ, ν) (1)

with

F0 =

∫ 1

0
dμ

∫ +∞

0
dτ e−τ/μ 〈B〉t(τ) (2)

Fτ(τ, ν) = 2π τc σ
2
τ SΘ(τ, ν) (3)

στ =
12√

2

√
τg

Ng
Θ2

rms (4)

Θrms =
ΔTrms

T
(5)

τg = κ ρΛ (6)

Ng =
2πR2

s

Λ2
, (7)

where B is the Planck function, τ the mean optical depth, κ the
mean opacity, ΔTrms the rms of the temperature fluctuations, T
and ρ the stratification in temperature and density, respectively,
Rs the stellar radius, Λ the granule characteristic size, τc the
granule characteristic time, μ = cos(θ), θ the angle between the
direction pointing toward the observer and the direction normal
to the stellar surface, the symbol 〈〉t stands for a time average,
and finally, SΘ is a dimensionless “source” function whose ex-
pression is given in Paper I.

The term Fτ (Eq. (3)) in the integrand of Eq. (1) stands for
the PDS of the granulation as it would be seen at the optical
depth τ. In Eqs. (2)−(7), τg corresponds to the characteristic
optical thickness of the granules, Ng to the average number of
granules distributed over half of the photosphere (i.e. at r = Rs),
and στ to the rms brightnesses fluctuations associated with the
granulation spectrum as one would see at the optical depth τ.

The “source” function SΘ requires a prescription for χk(ν),
the Fourier transform of the eddy-time correlation function (see
Paper I). The best fit with the solar granulation spectrum was
obtained when an exponential form was adopted for χk(ν).

For comparison with the observations, we define σ as the
rms brightness fluctuations associated with the theoretical PDS
(F (ν)). The latter satisfies by definition the Parseval-Plancherel
relation

σ2 =

∫ +∞

−∞
dνF (ν). (8)

Following Mathur et al. (2011), we consider τeff as the e-folding
time associated with the auto-correlation function (ACF) of the
relative flux variations due to the granulation. Note that since
the ACF is also the Fourier transform (FT) of the PDS, it is thus
obtained by computing numerically the FT of F (ν).

3. Theoretical PDS across the HR diagram

3.1. Grid of 3D hydrodynamical models

The 3D models used in this work are taken from the CIFIST
grid (Ludwig et al. 2009b) and have been computed with the
CO5BOLD code (Freytag et al. 2012). The adopted chemical
mixture is similar to the solar chemical composition proposed by
Asplund et al. (2005). Details about the CIFIST grid are given
in Ludwig et al. (2009b). Of the 3D models of the CIFIST grid
we considered only those with a solar metal abundance. Their
characteristics are given in Table 1.

For comparison with the observations, it is convenient to in-
troduce the peak frequency of the solar-like oscillations (νmax).
This is shown to scale as the star’s acoustic cut-off frequency, i.e.
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Table 1. Characteristics of the 3D hydrodynamical models and associated parameters (see text).

Label Teff δTeff log g Ma Θrms νmax Rs M σ τeff

[K] [K] [cm/s2] [%] [μHz] [R�] [M�] [ppm] [s]
d3t40g15mm00n02 4018 24 1.50 0.323 4.75 4.30 39.82 1.83 1.40 × 103 9.06 × 104

d3t45g25mm00n01 4476 10 2.50 0.274 3.72 4.07 × 101 10.85 1.36 3.17 × 102 1.09 × 104

d3t45g40mm00n01 4477 8 4.00 0.178 2.13 1.29 × 103 1.29 0.61 1.84 × 101 5.11 × 102

d3t48g32mm00n01 4775 12 3.20 0.260 3.45 1.98 × 102 4.89 1.38 1.11 × 102 2.49 × 103

d3t50g20mm00n2 4552 16 2.00 0.320 4.62 1.28 × 101 33.06 3.99 5.30 × 102 2.91 × 104

d3t50g25mm00n01 4969 18 2.50 0.378 4.66 3.86 × 101 18.25 3.76 3.44 × 102 1.01 × 104

d3t50g30mm00n01 5037 18 3.00 0.301 4.14 1.21 × 102 8.29 2.51 1.76 × 102 3.53 × 103

d3t50g35mm00n01 4924 13 3.50 0.245 3.17 3.88 × 102 3.53 1.44 6.94 × 101 1.32 × 103

d3t50g40mm00n01 4955 11 4.00 0.207 2.44 1.22 × 103 1.48 0.80 3.24 × 101 4.88 × 102

d3t50g45mm00n04 4981 12 4.50 0.172 1.98 3.86 × 103 0.85 0.83 1.13 × 101 1.77 × 102

d3t55g35mm00n01 5432 22 3.50 0.308 4.06 3.69 × 102 3.84 1.70 1.28 × 102 1.20 × 103

d3t55g40mm00n01 5476 13 4.00 0.257 3.30 1.16 × 103 1.64 0.98 6.45 × 101 4.47 × 102

d3t55g45mm00n01 5488 14 4.50 0.216 2.58 3.68 × 103 0.89 0.92 2.40 × 101 1.64 × 102

d3t59g35mm00n01 5885 16 3.50 0.381 4.39 3.55 × 102 3.84 1.70 2.02 × 102 1.11 × 103

d3t59g40mm00n01 5927 13 4.00 0.311 4.07 1.12 × 103 1.77 1.14 1.08 × 102 4.11 × 102

d3t59g45mm00n01 5861 25 4.50 0.257 3.35 3.56 × 103 0.96 1.07 3.90 × 101 1.53 × 102

d3t63g35mm00n01 6140 25 3.50 0.445 4.46 3.48 × 102 3.91 1.76 2.16 × 102 9.56 × 102

d3t63g40mm00n02 6227 16 4.00 0.362 4.38 1.09 × 103 1.93 1.36 1.25 × 102 3.77 × 102

d3t63g45mm00n01 6233 15 4.50 0.297 4.04 3.45 × 103 1.05 1.27 5.47 × 101 1.44 × 102

d3t65g40mm00n01 6486 20 4.00 0.416 4.46 1.07 × 103 1.99 1.44 1.37 × 102 3.54 × 102

d3t65g45mm00n02 6458 14 4.50 0.325 4.36 3.39 × 103 1.11 1.42 6.50 × 101 1.37 × 102

d3t68g43mm00n01 6725 17 4.25 0.406 4.35 1.87 × 103 1.45 1.36 9.92 × 101 2.00 × 102

d3gt57g44n57 5783 18 4.44 0.272 3.21 3.11 × 103 1.00 1.00 3.86 × 101 1.72 × 102

Fig. 1. νmax as a function of Teff . The filled red squares correspond to
the location of the 3D hydrodynamical models in the plan νmax − Teff

(see also Table 1), the filled blue circles to the Kepler sub-giant and MS
targets, and the black ones to the Kepler red giants (see Sect. 5). The
filled green square shows the position of our 3D solar model (the last
model in Table 1).

as g/
√

Teff (Kjeldsen & Bedding 1995; Stello et al. 2009; Huber
et al. 2009; Mosser et al. 2010, 2013; Belkacem et al. 2011).
Accordingly, we determined νmax for each 3D model with the
following scaling:

νmax = νref
g

g�

√
Teff,�
Teff
, (9)

where νref = 3 106 μHz (as in Mosser et al. 2013), log g� =
4.438 (cm/s2) and Teff,� = 5777 K. The values of νmax associated
with each 3D model are given in Table 1. The positions of the
3D models in the plane Teff − νmax are displayed in Fig. 1.

