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Equations différentielles stochastiques rétrogrades et controle stochastique et
applications aux mathématiques financieres

Résumé : Cette these est constituée de deux parties pouvant étre lues indépendamment.

Dans la premiere partie de la these, trois utilisations des équations différentielles sto-
chastiques rétrogrades sont présentées.
Le premier chapitre est une application de ces équations au probleme de couverture
moyenne-variance dans un marché incomplet ot des défauts multiples peuvent surve-
nir. Nous faisons une hypothese de densité conditionnelle sur les temps de défaut. Nous
décomposons ensuite la fonction valeur en une suite de fonctions valeur entre deux dé-
fauts consécutifs et nous prouvons la forme quadratique de chacune d’entre elles. Enfin,
nous illustrons nos résultats dans un cas particulier a 2 temps de défaut suivant des lois
exponentielles indépendantes.

Les deux chapitres suivants sont des extensions de l'article [75].

Le deuxiéme chapitre est 1’étude d'une classe d’équations différentielles stochastiques
rétrogrades avec sauts négatifs et barriere supérieure. L'existence et I'unicité d’une solu-
tion minimale sont prouvées par double pénalisation sous des hypotheses de régularité
sur 'obstacle. Cette méthode permet de résoudre le cas ot le coefficient de diffusion
est dégénéré. Nous montrons aussi, dans un cadre markovien adapté, le lien entre notre
classe d’équations rétrogrades et des inégalités variationnelles non linéaires. En particu-
lier, notre représentation d’équation rétrograde donne une formule de type Feynman-Kac
pour les équations aux dérivées partielles associées a des jeux différentiels stochastiques
de type controleur et stoppeur a somme nulle, ot1 le contrdle affecte a la fois les termes
dérives de volatilité. De plus, nous obtenons une formule duale du jeu de la solution
minimale de 1’équation rétrograde, ce qui donne une nouvelle représentation des jeux
différentiels stochastiques controleur et stoppeur a somme nulle.

Le troisieme chapitre est lié a l'incertitude de modele, ou l'incertitude affecte a la
fois la volatilité et I'intensité. Ces problemes de contrdle stochastiques sont associées a
des équations intégro-différentielles aux dérivées partielles telles que la partie de saut
est caractérisée par la mesure \(q,.), dépendant d’un parametre a. Nous ne supposons
pas que la famille A(a, .), est dominée. Nous obtenons une formule non linéaire de type
Feynman-Kac a la fonction valeur associée a ces problemes de controle. Pour cela, nous
introduisons une classe d’équations différentielles stochastiques rétrogrades avec saut et
une partie diffusive partiellement contrainte. Ici aussi le cas ot le coefficient de diffusion
est dégénéré est résolu.

Dans la seconde partie de la thése, un probleme de gestion actif-passif conditionnelle
est résolu. Nous obtenons d’abord le domaine de définition de la fonction valeur associée
au probleme en identifiant la richesse minimale pour laquelle il existe une stratégie d’in-
vestissement admissible permettant de satisfaire la contrainte a maturité. Cette richesse
minimal est identifiée comme une solution de viscosité d"une EDP. Nous montrons aussi
que sa transformée de Fenschel-Legendre est une solution de viscosité d"une autre EDP,
ce qui permet d’obtenir un schéma numérique avec une convergence plus rapide. Nous



identifions ensuite la fonction valeur liée au probléeme d’intérét comme une solution de
viscosité d"une EDP sur son domaine de définition. Enfin, nous résolvons numérique-
ment le probleme en présentant des graphes de la richesse minimale, de la fonction va-
leur du probleme et de la stratégie optimale.

Mots-clés : couverture moyenne-variance, équations différentielles stochastiques ré-
trogrades (EDSR) quadratiques, programmation dynamique, modéle défaut-densité, EDSR
avec sauts contraints, EDSR réfléchies, changement de régime avec diffusion a saut, équa-
tion d’Hamilton-Jacobi-Bellman Isaacs, jeu contrdleur et stoppeur, contrdle optimal, pro-
bleme de cible stochastique.
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Backward stochastic differential equations and stochastic control and applications to
mathematical fiance

Abstract : This thesis is divided into two parts that may be read independently.

In the first part, three uses of backward stochastic differential equations are presen-
ted.
The first chapter is an application of these equations to the mean-variance hedging pro-
blem in an incomplete market where multiple defaults can occur. We make a conditional
density hypothesis on the default times. We then decompose the value function into a se-
quence of value functions between consecutive default times and we prove that each of
them admits a quadratic form. Finally, we illustrate our results for a specific case where
2 default times follow independent exponential laws.

The two following applications are extensions of the paper [75].

The second chapter is the study of a class of backward stochastic differential equations
with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal so-
lution are proved by a double penalization approach under regularity assumptions on
the obstacle. This method allows us to solve the case where the diffusion coefficient is
degenerate. We also show, in a suitable markovian framework, the connection between
our class of backward stochastic differential equations and fully nonlinear variational in-
equalities. In particular, our backward equation representation provides a Feynman-Kac
type formula for PDEs associated to general zero-sum stochastic differential controller-
and-stopper games, where control affects both drift and diffusion term, and the diffusion
coefficient can be degenerate. Moreover, we state a dual game formula of this backward
equation minimal solution, which gives a new representation for zero-sum stochastic dif-
ferential controller-and-stopper games.

The third chapter is linked to model uncertainty, where the uncertainty affects both
volatility and intensity. This kind of stochastic control problems is associated to a fully
nonlinear integro-partial differential equation, such that the measure A(q,.), characteri-
zing the jump part depends on a parameter a. We do not assume that the family A(a, .),
is dominated. We obtain a nonlinear Feynman-Kac formula for the value function asso-
ciated to these control problems. To this aim, we introduce a class of backward stochastic
differential equations with jumps and partially constrained diffusive part. Here the case
where the diffusion coefficient is degenerate is solved as well.

In the second part, a conditional asset liability management problem is solved. We
first derive the proper domain of definition of the value function associated to the pro-
blem by identifying the minimal wealth for which there exists an admissible investment
strategy allowing to satisfy the constraint at maturity. This minimal wealth is identified
as a solution of viscosity of a PDE. We also show that its Fenschel-Legendre transform
is a solution of viscosity of another PDE, which allows to obtain a scheme with a faster
convergence. We then identify the value function linked to the problem of interest as a
solution of viscosity of a PDE on its domain of definition. Finally, we solve numerically
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the problem and we provide graphs of the minimal wealth, of the value function of the
problem and of the optimal strategy.

Keywords : Mean-variance hedging, Quadratic backward stochastic differential equa-
tion (BSDE), Dynamic programming, Default-density modelling, BSDE with constrai-
ned jumps, reflected BSDE, regime-switching jump-diffusion, Hamilton-Jacobi-Bellman
Isaacs equation, controller-and-stopper game, optimal control, stochastic target problem .
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Chapitre 1

Introduction générale (en francais)

1.1 Préliminaires sur les EDSRs classiques

La premiére partie de cette thése est consacrée a différentes applications des Equa-
tions Différentielles Stochastiques Rétrogrades (EDSRs) liées au controle stochastique et
aux mathématiques financieres. Rappelons tout d’abord ce que désigne cette notion, en
se bornant ici au cas réel. Notons (€2, F, P) un espace probabilisé muni d’un mouvement
Brownien W (d-dimensionnel) dont la filtration naturelle et augmentée est notée (F);>o.
Une EDSR a horizon déterministe 7" s’écrit alors

T T
Y; =&+ / F(s,Ys, Zs)ds — / ZsdWs, 0<t<T,P—p.s. (1.1.1)
t t

Les données sont ici :
1. La condition terminale &, qui est une variable aléatoire réelle F7-mesurable.

2. Le générateur f : [0,7] x Q x R x R? — R, supposé mesurable par rapport a
P x B(R) x B(R?), notant P la tribu des événements prévisibles.

Résoudre cette équation, c’est déterminer un couple de processus Fr-adaptés (Y, Zi)o<i<T
vérifiant (1.1.1). Le mot rétrograde désigne le fait qu’ici c’est la condition terminale de
I’équation qui est connue, soit Y7 = &, ce qui est la principale source de la complexité de
ce probleme. Or la solution doit étre adaptée, un simple retournement du temps est donc
ici inenvisageable. C’est pourquoi il faut chercher la solution sous la forme non pas d'un,
mais de deux processus, le processus Z ayant pour but justement d’assurer 1’adaptabilité
de la solution.

Les EDSRs ont été introduites pour la premiere fois par Bismut dans le cas d'un gé-
nérateur linéaire [11], mais 'article pionnier de la théorie telle qu’elle est formalisée au-
jourd’hui est celui de Pardoux et Peng[85], dans lequel est prouvé le théoréeme suivant.

Theorem 1.1.1. Supposons que le générateur f est Lipschitz en (Y, Z) uniformément en (s,w)
et

T
EFl + [ 1F(,0,0)ds] < +oo.
0

Alors 'EDSR (1.1.1) a une unique solution (Y, Z) telle que Z soit un processus de carré inté-
grable.



Apres ce premier résultat général d’existence, une littérature toujours plus vaste, s’est
attachée a affaiblir de plus en plus les hypotheses de ce théoreme. Cet engouement s’ex-
plique en partie par le tres grand nombre de champs d’applications de la théorie des ED-
SRs, comme notamment des problemes de controle stochastique, de jeux stochastiques,
ou des problemes de gestion de portefeuille... Le lecteur pourra se référer a 1’article [38]
qui propose une revue détaillée des applications en finance. Cependant, c’est le lien ex-
trémement étroit qui existe entre la théorie des EDSRs et la théorie des Equations aux
Dérivées Partielles (EDPs par la suite) qui demeure la raison principale de cet intérét
marqué de la communauté mathématique. Revenons maintenant sur cette connexion.

Considérons une classe d’EDSRs particulieres, dites Markoviennes. Pour ces équa-
tions, I'aléatoire de la condition terminale et du générateur est supposé étre entierement
généré par une certaine diffusion. Plus précisément, (Y, Z) est solution de

T T
Y: = g(Xr) +/ f(s, X, Ys, Zs)ds — / ZgdWs, 0<t<T, P-—p.s., (1.1.2)
t Jt
ou f et g sont des fonctions déterministes et ott (X¢)o<:<7 est solution de 'EDS

t t
Xi==x —|—/ b(s,Xs)ds+/ o(s,Xs)dWs, 0<t<T, P—p.s.
0 0

Soit alors I’'EDP
E;tt(t,ar:) + Lu(t,z) + f(t, z,u(t,z), Vu(t,x)o(t,x)) =0, (t,z)€[0,T)xR
u(T,.) = g(.), (1.13)

ou L est le générateur infinitésimal associé a la diffusion dont est solution X donné par
1
Lo(t,x) = §Tr[a(t,a:)v2(t,x)] +b(t,x).V(t,x),

oua(t,z) :=o(t,x) o(t,x).

Si nous supposons que cette EDP possede une solution réguliére, une simple applica-
tion de la formule d'It6 montre que (u(t, ), Vu(t, x)o(t, z)) est solution de 'EDSR (1.1.2).
Ce résultat, qui n’est rien d’autre qu'une généralisation de la formule de Feynman-Kac,
nous confeére ainsi une interprétation probabiliste de 'EDP (1.1.3) et ouvre la voie de la si-
mulation numérique de solutions d’EDPs par des méthodes probabilistes, qui ont comme
grand avantage de ne pas (ou peu) souffrir de problemes liés a la dimension. De telles
méthodes ont fait I'objet de nombreux travaux, parmi lesquels nous pouvons citer Zhang
[105], [106] et Bouchard et Touzi [16]. Dans la premiere partie de cette thése figurent no-
tamment une extension de ce résultat au cas des EDSRs réfléchies avec sauts contraints
puis une autre dans un modele de volatilité incertaine.

Notons par ailleurs que la théorie des EDSRs ne fournit une telle interprétation proba-
biliste que pour des EDPs dites quasi-linéaires, au sens ot la dépendance en la Hessienne
dans (1.1.3) ne peut étre que linéaire. En effet, les termes faisant intervenir la Hessienne
ne proviennent que de la variation quadratique de X dans la formule d’It6. Cependant,



vu l'extréme importance que de telles équations peuvent revétir dans de nombreux do-
maines des mathématiques, de la physique ou encore de l'ingénierie, il est on ne peut plus
naturel et désirable d’étendre les résultats ci-dessus a une classe plus grande d’EDPs.

En particulier, depuis la fin des années 1990, I'intérét pour les EDSRs dites a croissance
quadratique (au sens ot le générateur est a croissance quadratique en Z) ont recu une
attention toute particuliere, du fait de leur intérét dans des problemes liés aux mesures
de risque dynamiques ou a la gestion de portefeuille avec contraintes, voir par exemple
[40]. Ainsi, la question d’existence et d"unicité d'une solution dans le cas o1 le générateur
vérifie

£(t,2)] < O]+ (Ol + 2P (114)

0 étant une constante positive et c et [ des processus adaptés suffisamment intégrables,
a d’abord été résolue par Kobylanski [76] dans le cas d'une condition terminale bornée.
Une application de ce résultat est exposée dans cette these : la détermination d'une stra-
tégie de couverture moyenne-variance sous risque de défauts multiples.

1.2 Couverture moyenne-variance sous risque de défauts mul-
tiples

La premiere application des EDSRs exposée dans cette these est I'étude d’une cou-
verture moyenne-variance sous risque de défauts. Rappelons briévement ce qu’est une
couverture moyenne-variance. Soit 7" > 0 le temps de maturité et Hr un payoff. Notons A
I'ensemble des stratégies admissibles de trading notées 7 et x le capital initial. Notant de
plus (X;"™)o<i<r le processus de richesse correspondant, nous appellons la performance
de la stratégie de trading :

J! (x, ) = E[(Hr — X77)?] (12.1)
et le probleme de couverture moyenne-variance se formule ainsi :
Vi (z) = irelJf4 JH (2, ) (1.2.2)

Ce probléme a été introduit par Follmer et Schweitzer [45], et depuis de nombreux au-
teurs ont développé cette approche. Nous renvoyons le lecteur a I’article [98] pour une
revue détaillée de la littérature. Dans la plupart de ces articles, le probleme est résolu en
utilisant des filtrations continues, voir par exemple [91] et [97].

Cependant, notre modele comporte un risque de défauts multiples, reprenant le forma-
lisme de [62] et [63]. Une particularité importante est qu’ici le nombre de défauts n est
fixé a priori, et nous associons a chaque défaut survenant a un temps 7; une marque
L,e ECR.

La seule hypothese faite sur les défauts est une hypothese de densité : il existe un pro-
cessus adapté o tel que pour toute fonction borélienne bornée f et pour tout temps
0<t<T,

E[f(r, L)|F:] = /f(B,l)ozt(O,l)den(dl) D.S., (1.2.3)



olt df = db;...df,, est la mesure de Lebesgue sur R" et 7(dl) est une mesure de Borel sur
E™ de la forme n(dl) = n1(dl) [T7Z1 nk+1(lk, dlk+1), ot 1 est une mesure de Borel posi-
tivesur E et, pour 1 < k < n—1,n511(lx, dlx+1) un noyau de transition positif sur E* x E.
On est donc amené a considérer des n-uplets ordonnés de temps de défauts 7 = (71, ..., 7,) €
[0, T]™ associés a des n-uplets de marques L = (Ly, ..., L,) et les évenements

QF ={m <t<mp}, 0<t<T, 0<k<n

correspondants aux scenarii o1 k défauts ont été observés jusqu’a l'instant ¢. Le processus
de l'actif de trading S considéré se décompose donc sous la forme

St = Z 19555(7'14, Lk)
k=0

ennotant 7, = (71,...,7;) et L, = (L1, ..., Lx,). Les processus S* vérifient les dynamiques,
dans le scénario olt 74, = @, et Ly, = 1}, :

dSF (T k) = S (i, Ue) (F (Th, L)t + oF (Th, U )dW,), 0 <t < T,

ot W est un mouvement brownien unidimensionnel et ;¥ et o* vérifient les hypotheses
usuelles.
De plus, dans ce modele, chaque défaut induit un saut de I’actif. Nous nous munissons
donc de processus 'yk, 0 <k<n-—1telsque

Set (Okg1, ler1) = Sb- (O, i) (1 +7§k+1(9k7lkalk+l)) ~

Or+1 1

On est ainsi amené & décomposer les stratégies de trading 7 en n processus (7%)g<x<,, tels
que

= Zn: 1Q§_Wf(7k,Lk), 0<t<T.
k=0
De méme, le payoff Hp se décompose sous la forme :
- K
Hr = kZ:% Lok Hy (Tk, L)

Enfin, (1.2.3) nous incite a définir par récurrence descendante, notant o = « :

af (0, 1) = /t [Eafﬂ(ﬁ’k,9k+1,lk,lk+1)d9k+177k+1(lk7dlk+1), 0<k<n-1

On est alors amené a décomposer le probléme de couverture moyenne-variance (1.2.1)-
(1.2.2) associé aux stratégies de trading 7 & n sous-problémes associés a chacun des 7* qui
pourraient se reformuler chacun en "probleme de couverture moyenne-variance entre le
k-eme défaut et I'éventuel k + 1-eme". Plus précisément, notant Ak I'ensemble des 7*
admissibles, nous introduisons la famille de fonctions (V*)g<<, définie récursivement

par:
V'(2,0,1) = essinfE |(HE — X7"7(0,1))ar(6,1)| F, | (1.2.4)

TneAn
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et

VF(x, 01,1) = esksiﬁgE[(Hg—X@vv"*”(ak,lk))%é(ek,lk)+
e

Ok+1

(1.2.5)

T
/0 /EVk+1(Xk’$’7r(0k7lk) + e O 1) 6, Ok ks 1), Okt Ly )) g1 (L dl 1) dOrg 1| Fa,
k

Puisqu’ici il y a n défauts au plus, le sous-probleme associé a V" est sans défaut et donc
déja résolu dans la littérature. Nous allons alors procéder par récurrence descendante sur
k pour obtenir VO et une stratégie optimale associée 7" = (7})o<k<n.

L’hérédité s’obtient en trois étapes :

— Nous supposons que chacun des sous-problemes admet une décomposition qua-
dratique de la forme V*. Nous obtenons alors par programmation dynamique que
les termes de cette éventuelle décomposition doivent vérifier un systeme d’EDSRs
et un candidat pour une stratégie optimale.

— Ensuite, nous prouvons l'existence de solutions a ce systéme d’EDSRs. Notre preuve
utilise des techniques d’EDSRs et est en ce sens une preuve "purement EDSR" qui
est nouvelle dans la littérature. L'une des EDSRs du systéeme est a croissance qua-
dratique, ce qui nous a amené a utiliser le résultat de Kobylanski évoqué dans la
section précédente pour cette preuve.

— Enfin, nous prouvons dans un théoreme de vérification que le systeme d’EDSRs
étudié a une unique solution qui induit une solution du probleme (1.2.1)-(1.2.2).
Ne reste plus qu’a vérifier que le candidat 7* est une stratégie admissible pour
conclure.

On conclut ce chapitre par des applications numériques. Ici il y a 1 puis 2 défauts in-
dépendants, chacun suivant une loi exponentielle. Les EDSRs deviennent alors des équa-
tions différentielles ordinaires, ce qui rend la simulation accessible. Cela nous permet
d’obtenir des interprétations graphiques de I'incomplétude du marché et de la variance
minimale du portefeuille d'investissement pour un capital donné.

Ce chapitre est tiré d"un article rédigé en collaboration avec Stéphane Goutte et Ar-
mand Ngoupeyou [24], a paraitre dans Stochastic Analysis and Applications.

1.3 EDSRs réfléchies avec sauts négatifs, et jeux contrdoleur et
stoppeur

1.3.1 Articles sources

La deuxiéme application des EDSRs exposée dans cette these est I'étude d’EDSRs ré-
fléchies avec sauts négatifs, et son application a des jeux type contréleur et stoppeur.

Les EDSRs réfléchies sur un obstacle fixé ont été introduites par El Karoui, Kapoud-
jian, Pardoux, Peng et Quenez [37]. Il s’agit du premier cas d’EDSR avec contraintes,
pour lesquelles on impose que la solution Y; reste systématiquement au-dessus d"un obs-
tacle S;. Un processus croissant dont le but est de "pousser"” la solution de 'EDSR vers
le haut est introduit. Plus précisément, nous disons que le triplet de processus adaptés



(Y3, Zi, K) ott K est un processus croissant, est solution de 'EDSR réfléchie sur 1’obstacle
S avec condition terminale £ et générateur f si

T T

Vi—t+ [ FYoZ)ds— [ ZdWo+ Kp—Ki 0<t<T, P-ps
t t

EZSt?SOStSTa ]P)_ps

T
/ (Y, — S,)dK, =0, P—p.s. (1.3.1)
0

La derniere condition dans (1.3.1) stipule que le processus croissant K est minimal au
sens ot il n'agit que lorsque Y touche l’obstacle. Elle permet d’obtenir 1'unicité de la
solution d’une telle équation. Dans [37], une preuve d’existence de solution est aussi
proposée par pénalisation. De plus, il est prouvé que les EDSRs réfléchies fournissent
une représentation probabiliste pour des EDPs quasi-linéaires avec un obstacle.
Considérons désormais I’équation non linéaire de type Hamilton-Jacobi-Bellman (HJB)
suivante :

v + sup ((b(z,a), Dyv) + }tr(UO'T@J, a)D2v) + f(z,a)) =0, (1.3.2)
ot acA 2

sur [0,7) x A, ou A est un sous-ensemble de R?, avec la condition terminale
o(T,z) = g(z), =R

I est bien connu, voir par exemple Pham [90] que cette équation est 1’équation de pro-
grammation dynamique d’un probléme de contréle stochastique dont la fonction valeur
est donnée par :

T
'U(t7x) = SupE[/ f(X§7x7a7a5)d8 _i_g(X;lLLVOC)]
o t

ott X% est le processus d’état controlé partant au temps t € [0, 7] de x € R? qui vérifie
sur [t,T] I’équation stochastique

Xp =+ / b(X7™%, a)dr + / (X", )W, (1.3.3)
t t

oll v est un processus de controle prévisible a valeurs dans A. Remarquons que, si o(x)
ne dépend pas de a € A et que 007 (x) est inversible, alors 1’équation de HJB précédente
peut se réécrire :

ov 1 9
5t + itr(aaT(:r)va) + F(x,0"(x)Dyv) =0, (1.3.4)
ol F(x,z) = supgealf(x,a)+(0(x,a), z)] estla f-transformée de Fenchel-Legendre de f et
0(z,a) = o' @) (oo™ (x)) " b(z, a) est une solution de o (z)6(x, a) = b(z, a). Nous déduisons
alors des travaux de Pardoux et Peng [85, 86] que I'EDP semilinéaire (1.3.4) admet une
formule de Feynman-Kac non linéaire a travers une équation différentielle stochastique
progressive et rétrograde markovienne.

Le cas général, avec un coefficient de diffusion contrdlée o(z, a) éventuellement dé-
généré a été résolu récemment par Kharroubi et Pham [75]. Mentionnons aussi qu'un



premier pas avait été accompli par Soner, Touzi et Zhang [101], en utilisant cependant
la théorie des EDSRs du second ordre (2EDSRs) plutdt que la théorie classique des ED-
SRs. Les 2EDSRs sont des EDSRs formulées avec une famille non dominée de mesures de
probabilités singulieres, leur théorie utilise donc des outils d’analyse quasi-stire. D’autre
part, dans [75], nous nous contentons d’étudier une EDSR avec sauts, ot les sauts sont
contraints d’étre négatifs, formulée selon une unique mesure de probabilité, comme dans
la théorie classique des EDSRs.

Présentons brievement les résultats de l’article [75]. Le systéme progressif-rétrograde
associé a I'équation HJB (1.3.2) est construit en introduisant le systéme d’équations pro-
gressives, partant au temps ¢ € [0,7] de (z,a) € R? x R?:

S S
Xbtoe = g4 / b(XEe B dr + / o(XE50 I dW, t<s<T,
e = aJr// p(dr,da’) t<s<T.

Ces équations sont déduites des dynamiques de 1’état contrdlé (1.3.3) en randomisant le
processus d’état X%, c’est a dire en introduisant, a la place du contrdle o, un processus
de saut pur I dirigé par une mesure aléatoire de Poisson p sur R™ x A indépendante de
W, avec une mesure d’intensité A(da)dt, ot A est une mesure finie sur (A, B(A)). W et u
sont définis sur un espace de probabilité filtré (2, F,F,P), ot F est la complétion de la
filtration générée par W et pu. Considérons désormais 1’équation rétrograde. Comme at-
tendu, elle est dirigée par le mouvement brownien W et la mesure aléatoire de Poisson 1,
c’est a dire que c’est une EDSR avec sauts avec condition terminal g(Xélx’a) et générateur
f(XEma ), ce qui est naturel vu l'expression de I'équation HJB. L'équation rétrograde
est aussi caractérisée par une contrainte sur le composant de saut, ce qui s’avere étre un
point crucial de la théorie introduite dans [75] et requiert, comme les EDSRs réfléchies
(voir par exemple (1.3.1)), la présence d'un processus croissant dans 'EDSR. Finalement,
I’EDSR prend la forme suivante :

Y-St,:c,a — (tha +/ tha Ita>d7“+Kt$a Ktxa

f/ ZtmadW / /Lm“ w(dr,da'), t<s<T,p.s.
S
avec la contrainte de saut

LY (a') <0, dP® ds® \(da')p.p.

Remarquons que la présence du processus croissant K dans l'équation rétrograde ne
garantit pas "unicité de la solution. C’est pourquoi, comme dans la théorie des EDSRs
réfléchies, les auteurs recherchent seulement dans [75] la solution minimale (Y, Z, L, K)
de 'EDSR précédente, dans le sens ot toute autre solution (Y, Z,L,K) est telle queY <
Y. Lexistence de la solution minimale se prouve par pénalisation en utilisant le théoréme
de limite monotone de Peng [87].

La formule de Feynman-Kac non linéaire devient

o(t,z,a) ==Y, (t,x,a) € [0,T] x RY x R,



Observons que la fonction v ne devrait pas dépendre de a, mais de (¢, z), conséquence de
la contrainte de saut négatifs. En effet, si v est continue, alors

LY (a!) = v(s, X1, a) — v(s, X1®9, 1) <0 dP ® ds @ A(da')p.p.

dont nous déduisons que v ne dépend pas de a. Cependant, il n’est pas clair a priori
que la fonction v est continue, c’est pourquoi, dans [75], la preuve rigoureuse requiert
des arguments fins de solutions de viscosité et des hypotheses de régularité sur A et A.
comme celles que l'intérieur de A est connecté et que A est la fermeture de son intérieur.
A la fin de [75], il est prouvé que la fonction v ne dépend pas de a dans l'intérieur de A
et que la solution de viscosité de (1.3.2) admet la formule de représentation probabiliste
suivante :

o(t,x) ==Y " (t,x) €[0,T] xR

pour tout a dans l'intérieur de A. Cette formule ouvre de nouvelles perspectives pour des
schémas probabilistes d’EDPs non linéaires, comme récemment montré par Kharroubi,
Langrené et Pham [73].
Dans [75], une autre représentation probabiliste est proposée, appelée représentation
duale, pour la solution v de (1.3.2). Plus précisément, soit V I'ensemble des processus
prévisibles v : 2 x [0, T] x A — (0, 00) qui sont essentiellement bornés et introduisons la
mesure de probabilité P¥ équivalente a P sur (€2, Fr) avec densité de Radon-Nikodym :
14 .
el == ad [ [ @ - Ditds,da))
ou &(.) est 'exponentielle de Doléans-Dade. Ici W reste un mouvement brownien sous
P¥, et I'effet de la mesure de probabilité P, par le théoreme de Girsanov, est de changer
le compensateur A(da)dt de p sous P en v;(a)\(da)dt sous PV. La représentation duale
s’écrit ainsi :
T
v(t,z) = Y™ = ess S]l/lpEV [g(X55) —I—/t FXL™e 10" ds| F]
ve

ot est notée E” 1’'espérance par rapport a P”.

Enfin, observons que que les outils utilisés dans [75] peuvent aussi étre appliqués a
d’autres problemes de controles stochastiques, comme les problemes de controles im-
pulsionnels, voir par exemple [74].

1.3.2 Présentation du probleme

Considérons 1'équation d"Hamilton-Jacobi-Bellman-Isaacs (HJBI) :

max { _Ov sup (b(z,a).Dyv + ltr(agT(x, a)D2v) + f(z,a)); (1.3.5)
v — g] = 0’

sur [0,7) x R?, avec la condition terminale

o(T,z) = g(z), =R (1.3.6)



Dans Bayraktar et Huang [7], il est prouvé que cette équation est équation de programma-
tion dynamique d’un jeu controleur et stoppeur a somme nulle dont les fonctions valeurs
supérieure et inférieure sont données par

_ m[a]

V(t,z) := inf sup E[/ fXE™ ay)ds —|—g(X7tT[z]a)}
7I’€Ht7T acA t

V(t,z) = sup inf E[ [ f(XE™* ag)ds+g(XE™)], (t,z)€[0,T] x RY,
acATET,T t

ot X% est un processus de diffusion dans R¢ vérifiant 1’équation (1.3.3) contrdlé par un
processus prévisible a € A a valeurs dans A, 7; 1 est 'ensemble des temps d’arrét a va-
leurs dans [t,T] pour 0 < t < T, et I; 7 est 'ensemble des stratégies d’arrét 7 : A — T 1
satisfaisant une condition de non anticipation (voir la définition 3.1 de [7]). Il est montré
dans [7] que ce jeu a une valeur, soit V = V. = v, et que v est 'unique solution de viscosité
de (1.3.5) - (1.3.6) satisfaisant une condition de croissance polynomiale.

Dans ce chapitre, nous prouvons que la fonction valeur v associée a 1’équation HJBI
(1.3.5) - (1.3.6) (nous considérons aussi des équations aux dérivées partielles plus géné-
rales de type HJBI) admet une représentation probabiliste (une formule de Feynman-Kac
non linéaire) a travers une équation différentielle stochastique progressive et rétrograde.
En particulier, en s’inspirant des preuves de [75] décrites précédemment et de la théorie
des EDSRs réfléchies, nous introduisons une classe d’EDSR réfléchies a sauts négatifs et
barriere supérieure. Comme dans le cas des EDSRs doublement réfléchies avec barrieres
supérieure et inférieure, liées aux jeux de Dynkin, notre classe d’EDSR implique l'intro-
duction de deux processus croissants. Plus précisément, 1’équation rétrograde a la forme
suivante (nous étudions aussi des EDSRs plus générales, ot le générateur f dépend aussi
de Y% et Z1%*, et méme de la composante de saut dans le cas non markovien) :

T
Y;t,x,a — g(X%ac,a) +/ f(X:’x’a,Iﬁ’a)dT’—i- K;lx’a’+ . Kz,x,a,+
S
T
i(Kéixvavf _ K;:xaay_) _ / Zﬁ’x’adWr
S
T
—/ /ALf,’x’a(a/)u(dr, da'), t<s<T,p.s.
S

avec la contrainte de saut

LE%(a) <0, dP® ds® \(dd')p.p.
et la contrainte supérieure

ypme < g(xg™), t<s<Tps.
T
[ (glxime) v martees — o, ps (13.7)
t
Notons que la présence du processus K~ force la solution Y d’étre sous 1'obstacle

supérieur g(X**®). De plus, par la condition de Skorohod (1.3.7), K**%~ est minimal.
D’autre part, le processus K"*%* est associé a la contrainte de saut, comme dans [75].



Pour garantir 1'unicité de la solution, nous cherchons uniquement la solution minimale

(Y, Z, L, K+, K~) de 'EDSR précédente dans le sens ot1 toute autre solution (Y, Z, L, KT, K~)
esttellequeY < Y.

L’existence d"une solution minimale nécessite une hypothése supplémentaire de régula-

rité de la barriere supérieure, qui est I'équivalent dans notre contexte a la condition de
Mokobodzki. Sous cette hypothese, nous prouvons l'existence dans un contexte non mar-
kovien en utilisant une double pénalisation et un théoreme de limite monotone pour les
EDSRs avec sauts. Plus précisément, introduisons la suite d’"EDSRs a sauts :

T
nmyt,x,a __ t,x,a t,r,a T1t,a n,m,t,r,a,+ n,m,t,r,a,+
v, = g+ [ X T KT K
s
n,m,t,r,a t T t
s 11,0, 2,a, — n,m,t,x,a,— n,m,t,r,a
(KT _K ) — / Zrmbeaqiy,
s

T
—/ / L5 (o u(dr,da’), t<s<T,p.s.
s A

pour n,m € N, ou KI""h3:a+ et KL%~ gont les processus croissants définis par

T
K;L,m,t,m,aﬂr — m/ A(Lg’m’t:xv“)+(a))\(da)dr

et
T
K;L,m,t,x,a,f — TL/ (g(X;f,m,a) _ Y;ﬂn,m,t,m,a)_dr'
s

Ici nous utilisons les notations usuelles f; = max(f,0) et f- = max(—f,0) pour les par-
ties positives et négatives de f. La solution minimale de I'EDSR réfléchie avec sauts néga-
tifs est obtenue en passant a la limite en n puis en m et en utilisant un théoreme de limite
monotone. Ce dernier est basé sur des estimations uniformes de (Y™mt@a znmte.a
Lrometea nmibnat | penmibee =y ce qui s’avere étre la principale difficulté, principale-
ment a cause de l'existence des processus K™"™h%0F et K™mbo:a= C'est ici que 1'hy-
pothese de régularité sur la barriére supérieure intervient. Remarquons que 1’ordre des
limites importe ici, contrairement au cas des réflexions supérieure et inférieur associé aux
jeux de Dynkin. En effet, nous n’avons pas de résultat de comparaison sur la composante
de saut de la solution de 'EDSR, et a priori peu d’information sur la suite de processus
croissants associés a la contrainte de saut, tandis qu'on peut exploiter des résultats de
comparaison sur Y pour obtenir la monotonie de la suite de processus croissants associés
a la barriere supérieure.

La formule de Feynman-Kac non linéaire s’avere étre

o(t,x,a) =Y, (t,x,a) € [0,T] x RY x RY.

Comme dans [75], il apparait que v ne dépend pas de a dans l'intérieur de A, consé-
quence de la contrainte de sauts négatifs. Nous prouvons que v est une solution de vis-
cosité de I'équation HJBI (1.3.5) avec la condition terminale (1.3.6). Nous étudions aussi
des équations HJBI plus générales que (1.3.5), ot le générateur f(z,a,v,0' D,v) dépend
aussi éventuellement de v et D v.

10



Enfin, nous prouvons une formule de représentation duale du jeu pour la solution
minimale de notre EDSR, qui est inspirée de la représentation duale obtenue dans [75] et
la formule de représentation duale de la Proposition 6.2 de [31]. Donnons une intuition
de cette représentation duale. En plus de I'ensemble de mesures de probabilité PV, v € V
défini dans la sous-section précédente, introduisons I'ensemble O des facteurs d’actuali-
sations, c’est a dire des processus progressivement mesurables 0 : 2 x [0,7] — Ry qui
sont essentiellement bornés. Alors la formule de de représentation duale devient, pour
s€[0,7T]:

T T T
Y% = esssup ess inf B le” J, MTg(Xfp’x’a) + / e J. Q“d“(f(Xﬁ’I’“, Ib) + Grg(Xﬁ’I’a))dﬂ]:s]
vey - 0€O s

C’est une représentation originale de la fonction valeur d"un jeu controleur et stoppeur

a somme nulle. Nous ne savons pas dans le cas général s’il est possible d’échanger les
supremum et infimum dans la formule de représentation. Mais en prenant d’abord la
limite par rapport a m puis par rapport a n dans la suite des équations pénalisées, nous
obtenons un processus Y% tel que Y% < Y%, oril n’est pas clair si c’est une solution

de 'EDSR et il est égal a Y%, Cependant, Y“** admet la représentation, pour s €
[t,T]:

A . v 0,-d t 6.d
i — essutesssup eI (g [ O (i 1) 4 0, g (X ),

Ce chapitre est tiré d"un article rédigé en collaboration avec Andrea Cosso et Huyén
Pham [23], publié dans Stochastic Processes and their Applications.

1.3.3 Perspectives

Les jeux stochastiques contrdleur et stoppeur ont de nombreuses applications en ma-
thématiques financieres, par exemple la valorisation des options américaines sous contraintes,
voir Karatzas et Kou [65] et Karatzas et Zamfirescu [67]. En effet, dans le cas sans contrainte,
il est bien connu qu'il existe, en I’absence d’arbitrage, un unique prix d’option américaine
qui s’avere étre le supremum, sur tous les temps d’arrét, de I'espérance de gain actuali-
sée de l'option sous la mesure de martingale équivalente. En la présence de contraintes,
cependant, il existe un intervalle [h, he] de prix sans arbitrage. Selon [65] et [67], les
extrémités de l'intervalle peuvent étre caractérisées comme les fonctions supérieures et
inférieures d"un jeu contrdleur et stoppeur a somme nulle. Un autre exemple d’applica-
tion aux mathématiques financieres est donné dans [8]. Il y est montré que le probleme
de minimisation de la probabilité de ruine avant la mort, quand le taux de consommation
est stochastique et que I'individu peut investir dans un marché de type Black & Scholes,
peut étre reformulé en un jeu contréleur et stoppeur.

Enfin, notons que la formule de représentation probabiliste obtenue suggere une nou-
velle approche de schémas numériques probabilistes des équations HJBI par discrétisa-
tion et simulation d’EDSRs réfléchies avec sauts négatifs et obstacle supérieur. Une autre
classe d’EDSRs que I’on pourrait étudier est celle des EDSRs réfléchies avec sauts négatifs
et obstacle inférieur, qui est 1ié au probleme sup sup sur le controle et le temps d’arrét,
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autrement dit du temps d’arrét optimal sous espérance non linéaire. La preuve de 'exis-
tence de la solution minimale par double pénalisation s’avere plus simple puisqu’on est
amené a étudier la somme, plutdt que la différence, de deux processus croissants.

1.4 Représentation d’EDSR pour des problémes de contréle sto-
chastique avec intensité contr6lée et non dominée

1.4.1 Articles sources

La troisiéme application des EDSRs exposée dans cette these est 1’étude de la repré-
sentation d’EDSR pour des probléemes de controle stochastique avec intensité contrdlée
et non dominée.

Ce chapitre est également une extension de [75]. Le lecteur est renvoyé a la section
précédente pour une description des résultats de cet article. Un des résultats de [75] est
'obtention d"une formule de Feynman-Kac pour 1'équation intégro-différentielle aux dé-
rivées partielles non linéaire :

ov
—- +sup

1
5 b(x,a).Dyv + itr(aaT(a:, a)D2v) + f(x,a,v,0"(x,a) Dyv) (14.1)
acA

+ /E (v(t,z+ B(x,a,e)) —v(t,x) — B(x,a,e).Dyv(t,xz))A(de)| = 0, on [0,T) x R¢
v(T,z) = g(x), zeR?

ol A est un sous-ensemble compact de R?, E un sous-ensemble borélien de R¥\ {0}, et A
est une mesure positive o-finie sur (E, B(E)) telle que [z (1 A |e|?)A(de) < oc.
Un cas particulier est 1’équation HJB associée au modele de volatilité incertaine en finance
mathématique, qui prend la forme suivante :

v 2 d d
N +G(Dzv) =0, on[0,7) x RY, o(T,z) = g(x), =xeR? (1.4.2)
oit G(M) = % supcc[cM] et C est un ensemble de matrices symétriques positives d’ordre
d. 11 est montré dans [89], que 1'unique solution de viscosité de (1.4.2) est représentée en
terme de ce qui est appelé un G-mouvement brownien B sous 1’espérance non linéaire
&(-) de la fagon suivante :

v(t,z) = E(g9(x + Br — By)).

La simulation d'un G-mouvement brownien reste cependant un probleme ouvert.

Nous nous intéressons dans ce chapitre a 1'équation intégro-différentielle aux déri-
vées partielles non linéaire suivante :

ov
—; tsup

b(x,a).Dyv + 1’[1‘(0(7T(ﬂs, a)D2v) + f(x,a,v,07(x,a) D) (1.4.3)
ot acA 2

+/ (v(t,x + B(x,a,e)) —v(t,x) — B(z,a,e).Dyo(t, x)) N a, de)] =0, on[0,T)xR?
E
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U(T>$) :g(ZL‘), ‘TERda

ol A est un noyau de transition de (A4, B(A)) vers (£, B(E)). Nous ne supposons pas que
(A(a, -))aca est dominée. De plus, le coefficient de diffusion o peut étre dégénéré.

Une des motivations de ’étude de I'équation (1.4.3) vient des mathématiques financieres,
et de I'incertitude de modele en particulier, quand l'incertitude affecte a la fois la vola-
tilité et I'intensité. Ce sujet a été étudié a 1'aide des 2EDSRs avec sauts dans [70] et [71].
Cependant, cette méthode ne traite pas le cas ot la volatilité est dégénérée, contrairement
a la noétre. De plus, nous pourrions reprendre les arguments développés dans [72] et [72]
pour obtenir un schéma numérique efficace pour 1’équation (1.4.3).

L’incertitude de modele est aussi liée a la théorie des processus de G-Lévy et, plus généra-
lement, aux processus Lévy non linéaires, voir [54] et [83]. Dans ce cas particulier, I'équa-
tion intégro-différentielle aux dérivées partielles non linéaire associée prend la forme sui-
vante :

ov
sup

1
- + b.Dyv + ~tr(cD2v) (1.4.4)
Ot (beF)eo 2

—l—/ (v(t,z 4 2) —v(t,x) — Dyo(t, x).21q.<1y) F(dz)| = 0, on [0,T) x R
i <
U(T7 l.) = g(l.)? T e Rda

ol © est un ensemble de triplets de Lévy (b, ¢, F'), b € RY, ¢ est une matrice symétrique
positive d’ordre d et F' est une mesure de Lévy measure sur (R, B(R?)). Par [54] et [83],
nous savons que 1'unique solution de viscosité de 1'équation (1.4.4) est représentée en
terme de processus de Lévy non linéaire X sous 'espérance non linéaire £(-) de la fagon
suivante :

v(t,z) = E(g(z+ Xp — A)).

Sinous sommes capables de décrire 'ensemble © al’aide du parametre a dans 1’ensemble
compact A d"un espace euclidien R?, alors (1.4.4) peut étre réécrit sous la forme (1.4.3).
Ainsi, v est aussi donnée par notre formule de représentation probabiliste, dans laquelle
le processus progressive est éventuellement plus facile & simuler qu'un processus de Lévy
non linéaire.

1.4.2 Présentation du probleme

Pour résoudre (1.4.3), comme dans [75] et dans la section précédente, il nous faut in-
troduire un probleme de contrdle stochastique optimal dont une solution de 1’'équation
(1.4.3) est la fonction valeur. Cependant, nous n’avons pas de référence dans la littérature
pour cela, c’est pourquoi nous introduisons nous-mémes un tel probleme.

