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CONVERGENCE OF A FINITE DIFFERENCE SCHEME TO
WEAK SOLUTIONS OF THE SYSTEM OF PARTIAL
DIFFERENTIAL EQUATION ARISING IN MEAN FIELD GAMES

YVES ACHDOU * AND ALESSIO PORRETTA

Abstract. Mean field type models describing the limiting behavior of stochastic differential
games as the number of players tends to +o00, have been recently introduced by J-M. Lasry and
P-L. Lions. Under suitable assumptions, they lead to a system of two coupled partial differential
equations, a forward Bellman equation and a backward Fokker-Planck equations. Finite difference
schemes for the approximation of such systems have been proposed in previous works. Here, we
prove the convergence of these schemes towards a weak solution of the system of partial differential
equations.
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1. Introduction. Mean field type models describing the asymptotic behavior
of stochastic differential games (Nash equilibria) as the number of players tends
to 400 have recently been introduced by J-M. Lasry and P-L. Lions [22, 23, 24],
and termed mean field games by the same authors. Related ideas have been de-
veloped independently in the engineering literature by Huang-Caines-Malhamé, see
for example [20]. For brevity, the acronym MFG will sometimes be used for mean
field games. Examples of MFG models with applications in economics and social
sciences are proposed in [19, 2].

The simplest MFG model lead to systems of evolutive partial differential equa-
tions involving two unknown scalar functions: the density of the agents in a given
state z € RY, namely m = m(t,z) and the value function u = u(t, ). The present
work is devoted to finite difference schemes for the systems of partial differential
equations. Although the methods and the theoretical results obtained below can
be easily generalized, the present work focuses on the two-dimensional case for the
following reasons: 1) the one dimensional case is easier and allows too special ar-
guments; 2) in dimension two, the description of the discrete methods discussed
below remain fairly simple. Besides, several important applications of the mean
field games theory are two-dimensional, in particular those related to crowd dy-
namics.

In the state-periodic setting, typical MFG model comprises the following system
of partial differential equations in (0,7") x T?

O 1,2) — viu(t, ) + H(x, Vu(t,2)) = Flm{1,2)), (L.1)
a—m(t, x) + vAm(t,x) + div | m(t, m)a—H(aj, Vu(t,z)) | =0, (1.2)
ot dp
with the initial and terminal conditions
u(0,7) = uo(x), m(T,z) =mg(z), inT? (1.3)

given a cost function ug and a probability density mr.
Here, we denote by T? = [0, 1]? the 2—dimensional unit torus, and by A, V and
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div, respectively, the Laplace, the gradient and the divergence operator acting on
the state variable x. The parameter v is the diffusion coefficient. Hereafter, we will
always assume that v > 0. The system also involves the scalar Hamiltonian H(z, p),
which is assumed to be continuous, convex and C' regular with respect to p. The
notation %—I;(x, q) is used for the gradient of p — H(x,p) at p = ¢. Finally, in the
term F(m(t,z)), F is a continuous real valued function defined on R ;. Hereafter

the notation ¢ will be used for the space-time cylinder (0,7) x T?.

We have chosen to focus on the case when the cost uy depends directly on z.
In some realistic situations, the final cost may depend on the density of the players,
ie. uj—o = Polm=o](x), where ®¢ is an operator acting on probability densities,
which may be local or not. We will not tackle this aspect, in order to keep the
discussion as simple as possible. Similarly, by working on the torus T2, we avoid
the discussion of the boundary conditions, but other boundary value problems with
for example Dirichlet or Neumann conditions could be considered. It is also pos-
sible to consider different initial conditions than in (1.3): if there is a condition of
the type m(t = 0,-) = mg instead of u(t = 0,-) = wyp, then the system models a
planning problem, see [25] for a description of the model and mathematical results,
and [26, 27] for new existence and uniqueness results.

System (1.1)-(1.2) consists then of a forward Bellman equation coupled with a
backward Fokker-Planck equation. The forward-backward structure is an impor-
tant feature of this system, which makes it necessary to design new strategies for
its mathematical analysis (see [23, 24]) and for numerical approximation. The main
results on the mathematical analysis of (1.1)-(1.2) are contained in the pioneering
articles [23, 24], but many important aspects of the theory developed by J-M. Lasry
and P-L. Lions on MFG are not published in journals or books. They can never-
theless be found in the videos of the lectures of P-L. Lions (in French) at College
de France: see [25]. A very good introduction is also given in the notes by P.
Cardaliaguet, [9], with a special emphasis on the deterministic case, i.e. ¥ =0 in
(1.1)-(1.2). The survey of Gomes et al [16] also addresses interesting extensions of
the model, and the so-called master equation first introduced in [25].

Depending on the data and on F' and H, different notions of solutions can
be relevant for (1.1)-(1.3): indeed, if the right hand side of (1.1) is replaced by
®[m(t,-)](xz) where ® is a nonlocal smoothing operator, mapping probability mea-
sures on T? to C! functions, if H depends smoothly on z and if the data uy and
my are smooth, then classical solutions can be found, see [23, 24]. The same is true
if e.g. H is Lipschitz continuous w.r.t. its second argument p and F in (1.1) is a
continuous function. The situation is different in the case when H has a strictly su-
perlinear growth with respect to p and F' is a continuous function: in this case, one
has to look for weak solutions, see [24] and the recent article [28] which is devoted
to weak solutions to Fokker-Planck equations and to the system (1.1)-(1.2).

Since the (semi-)analytic solutions of the MFG system do not exist in general, any
attempt to apply MFG models and to get qualitative/quantitative information from
them must rely on numerical simulations and scientific computing. Therefore, the
research has also been active on numerical methods for approximating (1.1)-(1.3):
a numerical method based on the reformulation of the model as an optimal control
problem for the Fokker-Planck equation with an application in economics was pro-
posed in [21]. Discrete time, finite state space mean field games were discussed in
[15]. We also refer to [17, 18] for a specific constructive approach when the Hamil-
tonian is quadratic. Finally, semi-Lagrangian approximations have been studied in
[11, 10].

The finite difference method described and studied below has first been proposed
and discussed in [5, 3]. It will be reviewed in § 2. The numerical scheme basically
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relies on monotone approximations of the Hamiltonian and on a suitable weak for-
mulation of the Fokker-Planck equation. It has several important features:

e existence and uniqueness for the discretized problems can be obtained by sim-
ilar arguments as those used in the continuous case,

e they are robust when v — 0 (the deterministic limit of the models),

e bounds on the solutions, which are uniform in the grid step, can be proved
under reasonable assumptions on the data.
A first result on the convergence to classical solutions was given in [5]. The issue
of convergence was studied with more details in [4, 1]: in these works, the starting
point/assumption was the existence of a classical solution of (1.1)-(1.3). The proof
of convergence mainly consisted in plugging the classical solution into the system
of equations arising from the finite difference method, and use the consistency and
stability properties of the scheme in order to get estimates and pass to the limit.
In the present work, the goal is different: we wish to prove that as the grid steps tend
to zero, the solution of the discretized MFG system converges to a weak solution of
(1.1)-(1.3), without assuming the existence of the latter; so this work will supply as
a by-product a new strategy for proving the existence of weak solutions. One key
step will be to obtain a priori estimates on the solutions to the discrete systems,
and these will mainly come from the fact that the structure of the MFG system
is preserved by the chosen finite difference method. This step will be achieved in
§ 4. Note that § 4.3 is concerned with a priori estimates for the discrete version
of the Fokker-Planck equation (1.2). These estimates may have their own interest,
independently from MFG models, and may be put in relation with recent works
of Gallouét et al [14] in the context of finite volume methods. Once these esti-
mates are obtained, the most important difficulty will be to pass to the limit in
the discrete Bellman equation. The strategy to that purpose is to first prove some
L' compactness of the sequence of state-gradients of the discrete solutions, then to
adapt some techniques proposed by Boccardo, Murat and Puel, see [8], for studying
weak solutions of (1.1). This will done in § 5.1 and 6. Here also, we think that the
passage to the limit in the discrete Bellman equation may have an interest for itself.