To calculate the theoretical PDS we needed to know the ra-
dius of the star (Rs). We determined for each 3D model the as-
sociated radius using a grid of standard stellar models computed
with the CESAM2k code (Morel & Lebreton 2008). The stellar
1D models have the same chemical composition as the 3D mod-
els. The radius and mass associated with each 3D models are
given in Table 1.

3.2. Calculations of the theoretical PDS

We computed the PDS of the granulation (F ) according to
Eqs. (1)−(7). The different quantities involved in the theoretical
model were obtained as detailed in Paper I from 3D hydrody-
namical models of the surface layers of stars.

The theoretical model involves three free parameters: β, λ,
and ζ. The first controls the granule sizes, the second their char-
acteristic time, and the last one the characteristic wave-number,
which separates the inertial-convective range from the inertial-
conductive range associated with the spectrum of the tempera-
ture fluctuations (see details in Paper I). In Paper I we calibrated
the three parameters using the observed solar granulation spec-
trum together with constraints from the resolved image of the
solar granulation. The calibration gave λ = 0.30, β = 3.42 and
ζ = 5 (see Paper I Sect. 3). These values were used for all cal-
culations presented here.

For each 3D model, we computed the associated PDS and
then derive the associated rms brightness fluctuation σ (Eq. (8))
and the characteristic time τeff as defined in Sect. 2. Theoretical
values of τeff and σ are given in Table 1 and are compared with
the observations in Sect. 6.

4. Theoretical scaling relations

It is observationally established (Kallinger & Matthews 2010;
Mathur et al. 2011; Chaplin et al. 2011b) that the characteris-
tic time τeff associated with granulation varies from one star to
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another approximately as the inverse of the peak frequency of the
solar-like oscillations (νmax). Brown et al. (1991) and Kjeldsen &
Bedding (1995) have conjectured that νmax scales as the star cut-
off frequency, νc ∝ g/√Teff . This relation was shown to work for
a larger variety of stars (Bedding & Kjeldsen 2003; Stello et al.
2009; Huber et al. 2009; Mosser et al. 2010) and its underlying
physical origin has been explained recently by Belkacem et al.
(2011). For the rms brightness fluctuation σ, the observations
show that σ roughly scales as (νmax)−1/2 (Mathur et al. 2011;
Chaplin et al. 2011b). As shown below, the theoretical model
for the stellar granulation presented in Sect. 2 predicts the same
dependence of σ and τeff on νmax. However, we will establish
that σ and τeff are also expected to scale as a function of the
Mach number.

The integrand of Eq. (1) is highest close to the photosphere
(i.e. around the optical depth τ = 2/3, or equivalently around
T = Teff). Therefore the rms brightness fluctuations σ of the
stellar granulation as well as its associated characteristic time τeff
are closely controlled by τc and στ at the photosphere, where τc
and στ are the granule life-time and the rms brightness fluctua-
tion at the optical depth τ (see Sect. 2).

4.1. Scaling for the characteristic time τeff

The characteristic time τc is by definition proportional toΛ/wrms
(see Paper I), where wrms is the rms of the vertical component of
the velocity. LetMa = wrms/cs be the turbulent Mach number,
where cs is the sound speed (both are evaluated at the photo-
sphere). By hypothesis, Λ varies as Hp, which scales as Teff/g.
Furthermore, cs varies at the photosphere as

√
Teff. Accordingly,

τeff is expected to scale as Ma
√

Teff/(gMa) ∝ (Ma νc)−1, and
since νc ∝ νmax, we expect that

τeff ∝ 1
Ma νmax

· (10)

4.2. Scaling for the granulation amplitude σ

The expression for στ (Eq. (4)) involves three characteristic
quantities:

– Ng: the average number of granules over the stellar surface
(Eq. (7));

– Θrms = ΔTrms/T : the rms of the (relative) temperature fluc-
tuations;

– τg: the optical thickness of the granules (Eq. (6)).

From Eq. (7) and the scaling relation forΛ (see Sect. 4.1 above),
one easily obtains thatNg scales as νmax M T−3/2

eff .
For Θrms we can derive the following relation between wrms

and the relative temperature fluctuations (e.g. Cox 1968) follow-
ing the mixing-length theory:

w2
rms = gΛ θrms. (11)

Since Λ ∝ T/g and cs ∝ T 1/2, Eq. (11) yields that Θrms scales as
M2

a. However, using a grid of stellar 3D models (see Sect. 3.1),
we found thatΘrms varies withMa in a more complicate manner.
This is illustrated in Fig. 2 (top panel), where Θrms is plotted as
a function ofMa. Except for the two red-giant 3D models with
log g ≤ 2 (see Table 1), Θrms(Ma) can be fitted very well by a
second-order polynomial function

Θrms

Θ0
≡ f (Ma) = a0 + a1

( Ma

Ma,0

)
+ a2

( Ma

Ma,0

)2

, (12)

Fig. 2. Top: relative temperature fluctuation Θrms (in %) as a function of
the Mach number Ma. The filled circles correspond to the values ob-
tained for each 3D model (see Table 1). Theses values were computed
at the photosphere (i.e. at the optical depth τ = 2/3). The red curve cor-
responds to the polynomial function given by Eq. (12). The two upper
points that deviate most from the polynomial function correspond to the
two 3D models with log g ≤ 2, i.e. the most evolved RG 3D models of
our grid. Bottom:Ma as a function of the quantity z1 given by Eq. (17).
The red line corresponds to a linear scaling in z1.

where the coefficients (a0, a1, a2) are obtained by least-squares
adjustment, and where we have defined the coefficients Θ0 =
3.2% andMa,0 = 0.26. The value Θ0 corresponds to the value
associated with the solar 3D model (the last model listed in
Table 1), while the value Ma,0 = 0.26 is the one obtained
by adjustment in Sect. 4.3. The fit yields a0 = −0.67 ± 0.21,
a1 = 2.30 ± 0.43 and a2 = −0.59 ± 0.22 and is shown in Fig. 2
(top panel). It is interesting to note that Tremblay et al. (2013)
have recently found a qualitatively similar dependence between
the relative intensity contrast of the granules andMa.