Décrivons briévement comment ici. Soit (Q2, 7, P) un espace de probabilité complet véri-
fiant les conditions usuelles sur lequel est défini un mouvement brownien d-dimensionnel
W = (W;)¢>0- Soit également F = (F;);>0 la complétion usuelle completion de la filtra-
tion naturelle générée par 1 et A la classe des processus de contrdles «, qui sont F-
prévisible et a valeurs dans A. Soit aussi ' 1’espace canonique des processus ponctuels
marqués sur RT x F avec la filtration canonique continue a droite F/ et la mesure aléa-
toire canonique 7'. Considérons ensuite (2, F,F = (F;);>0) défini par Q := Q x O/, F
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= F @ Fl, et Fi := Ng=1Fs @ F.. De plus, posons W (w) := W(©), 7(w,-) = ' (', ),
et A := {a: a(w) = a(@), Yw € Q, pour & € A}. Supposons que pour chaque o € A
nous sommes capables de construire une mesure P“ sur (2, F) telle que W est un mou-
vement brownien et 7 est une mesure aléatoire a valeurs entieres avec compensateur
LiteryMau, de)dt sur (2, F,F,PY), ol T, est le supremum des temps de sauts des pro-
cessus ponctuels marqués associés a 7. Considérons alors le probleme de controle sto-

chastique dont la fonction valeur est donnée par (notant E* I'espérance par rapport a
P)

T
v(t,x) = supEo‘[/ J{O. Ga as)ds—l—g(tha)}, (1.4.5)
acA t

ou X% suit la dynamique contrdlée sur (2, F,F,P%) :
dX2 = B(X®, a5)ds + o(X, as)dW, + / B(XO, ay, )i (ds, de)
E

partant de x a l'instant ¢, avec 7(dt, de) = n(dt,de) — 1y 1A (at,de)dt la mesure de
martingale compensée de m. On s’attend a ce que ce soit le probléme recherché, dans le
sens ou 'EDP (1.4.3) s’avere étre I'équation de programmation dynamique du probleme
de controle stochastique dont la fonction valeur est donnée par (1.4.5).

Comme dans [75] et dans la section précédente, nous randomisons le contrdle. Pour
ce faire, nous introduisons sur (2, F,P) un g-dimensionnel mouvement brownien B =
(Bt)t>g, indépendant de W.F est désormais la complétion usuelle de la filtration natu-
relle générée par W et B. Nous posons aussi B(w) := B(@), pour tout w € , B est donc
défini sur 2. Puisque le controle est a valeurs dans 1’ensemble compact A C R9, nous ne
pouvons pas utiliser directement B pour randomiser le controle, il nous faut introduire
une fonction qui envoie B sur A. C’est pourquoi nous supposon 'existence d’une surjec-
tion continue h: R — A. Alors, pour chaque (¢, x,a) € [0, 7] x R? x R, nous considérons
I'équation différentielle stochastique progressive sur R? x R? suivante :

X, = x+/ b(X,, I, dr+/ (X, L) dW, +//[3 —, Iy, e)w(dr,de),(1.4.6)
Is = h(a+ Bs — By), (1.4.7)

pour tout t < s < T, ou 7(ds, de) = w(ds,de) — Liseroo ) AULs, de)ds est la mesure de mar-
tingale compensée de 7, qui est une mesure aléatoire a valeurs entiéres de compensa-
teur 1y, yA(Is, de)ds. Contrairement a [75] et a la section précédente, nous utilisons un
mouvement brownien B pour randomiser le controle, plutét qu'une mesure aléatoire de
Poisson p sur Ry x A. D’une part, la mesure aléatoire de Poisson s’avere étre plus adap-
tée a un ensemble compact A, puisque p est déja de support Ry x A, donc nous n’avons
pas a introduire de surjection i de R? dans A, comme nous 'avons fait ici. D’autre part,
le choix d’un mouvement brownien B est plus adapté pour obtenir un théoreme de re-
présentation de martingale pour notre modéle. En effet, contrairement au modéle de [75]
ou a celui de la section précédente, I'intensité de la mesure = dépend du processus I,
il est donc naturel d’obtenir une dépendance entre 7 et le bruit utilisé pour randomiser
le controle. L'avantage de B par rapport a p est que B est orthogonal a m, puisque B est
continue (une défintion de 1’orthogonalité entre une martingale et une mesure aléatoire
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est donnée au bas de la page 183 de [59]). Grace a I'orthogonalité nous pouvons obte-
nir un théoréme de représentation de martingale dans notre contexte, ce qui est essentiel
pour obtenir la formule de représentation de Feynman-Kac souhaitée.

Prétons attention a 1’équation a 1’équation différentielle stochastique (1.4.6)-(1.4.7).

Nous constatons que la partie de saut dans (1.4.6) n’est pas donnée, mais dépend de la
solution via son intensité. Ceci rend non standard I'EDS (1.4.6)-(1.4.7). Ce type d’équa-
tions ont été d’abord étudiées dans [58] et apparaissent aussi dans la littérature, voir par
exemple [9], [27], [28], [29] ou [42]. Cependant, dans [9], [27] et [28], A est absolument
continue par rapport a une mesure déterministe donnée sur (£, B(E)), ce qui permet de
résoudre (1.4.6)-(1.4.7) en se ramenant a une EDS standard, via un changement d’inten-
sité “a la Girsanov”. Par contre, dans ce chapitre, nous résolvons d’abord (1.4.7) pour
tout (t,a) € [0, T] x RY, puis nous construisons une mesure de probabilité P4 sur (12, F)
telle que la mesure aléatoire 7(ds, de) ait pour compensateur A\(I%%, de)ds, puis finale-
ment nous résolvons (1.4.6). Dans "appendice, nous prouvons aussi des propriétés de m
et (X, I). Plus précisément, nous présentons une caractérisation de 7 en termes de trans-
formées de Fourier et Laplace, ce qui montre que 7 est une mesure aléatoire de Poisson
(aussi appélée mesure aléatoire de Cox) conditionnellement a o(I%%; s > 0). De plus, nous
étudions les propriétes de Markov de (X, I).
L’EDSR correspondante est, comme attendu, dirigée par les mouvements browniens W
et B, et par la mesure aléatoire 7, c’est donc une EDSR avec sauts, de condition terminale
g(XE"™) et de générateur f(X"™% 1" y, z), comme I'indiquait I'équation (1.4.3). 'EDSR
est aussi caractérisée par une contrainte sur la diffusion associée a B, qui s’avere cruciale
et implique l'introduction d’un processus croissant dans 'EDSR. Finalement, pour tout
(t,x,a) € [0,T] x RY x RY, 'EDSR prend la forme suivante :

. T ~ N T
Y, = g(Xélx’a)—i-/ f(Xﬁ’x’“,Iﬁ’“,K,,Zr)dr—kKT—KS—/ ZpdW,
S S

T T -
- / V,dB, — / / U(e)i(dr,de), t<s<T,Pips.
s s E
et
V5] = 0 ds @ dP“® p.p.

Comme dans [75] et dans la section précédente, la présence du processus croissant K
dans I'EDSR nous pousse a rechercher la solution minimale (Y, Z, V, U, K') de cette EDSR,
au sens oul pour toute autre solution (17, Z , V, U, K ) nous avons nécessairement Y < Y.
L’existence de la solution minimale se montre également par pénalisation. Nous obtenons
finalement la formule de Feynman-Kac non linéaire suivante :

ot,z,a@) = Y™ (tz,a) € [0,T] x R x RY.

De méme que dans [75] et dans la section précédente, v ne dépend pas de a, mais unique-
ment de (¢, z) et la preuve utilise des arguments de solutions de viscosité. Nous montrons
aussi que v est I'unique solution de viscosité de (1.4.3), conséquence d’un théoreme de
comparaison prouvé en appendice. A cause de la présence de 'EDSR de la famille de me-
sures non dominées (A(a, -))qc4, nous n'avons pas trouvé dans la littérature de théoreme
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de comparaison pour la solution de viscosité de notre équation (1.4.3). C’est pourquoi
nous prouvons ce théoreme en appendice, la preuve s’inspirant de ’article [4], en utili-
sant notamment le lemme de Jensen-Ishii pour les équations intégro-différentielles aux
dérivées partielles.

Ce chapitre est tiré d'un article rédigé en collaboration avec Andrea Cosso [22], a
paraitre dans Annals of Applied Probability.

1.5 Gestion actif-passif conditionnelle

1.5.1 Articles sources

L’objectif de ce chapitre est d’obtenir une gestion actif-passif optimale, dans un contexte

ou le gestionnaire d’actif fait face a une contrainte sur la distribution de sa richesse a
I'instant final. Plus précisément, l'investisseur doit payer, pour simplifier, une somme
constante Dy a maturité 1" et s’autorise a ne pas respecter cette contrainte avec une petite
probabilité 1 — p. En pratique, quand un investisseur conservateur impose une contrainte
presque sfre sur la valeur finale d"une stratégie d’investissement, il est plutét amené a
faire des choix trop prudents. Cela vient principalement du fait qu’il est trop cotiteux
de prendre un risque, puisque cela compliquera la nécessité de satisfaire la contrainte a
maturité. Le principal objectif de ce chapitre est de quantifier 1’effet d"un faible affaiblis-
sement de cette contrainte en imposant seulement que la probabilité de succes a maturité
soit supérieure a p, et de mesurer la dépendance en p de la gestion actif-passif optimale.

La théorie moderne de portefeuille en temps continue remonte a ’article pionnier
de Merton [82], qui traite le cas d'un agent essayant de maximiser 1’espérance de son
utilité de la richesse terminale ou I’espérance de 1'utilité de l'intégrale avec le temps de
la consommation. Dans un modéle markovien, la stratégie optimale est caractérisée en
terme de solution d"une équation correspondante de type Hamilton-Jacobi-Bellman, ou
bien peut aussi étre obtenue par des arguments de dualité, voir par exemple Karatzas,
Lehoczky et Shreeve [64]. Ce modele a été abondamment étudié, avec 'introduction de
contraintes additionnelles : par exemple sur la stratégie d’investissement par Cvitanic et
Karatzas dans [30], dans un portefeuille d’assurances avec contrainte presque stire don-
née par El Karoui, Jeanblanc et Lacoste dans [36] et avec des contraintes de diminution
par Elie et Touzi dans [35]. Dans ce contexte, considérant la contrainte de battre un mar-
ché donné avec probabilité de succés donnée, ce problemé a déja été étudié par Boyle
et Tian dans [18], par un argument de dualité, principalement inspiré de ’approche de
Follmer et Leukert dans [44] pour des problémes de couverture en quantile. Dans la lit-
térature récente, une nouvelle approche introduite par Bouchard, Elie et Touzi dans [15]
permet d’étudier ces problémes a priori dynamiquement inconsistants avec une méthode
dynamique.

La principale difficulté a considérer des contraintes écrites en termes de probabilité,
c’est que la probabilité de succés p est imposée au temps 0, mais pour essayer d’obtenir
un principe de programmation dynamique, il faut étre capable de quantifier 'effet d'une
telle contrainte a toute date intermédiaire ¢. La méthode pour traiter ce probleme a été
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identifiée dans [15], ou la probabilité dynamique de succes est vue comme un nouveau
processus progressif controlé de martingale. Cette nouvelle variable permet de résoudre
le probleme dynamiquement d"une maniere consistante. La résolution des problemes de
controle stochastique sous ce type de quantile a été plus spécifiquement étudiée dans
[14], par un principe de programmation dynamique.

1.5.2 Présentation du probleme

Nous considérons un investisseur qui peut a tout instant ¢ choisir d’investir une pro-
portion ¢; de son capital, avec un taux de consommation instantané c;, qui est positif et
majoré par une constante ¢ donnée. Nous notons respectivement A et C les ensembles
des stratégies admissibles d’investissement et de consommation. La dynamique de la ri-

chesse est donc la suivante :
dS;

dXP¢ =0, X020 4 cydt,
St

et nous imposons a la richesse de rester positive et de satisfaire la contrainte :
X; > 0 pour toutt > 0 p.s. et P[Xr>Do]>p, (1.5.1)

Nous notons A, (t, x) 'ensemble des stratégies admissibles d'investissement et de consom-
mation dont le processus de richesse correspondant satisfait cette contrainte de couver-
ture partielle.

Nous considérons un gestionnaire d’actif insensible au risque dont le taux d’actuali-
sation subjectif est une constante donnée 3 > 0. Pour une richesse initiale donnée x > 0 et
une probabilité p de succes, le gestionnaire d’actif souhaite résoudre le probleme suivant
d’investissement et de consommation sous la contrainte de couverture partielle (1.5.1) :

T
0,z,p) = inf E/ —Blede|
w0,2.9) <m5mwlke “

dont la version dynamique est la suivante :

T
w(t,x,p) = inf E / e Pl=e ds| .
(c,0)eAp(t,x) t

Nous devons d’abord déterminer le domaine de définition de la fonction w. Pour cela,
nous introduisons la fonction de richesse minimale définie par :

u(t,p) = inf{z > 0 |A,(t, z) # 0}.

On en déduit que w est défini sur 'ensemble {(¢,z,p) € [0,T] x Ry x [0, 1]|x > u(t,p)}.
Nous introduisons une variable d’état contrdlée supplémentaire «, a valeurs dans [0, 1]
et définie par :

Ptt,p,a =p, dp;fapva = adeSS, s € [t, T,

Nous notons B 'ensemble de ces contrdles. Nous montrons ensuite que, notant g(s, p) =
0 * 18<T + D01p>Ols:T :

u(t,p) = inf{z € Rs.t. 3(h,a) € A x B,Vs € [t,T], X;20¢ > g(s, PLP*)}
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Ainsi, notant 7}; 71 'ensemble des temps d’arrét a valeurs dans [t, 77, u(., P*) vérifie
le principe de programmation dynamique suivant :

- (DP1) Si xz > u(t,p), alors il existe (6*,a*) € A x B tel que
Xﬁ’””’g*’é > u(T, pjvpva*) pour tout 7 € T 1
- (DP2) Si z < u(t,p), alors il existe 7 € T, 1 tel que

PIXEVE > u(r, PEPOY L cpe + (7%, PP ) 1rs ] < 1

TAT*
pour tout 7 € T, 7y et (0, a) € A x B.
Deés lors, notant
o2
Fz,a) = —atubz+e
et

F(z,q,a):= sup F(z,a),
{(a,0)€R2, ag=006z}

u est une solution de viscosité de

win([ — G2(0.) + Flo(t.). 5200), T2 (00 =0

avec la condition terminale :

De plus, nous montrons la condition de bord u(.,0) = 0, ce qui permet d’obtenir © numé-
riquement.

Introduisant la transfomée duale de Fenchel-Legendre associée a u par rapport a la
variable p :

v(t,q) = sup {pq—u(t,p)}, (t,q) € [0,T] x RY,
pG[O,l]

nous obtenons que v est solution de viscosité sur [0, ") x (0,00) de

9y
dq

12 P
2027 0q?

max(~ 22 (t,q) -

ot )=0

(t,q) — ¢, —q
avec la condition terminale :
v(T,q) = (¢ — Do)*.

Ce résultat permet un schéma pour u dont la convergence est rapide. Nous posons, pour
(2, 2,q,a11,a12,a22) € RO :

2€2x2 042
all — aaﬁxalg — ?azg —Cc+ 62’

He,a,C(x’ z,q,a11, 012, 022) = —(pbz + c)q —
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et

Pyp— 9) 9
H(z,z,q,a11,a12,a922) := sup H%%e,
(6,a,c)€R? %[0,c]

Nous obtenons alors que sur int(u) := {(t,z,p)|x > u(t,p)}, w est solution de viscosité
de:

0? 0? 02

t t
79 2( ,l‘,p), 9 9 (’zﬂp)7 9 2

dp
_E + H(CL’, So(taxap)a %(t,xvp)

Comme conséquence, nous obtenons que la consommation optimale est ¢ = 0 quand

%—? > —letc=cquand ‘?9—1;’ < —1. Nous obtenons aussi la condition au bord suivante :

pour (¢,p) € [0,T] x [0,1] tel que u(t,p) >0,

c
lim w(t,z,p) =—=(1 — BTy,
pm (t,z,p) B( )
De plus,
T
w(t,z, 1) = inf / e B DE[e)ds YO<t<T, z>(Do—&T—1)*
(0,0)EAXCs.t. X5 >(Dg—&(T—t)) T Vs>t Jt

Ceci est un probleme de type Merton qui peut étre résolu numériquement. Nous pouvons
ainsi obtenir w numériquement.
Nous proposons enfin des graphes de u, w et de la stratégie optimale a la fois pour c et
6 a la date T. Nous voyons que la stratégie optimale en c consiste a ne pas investir sauf
lorsque la frontiere définie par u est proche.

Ce chapitre est tiré d'un article en cours d’écriture en collaboration avec Romuald Elie
et Xavier Warin.
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Chapitre 2

General introduction (in english)

2.1 Preliminaries on classical BSDEs

The first part of this thesis is dedicated to some applications of Backward Stochastic
Differential Equations (BSDEs) linked to stochastic control and to financial mathematics.
First we recall what this means, treating only the real case here. Set (2, 7, P) a probabi-
listic space equipped with a d-dimensional Brownian motion W whose natural filtration
is denoted (F)¢>0. A BSDE with deterministic terminal time 7" can then be written :

T T
Y, =&+ / F(s,Ys, Zy)ds — / ZdW,, 0<t<T,P—p.s. 2.1.1)
t t

Here the datas are :
1. The terminal condition &, which is a real random variable Fpr-measurable.

2. The generator f : [0,7] x Q x R x RY — R, which is P x B(R) x B(R?)-measurable,
denoting P the tribe of predictable events.

Solving this equation is determining a couple of Fr-adapted processes (Y;, Z;)o<t<7 Ve-
rifying (2.1.1). The word backward means that the terminal condition of the equation is
known here, precisely Y7 = £, which is the main source of complexity of this problem.
But the solution must be adapted, therefore we cannot compute a simple time change.
That is why we have to look for the solution composed of two processes, instead of one,
the process Z garanteeing the adaptability of the solution.

The BSDEs have been introduced for the first time by Bismut in the case of a linear
generator [11], but the pioneering paper of the theory the way it is formulated nowadays
is due to Pardoux and Peng[85], where the following theorem is proved.

Theorem 2.1.1. Suppose that the generator f is Lipschitz in (Y, Z) uniformly in (s,w) and
T
BRI+ [ 1P (5,0,0)ds] < +oo.
0

Then the BSDE (2.1.1) has a unique solution (Y, Z) such that Z is a square integrable process.

After this first general existence result, many papers weakened the hypothesis of this
theorem. This interest can be explained partially by the high number of fields of appli-
cations of the theory of BSDEs, such as stochastic control problems, stochastic games,
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portfolio management problems... The reader can refer to [38] which provides a detai-
led review of the applications in finance. However, the main reason of this interest by
the mathematic community is the close link between the BSDEs theory and the Partial
Differential Equations (PDEs). Let us describe this connexion now.

Consider a class of so called Markovian BSDEs. For these equations, the random part
of the terminal condition and the generator is supposed to be entirely generated by some
diffusion. More precisely, (Y, Z) is solution of

T T
Y; = g(X7) +/ (s, Xs, Ve, Z)ds —/ ZdW,, 0<t<T, P—ps, (212)
t t
where f and g are deterministic functions and where (X;)o<;<7 is solution of the SDE

t t
X, +/ b(s, Xs)ds + / ols, X)dW,, 0<t<T, P—p.s.
0 0

Let now the PDE
%(t,x) + Lu(t,z) + f(t,z,u(t,x), Vu(t,x)o(t,z)) =0, (t,z)€ [0,T) xR
u(T,.) =g(.), (2.1.3)

where L is the infinitesimal generator associated to the diffusion whose solution is X
given by

Lot z) = %Tr[a(t,x)v2(t,:c)] +b(t,2). V(7))

where a(t, x) := o(t,z) o(t, x).

If we suppose that this PDE has a regular solution, a simple application of Itdo for-
mula shows that (u(t, ), Vu(t, z)o(t, z)) is solution of the BSDE (2.1.2). This result, which
is a generalisation of the Feynman-Kac formula, provides a probabilistic interpretation of
the PDE (2.1.3) and permits the numerical simulation of solutions of PDEs by proba-
bilistic ways, which does not have much problems linked to dimension. Such methods
have been studied in many papers, among them are Zhang [105], [106] and Bouchard
and Touzi [16]. In the first part of this thesis, there are an extension of this result to the
case of reflected BSDEs with constrained jumps and then an extension to an uncertainty
volatility model.

In addition, note that the BSDEs theory only provides such a probabilistic represen-
tation for so call quasi-linear PDEs, in the sense that the dependence with the Hessian
in (2.1.3) must be linear. Indeed, the terms depending on the Hessian comes only form
the quadratic variation of X in Itd’s formula. But the importance of such equations in
many areas of mathematics, physic and engineering motivated researchers to extend the
previous results to a wider class of PDEs.

In particular, since the end of the 1990’s, the interest for the BSDEs so called with
quadratic growth, in the sens where the generator has a quadratic growth in Z have
been particularly studied because of their link to the measures of dynamic risks or to the
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portfolio management under constraints, see for example [40]. Therefore, the question of
existence and unicity of a solution in the case the generator verifies

7ty )] < )|+ et + 512 214

where ¢ is a nonnegative constant and ¢ and [ are adaptef processes integrable enough,
have first been resolved by Kobylanski [76] in the case of a bounded terminal condition.
An application of this result opens this thesis, the determination of a strategy of mean-
variance hedging under multiple default risks.

2.2 Mean-variance hedging under multiple defaults risk

The first application of BSDEs presented in this this thesis is the study of mean-
variance hedging under multiple defaults risk. Let us recall briefly what is mean-variance
hedging. Let 7" > 0 be the terminal time and H7 a payoff. We denote A the set of
the admissible strategies, which are denoted 7, and = the initial capital. Denoting also
(X" M)o<t<T the correspondig wealth process, we call the performance of the trading stra-
tegy the following :

Jo' (@, m) = E[(Hr — X77)%) (22.1)
and the mean-variance hedging problem can be expressed as :
Vi (z) = inf, J (z, ) (2.2.2)

This problem was introduced by Follmer and Schweitzer in [45], and many papers have
since followed and developed this approach. For a review of this literature, see [98].
In most of these papers, the problem has been solved using continuous filtration, for
example in [91] and [97].
However, our model includes multiple default risks, using an approach introduced in
[62] and [63]. An important peculiarity of the model is that the number of defaults is fixed
to n a priori, and we associate to each default occuring at time 7; a mark L; € £ C R.
The only hypothesis on the defaults is a density hypothesis, more precisely that there
exists un adapted process « such that for any bounded Borel function f and any time
0<t<T,

E[f(r,L)|F] = /f(@, 1)oy(0,1)dOn(dl) p.s., (2.2.3)
where df = df)...d#,, is the Lebesgue measure on R" and 7(dl) is a Borel measure on E"
in the form n(dl) = n1(dl1) [17=1 Mk+1(Ik, dlk+1), where 7; is a nonnegative Borel measure
on F and, for 1 < k <n — 1, ngy1(lk, dlx11) is a nonnegative transition kernel on E¥ x E.

Therefore we consider the ordered n-uples as default times 7 = (7,...,7,) € [0,T]"
associated to n-uples of marks L = (L, ..., L,,) and the events

QF = {m. <t<mpy1}, 0<t<T, 0<k<nm

corresponding to the scenarii where k defaults occured before time ¢. The trading asset S
takes the decomposed form

n
St = Z IQfStk(Tk,Lk),
k=0

23



where 1), = (71, ...,7;) and Ly, = (L1, ..., L1,). The dynamics of the processes S* are,in the
case where 7, = 0, and L, =}, :

dSE (T, 1e) = SF (i, ) (uk (73, L) dt 4 0¥ (71, L) dWS), 0, <t < T,

where W is a one-dimensional Brownian motion and p* and o* verifies the usual hypo-
thesis.

Moreover, in this model, every default may induce a jump in the assets portfolio. We
therefore introduce processes 7,0 < k < n — 1 such that

Se ! (Bri, iya) = Sy (O, 11) (1 L (O, lk—i—l)) ,

k+1
We also decompose the trading strategies 7 in n processes (7*)g<x<, such that
n
m=) lo Tk, L), 0<t<T.
k=0

The payoff Hr is decomposed as well :

HT = Z 1Q§1HZ€(T]€,L]€).
k=0

Finally, (2.2.3) allows us to define by descending recurrence, denoting o = «a:

of (0, 1) = /t /Eaf“(@k,9k+1,lk,lk+1)d9k+177k+1(lk,dlk+1); 0<k<n-—1.

Hence we decompose the mean-variance hedging problem (2.2.1)-(2.2.2) associated
to trading strategies 7 to n subproblems associated to each 7% which may be call "mean-
variance hedging problem between the kth default and the hypothetical k£ + 1-h". More
precisely, denoting A* the set of admissible 7*, we introduce the family of functions
(VF)o<r<n recursively defined by :

V(2,0,1) = esnseiﬂflE[(H%—X;””’”(G,l))2aT(0,l)|}"9n} (2.2.4)
and
V2, 0,,1) = esksiﬁgE{(Hé—X@vxv”(ek,zk))%%(ek,lk)+
mhe

(2.2.5)

T
/ek/EVkH(Xg;f’f(@k,lk) + 7o Ok ) A6, Ok Ui lies)s Okns iyt i1 (B, g1 ) dBrg 1 | F, ],

Since there are n defaults at most, the subproblem associated to V" is without default and
so already resolved in the litterature. Hence we will proceed by descending recurrence
on k to obtain V? and an associated optimal strategy m* = (7} )o<k<n-
The heredity is obtained in three steps :
— We suppose that each subproblem admits a quadratic decomposition of V*. We
obtain by dynamic programming that the terms of this hypothetical decomposition
must verify a system of BSDEs and a candidate for an optimal strategy.
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— Then, we prove the existence of solutions to this system of BSDEs. Our proof relies
on BSDE technics and in this sense is "purely BSDE", which is new in the litterature.
One of the BSDEs of the system is with quadratic growth, which has brought us to
use the result of Kobylanski evoked above for this proof.

— Finally, we prove by a verification theorem that the considered system of BSDEs
has a unique soltion which induces a solution of the problem (2.2.1)-(2.2.2). It just
remaines to check that the candidate 7* is an admissible strategy to conclude.

We conclude this part by numerical applications. Here there are 1 and then 2 inde-
pendent defaults, each following an exponential law. Hence, the BSDEs becomes ordi-
nary differential equations, which renders the simulation suitable. It allows us to obtain
graph interpretations of the incompletness of the market and of the minimal variance of
an investment portfolio with a given capital.

This chapter is based on a paper written in collaboration with Stéphane Goutte and
Armand Ngoupeyou [24], to appear in Stochastic Analysis and Applications.

2.3 Reflected BSDEs with nonpositive jumps, and controller-and-
stopper games

2.3.1 Background

The second application of BSDEs presented in this thesis is the study of reflected
BSDEs with nonpositive jumps, and its application to controller-and-stopper games.

The reflected BSDEs on a fixed obstacle have been introduced by El Karoui, Kapoud-
jilan, Pardoux, Penga and Quenez [37]. It was the first case of BSDE with constraints,
where we force the solution Y; to stay above an obstacle S;. A nondecreasing process
whose aim is to "push" upward the solution of the BSDE is introduced. More precisely,
we say that the triplet of adapted processes (Y3, Z;, K;) where K is a nondecreasing pro-
cess, is solution to the reflected BSDE on the obstacle S with terminal condition ¢ and
generator f when

T T

Vi=g+ [ FsYoZ)ds— [ ZdWo+ Kr—K, 0<t<T, P-ps
t t

)/%ZSt7§OStST7 P_ps

T
/ (Y, — Sy)dK, =0, P—p.s. (2.3.1)
0

The last condition in (2.3.1) means that the nondecreasing process K is minimal in the
sense it acts only when Y hits the obstacle. It allows to obtain the uniqueness of the so-
lution of such equation. In [37], a proof of existence of solution is also given by penaliza-
tion. Besides, it is proved that the reflected BSDEs provide a probabilistic representation
for quasi-linear PDEs with an obstacle.

Let us now consider the following fully nonlinear PDE of Hamilton-Jacobi-Bellman (H]B)

type:

ov + sup ((b(z,a), Dyv) + }tr(O'O'T(l’, a)D2v) + f(z,a)) =0, (2.3.2)
ot a€A 2
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on [0,T) x A, where A is a subset of RY, together with the terminal condition
o(T,z) = g(z), =R

As it is well-known, see for example Pham [90], the above equation is the dynamic pro-
gramming equation of a stochastic control problem whose value function is given by :

T
vt z) = sup [ / FOXE™2, ag)ds + g( X"
a t

where X %% is the controlled state process starting at time ¢ € [0, 7] from = € R¢ which
evolves on [t,T] according to the stochastic equation

xtoe = o [y 0+ [ o(XE5 )i, 39

where « is a predictable control process valued in A. Notice that, if o(x) does not depend
ona € Aand oo7(x) is of full rank, then the above HJB equation can be written as :
ov 1 9

e + §tr(00T(a:)Dzv) + F(z,0™(x)Dgv) =0, (2.3.4)
where F(x,z) = sup,calf(z,a) + (0(z,a), z)] is the §-Fenchel-Legendre transform of f
and 0(z,a) = 0" (oo™ (2)) " b(x, a) is a solution to o(z)f(x,a) = b(z,a). Then, from the
seminal papers of Pardoux and Peng [85, 86], we know that the semilinear PDE (2.3.4)
admits a nonlinear Feynman-Kac formula through a Markovian forward-backward sto-
chastic differential equation.

The general case with possibly degenerate controlled diffusion coefficient o(z, a) as-
sociated to a fully nonlinear HJB equation, has only recently been completely solved by
Kharroubi and Pham [75]. We also mention that a first step in this direction was made
by Soner, Touzi, and Zhang [101], where however the theory of second-order BSDEs
(2BSDEs) was used rather than the standard theory of backward stochastic differential
equations. 2BSDEs are backward stochastic differential equations formulated under a
nondominated family of singular probability measures, so that their theory relies on tools
from quasi-sure analysis. On the other hand, according to [75], it is sufficient to consider
a backward stochastic differential equation with jumps, where the jumps are constrai-
ned to be nonpositive, formulated under a single probability measure, as in the standard
theory of BSDEs.

Let us give an idea of the results presented in [75]. the forward-backward system
associated to the HJB equation (2.3.2) is constructed as follows : the forward equation,
starting at time ¢ € [0, 7] from (z,a) € R? x R? evolves on [t, T] according to the system
of equations :

S S
Xbtoe = g4 /t b(XL™® IEY)dr + /t o(XbBe [bdW, t<s<T,
S
e = a—|—/ /(a'—]ﬁf)u(dr,da’) t<s<T.
t JA

Its form is deduced from the controlled state dynamics (2.3.3) randomizing the state pro-
cess X1%?, i.e., introducing, in place of the control o, a pure-jump process I driven by a
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Poisson random measure 4 on RT x A independent of W, with intensity measure \(da)dt,
where ) is a finite measure on (A, B(A)). W and p are defined on a filtered probability
space (2, F,F,P), where F is the completion of the natural filtration generated by W and
p. Regarding the backward equation, as expected, it is driven by the Brownian motion
W and the Poisson random measure j, namely it is a BSDE with jumps with terminal
condition g(X%™") and generator f(X%*® [%%), as it is natural from the expression of
the HJB equation. The backward equation is also characterized by a constraint on the
jump component, which turns out to be a crucial aspect of the theory introduced in [75]
and requires, as in the theory of reflected BSDEs (see for example (2.3.1)), the presence
of an increasing process in the BSDE. In conclusion, the backward stochastic differential
equation has the following form :

T
v = g [ IO I e e
S

T T
B / ZEH AW, — / / Ly®(a)p(dr,da’), t<s<T,p.s.
s s A
together with the jump constraint
Lb%a) <0, dP®ds® A(da')p.p.

Notice that the presence of the increasing process K in the backward equation does not
guarantee the uniqueness of the solution. For this reason, as in the theory of reflected
BSDEgs, in [75] the authors look only for the minimal solution (Y, Z, L, K) to the above
BSDE, in the sense that for any other solution (Y, Z, L, K) we must have Y < Y. The
existence of the minimal solution is based on a penalization approach and on the mono-
tonic limit theorem of Peng [87].

The nonlinear Feynman-Kac formula becomes
v(t,z,a) ==Y, (t,x,a) € [0,T] x RY x R,

Observe that the value function v should not depend on a, but only on (¢, z), as a conse-
quence of the nonpositive jump constraint. Indeed, if v is continuous, we have

LY (") = v(s, X5 ') — (s, X520 IV <0 dP @ ds @ A(da')p.p.

from which we see that v does not depend on a. However, it is not clear a priori that
the function v is continuous, therefore, in [75], the rigorous proof relies on fine viscosity
solutions arguments and on mild conditions on A and A, as the assumptions that the
interior set of A is connected and that A is the closure of its interior. In the end, in [75], it
is proved that the function v does not depend on the variable a in the interior of A and that
the viscosity solution to equation (2.3.2) admits the following probabilistic representation
formula :

o(t,z) ==Y (t,2) € [0,T] xR

for any a in the interior of A. This formula opens new perspectives for probabilistic
schemes for fully nonlinear PDEs, as currently investigated in Kharroubi, Langrené and
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Pham [73].

In [75], another probabilistic representation is also provided, called dual representation,
for the solution v to (2.3.2). More precisely, let V be the set of predictable processes
v:Qx[0,T] x A — (0,00) which are essentially bounded and consider the probabi-
lity measure P” equivalente to P on (2, Fr) with Radon-Nikodym density :

%Vt =G = St(/o' /A(ys(a) —1)a(ds,da))

where &(.) is the Doléans-Dade exponential. Notice that IV remains a Brownian mo-
tion under P¥, and the effect of the probability measure P, by Girsanov’s Theorem, is to
change the compensator \(da)dt of ;1 under P to v4(a)\(da)dt under P¥. The dual repre-
sentation reads :

T
v(t,z) = Y™ = ess SEpE” [g(X;m’a) —I—/t f(xLme, 10 ds| 7]
ve

where E” denotes the expectation with respect to P”.
Finally, we observe that the tools used in [75] can also be applied to other stochastic
control problems, as impulse control problems, see for example [74].

2.3.2 Formulation of the problem

Let us consider the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation :

1
max [ _ov sup (b(z,a).Dyv + ~tr(co(x,a)D2v) + f(z,a)); (2.3.5)
ot a€A 2
v—g] = 0,
on [0,7T) x RY, together with the terminal condition
o(T,z) = g(z), z€RL (2.3.6)

In Bayraktar and Huang [7], it is proved that the above equation is the dynamic program-
ming equation of a zero-sum controller-and-stopper game, whose upper and lower value
functions are given by :

_ wla]

V(t,z) = inf supE[/ f(Xﬁ’x’o‘,as)ds—i—g(Xfr’foz]a)}
melly, T qed t

V(t.a) = sup inf B[ ["FXEads +g(XE)], () € 0.T) x R,
acATET,T t

where X%* is a diffusion process in R? satisfying equation (2.3.3) controlled by a pre-
dictable process « € A valued in A, T; 1 is the set of all stopping times valued in [¢, T'] for
0 <t <T,and Il 7 is the set of stopping strategies 7 : A — 7T; 7 satisfying a nonanti-
cipative condition (see Definition 3.1 in [7]).It is shown in [7] that this game has a value,
ie., V =V = v, and that v is the unique viscosity solution to (2.3.5) - (2.3.6) satisfying a
polynomial growth condition..
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In this part, we prove that the value function v associated to the HJBI equation (2.3.5)
- (2.3.6) we also consider more general partial differential equations of HJBI type) ad-
mits a probabilistic representation (nonlinear Feynman-Kac formula) through a forward-
backward stochastic differential equation. In particular, inspired by the paper [75] recal-
led above and the standard theory of reflected BSDEs, we introduce a class of reflected
backward stochastic differential equations with nonpositive jumps and upper barrier. As
in the case of doubly reflected BSDEs with lower and upper obstacles, related to Dynkin’s
games, our BSDE formulation involves the introduction of two nondecreasing processes.
More precisely, the backward equation has the following form (we also consider more
general BSDEs in this part, with the generator f depending also on Y% and Z»*“, and
even on the jump component in the general non-Markovian case) :

T
Y;t,ac,a _ g(X%r,a) +/ f(Xi,ar,a,Ii,a)dr + K;_,‘:B,m-‘- _ Kﬁ,x,a,-i—
s
T
s geny— [ o,
s

/ /th“ wu(dr,da’), t<s<T,p.s.
together with the jump constraint
LY (a') <0, dP® ds® \(da)p.p.
and the upper constraint

szt,;r,a < g(X?:v’a), t<s<T,p.s.
T
/ (g(X;’x’a) _ Yt , T, a)th T,a,— O, p.s. (237)
t

Notice that the presence of the increasing process K**%~ forces the solution Y to be be-
low the upper obstacle g(X%*). Moreover, due to the Skorohod condition (2.3.7), K%~
acts in a minimal way. On the other hand, the increasing process K**% is associated to
the jump constraint, as in [75]. To guarantee uniqueness of the solution, we look only for
the minimal solution (Y, Z, L, K*, K ™) to the above BSDE, in the sense that for any other
solution (Y, Z, L, K*, K~) wemusthave Y < Y.

The existence of a minimal solution necessitates an additional hypothesis of regularity on
the upper barrier, which is equivalent in our context to Mokobodzki’s conidtion. Under
this hypothesis, we prove the existence in a general non-Markovian framework using
double penalization approach and a monotonic limit theorem for BSDEs with jumps.
More precisely, let us introduce the sequence of BSDEs with jumps :

T
t7 b b 1t7 bhad]
st,m,t,x@ — g(XTz a) + / f(Xﬁ’x’a, Iﬁ’a)dT + K;m z,a,+ K;z,m,t,z,a,—&-
s

T
_(K;7m7t7xva7_ _ Kgamatw:(h*) _ / Z;L7m7t7x7adWT

S
//an,t,xa w(dr,da’), t<s<T,p.s.

for n,m € N, where K»™4%:+ and K™™L%%~ are the increasing continuous processes
defined by :

Knm,t,maJr m/ / an,t,:):a ))\(da)d
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and
T
K;z,m,t,x,a,— — n/ (g(X;ﬁ,ac,a) _ Y;n,m,t,x,a)idr.
s

Here we use the notation f; = max(f,0) and f- = max(—f,0) to denote the positive
and negative parts of f. The minimal solution to the reflected BSDE with nonpositive
jumps is constructed by taking the limit first with respect to n and then with respect to
m and using a monotonic limit theorem. This latter is based on uniform estimates for
(ynmtea znmtea prmtea genmteat genmtea =) which turn out to be the main is-
sue, especially regarding the two increasing processes K""h%a+ and K™%~ Here
intervenes the hypothesis on the regularity of the upper barrier. Note that the running
order of the limits in the double penalization is crucial, in contrast with the case of upper
and lower reflection (Dynkin’s games). Indeed, we do not have comparison results on
the jump component solution of a BSDE, and so a priori rather few information on the
sequence of nondecreasing processes associated to the jump constraint, whereas one can
exploit comparison results on the Y-component of a BSDE in order to derive useful mo-
notonicity property for the sequence of nondecreasing processes associated to the upper
obstacle.

The nonlinear Feynman-Kac formula turns out to be

o(t,z,a) = Y0 (t,z,a) € [0,T] x R? x RY.

As in [75], it appears that v does not depend on a in the interior of A, as a consequence
of the non positivity jumps constraint. We prove that v is a viscosity solution to the HJBI
equation (2.3.5) and to the terminal condition (2.3.6). We also consider more general HJBI
equations than (2.3.5), where the generator f(x,a,v,o' D,v) may also depend on v and
D,v.

Finally, we prove a dual game representation formula for the minimal solution to our
BSDE, which is inspired by the dual representation given in [75] and the representation
formula of Proposition 6.2 in [31]. Let us give an idea of this dual representation for-
mula. In addition to the set of probability measures P,v € V defined in the previous
subsection, let © be the set of discount factors, i.e., progressively measurable processes
0 : Q x [0,T] — R4 which are essentially bounded. Then the dual representation formula
becomes for s € [0,77] :

YHTE — ogg sup ess inf E [6_ fST 07>drg(Xt,x,a) + /T e f; Gudu(f(Xt,;v,a It,a) +0 g(Xt’x’a))dﬂ]: }
s ey 9cO T s T T r T sl
This is an original representation for the value function of the stochastic zero-sum controller-
and-stopper game. We do not know in general whether one can switch the essential in-
fimum and supremum in the above representation formula. Actually, by taking first the

limit with respect to m and then with respect to n in the doubly indexed penalized se-
quence, we end up with a process Y44 satisfying Y% < Y%, for which it is not
clear whether it is a solution to a backward stochastic differential equation and whether

it is equal or strictly greater Y%, Nevertheless, Y»*® admits the representation for s

30



€ [t,T]:

Y 1 v 9 -d t 9 d sy B t,x,
lgt’x’“:eseselgfessesng le” I "g(X7T) —I—/ = [ fudu (f (XL I0") 4 0,g9( X)) dr|Fs).

This chapter is based on a paper written in collaboration with Andrea Cosso and
Huyén Pham [23], published in Stochastic Processes and their Applications.

2.3.3 Perspectives

Stochastic zero-sum controller-and-stopper games have been fruitfully employed in
Mathematical Finance, for example in the valuation problem of American contingent
claims under constraints, see Karatzas and Kou [65] and Karatzas and Zamfirescu [67].
Indeed, in the unconstrained case, it is well-known that there exists a single arbitrage-free
price for the American contingent claim, which turns out to be the supremum, over all
stopping times, of the claim’s discounted expected value under the equivalent martin-
gale measure. In the presence of constraints, instead, there is an entire interval [h1, ko] of
arbitrage free-prices. According to [65] and [67], the endpoints can be characterized as the
lower and upper value functions of a zero-sum controller-and-stopper game. As another
example of application in Mathematical Finance, we recall that in Bayraktar and Young
[8] it is shown that the problem of minimizing the probability of lifetime ruin (namely the
probability that the wealth reaches the value zero before the individual dies), when the
rate of consumption is stochastic and when the individual can invest in a Black & Scholes
financial market, may be reformulated as a controller-and-stopper game.

Finally, we point out that the probabilistic representation formula obtained suggests
a new approach for probabilistic numerical schemes of HJBI equations by discretization
and simulation of the reflected BSDE with nonpositive jumps and upper obstacle. Ano-
ther class of BSDEs that might be studied is the refleected BSDEs with nonpositive jumps
and lower obstacle, which is related to sup sup problem over control and stopping time,
and in other words to optimal stopping under nonlinear expectation. Actually, the proof
of existence of a minimal solution by a double penalization approach is more simple since
it would involve the sum, instead of the difference, of two increasing processes.

2.4 BSDE representation for stochastic control problems with
non dominated controlled intensity

24.1 Background

The third application to BSDEs presented in this thesis is the study of BSDE represen-
tation for stochastic control problems with non dominated controlled intensity.

This chapter is also an extension of [75]. We refer to the previous section for a des-
cription of the results of this paper. One of the results of [75] is to provide a probabilistic
representation formula, known as nonlinear Feynman-Kac formula, for fully nonlinear
integro-partial differential equations (IPDEs) of the following type :

1
g: + sup |b(z,a).Dyv + §tr(007(x, a)D2v) + f(x,a,v,0"(,a)Dyv) (2.4.1)
acA
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+ /E (v(t,z+ B(x,a,e)) —v(t,x) — B(x,a,e).Dyv(t,z))A(de)| = 0, on [0,7) x R
v(T,z) = g(z), z e RY

where A is a compact subset of R?, F is a Borelian subset of R¥\ {0}, and )\ is a nonnegative
o-finite measure on (E, B(E)) satisfying the integrability condition [ (1A le[*)\(de) < .
A special case is the Hamilton-Jacobi-Bellman equation associated to the uncertain vola-
tility model in mathematical finance, which takes the following form :

?): +G(D%v) = 0, onl0,T) xRY, o(T,z) = g(x), =R, (2.4.2)
where G(M) = § sup.cc[cM] and C is a set of symmetric nonnegative matrices of order
d. As described in [89], the unique viscosity solution to (2.4.2) is represented in terms of
the so-called G-Brownian motion B under the nonlinear expectation £(-) as follows :

v(t,z) = E(g9(x + Br — By)).

It is however not clear how to simulate a G-Brownian motion.