2. Finite difference schemes. In the present paragraph, we discuss the finite
difference method originally proposed in [5].
Let Nr be a positive integer and At = T/Np, t, = nAt, n = 0,...,Np. Let
T? be a uniform grid on the torus with mesh step h, (assuming that 1/h is an
integer N,), and x;; denote a generic point in T7. The values of u and m at
(zi,j,tn) are respectively approximated by uj; and m};. Let u™ (resp. m™) be
the vector containing the values u;'; (resp. m?,j)’ for 0 < 4,5 < Np indexed in
the lexicographic order. Hereafter, such vectors will be termed grid functions on
T? or simply grid functions. For all grid functions z, all i and j, we agree that
%45 = % mod Ny),(j mod Ny)*

Elementary finite difference operators. Let us introduce the elementary finite
difference operators

Uit1l,j — Uiy U j+1 — Ui g
(Dfu)ij = == and - (Dfu)i; = =5 = (2)

and define Dy u as the grid function with values in R?:
(D) = ((DFw)ig, (DFw)i;) € R, (2:2)
Let [Vpu); ; be the collection of the four possible one sided finite differences at x; ;:

(Viulij = ((Dfu)i,j, (Dfu)io1j, (DF )i g, (D;un,j-l) € R (2.3)
3



We will also need the standard five point discrete Laplace operator

1
(Anw)ij = =73 (4 = Uir1j = Uiz1j = Uij41 = Uij-1)-

For a set v = (v™)p=0.... Ny, Where v™ is grid functions on ']I‘%L, it will be convenient
to define the family of grid functions:

,Un+1 _ ,Un
O, AtV = (At ) . (2.4)
’I’L:O,.A.,NTfl

Numerical Hamiltonian. In order to approximate the term H(x, Vu) in (1.1),
we consider a numerical Hamiltonian g : T2xR* — R, (z, q1, ¢2, ¢3,q4) — 9 (T, 41,42, q3, q4)-
Hereafter we will often assume that the following conditions hold:

(g1) monotonicity: g is nonincreasing with respect to ¢; and g3 and nondecreasing

with respect to g2 and qq.

(g2) consistency: g(z,q1,q1,92,92) = H(z,q), Yo e T?VYq=(q1,¢2) € R*.

(gs) regularity: g is continuous and of class C* w.r.t. (q1,q2,43,q4)-

(84) converity : (q1,q2,93,94) = 9 (T, q1, 2, g3, q4) is convex.
We will approximate H (-, Vu)(z; ;) by g(xij, [Vaulij)-
Standard examples of numerical Hamiltonians fulfilling these requirements are pro-
vided by Lax-Friedrichs or upwind schemes, see [5]. For Hamiltonians of the form
H(z,p) = H(x) + |p|?, B € (1,00), we may choose

g(z,q) = H(z) + Glay , 43 a5 . 47 ), (2.5)

where, for a real number r, 7+ = max(r,0) and r~ = max(—r,0) and where G :
(Ry)* — R, is given by

B
G(p) = |p|® = (p? +p3 +p3 + 1) 2. (2.6)

Discrete Bellman equation. The discrete version of the Bellman equation is
obtained by applying a semi-implicit Euler scheme to (1.1),

ul

6y V(AhU7L+1)i,j +g($i,j7 [vhun+1]

ntl
0.

At

- y=F(mr,), (27

i,J

for all points in Ti and all n, 0 <n < Np, where all the discrete operators have been
introduced above. Given (m™),=o,.. Ny—1, (2.7) and the initial condition u?,j =
up(z;,;) for all (¢,7) completely characterizes (u™)o<n<ng -

Discrete Fokker-Planck equation. In order to approximate equation (1.2), it is

convenient to consider its weak formulation which involves in particular the term

/1r2 div (maajz(x’ VU)) w(z) dz.

By periodicity,
/ div (maH(x, Vu)) w(z)de = — m(x)a—H(x, Vu(z)) - Vw(z) dx
T2 8p T2 ap

holds for any test function w. The right hand side in the identity above will be
approximated by

—n? Z m; jVq9(wi g, [Viulij) - [Vawlij = h? Z Tij (u, m)w ,
i,j ,J
4



where the transport operator 7 is defined as follows:

7;’ '(uvm) =
g g
ii (T, [Vaulig) —mi—1j—(Ti—1j, [Vauli-1;
mi,j EYS (i3, [Vaulij) —m Ljaql (zi-1,5, [Vhuli-1,5)
g g
+mit1j 53— (Tit1,5, [Vauligr,;) —majo=—(2ij, [Vhuli;
1 +17Jaq2< +1J[ h]+1j) ]an( J[ h]]) (2.8)
ot
99 9g
iin (@i, [Vaulij) —mij15—(Tij-1, [Vaulij—
m’]BQ3(x’] [Vihuli ;) —ma 1(‘3Q3($’j 1, [Vhulij-1)
+mi,j+18—i(xi,j+1, [Vhulij1) = mi,ja—i(xi,j, [Vhuli ;)
The discrete version of equation (1.2) is chosen as follows:
n+1 n
My — My n ntl o ny _
VI +v(Apm™);; + Ti (W™, m") =0, (2.9)
for all n = 0,..., Ny — 1. This scheme is implicit w.r.t. to m and explicit w.r.t.

u because the considered Fokker-Planck equation is backward. Given u this is a
system of linear equations for m. We introduce the compact and convex set

Kn = {(mij)o<ijem, :h> D> mi; =1; m;; >0} (2.10)
0]

which can be viewed as the set of the discrete probability measures. It is easy to
see that if m” satisfies (2.9) for 0 < n < Np and if m¥7 € K, then m™ € K, for
alln, 0 <n < Nr.

Remark 1. An important property of T is that the operator m +— (—V(Ahm)i7j—
T, (u, m))i)j is the adjoint of the linearized version of the operator u — (—v(Apu); j+
9(@ig, [Viulig)), -
This property implies that the structure of (1.1)-(1.2) is preserved in the discrete
version (2.7)-(2.9). In particular, it implies the uniqueness result stated in Theo-
rem 2.2 below.

Summary. The fully discrete scheme for system (1.1),(1.2),(1.3) is therefore the
following: for all 0 <i,j < Np and 0 < k < Np

k+1_ &

Sl — (A + g(ws g, [vhuk+1]i,j) = F(my;), (2.11)
Sy :
e Atm =+ V(Ahmk)i,j + 72,]' (uk+1a mk) =0,
with the initial and terminal conditions
1 ..
u?_’j = uo(i;), me]T =72 my(x)dz, 0<4i,j<Np (2.12)
\wfzi,j|oo§h/2

The following theorem was proved in [5] (using essentially Brouwer’s fixed point
theorem and estimates on the solutions of the discrete Bellman equation):

THEOREM 2.1. Assume that (g1)-(gs) hold, that ug is continuous on T? and
that mp € LY(T?) is a probability density, i.e. mr >0 and fTQ mr(z)dr = 1; then
(2.11)-(2.12) has a solution such that m™ € Ky, Vn.