Finally, the optical thickness of the granule τg is expected to
vary slowly from one star to another. Indeed, we aim to evaluate
this quantity near the photosphere, i.e. close to the unit optical
depth. The optical thickness of the granule is by definition

τg = Λκρ = βHp κρ, (13)

where β is the free parameter introduced in Paper I. The opti-

cal depth is given by τ(r) =
∫ +∞

r
dr κ ρ. At the photosphere,

the pressure scale-height, Hp, is of the same order as the density
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scale height Hρ. If we assume that the opacity and the density
scale height vary slowly in the atmosphere, we obtain that at a
given optical depth τ ∝ κ ρHp ∝ τg. The photosphere corre-
sponds by definition to the optical depth τ = 2/3. Therefore, if
we evaluate τg at the photosphere, we then expect that τg remains
constant from a star to another.

When we combine the scaling relations found for Ng and
Θrms, we find the following scaling:

σ ∝ f 2(Ma)

ν1/2max

T 3/4
eff

M1/2
, (14)

where the function f (Ma) is given by Eq. (12). The term
T 3/4

eff M−1/2 ν−1/2
max in Eq. (14) corresponds to the classical scal-

ing relation (Kjeldsen & Bedding 2011; Mathur et al. 2011),
and comes basically from the fact that σ scales as the inverse
of the square root of the number of granules over the stellar sur-
face (see e.g. Ludwig 2006). Our theoretical model then con-
sistently results in the same dependence as the classical scaling
relation. However, we find here that σ also scales with a func-
tion of the Mach number. It is worth noting that for MS stars,
the term (T 3/4

eff /M
1/2) varies slowly. Indeed, according to Noyes

et al. (1984), M ∝ T 1.8 for MS stars.

4.3. Scaling for the mach numberMa

To compare the scaling relations established for τeff (Eq. (10))
and σ (Eq. (14)) with the observations, it is necessary to derive
the Mach numberMa as a function of some fundamental param-
eters of the star. As a guideline, we first derived such a scaling
on the basis of simple physical assumptions. We then derived a
more appropriate scaling using the grid of 3D models.

We first established a scaling for the flux of kinetic energy
Fkin ≈ ρw3

rms. In the framework of the mixing-length approach, it
can be shown that Fkin is roughly proportional to the convective
flux Fc. In the layer where the granulation is observed, the total
energy flux, Ftot, is no longer transported dominantly by convec-
tion. However, to derive an expression for Fkin that depends only
on the surface parameters of the star, we assumed that the entire
energy is transported by convection; that is Fc ≈ Ftot = σT 4

eff ,
where σ is the Stefan-Boltzmann constant. Accordingly, at the
photosphere we haveMa ≡ wrms/cs ∝ T 5/6

eff ρ
−1/3
s where ρs is the

density at the photosphere.
We now need to establish a scaling for ρs. As done in

Sect. 4.2, we approximated the optical depth as τ ≈ κ ρHp. Since
our goal is to derive the scaling relation for Ma at the photo-
sphere, which by definition is such that τ = 2/3, we then obtain
that ρs must scale as g T−1

eff κ
−1.

For the low-mass stars we are interested in, which have typ-
ical temperatures ranging between 4000 and 6000 K, the domi-
nant opacity source is H−. Using tables, it has been possible to
show that the related opacity follow the power law (e.g. Hansen
& Kawaler 1994)

κ ∝ ρ1/2 T 9. (15)

We finally establish

Ma ∝ z0 ≡
(

Teff

Teff,�

)3 (
g

g�

)−2/9

· (16)

Guided by this scaling, we fitted the following analytical expres-
sion on our set of values ofMa:

Ma = z1 ≡
(

Teff

Teff,�

)a (
g

g�

)−b

Ma,0, (17)

where a, b and Ma,0 are coefficients obtained by least-squares
adjustment. The best fit is obtained with a = 2.35 ± 0.09,
b = 0.152 ± 0.007 and Ma,0 = 0.258 ± 0.003. The overall
satisfactory agreement of the scaling given by Eq. (17) with the
individual values forMa (Table 1) is illustrated in Fig. 2 (bottom
panel).

4.4. Comparison with individual theoretical values

We compared the theoretical scaling relations derived for τeff
(Sect. 4.1) and σ (Sect. 4.2) with the individuals values obtained
with our grid of 3D models (see Sect. 3 and Table 1) as well as
with the classical scaling relations.

We started with the scaling relations for τeff . We recast the
scaling relation given by Eq. (10) as

τeff ∝ z2 ≡
(
νref

νmax

) (Ma,0

Ma

)
· (18)

We have plotted in Fig. 3 (top panel) individual theoretical val-
ues of τeff (red squares) as a function of the quantity z2. The
individual theoretical values of τeff (Table 1) were found to scale
as zp

2 with p = 0.98. This scaling is then close from the theoret-
ical scaling relation z2 ∝ (νmaxMa)−1. However, there is a slow
deviation from a linear scaling with z2, which must very likely
be attributed to the various simplifications adopted in Sect. 4.1
to derive this scaling relation. For comparison with the classical
scaling relation for τeff , we defined the quantity c2 ≡ (νref/νmax).
We have plotted in Fig. 3 (top panel) individual theoretical val-
ues of τeff (black circles) as a function of c2. Theoretical τeff are
found to scale as cn

2 with n = 0.94. The deviation from a lin-
ear scaling were therefore higher than with the scaling with z2.
Furthermore, for MS and sub-giant stars a much higher disper-
sion is obtained than with the new scaling relation. This shows
that for these stars the Mach number significantly influences the
characteristic time τeff . On the other hand, for evolved stars,
the variation of τeff is dominated by the variation of νmax along
the evolution, which is basically related to rapid variation of the
surface gravity (or equivalently the luminosity).