In the present chapter, we study the following fully nonlinear integro-PDE of Hamilton-
Jacobi-Bellman type :

ov
—- +sup

1
b(z,a).Dyv + ~tr(00 (z,a) D2v) + f(x,a,v,07(z,a)Dyv) (2.4.3)
ot acA 2

+ /E (v(t,x + B(z,a,e)) — v(t,x) — B(z,a,e).Dyo(t,z))Na,de)| =0, on[0,T) x R
o(T,x) = g(x), rcRY

where ) is a transition kernel from (A, B(A)) into (E,B(E)). We do not assume that the
family of measures (A(a, -))qca is dominated. Moreover, the diffusion coefficient o can be
degenerate.

A motivation to the study of equation (2.4.3) comes from mathematical finance and, in
particular, from model uncertainty, when uncertainty affects both volatility and intensity.
This topic was studied by means of second order BSDEs with jumps (2BSDE]Js) in [70]
and [71]. However, this method does not treat the case where the volatility is degenerate,
contrary to ours. Moreover, by following the ideas of [72] and [72], we can obtain an
efficient numerical scheme for equation (2.4.3).

Model uncertainty is also strictly related to the theory of G-Lévy processes and, more
generally, of nonlinear Lévy processes, see [54] and [83]. In this case, the associated fully
nonlinear integro-PDE takes the following form :

1
— + sup {b.va + ~tr(eD?v) (2.4.4)
Ot (beF)eo 2

+/ (u(t, 2 + 2) — v(t, z) — Dyv(t,x).21gcry)F(dz)] = 0, on[0,T) x RY
: <

U(T> SL’) = g($)7 T € Rda
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where © denotes a set of Lévy triplets (b,c, F), b € R?, ¢ is a symmetric nonnegative
matrix of order d and F is a Lévy measure on (R?, B(R?)). From [54] and [83], we know
that the unique viscosity solution to equation (2.4.4) is represented in terms of the so-
called nonlinear Lévy process X’ under the nonlinear expectation £(-) as follows :

v(t,x) = E(g(z+ Xr — X)).

If we are able to describe the set © by means of a parameter a which lives in a compact
set A of an Euclidean space RY, then (2.4.4) can be written in the form (2.4.3).Therefore, v
is also given by our probabilistic representation formula, in which the forward process is
possibly easier to simulate than a nonlinear Lévy process.

2.4.2 Formulation of the problem

To solve (2.4.3), as in [75] and in the previous section, we need to introduce a sto-

chastic optimal control problem whose value function is a solution of equation (2.4.3).
Unfortunately, we did not find any reference in the literature for this kind of stochastic
control problem, that is why we intoduce ourselves such a problem.
We describe briefly how here. Let (Q, F,P) be a complete probability space satisfying
the usual conditions on which a d-dimensional Brownian motion W = (W;)>¢ is defi-
ned. Let also F = (F;);>0 denote the usual completion of the natural filtration genera-
ted by W and A the class of control processes a, which are F-predictable and valued
in A. Let also Q' be the canonical space of the marked point process on R™ x E with
canonical right-continuous filtration F’ and canonical random measure 7’. Then, consi-
der (Q, F,F = (F;)i>0) defined as Q := Q x Q/, F := F @ F., and F; := Ngsy Fs @ Fh
Moreover, we set W (w) := W (@), n(w,-) := 7'(«',-), and A := {a: a(w) = a(®), Vw €
Q, for some a € A}. Suppose that for every a € A we are able to construct a measure P*
on (€, F) such that W is a Brownian motion and r is an integer-valued random measure
with compensator 17,7, yA(at, de)dt on (Q, F,F,P¥), where T, denotes the supremum
of the jump times of the marked point process associated to 7. Then, consider the sto-
chastic control problem with value function given by (E“ denotes the expectation with
respect to P<)

T
v(t,z) = supE® [/ FXE™ a)ds —i—g(X%x’o‘)}, (2.4.5)
acA t

where X»%* has the controlled dynamics on (2, F,F,P?) :
AXO = (X2, a5)ds + o (XS, ag)dW, + / BIX® i, e)7(ds, de)
E

starting from z at time ¢, with 7(dt, de) = 7(dt, de) — 1,1 .y (o, de)dt the compensated
martingale measure of m. We expect it to be the researched problem, in the sense the
PDE (2.4.3) turns out to be the dynamic programming equation of the stochastic control
problem with value function formally given by (2.4.5).

As in [75] and in the previous section, we randomize the control. To do so, we in-
troduce on (Q, F,P) a ¢g-dimensional Brownian motion B = (B;);>0, independent of .
Now F denotes the usual completion of the natural filtration generated by W and B. We
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also set B(w) := B(w), for all w € €, so that B is defined on €. Since the control lives
in the compact set A C R?, we can not use directly B to randomize the control, but we
need to map B on A. That is why we suppose the existence of a continuous surjection
h: R? — A.Then, for every (t,z,a) € [0,T] x R x R%, we consider the following forward
stochastic differential equation in R% x R :

X, = x—i—/ (X, I, dr+/ (X, I,)dW, +/ /,8 X, . I, )7 (dr, de) (2.4.6)
I, — h(a+Bs— By, (2.4.7)

forallt < s < T, where 7(ds,de) = m(ds,de) — 151} A(Is, de)ds is the compensated
martingale measure of 7, which is an integer-valued random measure with compensa-
tor 1,7,y A(Is, de)ds. Unlike [75] and the previous section, we use a Brownian motion
B to randomize the control, instead of a Poisson random measure p on R, x A. From
one hand, the Poisson random measure turns out to be more convenient to deal with a
general compact set A, since p is already supported by Ry x A, so that we do not have
to impose the existence of a continuous surjection h from R? into A, as we did here. On
the other hand, the choice of a Brownian motion B is more convenient to derive a mar-
tingale representation theorem for our model. Indeed, in contrast with [75] and with the
previous section, the intensity of the measure 7 depends on the process I, therefore it is
natural to obtain a dependence between 7 and the noise used to randomize the control.
The advantage of B with respect to 1 is given by the fact that B is orthogonal to 7, since B
is a continuous process (see the bottom of page 183 in [59] for a definition of orthogona-
lity between a martingale and a random measure). Thanks to this orthogonality we are
able to derive a martingale representation theorem in our context, which is essential for
the derivation of our nonlinear Feynman-Kac representation formula.

Let us focus on the form of the stochastic differential equation (2.4.6)-(2.4.7). We ob-
serve that the jump part of the driving factors in (2.4.6) is not given, but depends on the
solution via its intensity. This makes the SDE (2.4.6)-(2.4.7) nonstandard. These kinds of
equations were firstly studied in [58] and have also been used in the financial literature,
see for example [9], [27], [28], [29], [42]. However, in [9], [27], and [28], A is absolutely
continuous with respect to a given deterministic measure on (E, B(E)), which allows to
solve (2.4.6)-(2.4.7) bringing it back to a standard SDE, via a change of intensity “a la Gir-
sanov”. On the other hand, in this chapter, we shall tackle the above SDE solving firstly
equation (2.4.7) for any (¢,a) € [0, 7] x RY, then constructing a probability measure P%% on
(9, F) such that the random measure 7(ds, de) admits \(I-%, de)ds as compensator, and
finally addressing (2.4.6). In the appendix, we also prove additional properties of m and
(X, I). More precisely, we present a characterization of 7 in terms of Fourier and Laplace
functionals, which shows that 7 is a conditionally Poisson random measure (also known
as Cox random measure) relative to o(I1% s > 0). Moreover, we study the Markov pro-
perties of the pair (X, I).

The corresponding backward stochastic differential equation is, as expected, driven by
the Brownian motions W and B, and by the random measure 7, so this is a BSDE with
jumps, with terminal condition g(X%"") and generator f(X"% I"® y, 2), as it is natu-
ral from the expression of the HJB equation (2.4.3). The BSDE is also characterized by
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a constraint on the diffusive part relative to B, which turns out to be crucial and en-
tails the presence of an increasing process in the BSDE. In conclusion, for any (¢,z,a) €
[0, 7] x R? x RY, the BSDE has the following form :

5 T 5 5 T
Vo = g(XE N+ [ R Y, Z)dr + K - K, - [ ZeaW,
S S

T T -
- / V,dB, — / / U(e)i(dr,de),  t<s<T,Pbips.
s s E
and
Vs| = 0 ds @ dP"% q.e.

As in [75] and in the previous section, the presence of the increasing process K in the
BSDE makes us looking for the minimal solution (Y, Z, V, U, K) of this BSDE, in the sense
that for any other solution (Y, Z,V,U, K)we must have Y < Y. The existence of the mi-
nimal solution is also based on a penalization approach. We finally obtain the following
nonlinear Feynman-Kac formula :

o(t,z,a@) = Y™ (tz,a) € [0,T] x R x RY,

As in [75] and in the previous section, v does not depend on a, but only on (¢, z) and the
proof relies on viscosity solutions arguments. We also show that v is the unique visco-
sity solution of (2.4.3), as it follows from a comparison theorem proved in the appendix.
Due to the presence of the non dominated family of measures (A(a, -))qca, we did not
find in literature a comparison theorem for viscosity solution to our equation (2.4.3). For
this reason, we prove it in the appendix, even though the main ideas are already contai-
ned in the paper [4], in particular the remarkable Jensen-Ishii’s lemma for integro-partial
differential equations.

This chapter is based on a paper written in collaboration with Andrea Cosso [22], to
appear in Annals of Applied Probability.

2.5 Conditional asset liability management

2,51 Background

The purpose of this chapter is the design of an optimal Asset Liability policy, in a
framework where the asset manager faces a constraint on the distribution of its terminal
wealth. More precisely, the investor requires to pay, for simplicity, a constant liability Dy
at maturity 7" and allows for this constraint to be violated with a given small probability
1 —p. In practice, whenever a conservative investor imposes an almost-sure constraint on
the terminal value of an investment strategy, this leads to rather overcautious investment
policies. This mainly comes from the fact that it is too costly to take some risk, since it will
complicate the necessity of satisfying the constraint at maturity. The main objective of the
chapter is to quantify the effect of relieving slightly this constraint by only imposing the
probability of success at maturity to exceed p, and to measure the dependance in p on the
optimal asset management policy.
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The modern portfolio theory in continuous time goes back to the seminal paper of
Merton [82], who considers an agent trying to maximize his expected utility from termi-
nal wealth or expected time-integrated utility from consumption. In a Markovian frame-
work, the optimal policy identifies in terms of the solution of the corresponding Hamilton-
Jacobi-Bellman equation, or alternatively can be derived using duality arguments, see e.g.
Karatzas, Lehoczky et Shreeve [64]. This framework has raised a large literature, with the
introduction of additional constraints : e.g. on the investment policy by Cvitanic and Ka-
ratzas in [30], with a given almost sure constraint on a portfolio insurance by El Karoui,
Jeanblanc and Lacoste in [36] or with drawdown constraints by Elie and Touzi in [35]. In
this context, considering the constraint of beating a given benchmark with a given pro-
bability of success, this problem has already been studied by Boyle and Tian in [18], via a
duality argument, mainly inspired from the approach of Follmer and Leukert in [44] for
quantile hedging problems. In recent literature, a new approach introduced by Bouchard,
Elie and Touzi in [15] allows to study these a priori dynamically inconsistent problems in
a dynamic manner.

The main difficulty in considering constraints written in terms of probability, is that
the probability of success p is imposed at time 0, but trying to build up a dynamic pro-
gramming principle, one requires to be able to quantify the effect of such constraint at
any given intermediate date t. The proper way to do this has been identified in [15],
where the dynamic probability of success is viewed as a new forward controlled martin-
gale process. This new variable allows to solve the problem in a dynamically consistent
manner. The resolution of stochastic control problems under such quantile has been more
specifically been studied in [14], via the derivation of a dynamic programming principle.

2.5.2 Formulation of the problem

We consider an investor, who can at any time ¢ choose the investment policy 6;, as
well as the instantaneous rate ¢; of additional endowment to the portfolio, which is non-
negative and upper-bounded by a given constant c. We denote respectively .4 and C the
set of admissible portfolio strategies and of admissible consumption strategies. Hence
the dynamics of the wealth is the following :

d
dxPe = 9tvaC% + ¢t
t

and the wealth is contained to remain non-negative as well as to satisfy the constraint :
X: > 0foreveryt > 0a.s. and P[X7 > Dy >p, (2.5.1)

We shall denote by A, (¢, ) the collection of all admissible consumption-investment stra-
tegies whose corresponding wealth process satisfies this partial hedging constraint.

We consider a risk neutral asset manager whose subjective discount factor is denoted
by a constant 3 > 0. For a given initial wealth z > 0 and probability p of success, the
asset manager wishes to solve the following endowment-investment problem under the
partial hedging constraint (2.5.1) :

T
0.2.p) = inf E / “Btedt|
w(0,,p) ()2 Ap (0,2) lo ©o
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whose dynamic version is the following :

T
tz.p) = inf E / Bl ds| .
w(t,2,p) () (t2) [ € Cos

We first need to determine the proper domain of definition of this function w. To this
aim, we introduce the minimal wealth function defined by :

u(t,p) = inf{z > 0 |A,(t, z) # 0}.

Therefore w is defined on {(¢, z,p)|x > u(t,p)}.
We introduce an additional controlled state variable «, valued in [0, 1] and defined by :

Ptt,p,a =p, dPYPe = anWSS, s € [t,T],

We denote B the set of such controls. We then show that, denoting g(s,p) = 0 * 1s<7 +
Dolpsols=r:

u(t,p) = inf{zx € Rs.t. 3(4,a) € A x B,Vs € [t,T], X:20¢ > g(s, PHP*)}

Therefore, denoting 7}; 1) the set of stopping times taking values in [t, T, u(., P%) sa-
tisfies the following dynamic programming principle :

— (DPY) If z > u(t, p), then there exists (6%, a*) € A x B such that
Xbw0%C > (7, PLP7) for all 7 € Ti,m)
— (DP2) If z < u(t,p), then there exists 7* € T}; ) such that
PIXET0C > w(r, PPPY 1, e + (7%, PEP ) Lispe] < 1

forall 7 € Ty 7y and (0,a) € A x B.
Hence, denoting

o2
F(z a) := —5a + bz +c

and

F(z,q,a):= sup Fo"e(z,a),
{(a,0)ER?, ag=c0z}

u is a viscosity solution of

2
win([ — 52 (t.9) + Flo(t.p). 3260, 5 5 0p)] ) =0,

together with the terminal condition

(T, p) = Dop.

Besides, we show the boundary condition u(.,0) = 0 which allows to obtain u numeri-
cally.
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Introducing the Fenchel-Legendre dual transform associated with « with respect to
the p variable :

v(t,q) = sup {pq—u(t,p)}, (t,q) € [0,T] x R,
pe[O,l}

we obtain that v is a viscosity solution on [0,7") x (0, c0) of

9 2, 9? 9
max(— 22 (t,q) — 25 ¢ 2 (t,q) — cso—qaz

ot 2027 Oq )=0

with the terminal condition

(T, q) = (¢ — Do)
This result provides a scheme for u with fast convergence. We set, for (z, z, ¢, a11, a12, age) €
RS :

2022 o?
a1l — aolzrais — a2 = C + Bz

Hg’a’c(ﬂ?a z,q,a11, 012, 022) = —(ubx + c)q —
and

. 6,a,c
H(:U?Zuq’ a117a12)a22) . sup H .
(6,a,c)€R? %[0,c]

We then obtain that on int(u) := {(¢,z,p)|z > u(t,p)}, w is a viscosity solution of :

0% 0% 0%
(t,z,p),

0
o (wp), 5 S (6w p), g ()

dp
_E + H(‘r7<¢0<t7x7p)7 %

(t,z,p)) = 0.

As a byproduct, we obtain that the optimal consumption is ¢ = 0 whenever ‘3“’ > —1

and ¢ = ¢ whenever gw < —1. We also obtain the following boundary condition : for

(t,p) € [O,T] [0, 1] such that u(t,p) > 0,

c
lim w(tx —(1 = ePU=1)y,
itz p) = 5 )
Besides,
T
w(t,z, 1) = inf / e BEDEe]ds YO<t<T, z>(Dy—&T—8)"
(0,0)EAXCs.t. X5 > (Do —&(T—t)) T Vs>t Jt

This is a Merton type problem which can be solved numerically. Hence we can also obtain
w numerically.
We finally provide graphs of u, w and of the optimal strategy in both c and § at time T. We
see that the optimal strategy in c consists in not investing except close to the boundary
defined by u.

This chapter is based on a work in progress in collaboration with Romuald Elie and
Xavier Warin.
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Chapitre 3

Mean-variance hedging under
multiple defaults risk

3.1 Introduction

In this chapter, we study the problem of mean-variance hedging in a financial mar-
ket model subject to defaults and contagion risk. We consider multiple default events;
such an event may correspond to a succession of crisis periods for a country or a succes-
sion of bad annual financial results for a firm, for example. Such defaults could induce
loss or gain in asset prices. A classic modelling approach is to use an Itd process gover-
ned by some Brownian motion W for the asset price S and jumps appearing at random
default times associated with a marked point process (.. The mean-variance hedging pro-
blem in this incomplete market framework may then be studied using stochastic control
and dynamic programming methods in the global filtration G generated by W and .
This leads, in principle, to Hamilton-Jacobi-Bellman integro-differential equations in a
Markovian framework and, more generally, to backward stochastic differential equations
(BSDEs) with jumps ; the derivation relies on a martingale representation under G with
respect to W and p, which holds under an intensity hypothesis on the defaults and the
so-called immersion property (or (H)-hypothesis). Such an approach has been used in
[61] for the multiple defaults case and in [49] for the mean-variance hedging problem
under G for defaultable claims.

The mean-variance hedging problem was introduced in [45], and many papers have
since followed and developed this approach (for a review of this literature, see [98]). In
most of these papers, the problem has been solved using continuous filtration [91], [97].
The authors use the dual approach to prove the existence of the variance optimal measure
(VOM). Moreover, they can write the solution to the primal problem using BSDEs, the
existence of whose solutions can be deduced from the existence of the VOM. In the case
of discontinuous filtration, the VOM is not always a measure of probability (see [1] for
conditions) ; thus, the above mentioned approach cannot be used to solve the problem.
Therefore, in general, in the case of discontinuous filtration, the authors assume that the
VOM is a true probability measure, as in [77], and then deduce the solution to the primal
problem using BSDEs. They then prove the existence of the solution to each BSDE using
the VOM.
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In a general model with discontinuous filtration generated by a continuous process
and a discontinuous process, the author of [79] proved the existence of the solutions of
the BSDEs for the mean variance problem under the assumption that its asset coefficients
were adapted with respect to the continuous filtration IF. This strong assumption allowed
the author not to assume that the VOM is a true probability and led him to directly solve
the main BSDE without requiring any assumption regarding the VOM.

In this chapter, we also consider the case of a discontinuous filtration G. Nevertheless,
in this chapter, we address the more general case in which we do not assume both that
the VOM is a true probability measure and that its asset coefficients are adapted with
respect to the continuous filtration F. In our model, jumps are generated by default times.
Thus, we cannot use the same techniques as [79] because his strong assumption is not
satisfied in our framework. Indeed, our asset coefficients depend on the jumps (defaults).
Therefore, we use a different approach than the one mentioned previously.

We use an approach introduced in [62] and [63]. By viewing the global filtration G
as a progressive enlargement of filtrations of the default-free filtration F generated by
the Brownian motion W, with the default filtration generated based on random times,
the basic concept is to split the global mean variance problem defined on G into sub-
control problems in the reference filtration I that correspond to mean variance problems
in default-free markets between two default times. More precisely, we derive a back-
wards recursive decomposition by starting from the mean variance problem in which all
defaults have occurred and then working back towards the initial mean variance problem
before any default. The primary objective is to connect this family of stochastic control
problems in the filtration I, and this is achieved by assuming the existence of a condi-
tional density on the default times given the default-free information F. Even if we use
the approach developed in [62] to split our G problem, it is important to note that in [62],
the authors solved the exponential utility maximisation case. For this stochastic control
problem, they were obliged to solve a linear system of BSDEs, and they were able to ap-
ply a simplification by virtue of the morphism properties of the exponential function. In
this chapter, we solve the mean-variance hedging problem, which requires us to solve a
coupled system of non-linear (quadratic) BSDEs. Moreover, we can no longer apply any
simplification techniques arising from the exponential function, and the theorem (veri-
fication theorem) that is necessary to relate or connect the solutions of each sub-control
problem in F to the global problem in G becomes more difficult to prove.

Following the dynamic programming method, we show that between each default
times, we must first obtain a characterisation of each dynamic version of the mean-
variance hedging problem in the form of quadratic decompositions. These decomposi-
tions depend explicitly on the parameters and default times of our model. Second, we
express the three terms that appear in these quadratic decompositions as solutions of
three explicit BSDEs.

Then, beginning after the last default event and working backwards to the initial
mean variance problem, we obtain, for each subset, a system of recursive coupled qua-
dratic BSDEs.

We prove explicitly, in our first major contribution (Theorem 3.3.1), the existence and
uniqueness of the solutions of these systems of quadratic BSDEs, which is not a trivial
result, and we identify the optimal mean-variance hedging strategy. Indeed, recently, in
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[60], the authors proved that the problem of mean-variance hedging for a general semi-
martingale under the global filtration G can also be regarded as a solution of BSDEs.
However, they did not provide an explicit form for these BSDEs and also did not prove
the existence of the solution of these BSDEs. Moreover, because we have the explicit forms
of the systems of BSDEs, we find an explicit formula for the optimal hedging strategy that
solves our mean-variance hedging problem.

Then, in our second major contribution (Theorem 3.3.2), we prove that the solutions
of each sub-control problem can be linked to the solution of our global mean-variance
hedging problem by presenting a verification theorem. We also prove that the optimal
hedging strategy for our G control problem can be deduced as the sequence of all optimal
sub-control hedging strategies.

The final major contribution of this chapter is the numerical application of the mean-
variance hedging problem to a multiple defaults case, which has, to the best of our know-
ledge, not previously been addressed.

The outline of this chapter is as follows : in Section 3.2, we introduce our model and
the corresponding mean-variance hedging problem. We deduce the systems of BSDEs.
Then, in Section 3.3, we present the solution to the mean-variance hedging problem. For
this purpose, we first prove the existence of a solution to the recursive coupled system of
quadratic BSDEs. Second, we provide a BSDE characterisation using a verification theo-
rem and relate the solutions of each sub-control problem in F to our global control pro-
blem in G. Finally, in Section 3.4, we present some numerical illustrations, most notably
a multiple defaults case. We numerically recover certain theoretical results and obtain
several financial interpretations of our model with respect to the value of the defaultable
intensity or the size of the jumps.

3.2 Multiple defaults model

3.2.1 Market information

We define a probability space (€2, G, P) that is equipped with a reference filtration
F = (F)e>0 that satisfies the usual conditions and represents the default-free information
concerning the market. In this section, we adopt the same model and notations used in
[62]. Let 7 = (1,..., ) be a vector of n € N* random times, and let L = (Lq, ..., Ly,)
be a vector of the n marks associated with 7 such that for any 1 < k < n, Ly is a G-
measurable random variable that takes values in £ C R and represents, for example,
the loss given default at time 7. For & = {1,...,n}, we denote by D* = (Df)te[o,T]
the filtrations generated by the associated jump processes, where Df = Df, and Df =
o(lp,<s,8 <) Vo(Lgly<s, s <t). Then, G = (Gy)iepo,r] will be the enlarged progressive
filtration F v D! v ... v D" that represents the structure of the global information available
to investors over [0, 7. In other words, G is the smallest right-continuous filtration that
contains IF such that for any 1 < k < n, 74, is a G stopping time and Ly, is G,, -measurable.
We assume that the default times are ordered (i.e., 1 < ... < 7,) and can thus be valued
in terms of A,, on {7,, < oo}, where, for k = 1, ...,n, we have

Ay = {01, 00) € R)F: 01 < .. <O}
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Thus, we do not distinguish specific credit names and observe only successive default
times.

Remark 3.2.1.

We note that the general case of non-ordered multiple random times for (11, ..., 7,,) (together with
marks (L1, ..., L)) can be derived from the case of successive random times by considering sui-
table auxiliary marks. Indeed, consider the corresponding ordered times, denoted by 71 < ... < 7,
and the index mark valued in the range {1,...,n}, denoted by vy, such that 7, = 7, for
1 < k < n. Then, the progressive enlargement of the filtration of F using the successive ran-
dom times 71, ..., T, together with the marks vy, L,,, ..., tn, L,,, leads to the filtration G.

In the following, we assume that the n default times always occur before time T.
For any (61,....6,) € A, (I1,...,1,) € E", we use the notation 8 = (6,...,6,) and
l=(ly,...,1,); we also use the notation 8 = (01, ...,6;) and l;, = (I1,...,lx) for 0 < k < n,
with the convention that 6y = Iy = 0. Similarly, we adopt the notation 7, = (71, ..., 7%)
and Ly = (L1, ..., Ly). Moreover, for 0 < t < T, the set Qf denotes the event

QF == {rp <t < T}

(where QY = {t < 71} and QF = {7,, < t}) and represents the scenario in which k defaults
occur before time t. We refer to Q2 as the k-default scenario at time t. We similarly define
Qf_ = {Tk <t< Tk+1}.

We begin by recalling some typical spaces. For s < T, §*[s, T is the Banach space of
R-valued cadlag processes X such that there exists a constant C that satisfies

| X | 005,77 := esssup | X;| < C < +o0.
te(s, T

Finally, the space BMO is the space of an F-adapted martingale such that for any stopping
times 0 < ¢ < 7 < T, there exists a nonnegative constant ¢ > 0 such that

E[[M]r — [M],-1G0] < ¢;

then, M = Z.W € BMO. To simplify the notation, we write Z € BMO.

We now denote by P(F) the o-algebra of F-predictable measurable subsets on R x €2,
and we denote by Pr(Ay, E¥) the set of indexed F-predictable processes Z*(., .), i.e., pro-
cesses such that the map (¢,w, 0y, 1) — ZF(w, O, 11,) is P(F)@B(A,)@B(E*)-measurable.
We also denote by Op(Ay, E¥) the set of indexed F-adapted processes Z¥(., ), i.e., pro-
cesses such that for all t > 0, the map (w, Ok, ly) — ZF(w, O, 11,) is F; @ B(Ag) @ B(EF)-
measurable. In the following, we assume the density hypothesis, which is given by the
following statement in the multiple defaults case :

Assumption 3.2.1 (Density hypothesis). There exists an o € Op(Ay, E™) such that for any
bounded Borel function f on A, x E™ and 0 <t < T, the following holds :

E[f(r,L)|F)] = /A . F@.Da0.Ddon(@) as. 3.2.1)

where d@ = db);...d6,, is the Lebesgue measure on R™ and n(dl) is a Borel measure on E™ in
the form n(dl) = n1(dly) [T7=1 Mk+1(Lk, dlit1), where m1 a nonnegative Borel measure on E and
Mie+1 Uk, dli+1) is a nonnegative transition kernel on EF x E.
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Remark 3.2.2. The condition defined by (3.2.1) implies that if o is separable in the form o, (0, 1) =
ol (0)ak (1), then the random times and marks are independent, given JF.

We can now present a splitting formula in this progressively enlarged filtration :

Lemma 3.2.1. Under the density hypothesis of Assumption 3.2.1, any G-adapted process Z =
(Z)o<t<T has a decomposition in the form

n
Zy = Y 1gpZf(Ti Ly), 0<t<T,
k=0

where Z* lies in Op(Ay, EX).

Démonstration. This is a consequence of Theorem 5.8 of [102]. The application to our mo-
del under the conditional hypothesis assumption is discussed in Sections 6 and 7.4 of
[102]. d

3.2.2 Asset price model under default risk

The trading asset S is a G-adapted process that takes, following Lemma 3.2.1, the
decomposed form

St =2 1apSi (Th: L), (322)
k=0

where S¥(0y,1;) (Where ), = (01,...,0;) € Ap and I, = (1, ...,1;) € E¥)is an indexed
process in O (A, EF) that is valued in R, and represents the asset value in the k-default
scenario, given the past default events 7, = 6 and the marks at default L;, = ;. Note
that S; is equal to the value Sf only on the set Qf, that is, only for 7, < ¢ < 734;. The
dynamics of the indexed process S* are given by

dSE(04, 1) = SF(Oy, L) (uF (O, Li)dt + oF (), 1)dWy), 6, <t <T, (3.2.3)

where W is a one-dimensional (P, F)-Brownian motion and x* and o* are indexed pro-
cesses in Pp(Ag, E¥) that are valued in R. As in the one-default case, we adopt the
usual no-arbitrage assumption that there exists an indexed risk premium process \* €
Pr(Ay, E¥) such that for all (0y,1;) € Ay x EF,

af(Ok,lk))\f(Gk,lk) = uf(Ok,lk), 0 S t S T. (3.2.4)

Moreover, in this contagion risk model, each default time may induce a jump in the assets
portfolio. This scenario is formalised by considering a family of indexed processes ~*,
where 0 < k < n — 1, in Pp(Ag, E¥, E) and valued in [~1,00). For (0y,1;) € A x EF
and ;11 € E, vF(0k, 11, 111 1) represents the vector of the relative jump size on the asset
at time ¢ = 641 > 6; with a mark ;1 1, given the past default events (74, L) = (0, l1).
In other words, we can write the following :

Syt (Okr1, lisr) = Sy (O, 1) (1 + V60, (O L, lk+1)) : (3.2.5)

Ok+1 k+1
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3.2.3 Strategy and wealth process

The trading strategy 7 is a G-predictable process and can thus be decomposed in the

form .
mo= oy m (i, Ly), 0<t<T, (3.2.6)
k=0
where 7% is an indexed process in Pr(Ag, E¥) and 7% (0}, I;,) is valued in the closed set A*

of R, which contains the zero element and represents the amount continuously invested
in the asset in the k-default scenario, given the past default events 75, = 8, and the marks
at default Ly, = I, for (0y,1;) € Ay, x E*. We often identify the strategy 7 with the family
(wk)og k<n given in 3.2.6, and we require the following integrability conditions : for all
0, € Apand l;, € Ek,

T T
/ |78 (O L)y (O, L) |t + / |7F (O, L)t (O, 1) [2dt < o0, a.s. (327)
0 0

Given a trading strategy ™ = (7*)g<x<n, the corresponding wealth process is given by

X = kz Lop X{ 0 (rh, Ly), 0<t<T, (3.2.8)
=0
where X5%™ (71 Ly) (with 8, € Ay and I, € E¥) is an indexed process in Op(Ay, EF)
that represents the wealth controlled by 7*(8y,1;,) in the price process S*(8y,1;), given
the past default events 7, = 6), and the marks at default L;, = [;. From the dynamics
given by (3.2.3) and under the conditions given by (3.2.7), this process is governed by the
following equation :

dXET (O, 1) = 7f (O, ) (1f (O, )t + of (O, li)dWy), Oy <t <T. (3.2.9)

Moreover, each default time induces a jump in the asset price process and thus also in the
wealth process. From (3.2.5), this jump is given by

Xg];:_ll’m’ﬁ(ak-i-lv lk:—i—l) = Xg];_ivfr(ek, ly) + ngﬁl (O, lk)rygk-u Ok, Ui, L 1)

Ultimately, the payoff is a bounded Gr-measurable random variable Hr that takes the
following decomposed form :

k=0

where H%(.,.) is Fr ® B(Ay) ® B(E¥)-measurable and represents the payoff when k de-
faults occur before maturity 7.

3.24 The mean-variance problem

In our problem of mean-variance hedging (MVH), the performance of an admissible
trading strategy m € Ag implemented with initial capital z € R is measured over the
finite horizon T by

JH (z,m) = E[(Hr — X37™)?], (3.2.11)
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and the MVH problem is formulated as follows :

VH(z) = inf JH
0 (55) W1€I}4G 0 (%W),

where Ag is the set of admissible trading strategies, which is defined in Definition 3.2.1
below.
Value functions

We first define the set of admissible trading strategies for the multiple defaults case :

Definition 3.2.1. For 0 < k < n, AL denotes the set of indexed processes ©* in Pp(Ay, EF) and
valued in A¥ that satisfy (3.2.7) such that

T
EV 7 (05, 1,)|%ds | < oo. (32.12)
Ok

We then denote by Ag = (AE)o<p<n the set of admissible trading strategies m = (7*)o<p<n-

Under the density hypothesis 3.2.1, let us define a family of auxiliary processes a* €
Or(Ag, E* ), 0 < k < n; this family of processes is related to the survival probability and
is defined by recursive induction from o™ = « as follows :

o6t = [ [ 0 O busr, el B i (e i), (32.13)

for 0 < k < n — 1, such that P11 > t|F] = [A, «pr af (0,1 )dOxn(dly) and Pl >
t|F] = of, where d), = df;...d0y, n(dly) = ni(dly)..nx(lk_1,dly,). Given 7% € AE, we
denote by X k’x’“(ek, l;;) the controlled process solution to (3.2.9), starting from x at 6.
We now present our model hypothesis :

Assumption 3.2.2. Forall k € {0,1,2,--- ,n}, ¥(0x, 1) € A N[0, T] x E¥, there exist non-
negative constants c, C, and 0 such that
- (Supte[ek,T} |0F (O, L) | + supieo, 1) |1V Ok L) | + supseqo, 1) |18 (Ok, i) | + (B, lk)) <
C;
— infyei, 11 |of (O, k)| > ¢; and
- af}(ek,lk) > 0.
Moreover, we assume that the measure ny(dly,) is also uniformly bounded.

The mean-variance hedging problem

The value function for the global mean variance G problem (3.2.11) is then given, in
the multiple defaults case, through a backwards induction from the F problems :

V'(2,0,1) = essinE |(H = X7°7(0,1))ar(9,1)| F, | (3.2.14)
T ]’]’4}
and
VF(@, 01, l;) = essinf E[(Hf — XEET (0, 1)) 20k (O, 1) + (3.2.15)
Tre AR
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kac7r
/0k / VE (X (O, )+ 7wl O i) (Oks Uy B )s Okt L 1)t (b A1) 1| F ]

where we recall that 8,, = 0,1,, = 1,00 = 0y = 0, and lg = [y = 0, and = denotes the
capital at time 6.

Remark 3.2.3. If there exists, for all 0 < k < n, some mhx e Aﬁ? that attains the essential
infimum in the previous equations, then the strateqy 7 = (7**)o<p<n € Ag is optimal for the
MVH problem.

3.3 Solution to the mean-variance hedging problem

We exploit the quadratic form of the mean-variance hedging problem to characterise,
using dynamic programming methods, the solutions to the stochastic optimisation pro-
blems (3.2.14) and (3.2.15) in terms of a recursive system of indexed BSDEs with respect
to the filtration F. We use a verification approach that can be described as follows :

1. First, we formally derive the system of BSDEs associated with the F-stochastic
control problems (3.2.14) and (3.2.15) using the dynamic programming principle.

2. Second, we confirm the existence of the solutions of the corresponding system of
coupled quadratic BSDEs (see Theorem 3.3.1) using BSDE techniques.

3. Finally, in a verification theorem (see Theorem 3.3.2), we prove that these BSDEs
solutions are unique and present the solution to our mean-variance hedging pro-
blem. We also prove that the strategy identified in step 1 is optimal and admissible.
Moreover, we prove that the assumption of the quadratic representation form of
our value function is true.

Let us begin with step 1. For ¢ € [0,,, T, v"* € A, let us introduce the following set of
controls coinciding with strategy " through time ¢ :

Ap(t,v") ={n" € A : 75, = V' }-

We can now define the dynamic version of (3.2.14) by considering the family of F-adapted
processes :

Vi'(2,0,,v") = essinf E[(Hf— Xp"7(0,1) (0,05, t>6, (331

T EAR (t,v™)

such that Vg! (z,0,1,v") = V"(x,0,1) for any " € Aj. According to the dynamic pro-
gramming principle, the submartingale property holds on {V;"(x,0,l,v") .6, <t <T}
for any v" € Ag, and if an optimal strategy exists for (3.3.1), then the martingale property
holds on {V*(z,0,1,7*"),0,, <t < T} for some 7*" € Af. Moreover, because we have

adopted a quadratic minimisation approach, the value process V;*(z, 0,1, ") takes the
quadratic decomposition form given by

2
V' (@, 0,1,0") = o U X0T(0,1) = YO T 4 0t e [0, T,
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We search for a triple (v94, Y04 ¢n01) in the form

dv n’e’l n,0,0,(1); .00 om0l n,0,1
nBl =0 (v 77, B )dt + By AWy,
t

(En) n,0,1,(2) (3.3.2)

dYtn,B,l _ _gt, (}/tn,e,l’Zzz,G,l)dt + Zf’e’lth,

dg ™t = —gr Ot GO ROt + REaw.

Then, using the submartingale and martingale properties of the dynamic programming
principle noted above and because V2 (z, 0,1, 0") = (X" (6,1) — H(0,1))* ar(6,1) by
(3.3.1), we see from Itd calculus (see Proposition 3.5 of Goutte and Ngoupeyou [49] for
more details) that the triple (v Y04 ¢n61) satisfies (3.3.2) for all ¢ € [0, T], with
terminal conditions vT’H’l = ap(0, l) Y, o1 = H7(6,1) and & 91 — 0. The corresponding
coefficients of the BSDEs are given by the following equations :

oL __(1"0.0) +0"(6.1) pONT e u(0,])

_ _ Zn,@,l n,@,l,(3): ]
t o (o7t A a0

We also find that the optimal strategy 7™* (such that V;*(x, 8,1, 7™*) is a true martingale)
is given for all ¢t € [0, T| by

W?’*(e,l) _ fn0l1 n,x,m* (0 l) fn,G,l,2’

where 1
n,0,0,1 n,0,l n,0,l ,m,0,l
R e (R A
n,0,l
(o)’
and !
n,0,0,2 n,0,l —n,0,l n,0,l n,0 n,0,1 n,@,l
¢ -—7{‘% 2+ (M +oy )}

n,0,l 2
o

Hence, the optimal strategy is linear in X, which is also the case in the no-default model.
Henceforth, we refer to this problem as the (En) problem.

Next, consider the problem defined by (3.2.15), and define the dynamic version in a
similar manner by considering the value function process given by

ViF(x, 05,1, 0%) = kebskl?f )JE[(HT(Gk,lk) X505, 1)) 20k (0, 1) + (3.3.3)
ke AL (t,vk

k“X’“”ol)er’f Ok, 1)K Ok, Ly L 1), Okt Lo 1) g1 (L, Al ) Bt 1 | F]

ng ng ks bk O 1 \Tkr k)00 1 \Uks bl bk4-1 )5 Uk415 b1 Tk +-1\ bk, QlE41) QU412

for 0 < t < T, where Ak(t,1F) = {7% € Ak . 7k, = vk} for V¥ € AL, such that
‘/;912 (z, 05,11, V) = VF(z,0,,1}). Similarly, we henceforth refer to this problem as the (Ek)
problem for £k = 0,...,n — 1. The dynamic programming principle for (3.3.3) formally
implies that the process

VF(z, 0k, U, v +/ / /88 ngxw (O, U+, Oy ) V6, Ok Lk L1, O 1, L1t (L, i) By

9k+1 +1

47



for t € [0k, T] is a submartingale for any v* € A% and a true martingale for 7** if it is an
optimal strategy for (3.3.3). Again, because we have adopted a quadratic minimisation
approach, the value process V;*(z, 0y, 1, v*) should take the quadratic decomposition

form given by

2
VE (@, O, L, vF) = o0l (X0 g 1) — YOI ehOule g — o -1

We also search for a triple (vkﬂk’lk, Yk’ek’lk,gkvek’lk) forallk =0,...,n — 1in the form
dpfOrle kOl (1) , kOrle ok.Orl k05,1
vk79k7lk :7gt’ kolk> (,Ut7 k?k,ﬁt7 kvk)dt+ﬂt7 Iwdet,
¢
Ek 3.34
(Ek) dY;kygk’lk _ _gfﬁklk’(z)(}/tkﬂk»lk’ Zfﬂk,lk)dt + Zf’gk’lkdwt, ( )

k0.1 k01 lis(3) kBl kOl k00,1
defOrle — _gh kb )(ft wle pROly g RO Y7,

Then, using the submartingale and martingale properties of the dynamic programming
2

principle described above and because lef(:n, 01,1, VF) = (X?’x’”(ek, lp) — H%(Ok, lk)) a%(ek, l)
by (3.3.3), we see from It0 calculus (again, see Proposition 3.5 of Goutte and Ngou-

peyou [49] for more details) that the triple (vk’e’wlk, Yk’ek’lk,fkvek’lk) satisfies (3.3.4) for

all t € [0y, T], with terminal conditions v:]fﬂ’e’“’lk = ok (0y,11), lef’e’“’l’“ = Hk(6;,1;) and

5%9”’“ = 0. Moreover, the corresponding coefficients of the BSDEs are given by the follo-

wing equations :

k.0 (1 Tk O,
P /E(lJrUt B M1 (L, dlg41)

k05,1 J kOl 2
(MerUf U [p(L A k)’rf(ek,lkﬂlk+1)nk+1(lkadlk+1))

(oF)2+ [5(1+ o B0y (YR (0, Tk L 1)) 201 (U, i)

)

k.0 0i,(2 k.0 li k.Ok 1k JJe,05 L k.05,
gt gkl 7O k+/EUt R o MO (U i)
J7k90 7l J7 70 » 70 ’
IO o O sl e (s ) — o 27 )
XN
()2 + [5 (1 + 07" ) (Y (O, Uy Lig1) )2 M1 (L, dlieg)
k0,1 Tk, 0,1
X (Mf + oy B +/E(1 + v k)'yf(ekvlkylk+1)77k+l(lk;dlk+1)>
and
kOl (3 k05,1 J k05 i\ 2 k00, O
g0 = Ol [ (ORI O () + (202
k05,01 k,0,1 1) 2
(— [ (L4 v ROt U ROty (g 1, Lt ) (Ley i) —Ufzfﬂk’l’“) |
- k.05, )
(082 + [p(1+ 05O (v (O, U, i) 201 (Ui, dlis 1)
where
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k+1,05 1,041
1 + UJ7k76k7lk — v S and UJ,k,Ok,lk —_ Yk+170k+1:lk+1 _ kaakvlk_
WYkstk
Uy

The optimal strategy 7** (such that V¥ (x, 6y, li,, 7%*) is a true martingale) is given by

k% 1 k 7k,01,l k0l k k ok, Ok Lk

(O, k) = Tk 0t 2y - K (¢ + 0y By )
(o) + [+ 07" )Y (O, Uy g1 ) 2 Meger (Uis dlg1) [

Jp(XE5T (O, Loy THOR Ry ROk by Ok bty k9 1 1 g (L, dlgg)

+
Ut’kvk

where Kf’e’“’l’“ = Xf’x’ﬁ(ek,lk) — YkO:li Again, we obtain the optimal strategy in a
linear form with respect to X. Henceforth, we refer to this problem as the (Ek) problem
fork e {0,...,n—1}.

Remark 3.3.1. For all (EKk) problems for k € {0,1,...n}, we consider the time interval [0y, T).
Hence, for the particular case in which we take the value function for t = 0y, we find that

‘/tkzek (.T, 0k7 lk? Vk) = vk(ma eku lk)7
where we recall that x is the value of X**™ in 0y, and thus, Xg]:”’” =z

Hence, (Ek) and (En) define a recursive system of families of BSDEs indexed by
(0,1) € A, (T)xE™ where A, (T) := A,N[0,T] = {(61,....0,) €[0,T]":0<6; <...< 0, <T}.
The next portion of this part is devoted, first, to proving the existence of a solution
to this system of BSDEs and, second, to demonstrating its uniqueness via a verification
theorem related to the solution of the value functions 3.3.3 and 3.3.1.