Since (2.11)-(2.12) has exactly the same structure as the continuous problem
(1.1)-(1.3), uniqueness has been obtained in [5] with the same arguments as in [23]:

THEOREM 2.2. Assume that (g1)-(ga) hold and that F is nondecreasing then
(2.11)-(2.12) has a unique solution.

Remark 2. Efficient algorithms for solving system (2.11)-(2.12) require spe-
cial efforts, essentially because of the forward-backward structure already discussed
above. We refer to [5] for the description of possible algorithms and numerical
results.



3. Running assumptions and statement of the main result. We now
summarize the assumptions that will be made in the whole work.

up is a continuous function on T?

my is a nonnegative function in L>(T?) such that [, my(z)dz =1

F is a continuous function on R*, which is bounded from below.

The Hamiltonian! (z,p) — H(x,p) is assumed to be convex with respect

to p and C! regular w.r.t.  and p.

The discrete Hamiltonian g satisfies (g1)-(g4) and the further assumption
(g5) There exist positive constants ¢y, ¢z, ¢3, ¢4 such that

9q(x.q) - ¢ — g(x,q) = c1lgq(x, q)|* — ca, (3.1)
l94(x,q)| < e3lq| + ca-

Take for example g as in (2.5) (2.6). It is clear that g4(x,q)-¢ = BG(q7, 4,95 ,9),
hence g(2,4) - ¢ = 9(x,9) = (8 = 1)G(ar 445 ,4i") — H(@). Since gy, ) =
B? (G(ql_,q;',q?,_,qi’))2 7 we see that (gg) holds if 1 < 8 < 2.

We can now state the main result of this article, which establishes the conver-
gence of the solutions of the finite difference scheme towards a weak solution of the
continuous mean field games system.

THEOREM 3.1. Let (u™), (m™) be a solution of the discrete system (2.11)-(2.12)

and up At, Mp At be the piecewise constant functions which take the values uz{rl and
my;, respectively, in (tn,tni1) X (ih —h/2,ih+h/2) x (jh —h/2,jh+ h/2). There

exists a subsequence of h and At (not relabeled) and functions @, m, which belong
to L*(0,T; WH(T?)) for any a € [1,3), such that up ae — @ and mp g — M in
LA(Q) for all B € [1,2), and (@i,7m) is a weak solution to the system (1.1)-(1.3) in
the following sense:
(i) H(., Dii) € I(Q), mF() € LX(Q), m[H, (-, Di)- Di—H(,, D3)] € L}(Q)
(i) (@,m) satisfies (1.1)-(1.2) in the sense of distributions
(iii) @,m € C°([0,T); L*(T?)) and ili—o = uo, m|i=r = mr .

Remark 3. We recall that, if F' is nondecreasing and p — H(x,p) is strictly
convex at infinity, it is proved in [28] that weak solutions are unique whenever H
satisfies the structure conditions

Hy(t,z,p)-p> 71 H(t,,p) — v
|Hp(t,z,p)| < B(1+[pI" )
H(tv'T’ap) 2 a|p|7‘ -7

for some r € (1,2] and some positive constant o, 3,7.

Therefore, in this case the convergence established in the above theorem holds
for the whole sequence, and not only for a subsequence.

4. A priori estimates.

4.1. Norms and semi-norms. It is useful to define the following norms and
semi-norms:

il carattere C'! rispetto a = dove viene realmente usato ? Idem per la g
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for a grid function v = (v; ;)i,;, we define

s

ollecnzy = [ 523 logl” | (4.1)
4,J
lwrezy = | B2 ((DFvi)” + (Dfvi;)%) (4.2)
,J
1
lollwrerzy = (Ioll5eez) + sy (43)

where Di v and DJ v are defined in (2.1). We shall also write [l 1 (r2) = [vlwrzerz),

vl s (r2) = [lvllwr.2(r2), and define the discrete L? scalar product:
2
(U, UJ)Lz(Ti) =h Z Vi, Ws 5.
4,J

We recall the discrete Sobolev inequality: for any s < oo, there exists a constant
C such that for any grid function v,

[[o]

Lerz) < C (Hv||L2('JI',2L) + "U|H1(T%L)) :

1,01 _
For s > 1, we define the dual norm HUHW’I’S’(T?L)’ 1+L=1by

ol sup Sor2)e)
—1,8' (M2 — .
W (T2 w#0 HU/”WLS(T,%)
Define Qp.at = At{0,..., Ny — 1} x T?. For a function w defined on Qp at, w =
(wf;)ij, 0 <n < Np, we define for s € [1, +00),

N s
o~ (Atz nwnnzs@) | (w4
n=0

4.2. First estimates. Hereafter, the constants appearing in the a priori esti-
mates, for example ¢, C, are independent of h and At. In this paragraph, we state
the first a priori estimates stemming from the structure of the system. Although we
have already given the set of running assumptions, we think that it may be useful
to specify which assumptions are really required by each particular result.

LEMMA 4.1. Under Assumptions (g1) and (g3), if F' is bounded from below by
a constant F, ug is continuous on T2, then for all i,j,n,

[[]

ul; >u—T (F - maxH(x,())) , (4.5)
reT?
where u = minger2 ugp(x).

LEMMA 4.2. Under Assumptions (g1), (gs) and (gs), if F is bounded from
below by F, ug is continuous on T? and mr is bounded from above by My, then
there exists a constant C' such that

Np—1

WA DY miy |galwg, [thk+1}i7j)‘2 <c, (4.6)
k=0 4,j
Nr—1
h? At Z Zg(ﬂci,j, [thk+1]i7j) <, (4.7)
k=0 1,5
Nr—1
WAL Y Y miF(mi;) < C. (4.8)
k=0 1i,j

7



Proof. Consider 4;'; = nAtF(mr) for all i, j,n. We get immediately

ey
”Tt” —v(Apa™th),; ; = F(mr) (4.9)

Subtract (4.9) from (2.7) and multiply the resulting equation by mj'; — mz. Sim-

ilarly, multiply (2.9) by ufjl — &Z;‘l

summing with respect to n, one gets:

Adding the two resulting identities and

Nr—1
h’QAt Z Zmﬁ] (gq(xi,ja [vhuk-‘rl]i’j) ' [vhuk+1] ij - g(xi,j’ [thk—‘rl]i’j))
k=0 i;j
Nr—1
2 - o k+1
AS S mara(as (T )
k=0 i
Np—1
+R2AL Y N (mf; —mr)(F(mf ;) — F(mr))
k=0 ij
:(mNT — mr, ulNT — TF(mT))Lz(T%) — (mo —mr, UO)Lz(Ti).
(4.10)
1. Since m™" — myp is nonpositive with a bounded mass, and since u™ is
bounded from below, see (4.5), the term (m~N7 —mp, uNT —T F(mr))r2(2)
in the right hand side of (4.10) is bounded from above by a constant inde-
pendent of h and At.
2. Tt is straightforward to see that (m° — mr, ’U,O)Lz(v]r}z) < (1 4+ mp)||luolco-
3. Since F is continuous, there exists a constant ¢ such that F(t) < ﬁtF(t)Jr
¢, YVt > 0. Hence,

Np—1 Np—1
1
2 k - k 2 k k
h* At ];) Z(mm - mT)F(miﬁj) > ih At kzo Zmi7jF(mi7j) —c.
= 2V = 1,7

4. Finally, R2At Y201 S, (b, — me)F(mr) = T(1 — mr)F(mr)

From these observations, (4.6), (4.7) and (4.8) follow from (4.10) and (3.1). O

4.3. A priori estimates from the discrete Fokker-Planck equation.
The following estimates for the Fokker-Planck equation may have their own interest:

LEMMA 4.3. Assume (g1) and (g3). Let ¢ be a non decreasing and concave
function defined on Ry. For any grid function v = (v; ;), any positive grid function
m = (m, ;) and any positive number 1,

272, (v, m)(mig) < D IV (m)]i; - [Vamli

<52
1,] 2, 9
1 dg
+% meg /(mi,j) (%(ﬂfzg‘, [th]m')> 1{mi+1,j>mi‘j}
1’7\7
1 g 2
+% Zm?g "(miz) (8(12(33”’ [th]i,j)> Limioij>mis) (4.11)
2,7
1 Jdg 2
+% mej "(mi ;) (6%(%]‘, [vhU]i,j)> Lim, jor>mi )
Z’j
1 g 2
“‘% Zmiﬂ/’ (mi ;) (M(xi,j, [th]z,j)> Ly y>ma )

8



In particular, if m does not vanish, then for ¥ (z) = In(z),

> Tig(v.m) In(m )
i
1 (4.12)
< gz Viln(m)], ;- [Vam], ; + o > mig lgg (@i, [Vavli )|
i

,J

Proof. By the definition of 7, we can split the sum S = -, . 7; j(v,m)y(m; ;)
as follows:

S=- Zmujvqg(f%j, [(Vivlij) - [Vr(m)]s; = S1 4 Sz + S3 4+ Sy,

i
where
1 dg
S1o= T2 Maql(xz,Ja[vhv]Zj)(d’(mHlj) ¥(mi;)),
1 - dg
S2 = =y 2o misg (@i [Vaelig) (W (mig) = ¥(mios),
1 - dg
Sy = —Ezmmafqg(%j’[th]i,j)(¢(mi,j+1)—¢(mi,j))’
i
1 dg
Sio= -4 mi,j@(wi,jv[th]m)(iﬁ(mi,j)*¢(mi,j—1))-
i

It is enough to focus on S since the same arguments can be used for the other
sums. Since g is nonincreasing w.r.t. qi,

1 0
Si1< -4 Zmi,jaiqgl(xi,j; [Vavli ) (@(mit1,;) — ¥(mi )+
(2]

Since 1) is nondecreasing, if m;y1; > m; ;, the factor (¢ (miy1,;) — (M, ;))+ can
be rewritten

(¢(mz‘+1,j) — P(mi;)

Mit1,j = M

1

5 3
) ((¢(mz‘+1,j) —p(mi ;) (Mit1,; — mi,j)) -
Since v is nondecreasing and concave, m;11,; > m; ; implies that

0< Y(miy1,;) — P(may) <4 (mai).
Miy1,j — Mi,j ’

Hence, if mi41,5 > ms j, then

N

(Y(mit15) —¥(mi )+ < (¢’(mi,j)(¢(mi+1,y‘) —h(my ) (Miy1,; — mm‘)) ;
which implies that

7]

1 g 2
2 (ma ) <a¢h(xi’j’[vhv]i’j)) Limigr>miy)

S1 o7 2 mg

U
+W (w(mi-l-l,j) - w(mi,j))(mi-‘rl,j - mi7j)1{mi+1,j>mi,j}'

2,9



LEMMA 4.4. Assume (g1) and (gs). Let ¢ be a non decreasing and concave
function defined on Ry. For any positive grid functions (mf ) k=0,...,Np,

Nr Nt
Z Zmﬁj(w(mf,j) - 7/’(7”5;1)) > — Z Zmﬁj /(mf,j)(mf,;l - mf,j)+~

k=n+1 i,j k=n+1 i,j
(4.13)
If m* € Ky, for all k € {0,..., Nz} and does not vanish, then
Np—1
B2 YN (mEt = mf)In h2ZmNT In(m hzzm" In(m7';) + 1.
k=n 1,
(4.14)

Proof. Since v is non decreasing,

Nt Nt
> D miWmi)—vimi) = 3 Y i (m )= mi ) e iy

k=n+1 i,j k=n+1 i,j

From the concavity of ¢, if mf ; < mh 0 !, then ¢(m? Fi)— w(mﬁgl) > ' (mf ;) (my ;-
mf;l) Then (4.13) follows from the last two pomts.
Let us turn to (4.14): for any € > 0,

Nr—1

h2 Z Z k+1 ﬁj) ln(mﬁ] +6 hQZmNT ln hQZmn lIl m +6)

k=n 14,j
025D Yk nlm + 9 — G + ),
k=n+1 1,5

and (4.13) with ¥(z) = In(z + €) yields

N
- ZT: D_mi;(n(mi; + ) ~ In(m; ) < h? Z Zm +e miyt—mi)

k=n+1 i,j k=n+1 1,5

Nt
< 35 St -ty <1,

k=n+1 4,j

where the last estimate comes from the fact that the grid functions m* all belong
to Kp. Hence,

Np—1
h,2 Z Z k-‘rl )1n(m§7j+e < hQZmNT hl NT_|_€ h2zmn ln m +€)+1

k=n 1,

and (4.14) is obtained by letting € tend to 0. O
LEMMA 4.5. If mNT € K}, and (g1) (g3) hold, then there exists a constant C
such that, for any number n, 0 <n < wv, a solution (m}.) of (2.9) satisfies

i.J
Np—1
2 n 1/
rnaxh Zmij\ln P+ (v —mn)At Z ‘ 'Hl(w,
Np— 1
h2At 2
< C’—l—hQZm T 1n(m |—|—7 Z me‘gq (xmv vhukﬂ]”)‘ :
k=0 4,

(4.15)
10



For all o« € [1,2), there exists a constant ¢ such that

Hm”%a(Qh,m)
Nr—1

<c 1+h22m T ln(m )|—|—h2At Z Zm”‘gq zz7],[vhuk+l}

k=0 1,5

Proof.

Step 1. Take € > 0 and consider m;'; = m;’; + €. Note that m}'; > 0 for all
i,7,m. Multlply the second equation of (2.11) by In(m;) and sum for all i,j and
k= n, NT —1:

Nr—1 VhQAt Nr—1
0=h> " > (!t —mf ;) In(mf;) - XV [ VaIn(m*)],
k=n 1, k=n 1, 7
Np—1
FRPAL Y Y T mF) In(ml ).
k=n 1,j

From (4.12) and (4.14), we deduce that

hQAt et
h2Zmn In(rn S>>V [Valn(@@b)],
k=n 1,J
R>At At gy 2
<t s ) + 0SS oG, (O],
i, k=n i, ’
: ok Ak -1
and since m; ; In(hy} ;) > —e™",
Np—1
masch® 3 i | In(oi )| + =5 A 2.2 (Vi)
ij 0.
hZAt Nt 2
< C’+h22m |1n(ANT Z Zmzj‘gq -73137 thkJrl] j)
7,7 2,3
(4.17)
Consider now the quantity |vmk|§p@i), ie.

2 2
12 _ NP k [ak
Vi ey = D :(\/mi+1,j \/ng) + E:(\/ UL TSR mm‘)
ij i
k k k 2 k
Since 77 ; > 0, we can write ( M~ /mm-) =m

where (D] 7m*); ; is defined in (2.1). Since the inequality (v1+z—1)2 < zIn(1+2)
holds for any number z > —1, we infer that

g Dfm). »
(m_ \@) < h(Dfmk); ;In(1+ h(;ﬁ%)
i!j

= W(Dk);; (In(mk,, ;) — In(mk )

2,]

= hZ(Df_ﬁlk)Lj (DI'_ ln(ﬁzk))w

2
Since the same kind of estimate holds for (, /mﬁj+1 — 1/7?1;“’]-) , we obtain that

Vi ey < B (Dar), - (DiIn(i?), (4.18)

i,J

11



and the fact that 7 satisfies (4.15) follows from (4.17) and (4.18).