We turn now to the scaling relations for σ. The theoretical
scaling relation given by Eq. (14) is recast as

σ ∝ z3 ≡
(

Teff

Teff,�

)3/4 ( M�
M

)1/2 (
νref

νmax

)1/2 (
f (Ma)

f (Ma,0)

)2

· (19)

As seen in Fig. 3 (bottom panel), individual theoretical values
ofσ (red squares) vary globally according to the theoretical scal-
ing relation given by Eq. (19). The scaling of σ with z3 is not
fully linear since a fit gives σ ∝ zp

3 with p = 1.10 (see Fig. 3,
bottom panel). This deviation from a linear scaling with z3 is
shown in Appendix B to arise for a large part from the consid-
erable degeneracy between R and M that occurs for RG stars.
For comparison with the classical scaling relation, we defined
the quantity c3 as

c3 ≡
(

Teff

Teff,�

)3/4 ( M�
M

)1/2 (
νref

νmax

)1/2

· (20)

Theoretical values of σ are plotted in Fig. 3 (bottom panel) as a
function of c3. Again, for the MS and sub-giant stars, a consider-
able dispersion is obtained w.r.t. the classical scaling relation c3.
The dispersion is substantially reduced when σ is plotted as a
function of the new scaling relation (z3).
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Fig. 3. Top: theoretical values of τeff as a function of the quantity z2 (red
squares) given by Eq. (18) and as a function of the classical scaling
c2 ≡ (νref/νmax) (filled black circles). The symbols correspond to the
individual theoretical values obtained with our grid of 3D models. The
red curve corresponds to a power law of the form zp

2 where the slope
p = 0.98 is obtained by fitting the red squares, while the black line is
a power law of the form cn

2 where the slope n = 0.94 is obtained by
fitting the black circles. Bottom: theoretical values σ as a function the
quantity z3 given by Eq. (19) and as a function of the classical scaling c3

(Eq. (20)). The symbols correspond to the individual theoretical values
obtained with our grid of 3D models. The red curve is a power law of the
form zp

3 where the slope p = 1.10 is obtained by fitting the red squares,
while the black line is a linear scaling in c3.

As a conclusion, despite the simplifications adopted for de-
riving the new scaling relations, they are found to match the val-
ues of σ and τeff derived from the theoretical PDS reasonably
well. On the other hand, the classical scaling relations signifi-
cantly departs from the theoretical values.

5. Observations

Characteristics of stellar granulation in terms of time-scale (τeff)
and rms brightness fluctuations (σ) are typically extracted from
the power spectrum of the intensity using various background
models. Different analysis methods are found in the literature.
They mainly differ from each other in 1) the number of com-
ponents fitted in addition to the granulation component (e.g. ac-
tivity, super-granulation, modes, misidentified components), and
2) the functional forms adopted for each component.

A major source of uncertainty related to those meth-
ods arises from the kink that is more or less visible on

the stellar background. Such a feature has been first identi-
fied in the power spectrum of the solar irradiance data from
the SOHO/VIRGO instrument at around 1 mHz (Andersen
et al. 1998; Vázquez Ramió et al. 2005). Similar features
seem to be observed by Kepler on RG stars (Mathur et al.
2011). Furthermore, Karoff et al. (2013) recently analysed three
MS stars for which this kink is visible and statistically signifi-
cant. The physical origins of this kink are subjects of debates.
They are either attributed to the occurrence of bright points (e.g.
Harvey et al. 1993; Aigrain et al. 2004), the changing proper-
ties of the granules (Andersen et al. 1998), a second granulation
population (Vázquez Ramió et al. 2005), or to faculae (Karoff
2012).

Because the origin of this second component is not yet clear,
and it is furthermore missing in the current theoretical models,
we considered the high-frequency component to be part of the
granulation spectrum and compared the characteristics of the
whole granulation spectrum with our theoretical predictions.

To compare measured values of σ and τeff with theoretical
calculations, we fitted the observed stellar backgrounds with the
same functional form for all types of stars (MS stars to red gi-
ants). Of the different forms studied in Mathur et al. (2011),
the Lorentzian function (also named in this context the Harvey
model, Harvey 1985) results in values for τeff and the height
of the granulation spectra that are enclosed by the different
other methods of analysis investigated by Mathur et al. (2011).
Accordingly, we adopted a Lorentzian function as in Mathur
et al. (2011) as a reference for our comparisons with the theo-
retical calculations,

P(ν) =
Hg

1 + (2π τeff ν)2
, (21)

where the height Hg and τeff were obtained as explained be-
low. Note that prior to the calculation and the fit of the PDS, all
light-curves were corrected following the procedures described
in García et al. (2011).

For red giants, Hg and τeff were determined with the method
named “COR” in Mathur et al. (2011) that was also used in
Mosser et al. (2012). Locally around νmax in a frequency range
equal to [0.15−6]× νmax, one Lorentzian component is enough
for fitting the background. The scaling relation τeff ∝ ν−1

max and
the determination of the background Bmax at νmax provided guess
values of τeff and Hg. The seismic excess energy was modelled
with a Gaussian with a FWHM and an amplitude that are also
governed by scaling relations (e.g. Mosser et al. 2010; Hekker
et al. 2011). All parameters were then iteratively determined.
The sample of red giants from which Hg and τeff were extracted
was the same as in Mosser et al. (2012) or in Mathur et al. (2011).

More than about 500 of the sub-giants and MS stars, ob-
served during Kepler’s survey phase (i.e., based on one month of
observations) were seen to be oscillating by Kepler. Here, how-
ever, we have analysed a cohort of the global sample that have
been selected for long-term follow-ups and have thus been ob-
served for at least three months from Quarter 5 onwards. This
cohort initially contained 196 stars. In our final cut, we have
retained the results from 141 stars. Taking νmax ≈ 800 μHz as
the threshold separating sub-giant from MS stars, 108 targets
of the 141 targets of the sample can thus be considered as MS
stars. Our analysis of their stellar backgrounds assumed a sin-
gle Harvey-like profile (cf. Eq. (21)) describing granulation, a
flat component describing shot noise, and a Gaussian envelope
describing the p-mode hump. The power spectra were fitted in a
range starting at 100 μHz and extending to the Nyquist frequency
of Kepler short-cadence data (8.5 mHz). A maximum-likelihood
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approach was employed to determine Hg and τeff . More details
about this analysis can be found in Karoff et al. (2013).

The rms brightness fluctuations σ, associated with the form
given by Eq. (21) was obtained according to the relation σ2 =
C2

bol Hg/τeff/4, where Cbol is a bolometric correction that scales
for the Kepler bandpass as Cbol = (Teff/T0)α, where T0 = 5934 K
and α = 0.8 (Ballot et al. 2011, see also Michel et al. 2009).

Measured values of τeff and σ are compared in the next sec-
tion with those obtained from the theoretical PDS, as explained
in Sect. 2. However, in this comparison one must keep in mind
that our measured values of τeff and σ depend on the way the
stellar background is modelled, in particular, whether or not the
high-frequency component is included in the background model.
As mentioned above, relative uncertainties of about 30% (peak-
to-peak) remain.

