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Sound pulse broadening in stressed granular media
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The pulse broadening and decay of coherent sound waves propagating in disordered granular
media are investigated. We find that the pulse width of these compressional waves is broadened
when the disorder is increased by mixing the beads made of different materials. To identify the
responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measure-
ment by spectral analysis and the numerical simulation of pulsed sound wave propagation along
1D disordered elastic chains. The qualitative agreement between experiment and simulation reveals
a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent
with theoretical models of sound wave scattering in strongly random media via a correlation length.

PACS numbers: 45.70.-n, 43.35.d, 81.05.Rm

I. INTRODUCTION

The structure of jammed granular media is character-
ized by the inhomogeneous contact networks at the meso-
scopic scale [1]. Elastic waves in such media propagate in
different ways according to the ratio of the wavelength λ
to the grain size d. At low λ/d the propagation of waves
is incoherent and strongly scattered, while at high λ/d
the wave propagation is coherent and ballistic [2]. The
scattered waves are the fingerprint of a specific configu-
ration of the contact force network, which can be used to
measure the interfacial dissipation on the grain scale and
detect the tiny rearrangement of the contact network [3].
On the other hand, the velocity measurement of coherent
waves allows one to characterize the elastic properties of
granular packings on the macroscopic scale and infer the
coordination number within the framework of effective
medium theories [4–7]. This latter plays a central role in
the granular mechanics [8–11].
Pulse wave propagation provides a convenient way for

material characterization and signal transmission, thanks
to the possible temporal separation of signals from par-
asites. In disordered granular packings, both experi-
ments and numerical simulations have shown that co-
herent wave pulses, compressional or shear, decays in
amplitude and broadens in width as it propagates, thus
reducing significantly the resolution capacity [2, 12–16] .
In general, two mechanisms may be responsible for the
pulse broadening, i.e. attenuation and dispersion of ve-
locity, which can be analyzed in the frequency domain
via the dispersion relationship k(ω) between the wave
number k and the angular frequency ω. Indeed, from
k(ω) = k′(ω) + ik′′(ω), the phase velocity V (ω) = ω/k′

and the attenuation α(ω) = k′′ can be deduced, respec-
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tively. Somfai et al. [14] showed that in (1D) ordered
granular media, the dispersion effect due to discrete lat-
tice governs the shape of the coherent wavefront, and
leads to a pulse broadening which scales with the source-
detector distance L as ∝ L1/3. By introducing the poly-
dispersity in the 1D chain, their numerical simulations
revealed that disorder increases the pulse width. It was
also shown in amorphous media that disorder could in-
duce a dispersion of the phase velocity particularly at the
high-frequency range with λ ∼ d [17]. However, at such
frequency range, the coherent waves often exhibit strong
attenuation dominated by strong scattering thus being
responsible for the pulse broadening [18, 19]. In granu-
lar media, despite some recent numerical studies [14–16],
few experimental data are actually available to highlight
the interplay between pulse broadening and attenuation.

In this work, we study the propagation of compres-
sional wave pulses through disordered granular packings
under stress. A particular attention is focused on the
evolution of the pulse width of the coherent sound wave
as a function of propagation distance. Various granu-
lar media are investigated, including the mixture of glass
and (poly)methyl-methacrylate (PMMA) beads with en-
hanced disorder. To understand the origin of the pulse
broadening, we also perform the attenuation measure-
ment by a spectral analysis and numerical simulations of
the pulse propagation along disordered 1D elastic chains.
The existing models of elastic wave scattering in random
media are finally discussed to highlight the attenuation
mechanism in granular media.

II. EXPERIMENTS

A. Granular samples

Acoustic measurements are performed using a pulse
transmission through granular media under stress [2].

http://dx.doi.org/10.1103/PhysRevE.91.022205
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Table I. Description of the beads used for granular packings.

material glass steel PMMA

size, d (mm) 5 4 3 2 1.5 1.125 0.715 0.35 0.225 0.7 0.615

tolerance (mm) ±0.01 ±0.125 ±0.085 ±0.05 ±0.025 ±0.1 ±0.015

sphericity good quite good quite good poor poor poor quite good

Figure 1. Sketch of the experimental setup.

The beads are poured by rain deposition into a rigid cell
of inner diameter 30 mm. A plane-wave source (longi-
tudinal) transducer of diameter 30 mm is placed on the
top of the cell and the wave transmission is detected by
a similar transducer on the bottom; both the source and
the detector are in direct contact with the beads (Fig
1). Before the ultrasonic measurements, two cycles of
loading and unloading are performed to improve the re-
producibility of measurements.
Various granular samples are investigated in this study.