3.3.1 Existence of a solution to the recursive system of BSDEs

The generators of our recursive system of BSDEs, (3.3.2) and (3.3.4), are not trivial,
as the coefficients g*% k ¢ {0,...,n} are not standard (coupled and quadratic). Mo-
reover, we will prove the existence of the solution to the quadratic BSDE (i.e., the first
one) under positivity constraints. Indeed, we will see that the first BSDE is related to the
minimal variance of a pure investment problem (see Remark (3.3.2)).

Hence, we present a theorem to ensure that recursive BSDE solutions exist and remain
in their own solution space forall ¥ € {0,1,...,n}.

Let us consider the family of probability measures {Q(0,1), (0,1) € A,(T) x E"} such
that the Radon-Nikodym density of Q(0, 1) with respect to P on Fr is given by

22(6,1) = dO.Y), o VT u’;(e,l)dWSl/eT 176, 1)

dpP o”(6,1) 2 o”(6,1)

2
ds] . (335

n

Theorem 3.3.1. Forall k € {0,1,...,n}and t € [0, T, we know the following :

1. There exists a couple solution (vf’e’“lk, Bf’e""l’“) € 8§ xBMO of the first BSDE of (3.3.4)
(if k # n) or (3.3.2) (if k = n), and there exist constants 6§ and 6§ such that

0 < &F < offrle < gk

49



Moreover, for the case k = n, we have the following explicit solution :

—1
Un’e’l— Zg(e’l) ? 1
t _(E (ZS(@,;)) aT(e,z)‘ED : (3.3.6)

2. There exists a couple solution (Ytk’e‘“’l’“, Zf’a’“’l’“) € 8% x BMO of the second BSDE of
(3.3.4) (if k # n) or (3.3.2) (if k = n). Moreover, for the case k = n, we have the following
explicit solution :

Z%(0,1)
Z2(6,1)

)

AR ) [ (6, l)’]—}} = EQOD [H7(0,0)| 7] (3.37)

3. There exists a couple solution (ff’ek’l’“, Rf’o’“’l’“) € 8% x BMO of the third BSDE of
(3.3.4) (if k # n) or (3.3.2) (if k = n). Moreover, for the case k = n, we have the explicit
solution &' O — 0 because the market is complete (i.e., we are considering the time after the

last default).

Démonstration. For each BSDE, we will proceed in a backwards recursive proof.

First BSDE : (En) problem : We recall that when £ = n (i.e., we are considering the time
after the last default), the market is complete. Using (3.3.2) and (3.3.5), by Itd’s

Q 2
formula, we find that [(Z’;,Eif,ll))

t ]
te€(0y,T]
condition v%’e’l = ar(0,1), we ultimately find, for all ¢ € [6,,, T], that

-1
o {E ])
z20,1)) ar(8,1)

Moreover, under Assumption (3.2.2), the martingale £ :Ezg W isa BMO(F)([fn, T])
martingale. This implies that the family of probability measures {Q(0,1),(0,1) € A, (T) x E"},
such that the Radon-Nikodym density of Q(,1) with respect to P is given
by (3.3.5), satisfies the reverse Holder inequality Ry (P). Hence, there exists a
positive constant ¢4 such that for all stopping times 6,, < 7 < T, we have
E[Z7 (0.)°|F] Z2(0.0)°

z9(6,1)2 E[Z2(0.0)2|F] —
é > 0. We conclude, based on Assumption 3.2.2, that there exists a constant

67 such that v™%! > §7. Moreover, using Jensen’s inequality and Assumption

3.2.2, there exists a positive constant 65 such that for all ¢ € [0, 7], v;" O < om.

is a P martingale. Using its terminal

< ¢4. Notably, this result implies that for all ¢ € [6,,, T,

(Ek) problems : Now, assume that a solution exists for k:=k+1withk € {0,1,...,n—
1} (our recursive hypothesis) ; we must demonstrate that this claim is still true
for k — 1 := k. We will prove that the problem is equivalent to a BSDE pro-
blem with quadratic growth and bounded terminal conditions, allowing us
to obtain the desired result using the results presented by Kobylanski in [76].
Hence, the proof is divided into two parts. First, we will present the results
for a modified quadratic BSDE. Second, we will use the comparison theorem
for quadratic BSDEs to demonstrate that the first component solution to the
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modified BSDE is nonnegative, thus concluding the proof. Let us define the
modified BSDE for k € {0,1,...,n — 1} given by

k0.1 k0l (1), k,0ule ak.Onl 05,1
duof Ot = gl (Ot glOlioy gy 4 ghouts gy, (3.3.8)

with a generator given by

k,0,lk,(1 41,0k 1,0k11
g W = /Ut e (L, dlg)

9
.0 L T Ond k1,05 01,0
(Mf’vt’ S e A B (L AR k“’Yf(Bk’lkalk+1)?7k+1(lk,dlk+1)>

7]
(o) 2 of Ot | 4 [ o PR (k0 1 1y 1)) 20k 1 (L dljesr)

Using our recursive hypothesis that there exist constants 677! and 65! such

that
0 < (5lf 1 < ’Ut Pkt ! < 5]2{: 1

and Assumption 3.2.2, we find that there exists a constant C' > 0 such that
_ — 9
|gf,9k7lk7(1)‘ < Cl1+ ’vaekalk |+ |ﬁf‘79k7lk‘ _ (3.3.9)

Therefore, this coefficient exhibits quadratic growth (with respect to 3%-9x:k)
and linear growth (with respect to v*%+:!r) ; according to the Kobylanski Theo-
rem [76], there exists a pair solution (v¥:f% !k gkOrl) € S x BMO of this
modified BSDE. Let us now identify a suitable lower bound on the coefficient
g"O:le,(1) Let us first define the following :

k k _k
k+1,0541,1 ole
ef = /Ethrl U F (O, Uy Lot )Mot (Les g 1), hi =2 <Z}; + ;kt)(3‘3‘10’)
t t

2
L0 o,k ok k
df = /E’Ut—H R (o (O, Uy o)) 21 (U, dlgn) and of = l;tkt + (ZZ) (3.3.11)
t t

Using (3.3.9), we find that —gk-9rle-(1) = KD + K} + K? + K}, where

E+1,0541,0
K} = —/Evt S e (L, dljeg),
KOl il o ok 2 k.05l kO KOl
o e o) (N o 2O e (eh?
t (Uf,eklk) |vf70k,lk’ +db Uf Ol ) 1Vt db dv
— 7 2 — 7 2
k01l qk,0k,1 k05,1
5 (O.tvk7kﬂt7k7k) ‘ﬂt7k7k|
R P k01,1 = T L0k,
i H e A
and
EOkly kOl KOkl k.0l k05,1 k:0 i k05l
3_20 kkﬁt kk(ut kk’vt kk’_i_ellre) y kitk I kkﬁ kkk
Kt o k0,1 k0,1 <2 k,0k,l T +2 k
(Uty ks k)z‘vt, k> k| —}—df o} kitk dt

Because the processes pk ok Ak pkt1Okt1li1 are bounded, according to As-
sumption 3.2.2 and our recursive hypothesis at step k£ + 1, we conclude that
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the processes h* and c* are also bounded. Using the expressions for K°, K1,
K? and K3, we obtain

X%
18,7 ’“\

k2
k.01 %05 k41,0510
—ghOebell) < W +ef oy O +hE B k”“+<d) /Evt P g1 (L dlg).
t

Using Cauchy’s inequality on the expression for e}, we find

2
k1,011
(ef)? = (/Evt+ rH M’Yf(ekvlk,lk+1)77k+1(lk,dlk+1)>
k41,0511, 2 k1,051
< /Evt+ R (R (G, Dk, Dt1) 77k+1(lkadlk+1)/EUt+ P 1 (s dlg41),

and we then obtain

kN2
€ k+1,0 1
(C;k) _/Evt h k+177k+1(lk,dlk+1)

L0kl 2

( e kt1obb+1 k(ak,lk,lk+1)77k+1(lkadlk+l)) K100 1 01

= S P P —/ (o M1 (Lgs dlpy1) < 0.
Je v (VE Oy Uy Loy 1)) 1 (I, dliyn) B

Hence, we obtain a suitable lower bound f} for the generator gf )

ok,0k L
gk19k7lk;(1) > ']Fk e Ck"l)kﬁk lk‘ + h k@k,lk + ‘B k k’
t - t |Vt ‘kBk,lk| .

Hence, if we now consider the BSDE

2
|Zf|

e (Y CREZE
t

) dt + deWta ?Ylf - Oél%(ekv lk) € (Oa 1)7

then, according to Proposition 5.1 of [79], there exists a pair solution (Y*, Z¥) €
5% x BMO of the BSDE

dYF = —frat + ZFdw,, YE =k, 1),

where Y > §F, and the coefficient f* exhibits quadratic growth (with respect
to Z*) and linear growth (with respect to Y*). Because g~@rlr:(1) > fk when
we now apply the comparison theorem of Kobylanski [76], the first component
solution to the modified BSDE (3.3.8) yields

pFOle >yl > sk s,

Therefore, the modified BSDE is equivalent to the first BSDE of the (Ek) pro-
blem (3.3.4), and thus, we obtain the proof of the existence of the solution to
this first BSDE.

Moreover, to obtain the upper bound &5 on v;
e

k0,1 . .
k" we consider the terminal

condition of the corresponding BSDE : vy = o%(0y,1x) := 05. This proves

that there exist constants 67 and 6% such that

0 < oF < o frte < gk
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Second BSDE : (En) problem : Following the proof of the existence of the solution to

(Ek) problems : Now, assume that a solution exists for k:=k+1withk € {0,1,...,n—

afaekalk

the first BSDE for £ = n and (3.3.5), we obtain an explicit solution to the second
BSDE, which is given by

Z£0.0) .,
296 l)HT(B,l)‘]-}l . (3.3.12)

t )

0,
}/tnvv —

Because H"(6,l) € L™ for all (8,1) € A,(T) x E" by assumption on the
contingent claim, we find from (3.3.12) that Yt"’e’l € §%°. Moreover, we have

the following representation theorem :

T
Y0 — Hn0,1) — /t Zm0l ROl ¢ e [0, T], (3.3.13)

where W20 = —Jo ﬁg(z ; du is a Q(0,1) Brownian motion. For any stop-
ping time 0,, < T g T accordmg to (3.3.13), there exists a constant d > 0 such
that

EQ(0.) [ / ! (ZQ*‘”)Q ds|F;

< QO [(Hnel Yn@l) |f7} <d

Thus, Z™%!. W20 is a BMO martingale under the probability measure Q(,1),

and therefore, Z™%!. W is a BMO martingale under the probability measure
P according to Theorem 3.3 of Kazamaki [69]. Therefore, we conclude that
Zm9t € BMO.

1} (our recursive hypothesis) ; we must demonstrate that this claim still holds
for k — 1 := k. We now wish to prove that (Ytk’e’“l’“, Ztk’e’“’l’“) € &% x BMO
forall k € {0,1,...,n}. We can actually prove the existence of the solution to
the second BSDE because the solution to the first one exists. Given the solution
to the first BSDE, the coefficient of the second one is linear. Therefore, we can
explicitly characterise the solution.

Step 1: Preliminary results.

Given the explicit formula for the coefficient g"0ele:(2) in (3.3.4), we obtain

kOkolk,(2) _ afﬂmlszﬂk,lk + Rfﬂk,lkytkﬂk,lk + Afﬂklk
)

9t
where
k0,1 Ol gh O 7,0
_ /Bf’ek’lk _ O—f7ek’lk (/"Lt R +o w klg otk + fE ’Yt (9k7lk‘7lk+1)(1 + U w k)nk+1(lk7dlk+1))
(Uf’ak’lk) + [e(1 1+ 0P8 (7 Ok L, D)) 77k+1(lk7dlk+1)
Ryl = /(1+1)Jgk’ )Mk41 Lk, dli41) +/ (1 + 0] %) R (0, L, et )i (e dliy 1)
(b 4 o Ot gbOti [ (1 o O ) R Ok, T, b ) er (B, dliy))
X

(o) 11+ 0] ) (7 (B, Ly T 41)) 1 (b 1)
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and

kO T PN S W P
Ay (1+wv )Y,

; Me+1 Uk, dli41)

o
Sl

k1,041 L
(1 4 v Oty Ottt kg 1 1 )k (U i)

04l
(Mf’ok’lk + Uf’ok’lkﬁf’gk’lk + [p(1+ Ui]’ BN Ok, Uy et 1) i1 (L dlk+1)>

2 2
(Uf’ek’lk) + [p(1+ Uij’ek’lk)(’Yf(gk, Uiy let1)) M1 (i, dlgn)

Under Assumption 3.2.2 and the integrability conditions defined in 3.2.7, coef-
ficients g0kl 1, }-Ok,

first BSDE and the boundedness of the processes v**1:0x+1:.lk+1 and Y
J7k70k7

% and v* are bounded. Moreover, from the solution to the
k+1,0k 11,0k g1

(recursive hypothesis), we find that the processes v I are bounded for all

I € E¥ and that 359! 1V is a BMO martingale.

Thus, we deduce that the martingales AROrte W gk Ol W and kFOele W are
BMO martingales under the probability measure P. Let us define the pro-
bability measure ) ~ P, with a Radon-Nikodym density on Fr defined by
ZjQ = £(a"%%% W)7. Because the martingale ak ol W is a BMO martingale,
the process Z8 =E [ZQQ |]-"t} is uniformly integrable, and from Theorem 3.3 of
Kazamaki [69], the martingale x*9%! W is still a BMO martingale under the
probability measure (). Therefore, there exists a nonnegative constant ¢ such
that E9 [ftT ]ﬁ’j’g’f’lkﬁds\ft} <cforally <t<Tand ke {0,1,...,n}.

Step 2 : Integrability of the adjoint process I :

Forall k € {0,1,...,n},

_ t
't :=exp </ ﬁf’ek’lkds) .
0

We will prove that T' € LP(Q) forany p > 1and § > 0

T T p2
€exXp p/ R?:Bk,lkds S exp / 5(K§70k’lk)2+ L I N
t t 46
p? T
< exp|==T]exp 5/ (,lec,ﬂk,lkyds .
46 .

Because there exists a nonnegative constant c such that

Ir|’
Ly

T 2
E@ / ’/i];’ek’lk| ds|Fi| <e,
¢

we deduce from Proposition 3.5.1 in the Appendix that there exists a § such
that 0 < § < c% and E@ [exp(ftT 6|(/<a’§’9k’lk)2|ds)|ft} < ﬁ. Therefore, we
conclude that there exists a nonnegative constant C; such that

EQf‘l

p
Ift] < (1. (3.3.14)
t
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Step 3 : The solution of the BSDE.

Let us now define, for k € {0,1,...,n — 1},

1 (= T
y/oet = g9 lf (rTH%(ek, SR / rsA’;*"k’?lkds) m] O <t<T.
t t
(3.3.15)
Because I' = Z9T, using the Bayes formula, equation (3.3.15) is equivalent to
1
Ykzekvlk — ]:E .
ot g |2

T
(FTH§(0k,lk)+ / FsAsds) |ft], t<T. (3.3.16)
t t

Moreover, because A¥fx! is bounded and H%(Hk, l;) € L, there exists a
nonnegative constant C such that
‘]:t) :

Because the process A¥fxl T/Q is a BMO martingale under the probability
measure (), using (3.3.14), we find that there exists a constant C > 0 such that

S

r T (|7
TT+/ (
t

I

|y, orh| < CEC -
Iy

2
+ (A’;ﬂk”k)Q) ds

YOl <O < T

Let us consider Y0k defined by (3.3.15) ; then, the process
~ t - - T _
Fthk,Gk,lk + / AI;,Ok,lkFSdS — ¥ [FTH%(BIW ;) + / I“SA’;,Bkylde|ft‘|
0 0

is a square-integrable () martingale because H* is bounded by assumption,
ARl W isa BMO martingale, and I satisfies (3.3.14). Therefore, according to
the representation theorem, there exists a process Z € H? such that d(ftY;k’e’“’l’“ +
I T ARl ds) = Z,dWS. Setting Z*-0k:tx = % and using integration by parts,
we find that

dY'tk:Bkylk _ _(Af,emlk+Zf79k,lkaf,9k7lk_’_Kfﬂk,lkytkﬂk,lk)dt_’_Zfﬂk,ldetQ’ Yj’fﬂkvlk _ H%(Bk,lk).
Applying It6’s formula, we find that

2 2
d(}/’tk70k7lk) — 2}/;‘”/70k>lk [_(Af70k7lk)+Kf70k7lk}/tk’0k7lk)dt+Ztk’9k7lk‘thQ]_‘_(Ztkka:lk) dt’

and therefore, for any stopping time o, we find that

T
EQ [/ (2000 at| 7,

[

T
<E@ l(H%(E)k, W) +2 / 2V ROkl (AROrle /i’;’e’“’lkysk’e’“lk)ds‘fgl :

Because H* and Y% are bounded and because A*-%x:tk W@ and kF0r-te 1174

are BMO martingales under the probability measure @, we conclude that Z*xt 117
is a BMO martingale measure under (). Then, Z kOk:le T is a BMO martingale
under the probability measure P, according to Theorem 3.3 of Kazamaki [69].
Therefore, we conclude that (Y*0ktx 7F0kl) ¢ § x BMO is a solution of

the second BSDE.
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Third BSDE : (En) problem : Because g, OLG) = 0, we directly find that &' Ol =,

(Ek) problems : Now, assume that a solution exists for k:=k+1withk € {0,1,...,n—
1} (our recursive hypothesis) ; we must demonstrate that this claim still holds
for k — 1 := k. It is sufficient to prove that ( f’e’“’l’“,Rf’e’“’lk) € 8 x BMO.

For all £ € {0,1,...,n}, all terms that appear in the coefficient gf Orli) are

bounded and Z*f+!x ¢ BMO, as demonstrated in the previous step ; we the-
refore conclude, using the representation theorem, that (¢50kbr RF-Oklk) ¢
8% x BMO forall k € {0,1,...,n}.

O]

3.3.2 BSDE characterisation via verification theorem

We will now demonstrate that the triple solution (vk’ek’lk, Ykl ¢ k’ek’lk) to the re-
cursive system of indexed BSDEs, which appears in quadratic decomposition form, ac-
tually provides the solution to the global optimal investment problem in terms of the
value functions V¥, k € {0,1,...,n} in (3.3.1) and (3.3.3). As a byproduct, we will prove
the existence of the optimal strategy 7"*.

Theorem 3.3.2. The value functions V¥ , k = 0,...,n defined in (3.3.1) and (3.3.3) are given,
forallt € [0;,T], by

VE (@, O, e, VF) = o Ol (XE07 (9, 13) — YO g g0l (33.17)

forall z € R, (0y,1) € A x EF and v* € AL, where (vF0%tk YkOkli ¢kOrli) js the unique
solution to the recursive triple BSDE systems given forall k = {0, 1, ...,n}in (3.3.2) and (3.3.4).
In particular, the solution of the mean-variance hedging problem is given by
Vi'(e) = inf E (Hr = X5™)] = (@ - ¥9) +€), zeR, (33.18)
TEAG
where the triple (v°,YY,£%) is the solution of the recursive system of BSDEs : (En) (3.3.2) and
(Ek) (3.34), k€ {0,1,...,n—1}.

Moreover, there exists an optimal strategy 7 = (7%, w1*

s, ) given by

1
k,x k r7k,0p,ly k0wl () k k ok,0k,lk
e (Ok, L) = 50,1 oy 2y - K (i + 07 By )
(@F)2 + [5(1+ 0] "0 ) (O, U, L) 201 (L, i)
k k+1,0541,0 k41,0511,
Je (X0 (0, U)o, 7 E T Y ROk vl IR O AR (G T L1 )1 (L, dlg )

T (3.3.19)
Uy

+

where Kf’e’“l’“ = X[ (O, 1) — YOl Moreover, for the problem concerning the scenario
after the last default,

1
(07')?
Remark 3.3.2. Following (3.3.18), we offer some comments regarding the financial interpretation
of our quadratic decomposition form :

mO.0) = g oF 200 = (X000 - Y (ui ot )| (33.20)
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— The process v° does not depend on the payoff H. Moreover, we have

2
0 =V0(1) := nf B (xz7"]"
Therefore, v° is related to the minimal variance of a pure investment on the asset S with an
initial wealth of x = 1.
— The process Y is the quadratic approximation to the price of option H.
— The process £¥ represents the incompleteness of this market, as if the market is complete (as
in the (En) problem), this process vanishes.

Démonstration. Step 1: We begin by proving, for all & = {0,1,...,n}, t € [0, T] and
V¥ € AL, that

oP OB (X (0, 1) — YO O < V@ 0, 1, 0b). (33.21)

Let us denote by D* the process defined for all k = {0,...,n — 1}, ¢ € [0, T] and
v* e Ak by

Dl (2,04, L, v*) = of PRl (XFOT (0, 1) - YOI 4 O (33,22

t
2
+/0 /E (U§+1,9k,lk (vawﬂr(gk’ lk) + 7_‘_5,7‘]:(9’6’ L, lk—‘rl) _ Y;k—l—l,ek,lk) + §§+170k7lk) n(lk7 dlk+1)d$
k

and D} (z,0,1,07) = o P (X[557(0,1) — YO + e,

Because DF is a local submartingale (using Itd’s formula and (3.3.4)), let (7;) be a
localising sequence of F stopping times valued in [0, T for D} ; we then have, for
allf, <t<s<T,

Dfr, (@, 0k, 1k, 0F) < B D (2,00, L, v7) B

Now, using Definition 3.2.1 of the admissibility condition for vk, Assumption 3.2.2,

and the fact that Y9! and ¢"9! are square integrable and v™%*

find that the sequence (D’;AT_ (z, 0%, L, V* )) _is uniformly integrable for s € [6, T,
4 7

is bounded, we

and thus, we obtain the submartingale property for D*. Now, by writing this sub-
martingale property between times t and T and recalling the terminal conditions
of the three BSDEs, we obtain the expected results, which are, for all vk e Afﬁ and
ke{0,1,...,n—1},

op O (X (B, 1) — VORI b O < [(1E(B, ) — XETT (01, 1)) 0k (61, 1) | Fi(3.3.23)

k,x,m
/ VA T 00 1) + (00 1) 46, (O, Ui ), okﬂ,lkmmﬂ(lk,dzm)dekmft] ,

and for k = n,

0,1 = YO O < B[(H] - Xp(0.1) (6,17 ]3:3:29)
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Step 2: We must now check that the trading strategy m* = (7%*)x_o___, is admissible in
the sense of Definition 3 2.1. For improved readability, we neglect the dependence
parameter (0, 1)) for %05, 1;) and use the simpler notation 7F* . We recall that
(Df)tefo,1), the local martingale (because we find this quantity using the optimal
strategy 7*), is defined in (3.3.22) forall k = {0,...,n — 1} and ¢ € [0, T as

Df(.’ﬂ, ek, lk’ Wk’*) — vfaekwlk (Xfylﬂr* (ak’ lk) _ Y;k,ek,lk) + é.k: N
t X ,
—i_/(9 /E (v§+1’9k7lk (X;C,"E,ﬂ' (ekv lk) + 7Tk *75(014!7 lk? lk+1) - }/:sk+1’0k7lk) + €§+179k,lk) n(lk, dlk+1)d8.
k

Let (7;) be a localising sequence of F stopping times valued in [0, 7| for the local
martingale Df ; then, forany i € N,

k,0p,1 k k,0%,1 k0,1
Df/\Ti(magkﬂlkﬂﬂ-k’*) = vt/\iiC k(‘Xt/\?EF7T (ekﬂlk) Yt/\Tk k) +€t/\75- g
tAT;
+ / k+1 05,1k (Xk: T, (elmlk) + 71' ’Ys (0k7lk7 lk—i—l) YkJrl 9k7lk:) + §k+1 Gk,lk) (lk dlk+1)d

Because (DF) is a local martingale (using It6’s formula and (3.3.4)), by taking the
expectation value, we obtain

2
E[ RO (XEET (B, L) — YEOH) 1 ehOulh| | = olOrle (P09, 1) — YjORl)” 4 ghOnli (3325
tAT; . ) ,
- [/0 /E (vfﬂ’ek’lk(Xf’xm (O, 1) + mEAE Ok L, I) — YIFHO0)7 4 §§+1’6k7lk) n(lk, dlkJrl)dS‘I"Gk] :
k

Through recursive backwards induction and the use of Theorem 3.2, we find, for all
k= {0,...,n—1}, that vf 10l (XEST" (O, 1)) + mh5y R (O, L, i) — YLl 24
¢k+10k:lk is positive for all s € [0, T]. Hence, for all ¢ € [0, T], we find that

kO i ( xok y kOl 2 k0.1 EOk,l k k.0, k0.l
" {Um:l}‘z “( t/\?cr7r Ok, lk) — t/\Tk ") +5m§ “|Fo| < Vg, ' k(Xezﬂ (O, 1x) — Yk ’ k) +£ o
o0k kO Lk 0k lx
< (r -, ’)+§”<m6&%)
> Yy, O Ok

Using Theorem 3.3.1, we know that there exists a positive constant J such that
vFOle > 6 for all t € [0, T). If we now let i — oo, it follows from Fatou’s Lemma,
in a similar manner to the proof of Proposition 3.2 in [79], that

kOl (ks ke,l 2 k,05,1 < k,z,m*
E [T X (O ) = YiREe ) + €5 km} > 6 (B[1XS5T (06, 1)) +1).
Hence, we find that there exist constants c¢; and ¢ such that

* T *
E [|X5 Ok, )2 < o1 and ]El / | XEET (0, 1) 2ds| < o, (33.27)

O

We must prove that this inequality implies Definition 3.2.1. Indeed, applying Itd’s
. 2
formula to (Xf’:””7r (O, lk)) yields

* 2 z,m* x,m* z.*
d(XF" (O 1) = 2XE5T (O, U)X (O, 1) + d [ XEET (04, 1)
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Using the dynamics of X" M (9, 1) and letting (7;);en be a localising time se-
quence, we obtain

2’+E

TNAT;
[ ok O ) ds
O

2 TNT; .
<E [(Xé?fT” (601.11)) ]-21@ V@ 5 1 (O, ) X BT (0, 1) ds
k

(3.3.28)
Because, by assumption, processes ¥ (0y,1;) and o%(8},1;) are bounded, we find
that there is a constant Ky < (0%(8},,1;))? such that for all s € [0, T7,

— 2mE k(O L) X (0, 1) < *le“ Ok, Lk)| IMS(‘)kalk)ler*l *|2.

(3.3.29)
Using (3.3.29) in (3.3.28) yields

22+ E < E

TNT;
| 1m0 ) s
O

(Xészr (O, lk))Q}

9k

Now, by applying Fatou’s Lemma, we find that when 7 goes to infinity,

TAT; 2 k,x,m* k 2
+ E /9 | XET (G, ) 2| (O, 1) [2ds | + B

. Ko

2ds] .
(X;i@m* (6, lk))2] (3.3.30)

K T
+22E [/ |7rf’*|2ds] .
2 0y

22+ & < E

T
| 1Rk O 1)) ds
O

E
+K2

T
X (601 Pl (01,0 Pds
k

Moreover, because K> < (¢¥(04,1;))?, we obtain

KZ]E [/ 5,* 2
2 0

Therefore, because 1%(6},, 1) is bounded by assumption and based on (3.3.27), we

S

<E|(xp"m (0 l)—2 2| [ X 0, 1) Pt (O L)
< kb)) = T [ X5 (Ok, L) [l 1as (O, Ui ) ds | -

O

conclude that (3.2.12) is satisfied, which implies that 7% is admissible in the sense
of Definition 3.2.1.

Step 3 : We must prove that the wealth process X f % (O, 11,) associated with the strategy
7" exists for all k € {0,1,...,n}. First, we note that the optimal strategy (3.3.19)
takes a linear form with respect to Xf T (Ok, i) for O < t < T.Let us denote this
linear form by

" = af (O W) X (Or, 1) + df (O, L), Yk € {0,1,....m}).
Then, for 0, <t < T, substituting this expression into (3.2.9) yields

AXFT (O be) = (af Ok, L)X Ok, L) + df Ok, L) ) (11f (O i)t + of (O, 1) dWV: )
= XU Ok, 1) (af (O, L) Ok, L) dt + af (O, L) (B, L) dWi(B.3.31)
+ (df(ek, lk)uf(ek, lk)dt + df(Gk, lk)Uf(ek, lk)th) .
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We recall that the solution for 6, <t < T of the SDE given by

dgf (O, L) = &F Ok, L) (af Ok, L) uf (B, Le)dt + af (B, Li)orf (B, 1y)dWV: )

is  ¢F (Or, lk) = ¢f, (Bk,lk)exp{fe (at Ok, L)y (O, 1) — (at Ok, U)o} (Ok,lk)f) dt}~

Therefore, by setting X/ (0, 1) := L¥(Oy,1;)¢F (0, 11) (where dLF(0y,11,) =
i (O, 1y)dt + ¥ (04, 1) dW; and ngk (0, 1;) = 1) and applying integration by parts,
we obtain, forall 0, <¢ < T,

AXFT (O b)) = XPOT (O, L) [af (O, L)t Ok, L) dt + af (B, Li)of (O, L)W
+ 0F (O L) [ (i (O, L) + af (1, ) ot Ok, 1) (O, L) ) dt + 5 (B, L) AW

df (ki) (Nf (Bkvlk)*af(ek:lk)(Uf(ek:lk))2>

Hence, from (3.3.31), we obtain i} (0y,1;) = I
and 5 (65, l) = W Then, wededuce’chatX"““T Ok, 1g) := L0y, 1) oF (O, 1)

is a solution of the SDE (3.2.9).

Step 4: We now wish to prove that the trading strategy 7* = (7%*);—o.. , is optimal.
Because the trading strategy ©* = (7%*);_o ., is admissible in the sense of Defi-
nition 3.2.1 and because the processes D* are "true" martingales for k = {0,...,n},
we find that for all (8,1;) € Ap(T)x E*, 2 € R, t € [0, T]and k = {0,1,...,n—1},

op O (X (O, 1) — YO g O = B [(HE Ok 1) — X5 (01, 14)) 0 (01, 1) | Fi(B.332)

[/ / Vih(X, ‘“’“*wk,lk)+wi;,;;(ek,lk).vgm(ek,lk,lkm,9k+1,lk+1>nk+1(lk,dlm)dekmﬂ],

9k+1 Or+1
and for k = n,
n,0,l n,r,m* n,B,l n,0,l n n,x,m* 2
o P XET0,1) = YN 4 = E[(HRO,1) - X7 (0,1)%an(0,1)| 5 [(3.3.33)

where X™%7™ (0,1) indicates that we use the strategy 7* = (ﬂk’*)k:07..,,n to evaluate
these wealth processes. Starting with k = n, let }*(0,1) be the process given by

Fl0.1) = essint E [(HF(0,1) = X7-"7(0,1))2ar(8,1) — o *H (X7 (0, 1) — 2X7""7 (0, 1)V )| 7] .
e ];} 2

By the submartingale property given in (3.3.24), we find that

FO.) = essint E[(HF0.0) = Xp"7(0,1)%ar (6, 1) — o (X]77(0,1)° — 2X77(0,)Y;"")| 7
s r Ly

> ,U;nﬁ,l (th’x’ﬂ—(e, l) . Y;nﬂ,l) + é-zz 0,0 n,@,l ((thn,:v,ﬂ'(e7 l))2 . 2th,:v,7r (0, l)y;tn,e,l)7

and we conclude that
FP(0.1) 2 op® (v 04) 4 ot (3.3.34)
Using the martingale property stated in (3.3.33), we obtain

oo (0,1) — ¥ g0 =B [(Hp(6,1) - X5 (6,1)%ar (0.1 F)
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By adding —uv/"?' (X" (0,1))2 — 2X7"™ (8,1)Y;"?") to both sides of this last
equation, we find that

U;L,G,l (Ytn,e,l) + 5;1 ,0,1 > Ftn(97 l) (3.3.35)

2
Using inequalities 3.3.34 and 3.3.35, we conclude that F7*(6,1) = v/"%* (Y;"’O’l) -

grot By combining this expression with its definition, we finally obtain the first
expected result :

v ") o= inf E|(Hp(0,1) — X35 2
0Ly = et [(HF(0,1) = X7:7(6,1))%ar (6, 1)| 7]

_ U?’H’l( nil?ﬂ'(e l) n0l> _‘_ftnel

Let us now consider £ = {0,1,...,n — 1} and assume that (3.3.17) holds true at
step k + 1. Then, in a similar manner as above, we observe that for any ¢ € [0, T,
7* € AL(t, ). Using the stated assumption regarding step k + 1, we find that

k10,l k41,051 k 0kl
We set
Ff (0, lx) = essinf E [(H%(Gk,lk) — XU (01, 1)) 20k (04, 1)

ke AR (t,uk)

o k,gk,lk ((Xk‘,ac,ﬂ'(ek’ lk))2 _ 2XZ€,$,7T(0]€, lk)Y;tkﬂk,lk>

k T Tl'
+ / / Vo (X (O L) + 7 (O ) 6, (O Ui L 1), O Ui k1 (L i1 )B4 | e |
Therefore, again using the submartingale property stated in (3.3.23), we obtain

Ftk(gk’ lk) Z ,Ufyeknlk' (XZ{:’er(ok, lk) Yk,ek,lk) + é.k 05,1
’vaok,lk ((thamﬂr(ek, lk;)) o 2Xk: T, W(Gk,l ) k Bk,lk)

N X A 4 k0l kBka
= (Yt +§

and we thus conclude that
FF(01,1) > of 00l (Y 0i0)" 4 gl (3.3.36)
Using the martingale property of (3.3.32), we obtain
of P X (O, 1) — YOO+ O — R [(1E(0,1) — XETT(0,1))% 005, L)

+// Voth(X, k’x’ﬂ*((’k,lk)+773;11(914:,lk)ﬁgkﬂ(@kylk,lk+1),9k+1,lk+1)77k+1(lk7dlk+1)d9k+1|ft].

9k+1 Or11

Hence, by adding —uv/0+ ! ((Xf’x’”* (k1)) — 2X17 (O, lk)Ytk’g’“’l’“> to both sides
of this last equation, we find that
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A

k+1
Ort1

2
Uf,ek,lk (thkﬂk,lk) + éfyekylk > Ftk(gk, llc) (3337)

Using 3.3.36 and 3.3.37, we conclude that F}(0y,1;) = o0 (Y;’“"k”k) + ROtk
By combining this expression with its definition, we finally obtain the second ex-
pected result, which is, forall k € {0,1,...,n — 1},

Vi (x, 0, b, V7)) = eesjggfk)E[<HT<0k,lk> X700k, 1)) 0 (Ok, i) +

/ vyt ngxﬂ Ok, 1)+ 7o Ok lk) A6y, Ok Ui liesn), Okt iy ) M1 (L, ey 1) dBjei1 | F7)

k+1 +1

k,05,1 k k,05,1 k,0,1
— ,Utv k?k(Xt 7x(0k7lk) _}/;/ ) kvk) _‘_é‘ kvk

Moreover, by now taking ¢ = 6 and using relations (3.3.32), (3.3.33) and (3.3.17),
we obtain

Vit (2,0,0) = E|[(H}O,1) — X[ (8,1))ar(0,1)| 7,

_ g@l( n,x,m* (0 l) Ygz,&l) +£gel

and

Vi (2,00, 1) = E[(HEOr 1) — X557 0k, 1)) (05, ) +

k,z,m* k,x
(X" (O, l) + " Ok )y, (O Ui 1), Oyt Uiy 1)1 (Ll 1) 6 41| o,

L0k k,z,m* k.05, k,05.1
— Ok k Ic(XekCL‘ﬂ' (ekalk)_}/ak k k) +£ k k

These relations prove that 7 = (7%*)_¢,_ ,, is an optimal trading strategy.

Step 5: For the verification theorem 3.3.2, we can write that, for k = {0,1,...,n}, H =0

andt € [0k, T,
V;k(:E, Hk, lk, I/k) = vf’ok’lkth’z’ﬂ(ek, lk)2.

kOklk is also

Because the value process V* is unique, we find that the process v
unique.
Y™91 is unique because of formula (3.3.7). Assume that Y*+1.0k+1.let1 is unique;
then, from (3.3.16) and because vFOle and vk tLO0k+1le41 gre unique, we find that
Yk0rlr is also unique.
By (3.3.17), because ViF(x, 0y, 1, vF), vPOkl and YRkl are unique, we find that
£ROl is unique.

O

3.4 Numerical Applications

3.4.1 Study of a one-default case

We consider a special case in which there is only one default event and ;:°, o and ~°

are constants; ' (6,1) and ' (6, 1) are simply deterministic functions of §, and the default
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time 7 is independent of F; thus, o4(6,() is simply a known deterministic function «/(¢)
of # € R, and the survival probability G(t) = P[r > t|F] = P[r > t] = [ «a(0)dl is
a deterministic function. We assume that the survival probability follows an exponential
distribution with a constant default intensity A. Thus, there is a constant A > 0 such that
G(t) = e, and therefore, the density function is a(f) = A\e~*?. Moreover, we suppose
that v > 0 (loss at default), and we consider functions p!(6,1) and o'(6,1) that have the
form pt(0,1) = u° (%) and o'(6,1) = o° (2 - %) for all € [0, 7). This choice has
the following economic interpretation : The ratio between the after-default and before-
default rates of return is less than one, meaning that the asset is less competitive after
the loss at default. Moreover, this ratio increases linearly with later default times : the
after-default rate of return drops to zero when the default time occurs near the initial
date, and it converges to the before-default rate of return when the default time occurs
near the finite investment horizon. The interpretation for the volatility is similar but with
the opposite relation : the ratio between the after-default and before-default volatilities
is larger than one, meaning that the market is more volatile after default. Moreover, this
ratio decreases linearly with later default times, converging to double the value (resp.
the initial value) of the before-default volatility as the default time approaches the initial
(resp. the terminal horizon) time. Moreover, in our model, Uand H' are constants such
that H® > H'. This corresponds to the payoffs for selling a basket default swap. This
swap is a credit derivative contract, which provides to its buyer protection against default
of the underlying asset. The protection buyer pays a premium. In return, the protection
seller pays the buyer if the default occurs before maturity. Here, there is no mark, so we
will not express the dependence in /. In this case, we have

0 2
E[(2)?] = exp (—(T ~0) <go<2?_1>> ) ,
0

2
which yields ptl’e = lexp (—)\t + (T —-0) <0(2“£1)> ) . In this model, our system of
o (25—
BSDEs becomes a system of ordinary differential equations (ODEs) and has explicit solu-
tions. For this example, we adopt another quadratic form, which is given by VOl () =

vf’o"’l’“’(2)m2 - QUf’ek’lk’(l)ervf’e’“l’“’(o), where k = {0, 1} (i.e., 0 for the before-default func-

tions and 1 for the after-default functions). We can obtain the terms v :x:(2), vf Bk (1)

k05, (0) . . . .

and v, """ ( )usmg our classical quadratic decomposition form because we have v*%t:(2) =
k0,1 kOl 'I)k’ok’lk’(l) kO Lk _ k79k7lk7(0) kO lk 2 k,9k7lk,(2)

D F Ol (D) and ¢ = - (v ) v .

Here, we will consider the particular time ¢ = §. By applying dynamic programming
to the corresponding value function V¥ given in (3.2.15), we find that in our Markovian
framework, V? satisfies the Hamilton-Jacobi-Bellman equation given by

E t (x) : 0 E t (.’I}) 1 é t (flf) 0\2_2 ‘71 t 0
f ) — . . .
(975 wean[OJ] pom 836 2 8;132 (U ) ”t t (ZE Y ”t) 0 (3 4 1)

As we have quadratic decomposition forms of V" (z) and V° given by Vi (z) = vtl B2 g2

2vt1’t’(1)a: + vtl’t’(o) and V(z) = vi”(z):ﬂ — QUS’(l)x + vf’(o), respectively, we then determine
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that the optimal strategy is

= (0 DY 0 (g 4 20

(00)21}?7(2) + (70)2%1#57(2)

Inserting this expression into (3.4.1), we obtain

81}?’(2) @) 61}?’(1) Lt1) avg(m 1,,(0)
(815 T S v TH T T B

[(H0 D 470D g — 40y} uovtl’t’@)r

(00)2037(2) + (’YO)QUtLt’@)

Then, by identifying the various coefficients in x, we obtain the following ODEs :

0,(2 (2) 0 17t7(2)
o' e (100" + 9% ) W@ Z G(T) = =T
oo ! 012,,9:(2) 0y2y:(2)” T B ’
(09207 + (7°)%v
0,92 4 0, Lt,() 0,,0:(1) o 0, 1:t:(1)
oV Pt 4 (120 200" (00l + %0 ) NUXCHNPANNC)
o (092" + (30)20 ' '
0,(0 0,,0,(1) Oy 1 it,(1)
o EREOMN (10?0 450 ) W20 Z 12,50,
ot (0%)20;" + <70>2v2“2>

The first ODE corresponds to the first BSDE in this Markovian framework. In fact, in
this particular case, in which all coefficients and terminal conditions are deterministic,
the predictable component 3° of the pair solution (v*(), 3°) to the first BSDE is equal to
zero. Equivalently, the two last ODEs are related to the last two BSDEs in this particular
setting. Therefore, we can numerically verify the characteristics of the triple (v (), Y0, £0)
that appears in 3.3.4 and plot the solutions of the ODEs.

For the simulations, we take u = 0.2, 0° = 0.05, Hy = 1.2, H; = 0.9 and maturity
T = 1. From Figure 3.1, we first find that there exists some 6,5 > 0 such that § < v) < § <
1. This inequality verifies the result we proved in Theorem 3.3.1, point 1. Furthermore,
from the quadratic decomposition form of V?, we have

vy = V(1) = minE [X%’Wr

TeA

Therefore, v°

is related to the minimal variance of a portfolio investment on the asset .S
with initial wealth 2 = 1. Consequently, to understand the impact of asset parameters
on the minimal variance, we must plot the coefficient 19 with respect to time ¢. First, let
us study the minimal variance with respect to the jump due to default. We recall that
the variance of the portfolio is divided into two components, the continuous component
driven by Brownian motion and the jump component driven by the default indicator
process. In Figure 3.1, we clearly find that the minimal variance with no jump component
(y = 0) is less than the minimal variance with a jump component. In other words, the
component arising from the jump due to default increases the minimal variance.

We are also interested in understanding the variation of the minimal variance with

respect to the intensity parameter. Hence, in Figure 3.2, we find that the minimal variance

64



increases as the intensity parameter increases. This is an expected result because when
the intensity increases, the corresponding probability of default also increases. Therefore,

the occurrence of jumps increases, implying an increase in the variance.

Time t

FIGURE 3.1 — v} as a function of time ¢ € [0, 7] with T'= 1 and A = 0.01 for various values of 7.

Time t

FIGURE 3.2 — ¢! as a function of time ¢ € [0, T] with T = 1 and v = 0.5 for various values of \.

In Table 1, we observe that the values of the process Y are quite stable with respect
to A for each value of v. Moreover, they are decreasing with increasing ), which is an
expected result because a higher occurrence of jumps implies a lower price. For any fixed
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VY  [A=001]X=003]Xx=006] A=0.1
v=-05| 1.0413 | 1.0325 | 1.0280 | 1.0254
v= 0.8847 | 0.8847 [ 0.8847 | 0.8348
v=05 || 1.4343 | 1.4503 | 1.4579 | 1.4620
vy=1 | 13145 | 1.3188 | 1.3203 | 1.3211

TABLE 3.1 - Y{ as a function of ~ for various values of \.

0.025

0.02 -

0.015

0.01

0.005 -

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

FIGURE 3.3 — &) as a function of v for various values of \.