6. Comparison with the observations

6.1. Characteristic time-scale, τeff

First, we compare in Fig. 4 (top panel) individual theoretical val-
ues of τeff (red squares) with measured ones. Sub-giants and
MS stars overlap the theoretical and measured values of τeff .
However, for red-giant stars, the theoretical τeff systematically
underestimates the measurements by about 40%. This discrep-
ancy is of the same order as that obtained by Mathur et al. (2011).
Our theoretical τeff scales as νp

max with p = −0.94, which agrees
with Mathur et al. (2011). Indeed, their average value of the
slope is p = −0.89 with a maximum difference of 0.03 between
the different methods. In both cases, however, τeff significantly
departs from a linear scaling with νmax.

Second, to compare the theoretical scaling relation in
(νmaxMa)−1 (Eq. (18)) with the observations, we used the scal-
ing relation found forMa (Eq. (17)). This requires knowing Teff
and the gravity g. For RG stars, the effective temperatures of the
targets were obtained from the Kepler Input Catalogue (Brown
et al. 2011) and corrected following Thygesen et al. (2012). For
136 of 141 sub-giant and MS targets, the effective temperatures
were obtained from the Sloan Digital Sky Survey (Pinsonneault
et al. 2012). For the five remaining targets, they were extracted
from Silva Aguirre et al. (2012). The surface gravity g of the tar-
gets were determined using the scaling relation for νmax (Eq. (9)).

We have plotted in Fig. 4 (bottom panel) measured and the-
oretical values of τeff as a function of the quantity z2 given by
Eq. (18). The measured values of τeff are found to scale as zm

2
with m = 1.01, which is very close to the expected theoretical
scaling in z2 ∝ (νmaxMa)−1 and the departure from a linear scal-
ing is lower than that observed with the classical scaling (i.e.
with c2 ∝ ν−1

max ). However, the theoretical τeff systematically un-
derestimates the observations by about 40%. A large part of this
systematic difference is a consequence of our choice of fitting the
granulation background with a Lorentzian function (Eq. (21)).

The new theoretical scaling for τeff reproduces the ob-
servations on a global scale. However, the question remains
whether or not the observations allow one to quantitatively con-
firm the dependence on Ma. We investigate this question in
Appendix A.1 and conclude that the Kepler observations cannot
distinguish the new scaling relation from the classical one.

6.2. Brightness fluctuation σ

The theoretical values of σ are compared in Fig. 5 (top panel)
with the measured ones as a function of νmax. As in Mathur et al.
(2011), our theoretical values of σ scale approximately as ν−1/2

max ,

Fig. 4. Top: characteristic time τeff as a function of νmax. The dots have
the same meaning as in Fig. 1. The green curve correspond to a linear
scaling in ν−1

max while the red curve is a power law of the form νp
max

with the slope p = −0.94 obtained by fitting the power law to the
theoretical values of τeff (filled red squares). The filled green square
corresponds to the value τeff = 173 s found for the solar 3D model
(the last model in Table 1). Bottom: τeff as a function of the scaling
z2 = (νmax/νref ) (Ma/Ma,0) whereMa is supposed to scale according to
Eq. (17). The symbols have the same meaning as in Fig. 1. The green
line corresponds to a linear scaling in z2, while the red curve to a power
law of the form zp

2 where the slope p = 0.98 is obtained by fitting the
theoretical values of τeff (red squares). The horizontal error bars show
the uncertainty in z2 associated with a typical uncertainty of 100 K (rms)
in Teff . The blue horizontal error bar corresponds to a typical MS and
the black one to a typical RG star.

in agreement with the observations. For RG stars, theoretical σ
falls within the observational domain. However, the dispersion
in the theoretical calculations is much lower than in the mea-
surements. This dispersion in the measurements must be linked
to the fact that we observed a sample of stars inhomogeneous in
terms of surface metal abundance.

For sub-giant and MS stars the observations and the theoret-
ical values overlap. However, at fixed values of νmax, theoretical
values ofσ extend over a wider range than the observations. This
is in part because the theoretical calculations include 3D models
corresponding to dwarf stars cooler than the observed targets.
Indeed, as seen in Fig. 1, sub-giant and MS stars cooler than
about 5000 K and with νmax >∼ 800 μHz are lacking in our sam-
ple. According to our calculations, these stars are expected to
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Fig. 5. Top: root-mean-square brightness fluctuation σ as a function of
νmax. The symbols have the same meaning as in Fig. 1. The red curve
is a power law of the form νp

max with the slope p = −0.51 obtained by
fitting the power law to the theoretical values of σ (filled red squares).
The filled green square corresponds to the value σ = 39 ppm found for
the solar 3D model. Bottom: σ as a function of the quantity z3 given by
Eq. (19) whereMa and T 3/4

eff M−1/2 are here supposed to scale according
to Eq. (17) and Eq. (22), respectively. The green line corresponds to a
linear scaling with z3 and the red one to a power law of the form zp

3
where p = 1.11.

have a value of σ about one to two orders of magnitude lower
than observed.

We now compare the theoretical scaling given by Eq. (19)
with the observations. The Mach number is estimated using
Eq. (17), while the term T 3/4

eff M−1/2 can be derived using the
scaling relations associated with νmax and the large separation
Δν (see e.g. Stello et al. 2009; Kallinger et al. 2010; Mosser
et al. 2010, for a recent review see Belkacem et al. 2013). Indeed,
combining the two seismic relations yields

T 3/4
eff

M1/2
=

(
νmax

νref

)−3/2 (
Δν

Δνref

)2 T 3/4
eff,�

M1/2
�
· (22)

In Fig. 5 (bottom panel), we have plotted the measured values σ
as a function of z3 (Eq. (19)) whereMa and the term T 3/4

eff M−1/2

are here evaluated according to the scaling relations given by
Eq. (17) and Eq. (22), respectively. The measured values of σ
are generally aligned with the linear relation in z3.

Similarly to the procedure adopted for the scaling relation
for τeff , we investigate in Appendix A.2 the question whether or

not the current observations can distinguish the new scaling re-
lation from the classical one. It is found that compared with the
new scaling relation, the classical one results in a smaller dif-
ference with the observations. However, the deviations of both
scaling relations from the measurements are found to depend
on Teff, and the highest deviations are obtained for the F-dwarf
stars (Teff = 6000−7500 K). As discussed in Sect. 7, this is very
likely a consequence of the lack of modelling of the impact of
magnetic activity on the granulation background. Indeed, a high
level of magnetic activity is expected to inhibit the surface con-
vection and consequently reduce the Mach number. As stressed
in Paper I, our theoretical calculations must be rigorously valid
for stars with a low level of activity. If we now exclude the
F-dwarf stars from our sample, we find that the current obser-
vations do not allow us to distinguish the new theoretical scaling
relation from the classical one. It is finally established that only
cool K-dwarf stars will allow us in principle to distinguish the
dependence of σ onMa.