Table I summarizes the main characteristics like constitu-
tive material (glass, PMMA or steel), mean size of beads,
polydispersity and sphericity. The beads with a mean di-
ameter larger than 1mm have a good spherical shape and
a low polydispersity, while the smaller ones present some-
times a non-spherical shape (e.g., partial coalescence of
two beads) and higher polydispersity. The use of poly-
meric beads, e.g., PMMA, allows us to evaluate the effect
of dissipation mechanisms on the coherent wavefront. In-
deed, by measuring the absorption time (not shown here)
from the time-resolved intensity profile of scattered waves
[20, 21], we infer a wave dissipation four times larger in
PMMA beads than in glass beads at 300kHz, due to the
viscoelastic loss.

B. Impulse response and wave velocity

measurement

To obtain the impulse response of the coherent com-
pressional wave in granular media, we may deconvolve
the signals transmitted through the media by the signal
S sent by the source transducer. Fig. 2 shows an ex-
ample of the measured signal and deconvolved one (first
part). The source signal S (inset of Fig. 2b) is obtained
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Figure 2. (a) Measured pulse of a compressional wave mea-
sured in a glass bead packing of d = 0.715 mm, under stress
P = 995 kPa and at a distance L = 21.7 mm. (b) The de-
convolved pulse of the transmitted signal (first part), by a
reference signal from the source traducer (inset).

by putting the source against the detector via a coupling
film. The deconvolution calculation, based on FFT, is
performed on the frequency range [1kHz − 900kHz]. As
in [14], we characterize the impulse response of the co-
herent signal by the arrival times associated to three par-
ticular points: the peak A1 (t1), the first arrival at 10%
of the peak (t0), and the first zero crossing (t2). Com-
plementary measurements of pulse transmission were also
performed in a reference medium, i.e. water filling up the
above cell (waterproof) in which the shape of received sig-
nal does not evolve significantly as the distance source-
receiver increases. This observation indicates that the
source transducer does generate a quasi-plane wave and
the effect of edge waves are negligible in our experiments
[22].

In pulse transmission experiments, the wave velocity
may be determined via the time-of-flight method, mak-
ing measurements at two different distances. If only one-
distance measurement is conducted for the velocity cal-
culation, the different time t0, t1 or t2 leads obviously to
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Figure 3. Compressional wave velocities measured as a func-
tion of propagation distance, using different time arrivals (see
text).

different values (Fig. 3). Notice however that the velocity
determined with t1 is almost independent of the source-
receiver distance, contrary to the other times used. As
shown in Fig. 3, this velocity determined under low stress
may exhibit a slight increase with the distance source-
receiver. Such discrepancy could be improved by an al-
ternative method based on the Hilbert transform using a
reference signal, for example, the source signal [23]. Nev-
ertheless, the difference between the velocity measured
via t1 and that determined by the alternative method is
no more than 5%.
The wave velocity measurement has been extensively

used to study the nonlinear elasticity of stressed granu-
lar media, see, e.g., [4, 6]. Figure 4a shows that as the
confining pressure is decreased, there is an increase of
the time-of-flight, a decay of the pulse amplitude and a
broadening of the pulse. However, by rescaling the time
t/t1 and the amplitude A/A1 axes, we find that almost all
responses collapse (Fig. 4b), indicating that the coherent
wavefront are mainly governed by the time scale t/t1 or
Vpt. To evaluate the accuracy of this collapse, we com-
pare the normalized width of the signal, W = (t1− t0)/t1
at high and low pressures (inset of Fig. 4). The normal-
ized width at low pressure is always higher than that ob-
tained at high pressure. This difference may arise from
the heterogeneity of the contact force networks which is
more important at lower confining pressure [24]. For glass
bead packings, the collapse of the rescaled responses ap-
pears more effective with beads of large size, less poly-
disperse and more spherical whose packing structures are
expected to be less disordered. These results would sug-
gest a possible dependence of the normalized width on
the amount of disorder.