)\, Yy is higher for v = 0.5 than for v = 1. This is because the difference in the payoffs,
Hy — Hy, is equal to 0.3, which is a low value compared with the difference in the cho-
sen values for 7. We now recall that the process ¢¥ represents the incompleteness of the
market. Hence, in Figure (3.3), we first observe that because the payoff exhibits a jump
between values Hy and Hj, if we consider a non-vanishing jump in the asset dynamics S
(i-e., v # 0), then the values of &) are quite close to zero. This result indicates that our hed-
ging strategy covers the model well. By contrast, if we consider v = 0, then the dynamics
of the asset price S do not exhibit a jump when the default occurs, although the payoff
still jumps ; we observe that the value of the process ¢ increases with respect to the jump
probability. Because we are considering a default risk model with a jump in the payoff,
considering v = 0 means that we must consider continuous asset dynamics S and must
thus use a Black and Scholes hedging strategy. Hence, it is natural to obtain values of &°
that are larger than those obtained in cases with v # 0. As a financial example, if we as-
sume that the payoff H is a CDO with multiple defaults, then assuming that S is a Black
and Scholes model yields inferior results in terms of hedging compared with assuming
that S is a CDS.
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3.4.2 Study of a two-defaults case

We now consider another case, in which there are two default events. In this case,
there are no marks and ", 0° and +° are also constants; p'(61) and o'(6;) are determi-
nistic functions of 6; ; u?(61, 62) and 02(61, 63) are deterministic functions of (61, 62) ; and
the default times 71 and 7 are independent of F. We assume that 71 and 7 are two in-
dependent random variables that follow the exponential distribution with two constant
default intensities, \; and \o. Here, then, (61, 02) = (71 A2, 71 V72), and therefore, ! (0;) =
(A +A2) exp(— (A1 +X2)01) and (61, 02) = A1 Aa(exp(—A101 + A2b2) +exp(—A102 + A2b1)).
Moreover, we consider the same constant 4* > 0 for both defaults, and we also consi-
der functions z!(61) and o'(6;) that have the form p'(0;) = p° (%) and ol(6;) =

o (2 - 971) for all #; € [0,T]. As an extension of the previous case, for all (01,62) € Ay,

we take 1%(01,67) = p° (971) (%2) and ol(61,02) = o (2 - %1) (2 - %2) The econo-
mic interpretations are the same as in the previous case, except that there are now two
defaults instead of one. In this case, we have

Q@\2 0 2
E|(Z7)°] = exp | ~(T = 6) <ao<zg—1><2T—1>> |

which yields

0 2
Ugfl’ez = A9 (exp(—/\191 + /\292) -+ exp(—/\102 + )\291)) + (T — 92) ( H (21 — 1)) ) .
02

o025 — 1)

We consider three constant payoffs Hy, H; and H such that Hy > H; > H,, which

correspond to the payoffs for selling a basket default swap, as explained in the previous

section. In this model, our system of BSDEs becomes a system of ordinary differential

equations (ODEs) and has explicit solutions. For this example, we again adopt another

Uk79k,lk7(2)x2 _ QUk’ek’l’“’(l)x + vkﬂk,lk,((})
t t t

4

quadratic form, which is given by VO () =
where k£ = {0, 1, 2}.

Here, we consider the particular time ¢ = 6,. By applying dynamic programming to
the corresponding value function V;"** given in (3.2.15), we also find that V' satisfies the
Hamilton-Jacobi-Bellman equation given by

oV, (x)
ot rleR[0T)

T ox 2 Ox? T

Using the same method as in the one-default case, we obtain

2

1,61,(2 2,01,t,(2
avtl,el,@) <M0071Ut 1,(2) 440201 ( ))

o (00)2(2 = G20 ™) 4 (10)20 0

Ur

17017(1)

0 1,91 1 2 1,91 9
4+ inf {,uolﬂtl oV, " (z) + 78 Vi (@) (00)2(2 — —1)2(71',51)2 + Vtg’el’t(l“ + ’707Tt1) =0.

1,61,(2) _ (A + )\2)6—()\1-|->\2)(91—i-T)7

1,01,(2
:Hl’UT 1 ),

0, 1,01,(2 2,01,,(2 0, 1,01,(1 2,01,t,(1
81},51’91’(1) 260,41 N (MOTl'Ut 1,(2) +’Yovt 1,( )) (IU’OTlUt 1,( )+707)t 156( ))
_— = —'Ut 5 v
ot (09)2(2 — 6%)21%1,91»(2) + (70)203791%(2) T
1,61,(0 06y, 1,61,(1) 0,.2:01,t,(1))2
v, © _ 2,01,t,(0) (” T T ) L01,(0) _ g2, 1,01,(2)
ot = Uy Up = 111 Vp :

(00)2(2 . 9%)2%17917(2) + (70)27}?,91,&(2)’
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Considering the particular time ¢t = 6;, we ultimately obtain the same ODEs for 92,
(1) and 0% ag in the one-default case, except that in this case, we obtain v%@) =
G(T) = e~u+r)T

For the simulations, we take u° = 0.2, ¢° = 0.05, \; = 0.01, Hy = 1.2, H; = 0.9,
Hj = 0.5 and maturity 7' = 1.

A,=0.01

0.09

N NN

0.08

0.07

> 0.06

0.05

0.04

0.03

0.02

0-01 1 1 1 J
0 0.2 0.4 0.6 0.8 1
Time t

Time t

FIGURE 3.5 — v{ as a function of time ¢ € [0, T] with Ay = 0.03 for various values of ~.

In Table 2, we observe that in this case, the values of the process Y|} are also quite
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Time t

FIGURE 3.6 — 1! as a function of time ¢ € [0, T] with v = 0.5 for various values of \,.

VY [[A=001]A=003][A=006]A=01
y=-05] 1.1026 | 1.0971 | 1.0938 | 1.0914
v=0 [ 08924 | 0.8884 [ 0.8862 | 0.8847
vy=05 || 1.3074 | 1.3107 | 1.3135 | 1.3155
y=1 | 12559 | 1.2572 | 1.2580 | 1.2585

TABLE 3.2 — Y as a function of + for various values of \s.

stable with respect to Ay for each value of 7. We observe in Figure 3.6 that v{ is an in-
creasing function of A\y. The same interpretations hold for both Figure 3.1 and Figure 3.5.
Moreover, in Figure 3.4, we observe that vt s initially decreasing and then increasing.
We recall that v;" is related to the minimal variance on the asset S at time ¢ in the case
when the first default occurred at time ¢. Therefore, there are two major effects on vtl ot
the variance of the underlying asset and the incompleteness of the market caused by the
possible second default. This variance is decreasing for ¢ = #; in our model, whereas the
incompleteness of the market is increasing. When the time ¢ is close to 0, meaning that the
first default occurred early, the variance of the underlying asset is high and the incomple-
teness of the market is low, which explains why vt initially decreases. By contrast, when
the default time is close to maturity at 7" = 1, the variance is low but the incompleteness
of the market is high, causing v" to be increasing near maturity.

Moreover, one can also observe these dynamics in the various graphs of v{. It is seen
that in any case and for any value of v and A, 9v? /9t increases with time.
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3.5 Appendix

Proposition 3.5.1. Let A be an adapted increasing continuous process such that there exists a
constant C' > 0 that satisfies, for any 0 < s <,

E[(At _AS)|~FS} <C;

then, this process A also satisfies

Elexp (0(A: — Ag))|Fs] <

Démonstration. Let A be an adapted increasing continuous process that satisfies E[(A; —
Ag)|Fs] < C. We first prove by iteration that E[(4; — A,)?|Fs] < p!CP for any p € N.
For this purpose, we assume that for p > 2, E[(4; — A" ! F] < (p — 1)!KP~L. Let
us recall that for any adapted increasing continuous process A, we have (4; — A,)F =
pJ St (A — AP a4, fors <t; consequently, we obtain

t t
E[(4 — AJF] = pE| / (4 — AP dAL|F) = pE| / E[(A; — AP | FJdAF]
< (p—1)ICP B[4, — A,|F,) < plCP.

Therefore, for any 0 < § < %, we obtain E[szo iép(At — As)p’ |.7-'S} <> ,500PCP, from
which we conclude the expected result. O
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Chapitre 4

Reflected BSDEs with nonpositive
jumps, and controller-and-stopper
games

4.1 Introduction

Backward stochastic differential equations (BSDEs), introduced in the seminal paper
by Pardoux and Peng [85], have emerged over the last years as a major topic in proba-
bility, especially through its deep connection with nonlinear PDEs and associated pro-
babilistic numerical methods, and stochastic control in mathematical finance. A solution
to a standard BSDE on a filtered probability space (€2, F, (Fi)o<t<7, P) generated by an
R9-valued Brownian motion W, is a pair of a progressively measurable process (Y, Z)
satisfying :

T T
Y, = 5+/ F(s,Ys,Zs)ds—/ ZdW,, 0<t<T, (4.1.1)
t t

where the generator F' is a progressively measurable function, and the terminal data £ is
Fr-measurable. In the Markovian case where &(w) = g(Wr(w)), F(t,w,y, 2) = fO(Wi(w), y, 2),
for some continuous functions g and f° on R? and R? x R x R¢, it is well-known from [86]
that BSDE (4.1.1) provides a Feynman-Kac formula to the semi-linear partial differential
equation (PDE) :

1
— + ~tr(D?v) + f%x,v,D,v) = 0, onl0,T) x RY, (4.12)

with terminal condition v(7, -) = g, through the relation : Y; = v(t, W), 0 < ¢t < T'. We also
notice that when the function f? is in the form : fO(x, 2) = sup,c4[f (2, a) + a.z], for some
function f on R? x A, with A compact set of R?, then the semi-linear PDE (4.1.2) is the
Hamilton-Jacobi-Bellman equation for a stochastic control problem, where the control-
ler can affect only the drift of the Brownian motion : W; + i a,ds, by a progressively
measurable process « valued in A, and with a running gain function f. The extension
of a standard BSDE driven by a Brownian motion and an independent Poisson random
measure was considered in [103] and [3], and is shown to be related in a Markovian fra-
mework to semi-linear integro-PDE.

71



The notion of reflected BSDE was introduced by El Karoui et al. [37], and consists in
the addition (resp. subtraction) of a nondecreasing process to the standard BSDE (4.1.1)
in order to keep the solution Y above (resp. below) a lower (resp. upper) obstacle, and
chosen in a minimal way via the so-called Skorohod condition. Existence and uniqueness
results for reflected BSDEs under general assumptions on the obstacle have been investi-
gated in several papers, among others [50], [78], [88]. We also mention works by [53] and
[41] for reflected BSDEs driven by Brownian motion and Poisson random measure. An
important application of reflected BSDE is its connection to optimal stopping problems
and its associated variational inequalities in the Markovian case.

The extension to fully nonlinear PDE, motivated in particular by uncertain volatility
model and more generally by stochastic control problem where control can affect both
drift and diffusion terms of the state process, generated important recent developments.
Soner, Touzi and Zhang [101] introduced the notion of second order BSDEs (2BSDEs),
whose basic idea is to require that the solution verifies the equation P* a.s. for every pro-
bability measure in a non dominated class of mutually singular measures. This theory is
closely related to the notion of nonlinear and G-expectation of Peng [89]. Alternatively,
Kharroubi and Pham [75], following [74], introduced the notion of BSDE with nonposi-
tive jumps. The basic idea was to constrain the jumps-component solution to the BSDE
driven by Brownian motion and Poisson random measure, to remain nonpositive, by ad-
ding a nondecreasing process in a minimal way. A key feature of this class of BSDEs is its
formulation under a single probability measure in contrast with 2BSDEs, thus avoiding
technical issues in quasi-sure analysis, and its connection with fully nonlinear HJB equa-
tion when considering a Markovian framework with a simulatable regime switching dif-
fusion process, defined as a randomization of the controlled state process. This approach
opens new perspectives for probabilistic scheme for fully nonlinear PDEs as currently
investigated in [73].

In this chapter, we define a class of reflected BSDEs with nonpositive jumps and up-
per obstacle. As in the case of doubly reflected BSDEs with lower and upper obstacles,
related to Dynkin games, our BSDE formulation involves the introduction of two nonde-
creasing processes, one corresponding to the nonpositive jump constraint and added in
a minimal way, and the other associated to the upper reflection, satisfying the Skorohod
condition, and acting in the opposite direction. The first aim of this chapter is to prove
the existence and uniqueness of a minimal solution to reflected BSDEs with nonpositive
jumps and upper obstacle. We use a double penalization approach, and the main issue is
to obtain uniform estimates on both penalized nondecreasing processes associated on one
hand to the nonpositive jumps constraint and on the other hand to the upper obstacle.
This is achieved under some regularity assumptions on the upper obstacle. It is worth
mentioning that the running order of the limits in the double penalization is crucial, in
contrast with the case of upper and lower reflection. Indeed, we do not have comparison
results on the jump-component solution of a BSDE, and so a priori rather few information
on the sequence of nondecreasing processes associated to the jump constraint, whereas
one can exploit comparison results on the Y-component of a BSDE in order to derive
useful monotonicity property for the sequence of nondecreasing processes associated to
the upper obstacle. Once, we get uniform estimates, we conclude by a monotonic conver-
gence theorem for BSDEs. We also prove a dual game representation formula for the

72



minimal solution to our BSDE, in terms of equivalent probability measures and discount
processes.

The main motivation for considering such class of upper-reflected BSDEs with non-
positive jumps arises from a zero-sum stochastic differential game between a controller
and a stopper : the controller can manipulate a state process X in R¢ through the selec-
tion of the control « valued in A, while the stopper has the right to choose the duration
of the game via a stopping time 7. The stopper would like to minimize his expected cost :

E[ /0 CFXR an)dt 4 g(x2)], 4.1.3)

over all choices of 7, while the controller plays against him by maximizing (4.1.3) over
all choices of a. Controller-and-stopper game problem was studied in [66] when the state
process X“ is a one-dimensional diffusion, in [68] by a martingale approach and in [51]
by BSDE methods, but only when the drift is controlled. General existence results for
optimal actions and saddle point were recently obtained in [84] in a non Markovian and
non dominated framework by exploiting the theory of nonlinear expectations. We also
mention the recent papers [80], [81] where the authors considered 2BSDE with reflection,
in connection with optimal stopping and Dynkin game under nonlinear expectation. In
the Markovian case where both drift b(X%, «) and diffusion term o(X“, a) of the state
process X are controlled (hence in a non dominated framework), the recent paper [7]
proved the existence of the game value, by a comparison principle for the associated
Hamilton-Jacobi-Bellman Isaacs equation :

max | — ov _ sup (b(x,a).Dyv + 1tr(aaT(ac,a)Dva) + f(x,a)); (4.1.4)
8t acA 2

v—g] = 0, on[0,T) x R%

Our second main result is to connect the minimal solution to our reflected BSDE with
nonpositive jumps to a general Markovian controller-and-stopper game problem through
the HJB Isaacs equation (4.1.4). We follow the idea in [12] and [75] by a randomization
of the state process X, and thus consider a regime switching forward diffusion process
X with drift b(Xy, I;) and diffusion coefficient o (X, I;), where I; is a pure jump process
associated to the Poisson random measure driving the BSDE. The minimal solution Y; to
the reflected BSDE with nonpositive jumps, with terminal data £ = g(X7), upper obstacle
U = u(t, X), and generator f(Xy, I, Y;, Z;), is written in this Markovian framework as :
Y; = v(t, Xy, It) for some deterministic function v. It appears as in [75] that actually v
does not depend on «a in the interior of A as a consequence of the non positivity jumps
constraint, and we show that v is a viscosity solution to the general HJB Isaacs equation
(4.1.4) where the generator f(z,a,v,0"D,v) may depend also on v and D_v.

The rest of the chapter is organized as follows. Section 4.2 gives a detailed formula-
tion of reflected BSDE with nonpositive jumps and upper obstacle. Section 4.3 is devoted
to the existence of a minimal solution to our BSDE by a double penalization approach.
We derive in Section 4.4 a dual game representation formula for the BSDE minimal so-
lution. Section 4.5 makes the connection of the minimal BSDE-solution to fully nonlinear
variational inequalities of H]B Isaacs type. We conclude in Section 4.6 by indicating some
possible extensions to our paper. Finally, in the appendix, we recall some useful compa-
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rison results for BSDE with jumps, and state a monotonic convergence theorem, which
extends to the jump case the result in [88].

4.2 Reflected BSDE with nonpositive jumps

Let (Q, F,P) be a complete probability space on which are defined a d-dimensional
Brownian motion W = (W};);>¢ and a Poisson random measure . on R} x A, where A
is a compact subset of R?, endowed with its Borel o-field B(A). We assume that W and
 are independent, and y has an intensity measure \(da)dt for some finite measure A on
(A,B(A)). We set fi(dt, da) = u(dt,da) — X(da)dt the compensated martingale measure as-
sociated to p, and denote by IF = (F;):>0 the completion of the natural filtration generated
by W and .

We fix a finite time duration 7" < oo and we denote by P the o-field of F-predictable
subsets of {2 x [0, T]. Let us introduce some additional notations. We denote by :

- LP(F),p>1,0 <t <T,the set of F;-measurable random variables X such that
E| X|P < 0.

S? the set of real-valued cadlag adapted processes Y = (V;)o<t<7 such that

Y% :=E| sup |V;]?| < .
Y15, = E sup [¥iF’]
- LP(0,T), p > 1, the set of real-valued adapted processes (¢+)o<t<7 such that

T
16120 s, = E| [ o] < o

LP(W), p > 1, the set of R%valued P-measurable processes Z = (Z;)o<i<T such

that
T £
1211, ::EK/O 7] dt) ] < 0.

— LP(fi), p > 1, the set of P ® B(A)-measurable maps L: Q2 x [0,T] x A — R such that

12, =[] |Lt<a>|2x<da>dt)g] <.

— L2()) the set of B(A)-measurable maps ¢: A — R such that

ik ::/A|€(a)|2/\(da)<oo.

LZ(X)

K? the set of nondecreasing predictable processes K = (K;)o<t<r € S? with Ky =
0, so that

IK2, = EIKrP

We are then given three objects :

1. A terminal condition £ € L2(Fr).

2. A generator function F : Q x [0,T] x R x R? x LZ(\) — R, whichisa P ® B(R) ®
B(R?%) @ B(L2(\))-measurable map, satisfying :
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(i) The square integrability condition :
T
EU |F(t,0,0,0)]%dt| < oo.
0

(ii) The uniform Lipschitz condition :

|F(ta y,Z,E) - F(t,y',z',ﬁ')| < CF(|y - y,| + |Z - Z/| + |£ - €/|

L2(>\)) )

forallt € [0,T), v,y €R, 2,2/ € RY, and ¢, ¢ € L2()\), where CF is some positive
constant.
(iif) The monotonicity condition :

F(t,y,z,0) = F(t,y,z,') < /A(ﬁ(a)—5'(a))7(t,y,27&5'7a)/\(da), (4.2.1)

forallt € [0,7],y € R,z € RY, and ¢, ¢ € L2(\), where v : Q x [0,T] x R x R? x
L2(\) x L2(A\) x A —» Risa P ®@ B(R) ® B(R?) @ B(L2(\)) ® B(L2()\)) ® B(A)-
measurable map satisfying : 0 < ~(¢,y,2,0,¢',a) < C,, forallt € [0,T],y € R,
z€RY, ¢, € L2(\), and a € A, for some positive constant C.,.

3. An upper barrier U € S? satisfying Ur > ¢, almost surely.

Let us now consider our problem of reflected BSDE with nonpositive jumps. We say
that a quintuple (Y, Z, L, K+, K~) € S% x L2(W) x L2(ji) x K2 x K2 is a solution to the
upper-reflected BSDE with nonpositive jumps with data (¢, F, U) if the following relation
holds :

T
Vo= 6+ [ PV ZoLods+ Kf - K (K7 - K;) 422)
t

T T
—/ ZsdWy —/ / Lg(a)p(ds,da), 0<t<T, a.s.
t t Ja

together with the jump constraint

Li(a) < 0, dP®dt® A(da) a.e. (4.2.3)

and the upper constraint
Y; < Uy, 0<t<T, a.s. (4.2.4)
/OT(Ut Y- )dK,; = 0, a.s. (4.2.5)

We look for the minimal solution (Y,Z,L, K+, K~), in the sense that for any other
solution (Y, Z, L, K™, K~) to the reflected BSDE with nonpositive jumps (4.2.2)-(4.2.3)-
(4.2.4)-(4.2.5), it must hold that Y < Y.

Remark 4.2.1. We have chosen to formulate the BSDE (4.2.2) directly in terms of the
random measure p instead of the compensated random measure i since we dealt with
finite intensity measure A(A) < co. Of course, one can formulate equivalently the BSDE
(4.2.2) in terms of i by changing the generator F' to :

Ft,y, 20 — F(t,y,z,e)—/Az(a)A(da).
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In this case, the monotonicity condition (4.2.1) for F holds with a measurable map 7
satisfying : —1 < J(t,y,2,(,0',a) < Cs, forallt € [0,T],y € R, 2 € R%, £, ¢' € L2(\), and
a € A, for some positive constant C5. This condition is consistent with the assumption
required in comparison Theorem 4.2 in [92]. O

Remark 4.2.2. Uniqueness of the minimal solution. Uniqueness of a minimal solution holds
in the following sense : if (Y, Z, L, K*, K~) and (Y, Z,L, Kt K ~) are minimal solutions
to (4.2.2)-(4.2.3)-(4.2.4)-(4.2.5),thenY =Y', Z=27',L=L,and Kt —- K~ =Kt —K~. As
a matter of fact, the uniqueness of the Y component is clear by definition. Then, denoting
by K : = K+ — K~,and K := K+ — K~, which are predictable finite variation processes,
we have

t - - ~
/ [F(s,Ys,Zs, Ls) — F(s,Ys, Zs, Ls)|ds + K; — Ky

+/Z ZdW+// ())p(ds, da) = 0,

for all ¢ € [0, 7], almost surely. The uniqueness of Z = Z follows by identifying the Brow-
nian part and the finite variation part, while the uniqueness of (L, K) = (L, K) is obtai-
ned by identifying the predictable part, and by recalling that the jumps of y are totally
inaccessible. O

The main feature in this class of BSDEs is to consider a reflection constraint on Y in
addition to the nonpositive jump constraint as already studied in [74] and [75]. Moreo-
ver, we deal with an upper barrier U associated to a nondecreasing process K ~, which
is subtracted in (4.2.2) from the nondecreasing process K associated to the nonpositive
constrained jumps. In order to ensure that the problem of getting a minimal solution to
(4.2.2)-(4.2.3)-(4.2.4)-(4.2.5) is well-posed, and similarly as in [75], we make the assump-
tion that there exists a supersolution to the BSDE with nonpositive jumps, namely :

(HO) There exists (Y, Z, L, KT) € S2 x L2(W) x L2(ji) x K2 satisfying the BSDE with
nonpositive jumps :

Y, = §+ F Y5, Zs, Ls)ds + K — K (4.2.6)
/Zd // u(ds,da), 0<t<T, a.s.
and
Li(a) < 0, dP®dt® \(da) a.e. 4.2.7)

We shall see later in the Markovian case (see Remark 4.5.2) how this condition (HO) is
directly satisfied.

4.3 Existence and approximation by double penalization

This section is devoted to the existence of the minimal solution to (4.2.2)-(4.2.3)-(4.2.4)-
(4.2.5). We use a penalization approach and introduce the doubly indexed sequence of
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BSDEs with jumps :
v =g +/ F(s,Yu™, Z2™ LP™)ds + K™ — K™ — (Kp™™ — K{"™7)

_/t ZMm AW, — / /an w(ds, da), (4.3.1)

for n,m € N, where K™% and K™~ are the nondecreasing continuous processes in
K?2 defined by

t t
ket = m [ @) adads, Kp = [ v as
0 JA 0

Here we use the notation f; = max(f,0) and f_ = max(—f,0) to denote the positive and
negative parts of f. Notice that this penalized BSDE can be written as

T T T
VP =t [ Fas e zem imyds = [ zemaw,— [0 [ 1 autds, da).
t t t Ja
with a generator F), ,, given by
Fomlt.y,200) = Flt.y,20) —|—m/ e A(da) —n(Us —y)—,  a.s.

for (t,y, z,£) € [0, T]xRxR¥xLZ%()\). Observe that the generator F,, ,, satisfies the assump-
tions of square integrability and uniform Lipschitzianity, which ensure by Lemma 2.4 in
[103] the existence and uniqueness of a solution (Y™™, Zn™ [™m) € §2 x L2(W) x L2(f1)
to the BSDE with jumps (4.3.1). Notice also that F}, ,,, satisfies the monotonicity condition
(4.2.1), is increasing in m for any fixed n, and decreasing in n for any fixed m. Thus, by
the comparison Theorem 4.7.1, we deduce that (Y™),, ,,, inherits the same property :

Yn—‘rl,m < ynm < Y”vm""l’ Vn, m € N. (432)

We shall first fix m, and let n to infinity, and then let m to infinity (the order of the limits
is important here, see Remark 4.3.2). The key point, as in the case of doubly reflected
BSDEs related to Dynkin games, is to deal with the difference of the nondecreasing pro-
cesses K™ and K™™~, and the main difficulty is to prove their convergence towards
respectively the nondecreasing processes K and K ~, which appear in the minimal solu-
tion to the reflected BSDE with nonpositive jumps we are looking for. We have to impose
some regularity conditions on the upper barrier process that will be precised later.

For fixed m, let us now consider the reflected BSDE with jumps :
T
Y o= e+ / (s, Y, Z", LT ds — (K~ — KJ™7) 433)
—/ ZNdWs — / / L7 (a)p(ds,da), 0<t<T, a.s.
t

and

}/tm

IN

Ui, 0<t<T, a.s. (4.3.4)
T

/ (Up- =YD)dE™™ = 0, as. (4.3.5)
0
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where
Fo(ty,2,0) = F(ty,20) +m /A ((a) s\ (da), as. (4.3.6)

for (t,y, z,£) € [0, T] x R x R% x L2()). We know from Theorem 4.2 in [53] that there exists
a unique solution (Y™, Z™ L™, K™~) € S2 x L?(W) x L?(fi) x K? to the reflected BSDE
with jumps (4.3.3)-(4.3.4)-(4.3.5).

Remark 4.3.1. Note that in [53] the existence of (Y™, Z™, L™, K" ™) is proved using a
fixed point argument and not through the penalized sequence (Y™™, 6 Z"™™ L™™), ex-
cept for the particular case where the generator F, ,,,(¢,w) does not depend on y, z, ¢, see
Theorem 4.1 and Remark 4.1(i) in [53]. The reason is that in [53] the authors do not im-
pose any monotonicity condition on the generator F' and therefore they do not have at
disposal a comparison theorem for BSDEs with jumps. Nevertheless, under our monoto-
nicity condition (4.2.1) and by means of the comparison Theorem 4.7.1, the existence of
(Ym zm L™, K™™) can be proved via the penalized sequence (Y™™, 6 Z™" L™™). This
program is carried out in [41], Theorem 5.1, even though under the additional hypothesis
that the barrier U is a P-measurable process. More precisely, it can be shown that Y is
obtained as the decreasing limit of Y™™ when n goes to infinity :

Yy = lim [Y,"™, 0<t<T,as.
n—o0

and this convergence also holds in L2(0, T). Furthermore, (2™, L™™) converges weakly
to (Z™,L™) in L2(W) x L2(fi), and we have the strong convergence

(Z, L) 5 (27, L") in LP(W) x LP(7), as n— oo,
for any p € [1,2), while
K™™ — K™ weaklyin L3(F;), as n— oo

forall0 <t <T. O

We first derive the following important property on the sequence of nondecreasing
processes (K™ 7).

Lemma 4.3.1. The sequence of processes (K™ ™), satisfies :
K" —KM™™ < K" KM 0<s<t<T, as., VmeN. (43.7)
Proof. By definition of K™""~, and from (4.3.2), we clearly have for all n,m € N :
KPP — Krme < Kbt gt 0 < s <t < T as.
Thus, by passing to the (weak) limit as n goes to infinity, we get the required result. [

By (4.3.2), we see that (Y™),, is a nondecreasing sequence : Y < Y™"! and we
denote :

Y, = Y’ 0<t<T,
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which thus provides a lower bound for the sequences (Y) and (Y"™™) :

Y, <YY" < Y"" 0<t<T,Vn,meN. (4.3.8)

Moreover, under condition (H0), we observe that the quintuple (Y, Z, LK+ K ~) satis-
fies [4(Lt(a))+A(da) = 0 dt ® dP a.e. so that

Fn,m(t7ﬁ72t7f/t) < F(i/t,Zt,I/t), dt @ dP a.e.

By the comparison Theorem 4.7.1, we then get an upper bound for the sequences (Y™)
and (Y™™):

Y <Y < Y, 0<t<T,Vn,meN. (4.3.9)
By standard arguments, we now state some estimates on the doubly indexed se-
quence (Y™™ Zmm [mm KM expressed in terms of (K™ 7).

Lemma 4.3.2. Let assumption (HO) hold. Then there exists a positive constant C, such that for
alln,m € N,

Y2, + 12770, g, + I, )+ I,
S S

L2(W) L2(p)

T _
< C(E|§y2+E/ |F(5,0,0,0)]%ds + |[Y]°. + | Y|’ +]K”’m"|]22>.(4.3.10)
0 s2 s2 S

Proof. In what follows we shall denote by C' > 0 a generic positive constant depen-
ding only on 7', A\(A4), and the Lipschitz constant of F', which may vary from line to line.
Proceeding as in the proof of Lemma 3.3 in [75], we apply Itd’s formula to |Y*™|? bet-
ween t and 7', and get after some rearrangement :

E’Ktn’m‘Q 4 HZn’ml[t,T] ”iz(W) + HLn,ml[th] ”iz(m
T T
— El¢[?+2E /t YImE(s, Y 20 [0 ds — OF, /t /A YL () A(da)ds
T T
+ 2E / YA K™ 2R / YK (4.3.11)
t t

By the linear growth condition on F, the inequality ab < a?/2 + b%/2, and recalling that
A(A) < o0, we get

T T
2E / YE (s, YO ZET L™ )ds — 2B / / Y L™ (@) M(da)ds (4.3.12)
t t JA
T n,m|2 1 T 2 1 n,m 2 1 n,m 2
<CE ) [y d5+§E ; |F(5,0,0,0)|"ds + 5”2 ’ 1[t,T]”L2(W) + §”L ’ 1[t,T]HL2<m'

From the bounds (4.3.8)-(4.39)on Y™™ : Y <Y™™ < Y, and thanks to the inequality 2ab
< a?/a + ab? for any constant a > 0, we have

T T
2E / YK R / Yo g R
t t

1 2 v l|12 m,+ m,+2 m,— m,— 2
< (12, +1IV12,) + QBIKE™ — K™ 4 oB|KE™T - K
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n,m n,m|2
T Kt ’ )

1 9 — 12 m,— m,—
LIy, + I712,) + 3aElpm — Rp

where we set K7 := K™ — K", so that E| K™ — K" |2 < 2E| K™ — K™ |?
+ 2E| K™ — K |2. Together with (4.3.12) and (4.3.11), this yields :

[y, + Hanl[tT 12 *HL’”" il

LZ(W) L2Z(p)

T 1 _
,m |2 2, = 2 L 2 2
< CIE/t V2™ 2ds + E|¢|* + 2]E/0 |F(s,0,0,0)|%ds + a(HXHS2 + ”YHSz)
A + 3aE| K™ — KT 4 20| K™ — KR (4.3.13)

Now, from the relation (4.3.1), we have

K;’m—Ktn’m — nm 5 / FS Ynm an an)d

+/ Zmm AW, +/ /L”m p(ds, da),

so that by the linear growth condition on F':
T
EIKP™ — K™ < C<E|£|Q+E/ |F(5,0,0,0)|%ds + E|Y;"™? (4.3.14)
0
r 2 2 2
n,m n,m n,m
+E [ + 127 B, + 12 g e )

By choosing o > 0 such that 2aC < 1/4, and plugging this estimate of E| K7™ — K;""|?
into (4.3.13), we get forall 0 <t <T':

3
SR 4 120, + I

T
< CE [ [ypmids + Sl + I / IF(s,0,0,0)%ds

¢ 4 4 Jo

1 2 112 n,m,— n,m,—
+ = (IY)2, +I¥I2,) + 3aE|K7™ — K,
B T
< O(HYH; + Y17, + B¢ +E / 1F<s,o,o,0>|2ds) + 120 K™™ 7| §44.3.15)
0

where we used again the bounds Y < Y™™ < Y and the inequality E| K7™~ — K" |?

< 4E|K7™ 7|2, This proves, taking ¢t = 0 in (4.3.15), the required estimate (4.3.10) for

(zmm™ L"), and also for K™™* by (4.3.14), and recalling that E| K™ > < 2| K}2™|?

+ 2E| K" |2. Finally, the estimate for ||V 42 in (4.3.10) follows as usual from the rela-

tion (4.3.1), Burkholder-Davis-Gundy inequality, and the estimates for (2™, L™™, K™™ ).
U

The key point is now to obtain a uniform estimate on K™ ~, and consequently uni-
form estimates on (Y™™ Z™™m [nm K™™1) in view of Lemma 4.3.2. Let us introduce
the following set of probability measures. For m € N, let V,,, be the set of P @ B(A)-
measurable processes valued in (0,m], V = U, Vy,, and given v € V, consider the proba-
bility measure P equivalent to IP on (2, 1) with Radon-Nikodym density :

dP” v
P, = (f = 5t(// vs(a) — 1)a(ds da))
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where &;(-) is the Doléans-Dade exponential. Indeed, since v € V is essentially bounded,
and A\(A) < oo, it is known that ¢” is a uniformly integrable martingale (see e.g. Lemma
4.1 in [75]), and so defines a probability measure P”. Moreover, (7 € LP(Fr) for any
p > 1. Notice that the Brownian motion W remains a Brownian motion W under P,
while the effect of the probability measure P, by Girsanov’s theorem, is to change the
compensator A(da)dt of p under P to v4(a)A(da)dt under P”. We then denote by * (dt, da)
= p(dt, da) — v¢(a)\(da)dt the compensated martingale measure of ;, under P”.

Inspired by [52] (see also [31]), we make the following regularity assumption on the
upper barrier :

(H1) There exists a nonincreasing sequence of processes (U*);, such that :
(1) limg oo Utk =U;, forall0<t<T,as..
(ii) Forany k € N, U* is in the form :

t t
uF = U{;+/ ufds+/ AW, 0<t<T, as.
0 0

where (v*), € L2(0, T) and (9%);, ¢ LZ(W).
(iii) There exists some p > 2 such that :

T
sup/ E[ebbsup]E”[ sup (|UFP 4 kP + Wk|p)‘]:tﬂ
keN Jo vey t<s<

+/ E[esssupE”[ sup |F(5,O,O,0)|p‘]:t]}dt < oo.
0 vey t<s<T

We shall see later in the Markovian framework how Assumption (H1) is automatically
satisfied, see Remark 4.5.3. The following key lemma states a uniform estimate for K™~
under condition (H1).

Lemma 4.3.3. Under condition (H1), we have

sup |[K™™ || < oo.

n,meN s2

Proof. Let (U*), be in the form as in assumption (H1)(ii) and consider for positive
integers n, m, k, the difference Y% := Y™™ — ¥, which is then expressed in backward
form as:

_ T
vt = a%¢+/ (F(s, Y2, Z0, L) + vf)ds
T _
—l—m/ /L"m ))+)\(da)ds—n/ (U, — UF — Yrmky_ds
_/ (an 19k dW, — / /an wu(ds, da). (4.3.16)
t

Now, by the Lipschitz condition of F in (y, z), and the monotonicity condition (4.2.1) of
Fin /¢, we have foralln,m € N :

F(t,Y,"™ 2™ L™ = F(t,0,0,0) + o ™Y + g7 2™
+ [ AT@L (@A (da) - 57
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for some sequence of bounded predictable processes (o) valued in R, (8™"™) valued
in R?, uniformly bounded in n,m, a nonnegative sequence of predictable process (6™™),
and a nonnegative sequence of bounded P ® B(A)-measurable maps (™), uniformly
bounded in n, m. Plug this decomposition of F' into (4.3.16), and let us consider the pro-
cess {7t < s < T} of dynamics :

dry™ = TE™(al™ —n)ds + BmdWs], t<s<T, Ty™ =1,

S

and given explicitly by :

mpm = el ek g _ Sl B AW) [
’ ) T & paawy) T

where & (-) is the Doléans-Dade exponential. Since 5™ is a bounded process, we see that
{M;2™, t < s < T} is a uniformly integrable martingale, with M,7™ € LP(Fr) for any p
> 1. By applying It&’s formula to the product {I'j;"Y»"™F t < s < T}, we then obtain :

YR = TEM(E - UR) + /t ! [ (F(s,0,0,0) + ol "UF + ™05 + vf)ds
+ / ' L5 [nY™F —n(Us — UF = Y9 - — 60 ds
+ / J TR B @)L (@) 4+ m(LE (@)1 = va(a) L (0)]A{da)ds
/ Ty (Z0m — 9k 4 Yrmk grm) ayy, — / J T L @) (ds, da),
for any v € V, where we introduced the compensated measure i of x under P”. By

choosing v = v € V defined by : 1}"™(a) = (/"™ (a) + m)L{ 1 (wy=0y + (11""(a) +
£)1{mm (4)<0y, for some arbitrary € > 0, we see that :

(@) L™ (a) + m(L ™ (@) — v (@)L (@) = —eL™ (@)l gy<0y-
Observe also that
nY" " (U, — UF = YR e <0, 0<t<T, as.

since U < U*, and 6™™ > 0. Recalling that £ < Ur < U%, the explicit expression of I'™™,
and the fact that (o), (™™) are uniformly bounded in (¢,w,n,m), we then get the
existence of some positive constant C' such that :

ypmk C/ e "D M (|F (5, 0,0,0)] + [UF| 4 [9%] + |0F|)ds (4.3.17)
—E/ /anan ].{an( )<0})\(da)ds
/ an an 19k—l—Ynmkﬂnm dW / /I‘"anm( ) nmg(dg da)

for any n,m, k € N\ {0}, e > 0. Denote by S;"""" = [ITp"(Zmm — gk 4 ymmkgnm)qyy,,

s

0 <t < T, which is a P¥-local martingale, for any v € V, by recalling that IV remains

82



a Brownian motion under P”. From Burkholder-Davis-Gundy, Bayes formula, Cauchy-
Schwarz, and Doob inequalities, we have

E"[ sup |S;"™]
0<t<T

< CE'[\/< Snmk ] = CEY \// (D0 2| 20— 9k 4 Yk g 2]
< CE[@ sup rggm\/ / yzf””—ﬁfﬂ%"’m”“ﬁf’mlwt]
0<t<T 0
ST .
< C(E[¢t"E] sup [T5™"]) %E[/ |2 = 9F + Y B 2t
0<t<T 0

1 T _
< C(EUC%I“]E[IMS}’”\“])“\/E[ / |2 — 9F + YR g 2]
< oo, (4.3.18)

where we used the fact that o™™, ™™ are bounded processes, Z™™, 9" lie in L2 (W), and
Y™™k in L2(0, T). Therefore, S is a uniformly P"-integrable martingale for any v €
V, and similarly we show that [} [, T} L™ (a)i” (ds, da) is a PY-martingale. Hence, by
taking conditional expectation with respect to P*""" into (4.3.17), we have for all n,m, k
eN\{0},e>0:

= C n,m,e
vk < SR sup M (|F(s,0,0,0)] + |UE| + 105+ b)) 7]
n t<s<T

e E / /r”mL”m a)1 {2 (o) <oy Ada)ds| 7]

C
—esssupE”[ sup M (|F(s,0,0,0)| + |UE| 4 [0%] + ’U§|)‘ft}(4.3.19)
n ey t<s<T

IN

p,E

+e B W“/ /anan JA(da)ds| Fi|, 0<t<T,

from Bayes formula. Now, for ¢ < m, we see that v"™"* < ™™ := ™™ 4+ m, and so :

TL?’HE

< C:,Cn e < ,,nm eXp( / / A(da) ds) (4.3.20)
t
This shows that
llm€E Vnma / / " L™ (a)|A(da) ds\]—"t] = 0, 0<t<T, (43.21)
e—0

and so by sending ¢ to zero into (4.3.19) :

IN

IN

UF —Y™) - = (Y™,

C n,m
—ess supE”[ sup M;™(|F(s,0,0,0)| + \UF| + [0%] + |v§\)].7—"t]
n  vey t<s<T

C
fesssupE”[ sup [ME™72 + sup (|F(s,0,0,0)|% + |U¥|% + 045 + uf|2 )’ft]
n  ypey t<s<T t<s<T
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forall0 <t < T, and p > 2, by Young inequality. Recall that W is a Brownian motion
under P¥, and so {M;>™,t < s < T} is a martingale under P, for any v € V. By Doob’s
inequality, we then have withg =p/(p —2) > 1:

n,m L q nm
EV[;EET’MtS m]—ﬂ < (q—l) EVHMtT ’q‘]:t}

q \4
(E) exp (q(q — 1)||BI1%(T = 1)),
where || ]|« is a uniform bound of (5™™), hence independent of n, m and v € V. We then
deduce that

(Utk -y

<

C
—(1+esssupE”{ sup (|F(8,0,0,0)|§+|Uf|g+|19§|g+|v§|g)]ft]>
n vey t<s<T

forall0 <t <T,n,m,k € N\ {0}. By Cauchy-Schwarz inequality, we then obtain :
T 2
]E[n/ (UF = Y"™)_dt]
0

T

< C’(l +/ E[esssupE”[ sup (|F(s,0,0,0)[P + |UF[P 4 |9%P + ]U?\p)‘.ﬁ}dt)
0 vey t<s<T

By taking p > 2 as in Assumption (H1)(iii), and then sending k to infinity in the Lh.s. of

the above inequality, we get the required uniform estimate on K™ . O

Corollary 4.3.1. Let assumptions (HO) and (H1) hold. Then, we have

sup (Y™ gz + 112 F L™ gy + IE™ s + 1K™ Nls) < oo,
m

L2(W) L2(f)

where K" :=m [ [, (L7 (a)) , A(da)ds.

Proof. From the bounds (4.3.8) and (4.3.9), we already have the uniform estimate for
[Y™| 42 Moreover, by Lemmata 4.3.2 and 4.3.3, we have the uniform estimates :

swp (1127 z , + 17"

n,me

B | + K™ ) < oo,

L2(W) L2(f)

We deduce that the weak limits (Z™, L™, K™ ™) of (Z™", L™", K™"~) when n goes to
infinity, are also uniformly bounded in L2(W) x L2(ji) x S2. From the strong convergence
of L™ to L™ in LP(f1), 1 < p < 2, we see by definition of K™% and K" that Kgf’m’Jr
converges strongly to K77 in LP(Fr), when n goes to infinity. Moreover, since (K/2™7),,
is uniformly bounded in L2(Fr), it also converges weakly to K" in L2(Fr). It follows
that (K™),, inherits from (K™""),, ,,, the uniform estimate in S. O

We can now state the main result of this section as a consequence of the monotonic
convergence theorem stated in Appendix 4.7.2, which extends to the Brownian-Poisson
filtration framework the result of Peng and Xu [88].

Theorem 4.3.1. Let assumptions (HO0) and (H1) hold. Then there exists a minimal solution
(V,Z,L,KT,K~) € 8% x L2(W) x L2(fi) x K2 x K2 to the reflected BSDE with nonpo-
sitive jumps (4.2.2)-(4.2.3)-(4.2.4)-(4.2.5), where :
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(i) Y is the increasing limit of (Y"™"),.

(i) (Z,L) is the strong (resp. weak) limit of (Z™, L™),, in LP(W) x LP (1), with p € [1,2),
(resp. in L2(W) x L2(f2)).

(iii) K, is the weak limit of (K} ), in L2(F;), and K, is the strong limit of (K| )y, in
L2(F), forany 0 <t < T.