Let us now prove (4.16): consider o € [1,2): there exists a unique number p >

1 such that L = 1 + i: we have the interpolation inequality ||mk||La(T,z) <
1 ol . R -

Hmk”zl(qri)Hmk”zp(']ri)' But ”mkHLl(’ﬂ‘ﬁ) =1+¢€and ||mk“2p(ri) = ||v mk”LQTJ(’ﬂ‘}’L)'

From the discrete Sobolev inequalities, we deduce that
115y < (U R IV 2205z < IV 52z < € (1 IViF 20 nz))

which yields that 1 satisfies (4.16) by summing for all k£ and using (4.15).
Step 2. We obtain that m satisfies (4.15) and (4.16) by letting € tend to 0. O
COROLLARY 4.6. With the same assumptions as in Lemma 4.5, for any a €
[1,4/3), there exists a constant ¢ such that

Nil k+1 7mk [e3%
[1Dhml|Za(q, a,) + A
s = At lw-ramsy
Np—1 )
<c 1+h22m T 1n(m )|+h2At Z Zm”‘gq (zij, [Vau k“} ,])
k=0 1,5
(4.19)
Proof. Take o € [1,4/3). We start by observing that
Npr—1
HDhmH%O‘(Qh,At) = ChQAt Z Z |D1+ + |D lJ
k=0 4,5
Let us estimate ,Isz(;l Zi,j | D m* ¢; by some quantity depending on
o 3, (DfmE); (DY In(m*)); ;1 a Holder inequality yields that
Nr—1
> 2 Ibt
=0 i
= D)\ (S (Ot V=)
) Dz (DF )5 (AP )
2 2P o )\ & 2 @ e
popals (S ()
= Dfm*); (DY In(m*)); ; ()
o i at = <= \(D] In(m*));

(Dfm")i,

Standard calculus yields that DT I N,

k k k k
< max(mg;, miyy ;) < M+ My,

therefore
NTfl
WAL Y > |DfmFg
k=0 1,5
g -3
NT—l NT 1
<At [ Y7 N (DFm*) (DY In(mF)); > Z (mf; +mb, )=
k=0 14,5 k=0 14,5
NT 1 %
< 5 . 2 *m, k
_C||mHLn(Qh’m) h2At Z Z Dim*); (DY In(m*)); ;

= 1,J
12



Note that 1 < 5%~ < 2. The estimate on ||Dhm||%a(Qh,At) follows by using the

same argument for bounding ZNT ! D |D§Lmk|;?fj and then (4.17) and (4.16).
From (2.9), we deduce that for all grid functions w,

1
+ —mnr

n ..
2 )
h E :ww

=vh? Z(th Jiri - (Vaw)iy +h* Y mitigq(wig, [Vau" i g) - [Vl .

.9 ,J

Hence

n+1 m"
n
(At’w) L2(T < vjm ‘Wl'a(Ti)|w|W1'”/(Ti)

1
2

+ hzzm 19g (@i g [Vrum i) | IIVme|| 15 oy [ Wlwrer o),

and
Nr—1 k41 ko o
mett —m
(At Z A ) < v|[Dpml[re(Qu ar)
k=0 W=he(TF)
. (4.20)
Np—1 2\ °
k k
+{ et 3 3 mls g (wo [Vt D)) Wl g
k=0 i
Note that 5%~ < 2. From (4.16),
2
i e
2-a
NT 1 9 2a
<c 1+h22m T In(m |—|—h2At Z Zm gql x”,[vhukﬂ] j)‘
=0 i
(4.21)
The desired estimate on At ZNT ! Hw S follows from (4.20)-(4.21)

and from the estimate on [[Dpm||f. g, .,)-
Collecting the above results together with Lemma 4.2, we obtain the following
conclusion:
THEOREM 4.7. If F is continuous and bounded from below by a constant F, if
(g1), (83), (g5) hold, if ug is continuous, then there exists a constant C such that

a solution (u,m) of (2.11)- (2.12) satisfies (4.6)-(4.8), and for all o € (1,4/3),

No by okl ke (| o
IDhmn S any + | A D N <cC. (4.22)
’ k=0 Wl (T2))

5. L'-compactness results. In this section we prove the L'-compactness of
Dy u whenever the discrete heat equation has bounded L! data. More precisely, we
assume that v = (u")n=0, . N, satisfies

ul Tt —

4,J 6y +1y.
At v(Apu" )iy = i (5-1)
13



for all 0 <4,j < Nj and all n, 0 < n < Nr, where the data f = (f';) and the
?ﬁj) are supposed to satisfy
Slupicrzy + 1l @nan < ¢ (5:2)

for some c¢ independent of A and At. In what follows, we reconstruct functions
on ) from the grid functions u, and we prove the convergence of these functions
as h and At tend to 0, at least for subsequences. Lemma 5.1 below is concerned
with piecewise constant functions built using w. It is similar to results that can be
found in Gallouét et al, see e.g. [13, 12, 14] in the context of finite volume methods.
Lemma 5.2 deals with approximations of the gradient with respect to x. It seems
new to the best of our knowledge and may have an independent interest.

LEMMA 5.1. Let up a¢ be the piecewise constant function which takes the value
u?;rl in (tn,tny1) X (th — h/2,ih + h/2) x (jh — h/2,5h + h/2). There exists a
subsequence of h and At (not relabeled) and a function @ such that up, ¢ — 4 in in
LP(Q) for all B € [1,2). Moreover, i € LY(0,T; WH(T?)) for any a € [1, %), and
there exist a bounded Radon measure i in @ and a bounded Radon measure [ig in
T2 such that @ is the unique solution of

ot —vAL=p inQ,
@0, ) = i° in T2.

initial conditions u® = (u

(5.3)

Proof. Using the L' bounds on the data, we may show with the same argument
as in § 4.3 that

N o
lll L5 (@nne) + (AtZ Dhu"l%aara>> <c

n=1

for any 8 € [1,2) and o € [1,3). From this estimate and (5.1), we deduce that
At ZnNle ||7ﬂ+;7;1ﬂ||wfl,a(qri) is uniformly bounded.

Recall that up a¢ is the piecewise constant function which takes the value u?j’l in
(tnytns1) X (th — h/2,ih + h/2) x (jh — h/2,jh + h/2). We can apply the discrete
Aubin-Simon lemma in [14] (Theorem 3.1): up to the extraction of a subsequence,
up,Ar converges to a function @ in L'(Q), and in fact in L?(Q) for all 8 € [1,2).
Moreover, @ € L*(0,T; Wh*(T?)) for any « € [1, 5).