7. Activity and granulation background

Chaplin et al. (2011a) have shown clear evidence that a high
level of magnetic activity inhibits the amplitudes of the solar-
like oscillations and the strongest effects were – on average –
observed for F-dwarfs (Chaplin et al. 2011b). The authors con-
cluded that this constitutes strong evidence for the impact of the
magnetic activity on the near-surface convection. In this con-
text, the case of the F-dwarf star HD 49933 is particularly en-
lightening. Indeed, this star shows clear evidence of a high level
of activity (see Mosser et al. 2005, 2009; García et al. 2010).
Ludwig et al. (2009a) have compared the theoretical granula-
tion spectrum computed on the basis of the ab initio approach
(Ludwig et al. 2009a) with the one measured with CoRoT on
HD 49933. Their theoretical calculation results in an overesti-
mation of the measured σ by about 70%, however. The authors
argued that such a discrepancy is common to the F-dwarfs ob-
served by CoRoT.

Consistently with the Ludwig et al. (2009a) results, our the-
oretical calculations result in a trend towards a high overestima-
tion of the measured σ and a moderate underestimation of τeff
for F-dwarf stars. This is illustrated for σ in Fig. 6, where we
have plotted the relative differences Dσ and D′σ as a function of
Teff (see Appendix A.2). The strongest relative differences are
obtained around Teff ≈ 6400 K. On the other hand, the weakest
differences are observed on average with stars cooler than about
6000 K. This observed trend is very likely due to the impact of
the magnetic activity on the granulation background, which is
not included in the current modellings. Indeed, a high level of
magnetic activity can inhibit the surface convection to some ex-
tent (see e.g. Nordlund et al. 2009, and references therein) and
consequently inhibit the granulation background.

We note that reducting the photospheric Mach number of
the F-dwarf stars by about 30% leads on average to values
of σ and τeff close to the measurements. Reduced thus, the
Mach number is at about the same level as that of the solar
3D model (Ma � 0.27). For instance, the unexpectedly low ob-
served amplitude measured for HD 49933 can been explained
if we adopt for this star Ma = 0.30, which is about 30%
lower than predicted for the F-dwarf 3D model representative
for HD 49933. However, whether or not magnetic activity can
indeed reduceMa by this amount remains an open question.

The classical scaling relation also shows an excess around
Teff ≈ 6400 K. However, this is much weaker than for the new
scaling relation. Given the fact that the classical scaling relation
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Fig. 6. Relative differences (in %) between the theoretical σ and the
measured ones as a function of Teff . The black filled circles correspond
to the relative difference Dσ = (σ�/σm) z3 − 1 and the red open circles
to the relative difference D′σ = (σ�/σm) c3 − 1, where z3 (Eq. (19)) is
the new theoretical scaling relation, c3 (Eq. (20)) is the classical one,
and σm the measurements (see details in Appendix A.2).

does obviously not take into account the impact of the mag-
netic activity, it is very surprising to observe such a weak excess.
However, following our comment above, we believe that this is a
consequence of reduction ofMa by the magnetic activity, which
led to values of Ma for the active F-dwarfs comparable with
what is expected for G-dwarfs stars. This would explain why σ
is mainly controlled by the term T 3/4

eff M−1/2 ν−1/2
max , from G-dwarfs

to F-dwarfs, that is, the classical scaling relation.
The discrepancies observed for F-dwarfs stars must be ex-

plained by missing physical processes that involve the magnetic
field at some level. To test the effect of a local magnetic field
on the granulation background, Ludwig et al. (2009a) have com-
puted a set of 2D MHD solar models with different magnetic
flux levels. However, a negligible effect on the temporal power
spectra of the emergent intensity was obtained, which leads the
authors to conclude that locally generated magnetic fields are
unlikely to be responsible for the discrepancy with the observa-
tions. We are then left with an enigmatic discrepancy.

8. Summary and concluding remarks

Using a grid of 3D models of the surface layers of various stars,
we have computed the theoretical power density spectra associ-
ated with the granulation background on the basis of the theo-
retical model presented in Paper I. For each theoretical PDS we
derived a characteristic time τeff and amplitudeσ associated with
the granulation background. We compared these values with the
theoretical scaling relations and observations.

From the current theoretical model we derived theoretical
scaling relations for τeff and σ: τeff was found to scale in-
versely as z2 ∝ (Ma νmax), while σ was found to scale as z3 ∝
(T 3/4

eff /M
−1/2) ν−1/2

max f 2(Ma), where Ma is the turbulent Mach
number at the photosphere and f (Ma) a second-order polyno-
mial function (Eq. (12)). Both scaling relations were found to
approximately agree with the individual values derived from the
theoretical PDS obtained with our grid of 3D models.

The scaling relations predicted by the model depend on νmax
in the same way as the classical theoretical scaling relations.
Our model thus provides theoretical support for the scaling re-
lation for τeff that was up to now explained by assuming that

the granules move proportionally to the sound speed cs (Huber
et al. 2009; Kjeldsen & Bedding 2011). Furthermore, consis-
tently with the prediction by Ludwig (2006), our theoretical scal-
ing relation for σ is found to scale as the inverse of the square
root of the number of granules over the stellar surface, which is
expected to scale as νmax M/T 3/2

eff .
The model also predicts that τeff and σ not only depend

on νmax, but are also controlled by the Mach numberMa. For τeff
this dependence onMa is simply explained by the fact that the
granule life-time is ultimately controlled by the ratio between
the granule size Λ and its velocity V . In turn, this ratio is propor-
tional to the inverse of the product νmaxMa, whereMa ∝ V/cs.
For red giants, the observed dependence of τeff with νmax is thus
explained by the fact that, during the evolution, variations of νmax
dominate the variation of Ma. The dependence of σ with Ma
is due to the close link between σ and the temperature fluctua-
tions θrms. In turn, there is a balance between θrms and the gran-
ule kinetic energy (see Eq. (11)), and consequently between θrms
andMa.

To compare these theoretical scaling relations with the ob-
servations we have derived a scaling relation forMa using our
grid of 3D models. This scaling has the formMa ∝ T 2.4

eff g
−0.15.

We then compared the theoretical scaling relations for τeff and σ
with the measured values.

Quantitatively, the theoretical values τeff systematically un-
derestimate the measurements by about 40%. This systematic
difference is mainly a consequence of the way τeff is determined
from the granulation spectrum (see Sect. 6.1). Calibrating the
theoretical τeff to the solar reference results in a difference with
the observations of less than 10% on average. At fixed values
of z3, theoretical values of σ systematically overestimate the ob-
servations made for red giants by about 12%. For a large part,
this overestimation was shown to be the consequence of the con-
siderable degeneracy that occurs for red giants between the mass
and radius (see Appendix B). Comparing instead the quantity
σ̃ ≡ (Rs/R�)σ removes the dependence with the masses and
radii attributed to the 3D models and results on average in a
difference with the measurements of only 5%. For MS and sub-
giants, the theoreticalσ differ on average by about 50%̇ from the
measurements. This departure is found to depend on Teff. The
highest deviations are obtained with the F-dwarf stars and are
very likely due to the fact that the impact of the magnetic activity
on the granulation background is not modelled (see the discus-
sion in Sect. 7). If we exclude the F-dwarf stars from our sample,
theoretical σ underestimate the observations by only about 2%.