Proof. We already know that (Y™),, is a nondecreasing sequence in S2, which converges
to some Y, which satisfies Y < Y <Y from (4.3.8) and (4.3.9), and so lies in S2. By Lemma
4.3.1 and Corollary 4.3.1, we then see that the sequence (Y, Z™, L™, K™% K™),, so-
lution to the BSDE (4.3.3) satisfies all the conditions of the monotonic limit Theorem 4.7.3.
This provides the existence of (Z, L, K™, K~) € L2(W) x L2(fi) x K2 x K? as in the as-
sertions (ii) and (iii) of Theorem 4.3.1 such that the quintuple (Y, Z, L, K™, K~) solves
(4.2.2).

From the strong convergence in L} (i) of (L™),, to L, and since A\(A) < oo, we have

//Lm A(da)dt] — E/ / (Le(a)) , A(da)di]

as m goes to infinity. Moreover, since K"" = m fOT (L¢(a))+A(da)dt is bounded in m in

L2(Fr), this implies that
// Ly(a)) Mda)dt] = 0.

which means that the constraint (4.2.3) is satisfied. The upper reflection (4.2.4) is ob-
viously satisfied from (4.3.4) and by sending m to infinity. Let us now check the Skorohod
reflecting condition (4.2.5). We recall from (4.3.5) that foT (U~ = Y/™)dK;™™ = 0. Together
with the fact that U;- — Y™ > U~ — Y}~ > 0, this yields fOT(Uf —Y,-)dK;"" = 0. Since
(K[ )m converges strongly to K, in L?(F;) for all ¢, and by Lemma 4.3.1, this implies
that the measure dK™ ™~ converges weakly to dK ~, and so f(;f (Up- = Y;-)dK; =0as.

It remains to prove the minimality condition. Let (}7, Z, LKt K ~) be another solu-
tion to the reflected BSDE with nonpositive jumps (4.2.2)-(4.2.3)-(4.2.4)-(4.2.5). We then
see that [J [,(Ls(a))+\(da)ds = 0, and thus F(t,Y;, Zy, L) = F(t,Yi, Zy, Ly), for 0 < t <
T. From the comparison Theorem 4.7.2, we deduce that Y, < Y, 0<t<T. Taking the
limit with respect to m, this proves the minimality condition : Y; < YV, 0<t<T. O

Remark 4.3.2. The order of the limits : first let n to infinity, and then let m to infinity,
is crucial in our approach. Indeed, by sending first n to infinity, we get a nondecreasing
sequence of processes (K™~ ),, (see Lemma 4.3.1), which is a required property for ap-
plying the monotonic convergence theorem in Theorem 4.3.1. On the other hand, if we
would first let m to infinity in the double sequence (Y™™, Z™™ [™mm K™t KM=
then we would obtain a minimal solution (Y™, Z", K™%) to the BSDE with nonpositive
jumps :

A T A A A T A A A
Vo= §+/ F(S,YS",ZQ,LQ)ds—n/ (Us = Y _ds + Kbt — Kt
t

- / Zraw, — / / i7(a)u(ds, da), 0<t<T, (4.3.22)
t
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L(a) < 0, dP®dt® \da) a.e.

and (Y™),, is a nonincreasing sequence, converging to some Y > Y by (4.3.2). But neither
K™%, which is the weak limit of K™, as m goes to infinity, nor K;" := nfg(Us -
Y)_ds, satisfy monotonicity properties in n, which prevents to apply the monotonic
convergence theorem to the sequence (Y”, Zn Kt K ™7 )p, and thus to identify Y =
Y as the minimal solution to the reflected BSDE with nonpositive jumps. This differs
from the case of doubly reflected BSDEs where one can send indifferently first m or n to
infinity. O

4.4 Dual game representation

In this section, we consider the case where the generator F'(¢,w) does not depend on
y, 2,¢, and we provide a dual game representation of the minimal solution to the reflected
BSDE with nonpositive jumps in terms of a family of equivalent probability measures and
discount factors. In addition to the set of probability measures P¥, v € V = U,,,V,,, defined
in the previous section, let us introduce for any n € N, the set ©,, of F-progressively
measurable processes valued in [0, 7], and set © = U,,0,,, which shall represent the set
of discount processes. Inspired by Proposition 6.2 in [31] and the dual representation in
Section 4 of [75], we prove an explicit representation formula for the minimal solution to
the reflected BSDE with nonpositive jumps.

Proposition 4.4.1. (i) For any n € N and m € N\ {0}, the solution to the penalized BSDE
(4.3.1) admits the following dual representation formula :

Y,""™ = esssupessinf Gi(v,0) = essinfesssup G¢(v, ),
vEVm 0€O, 0€B, vEVm

forall 0 <t < T, where
Gi(v,0) = [ f 0s ds§+ / - o dr (F(s) + 0:Us)ds | .7-}]

(ii) Under assumptions (HO) and (H1), the minimal solution to the reflected BSDE with nonpo-
sitive jumps (4.2.2)-(4.2.3)-(4.2.4)-(4.2.5) is explicitly represented as :

Y, = esssupessinf Gi(v,0), 0<t<T. (4.4.1)
vey 0O

Proof. (i) Fix n € Nand m € N\ {0}. For § € ©, by applying Itd’s rule to the product of

the processes e~ Jo Osds and Y™™ in (4.3.1), and by introducing the compensated measure
@¥ (dt, da) under P” for v € V, we obtain :

thn,m _ f 9ds§+/ f 0r dr (S)+03Us)d8

[0 ] T @) — (@) L @) A da)ds

T s
_/ e S O (U, — Y 4 0,(U, — Y™))ds
t
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T S T S
- / e Ji rdr g gy _ / / e I Ordr pnm ) i (ds, da).
t t A

By same arguments as in (4.3.18) (see also Lemma 4.2 in [75]), we can check that the P” lo-
cal martingales { [;’ e~ I brdr gnmqW,, t <s < Tyand { [ [, e~ ) Ordr pom () ¥ (du, da), t <
s < T'} are actually uniformly integrable P”-martingales, so that by taking conditional ex-
pectation under P :

S

T s
Y = Giw.0) + B /t Ae—ﬁ Ordr (i (L™ () 4. — vs(a) L™ (a)) A(da)ds

and this relation holds for any v € V, and 6 € ©. Now, observe that for any v € V,,,, hence
valued in (0, m], we have

m(Ly™(a))+ —vi(a) L™ (a) > 0, 0<t<T,acA, as.

and for v = v € Vp, defined by : vf(a) = mlypnm(4)>0y + €lpnmq)<qy, for arbitrary e €
(0,m], we have

m(Ly""(a))+ — vi(a) Ly (a) = —EL?’m(a)l{L?,m(aKo}, 0<t<T, acA, as.
Similarly, for any 6 € ©,,, hence valued in [0, n], we have
n(Uy = Y"")_+6,(U,-Y,"™) > 0, 0<t<T, as.
and for 0* € Oy, defined by : 07 = nlgynm.y,;, we have
n(Uy —Y,"")_+0; (U, —Y"™) = 0, 0<t<T, a.s.

Therefore, by (4.4.2), we get

Gi(v,0") < Y™ = G(5,0%) +eR"™(0%), Vv € Vpy, (4.4.3)
< Gt(ya> 9) + 6R?7m7€(9)a
< G,(F,0) + eRM™E(0), VO e Oy, (4.4.4)

for all € € (0, m], where we set :
a1 (T °0,.d
rpee) = B[ e L0t @) da)ds| 7.
t JA

For fixed m, and by viewing the BSDE (4.3.1) as a penalized BSDE in n for the upper-
reflected BSDE with generator F),, in (4.3.6), we have by standard arguments based on
It6’s lemma, uniform estimates in n for (Y™, Z™™ L[™™) in 82 x L%(W) x L2(ji) (see
Theorem 4.2 in [41]). Actually, these arguments show that for all 0 < ¢ < T, there exists
some real-valued F;-measurable random variable C}"* such that

T
sup E| / / 2™ (0)PA(da)ds| R < Cp. (4.4.5)
neN t A
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Moreover, since v¢ < m, we see as in (4.3.20) that C%E /¢ < em(T—H)A(A) ¢t /¢, where (" is
the Radon-Nikodym density of dP” /dP for v = m. Thus, by Cauchy-Schwarz inequality,
there exists some real-valued F;-measurable random variable C~’tm such that

sup R;"™°(0) < O, (4.4.6)
neN

for all £ € (0, m]. Now, by (4.4.3), we have : egz(ianf esssup G¢(v,0) < Y;""™, and by (4.4.4),
n VeV,
we get:

Y7 < esssupessinf Gi(v, 0) + eR;""°(0).
Z/GVm 66@”

By (4.4.6), we see in particular that e R;""*(0) — 0 a.s. as £ goes to zero. Since we always

have ess sup ess (ianf Gi(v,0) < ess (ianf esssup G¢(v, 0), this shows that

uGVm €0n €0y I/EVm
Y™ = lim G¢(v°,0*) = esssupessinf Gy(v,0
t 250 ( ) ) uevmp 0co, t( ) )
= essinfesssup Gy(v,6), (4.4.7)

ie. (1°,0%) € V;,, X Oy, is an e-saddle point for G¢(v, 6).
(ii) By sending m to infinity into (4.4.7), and recalling that Y = lim,, Y™™, we get :

Yy = esgseiélf eise ?}lTlnp Gi(v,0) > els/se i?np eseseiélf Gy(v,0). (4.4.8)

On the other hand, for arbitrary ny € N, we see that for any § € ©,,, and any n > ng :
n(U = Y"")_+0,(U; = Y,"™) > 0, 0<t<T, as.,
which implies, from (4.4.2),
Y/ < Gy(v,0) (4.4.9)

+ Ey[/tT/Ae_ N O (m (L™ (a)) 4 — Vs(a)L?’m(a)))\(da)ds|}‘t]’

forany v € V, 6 € O,,,, and n > ny. Now note that, since L™™ — L™ strongly in LP(f),

€ [1,2), then, up to a subsequence, L™ — L™ dP ® dt ® A(da) almost everywhere.
Moreover, as already recalled in step (i) of the proof, we have uniform estimates in n for
(L™™) € L?(f1), namely, from (4.4.5) with t = 0,

T
supE | / / L2 (@) Mda)ds| < CF, (4.4.10)
neN 0 A

for some positive constant Cj*. Then, sending n to infinity in (4.4.9) we obtain, from
Lebesgue’s dominated convergence theorem,

Y < Gy(v,0) (4.4.11)

+ EVUtT/Ae_ J 0 (L (a)) 4 — Vs(a)L;"(a)))\(da)dﬂft}
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for any v € V, § € ©,,. Since © = U,,0,, from the arbitrariness of ny we conclude that
(4.4.11) remains true for all § € ©. Take 7 € Vy, defined by : 7f(a) = ml{pm@)>0) +
€l(pm(q)<0}, for arbitrary e € (0, m], so that

m(L{"(a))+ —vi(a)L{*(a) = —ELG(CL)l{L;n(a)<0}, 0<t<T, acA, a.s.,
and thus by (4.4.11) :
Y < Ge(05,0) 4+ eRT°(0) < Gi(55,0) +eR™(0), VY8eO, (4412

for all € € (0, m], where we set :
5 T )
RPE9) = B / / e I 0| (@) A(da)ds| 7.
t Ja

Using again the uniform estimate (4.4.10) and the fact that, up to a subsequence, L"™™ —
L™ dP ® dt @ A(da) a.e., we obtain, from (4.4.5) and Lebesgue’s dominated convergence
theorem,

E[/tTA|L?(a)|2A(da)ds|ft} < am

Moreover, as in step (i) of the proof, since 7¢ < m we see that (%" /¢7° < em™T—OMA)¢m /¢m,
Thus, by Cauchy-Schwarz inequality, it follows that, for all € € (0, m],

R™(0) < O,
with the same real-valued F;-measurable random variable C‘z" as in (4.4.6). Then, from
(4.4.12) we get

Y," < esssupessinf Gy(v,0) +CI",
Vevm 6co

for all € € (0, m]. By sending ¢ to zero, and combining with (4.4.8), we obtain :
" = inf Gy(v,0
f essin esyse ?/gbp +(v,0)
= inf G¢(v, 0). 4.4.13
elsj.se ?}ljnp essin +(v,0) ( )
Finally, by sending m to infinity into (4.4.13), we obtain the dual relation (4.4.1) for ¥ =
lim,, Y. ]

Remark 4.4.1. We don’t know in general if one can switch in (4.4.1) the essential infimum
and supremum. Actually, by considering ¥ = lim,, Y™™ the minimal solution to the
BSDE with nonnegative jumps (4.3.22), one could show by similar arguments as in the
second part (ii) of Proposition 4.4.1 that :
v = inf Gi(v,0) = inf G¢(v, 0),
f essin: esS ES]ljlp (v, 0) esS ES]l}lp essin: (v, 0)
so that Y := lim,, V" satisfies :
Y, = inf Gi(v,0).
! essin esS Esgp +(v,0)
However, as pointed out in Remark 4.3.2, we cannot conclude whether Y; is equal or
strictly greater than Y;. O
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4.5 Connection with H]B Isaacs equation for controller-and-stopper
games

In this section, we show how the minimal solution to our class of reflected BSDEs with
nonpositive jumps provides a probabilistic representation (hence a Feynman-Kac for-
mula) to fully nonlinear variational inequalities of Hamilton-Jacobi-Bellman (HJB) Isaacs
type arising in a controller/stopper game, when considering a suitable Markovian fra-
mework.

4,5.1 The Markovian framework

We are given two measurable functions b : R x R? — R? and o : R? x R? — R%*? and
we introduce the forward Markov regime-switching process (X, I) in R? x R? governed

by :
dX; = b(Xt, It)dt + O'(Xt, It>th (4.5.1)
I, — / (a— I, )u(dt, da). 452)
A

Therefore, the coefficients b and o, appearing in the dynamics of the diffusion process
X, change according to the pure jump process I, which is associated to the Poisson ran-
dom measure ; on R, x A. We make the following standard assumption on the forward
coefficients b and o :

(HFC) There exists a constant C such that
b(z,a) —b(z',d")| + |o(z,a) —o(2',d')] < C(lz—2'|+|a—d]),
forall z,2’ € R?and a,a’ € RY.
It is well-known that under hypothesis (HFC) there exists a unique solution (X%, [%%)
= (XL [L%),<s<r to (4.5.1)-(4.5.2) starting from (z,a) € R? x R? at time s = ¢ € [0, 7.

Furthermore, we have the standard estimates : for all p > 2, there exists some constant
C) such that

E[ sup (|XL2P + (1) < Cp(t+[af + [af?), (453)

t<s<T
forall (t,z,a) € [0,T] x R? x RY.
Remark 4.5.1. Notice that the constant C), in (4.5.3) depends only on p, T', and the growth
linear condition of b, o in (HFC). Since the dynamics (4.5.1) of X is not changed by the

change of probability measure P¥, v € V (recall that W remains a Brownian motion under
P¥), we then see that forallp > 2:

P IbP), t<s<T,

B[ sup (IXFP + )] < G141

s<r<T
forall v € V, and thus:
T
/ ElesssupE”[ sup (IXE2F + |I597)|F]|ds < Cy(1+|af + |af), (45.4)
t veV s<r<T

for all (t,z,a) € [0,T] x R% x R4, O
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Regarding the reflected BSDE with nonpositive jumps, the terminal condition, the
generator function, and the barrier are given respectively by some continuous functions
g: RIS R, f:RIxRI xR xR - R,and u : [0,7] x R? — R. We make the following
assumptions on the BSDE coefficients :

(HBO)
(i) The functions g, f(-,,0,0) and u satisfy a polynomial growth condition :
z,a, 07 0 x)| + |u t, xT
wp @001 o)+t )
zeRd,qera 1 + |z + |al t€[0,7],z€R? 1+ |z

for some h > 0.
(ii) There exists some constant C' such that :

]f(x,a,y,z) - f(‘r’aay,,zl)‘ S C(|y - y,| + |Z - Z/D’

forallz € R, a € R, y,y €R, 2z, 2/ € R

(iii) u(T,x) > g(z), for all z € R¢, and there exists a nonincreasing sequence of func-
tions (u*);, lying in C12([0, T] x R?), and converging pointwisely to u such that the
following polynomial growth condition holds

P8 (t, @) + [ Dot (2, )| + [ D20k (1, )|

sup  sup

- < oo,
keN t€[0,T],2€R? 14 |z

for some h > 0.

In this Markovian framework, the reflected BSDE with nonpositive jumps (4.2.2)-
(4.2.3)-(4.2.4)-(4.2.5) takes the form :

T
Y = g(Xr) +/ f( X, 14, Yy, Zg)ds + Kf — K7 — (K — K;7) (4.5.5)
t

T T
—/ ZsdWy —/ / Ls(a)p(ds,da), 0<t<T, a.s.
t t JA

with
Li(a) < 0, dP®dt® A(da) a.e. (4.5.6)

and
Vi < w(t,Xy), 0<t<T, as. (4.5.7)
/OT(u(t, X)) - Y, )dK; = 0, a.5. (4.5.8)

Notice that under (HFC) and (HBC) the terminal condition {(w) = g(Xr(w)), the ge-
nerator F(t,w,y,z,{) = f(X¢(w), [;- (w),y, 2), and the barrier U;(w) = u(t, X¢(w)) clearly
satisfy the standing assumptions 1-4 in Section 2. Let us now discuss about conditions
(HO0) and (H1) in the two following remarks.
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Remark 4.5.2. Condition (HO) is satisfied in our Markovian framework. Actually, it is
shown in Lemma 5.1 in [75] that under (HFC) and (HBC)(i), (ii), there exists for any initial
condition (¢, z,a) € [0,T] x R x R, a solution {(Y1®®, Zbwa [Lee Kbeat) t < s < T}
to the BSDE with nonpositive jumps (4.2.6)-(4.2.7) when (X, ) = {(X/®* IL%),t < s <
T}, with Y% = (s, X4%4) for some deterministic function ¥ on [0, 7] x R? satisfying
the polynomial growth condition :

“u 0(t, )|
p T
(t2)e0,T] xR 1+ |Z]

for some r > 2. Such solution is constructed by Itd’s lemma from a smooth supersolution
to

—— —sup[L% + f(-,a,0,07(-,a)D,v)] > 0, onl0,T) x R?

=
~
&

\

g(z), =zeRY
where
L% = b(x,a).Dyp+ %tl‘(UO'T(m, a)D?p),
which can be chosen equal to o(t, z) = Ce?T=) (1 + |2|"), with r = max(2, h), for C and p
positive large enough. O

Remark 4.5.3. We also observe that assumption (H1) is satisfied in the present frame-
work. More precisely, given an initial condition (¢, z, a) € [0, 7] x R? x RY, let us consider
the process U k ke N, defined by :

Ub = uF(s, X0, t<s <T.

By It6’s formula, U ¥ is in the form of condition (H1)(ii), with

ouk
oh = (s XD 4 b(XDT IE). Dyt (s, X

1
+ §t1“(O'O'T(X§’z’a, Iﬁ’a)Dguk(s, Xﬁ’z’a)),
0% = Douf(s, X\")To(X0™, 10,

»

forallt <s <T,a.s., and we clearly see from (HFC), (HBC)(iii), and (4.5.3) that

E[/tT|U§|2dS} —f—E[/tT |19’§]2d5} < o0.

Moreover, by using (4.5.4), and again from the polynomial growth conditions on b, o, F’
and v* in (HFC), (HBC), there exists some p > 2 such that

T
sup [ Bfesssup B[ sup (UK -+ ok + [957)| 7] ds
keN Jt vey s<r<T

T
+ / E[ess supE” [ sup |f(XE% 159,0,0)["|Fs]]ds < Cp(l+ |x|P + |alP).
t vey s<r<T

for all (t,z,a) € [0,7] x R? x R4, O
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From Theorem 4.3.1, we get, for any initial condition (¢,z,a) € [0,7] x R? x RY, the
existence of a minimal solution {(Y}®® ZL®a [Loa Lot he=) 3 < g < T} to
the Markovian reflected BSDE with nonpositive jumps (4.5.5)-(4.5.6)-(4.5.7)-(4.5.8) when
(X, 1) = {(Xb®e 1b) ¢ < s < T}. Moreover, as we shall see in the next paragraph, this
minimal solution is written in this Markovian context as : Y% = v(s, X% [L@), where
v is a real-valued deterministic function defined on [0, 7] x R? x R by

v(t,z,a) = Ytt’x’a, (t,z,a) € [0,T] x R? x RY. (4.5.9)

We aim at proving that this function v does not depend actually on the argument a in the
interior of A, and is connected to the fully nonlinear variational inequality of HJB Isaacs

type :
max [ v sup (L% + f(-,a,v,07(-,a)Dyv));v — u] = 0, on[0,7) x R{4.5.10)
ot acA
o(T,z) = g(x), ze€RL (45.11)
4.5.2 Viscosity property of the penalized BSDE

Let us consider the Markovian penalized BSDE associated to (4.5.5)-(4.5.6)-(4.5.7)-
(4.5.8)

T
YA = g(Xp) + / F(Xo, I, Y, 25 ds (4.5.12)

T
—|—m/ / (L™ (a da)ds—n/ (u(s, Xs) —Y"™) _ds
t
/znde //an u(ds,da), 0<t<T,

and denote by {(Ymmboa Zrmbaa prmitra) ¢ < g < T} the unique solution to (4.5.12)
when (X, I) = {(Xbt®a, 149),t < s < T} for any initial condition (¢, z, a) € [0, T] xR xR.
From the Markov property of the jump-diffusion process (X, I), we recall from [3] that
ymmboa = ynm(g xhaa Jhay ¢ < g < T, for some deterministic function v™™ defined
on [0, 7] x R? x R? by

V(L a) = YRR (t,z,a) € [0,T] x R? x R, (4.5.13)

Next, for fixed m, let us consider the limiting BSDE of (4.5.12) as n goes to infinity, that is
the reflected BSDE :

v = g+ [ L Zds s m [ / (Ir(@) Nda)ds — (45.14)
— (K7™ = K{™7) / ZTdWs — / / LT (a)p(ds, da), 0<t<T, a.s.

and
Y <ot Xy) 0<t<T, as (4.5.15)
/0 Lt X - YK = 0, as. (4.5.16)



and denote by {(Y/wH5a Zmtaa [mta gmtiet) ¢ < g < T} the unique solution to
(4.5.14)-(4.5.15)-(4.5.16) when (X, ) = {(X/®*, I\*),t < s < T'} for any initial condition
(t,r,a) € [0,T] x R% x RY. Since Y""1:%@ converges to Y ™% as n goes to infinity, we
see from (4.5.13) that Y™ may be written as Y"\%% = ™ (s, Xt JLa) t < s < T,
where v™ is the deterministic function defined on [0, 7] x R? x R? by :

vtz a) = lim 0™ (tx,a) = Y (tx,a) € [0,T] x RY x RY.(4.5.17)

n—oo

From the convergence of Y% to the minimal solution Y**“, when m goes to in-
finity, as stated in Theorem 4.3.1, we deduce that YY" has indeed the form Y% =
v(s, XL®a, I%), with a deterministic function v defined as the pointwise (nondecreasing)
limit of (v™),, :

o(t,z,a) = lim v™(t,z,a) = Y™ (t,z,a) € [0,T] x R? x R%.  (4.5.18)

m—0o0

From the bounds (4.3.8)-(4.3.9), we have forallm € N: v(t, z,a) < v™(t,z,a) < v(t,z),
(t,z,a) € [0,T] x R? x R?, where v := 1" is associated to the reflected BSDE Y™ for m
= 0, and v is the supersolution as defined in Remark 4.5.2. By the polynomial growth
condition on v, and also on v (see e.g. Lemma 3.2 in [34]), we deduce that v"*, and thus
also v by passing to the limit, satisfy a polynomial growth condition : there exist some
positive constant C' and some p > 2, such that, for all m € N :

W™ (1,2, 0)| + ot 2, )| < C(L+ [ef? +|al?), (45.19)

for all (t,z,a) € [0,T] x R? x R%. As expected, for fixed m, the function v™ = v™(t, x, a)
associated to the reflected BSDE with jumps (4.5.14)-(4.5.15)-(4.5.16) is connected to the
integro-differential variational inequality :

max { - 8;: —b(z,a). Dy — %tr(aaT(m,a)Divm) — f(z,a,0™, 07 (x,a) Dyv™) (4.5.20)
*/A (0™ (t, 2, a") = 0™ (t, z,a)) M(dd') — m/A (W™ (t,2,d') = 0™ (L, x,a)) N(da);

vtz a) —u(t,x)] = 0,
for (t,z,a) € [0,T) x R? x RY, together with the terminal condition :
v™(T,x,0) = g(z), (z,a) € RYxRY. (4.5.21)

More precisely, we have the following result, which may be proved by extending to the
multidimensional case Lemma 3.1 and Theorem 3.4 of [34], and by using Theorem 4.7.1
as comparison theorem for BSDEs with jumps.

Proposition 4.5.1. Let assumptions (HFC) and (HBC) hold. The function v™ in (4.5.17) is a
continuous viscosity solution to (4.5.20)-(4.5.21), i.e., it is continuous on [0,T] x R? x R, a
viscosity supersolution (resp. subsolution) to (4.5.21), i.e.

v"™(T,z,a) > (resp. <) g(x)

for any (z,a) € R? x RY, and a viscosity supersolution (resp. subsolution) to (4.5.20), i.e.

1
max {— g—f(t,x, a) —b(x,a).Dyp(t, z,a) — §tr(aaT(x, a)D2p(t, x,a)) (4.5.22)
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—f(z,a,v"(t,x,a),0"(x,a)Dyp(t, x,a)) — /A (o(t,z,a") — @(t,z,a))\(da’)

—m/A (o(t,z,a") — p(t, z, a))Jr)\(da') s 0" (t @ a) —u(t,z)] > (resp. <) 0

forany (t,z,a) € [0,T) x RY x R? and any p € C12([0,T] x (R? x R?)) such that

(W™ =)t z,a) = [o,Tffu?dlqu(v —¢) (resp. [Oﬂrg%gxm(v —¢)). (45.23)
Remark 4.5.4. Notice that
vtz a) < wul(t, ), for all (t,x,a) € [0,T] x R? x R, (4.5.24)

Indeed, for any (¢,z,a) € [0,T] x R? x RY, since Y/"0%@ = o™ (s, Xb®a [La) ¢ < s < T,
we deduce, from (4.5.15) that

1 S
IE[ /(vm(r,Xﬁ’x’a,Iﬁ’a)—u(r,Xﬁ’x’a))dr < 0
¢

s—1
forallt < s < T. Since (X%®®, [%%) is cadlag, in particular it is right-continuous at time t.
Therefore, (4.5.24) follows from the continuity of v"* and w. O
4.5.3 H]JB Isaacs equation

This paragraph is devoted to the derivation of the equation satisfied in the viscosity
sense by the function v in (4.5.18), by passing to the limit, as m goes to infinity, in the
equation satisfied by v"". The first step is to prove that v does not depend on a, which is
basically a consequence of the nonpositive jump constraint :

LY (ay = w(s, XL% d') — v(s, X059, szl) <0, dP®ds® \(dd') a.e.

providing that the function v is continuous. However, as we do not know a priori that the
function v is continuous, we shall rely on (discontinuous) viscosity solutions arguments
as in [75], and make the following conditions on the set A and the intensity measure A :

(HA) The interior set A of A is connex, and A = Adh(/i), the closure of its interior.

(H))
(i) The measure A supports the whole set A : for any a € A and any open neighbo-
rthood O of a in R? we have A(O N A) > 0.
(ii) The boundary of A : A = A\ 4, is negligible with respect to ), i.e., A(9A) = 0.

Proposition 4.5.2. Let assumptions (HFC), (HBC), (HA), and (H)) hold. Then the function v
does not depend on the variable a on [0,T) x R% x A :

v(t,z,a) = ov(t,x,d), a,a € A, (4.5.25)

forall (t,z) € [0,T) x R
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Proof. The proof borrows most arguments from section 5.3 in [75], and we only report
here the main steps and the points to be modified. First, we see from (4.5.24), and sending
m to infinity that :

v < u on [0,7] x R? x R (4.5.26)
We next show that the function v is a viscosity supersolution to :
—|Dgv(t,z,a)| = 0, (t,z,a)€[0,T)xR?x A, (4.5.27)

i.e., forany (t,z,a) € [0,T) x R? x A and any function ¢ € C12([0,T] x (R? x R?)) such
that (v — ¢)(¢,z,a) = ming ) raxre (v — ), we have

—|Dag(t,z,a)] > 0, ie. Dup(t,x,a) = 0.

Indeed, let (¢,z,a) € [0,7) x R x A and ¢ € C12(0,T] x (R? x RY)) such that 0 =
(v — @)t z,a) = ming 7 gdxra (V — ). We distinguish two cases.
(i) v(t,z,a) = u(t,x). From (4.5.26), we have

ot,z,d) < wv(t,z,d) < u(t,x), Va €RY

and o(t,z,a) = v(t,z,a) = u(t,z). It follows that ¢(t, x,a) = maxyeras @(t, x,a’), which
yields : Dyo(t, z,a) = 0, since a € A.

(ii) v(t,z,a) < u(t,z). We may assume, without loss of generality, that ¢ satisfies the
polynomial growth condition sup(; ; 4)c[0,7]x R xR % < oo, with p as in (4.5.19).

Then, for any € > 0, consider the test function
(2 d) = ot 2,d)—e(|t' — t? 4 |2 — z*P + |d — a]zp),

for all (#,2/,a’) € [0,T] x R? x R Since (¢, z,a) = ¢(t, x,a) and ¢° < ¢, with equality
if and only if (¢, 2, d") = (¢, z, a), we see that

v—©°)(t,x,a) = strict min v — ).
(0= (0.2, Lm0

From the continuity and the growth conditions of v™ and ¢, we see that there exists a
bounded sequence (., Ty, @m)m (We omit the dependence on ¢) in [0, 7] x R4 x RY such
that

" — %) (tm, T, @ = min v — ©%).
( ©°) (tm, Ty W) [O,T}dequ( ©°)

By standard arguments, we obtain, up to a subsequence,

m—ro0

(tms Ty Qs O (Ey Ty Qi) (t,z,a,v(t,x,a)).

From the viscosity supersolution property of v™ to (4.5.22) at (¢, T, am,), we find
0¢°

ot
—f(@m, @, V" (b Tims @m ), 07 (T, @im) Do (tms Tims am))

—/A (0% (tiy Ty @) — @ty T,y ) ) A (da)

(tm7 Tm, am) - Acam(Pa(tmy Tm, am)
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—m/ (% (tms Tm, @') = ¢ (tm, Tm, am))  A(da') > 0.
A

By sending m to infinity, and then ¢ to zero, we conclude as in the proof of Lemma 5.3 in
[75] that : [, (¢(t,z,a") — ¢(t,2,a)) A(da’) = 0, which means under (H\) that ¢(t, z, a)
= maxyecra p(t, x,a"), i.e., Dop(t, z,a) = 0.

Finally, by arguing exactly as in Lemma 5.4 and Proposition 5.2 of [75], we obtain
under the additional condition (HA) the non dependence of v on a € A from the viscosity
supersolution property to (4.5.27). O

From Proposition 4.5.2, we can define by misuse of notation the function v on [0, 7") x
R9 by :

o(t,z) = wv(t,xz,a), (t,z)e[0,T)xRY,

for any a € A, and we see that v satisfies a polynomial growth condition when z goes
to infinity by (4.5.19). We finally state the viscosity property of v to the HJB Isaacs type
equation (4.5.10)-(4.5.11). Recall the definition of lower semicontinuous envelope v,, and
upper semicontinuous envelope v* :

vi(t,x) = liminf o(t, ) and v*(t,z) = limsup o(t,2'),
("2 )= (t,x) (' &)= (t,x)
t'<T tv'<T

for all (t,z) € [0,7] x R4

Theorem 4.5.1. Let assumptions (HFC), (HBC), (HA), and (H)) hold. Then v is a viscosity
solution to (4.5.10)-(4.5.11) in the sense that it verifies :
(i) Viscosity supersolution property :

ve(Tyx) > g(x), (4.5.28)
for any x € R%, and
max { — a—(p(t, x) — sup (E“go(t, z) + f(z,a,v.(t, ), 07 (z,a) Dyp(t, JL')))7 (4.5.29)
ot acA

vi(t, ) —u(t,z)] > 0

for any (t,x) € [0,T) x R? and any p» € CY2([0,T] x R?) such that (v. — ¢)(t,z) =
min[o,T]de(U* - )

(ii) Viscosity subsolution property :
v(T,z) < gla), (4.5.30)

for any x € R?, and

max [— ?;;(t,x) — 21615) (ﬁ“ap(t,x) + f(z,a,v"(t,2),07(z,a)Dyp(t, x))), (4.5.31)

v*(t,x) —u(t,z)] < 0

for any (t,x) € [0,T) x R? and any ¢ € CY2([0,T] x R?) such that (v* — ¢)(t,z) =

maxig 7)xrd (V° — ¢)-
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Proof. The proof is quite similar to the proof detailed in Section 5.4 of [75], and we
report only the main arguments and the points to be modified with respect to the proof
in [75].

e Viscosity supersolution property (4.5.29) : Since v is the pointwise limit of the nondecrea-
sing sequence of continuous functions (v"), and recalling (4.5.25), we know (see e.g. [2])
that v is lower semicontinuous and so :

v(t,z) = vi(t,z) = n%gnoovm(t,x,a), V(t,x,a) € [0,T] x R x A.
Fix now (t,x) € [0,7) x R?, and let ¢ € C2([0,T] x R?) such that (v. — ¢)(t,2) =
ming 7xrd (v« — ). We already know from (4.5.26) that v, < u, and so distinguish two
cases :
(1) vi(t,x) = u(t, x), then the viscosity supersolution property of v at (¢, x) is obviously
satisfied.
(2) We have v(t, z) = v.(t,z) < u(t, z). We may assume, without loss of generality, that ¢
satisfies sup; ,)c(o,7)xrd % < oo, with p as in (4.5.19). Then, take a € A and consider,
for any € > 0, the test function

ot d) = ot a)—e([t' =t + |2' — 2| +|d' — a?),

for all (¢,2',a’) € [0,T] x R? x RY. Proceeding as in the proof of Proposition 4.5.2, step
(ii), we can find a bounded sequence (ty,, T, @m)m (We omit the dependence on ¢) in
[0, 7] x R? x RY such that

" — %) (tm, T, a = min " — °
( ©°) (tms T Q) [O,T]dequ( ©°)

and, up to a subsequence,

(tm;xmaamavm(tmawmaam)) mjo (t7x7a7v<t7x)>'
Therefore, recalling that v(¢,z) < wu(t,x) and using the continuity of u, we see that
V" (b, Ty @) < U(t, T,) for m large enough. As a consequence, from the viscosity
supersolution property (4.5.22) of v"™ at (tp,, m, an) with the test function ¢°, we then
get:

0¥
ot

_f(xmv am7 Um(tmv xm7 am)7 O'T(xmy am)Da:(PE(tma x’mn a/m))

—/ (% (tm, Tm, ') — & (tm, T, am)) A(da)

A
-m / (% (tms Tm, @') = ¢ (tm, Tm, am))  A(da’) > 0.
A

(tm7 Tm, am) - Eam@s(tm7 Tm, am)

By sending firstly m to infinity, and afterwards ¢ to zero, then using that a is arbitrary in
A, together with the continuity of the coefficients b, o, and f in the variable a, we obtain
the required viscosity supersolution inequality :

—a—@(t, x) — sup (Eago(t,a:) + f(z,a,v4(t, ), 07 (z, a)Dxcp(t,a;))) > 0.
ot acA
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e Viscosity subsolution property (4.5.31) : By (4.5.26), we have : v* <won [0,T) x R?, and so
it remains to show the viscosity subsolution property of v to :

9 sup (Eav(t,x) + f(z,a,v(t,z), 07 (z, a)Dzv(t,x))) < 0.
ot acA

This follows by same arguments as in [75] from the viscosity subsolution property of v™
to:
o

1
~ o b(x,a).Dyo™ — 5’61‘(0’0'1'(1,‘ a)D*™) — f(x,a,v™, 0" (z,a) Dyo™)

—/A( " (t,x,a’) — 0™ (¢ x,a)) M (da) m/ "tz d') —v"(t,x,a)) Mda') <0,
and by sending m to infinity under (HA)(ii).

e Finally, the viscosity supersolution and subsolution inequalities (4.5.28), (4.5.30) are
proved by same arguments as in [75]. O

Remark 4.5.5. Zero-sum controller/stopper game

Let us consider the particular and important case where the generator f(x,a) does not
depend on (y, z), and u(t,z) = g(x). In this case, the nonlinear variational inequality
(4.5.10)-(4.5.11) is the H]B Isaacs equation associated to the following zero-sum controller-
and-stopper game : let us introduce the controlled diffusion process in R?

dXe = b(XS, as)ds+ o(XS, as)dWs, (4.5.32)

where the control o € A is an F" -progressively measurable process, valued in A, affec-
ting both drift and diffusion coefficient, possibly degenerate. Here F"V denotes the natural
filtration generated by the Brownian motion . Notice that the laws P of X“ under P,
for a varying in A, belong to a non dominated set of probability measures. Given (t,z) €
[0,7] x RY, and a € A, we denote by { X% t < s < T} the solution to (4.5.32) starting
from z at s = t. Let us also define 7; r as the set of all F"V-stopping times valued in [t, T]
for 0 <t < T, and consider II; 1 the set of stopping strategies 7 : A — T r satisfying a
non-anticipative condition as defined in [7]. The upper and lower value functions of the
controller/stopper game are given by :

7 (o]

V(t,z) = inf Sup]E{/ f(X;’xﬂ,Oés)dS—i—g(Xfr’[z’]a)}’
TrGHt T QE.A t

V(t,z) = sup lnf E f Xta: * ag)ds + g(X“’" oz)]’ (t,z) € [0,T] x RY.
acATET,T

It is shown in [7] that this game has a value, i.e., V =V =V, and that V is the unique
viscosity solution to (4.5.10)-(4.5.11) satisfying a polynomial growth condition. By com-
bining this result with Theorem 4.5.1, this shows that v = V. In other words, we have
provided a representation of HJB Isaacs equation, arising in zero-sum controller /stopper
game, including control on possibly degenerate diffusion coefficient, in terms of minimal
solution to reflected BSDE with nonpositive jumps. Furthermore, by combining with the
dual game representation in Proposition 4.4.1, we obtain an original representation for
the value function of the controller-and-stopper game :

o] T
WEIEETEEEE[/O J(X; ,ozt)dHQ(Xw[a])] = EIEJETEH%TE[/O FIXP, ap)dt + (X7 )}
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T t T
= sup inf E” [/ e Jo esds(f(Xt, It) + 0:9(Xy))dt + e Jo thtg(XT)}-
vey 00 0

4.6 Conclusion

We introduced in this chapter a class of reflected BSDEs with nonpositive jumps and
upper obstacle, and showed in the Markov case its connection with fully nonlinear va-
riational inequalities arising typically in controller-and-stopper games with control both
on drift and diffusion term. Such representation suggests an original approach for pro-
babilistic numerical schemes of H]B Isaacs equations by discretization and simulation of
this reflected BSDE with nonpositive jumps. From a theoretical point of view, an open
problem is to relate this class of BSDEs to general controller-and-stopper games in the
non Markovian case. A variation of our class of BSDEs would be to consider reflected
BSDEs with nonpositive jumps and lower obstacle, which is related to sup sup problem
over control and stopping time, and in other words to optimal stopping under nonlinear
expectation. Actually, the proof of existence of a minimal solution by a double penali-
zation approach is simpler since it would involve the sum (instead of the difference) of
two nondecreasing processes. Another possible extension is the class of doubly reflected
BSDEs with nonpositive jumps motivated by Dynkin games under nonlinear expectation
(see [81]).

4.7 Appendix

4.71 Comparison theorems for sub and supersolutions to BSDEs with jumps

We provide in this section two comparison theorems for BSDEs with jumps. We first
recall a comparison theorem for sub and supersolutions to BSDEs driven by the Brownian
motion W and the Poisson random measure p, for which we refer to Theorem 4.2 in [92]
(see also Section 4.3 in [92] and Theorem 2.5 in [95]).

Theorem 4.7.1. Let ¢1,¢2 € L2(Fr) be two terminal conditions and let F1, F? : Q x [0,T] x
R x R? x L2(\) — R be two generators satisfying the assumptions 2.(i)-(iii) of Section 2. Let
(Y1, Z1 LY KY7) € 8% x L2(W) x L2(fi) x K2 satisfying
r 1 1
v} = ¢ +/ Fl(s, Y}, z}, L)ds — (K~ — K"7) (4.7.1)
t
T T
—/ Zlaw;, —/ / Li(a)u(ds,da), 0<t<T, as.
¢ t JA
and (Y?,722, L% K*>T) € S x L2(W) x L2(ji) x K2 satisfying

T
VP o= @ [ Py 2 s+ K - K (472)
t

T T
—/ Z2dW, —/ / LY (a)u(ds,da), 0<t<T, as.
t t Ja
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IfFl(t’Y;fl’Ztl7L%) < Fz(tay;fl’Ztle%) (resp. Fl(th?’ZtQ’L%) < F2(t’Y;2’ZtQ’L%))/ dP @ dt
ae., and &' < €2 a.s., then

VIP<Y? 0<t<T, as.

We now state a comparison theorem between a Skorohod solution and a Skorohod
supersolution, both driven by the Brownian motion W and the Poisson random measure
p. This slightly extends Theorem 5.2 in [41].

Theorem 4.7.2. Let £1,¢2 € L2(Fr) be two terminal conditions and let F*, F? : Q x [0,T] x
R x R? x L2(\) — R be two generators satisfying assumptions 2.(i)-(iii) of Section 2. Let
(Y1, ZY LY KV ™) €S2 x L2(W) x L2(ji) x K2 satisfying
T
o= & [ PNyl Zl s - (- K @7
T T
—/ Zlaw, —/ / Lia)u(ds,da), 0<t<T, as.

¢ t JA

and
Ytl < Uy, 0<t<T, a.s.

T
/ Up- —Y,H)dK!"™ = 0, a.s.

0

Furthermore, let (Y2, 7%, L* K>, K*7) € S2 x L2(W) x L2(f1) x K2 x K? satisfying
T
P o= @4 [ P YRZL LN+ K KPS - KPT) @474
t
T T
—/ Zfdws—/ /Lg(a)u(ds,da), 0<t<T, as.

t t A

and

Yf < U, 0<t<T, a.s.

T
/ Uy —Y2)K}™ = 0, as.
0
Ifet < as.and FU(t, Y, ZE L)) < F2(t, Y2, ZE L), dP @ dt a.e., then
VI<Y? 0<t<T, as.
Proof. Consider the following penalized BSDEs :
. T T
V= g [P 2 s —n [ (U - Y ds

t t

T T
—/ Z;"ldWS—/ /L’;’l(a)u(ds,da)
t t A

and

T T
}/tnﬂ — 62 +/ F2(S, st,27 Z;’L,Q’ L?’2)d8 + Kj%,"r . Ktz7+ o n/ (US o }/STL,Q)*dS
t t
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/Z“dW //L”2 u(ds, da),

forall 0 <t < T, almost surely. By comparison Theorem 4.7.1 we get Y;”’l < 1@”’2, for all
n € N. Recalling Remark 4.3.1, we have that v, converges to Y,!. It remains to prove the
convergence of ¥;* towards Y;2.