Let fn,at be the piecewise constant function on which takes the values f; in
(tnytns1) X (th — h/2,ih + h/2) X (jh — h/2,jh + h/2). Up to the extraction of a
subsequence, fra¢ converges in the weak-* topology to some bounded Radon mea-
sure i on Q. Call uf the piecewise constant function on T? which takes the values
uf ; in (ih—h/2,ih+h/2) x (jh—h/2, jh+h/2). We may assume that uj converges
to a bounded measure i° on T2. In particular, testing (5.1) with smooth functions
and passing to the limit, this implies that @ satisfies

T T
| [ate-vap asii= [ [ pdi+ [ p0d,
0 T2 0 T2 T2

for every ¢ € C?(Q) such that »(T) = 0. Notice that % is the unique solution of
the above weak formulation. O

We now define an approximation of D4 from the grid function u. For a real
number z, let floor(z) be the largest integer that does not exceed z, ceil(z) be
the smallest integer that is not less than z. Let mh, At be the piecewise constant
function from @ to R? which takes the value

((Dfu+ (D30 a3 o)

floor(4),ceil(%) *

14



i (tn, tg1) x (1%, (i4+1)%) x (j2,(j+1)%). More explicitly, Dup, a¢ takes the
value

(Dfur 1), .. (DF ”+1)”) i (tn,tasr) x (ihyih + ) x (jh, jh + %)
(D7) (OFw),, 1) i Gt = i+ 4) = G~ .50
(Dfu n+1)Z (D+ ”“)W._l) i (ty,ty4r) X (ih — §,ih) x (jh — &, jh)
(DFw) _yy (DFm) 1) it ) (i ,18) x (G, 5).

LEMMA 5.2. Up to the extraction of a subsequence, the functions bvuhvm con-
verge a.e. to Du in @, and in LY(Q) for any « € [1, %)

Proof. Since 4 is the unique weak solution of (5.3), for every sequence of smooth
functions fi5 and smooth initial data /12 converging to fi and to fi° respectively, in the
weak-x sense of measures, (which, for instance, can be constructed by convolution),
the smooth solutions Uy satisfying

0 Us —vAUs = fis in Q,
Us(0,-) = i in T?

will converge to @, e.g. in L*(0,T; Wh*(T?)) for any o € [1, %), see e.g. [7].
We now consider the finite difference approximation

UTL-‘rl n

Uz,
8,0 6,1,7 n+1
= At (A U * ) MJ 0,50 (54)

with (Ug)z,] = [Lg(xm) and /‘Lg,i,j = [Lg(tn,xi,j).
Let o be a positive real number: let T, be the piecewise linear function defined on
R by T% ( ) = max(—o, min(z,0)). Let the grid function e on Qp a¢ be given by

er; =ul; U(S” Define also, for 0 < 14,5 < Np,

I = {@ s.t. max(lej’q ;[ lef';|] < a} : J" = {j s.t. max(lej; 1], lef;|] < a} .
For any s: 0 < s <1 we have
Nr—1 Np—1
h2At Z Z|Dh n+ls<h2At Z Z|Dii-ezj-l‘s+‘D+ n—i—ls.
n=0 14,5 n=0 14,5

15



The first term can be estimated as follows

Np—1 pling
w2ty S IDFer ) < Z Y. D (DFe ' DIT, () )*
=0 i; J ZGIW_H
Np—1
+h2At Z Z Z D+ n+1
n=0 j z€Zn+1
Np—1 :
STUE AL Y D DFe DI T (¢ iy
n=0 14,5
Np—1 ) ! a
n B2AL Z Z|D+ n+l h2At Z Z Z
=0 g J z€Iﬂ+1
Nr—1 ’
<TUE | PAL Yy Y D el DI To (e )iy
n=0 4,5
s e (o )
+ [ n2ad |Dfef WAL A
i n=0 14,5

Similarly we estimate the term with ch using the set J;", and overall we deduce
that

Np—1 Np—1 2
RPAL > S Dpef T < eT' 3 | h2AE Y ZDhe"+1 DT, ("),
n=0 14,5 n=0 14,5

+cllDrellzaqn anlleliiig, sno ™

(5.5)

for some constant ¢ only depending on s. We estimate the first term from the
discrete equation

Nr—1 Nr—1
/ALY S Duel ! DT oy = WP X S )T )
n=0 14,5 n=0 i,
Nr—1 n+1 n

—hQAtZZ L ”T("“)

which implies, using that (z — y)T,(x) > ©,(z) — O,(y) for the nonnegative and
convex function ©(s) = [; T,(r)dr,

Nr—1

v h? At Z ZDh€"+1 DyT,(e")ij <o (||f p6ll 2 @u ae) + €%l r2) ) :
%]

Therefore, we deduce from (5.5)

Nr—1
R2At Y S IDnelt < e B0k (If = sl @uso + 1€l e crs))

n=0 14,5

vl

+C||Dh€||L1(Qh At) || ||L1 (Qn At)o-_(l—s) .

16



Taking the minimum of the right hand side w.r.t. o, and using the L' bounds for
s, pos and the data in (5.2), we see that

0(1
1IDkelllzr (@ ae) < el Drellf g, snlleliior .

for some ¢ and 6 depending on s but not on h or d. Recalling the definition of e,
and the estimate on the discrete gradient, we have proved that

s 0(1—s
1Dy — DiUs|*|| p1@pan < cllu — Us| 3557

Ll(Qh.At) :
Hence,
11Dy — DaUsl* |11 a0y < cllun.ae = Usnadll 35 o (5.6)

where up A+ has been defined in Lemma 5.1 and Usp a¢ is the piecewise constant
function that takes the value Ug‘jjl in (tn, tny1) X (Gh—h/2,ih+h/2)x (jh—h/2, jh+
h/2).

Let us also define DU s.h,A¢ from the grid function Us in a similar way as mh’m:
it takes the values

((pfug) (D5 U+

ﬂoor(%),ceil(%) ) ceil($), ﬂoor(%))

in (tn, tns1) x (12, (04 1)2) x (j2,(j +1)%). Therefore, we see that

I 1Dun.ar — Diil*|| 1 ()
<\l [Dun,ar = DUs padl®ll2r (@) + I 1PUs n.ar — DUs ||| 1) + || |DUs — Dl L1 (g
<c||lun,at — Usn At||L1(Z;h)A + | [DUs p.at — DUs || 11 (o) + | |DUs — Dil*|| 110
0(1—s (1—s) 0(1—s)

(Huh At — uHLl(Qh At) + HU - U6||L1 (Qn.at) + ”US - Uls’h’At”Ll(Qh’At))
+ | |[DUsn.ae — DUs|* |l 21q) + | IDUs — Dil*| 11(q)

where we have used (5.6) to obtain the third line. At fixed 8, since Us is a smooth
solution of the heat equation, the discrete approximation Usj a: converges to Us
in L2(Q) and DU, a¢ converges to DUs in L?(Q;R?). Using also Lemma 5.1, we
get that

limsup ||| Dun,a¢ — Dal*|[1(q) < elii — Usll ) + 11DTs — Dal*|[ (g -
h,At—0

We conclude using the strong convergence of Us to @ in L*(0,T; W1 (T?)) for any
a€[l,3) (seeeg. [7],asd — 0. So

—~ N At,h—0
| |Dup,ae — Dal|| g = =0

which in particular implies that l/)\&h,m converges to Du a.e. in () and then, by
Vitali’s theorem, in L*(Q) for any o € [1,3). O

Remark 4. As a consequence of Lemma 5.2, for any & € Ri there exists a
subsequence of h and At (not relabeled) such that the maps (t,x) — Duyp, a¢(t, z+hE)
also converge to Dt a.e. and in L*(Q) for any a € [1,3).

Remark 5. Alternative strategies can be used to construct a function defined

on @ from the grid function w. For example, we can define wy A as the con-

tinuous and piecewise trilinear function on Q which takes the values umax(l " gt

(tn, ;) and which is trilinear in the rectangles of the time-space grid Qh At- The
17



advantage of taking wy A+ instead of up ¢ is that the former has weakly integrable
partial derivatives with respect to the spatial variable. Therefore, we can use directly
Dwp, a¢ instead of having to define an independent approximation of Du such as

Dup a¢. It is then possible to prove the following lemma, which may replace both
Lemmas 5.1 and 5.2:

LEMMA 5.3. There exists a subsequence of h and At (not relabeled) and a
function @ such that wpay — @ in L*(0,T; WH*(T?)) for any a € [1,3) and in
LA(Q) for all B € [1,2). In particular, wy Ay — @ and Dwy Ay — D in LY(Q) and
almost everywhere in Q.