For RG stars, the differences between our predictions for σ
and τeff and the measurements are found to be lower than the dif-
ferences obtained with the different methods of analysis inves-
tigated in Mathur et al. (2011). For σ, these differences remain
much lower than those obtained by Mathur et al. (2011). Indeed,
theoretical calculations of these authors overestimate the mea-
sured σ by a factor of about four. In view of our results, the
Mathur et al. (2011) results are surprising since their theoreti-
cal calculations are based on the ab initio modelling of Ludwig
(2006) and, as shown in Paper I , our theoretical 1D modelling
agrees well with the theoretical PDS computed on the basis of
the ab initio modelling for a red giant 3D model (Ludwig &
Steffen 2012).

The theoretical scaling relations derived from our model
match the variations of τeff and σ measured across the HR di-
agram with Kepler data on a global scale. Nevertheless, the
differences between the new scaling relations and the classical
ones are found to be of the same order as the dispersions of the
new scaling relations w.r.t. the measurements. It is therefore not
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possible with our sample of stars to confirm or refute the de-
pendence of σ and τeff withMa. The high levels of the disper-
sions between the scaling relations and the measurements have
two origins. First, Ma mainly depends on Teff, and the preci-
sion with which Teff is measured significantly contributes to the
dispersion. Second, we observed population of stars inhomoge-
neous in terms of surface metal abundance. However, the gran-
ulation background is expected to depend on the surface metal
abundance in a manner that remains to be investigated across the
HR diagram (for a particular low-metal F-dwarf star see Ludwig
et al. 2009a).

Detection of solar-like oscillations in a statistically sufficient
number of K-dwarf stars (Teff = 3500−5000) would in principle
permit us to test the dependence of τeff and σ on Ma. Indeed,
these cool dwarf stars have νmax >∼ 800 μHz (log g >∼ 4.0) and are
expected to have simultaneously a significantly lowerMa and a
νmax comparable to the MS stars for which solar-like oscillations
were so far detected with Kepler. Unfortunately, such K-dwarf
stars are lacking in our sample.

In Chaplin et al. (2011b), about 760 stars showing solar-
like oscillations and observed with a short cadence were flagged
by the detection threshold. Of these targets, those with νmax >∼
0.8 mHz all have an effective temperature higher than 5000 K. It
is therefore very unlikely to extend the current samples such as
to have a statistically sufficient number of K-dwarf stars show-
ing solar-like oscillations. If we can verify the dependence of the
scaling relations onMa, this will constitute a confirmation of the
theoretical scaling relations derived in the present work. It will
also constitute a way to test for a variety of stellar standard 1D
models of the surface convection.
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Appendix A: Can we distinguish the dependence
onMa?

We have seen that the new theoretical scaling relations for τeff
and σ are – on a global scale – aligned with the Kepler mea-
surements. However, the question we address here is whether or
not the observations allow one to quantitatively confirm the de-
pendence of the new scaling relations on Ma. To this end we
compare the new scaling relations with the classical ones.

A.1. Characteristic time-scale, τeff

To check the dependence of the new theoretical scaling relation
for τeff onMa, we computed the relative differences between the
new scaling relation and the measurements as well as the rela-
tive differences between the classical theoretical scaling relation
τeff ∝ ν−1

max and the measurements. In practice, we computed the
quantities Dτ =

(
τeff,�/τeff,m

)
z2−1 and D′τ =

(
τeff,�/τeff,m

)
c2−1,

where τeff,m is the measured value of τeff , τeff,� = 230 s is the
adopted solar reference (Michel et al. 2008), c2 = (νref/νmax),
and z2 is the new scaling relation (Eq. (18)). We considered in
our comparison only the sample of MS and sub-giant stars be-
cause they are better indicator for the dependence onMa.

The histograms of Dτ and D′τ are shown in Fig. A.1 (top
panel). The median value and the standard deviation of Dτ are
−10% and 12%, respectively, while for D′τ they are equal to 15%
and 14%, respectively.

For both scaling relations, the dispersion and deviation from
the measurements can in part arise because we observed an het-
erogeneous population of stars, in particular stars with differ-
ent metal abundance. Indeed,Ma is expected to depend on the
surface metal abundance (see e.g. Houdek et al. 1999; Samadi
et al. 2010b,a). However, we would have expected a higher dis-
persion for Dτ than for D′τ. Indeed, the new scaling relation de-
pends onMa and, according to Eq. (17), the Mach numberMa
strongly depends on Teff and more weakly on g. Therefore, the
uncertainties associated with Teff and log g introduce a spread in
the determination of z2, and subsequently on Dτ.

Teff is based on photometric indices and is measured with
an rms precision of about 100 K (see Molenda-Żakowicz et al.
2010; Bruntt et al. 2011, 2012; Thygesen et al. 2012), while
log g is obtained from seismology with a typical rms precision
of 0.1 dex (Bruntt et al. 2012; Morel & Miglio 2012). The rms
errors in Teff and log g introduce a relative dispersion in z2 of
the order of 6% for a typical RG star with Teff = 4500 K and
log g = 2.3, and about 5% for a typical MS with Teff = 6000 K
and log g = 4 (these typical relative dispersions are shown in
Fig. 4).

The median deviation of the new theoretical scaling relation
from the measurements is found to be of the same order as that
of the classical relation. However, the difference between the
median of Dτ and of D′τ remains within the dispersion of Dτ.
Therefore, we cannot distinguish the new scaling relation from
the classical one. Finally, the mean deviation of the new scaling
relation from the measurements is about two times lower than its
associated dispersion. We therefore conclude that, as the classi-
cal scaling relation, the new one is compatible with the observa-
tions, but we cannot firmly confirm its dependence withMa.