C. Evolution of sound pulse width

Figure 5a shows that a pulse broadening and decay
with the distance of propagation through granular media.
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Figure 4. The effect of the confining pressure P on the shape
of the pulse signal measured at L = 11.5 mm. (a) Decreas-
ing the pressure leads to an increase of the pulse width.
(b) Rescaling the time axis by t1 and the amplitude axis
by A1 leads to collapse of pulse signals. Inset: Decreasing
the pressure make increase the normalized width W with
WH = W (P = 995kPa) and WL = W (P = 65kPa).

The width of the signal, t1− t0, scales with the ratio L/d
as a power law with exponent of about 1/2 or higher for
beads of large size (Fig. 5b). However, if the pulse width
is normalized by the propagation time t1, it decreases
with the propagation distance L/d , according to

W ≃ CW (L/d)
−0.5

(1)

where CW is a prefactor. Moreover, Fig. 5c shows that
the data of these normalized widths are much less dis-
perse compared to those in Fig. 5b, ranged in a grey-
band likely independent of the material property of beads
and its mean size d . The data located in the upper part
of this band are obtained with less spherical small beads.
The results obtained from PMMA beads are very similar
to those from glass beads, showing that the viscoelastic
dissipation does not significantly affect measurements of
the normalized pulse width.
To verify whether the normalized width depends on

the amount of disorder mentioned above, we investigate
the evolution of the prefactor CW in granular packings
with a mixture of glass and PMMA beads. A mix-
ture of the beads of different nature is expected to in-
crease the heterogeneity of stiffness and mass in the
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Figure 5. (a) Pulse broadening and decay through a glass
bead packing of d = 0.715 mm under stress P =995 kPa. The
first period (plain line) of coherent wavefront is used for the
FFT analysis. (b) Width of the pulse measured as a function
of the ratio L/d for different granular media under P=995
kPa. (c) Normalized pulse width W = (t1 − t0)/t1 plotted
as a function of ratio L/d. Numerical results in 2D disor-
dered granular packings [14] and 1D ordered chain simulation
(dashed red line)are added here for comparison. The normal-
ized width scales with L as W ∼ CW .(L/d)−0.5.

granular packings and accordingly the normalized width
W . For a given volume fraction of glass beads φglass(=
Vglass/(Vglass + Vpmma)), we determined the prefactor
CW by fitting the normalized widths measured for three
source-receiver distances. Figure 6 shows the evolution
of prefactor CW as a function of the glass beads volume
fraction φglass. As expected, CW versus φglass presents a
maximum. Instead, the elastic longitudinal modulus C11

given by C11 = ρmV 2
p with ρm the packing density of

the granular mixture, increases monotonically with the
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Figure 6. Pulse broadening due to disorder: the best fit values
of prefactor CW and the elastic longitudinal modulus C11 =
ρmV 2

p obtained as a function of glass beads volume fraction
in a glass/PMMA beads mixture (d = 0.615 mm, P = 995
kPa).

volume fraction of glass beads.

D. Attenuation measurement by FFT

To identify the origin of the pulse broadening, we in-
vestigate the wave attenuation and velocity dispersion in
frequency domain. By a FFT analysis of coherent wave-
fronts measured at different source-receiver distances, it
is possible to determine the wave attenuation α and ve-
locity dispersion as a function of frequency ω. As detailed
elsewhere [25]), the dispersion of the phase velocity is
quite small in the range of frequency used here. Figures
7a and b show respectively the spectra associated with
the pulses detected at different distances L (Fig. 5a) and
the attenuation α deduced from the ratio of spectra. For
guidance, different scaling of attenuation on frequency
(ω, ω2 and ω4) are recalled. We discuss later in Section
III C the possible mechanisms of wave attenuation.

III. SIMULATION AND MODELING

Despite the lack of theoretical models accurately de-
scribing the sound propagation and scattering in gran-
ular media, we seek to explain our main experimental
observations by the simplified numerical simulations and
the general models of elastic wave scattering in random
media.

A. Pulse broadening versus dispersion relationship

We here consider two distinct mechanisms leading to
the pulse broadening, i.e., wave attenuation α(ω) ≡
k′′(ω) and velocity dispersion V (ω) ≡ ω/k′(ω) where
k(ω) = k′(ω) + ik′′(ω) is the complex wave number. To
this end, we investigate the propagation of a plane wave
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Figure 7. (a) Spectra associated with the pulses detected at
different distances L (Fig. 5a). (b) Attenuation α as a func-
tion of the pulsation ω in d=0.715 mm glass beads (P=995
kPa). Error bars correspond to measurements using differ-
ent ratios of spectra, and different scaling laws are added for
guidance.