Proof. The strategy of proof is similar except that we may directly use the
continuous version of the compactness lemma of Aubin-Simon, see [29], for the
function wp A¢. O

6. From the discrete to the continuous system.

6.1. A priori estimates and compactness. Let u; a; and mh’m be the
piecewise constant functions defined in Lemmas 5.1 and 5.2 respectively: up to
the extraction of a subsequence, we can assume that up a; — @ in LP(Q) for all
B €1,2) and that mhAt a.e. to D@ in Q and in L*(Q) for any a € [1, 3).

Let my, a+ be the piecewise constant function which takes the value m;fj in (tn, tnt1)x
(ih — h/2,ih + h/2) x (jh — h/2,jh + h/2), and DArTlh,At be the piecewise constant
function from @ to R? which takes the value

( (Drmn) ﬂoor(%’),oeil(%) ’ (D;_ mn)ceil(%),ﬂoor(%))

in (tn,tn1) X (i%,(i—&— 1)%) X (j%,(j + 1)%) From Theorem 4.7, we may also

assume that mjy a¢ — M in Lt (Q) and almost everywhere in @), and that Dmy Ay —

Din weakly in L*(Q) for any «a € [1,3). Moreover, for all n > 0, there exists a
zF(z)

constant ¢, such that for all z > 0, F'(z) < == + ¢;. This fact and estimate (4.8)

yield the equi-integrability of F'(my a¢). By Vitali’s theorem, F(mp a¢) — F (1) in
L'(Q).
From the observations above, the piecewise constant function which takes the value
n+l
2%
At
in (tn, tyi1) X (ih—h/2,ih+h/2) x (jh—h/2, jh+h/2) converges to 2% — v Atd—F ()
in the sense of distributions.

um

S y(ApumtY) — F(m};)

6.2. Stability of the discrete Bellman equation. We now pass to the limit
in the discrete Bellman equation.

The main difficulty is to handle the nonlinear term g(x; ;, [th"“]i j); here
we wish to use the a.e. convergence of the gradients obtained in § 5. We adapt
the method used for continuous problems in [8]. Note that [th”“} i is the value

taken by the piecewise constant function with values in R*
( €1 Dupac(-+ %€1),€1 - Dupae(- — 2€7),€3 - Dup ae(- + 2€3), €3 - Dup ae(- — 4€3) )

at (t,x) such that |z; —ih| < h/2, |xo — jh| < h/2, t, <t < tp41. From the
continuity of g, the consistency assumption and Remark 4,

9h,At — g(m,Dlﬂ, Dl’l], Dg’a,, Dga) = H(J,‘,Dﬂ) a.e. in Q,

where gp A+ is the piecewise constant function which take the value g(z; ;, [th”“‘l}
for (¢,x) such that |x; — ih| < h/2, |x2 — jh| < h/2, t, <t < tpy1.
18
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Let now ¢ be a smooth function on T? such that ¢ > 0, with ¢(T) = 0. We
multiply the discrete Bellman equation by ¢(t,+1,2;;) and sum for all 4,5 and
n=20,..., Np — 1. Since, by convexity,

9(z,q) > g(,0) + g4(z,0) - g

the regularity of ¢ w.r.t. = and the L'-compactness of DNu;h A¢ allow us to apply
Fatou’s lemma obtaining

Npr—1

. . 2 n+1 ”

lu}annglf h*At EO E ‘ g(zij, [Vaut ]ivj)w(tnﬂ,xi’j) > /QH(x,Du)apdxdt.
n=0 4

Passing to the limit in the other terms of the equation, we deduce that
—/ Uy dzdt—!—u/ DaDyp dxdt—!—/ H(xz, Du)pdxdt < / ug ©(0) dx—|—/ F(m)pdzdt.
Q Q Q T2 Q

We now wish to obtain the reverse inequality, which is the difficult part. We start
by noticing that, since the monotonicity assumption implies

9($,QIaQZ7Q3aQ4) S g(xv _ql_)QS_7 _q?,_aqz_)

from (3.1) and (3.2) and the fact that g(z,0) is bounded, we know there exists A > 0
such that

9(®,q1,02,03,q8) S vA[1+ (7)) + (a3)” + (g5)* + (aF)?] - (6.1)

We multiply the discrete Bellman equation by efkuzjlgp(twrh x; ;) and sum for all
i, and n =0,..., Ny — 1. We obtain

Nr—1 S .
tht Z Z i, we Au; 90( -‘rlaxi,j)
n=0 14,7
NT 1 o
+vh*At Z ZDW"H (e N0 oty i g))i
oo (6.2)
oy, mtl
+h?At Z Zg(xi’j’ [Vh“mrl]i,j) A O(tnt1, i)
n=0 i3

- oy, 1
= 1AL Y S F(my)e M @ty g, i)
= =

Since u is uniformly bounded below, the last term converges by dominated conver-
gence, SO

Nr—1

lim h2At Z ZF(mf el O(tnt1,2i5) :/ F(m)e M odzdt.  (6.3)

h—0

By convexity of s+ e~** and since ¢(T,-) = 0, we have

Nr—1 n+1 u . St
a3 ST 0
Nr1 Wy g
9 ,
< fh At Z Z At O(tnt1,Tig)
n=0 i,

Np—1

— L ha > Zwu (et i) = oAl i) hzze 0,215
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and so, again by dominated convergence,

Nr—1 n+1 n
Ui, e ntl

hmsup h2At Z Z - v p(tnt1, i)
Y (6.4)

1 1
< f/ e Mo, drdt + < / e~ (0) da .
)\ Q )\ T2

Let us deal now jointly with the second and third term in (6.2). First we split the
energy term according to the sign of Dy (u); ; (and Dy (u); ;, respectively); indeed,

we can write

4,7

yomfl
D (@) D (e ")
T”Tl> nt+l (Diﬁ-(un+1)i7j)f ( —)\u1+1j —e )\uf”.rl) (p:t;rl

= (Df (u™1); ;)" ( SR el i1,
Attt n+1
+ (DF (W) )P (OHE — e e Maig — (Df (")) (PP — i e AL

and the same for the term with D3 . Reordering the indexes in the sum, this means

that the D; part in the second order term can be read as

Np—1 1
2 Z Z +(,n+1 + A}t =t ntl
vh*At (Dl (u )1;17]-) E (6 “Li — e 1,5 Qoz,j
Npr—1 1
2 (@) =it ity ontl
— v hAAt E E (D7 )ig)~ E( i —e T )
Nr—1
) 1 1 gt
+ v h2At E E (DY (u™th); ;) TDF (") jem M
n=0 i,
Nr—1
_ _ n+1
—vhAAL Y S (DF (ur ) )T D (") je N L
n=0 14,5
which is equal to
Nr—1 DTS RE Thary
2 ZZ + () 4 T —e TN
v h*At D 1 1,]) | n+1 . un+1 Lp%]
n=0 ij i j i—1,j
Np—1 —Aurtl —Aultt
Uit1,i — e i35
2 + n+1 2€ n+1
+ v h*At E E | D7 ( )ig)~ | n+l _ . n+l i,
=0 7 Uip1,j — Ui