A.2. Brightness fluctuations, σ

In the same way as for τeff , we checked the dependence onMa
of the new scaling relation forσ by computing the relative differ-
ence between the new theoretical scaling relation (Eq. (19)) and

Fig. A.1. Top: histogram of the relative differences (in %) between the
theoretical τeff and the measured ones. The solid black line corresponds
to the histogram of the relative difference Dτ =

(
τeff,�/τeff,m

)
z2 − 1

and the dashed red line to residuals D′τ =
(
τeff,�/τeff,m

)
c2 − 1, where

z2 = (νref/νmax) (Ma,0/Ma) is our theoretical scaling relation and c2 =
(νref/νmax) the classical one. Bottom: histogram of the relative differ-
ences (in %) between the theoretical σ and the measured ones. The
solid black line correspond to the histogram of the relative difference
Dσ = (σ�/σm) z3 − 1 and the dashed red line to the relative difference
D′σ = (σ�/σm) c3 − 1, where z3 (Eq. (19)) is the new theoretical scaling
relation and c3 (Eq. (20)) is the classical one.

the measurements as well as the relative difference between the
classical theoretical scaling relation T 3/4

eff M−1/2 ν−1/2
max (Kjeldsen

& Bedding 2011; Mathur et al. 2011) and the measurements.
In practice, we computed the quantities Dσ = (σ�/σm) z3 − 1
and D′σ = (σ�/σm) c3 − 1, where σm is the measured value
of c2 ∝ σ, σ� = 43 ppm is the adopted bolometric amplitude
measured for the Sun (Michel et al. 2008), and c3 is given by
Eq. (20), where the term

(
Teff/Teff,�

)3/4 (M�/M)1/2 is evaluated
according to Eq. (22). Like for τeff , we considered only MS and
sub-giant stars because they are the better indicators.

We have plotted in Fig. A.1 (bottom panel) the histograms
associated with Dσ and D′σ. The median value and standard de-
viation of Dσ are 46% and 42%, respectively, while for D′σ they
are equal to −12% and 17%, respectively.

As mentioned for the scaling of τeff (see Sect. 6.1), for both
scaling relations, the dispersion and deviation with the measure-
ments can in part arise from the fact that we observed an inho-
mogeneous sample of stars, in particular, stars with a different
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surface metal abundances. Indeed, the amplitude of the granu-
lation background is expected to depend on the surface metal
abundance (for a particular low-metal F-type star see Ludwig
et al. 2009a). Furthermore, for the new scaling relation an rms
error of 100 K in Teff and a rms error 0.1 dex on log g results
for z3 in a typical error about 12% for RG stars and about 10%
for a typical MS (these typical relative dispersions are shown in
Fig. 5). On the other hand, the uncertainties associated with Teff
have no direct impact on the classical scaling relation given by
Eq. (20) since the term T 3/2

eff M−1/2 is estimated using only seis-
mic constraints (see Eq. (22)).

Compared with the new scaling relation, the classical one
results in a smaller difference with the observations. However,
the deviations of the two scaling relations from the measure-
ments are found to depend on Teff. The highest deviations are
obtained for the F-dwarf stars (Teff = 6000−7500 K, see Fig. 6
and Sect. 7). As discussed in Sect. 7, this is very likely a conse-
quence of the lack of modelling of the impact of magnetic activ-
ity on the granulation background.

As stressed in Paper I, our theoretical calculations are ex-
pected to be valid for stars with a low level of activity. If we
exclude the F-dwarf stars from our sample, the median devia-
tion of the new scaling relation w.r.t the measurements is −2%
(±30%), while for the classical scaling relation it is equal to
−19% (±18%). In that case, the new scaling relation results in
a lower deviation. However, the difference between the median
value of Dσ and this of D′σ is smaller than the standard devia-
tion of Dσ. Therefore, it is not possible to distinguish the new
theoretical scaling relation from the classical one.

In conclusion, as the classical scaling relation, our theoret-
ical scaling relation is compatible with the observations, but
we cannot confirm the dependence onMa. Observations of K-
dwarf stars (Teff = 3500−5000 K) could in principle help to
check the dependence of the theoretical scaling relation onMa.
Indeed, for instance the 3D model with Teff � 4500 K and
log g = 4.0 (K dwarf) has νmax = 1.3 mHz Ma � 0.18, and
σ � 18 ppm, while the 3D model Teff � 5900 K and same log g
(G dwarf) has νmax = 1.1 mHzMa � 0.31, and σ � 110 ppm.
The relative difference in σ between the K dwarf model and the
G-dwarf model is 84%. This is much higher than the dispersion
in Dσ and D′σ.

Appendix B: Removing the degeneracy
with the mass and the radius

As seen in Sect. 4.4, the individual theoretical values of σ are
found to scale as zp

3 with the slope p = 1.10. As we will show
now, the deviation of the individual values of σ from a linear
scaling with z3 is for a large part due to the considerable degen-
eracy that occurs for red giants between M and R. Indeed, the
theoretical values of σ scale as N−1/2

g , and hence as the stellar
radius Rs (see Eqs. (4) and (7)). Furthermore, z3 scales as M−1/2.
Therefore theoretical values of σ and z3 directly depend on the
masses and radii attributed to the 3D models. However, two
red giants with same Teff and log g can have very different values

Fig. B.1. σ̃ ≡ (Rs/R�)σ as a function the quantity z4 given by Eq. (B.2).
The symbols have the same meaning as in Fig. 1. The green line corre-
sponds to a linear scaling with z4 and the red one to a power law of the
form zp

4 where the slope p = 1.03 is obtained by fitting the individual
theoretical values of σ̃ (red squares).

of R and M. Furthermore, the masses and radii attributed to our
3D models were obtained from a grid of standard stellar mod-
els with fixed physical assumptions, and all of these models are
in the pre-helium-burning phase, which is not the case for all
observed RG stars.

When we multiply theoreticalσ by Rs/R�, we obtain a quan-
tity that does no longer depend on the radius attributed to the
3D model. Furthermore, the quantity z4 ≡ z3 (Rs/R�) scales
as g−1/2. As a consequence, z4 does not depend on the mass at-
tributed to the 3D model. To remove possible bias introduced
by the determination of the masses and radii of the 3D models
we must therefore compare theoretical values of σ̃ as a func-
tion of z4 with the measurements multiplied by the star radii. To
do this, we need to determine the radii of the observed targets.
Combining the scaling relation for νmax with the one for Δν gives
(see e.g. Stello et al. 2009; Kallinger et al. 2010; Mosser et al.
2010)

Rs

R�
=

(
νmax

νref

) (
Δν

Δνref

)−2 (
Teff

Teff,�

)1/2

· (B.1)

Multiplying Eq. (19) by Eq. (B.1) gives the scaling relation for
σ̃ = (Rs/R�)σ with the help of Eq. (22)

σ̃ ∝ z4 =

(
νref

νmax

) (
f (Ma)

f (Ma,0)

)2

· (B.2)

To compare theoretical σ̃ with the measurements, we multiply
the measured σ by the ratio Rs/R� given by Eq. (B.1). We have
plotted theoretical and measured values of σ̃ in Fig. B.1. The
individual theoretical values of σ̃ are found to scale as zp

4 with
p = 1.03 and are therefore better aligned with the measurements
than those of σ.
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