Set Y2 :=ym2 4 K2+ U:=U+ K>t,£2:=¢2+ K%’—’_, and F2(t,y, z,0) :== F?(t,y —
Kf’+, z,0),forall0 <t < T,y € R,z € R ¢ € L%()\), almost surely. Then

-~ - T . - T
o= 8 +/ FQ(s,YS”’Z,Z;""Q,L?’Q)ds—n/ (Us — Y™*)"ds
t

/Z”%zw //L”2 u(ds, da),

forall 0 < t < T, almost surely. Note that £ verifies the square integrability condition and
F? satisfies assumptions 2.(i)-(iii) of Section 2. Moreover, Ur € S? and Ur > £2, almost
surely. Now, again from Remark 4.3.1, we have that Y™? converges to Y2 = Y2 + K2,
and hence Y2 converges to Y2. O

4.7.2 Monotonic limit theorem for BSDEs with jumps

We state a monotonic limit theorem for BSDEs driven by the Brownian motion W and
the Poisson random measure . This extends the monotonic limit Theorem 3.1 in [88] to
the jump case.

Theorem 4.7.3. Let (Y™, Z™ L™ K™% K™7),, be a sequence in S* x L2(W) x L2(fi) x
K2 x K2, with K™% continuous, solution to :

T
Y= e [P Y 2 s + K - KD (KT - KT) @479)

t
T T
—/ Z;”dWS—/ /Lm() (ds,da), 0<t<T, a.s.
t t Ja
such that
sup (||, + 12"

L, IR+ K ,) < oo, (47.6)

L2(W) L2(7)
and (Y™),,, converges increasingly to Y € S2. Suppose also that the sequence (K™ ™), satisfies :
K" — K™ < Kb KM 0<s <t < T, as. 4.7.7)

for all m € N. Then there exists (Z,L, KT, K~) € L2(W) x L?(i) x K? x K? such that
T
Y, = §+/ F(s,Ys, Zs,Ls)ds + K — K;” — (K7 — K;) (4.7.8)

/ZdW //L wu(ds,da), 0<t<T, a.s.

Here (Z, L) is the strong (resp. weak) limit of (Z™,L™),, in LP(W) x LP(fi), with p € [1,2),
(resp. in L2(W) x L2(f1)). Furthermore, K,  is the weak limit of (K;"%),, in L2(F;), and
(K" )m converges strongly up to K, in L2(F;), forany 0 <t < T.
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Proof. Step 1. Limit BSDE. From the boundedness condition (4.7.6) and the Hilbert
structure of LZ(W) xL2(ji) xL2(0, T), there exists a subsequence, (2™, L™+ F(-, Y™ 7™k,
L™k)) which converges weakly to some (Z, L, G) € L?(W) x L%(f1) x L?(0, T). Thus, for
each stopping time 7 < T, the following weak convergences hold in L2(F,) as k — oo

| Py zm s~ [ Gls)ds
0 0

/ ZmAW, / Z.dW.,

//Lmk u(ds, da) — //L u(ds, da).

From (4.7.7), there exists K~ € K2, such that K, is the strong limit of (K;"*'"); in L2(F)
forall 0 <t < T.In particular, K"~ — K~ . Moreover, since

Kmet = Y yme 4 KM —/T F(s, Y™, Z™ L™)ds

+ / Zm AW, + / / L7 (a)u(ds, da).

we also have the weak convergence in L2(F,)

.
KMot~ KF = YO—YT—l—KT_—/ G(s)ds

+/ZdW+//L p(ds,da),

as k — oo. Note that E[(K})?] < oo and for any two stopping times 0 < 0 < 7 < T,
we have K < K} since K/t < K!"*. From this it follows that K is an increasing

process. Observe now that we have obtained the following decomposition for Y :
Y, = YO—/G )ds — K" + K, +/ZdW+//L p(ds,da). (4.7.9)

Since the processes K™*#* and K™+~ are predictable, we deduce that K* and K~ are
also predictable. Besides, by Lemmas 3.1 and 3.2 of [88], KT, K~ and Y are cadlag pro-
cesses. Thus, in the above decomposition of Y in (4.7.9), the components Z and L are
unique. As a matter of fact, the uniqueness of Z follows by identifying the Brownian
parts and finite variation parts. The uniqueness of L is then obtained by identifying the
predictable parts and by recalling that the jumps of ;. are totally inaccessible. From the
uniqueness of (Z, L), it follows that the whole sequence (Z™, L"™),, converges weakly to
(Z,L) in L2(W) x L2(fi).

Step 2. Properties of the process K. We establish that the contribution of the jumps of K+
is mainly concentrated within a finite number of intervals with sufficiently small total
length. More precisely, we apply Lemma 2.3 in [87] to K. Consequently, as in Lemma
2.3in [87], for any 4, e > 0, there exists a finite number of pairs of stopping times (o, 7%),

k=0,...,N,with 0 < o, <7, < T, such that all the intervals (o}, 7| are disjoint and
N €
+12 <
EY (—ox) 2T =, EZ > JAKSP < = (4.7.10)
k=0 k=00 <t<Ty
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We should note that in [87] the filtration is Brownian, therefore it is continuous, and hence
each stopping time o} can be approximated by a sequence of announceable stopping
times. In our case the stopping times o,’s are constructed as the successive times of jumps
of the predictable process K with size bigger than some given positive level, therefore
each oy, is a predictable stopping time and the approximation of ¢;, by announceable
stopping times is again possible. We can thus argue exactly the same way as in Lemma
2.3 in [87] to derive both estimates in (4.7.10).

Step 3. Strong convergence. By applying Itd’s formula to |Y,™ — Y;|? on a subinterval (o, 7],
with 0 < ¢ < 7 < T, two stopping times, and recalling that K" is continuous, we
obtain :

EYy" v, = E|Yomeg|2+]E/ |Zguzs|2ds+n<:/ /|L;”(a)fLs(a)|2)\(da)ds
o A

(e

+ 2B [0 = ) (G(s) = Fls, Y™, 22, L)) ds

+E > |AK - AK; AR

te(o,7]
+ 2E (Y™ — Y, )dK} — 2E (Y™ - Y, )dK
(o,7] (o,7]
- 2E (Y" = Yo)dK™" +2E (Y8 = Y- )dK ™™
(o7] (0,7]
+2E / / (V" = Y3)(L(a) — Ls(a))A(da)ds. (4.7.11)
(o,7] JA

Now, let us write
/ (Y -Y,)dK} = / (Y™ + AK"™ —Y,- + AK — AK[)dK
(o,7] (o,7]

- > (AKS + D0 AKFAKT - KM,

te(o,] te(o,7]
and observe that
| vy - kPO <0, and [ (- YaRTt <0
(o,7] (o,7]

Therefore, by using the inequality 2ab > —2b? — a? /2, we obtain from (4.7.11)

T 1 T
E/ 2™ — Z,2ds + 51&/ / L7 (a) — Ly(a)2A(da)ds 4.7.12)
o o JA
< By - v+ 0K [y - v Pas
28 [V = V|GG — F(s, Vi, 20, 1) ds
—2E (Y + AK"™ =Y + AKF — AK)dKT +2E Y JAK[ P
(7] te(o,7]
—2E Y AKfA(K; - K )-E Y |AK — AK; +AK™ P,
te(o,7] te(o,7]
<

E|Y;" — Y, |* + 2A(A)E /T Y = Yi|*ds
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,
428 [V - Yi|Gls) - F(s Y 20 1) |ds
g

—2FE (Y + AK™ =Y + AKF — AKD)dKF +E ) |AKP.
(o] te(o,7]
by using the inequality 2a — 2ab — (a — b)? < a?. We know that the first two terms on the
right-hand side of (4.7.12) converge to zero as m — oco. The third term also tends to zero
since (G(-) — F(-, Y™, Z™ L™)),, is bounded in L2?(0, T), and so by Cauchy-Schwarz
inequality

E/ —Yi||G(s) — F(s,Y]", Z",L")|ds — O, as m — 00.

For the fourth term, since K™ is predictable, the predictable projection of Y is PY;"* =
™+ AK;™". Similarly, from (4.7.9) and since K" and K~ are predictable processes, we
see that?Y; = Y;- — AK;" + AK, . By the dominated convergence theorem, we obtain
77}i_r)nOOIEl o] (Y + AK™ —Y,- + AK] — AK])dK] = 0.
For the last term in (4.7.12), we exploit the results in (4.7.10), regarding the contribution of
the jumps of Kt. More precisely, we apply estimate (4.7.12) for each o = o, and 7 = 73,
with oy, 7, defined in Step 2, and then take the sum over k = 0, ..., N. It follows that

N - , LN
;)E/Uk |Zs—Zs|ds+QZ_:IE/ /|L — Ly(a)|*\(da)ds
N

< ZE\Y — Y, P+ 24 E/ — v, [2ds

N
+2IE/ —YIGs) = F(s, Y, 2 LM ds + S B Y JAKGH?
k=0 te(ok,mk]

-2 Z ]E/ (Y + AK"™ — Y- + AK} — AK,)dK, .

Uk: 7Tk:

From the above convergence results, we deduce that

limsup<ZE/J Zm — Z,ds + - ZE/ /|Lm ~ Ly(a) )\(da)ds)

m—r0o0

N

< E AK? < =,

BN N
Therefore, following the same steps as in the proof of Theorem 2.1 in [87], we deduce that
the sequences (Z™),, and (L™),, converge in measure, respectively, to Z and L. Since
they are bounded, respectively, in L?(W) and L?(ji), they are uniformly integrable in
LP(W) and LP(fi), for any p € [1,2). Thus, (2™),, and (L™),,, converge strongly to Z and
L in LP(W) and LP(f1), respectively.

By the Lipschitz condition on F, we also have the strong convergence in LP(0, T') of
(F(, Y™ Z™ L™)),, to F(-,Y, Z,L). Since G(-) is the weak limit of (F'(-, Y, Z™ L™))p,
in L2(0, T'), we deduce that G(-) = F'(-,Y, Z, L). Therefore we obtain that (Y, Z, L, K+, K )
satisfies the BSDE (4.7.8). O
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Chapitre 5

BSDE representation for stochastic
control problems with non
dominated controlled intensity

5.1 Introduction

Recently, [75] introduced a new class of backward stochastic differential equations
(BSDEs) with nonpositive jumps in order to provide a probabilistic representation for-
mula, known as nonlinear Feynman-Kac formula, for fully nonlinear integro-partial dif-
ferential equations (IPDEs) of the following type (we use the notation z.y to denote the
scalar product in R%):

1
b(x,a).Dyv + 5’[1‘(JO'T(IE, a)D2v) + f(x,a,v,0"(x,a) Dyv) (5.1.1)

ov n
— +sup
ot a€A

+/E (v(t, 2+ Bz a,€)) — o(t, z) — Blxa,e).Dyv(t,2))A(de)| = 0, on[0,T) x RY
v(T,z) = g(x), z € RY

where A is a compact subset of R?, E is a Borelian subset of R¥\ {0}, and ) is a nonnegative
o-finite measure on (E, B(E)) satisfying the integrability condition [(1A]e[*)\(de) < oco.
Notice that the case f = f(x,a) is particularly relevant, as (5.1.1) turns out to be the
Hamilton-Jacobi-Bellman equation of a stochastic control problem where the state pro-
cess is a jump-diffusion with drift b, diffusion coefficient o (possibly degenerate), and
jump size /3, which are all controlled ; a special case is the Hamilton-Jacobi-Bellman equa-
tion associated to the uncertain volatility model in mathematical finance, which takes the
following form :

g: +G(D%v) =0, onl0,T) xRY, o(T,z) = g(z), =eR% (5.1.2)

where G(M) = 3 sup.c¢[cM] and C is a set of symmetric nonnegative matrices of order
d. As described in [89], the unique viscosity solution to (5.1.2) is represented in terms of
the so-called G-Brownian motion B under the nonlinear expectation £(-) as follows :

v(t,z) = E(g9(x + Br — By)).
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It is however not clear how to simulate G-Brownian motion. On the other hand, when C
can be identified with a compact subset A of a Euclidean space R?, we have the proba-
bilistic representation formula presented in [75], which can be implemented numerically
as shown in [72] and [73]. We recall that the results presented in [75] were generalized to
the case of controller-and-stopper games in [23] and to non-Markovian stochastic control
problems in [48].

In the present paper, our aim is to generalize the results presented in [75] providing
a probabilistic representation formula for the unique viscosity solution to the following
fully nonlinear integro-PDE of Hamilton-Jacobi-Bellman type :

1
% + sup {b(l‘, a).Dyv + itr(JoT(az, a)D?Ev) + f(z,a,v,07(z,a)Dyv) (5.1.3)
a€A

+ /E (v(t,x + Bz, a,e)) —v(t,x) — B(z,a,e).Dyv(t,z))Na,de)| =0, on]0,T) x R
(T, z) = g(x), zeRY

where ) is a transition kernel from (A4, B(A)) into (£, B(E)), namely A(q, -) is a nonnega-
tive measure on (E, B(E)) for every a € A and A(-, E’) is a Borel measurable function for
every E' € B(E). We do not assume that the family of measures (A(a, -))qc 4 is dominated.
Moreover, the diffusion coefficient o can be degenerate.

A motivation to the study of equation (5.1.3) comes from mathematical finance and, in
particular, from model uncertainty, when uncertainty affects both volatility and intensity.
This topic was studied by means of second order BSDEs with jumps (2BSDE]s) in [70]
and [71], to which we refer for the wellposedness of these kinds of backward equations,
see also [101]; however, notice that, with respect to [71], we are able to treat PDEs with
degenerate diffusion coefficient; moreover, as in [75], the advantage of our probabilistic
representation might be the development of an efficient numerical scheme for equation
(56.1.3), as it was done in [72] and [73] for equation (5.1.1) starting from the representation
derived in [75]. Model uncertainty is also strictly related to the theory of G-Lévy pro-
cesses and, more generally, of nonlinear Lévy processes, see [54] and [83]. In this case,
the associated fully nonlinear integro-PDE, which naturally generalizes equation (5.1.2),
takes the following form :

b.Dyv + %tr(cDg,v) (5.1.4)

-+ sup
ot (eF)co

+/ (0t =+ 2) — vt ) — Dyv(t,z). 21 F(dz)| = 0, on[0,T) x RY
: <
o(T,z) = g(), zeRY

where © denotes a set of Lévy triplets (b, ¢, F') ; here b is a vector in R¢, ¢ is a symmetric
nonnegative matrix of order d, and F is a Lévy measure on (R%, B(R?)). From [54] and
[83], we know that the unique viscosity solution to equation (5.1.4) is represented in terms
of the so-called nonlinear Lévy process X under the nonlinear expectation £(-) as follows :

v(t,z) = E(g(x + Xp — X)).

If we are able to describe the set © by means of a parameter a which lives in a compact
set A of an Euclidean space R, then (5.1.4) can be written in the form (5.1.3). Therefore,
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v is also given by our probabilistic representation formula, in which the forward process
is possibly easier to simulate than a nonlinear Lévy process.

More generally, we expect that the viscosity solution v to equation (5.1.3), when f =
f(z,a), should represent the value function of a stochastic control problem where, roughly
speaking, the state process X is a jump-diffusion process, which has the peculiarity that
we may control the dynamics of X changing its jump intensity, other than acting on the
coefficients b, o, and /3 of the SDE solved by X. We refer to this problem as a stochastic
optimal control problem with (non dominated) controlled intensity. Unfortunately, we
did not find any reference in the literature for this kind of stochastic control problem.
For this reason, and also because it will be useful to understand the general idea behind
the derivation of our nonlinear Feynman-Kac formula, we describe it here, even if only
formally. Let (Q, F,P) be a complete probability space satisfying the usual conditions on
which a d-dimensional Brownian motion W = ( V_Vt)tzo is defined. Let F = (ft)tzg denote
the usual completion of the natural filtration generated by W and A the class of control
processes q, i.e., of F-predictable processes valued in A. Let also € be the canonical space
of the marked point process on R} x E (see Section 5.2 below for a definition), with ca-
nonical right-continuous filtration F’ and canonical random measure 7’. Then, consider
(Q, F,F = (F)i>0) defined as 2 := AOxQ, F:=F®F_,and F; := Nes Fs @ F.. Mo-
reover, we set W(w) := W(@), 7(w,-) := 7(w',-), and A := {a: a(w) = a(@), Yw €
Q, for some a € A}. Suppose that for every a € A we are able to construct a measure P®
on (€, F) such that W is a Brownian motion and r is an integer-valued random measure
with compensator 17,7, yA(at, de)dt on (Q, F,F,P¥), where T, denotes the supremum
of the jump times of the marked point process associated to . Then, consider the sto-
chastic control problem with value function given by (E“ denotes the expectation with
respect to P<)

T
| s a,)ds + g(X%””"Y)} (5.1.5)
t

v(t,z) = SEEEO‘
(03

where X»% has the controlled dynamics on (£, F, F, P%)
dXe = (X2, a.)ds + o (X2, as)dW, + / BX, ay, e)i(ds, de)
E

starting from z at time ¢, with 7(dt, de) = 7(dt, de) — 11 yA(at, de)dt the compensated
martingale measure of 7. As mentioned above, even if we do not address this problem
here, we expect that the above partial differential equation (5.1.3) turns out to be the dy-
namic programming equation of the stochastic control problem with value function for-
mally given by (5.1.5). Having this in mind, we can now begin to describe the intuition,
inspired by [74] and [75], behind the derivation of our Feynman-Kac representation for-
mula for the HJB equation (5.1.3) in terms of a forward backward stochastic differential
equation (FBSDE).

The fundamental idea concerns the randomization of the control, which is achieved
introducing on (Q, F,P) a ¢-dimensional Brownian motion B = (B;);>0, independent of
W. Now F denotes the usual completion of the natural filtration generated by W and
B. We also set B(w) := B(@), for all w € €, so that B is defined on 2. Since the control
lives in the compact set A C R, we can not use directly B to randomize the control, but
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we need to map B on A. More precisely, we shall assume the existence of a continuous
surjection h: RY — A. Then, for every (¢,z,a) € [0,7] x R? x R?, we consider the forward
stochastic differential equation in R? x R :

X, = m—i—/ (X, I dr+/ (X, I,)dW, +/ /,8 X, . I, )7 (dr, de) (5.1.6)

forallt < s < T, where 7(ds,de) = 7(ds,de) — 11,3 A(Is, de)ds is the compensated
martingale measure of 7, which is an integer-valued random measure with compensator
Ls<1.0}A(Ls, de)ds. Unlike [75], we used a Brownian motion B to randomize the control,
instead of a Poisson random measure i on Ry x A. From one hand, the Poisson random
measure turns out to be more convenient to deal with a general compact set A, since p
is already supported by R} x A, so that we do not have to impose the existence of a
continuous surjection i from the entire space R? onto A, as we did here. On the other
hand, the choice of a Brownian motion B is more convenient to derive a martingale re-
presentation theorem for our model. Indeed, in contrast with [75], the intensity of the
measure m depends on the process I, therefore it is natural to expect a dependence bet-
ween 7 and the noise used to randomize the control. The advantage of B with respect to
o is given by the fact that B is orthogonal to m, since B is a continuous process (see the
bottom of page 183 in [59] for a definition of orthogonality between a martingale and a
random measure). Thanks to this orthogonality we are able to derive a martingale repre-
sentation theorem in our context, which is essential for the derivation of our nonlinear
Feynman-Kac representation formula.

Let us focus on the form of the stochastic differential equation (5.1.6)-(5.1.7). We ob-
serve that the jump part of the driving factors in (5.1.6) is not given, but depends on the
solution via its intensity. This makes the SDE (5.1.6)-(5.1.7) nonstandard. These kinds of
equations were firstly studied in [58] and have also been used in the financial literature,
see e.g. [9], [27], [28], [29], [42]. Notice that in [9], [27], and [28], A is absolutely conti-
nuous with respect to a given deterministic measure on (E, B(E)), which allows to solve
(5.1.6)-(5.1.7) bringing it back to a standard SDE, via a change of intensity “a
nov”. On the other hand, in the present paper, we shall tackle the above SDE solving
firstly equation (5.2.2) for any (¢, a) € [0, 7] x R, then constructing a probability measure
P4@ on (9, F) such that the random measure 7(ds, de) admits A(I1%, de)ds as compensa-
tor, and finally addressing (4.5.1). In the appendix, we also prove additional properties of

"N

a la Girsa-

7 and (X, I). More precisely, we present a characterization of 7 in terms of Fourier and
Laplace functionals, which shows that 7 is a conditionally Poisson random measure (also
known as doubly stochastic Poisson random measure or Cox random measure) relative
to o(I%; s > 0). Moreover, we study the Markov properties of the pair (X, I).

Regarding the backward stochastic differential equation, as expected, it is driven by
the Brownian motions W and B, and by the random measure 7, namely it is a BSDE
with jumps with terminal condition g(X b, a) and generator f (Xt ’z’&, It ’d, y,z), as it is
natural from the expression of the HJB equation (5.1.3). The backward equation is also
characterized by a constraint on the diffusive part relative to B, which turns out to be
crucial and entails the presence of an increasing process in the BSDE. In conclusion, for
any (t,x,a) € [0,7] x R? x RY, the backward stochastic differential equation has the
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following form :

~ T - 5 T
Yg _ g(X%x;(l) 4 / f(Xf‘ylﬁa Itﬂl }/T’ Zr)d?” T KT _ Ks _ / andWr
S S

YT

T T :
—/ V,.dB, — / / U, (e)7(dr,de), t<s<T,Pig.s. (5.1.8)
s s E
and
Vi = 0 ds @ dP"% a.e. (5.1.9)

We refer to (5.1.8)-(5.1.9) as backward stochastic differential equation with jumps and par-
tially constrained diffusive part. Notice that we could omit the term fST V,dB, in equation
(5.1.8) (together with the constraint (5.1.9)), since V is required to be zero; however, we
keep it to recall that the solution to (5.1.8)-(5.1.9) has to be adapted to the filtration gene-
rated by W, 7, and also B. We also observe that the presence of the increasing process
K in the backward equation does not guarantee the uniqueness of the solution. For this
reason, we look only for the minimal solution (Y, Z, V, U, K) to the above BSDE, in the
sense that for any other solution (Y, Z,V,U,K) we must have Y < Y. The existence of
the minimal solution is based on a penalization approach as in [75]. We can now write
down the nonlinear Feynman-Kac formula :

v(t,z,a) = Ytt’gg’d, (t,z,a) € [0,T] x RY x RY.

Observe that the function v should not depend on &, but only on (¢, z). The function v
turns out to be independent of the variable & as a consequence of the constraint (5.1.9).
Indeed, if v (and also h) were regular enough, then, for any (¢, z,a) € [0,T] x R? x R, we
would have

VEh®E = Dpu(s, X050 I Dah(a+ Bs — B;) = 0,  ds ® dP"" a.e.

This would imply (see Subsection 5.4.2) that v does not depend on its last argument. Ho-
wever, we do not know in general if the function v is so regular in order to justify the
previous passages. Therefore, the rigorous proof relies on viscosity solutions arguments.
In the end, we prove that the function v does not depend on the variable a. Moreover, v
is a viscosity solution to (5.1.3). Actually, v is the unique viscosity solution to (5.1.3), as
it follows from the comparison theorem proved in the Appendix. Notice that, due to the
presence of the non dominated family of measures (A(a, -))qc4, we did not find in the lite-
rature a comparison theorem for viscosity solution to our equation (5.1.3). For this reason,
we prove it in the Appendix, even though the main ideas are already contained in the pa-
per [4], in particular the remarkable Jensen-Ishii’s lemma for integro-partial differential
equations.

The rest of the chapter is organized as follows. Section 5.2 introduces some notations
and studies the construction of the solution to the forward equation (5.1.6)-(5.1.7). Sec-
tion 5.3 gives a detailed formulation of the BSDE with jumps and partially constrained
diffusive part. In particular, Subsection 5.3.1 is devoted to the existence of the minimal
solution to our BSDE by a penalization approach. Section 5.4 makes the connection bet-
ween the minimal solution to our BSDE and equation (5.1.3). In the Appendix, we prove
a martingale representation theorem for our model, we collect some properties of the ran-
dom measure 7 and of the pair (X, I), and we prove a comparison theorem for equation
(5.1.3).
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5.2 Notations and preliminaries

Let (©2, F,P) be a complete probability space satisfying the usual conditions on which
are defined a d-dimensional Brownian motion W = (Wt)t>0 and an independent g-dimensional
Brownian motion B = (B;);>0. We will always assume that F = (F;);> is the usual com-
pletion of the natural filtration generated by 1 and B. Let us introduce some additional
notations.

(i) € is the set of sequences W' = (tyn,en)nen C (0,00] x Ex, where Ex = EU {A}
and A is an external point of E. Moreover ¢,, < oo if and only if e, € E, and when
tn, < oo then t, < tp41. ¥ is equipped with the canonical marked point process
(T, o, )nen, with associated canonical random measure 7/, defined as

TUW) =t alw) = e
and

(W' dt,de) = Y 1irr <o} (71 (w),ar, (1)) (AL, de),
neN
where 0, denotes the Dirac measure at point . Set T, := lim,, T},. Finally, define
= (F))t>0 as F{ = Ns>G., where G’ = (G;);>0 is the canonical filtration, given by
Gl =o(n'(-,F): F € B([0,t]) ® B(E)).

(i) (2, F,F = (Fi)t>0) is such that 2 := QOxQ, F:=F@F.,,and F; := Nyt Fs @ F..
Moreover, we set W (w) := W (&), B(w) := B(®), and 7(w, -) := 7' («’, -). Finally, we
set also T, (w) := T (W), an(w) := o), (W), and T (w) := Th (&').

Let P, denote the o-field of F-predictable subsets of R x 2. We recall that a random
measure 7 on Ry x E is a transition kernel from (€2, F) into (Ry x E,B(Ry) ® B(E)),
satisfying 7(w, {0} x E) = 0 for all w € {2; moreover, an integer-valued random measure
mon R, x E is an optional and P, ® B(E)-o-finite, N U {+o00}-valued random measure
such that 7(w, {t} x E) < 1 for all (t,w) € [0,T] x €, see Definition 1.13, Chapter II, in
[59].

Let A be a compact subset of some Euclidean space R?. We are given some measurable
functions b: R4 x A — R4, 0: R4 x A — R4 and B: R? x A x E — R? where E is a
Borelian subset of R¥\{0}, equipped with its Borel o-field B(E). Moreover, let A be a
transition kernel from (A, B(A)) into (E, B(E)), namely A(a, -) is a nonnegative measure

n (E,B(E)) for every a € A and A(-, E’) is a Borel measurable function for every E’ €

B(E). Furthermore, we assume that there exists a continuous surjection h: R — A.

Remark 5.2.1. (i) The existence of such a function h is guaranteed whenever A is connec-
ted and locally connected, this is indeed a consequence of the Hahn-Mazurkiewicz theo-
rem (see, e.g., Theorem 6.8 in [96]).

(ii) In the sequel we use the notation a (resp. a) to denote a generic element in the domain
RY (image A) of h. g

Forany t € [0,7] and (z,a) € R? x RY, we consider the forward stochastic differential
equation in R% x R :

X, = :r—l—/ b(X,, I, dr+/ (X, I,)dW, +/ /5 (X,—, I, e)7(dr,de) (5.2.1)
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I, = h(a+ Bs— By), (5.2.2)

forallt < s < T, where 7(ds, de) = m(ds, de) — A(Is, de)ds is the compensated martingale
measure of 7, which is an integer-valued random measure with compensator A(I;, de)ds.

As noticed in the introduction, the above SDE (5.2.1)-(5.2.2) is nonstandard, in the
sense that the jump part of the driving factors in (5.2.1) is not given, but depends on the
solution via its intensity. When the intensity A is absolutely continuous with respect to a
given deterministic measure on (£, B(E)), as in [9], [27], and [28], we can obtain (5.2.1)-
(5.2.2) starting from a standard SDE via a change of intensity “a la Girsanov”. On the
other hand, in the present paper, we shall tackle the above SDE solving firstly equation
(5.2.2), then constructing the random measure 7(ds, de), and finally addressing (5.2.1).
The nontrivial part is the construction of 7, which is essentially based on Theorem 3.6 in
[55], and also on similar results in [42], Theorem 5.1, and [29], Theorem A.4. Let us firstly
introduce the following assumptions on the forward coefficients.

(HEQC)
(i) There exists a constant C' such that

b(z,a) —b(z',d")| + |o(z,a) —o(2',d")] < C(lz—2'|+|a—d]),

forall z,2’ € R%and a,d’ € A.
(ii) There exists a constant C such that

B(z,a,e)] < CL+|z])(1Ale]),
‘5(%,@,6) - ﬁ(wl7a/7e)’ < C(’m - .%'" + ’CL - a/‘)(l N |6D7

forallz,2’ € R4, a,a’ € A,and e € E.
(iii) The following integrability condition holds :

sup/ (1A lel*)Aa,de) < oo.
acAJE
Inspired by [58], we give the definition of weak solution to equation (5.2.1)-(5.2.2).
Definition 5.2.1. A weak solution to equation (5.2.1)-(5.2.2) with initial condition (t,z,a) €
[0, 7] x R? x RY is a probability measure P on (Q, F) satisfying :
(i) P(dw) = P(dw) ®@ P'(@, dw"), for some transition kernel P’ from (Q, F) into (', F..).

(ii) Under P, m is an integer-valued random measure on R, X E with F-compensator 1,7, y\(Is, de)ds
and associated compensated martingale measure given by 7(ds, de) = w(ds, de) — 1y, A M1, de)ds.

(iii) We have

X, = x—i—/ (X, I dr—i—/ (X, I,)dW, +/ /5 X, I, e)7(dr, de),
IS = CL+B Bt)

forallt < s < T, P almost surely. Moreover, (X, Is) = (x,h(a)) for s < t, and (X, I;)
= (XT, IT)fOT s>1T.
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Consider a probability measure IP on (2, F) satisfying condition (i) of Definition 5.2.1.
For every (t,a) € [0,T] x R? let us denote I*% = {I%*% s > 0} the unique process on
(Q, F,F,P) satisfying I%® = h(a + Bs — B;) on [t,T], with I%® = h(a) for s < t and I.%
= Iéld for s > T. We notice that the notation %% can be misleading, since a is not the
initial point of I at time ¢, indeed I} @ — h(a). Now we proceed to the construction
of a probability measure on (2, F) for which conditions (i) and (ii) of Definition 5.2.1 are
satisfied. This result is based on Theorem 3.6 in [55], and we borrow also some ideas from
[42], Theorem 5.1, and [29], Theorem A 4.

Lemma 5.2.1. Under assumption (HFC), for every (t,a) € [0, T] x RY there exists a unique pro-
bability measure on (Q2, F), denoted by P4%, satisfying conditions (i) and (ii) of Definition 5.2.1,
and also condition (ii)” given by :

(il) 1fseryAIL%, de)ds is the (F ® F!)s>0-compensator of .

Proof. The proof is essentially based on Theorem 3.6 in [55], after a reformulation of
our problem in the setting of [55], which we now detail. Let F = (F),>0 where F, :=
F® F.. Notice that in F, we take F instead of F;. Indeed, in [55] the o-field F represents
the past information and is fixed throughout (we come back to this point later). Take
(t,a) € [0,T] x R? and consider the process I"% = (I1%) 0. Set

v(w, F) = /F1{s<Too(w)})\(I§’a(w),de)ds

forany w € Q and any F' € B(R;) ® B(E). Now we show that v satisfies the properties
required in order to apply Theorem 3.6 in [55]. In particular, since ) is a transition kernel,
we see that v is a transition kernel from (2, F) into (Ry x E,B(R;) ® B(FE)); moreover,
v(w,{0} x E) = 0 for allw € , therefore v is a random measure on R, x E. Furthermore,
for every E' € B(E), the process v((0, ] x E') = (v((0, s] X E'))s>0 is F-predictable, hence
visan IAF-predictable random measure. In addition, v({s} x E') < 1, indeed v is absolutely
continuous with respect to the Lebesgue measure ds and therefore v({s} x E') = 0. Finally,
we see by definition that ([T, 00) x E) = 0. In conclusion, it follows from Theorem 3.6
in [55] that there exists a unique probability measure on ({2, F), denoted by P*%, satisfying
condition (i) of Definition 5.2.1, and for which v is the F—compensator of m,1i.e., the process

(v((0,s ANT},] x E') — w((0,8 AT, x E’))S>

0 (5.2.3)

is a (P"%, F)-martingale, for any E' € B(FE) and any n € N. Therefore condition (ii)’ is also
satisfied.

To conclude, we need to prove that v is also the F-compensator of 7. Since v is an
F-predictable random measure, it follows from (2.6) in [55] that it remains to prove that
the process (5.2.3) is a (Pt%, F)-martingale. We solve this problem reasoning as in [42],
Theorem 5.1, point (iv). Basically, for every T' € R we repeat the above construction with
Fr in place of F, changing what in [55] is called the past information. More precisely, let

T € Ry and define 7 = (F1),>0, where F := Fr ® F.. Let

S

VT (w0, F) = /F Lser) L fset (on MIH(w), de)ds.
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Proceeding as before, we conclude that there exists a unique probability measure on
(Q, FraFL,), denoted by P®T, whose restriction to (Q, Fr) coincides with the restriction
of P to this measurable space, and for which vT is the I@‘T—Compensator of ,ie.,

(WT((0,s ANT,) x E') — (0,8 A Ty) X E’))S20

isa (P4®T FT)-martingale, for any E’ € B(E) and any n € N. This implies that v ((0, T A
T,] x E') — 7((0,T A T,,] x E') is FE-measurable, and therefore Fr-measurable. Notice
that

vI((0,s NT,] x E') = v((0,s \T ATy] x E'),

hence v((0, T AT, x E') —7((0,T ANT,] x E') is Fr-measurable. As T' € R, was arbitrary,
we see that the process (5.2.3) is F-adapted. Since (5.2.3) is a (P“¢, )-martingale, with
F. C Fs, then it is also a (P%% F)-martingale. In other words, v is the F-compensator of
. g

Remark 5.2.2. Notice that, under assumption (HFC) and if in addition A satisfies the
integrability condition (which implies the integrability condition (HFC)(iii)) :

sup/)\(a,de) < 00, (5.2.4)
a€AJE

then 7., = oo, P a.s., and the compensator v is given by
vw, F) = / MIH (), de)ds
F

for any F' € B(R;) ® B(E) and for P“@ almost every w € €. Indeed, for any T > 0, we
have (we denote by E“? the expectation with respect to P*%)

T T
EH@ 1 —Et’a[/ /st,de] = EH@ / /I/ds,de].
2 lmsn) | m(ds,de) ] vids,de)
Therefore
~ ~ T ~
Et’“[21{Tn§T} = Et’“[/ / 1{S<TOO})\(I§’“,de)ds] < Tsup/ Ma,de) < oo,
et o JE a€AJE

where we used condition (5.2.4). Hence, P"? a.s.,

Z 1{Tn§T} < 00, vT > 0.

neN
From the arbitrariness of T, this implies that T, = oo, PH% almost surely. ]

Lemma 5.2.2. Under assumption (HFC), for every (t,z,a) € [0,T] x RY x R there exists a
unique (up to indistinguishability) process Xt%% = {X1%a s > 0} on (Q, F,F,P42), solution
to (5.2.1) on [t, T), with Xt®® =  for s < t and X1 = X" for s > T. Moreover, for any
(t,z,a) € [0,T] x R? x RY there exists a positive constant C' such that

t,a t,x,a
E [ sup |X;
t<s<T

2 < C+apP), (5.2.5)

where C depends only on T, |b(0,0)], |0(0,0)], supye 4 |al, supgea [(1 A le|?)N(a, de), and the
Lipschitz constants of b, o.
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Proof. Since hypotheses (14.15) and (14.22) in [57] are satisfied under (HFC), the claim
follows from Theorem 14.23 in [57]. Concerning estimate (5.2.5), taking the square in
(5.2.1) (using the standard inequality (z1+- - -+x4)? < 4(z3+---+23), forany x1,...,74 €
R) and then the supremum, we find

2 2

sup |X5E412 < 4]z|* + 4 sup / b(XE®E TE)dr| 44 sup / o(XbHe L4 gW,
t<u<s t<u<s t<u<s | Jt
“ 2
4 sup / / BXHE 84 ¢z (dr, de) (5.2.6)
t<u<s | Jt E
Notice that, from Cauchy-Schwarz inequality we have
~ u _ _ 2 _ S _ ~ 2
Etva[ sup / b(XL™0 ILT)dr ] < TIEW[ / |b(X L= 05| dr} (5.2.7)
t<u<s t

Moreover, from Burkholder-Davis-Gundy inequality there exists a positive constant C
such that

2 s ) ~
Et’d{ Sup v ] < OEW{ / tr(aaT(XﬁJ’“,Iﬁ’“))dr} (5.2.8)
t

t<u<s

u ~ ~
[ ot
t

Similarly, since the local martingale M, = [ [ 8(X] XU0 Ita )i (dr,de), t < u < s,
is such that [M], = [* [ |B(X2%, 1% e)|*n(dr, de), from Burkholder-Davis—Gundy in-

equality we obtain
2
| [ s, 1t on(an,do) |

< CEWU / B(XE50 Tt ¢ ]27r(dr,de)]
t E

EHe [ sup
t<u<s

_ C‘Et@{ / / B(XE5% 16 ¢) FA(I;Evd,de)dr} (5.2.9)
t E

In conclusion, taking the expectation in (5.2.6) and using (5.2.7)-(5.2.8)-(5.2.9), we find (de-
noting by C' a generic positive constant depending only on T, [b(0,0)|, |o(0, 0)|, sup,e 4 |al,
supgea [u(1 A le|?)A(a, de), and the Lipschitz constants of b, o)

Eta[ sup |X”a| } <4\x]2+(~7<1+/8Et’&{ sup \Xf;x’&|2}dr>.
t

t<u<s t<u<r

Then, applying Gronwall’s lemma to the map r — E“*[sup,<,, | X:"%?], we end up
with estimate (5.2.5). O
5.3 BSDE with jumps and partially constrained diffusive part

Our aim is to derive a probabilistic representation formula, also called nonlinear
Feynman-Kac formula, for the following nonlinear IPDE of HJB type :

_g;t(t,:c) —sup (L%(t, ) + f(z,a,u,07(x,a)Dyu)) = 0, (t,z)€[0,T) x K3.3.1)
acA
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w(T,z) = g(z), =zeR% (5.3.2)
where
LO(t,z) = b(:c,a).Dzu(t,a:)—&—%tr(JJT(m,a)chu(t,x))

+/ (u(t,z + B(z,a,e)) — u(t,x) — B(z,a,e).Dyu(t,z))Na, de),
E

for all (¢,z,a) € [0,7] x R? x A. Let us firstly introduce some additional notation. Fix a
finite time horizon T' < oo and set Pr the o-field of F-predictable subsets of [0, '] x 2. For
any (t,a) € [0,7] x R?, we denote :
- Lﬁﬁ(}"s), p>1,s > 0, the set of Fy-measurable random variables X such that
EH| X P] < oo.
- Sﬁé the set of real-valued cadlag adapted processes Y = (Y;)i<s<7 such that

IV[2, :=E"[ sup [Vi?| < oo
t.a t<s<T

- Lﬁé(t, T), p > 1, the set of real-valued adapted processes (¢5):<s<7 such that

/tT |¢)s|pd5] < 0.

- Lﬁﬁ(W), p > 1, the set of R%-valued Pr-measurable processes Z = (Z);<s<T such

that
T £
(/ |Zs|2ds> } < 0.
t

- Laé(B), p > 1, the set of R?-valued Pr-measurable processes V = (V;)i<s<71 such

that
i T £
VP,  —Ee / V,[2ds ) | < oo,
LY s (®) t

- Lﬁﬁ(fr), p > 1, the set of Pr ® B(E)-measurable maps U: [t,T] x Q@ x E — R such

that
t,a t,a
U ”Lp~(ﬁ =E" K/ / Uy (e) PA(IE de)ds) } < 00.

— K7 the set of nondecreasing predictable processes K = (K;)i<s<1 € S 5 with K;

o]l =E"

Lp 5t T)

1217 =g

LY (W)

=0, so that
2 a 2
IKIZ, = B[]
Remark 5.3.1. Equivalence relation in Ly z (7). When U',U? € LY (), with U' = U? we
mean [|U' —U?|| , . =0ie, Ul = U2 ds@dPH@ @ \(I5%, de) a.e. on [t, T] x Q x E, where
t,5' "

ds @ dP"* @ \(IL?, de) is the measure on ([t,T] x Q x E,B(t,T) ® F ® B(E)) given by
ds @ dP" @ (I, de)(F) = Et’d{/ / 1p(s,w, ) ANI5%(w), de)ds|,
forall F € B(t,T) ® F ® B(E). See also the beginning of Section 3 in [25]. O
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The probabilistic representation formula is given in terms of the following BSDE with
jumps and partially constrained diffusive part, for any (¢,z,a) € [0,7] x R? x R?, Pt@ as.,

s Ly

~ T 5 B T
Y, = g(Xp™)+ / f(Xbma pbay, Z)dr + Ky — Kg — / Z.dW, (5.3.3)

T T
—/ V,.dB, — / / U, (e)w(dr,de), t<s<T
s s E
and
Vo = 0 ds @ dP"" a.e. (5.3.4)

We look for the minimal solution (Y, Z,V,U, K) € S5 x L 5(W) x L2 5(B) x L 4(7) x
K2, to (5.3.3)-(5.3.4), in the sense that for any other solution (Y, Z,V,U,K) € SZ; x
L25(W) x L25(B) x LZ5(7) x K5 to (5.3.3)-(5.3.4) we must have Y < Y. We impose
the following assumptions on the terminal condition g: R? — R and on the generator
f:R*x AxRxR?—=R.

(HBC) There exists some continuity modulus p (namely p: [0,00) — [0,00) is conti-
nuous, nondecreasing, subadditive, and p(0) = 0) and a constant C such that

|f(w,a,y, Z) - f(xlaa/>y,7zl)| + |g($) —g(x/)| < ,0(|33’ - 33,‘ + |CL - a,’) +C(|y _y,| + |Z - Z/|)
forall (z,a,y, 2), (2/,d',y,2) € R x A x R x R%

Proposition 5.3.1. Let assumptions (HFC) and (HBC) hold. For any (t, z,a) € [0, T]x R?xRY,
there exists at most one minimal solution on (0, F,F,Pb%) to the BSDE (5.3.3)-(5.3.4).