a(x, t) along x, related to its inverse Fourier transform ã
by

a(x, t) =
1

2π

+∞
ˆ

−∞

e−iωtA(ω)eik(ω)xdω (2)

with ã = A(ω)eik(ω)x. For a Dirac-like pulse propaga-
tion, one has A (ω) = 1. Two properties of the Fourier
transform are recalled which are useful for the follow-
ing discussions: i) translation: if g(t) = f(t − t1), then

g̃(ω) = eiωt1 f̃(ω); ii) scaling: if g(t) = f(at), then

g̃(ω) =
∣∣ 1
a

∣∣ f̃(ωa ).
We first study the effect of the velocity dispersion

V (ω) = ω/k′(ω) on the pulse broadening in a 1D mass-
spring chain composed of identical spheres of radius R.
There is no attenuation in such a system (k′′ = 0) and the
dispersion relationship is given by k = (1/R)sin−1

(
ωR
V

)

with V the longitudinal wave velocity in the long wave-
length limit. If the wavelength is long enough, the

wavenumber can be approximated by k = ω
c + 1

6

(
ω
c

)3
R2

[14]. And the Fourier transform of the signal will be given

by e
i
(

ω
V x+ 1

6 (
ω
V )

3
R2x

)

= eiωt1e
i

(

1

3

(

ω
ω1

)

3

)

with t1 = x
V

and ω1 =
(

2V 3

R2x

)1/3

. The first term eiωt1 can be Fourier

transformed using the translation property, and the sec-

ond one e
i

(

1

3

(

ω
ω1

)

3
)

corresponds to the Fourier trans-
form of the Airy function Ai(−x) scaled by the pulsa-
tion ω1. As shown in [14], the resultant temporal sig-
nal can be written as, a(x, t) = ω1Ai (ω1(t1 − t)) =
ω1Ai (ωt1[(t1 − t)/t1]). With the rescaled time axis
(t1 − t)/t1, the normalized width of the signal is then

given by W ∼ (ω1t1)
−1 =

(
R2

2x2

)1/3

∝ x−2/3 namely,

W ∝ L−2/3 (3)

which implies a pulse broadening (t1−t0) ∼ Wt1 ∼ L1/3,
as previously found [14].
We secondly examine a pulse propagation in a 1D

random medium where the phase velocity V = ω/k′ is
constant, dispersionless. However, there is an attenua-
tion given by α = k′′(ω) = [σ2

KLn−1
c ]

(
ω
V

)n
with n an

integer; the underlying physics (and the parameters in
the bracket) of such system is detailed in §III C be-
low. The Fourier transform of the temporal signal is

then ã (ω) = eik
′xe−k′′x = eiωt1e

−
(

ω
ω1

)n

with t1 = x
V

and ω1 =
(

V n

σ2

KLn−1

c x

)1/n

. By considering the prop-

erties of the Fourier transform, the temporal signal is
a(x, t) = ω1s (ω1(t− t1)) where the function s is the in-
verse Fourier transform of e−ωn

. With the rescaled time
axis (t1−t)/t1, the normalized width of the signal is then

W ∼ (ω1t1)
−1

= (σK)
2

n
(
Lc

x

)n−1

n . In 1D randomly lay-
ered media, one has n = 2 (see details below in section
IIIC) leading to α ∼ ω2 and W at (x = L)

W ∝ L−1/2 (4)

B. Simulations in 1D chains of elastic lattices

The use of normalized variables allows us to compare
our experimental results to numerical simulations. As
shown in Fig. 5c, the numerical results obtained in dis-
ordered 2D granular media [14] compare quite well with
our experimental results. Moreover, the velocity disper-
sion in 1D ordered chains leads to a power law scaling
of W on distance as (L/d)−2/3(Eq. 3) as found in [14].
However, the normalized widths obtained in disordered
packing scales with distance as (L/d)−1/2 (similar to Eq.
4) and have also values larger than those one deduced
from ordered packings.
In order to evaluate the effect of scattering attenuation

on the pulse broadening, we perform the simulation in a
1D disordered mass-spring chain in the presence of the
correlation length similar to random media by Fouque
et al. [19]. More specifically, we consider a 1D chain
of mass-spring consisted of sub-chains of length Li and
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Figure 8. (a) Random 1D chain (see text). (b) The interaction
between the nearest neighboring beads. (c) Auto-correlation
function of the fluctuation νD of the inverse stiffness D−1

versus separate distance △x for different mean lengths L0.