NT 1
DY S {DF e T - (DF () ) e M D ()
n=0 1i,j
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We proceed similarly for the part with Ds. Therefore,

Np—1
vh*At Z ZDhUnH Dy(e ™™ ZLTI‘P(tn-i-lyl'i,j))i,j
n=0 14,5
Np—1 )
+h?At Z Zg(%‘,j, [thnﬂ]m) e nt1s Ti,j)
n=0 14,7
Nr—1

n —AulT? n — —Aumi n
—var Y S {DF e - (DF () Te R DY ()
n=0 1i,j

NT—l
+untat Y S {DF )T M = (DF () ) T M | DY (6

Nr—1 e Au:ﬁrl e A fLJr11 j
2 (e 2 o T nl
+ v h*At E E |(D7 )i—1 ) | il n+l Vi
i Wij — W1,
Np—1 nrll —\u n+1
6 1 Jj — e @7
2 Pt )1 ntl
+ v h*At E E |DY ( )ii)~ | S Pi g
n=0 7] 7,+1,j i7.j
N 1 n+1 _ n+1
+ v h2At " (DF ("), ;1) 2 S M —eTMa
v i,5—1 w T gt Pi,j
n=0 14,7 "J bhy=1
Nr—1 —Aurtl Al tt

z+1_e i,7

2 + n+1 N—12 € ’ n+1

+vhoAt E E [(D3 ( i) | ] e
Uj iy — Uy g

0200 3 S gy, [Vaun ], e M g,
n=0 14,5

The first two terms in the right-hand side converge to v fOT I, e MDa - dp by

Lebesgue theorem, since Duy, a; converges strongly in L!, ¢ is smooth and e~ Aun

is uniformly bounded and a.e. convergent. As far as the remaining terms are
concerned, using that

—As —s’
e e ’
A max(s,s
- < —)e x( ),

s— g

and due to (6.1), we observe that the last five terms under summation are bounded
above, so that we can again apply Fatou’s lemma, on account of the a.e. convergence
of up Ay and Dup, a¢. Therefore, we conclude that

Nr—1

limsup v h2At Z ZD unJrl Dy (e —Auiy P(tnt1,Ti5))ig
h—0 n=0 1i,j

Npr—1
!
+h?At Z Zg(xi,j7 [thn+1]i,j)e A O(tny1, Tij)
n=0 i,
< V/ DDy e dmdt—u)\/ |Di|? e~ p dxdt + H(z, Dit)e @ dadt .
Q

Q
(6.5)
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Putting together (6.3)-(6.4)-(6.5), we deduce from (6.2) that @ satisfies

1 . 1 N
- / e My, drdt + < / e 0 (0) dx + 1// DDy e dxdt
Ao A Jp2 0

—V/\/ |Dﬂ\26_)‘ﬁ<pdxdt+/ H(m,D&)e_)‘agodxdtz/ F(m)e M ¢ dadt
Q Q Q
(6.6)

for every smooth ¢ > 0. In order to conclude, we need now to get rid of the
exponential in the above inequality (6.6). To this purpose, we first observe that

e M ¢ L2(0,T; HY(T?)) N L™=(Q). (6.7)

This can be easily proved obtaining an a priori estimate on e *“nat¢,  Indeed,
whenever w is a grid function which solves (5.1) for some data satisfying (5.2), we
have

Np—1 TL+1 Np—1
par S S e T Ep P v RPAL Y Y Dyt D ()| < C 4]l
n=0 4,7 n=0 14,5

for any bounded real function ¥ (r). In particular, if ¥ is nondecreasing, this implies

NT 1 NT 1
YD U(uyfh) ) AV RPAL YN Dyt Dbl ) < C
n=0 14,j n=0 1i,j

where U(s) = [ t(r)dr. Thus, since [¥(s)| < ||¢]||s], one gets

Nr—1

vh2At Z ZDhu"'H Dpy(u n+1) < O|Y]loo

n=0 14,5
where C only depends on the L'-norm of the data. This is the desired a priori
estimate; from which, using Fatou’s lemma, we deduce

/Q Dl ' (@) dedt < Cll e

On account of the fact that u is bounded below, we can take for example ¢ (r) =
1 — e " to deduce that e=*% € L*(0,T; H'(T?)) for any u > 0.

Thanks to (6.7), inequality (6.6) holds true not only for smooth functions ¢ but
also for ¢ € H*(Q) N L*, through a standard density argument. Moreover, there
is no loss of generality in assuming that ug € H'(T?), so we extend @ for negative
t as identically equal to ug. Then, we choose

1 [t _
QO(l',t) = E(t)*/ e)‘Tk(u)(fvs) ds
h t—h

where Ty, (r) = min(r, k) and £ € C}[0,T). Using the monotone character of s
e~ we have (see Lemma 2.3 in [6])

1 1
lim sup { / e Moy dedt + ~ / e~ M0 p(0) dx}
h—0 )\ )\ T2
/ ft / —)\(7‘ Tk (r)) dr — / é_(o) /uo e_A(T—Tk(T)) dr .
T2 0
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Moreover, L [ eMNk(8)(@5) ds converges to eXT+() in L2(0, T; H'(T?)) and weak—*
in L*>®(Q), so we can pass to the limit as h — 0 in the remaining terms of (6.6).
Finally, we obtain

_/ ¢, /"e—x(r—mr))dr_/ £(0) /UO eAE=Ti(r) g
Q 0 T2 0

+v / DaD¢ e METe@) gy — ) / |Daf? e METe(@) ¢ ddt
Q {a>k}

+ / H(x, Da)e M@= Te(@) ¢ dodt > / F(m)e Ma=Te(@)¢ dadt.
Q Q
We conclude by letting £ — oo, thanks to the dominated convergence theorem:
—/ uéy dzdt—/ ug £(0) dx+u/ DuD¢ dxdt+/ H(z,Du)¢ dxdt > / F(m) & dadt,
Q T2 Q Q Q

for every £ > 0. Since the reverse inequality was already obtained previously, in the
end, we proved that u solves

_ /Q W& dudt— /T ug&(0) daty /Q DaD¢ dadt+ /Q H(z, Di)¢ dudt = /Q F (i) € dudt

for every £ € C1(]0,T)),€ > 0, and therefore for every €. This concludes the proof
that u is a weak solution to the limit equation.

6.3. Stability of the discrete Fokker-Planck equation. We now pass to
the limit in the discrete Fokker-Planck equation. .

By (4.6), the L'-compactness of mp A+ and of Dup a¢, we deduce the strong
convergence in L'(Q) for the piecewise constant function which takes the value
m?’jvqg(xi,j,[vhu”“]i,j) for (t,x) such that |z1 — ih| < h/2, |xo — jh| < h/2,
t, <t <t,+1. Moreover, by the consistency assumption we have,

NT—l
WAL YN mi Vg, [Vau i) - [Vieli —

n=0 4,j

— / ng({);‘7 D1’17,, Dlﬂ, Dgﬂ, DQ'EL) . (DlgD, Dl(p, DQQD, DQ(,O)dLL'dt
Q
oOH
= m —(x, Du) - Dy dxdt
[ m Gy 00

Therefore, we can pass to the limit in the weak formulation and deduce that m is
a weak solution of the Fokker-Planck equation.

We notice that the regularity m[H,(-, Da)Du— H(-, Da)] € L*(Q) follows from
inequality (4.10), by using Fatou’s lemma. Moreover, we also find that m|H, (-, D@)|? €
LY(Q). The regularity @, m € C°([0,T]; L'(T?)) follows from properties of weak so-
lutions, see [28].

Finally, this concludes the proof of Theorem 3.1.
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