stiffness Di which is uniform inside each sub-chain (Fig
8a). Assuming an exponential distribution of the sub-
chain length Li,

p(Li) = (1/L0)e
−Li/L0 (5)

we then obtain a mean length of the sub-chains equal
to L0. If the inverse of stiffness is given by D−1 =

D
−1

(1 + νD) withD
−1

the mean value and νD the fluctu-
ation uniformly distributed in the range [−νmax,+νmax],
we may readily verify 〈νD〉 = 0 and the variance〈
ν2D

〉
= σ2

D = (νmax)
2/3. To determine the correlation

length associated with such a disordered chain, we com-
pute the correlation function of the stiffness fluctuation
〈νD(x)νD(x+∆x)〉 via ensemble average between two
points separated by a distance ∆x. Fig 8c shows the
normalized correlation function (by σ2

D) versus ∆x, cal-
culated for the different L0. If we defined the correlation
length Lc corresponding to a decrease of the normalized
correlation to about 0.4 (≈ e−1), we deduce a correlation
length Lc ≈ L0 from Fig 8c.
Simulations of the pulse propagation are performing

by solving the eigenproblem of the linear spring system
at given initial conditions. The equation of motion of the
N beads is given by (Fig 8b):

müj = Dj+1 (uj+1 − uj) +Dj (uj−1 − uj) (6)

This equation can be expressed in a matrix form mü =
D.u where u is the displacement vector of each bead
(only the translational motion is considered here), m is
the constant mass of beads and D is a N × N matrix
(for simplicity m and D are here set to 1). Eigenfren-
quencies ωn of this linear system are the square roots of
the eigenvalues of the matrix D/m. The oscillations of
beads are given by the superposition of the eigenmodes:
u (t) =

∑
n Anuncos (ωnt) where un are the eigenvectors

of the matrix D/m and the amplitudes An are deter-
mined by the initial conditions. To prevent the wave
reflections at the edges, the source and the detector are
placed in the middle of the chain. Assuming at t = 0
the particle displacement u located at the source is equal
to one, the propagation of the pulse for various source-
detector distances L is then computed with the displace-
ment u (t), averaged over 100 000 configurations.
Figure 9a shows the evolution of the coherent wave-

front where the shape of the wavefront evolves during the
propagation and tends to a Gaussian-like pulse at long
distance. The normalized width of the pulse is plotted
in Fig. 9b as a function of the source-detector distance
for the case σD = 0.29. The variance σD slightly makes
increase the normalized width and the variation of the
mean or correlation length further enhances the effect on
W . Figure 9c depicts the pulsed wave attenuation ob-
served in frequency domain. It scales as ω2 and increases
with the mean length of sub-chains L0.

C. Models of elastic wave scattering and

dissipation

Finally, we compare our experimental and numerical
results with the theoretical models of elastic wave prop-
agation in random or granular media. In these scatter-
ing media, the models seek to relate the attenuation of
coherent waves to the statistical properties of random
media such as the elastic modulus K and the density
ρ [18, 19, 27], for instance introducing a characteristic

length Lc of the fluctuation νK = ∆K−1/K
−1

(see be-
low).
Consider 1D random layers with the similar statistical

properties as those investigated above in 1D disordered
chains and free of dispersion and dissipation. Assuming
Lc ≪ λ ≪ L and a high level of disorder corresponding
to a variance

〈
ν2K

〉
= σ2

K ∼ 1, Fouque et al. [19] show
that the waveform of a coherent pulse tends to a Gaus-
sian signal at long distance of propagation (Fig. 9a); it

propagates at an effective velocity V̄ =
√
K/ρ̄ :

a(L, t) =
1√
2πw2

L

e
−

(t−L/V̄ )2

2w2

L (7)

where wL = (γL/2V̄ 2)1/2 governs the pulse width and
γ =

´∞

0 〈νK(0)νK(x)〉 dx = σ2
KLc is determined by the

product of the variance σ2
K and the correlation length Lc.
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Figure 9. (a) Pulse broadening and decay of the coherent com-
pressional wave propagating through a 1D chain (σD = 0.29
and L0/d = 6). (b) Normalized signal width as a function of
L/d. In disordered chains, the signal is averaged on 100000
configurations. The gray band corresponds to the experimen-
tal data dispersion (Fig. 5c is added) (c) Attenuation (over
a distance of d) of the coherent wave propagating through a
1D chain for σD = 0.29 and various correlation lengths.

Eq. 7 implies that the normalized width W ∼ wL/(L/V̄ )
scales with propagation distance L as (σ2

KLc/L)
1/2, and

that the attenuation of the pulse is given by α = γ
(

ω
2V̄

)2
.

Figure 10 depicts numerical results from simulations
in disordered chains, regarding the normalized width W
for various source-detector distances L/d as a function of
a combined parameter (σ2

DLc/L)
1/2. More specifically,

at a given distance L, we determine W by varying the
variance σD or/and the correlation length Lc. The stack
data show that for high disorderW scales as (σ2

DLc/L)
1/2

as predicted above, while for the weak level of disorder,
i.e. σ2

D

(
Lc

d

)
.

(
L
d

)
−1/3, W tends to the constant values

as those determined in ordered 1D elastic chains (rep-
resented by the horizontal solid lines). In terms of the

0.1

1

0.01 0.1 1

Figure 10. Normalized width W as a function of
√

σ2

D ∗ Lc/L
for various source-detector distance L/d. Only cases satisfy-
ing L > Lc are shown. For high disorder, the pulse width W
tends to

√

ln(10) ∗
√

σ2

D ∗ Lc/L predicted by Eq. (7).

dispersion relationship for the high level of disorder, the
attenuation is given by α = σ2

DLck
2/4 ∼ ω2, consistent

with the results shown in Fig. 9c.
In 3D random media without dispersion and dissipa-

tion [18, 27], the attenuation may be expressed in the
limit case k2γL ≪ 1, by

α ∼ σ2
KLn−1

c kn ∼ ωn (8)

where n = 2 corresponds to the large scale fluctuation
(Lc ≫ λ) with a strongly anisotropic scattering, iden-
tical to the above result obtained in 1D random media
(see also Fig. 9c), and n = 4 corresponds to the small
scale fluctuation (Lc ≪ λ) with an isotropic Rayleigh-like
scattering [27].
Regarding the experimental data of attenuation shown

in Fig. 7 and in [28], these two mechanisms of scattering
invoked here corresponding to α ∼ ω2 and α ∼ ω4, re-
spectively, may explain qualitatively the measurements
at the high-frequency range (note that the former ap-
pears more significant in the present work), due to the
heterogeneous and anisotropic structure of the contact
force networks. However, at the low-frequency range, we
experimentally observe a different behavior of attenua-
tion α ∼ ω1. As mentioned before, the viscoelastic dissi-
pation related to the particle material seems to be neg-
ligible here. Nevertheless, the wave dissipation around
the bead contacts via thermoelastic relaxation might be
a mechanism responsible for such kind of attenuation,
as proposed by Wang and Santamarina [26], when the
characteristic time is comparable with ∼ 1/ω.

IV. CONCLUSION

We have studied the pulse broadening of coherent
sound waves propagating in granular media. The evo-
lution of the pulse width of the coherent compressional



8

wave is analyzed in terms of the dispersion relationship,
including wave attenuation and velocity dispersion. The
pulse broadening measured in various disordered bead
packings reveals both a different scaling law on distance
of propagation L and larger values, compared to analyti-
cal and numerical results only invoking the dispersion ef-
fect as that found in ordered elastic lattices. The numer-
ical simulations carried out in 1D disordered elastic sys-
tems composed of sub-chains show that the pulse broad-
ening may be caused by scattering attenuation. More
specifically, the normalized pulse width W by the wave
propagation time scales with distance as ∝ L−1/2 in-
stead ∝ L−2/3 due to the dispersion, and significantly
depends on the product of the inverse stiffness variance
σ2
D and the correlation length Lc. Our experimental and

numerical results are consistent with theoretical models
of elastic wave scattering in 1D and 3D random contin-
uous media, suggesting a dominant attenuation mecha-
nism α ∼ ω2 possibly due to an anisotropic-like scatter-
ing. Further works are still necessary to highlight the
underlying physics of attenuation at the low-frequency
range.
For future studies, the effects of disorder via mass or

spring fluctuations found by numerical simulation in 1D
chains need to be investigated in 2D or 3D disordered
elastic networks. In these cases, the additional topo-
logical disorder appears and the absence of a reference
medium prevents actually the analytical model of sound
propagation [5]. Numerical simulation may help to bet-
ter understand the elastic wave propagating in granular
media.
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