Proof. Let (Y, Z,V,U,K) and (Y, Z,V,U, K) be two minimal solutions to (5.3.3)-(5.3.4).
The uniqueness of the Y component is clear by definition. Regarding the other compo-
nents, taking the difference between the two backward equations we obtain

S - _ ~ ~ - - S
0= / (f(XE20 I Y, Z,) — f(XE™0, 100, Y, Z,))dr + Ks — K —/ (Zr — Z;)dW,
t t

- [ W=wyan, - [ [ (Une) - Oule))rtar.de)

forallt < s < T, P»® almost surely. Identifying the Brownian and finite variation parts,
recalling that W and B are independent, we deduce Z = Z and V = V. Therefore, we
obtain the identity

/ts /E (U.(e) — Uy(e))m(dr,de) = /ts [E (U-(e) — Up(e)) NI, de)dr + Ky — K,

where the right-hand side is a predictable process, therefore it has no totally inaccessible
jumps (see, e.g., Proposition 2.24, Chapter I, in [59]) ; on the other hand, the left-hand side
is a pure-jump process with totally inaccessible jumps, unless U = U. As a consequence,
we must have U = U, from which it follows that K = K. O

To guarantee the existence of the minimal solution to (5.3.3)-(5.3.4) we shall need the
following result.
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Lemma 5.3.1. Let assumptions (HFC) and (HBC) hold. Then, for any initial condition (t,xz, a)
€ [0,T] x R? x RY, there exists a solution {(Y1®4 ZLwa yhwa ted KLed) ¢ < s < T}
on (2, F,F,P4@) to the BSDE (5.3.3)-(5.3.4), with Y @ = (s, X1®%) for some deterministic
function v on [0, T] x R? satisfying a linear growth condition

. [u(t, )|
up
(t2)e0T)xre 1+ |2]

< 00

Proof. The proof can be done along the lines of the proof of Lemma 5.1 in [75], but
for the fact that here we look for a function v satisfying a linear growth condition, rather
than a more general polynomial growth condition. For this reason, we consider the mol-
lifier n(z) = cexp(1/(|z|* — 1))z <1}, Where & > 0 is such that [pan(z)dz = 1, and we
introduce the smooth function

o(t,x) = C’e”(T_t)(l +/Rd77(w y)lydy>, V(t,z) € [0,T] x R x RY,

for some positive constants C' and p. We can now proceed as in Lemma 5.1 in [75] to
conclude that, for C and p large enough, the function ¥ is a classical supersolution to
(5.3.1)-(5.3.2). O

5.3.1 Existence of the minimal solution by penalization

In this section we prove the existence of the minimal solution to (5.3.3)-(5.3.4). We use
a penalization approach and introduce the indexed sequence of BSDEs with jumps, for
any (t,z,a) € [0,T] x R? x R, Ph@ as,

~ T B B T
VI = g 4 [ O e 20+ K- K7 - [ zpaw,

PR )
S

T T
—/ V,"dB, —/ / U (e)w(dr, de), t<s<T, (5.3.5)
s s E
for n € N, where K" is the nondecreasing continuous process defined by
K! = n/ \V.""\dr, t<s<T.
t

Proposition 5.3.2. Under assumptions (HFC) and (HBC), for every (t,x,a) € [0,T] x R¢ x R4
and every n € N there exists a unique solution (Y™, Zntoa bt fyubed) ¢ 82 - x
L7 5(W) x L25(B) x L 5(7) on (Q, F, F,P"%) satisfying the BSDE with jumps (5.3.5).

Proof. As usual, the proof is based on a fixed point argument. More precisely, let us
consider the function ®: L ;(t, T) x L 5(W)xLZ 5(B) x L 5(7) — L 5 (t, T)xLZ 5(W) x
L?5(B) x L2 5(%), mapping (Y', Z',V',U’) to (Y, Z,V,U) defined by

~ T _ _ T
Yo = g5+ [0 e a2 Vi = [ z,aw,
S S

_ / ! V.dB, — / ! /E U, (e)7(dr, de), (5.3.6)

where
fn(x,a,y, Z, U) = f(LL’, a,y, Z) + n‘v‘

119



More precisely, the quadruple (Y, Z,V,U) is constructed as follows : we consider the
martingale M, = B4 [g( X5 + [ fo(XL®0 150 Y! 7! V/!)dr|F], which is square inte-
grable under the assumptions on g and f. From the martingale representation Theorem
5.5.1, we deduce the existence and uniqueness of (2, V,U) € L 5(W) x L ;(B) x L 4 (7)
such that

S S S
M, = M, + / Z.dW, + / V,dB, + / / Uy (e)(dr, de). (5.3.7)
t t t E

We then define the process Y by

T oyTT) T

~ ~ T ~ ~
Y, = Eb® {g(X;fﬁ““)Jr / fo(XEB0 T Y 7V dr
S

7|

S ~ ~
= _/ (X0 120 Y, 23, V] ) dr
t
By using the representation (5.3.7) of M in the previous relation, and noting that Y7 =
g(Xf,lz’a), we see that Y satisfies (5.3.6). Using the conditions on g and f, we deduce that
Y lies in L 4(t, T), and also in S? ;. Hence, ® is a well-defined map. We then see that
(yntea zntra yntea fnted) g q solution to the penalized BSDE (5.3.5) if and only if
it is a fixed point of ®. To this end, for any a > 0 let us introduce the equivalent norm on
L24(6,T) x L25(W) x LZ5(B) x L25(7) ¢

~ T ~
IV Z V0l = B [ e ([ 4 2+ VP + [ UL PAUE®, de) ) ds).
t E

It can be shown, proceeding along the same lines as in the classical case (for which we
refer, e.g., to Theorem 6.2.1 in [90]), that there exists & > 0 such that ® is a contraction on
Lfyé(t, T) x Lﬁé(W) X Lfﬁ(B) X Lfyé(ﬁ) endowed with the equivalent norm || - ||5. Then,
the claim follows from the Banach-Caccioppoli fixed-point theorem. O

We can now prove our main result of this section. Firstly, we need the following two
lemmata.

Lemma 5.3.2. Suppose that assumptions (HFC) and (HBC) hold. Then, for every (t,z,a) €
[0, 7] x R? x RY, we have, for all n € N,

n,t,z,a n+1,t,x,a Ot,x,a
)/;777 S }/5 sUsely S }/:5'77

forall 0 < s < T, Pb% as., where (Y18, Zbeo ytwa {hed o) ¢ Sﬁé X Lﬁé(W) X
L?5(B) x L 5(7) x K 5 on (Q, F,F,P"?) is a generic solution to the BSDE (5.3.3)-(5.3.4). In

particular, the sequence (Y™4%@), is upper bounded by Y'**@ introduced in Lemma 5.3.1.

Proof. Fix (t,z,a) € [0,T] x R? x R? and n € N, and observe that

fn(%%ya 2, U) < fn+1(x707y; 2, U))

forall (z,a,y,z,v) € R x AxRxR?xRY. Then, the inequality Y% < yr+hted forall
0 < s < T,PHe as., follows from the comparison Theorem A.1 in [75]. We should notice
that Theorem A.1 in [75] is designed for BSDE with jumps driven by a Wiener process
and a Poisson random measure, while in our case we have a general random measure 7.
Nevertheless, Theorem A.1 in [75] can be proved proceeding along the same lines as in
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[75] to encompass this more general case.

Similarly, since [’ (}A/t’x’&, Ztwa yhed [rted, Kt®a) solves
the BSDE (5.3.3) with generator f,,, for any n € N, other than with generator f. Therefore,
we can again apply the (generalized version, with the random measure 7 in place of the
Poisson random measure, of the) comparison Theorem A.1 in [75], from which we deduce
the claim. 0

Lemma 5.3.3. Under assumptions (HFC) and (HBC), there exists a positive constant C such
that, for all (t,z,a) € [0,T] x R? x Rand n € N,

L2 _(w> 5 (%)

HYn,t,a:,dHQ + HZn b, aH + an,t,z,dHQz + HUn,t,a:,dHQ + HKn,t,a:,dHQ
St.a L a(B) L2 Sfy_

< (B o) + B0

T -
IR, 1 0.0 Pds| + o, X0, ), 639
t,a

where v is the function introduced in Lemma 5.3.1.

Proof. The proof is very similar to the proof of Lemma 3.3 in [75], so it is not reported.
We simply recall that the claim follows applying Ito’s formula to |Y%%%|? between ¢
and 7', and exploiting Gronwall’s lemma and Burkholder-Davis-Gundy inequality in an
usual way. O

Theorem 5.3.1. Under assumptions (HFC) and (HBC), for every (t,z,a) € [0,T] x RY x RY
there exists a unique minimal solution (Y%, Zb ytma bt KLo6) e 82 x L 5(W) x
LZ5(B) x L2 5(7) x KZ 5 on (Q, F,F,P"%) to the BSDE with jumps and partially constrained
diffusive part (5.3.3)-(5.3.4), where :

(i) Y4 is the increasing limit of (Y™0%%),,.

(ii) (Zbm0, Vit Uh®®) s the weak limit of (275, Vmtdd gmboa), in LE (W) X

Lf,a(B)~ X Ltz,a(ﬁ)~ ~
(iii) KY%% is the weak limit of (K™H%®),, in Lﬁé(}"s),for anyt < s <T.

Proof. Let (t,z,a) € [0,7] x R? x R? be fixed. From Lemma 5.3.2 it follows that
(Ymtea), converges increasingly to some adapted process Y@, We see that Y% satis-
fies the integrability condition E“®[sup, << [Y{*%?] < oo as a consequence of the uni-
form estimate for (Y™%%4), in Lemma 5.3.3 and Fatou’s lemma. Moreover, by Lebesgue’s
dominated convergence theorem, the convergence also holds in Lﬁﬁ(t7 T). Next, by the
uniform estimates in Lemma 5.3.3, the sequence (2%, ytad yntz,d) jshounded in
the Hilbert space L? (W) x L 5(B) x L 5 (7). Then, we can extract a subsequence which
weakly converges to some (25, Vi®@ H%4) in L 5(W) x L 5(B) x L 5(7). Thanks
to the martingale representation Theorem 5.5.1, for every stopping time ¢t < 7 < T, the
following weak convergences hold in L 5(F;), as n — oo,

T 5 T B
/ Zn iz, adW N / Zt T, adWS, / Vsn,t,a:,ast N / V;t’z’ast,
t t t

//U”m“ 7(ds, de) //U”“ 7(ds, de).

’
~ b . ~
K:_l,t,x,a _ Y;m 7m,a_YTn,t,m,a_/ f(tha Ita Yn,t,xa Zn,t,ma d8+/ Z;L,t,x,admfs
t t

Since

yds
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+/ VntxadB +/ /Unt:ta ds de)

we also have the following weak convergence in Lf a(Fr),asn — oo,

N T
Kn,t,m,& Kt,x,& L }/tt,:r:,a o Yt,m,d o / f Xt x,a It a Yt z,a Zt T, (z)d
T T T T
t

+ / ZLBaqw, + / VETAdB, + / / UL (e)(ds, de).
t Jt t JE

Since the process (K™!%),. .7 is nondecreasing and predictable and K]"""% = 0, the
limit process K* t2,@ remains nondecreasing and predictable with E54[| K5%%%|2] < oo and
K™% = 0. Moreover, by Lemma 2.2 in [87], K%%% and Y%%:% are cadlag, therefore Y*%4
S?5 and K" € K7 5. In conclusion, we have

y s

—/ ZLeaqyy, — /Vt“dB //Ut“ #(ds, de).
t

It remains to show that the diffusion constraint (5.3.4) is satisfied. To this end, we consider
the functional F': ijé(B) — R given by

. - T -
Ytt,mﬂ — g(X;lx’a)—{—/ thza Iha tha Ztma)dS—FKtma—Kf’x’a

T
F(V) = Etva[/t |V5]ds}, YV € L24(B).

Notice that F(V™t#4) = B K% /n, for any n € N. From estimate (5.3.8), we see
that F(V™4%@) — (0 as n — oo. Since F is convex and strongly continuous in the strong
topology of Lf,é(B), then F' is lower semicontinuous in the weak topology of Ltzjé(B),
see, e.g., Corollary 3.9 in [19]. Therefore, we find

F(VH9) < liminf F(V™%) = 0,

n—oo

which implies the validity of the diffusion constraint (5.3.4). Hence, (Y?%:4, Zt@:a ytz.ad
Utra K6 is a solution to the BSDE with jumps and partially constrained diffusive part
(5.3.3)-(5.3.4). From Lemma 5.3.2, we also see that Y% = lim Y™ js the minimal solu-
tion to (5.3.3)-(5.3.4). Finally, the uniqueness of the solution (Y%:4, Zt:w:a yte.a fyted fte.a)
follows from Proposition 5.3.1. O

5.4 Nonlinear Feynman-Kac formula

We know from Theorem 5.3.1 that, under (HFC) and (HBC), there exists a unique mi-
nimal solution (Yt%:4 zt@.d ytzd rhed gLedy on (Q F,F,PH4) to (5.3.3)-(5.3.4). As we
shall see below, this minimal solution admits the representation Y@ = y(s, X5®:a, [1:a),
where v: [0,7] x R? x A — R is the deterministic function defined as

o(t,x, h(@) = Y™  (t,z,a) €[0,T] x R x R, (5.4.1)

Our aim is to prove that the function v given by (5.4.1) does not depend on its last ar-
gument and that it is related to the fully nonlinear partial differential equation of HJB
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type (5.3.1)-(5.3.2). Notice that we do not know a priori whether the function v is conti-
nuous. Therefore, we shall adopt the definition of discontinuous viscosity solution to
(5.3.1)-(5.3.2). Firstly, we impose the following conditions on i and A.

HA) There exists a compact set Ay, C R? such that h(A}) = A. Moreover, the inter-
ior set fih of A, is connected, and A;, = Cl(fih), the closure of its interior. Furthermore,
h(Ap) = A.

We also impose some conditions on A\, which will imply the validity of a comparison
theorem for viscosity sub and supersolutions to the fully nonlinear IPDE of HJB type
(56.3.1)-(5.3.2) and also for penalized IPDE (5.4.5)-(5.4.6). To this end, let us define, for
every § > 0and (¢,z,a) € [0,7] x R? x 4,

1(176(t7 xz, ()0> = / (@(t, T+ ﬂ('xu a, 6)) - Qp(t7 .%') - 5('%'7 a, e>D$S0(t7 33)))\(@, de)7
En{le|<d}
for any ¢ € C12([0,T] x R%), and
Btagu) = [ (ulto+Bleae) - ult,a) - Bla.a.0).g)\(a, de)
En{le|>d}

for any ¢ € R? and any locally bounded function u. Let us impose the following condi-
tions on I} and 129.

(H))
(i) Forany (t,z) € [0,T] x RY, we have
sup/ (LA le]*)M(a, de) =00 .
acAJEN{|e|<d}

(ii) Let p € C2([0,T] x RY). If the sequence {(tx, 2y, ax) }x C [0, 7] x R? x A converges
to (t*,x*, a*) as k goes to infinity, then

lim I;"s(tk,xk,cp) = I;fs(t*,x*,go),
k—oo

for any § > 0.

(iii) Let u: [0,7] x RY — R be usc (resp. lsc) and locally bounded. If the sequence
{(tk, Tky @, a) i C [0, 7] x RE x R x A converges to (t*, 7%, ¢*, a*) and u(ty, v3) —
u(t*, z*), as k goes to infinity, then

lim sup Iglf(tk, Tk Q, U) < Isifs(t*, ¥, q", u)
k—o0

(resp. liﬁg‘gffgf(tk,wk,qk,u) > I2’5(t*,x*,q*,u))

for any 6 > 0.

Remark 5.4.1. Assumption (H)) is required for the proof of the comparison Theorem
5.5.2 (as well as for the comparison theorem to equation (5.4.5)-(5.4.6)). Notice that condi-
tions (i)-(ii)-(iii) are inspired by the fourth and fifth Assumptions (NLT) in [4]. We also
observe that, whenever I and I2° do not depend on a, then (H))(i)-(ii) are conse-
quences of Lebesgue’s dominated convergence theorem, while (H)(iii) follows from Fa-
tou’s lemma. O
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For a locally bounded function u on [0, T) x R¥, we define its lower semicontinuous
(Isc for short) envelope u., and upper semicontinuous (usc for short) envelope u*, by

us(t,€) = liminf wu(s,§) and wu*(¢,€) = limsup u(s,§)
(1) = (t,8) (s;m)—(£,8)
s<T s<T

for all (t,£) € [0,T] x R*.

Definition 5.4.1. (Viscosity solution to (5.3.1)-(5.3.2))
(i) A Isc (resp. usc) function u on [0,T] x RY is called a viscosity supersolution (resp.
viscosity subsolution) to (5.3.1)-(5.3.2) if

w(T,z) > (resp. <) g(x)

for any x € RY, and

%2 1,0) — sup ({0, ) + [0, u(t, 7),07(r,0) Desp(t,2))) > (resp. <) 0
acA

forany (t,z) € [0,T) x R? and any ¢ € CH2([0, T] x R?) such that

(u—o)(t,z) = [OgﬁanRd(u —¢) (resp. [Og}%d(u — ).

(ii) A locally bounded function u on [0,T) x R% is called a viscosity solution to (5.3.1)-
(5.3.2) if u, is a viscosity supersolution and u* is a viscosity subsolution to (5.3.1)-(5.3.2).

We can now state the main result of this paper.

Theorem 5.4.1. Assume that conditions (HFC), (HBC), (HA), and (H\) hold. Then, the func-
tion v in (5.4.1) does not depend on the variable a on [0,T) x R® x A:

v(t,z,a) = v(t,z,d), Va,d € A,

forall (t,x) € [0,T) x R% Let us then define by misuse of notation the function v on [0,T) x R?
by

v(t,z) = w(t,z,a), (t,z) € [0,T) x RY,
forany a € A. Thenvisa viscosity solution to (5.3.1)-(5.3.2).

The rest of the paper is devoted to the proof of Theorem 5.4.1.

5.4.1 Viscosity property of the penalized BSDE

For every n € N, let us introduce the deterministic function v,, defined on [0, 7] x R% x
Aby

on(t, 2z, h(@) == Y/ (t,z,a) € [0,T] x RY x RY, (5.4.2)

where (Ynb®a znted yntea nted) g the unique solution to the BSDE with jumps
(5.3.5), see Proposition 5.3.2. As we shall see in Proposition 5.4.1, the identification YS”’t’“’& =
vn (s, X4%@, [4@) holds. Therefore, sending n to infinity, it follows from the convergence
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results of the penalized BSDE, Theorem 5.3.1, that the minimal solution to the BSDE with
jumps and partially constrained diffusive part (5.3.3)-(5.3.4) can be written as Y/%@ =
v(s, XL®a [L3), + < s < T, where v is the deterministic function defined in (5.4.1).

Now, notice that, from the uniform estimate (5.3.8), the linear growth conditions of
g, [, and v, estimate (5.2.5), and the compactness of 4, it follows that v,, and thus also v
by passing to the limit, satisfies the following linear growth condition : there exists some
positive constant C,, such that, for all n € N,

|on(t, z,a)| + |v(t,z,a)] < Cy(1+ |x]), Y (t,z,a) € [0,T] x R? x A. (5.4.3)

As expected, for every n € N, the function v, in (5.4.2) is related to a parabolic semi-linear
penalized IPDE. More precisely, let us introduce the function v?: [0,7] x R? x R? — R
given by

ol (t,x,d) = va(t,x, (@),  (t,x,a) €[0,T] x RY x RY. (5.4.4)

h

Then, the function v, is related to the semi-linear penalized IPDE :

ol

08 1,2, ) - £ < @
—f (@, 1(@), v (¢, @, @), 07 (2, h(@)) Davy (t: 7, @)) (545)
tr(D2vl'(t, x,d)) — n’Dav (t,z,a)] = 0, on[0,T) x R? x RY,

oMT,-,) = g, onRY xR, (5.4.6)
Let us provide the definition of discontinuous viscosity solution to equation (5.4.5)-(5.4.6).

Definition 5.4.2. (Viscosity solution to (5.4.5)-(5.4.6))
(i) Alsc (resp. usc) function uon [0, T] x R% x R is called a viscosity supersolution (resp.
viscosity subsolution) to (5.4.5)-(5.4.6) if

u(T,z,a) = (resp. <) g()
for any (z,a) € RY x RY, and

Oy

o (@) = LD (t,0,0) — f (o, h(@), ult, z,8), 07 (2, (@) Dap(t, 3, )

—%tr(DQLp(t z,a)) —n|Dap(t,z,a)] > 0 (resp. < 0)

forany (t,z,a) € [0,T) x R? x R and any ¢ € C12([0, T] x (RY x R?)) such that

(-)trd) = iy () (e max  (u-g)).  (547)

(ii) A locally bounded function v on [0, T)x R xR is called a viscosity solution to (5.4.5)-
(5.4.6) if u, is a viscosity supersolution and u* is a viscosity subsolution to (5.4.5)-(5.4.6).

Then, we have the following result, which states that the penalized BSDE with jumps
(5.3.5) provides a viscosity solution to the penalized IPDE (5.4.5)-(5.4.6).

Proposition 5.4.1. Let assumptions (HFC), (HBC), (HA), and (HX) hold. Then, the function fuﬁ
in (5.4.4) is a viscosity solution to (5.4.5)-(5.4.6). Moreover, v!* is continuous on [0, T] x R% x RY.
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Proof We divide the proof into three steps.

Step 1. Identification Y»4%% = v, (s, Xb®8, [L3) = ol (s, Xb®8 g+ B —~Bt). Inspired }5>y t}}e
proof of Theorem 4.1 in [39], we shall prove the identification Y/"\%% = v,,(s, X% J50)
using the Markovian property of (X, I) studied in Appendix 5.5.2 and the construction
of (Yyntwa zntza yntea (mted) haged on Proposition 5.3.2. More precisely, for any
(t,z,a) € [0,T] x R? x R4, from Proposition 5.3.2 we know that there exists a sequence
(Yﬂ,kﬂf,iﬂ,&j Z?’L,kit,iﬂ@’ V?’Lfﬂ,t,ﬂ%d) l']:ﬂ,k,t,m,a)~€ Laé(t’ T) X Laﬁ(W) X L%,Q(B) X Lﬁé(ﬁ)’ conver-
ging to (Ybwa znted yntea gnted)in L2 (¢, T) x L2 (W) x LZ(B) x L2 (7), such
that (Yn,O,t,ac,d Zn,O,t,a;,d Vn,Oﬂf,z,d Un,O,t,ac,&) 57(0 0.0 O) aﬁd ’ 7

T T
_ {2 _ _ _ _ _
Y;n,k—i-l,t,x,a = g(XTm a) +/ f(X;f@,a,Iﬁ,a’ Y;nvkvt71:1a7 Zf’k’t’x’a)dr + n/ |Vrn,k,t,x,a|dr
S S

T 5 T 5 T 5
- / Z;z,kJrl,t,a:,adWT . / Vrn,kJrl,t,x,adBT - / /E U,T,L’kJrl’t’x’a(e)ﬁ'(dT, de),
s s s

forallt < s < T,PhH% almost surely. Let us define v,, ; (¢, z,a) := Y;”’k’t’z’&. We begin noting
that, for k = 0 we have

~ ~ a T a a
st717t7x7a — Eba [g(X;lx’a)—i—/ f(X;E,:v,a Jha 0,0)dT
S

yor )

7).

Then, we see from Proposition 5.5.3 that Y1624 = ¢, (s, XE@4 [L3) dPH @ ds almost
everywhere. Proceeding as in Lemma 4.1 of [39] (in particular, relying on Theorem 6.27 in
[21]), we also deduce that there exist Borel measurable functions %, ; and 7, such that,
respectively, Z™1H®d = 2n,1(s,X;f’“,I§@) and Vmltea = U1 (s, X074, I62), dPYE @ ds
almost everywhere. Since Z™1H%:4 ¢ Lié(W) and Vlted ¢ Lf’é (B), we notice that

- T _ B i T ) )
[t /t |§n,1(S,X;fE’a,I?G)|2dS} < o0, Eta[/t |ﬁn71(S,X§iB’a,I§’G)|2dS < .

(5.4.8)
Let us now prove the inductive step : consider k& > 1 and suppose that Y/»*t@d —
Un,k(37 X;,z,&7]‘£,d)’ Z;’L,k,t,iﬂ,ﬁ — 2n,k(~37X;fC7a7 IE,&), and ‘/Sn,k,t,z,& — 6n,k(37X§ija,I£’d)/ dPpta
® ds a.e., with E4[ T2, 1 (s, X07 159)2ds] < oo and EX2[ [T |, (s, X027, 109)2ds] <
oo. Then, we have

~ _ - T _ _ - _ - _
yperteea g fo(ke) o [T FXERR 1, XL ) 5l X751
S

T - _
4 / |G (r, X150 15)|die
S

7).

Using again Proposition 5.5.3 (notice that, by a monotone class argument, we can extend
Proposition 5.5.3 to Borel measurable functions verifying an integrability condition of
the type (5.4.8)) we see that YA +H1tad — o, 1y (s, X8 [8) dPL8 © ds almost everyw-
here. Now, we notice that it can be shown that E[sup, < <y [V7WF4%8 — ymtad|] — 0, as
k tends to infinity (e.g., proceeding as in Remark (b) after Proposition 2.1 in [39]). There-
fore, vy k(t,x,a) — vy(t,r,a) as k tends to infinity, for all (t,z,a) € [0,7] x R? x RY,
from which it follows the validity of the identification Y»/%% = v, (s, XL®8 [L3) =
vl (s, Xb%8 G 4+ Bs — By), dPY® ® ds almost everywhere.

Step 2. Viscosity property of vl'. We shall divide the proof into two substeps.
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Step 2a. v is a viscosity solution to (5.4.5). We now prove the viscosity supersolution pro-
perty of v/ to (5.4.5). A similar argument would show that v/ it is a viscosity subsolution
to (5.4.5). Let (t,7,a) € [0,T) x R? x R? and o € C%2([0,T] x (R? x R?)) such that

0= (o) —@)(E20) = min - ((0n) = ). (54.9)

Let us proceed by contradiction, assuming that

Using the continuity of b, o, 3, f, and h, we find § > 0 such that

081, 0) — £Op(t,2,8) — f(, h(@), 9l1, 2, ), 07w, h(@) D1 2,)

1
fftr(D2g0(t z,a)) — n|Dap(t,z,a)| < —e. (5.4.10)

for any (t,z,a) € [0,7] x R x R? with |t — ¢, |z — Z|,|@ — a| < . Define

ro=inf{r >t | X% — % > 6, |B, — By| > 6} A(E+0) AT

Since X*® is cadlag, it is in particular right-continuous at time 7. Therefore, 7 > , pta
almost surely. Then, an application of Itd’s formula to (r — #)¢(r, X2%% a + B, — By)
between t and 7, using also (5.4.10), yields

te(r =02+ | (r—)(Dyp(r, Xb5 &+ B, — By))To(XL™0, 1L dW, (5.4.11)
t
/ / XY 4 BG4 By — By) — o(r, X' G4 B, — By))#(dr, de)

Applying Itd’s formula to (r — )Y@ between £ and 7, using (5.3.5) and the identifica-
tion Y080 = ph(p XETA G 4 B — Bt) we find

+ / (r — VT4 B, + / (r — U0 (e)7(dr, de). (5.4.12)
t E

Plugging (5.4.12) into (5.4.11), we obtain

(r — ) (p(7, XE®%, & + By — By) — vl'(r, XL @ + B, — By)) (5.4.13)



—i—//r—t (o(r, X"™ 4 8,6 + B, — By) — o(r, X"™% G+ B, — By))#(dr, de).

Let us introduce the predictable processes a: [t,T] x Q — R, 8: [t,7] x Q — RY, and
v: [t,T] x Q = R? given by

o = 1—(r - LTS L2 0o Deg) — JXEE LS YT 7 D)
p =1 (- _

—_

ﬁr — —(T—t) r- 2TrT )T

* — = _ ] ]- t,z,a = n,t,z,a
0" Dyp(r, X050 G + B, — By) — Zb®a| Ao Dep(n X 20 at B =By 220y

oy Das(r, X' G4+ B, — By)| - .
|Dap(r, X252 G 4 B, — By) — Vb4
- Dap(r, X[™",a+ B, — By) - Wﬂ‘”? . :
|DL~L(1D(T"XV:£E7 aé+BT _Bt) ‘/7’

Vo= —n(r—

=}l

2 {Dag(r, X" "% a+ B~ B #£Vh T

for all ¢ <r< T. Notice t}}e}t o, B, and vy are bounded. Consider now the probability
measure P4 equivalent to P“® on (Q, Fr), with Radon-Nikodym density given by

&(— [ B~ [ vudBu)

forall ¢ < r < T, where £(-) is the Doléans-Dade exponential. Notice that the stochastic
integrals with respect to 7 in (5.4.13) remain martingales with respect to Pha, while the
effect of the measure P4 is to render the processes W, — W;+ Ji Buduand B, — B+ [{ ydu
Brownian motions. As a consequence, applying Itd’s formula to exp(— [ aydu)(r—1t)(p—

o) (r, X7 @ G+ By — B;) between { and 7, using (5.4.13), and taking the expectation [ta
with respect to P%, we end up with (recalling that v > (v/),)

dpta
dPta P

B8 [ J7 ez — ) — (o)) (r, XEP%, G + B, — By)|
> &9 It pp o7, X034 B, — By > <[ — 1)),

A

Since 7 > t, P14 as,, it follows that 7 > t, P' ass., therefore Ef4](r — £)2] > 0. This
implies that there exists B € F, such that (¢ — (v/),)(r, X17 @ &+ By — B;))lp > 0and
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PLa(B) > 0. This is a contradiction with (5.4.9).

Step 2b. vl is a viscosity solution to (5.4.6). As in step 2a, we shall only prove the viscosity
supersolution property of v/ to (5.4.6), since the viscosity subsolution of v/ to (5.4.6) can
be proved similarly. Let (7,a) € R? x R% Our aim is to show that

QU

(op)«(T 7,

n

) > ¢(7). (5.4.14)

Notice that there exists (ty, 1, ax)r C [0,7) x R? x R? such that

(ths Ty s 0 (b s 1)) =3 (£, 7, @, (V1) (F, 7, @),

Recall that v (ty, 1, ay) = Yt:’t’“’”’dk and

T
Ntk Tk,dk _ Totk,ak t,Th,ak tr,aK tr, Tk ar  Tlk,ak Nk, Tk,ak n,tk,Tr,ak
}/ik7 ) _E 5 [g(XT ’ )] + ) E ’ [f(XS Lk 7Is B 7}/3 sk Lk ’Zs7 sLk s )]ds
k

T ~ ~
+n / Bt [tk | s, (5.4.15)
tg

Now we observe that, from classical convergence results of diffusion processes with
jumps, see, e.g., Theorem 4.8, Chapter IX, in [59], we have that the law of (X*-*"@' *.@")
weakly converges to the law of (X%%4, [t:@). As a consequence, we obtain

B [g(xgh ™)) B g(a).

Moreover, from estimate (5.2.5) and (5.3.8), it follows by Lebesgue’s dominated conver-
gence theorem that the two integrals in time in (5.4.15) go to zero as £ — oo. In conclusion,
letting k — oo in (5.4.15) we deduce that (v}).(T,7,a) = g(z), therefore (5.4.14) holds.
Notice that, from this proof, we also have that, for any (z,a) € R? x RY, of(¢', 2/, &) —
(T, z,a) = g(x),as (t',2',a') — (T, x,a), with t' < T. In other words, v is continuous
atT.

Step 3. Continuity of v! on [0, T] x R? x R%. The continuity of v at T was proved in step
2b. On the other hand, the continuity of v on [0,7) x R? x R? follows from the compa-
rison theorem for viscosity solutions to equation (5.4.5)-(5.4.6). We notice, however, that
a comparison theorem for equation (5.4.5)-(5.4.6) does not seem to be at disposal in the
literature. Indeed, Theorem 3.5 in [3] applies to semilinear PDEs in which a Lévy mea-
sure appears, instead in our case A depends on a. We can not even apply our comparison
Theorem 5.5.2, designed for equation (5.3.1)-(5.3.2), since in Theorem 5.5.2 the variable a
is a parameter while in equation (5.4.5) is a state variable. Nevertheless, we observe that,
under assumption (H)) we can easily extend Theorem 3.5 in [3] to our case and, since the
proof is very similar to that of Theorem 3.5 in [3], we do not prove it here to alleviate the
presentation. O

5.4.2 The non dependence of the function v on the variable a

In the present subsection, our aim is to prove that the function v does not depend on
the variable a. This is indeed a consequence of the constraint (5.3.4) on the component V/
of equation (5.3.3). If v (and also h) were smooth enough, then, for any (¢, z,a) € [0,T] x
RY x RY, we could express the process V5%@ as follows (we use the notations h(a) =
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(hi(@))i=1,..q, Dah(a) = (Da,;hi(a))ij=1.,. 4 and finally Dyv to denote the gradient of v
with respect to its last argument)

vi®a = Duu(s, X0 1Y Dsh(a+ Bs — By), t<s<T.

Therefore, from the constraint (5.3.4) we would find

t+6 B _
Et’a / ‘DhU(S, X.§7I7a7 I};a)Ddh(& + Bs - Bt)’ds = O,
t

for any § > 0. By sending ¢ to zero in the above equality divided by ¢, we would obtain
|Dpv(t,x, h(a))Dah(a)] = 0.
Let us consider the function v": [0, 7] x R? x R? — R given by
o (t,x,a) = v(t,x,h(a),  (t,z,a) €[0,T] x R x RY. (5.4.16)

Then |D;v"| = 0, so that the function v" is constant with respect to a. Since h(R?) = A,
we have that v does not depend on the variable a on A.

Unfortunately, we do not know if v is regular enough in order to justify the above
passages. Therefore, we shall rely on viscosity solutions techniques to derive the non
dependence of v on the variable a. To this end, let us introduce the following first-order
PDE:

— |Dav"(t,z,a)] = 0,  (t,z,a) € [0,T) x RY x R, (5.4.17)

Lemma 5.4.1. Let assumptions (HFC), (HBC), (HA), and (HX) hold. The function v in (5.4.16)
is a viscosity supersolution to (5.4.17): for any (t,x,a) € [0,T) x R% x R? and any function
0 € C12([0,T] x (R? x RY)) such that

h N - ho
W =)t 2.0) = [O,T]Iilula%qu(v ?)

we have
—|Dap(t,z,a)] > 0.

Proof. We know that v" is the pointwise limit of the nondecreasing sequence of func-

b the function v" is lower semicontinuous and we have

tions (v!'),,. By continuity of v

(see, e.g., page 91 in [2]) :

o (t,z,a) = Ptz a) = liﬁr_l)ggf* o (t, x, ),

for all (t,z,a) € [0,T) x R? x RY, where

lim inf, o (t,z,a) = lim inf ot ), (t,z,a) € [0,T) x R? x R,
',z .a")—(t,z,a)
t'<T

Let (t,z,a) € [0,T) x RY x R7and ¢ € C12([0,T] x (R? x RY)) such that

(" —)(t,x,a) = (" o).

min
[0,T]x R4 xR2
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We may assume, without loss of generality, that this minimum is strict. Up to a suitable
negative perturbation of ¢ for large values of x and @, we can assume, without loss of
generality, that there exists a bounded sequence (t,,, ¥,,, @) € [0, T] x R? x R? such that

h ~ : h
v, — tn, Tp,0n) = min v, — Q).
(v = @) (tn, @ @n) [o,T]dequ( 2

Then, it follows that, up to a subsequence,
(tns Ty iy O (), Ty ) — (8,2, 8, 0"(t, ,a)), asn — 0o. (5.4.18)

Now, from the viscosity supersolution property of v! at (t,,, z,, G, ) with the test function
©, we have

_gsf(tnu -Tny Eln) - f(mru h(&n)7 'UZ(t'rw xn; a/n)’ UT ([BTw h(&n»Dx(P(tn, xn’ &n))

= 1
—Eh(“”)cp(tn,xn, an) — itr(Dgcp(tn,xn, an)) — n|Dap(tn, T, @n)| > 0,

which implies

- 1 0 _ g _
|Da<,0(tn,:vn, an)| < n< — a—f(tn,ajn, an) — Eh(a")cp(tn,:vn, an)

— f(:cn,h(én),vZ(tn,xn,dn),UT(xn, h(an))Dy(tn, Tn,an)) — ;tr(Dgtp(tn,xn,&n)))
Sending n to infinity, we get from (5.4.18) and the continuity of b, o, 3, f, and h :
|Day(t, z,a)| = 0,
from which the claim follows. O

We can now state the main result of this subsection.

Proposition 5.4.2. Let assumptions (HFC), (HBC), (HA), and (HX) hold. Then, the function v
in (5.4.1) does not depend on its last argument on [0,T) x R% x A :

v(t,z,a) = v(t,x,d), a,d € A,
for any (t,z) € [0,T) x R<.

Proof. From Lemma 5.4.1, we have that v" is a viscosity supersolution to the first-
order PDE :
— |Dav"(t, z,a)| = 0, (t,z,a) € [0,T) x R? x Ay,

where A;, was introduced in assumption (HA). Then, from Proposition 5.2 in [75] we
conclude that v" does not depend on the variable @ in A, :

oMtz a) = oMt x,d), (t,z) € [0,T) x RY, a,d’ € Ay,.

Since, from assumption (HA) we have h(Ap) = A, we deduce the claim. O
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5.4.3 Viscosity properties of the function v

From Proposition 5.4.2, by misuse of notation, we can define the function v on [0, T") x
RY by
v(t,x) = v(t,z,a), (t,z) € [0,T) x RY,

for some a € A. Since h(A,) = A, we also have
o(t,x) = v"(t,z,a), (t,z,a) € [0,T) x R%,

for some a € Aj,. Moreover, from estimate (5.4.3) we deduce the linear growth condition
for v :

t
sl (5.4.19)
(ta)efo.r)xre 1+ ]|
The present subsection is devoted to the remaining part of the proof of Theorem 5.4.1,

namely that v is a viscosity solution to (5.3.1)-(5.3.2).

Proof of the viscosity supersolution property to (5.3.1). We know that v is the pointwise
limit of the nondecreasing sequence of functions (v),, so that v is lower semicontinuous
and we have

v(t,z) = vi(t,x) = linrgiégf* oM (t, x,a), (5.4.20)

for all (t,z,a) € [0,T) x R% x Ay, Let (t,z) € [0,T) x R and ¢ € C*2([0,T] x R?) such
that

@-g)te) = min (v—¢)

From the linear growth condition (5.4.19) on v, we can assume, without loss of generality,
that ¢ satisfies sup(; ;)cpo,r)xre [0(t; 2)[/(1 + |2]) < oco. Fix some @ € Ay, and define, for
any ¢ > 0, the test function

Pt 2" d) = ot ) —e(lt' —tP + |2’ — 2 + |a" - af?),

for all (¢,2',a') € [0,7] x R? x R% Notice that ¢° < ¢ with equality if and only if
(t',2',a") = (t,x,a), therefore v — ¢° has a strict global minimum at (¢,z,a). From the
linear growth condition on the continuous functions vﬁ and ¢, there exists a bounded
sequence (t,, Zn, @y )n (We omit the dependence in €) in [0, T') x R? x R? such that

h 5 ~ : h 5
VU, — @ t sy Ly y A = min UV, — ¢ ).
( n )( n n n) [07 ]>< dy q( n )

By standard arguments, we obtain that, up to a subsequence,
(tns Ty iy O (b, Ty @) — (8, 2,8, 0(t, ), as n — 0o.

Now, from the viscosity supersolution property of v/ at (t,, 2., @,) with the test function
-, we have

0*

_ﬁ(tm Tp,Gn) — f(xm h(an), UZ(tm T, ), 0 (T, h(Gn)) De® (tn, Tn, an))

_ B 1 N N
—Eh(a")goa(tn,xn,an) — itr(DgcpE(tn,xn,an)) — n|Da¢® (tn, Tn, an)| > 0.
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Therefore
D® N ~ N . h 7 7 © z
_W(tn’ $n7 an) [— f(:L‘n’ h(an)7 ’l)n(tn’ xTL’ (Ln)’ O'T(SUn7 h(an))D:t(P (tna CUn’ Cbn))
. 1
—Lh(an)(pg(tna Tn, &n) B gtr(Dgng(tm L, a’n)) > 0.

Sending n to infinity in the above inequality, we obtain, from the definition of %,

_%(t,x,d)—ﬁh(a)w(t,m,&) ~ f(x, (@), v(t, z), 0 (x, h(@)) Due(t, 2,d)) +£ > 0.

Sending ¢ to zero, recalling that ¢°(¢, z, a) = ¢(t, z), we find

9

o (t,x) — LD o(t, 2) — f(z,h(@),v(t,z),07 (z, h(a@))Dep(t, z)) > 0.

Since @ € Ay, and h(Aj) = A, the above equation can be rewritten in an equivalent way
as follows

—E(t,x) — L%(t,z) — f(x,a,v(t,z),07(z,a)Dyp(t,x)) > 0,

where a is arbitrarily chosen in A. As a consequence, using assumption (HA) and the
continuity of the coefficients b, o, 3, and f in the variable a, we end up with

92 (4,2) — sup [0 (t, ) + (@ a,0(t,2),07 (@, ) Duplt, )] = 0,
ot acA
which is the viscosity supersolution property. O

Proof of the viscosity subsolution property to (5.3.1). Since v is the pointwise limit of

the nondecreasing sequence (v/?),,, we have (see, e.g., page 91 in [2]) :

v*(t,x) = limsup, v (t,z,a), (5.4.21)

n—oo

for all (t,z,a) € [0,T) x R x Ay, where

limsup, o (t,z,a) =  limsup (¢, 2, @), (t,z,a) € [0,T) x R? x R,
n—oo n—oo
t<T,a' €Ay,

Let (t,z) € [0,T) x R?and ¢ € C*2([0, T] x R?) such that
(v* —p)(t,z) = max (v*— ).

[0,T] xR

We may assume, without loss of generality, that this maximum is strict and that ¢ satisfies
a linear growth condition sup(; ;)c(0,71xre |9 (¢, )|/ (1 +|z|) < co. Fixa € Ap and consider
a sequence (tp, Tp,ap)p in [0,T) X R4 x A, such that

(tn, Ty Gy O (s Ty @) — (E, 2, @, 0" (t, 7)), asn — oo.
Let us define for n > 1 the function ¢,, € C*2([0,T] x (R% x R%)) by

on(t 2/ d) = ot 2) + (|t —tu* + |2’ — z,]%),
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forall (¢',2,a") € [0,T] x R x RY. From the linear growth condition on v and ¢, we can
find a sequence (f,,, Ty, @n)n in [0, T) x R? x Ay, such that

h ¥y o~ = h
v, — tn, Tn,an) = max v, — .
(Un = ¢n)(tn, Tn, Gn) [O,T}dexAh( n — #n)

By standard arguments, we obtain that, up to a subsequence,

n([tn — tol? + [Zn — 2a]?) =5 0.

As a consequence, up to a subsequence, we have

(tn, Tny@n) "3 (t,2,0),

for some @ € Ap. Now, from the viscosity subsolution property of v’ at (¢, Z,,, a,) with
the test function ¢,,, we have :

a(;otn(fna T, an) - f(fna h(én)a UZ(Ena T, C:Ln)a o’ (jm h(an))D:r:SOn(t_nv Ty C:Ln))

a T - = 1 - - = - - =
—Eh(a")gpn(tn,xn, an) — §tr(D§<pn(tn,mn,an)) — n|Dgn(tn, Tn,an)| < 0.

Therefore, using the definition of ¢,

_O¢n

3t (Env fEn’ an) - Eh(an)@n(t_n) i”ﬂ’ an) - f(jﬂd h(an)v U:LL’ O-TDIQOn(t_n7 j’na C:Ln)) S 0

Sending n to infinity in the above inequality, we obtain

—37‘5(@ z) — LMD o(t, ) — f(z, h(@), v*(t,z),07(z, h(a@)) Dep(t, z)) < 0.

Setting @’ = h(a), the above equation can be rewritten in an equivalent way as follows

_%(ta x) - £a/()0(t7 x) - f(xa a’? O-T(:U7 a/)Dm(p(t’ ':U)) S O

As a consequence, we have

~92 (1, 2) — sup [£%(t,2) + f(z.a,07 (z, @) Duip(t, )] < 0,
ot acA
which is the viscosity subsolution property. O

Proof of the viscosity supersolution property to (5.3.2). Let z € R?. From (5.4.20), we
can find a sequence (t,,, Ty, Gn)n valued in [0, T") x R x RY such that

(tns Ty iy O (b, Ty @) — (T, @, 04 (T, 7)), asn — oo,

h

"), is nondecreasing and v!(T), -, -) = g, we have

for some @ € Aj,. Since the sequence (v

U*(T7x> > nli—%lov?(tn?xnaan) = g(l’)
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Proof of the viscosity subsolution property to (5.3.2). Let z € R?. From (5.4.21), for every
e >0and a € Ay, there exist N € Nand 6 > 0 such that

Wt 2 d) —o*(T,z)| < e, (5.4.22)

foralln > N and |t/ — T|,|2' — z|,|@ — a| < 6, witht’ < T and @ € Aj,. Now, we recall
that v/*(T, z,a) = g(z), therefore, from the continuity of v, for every n € N, there exists
0n > 0 such that
[Wh(t, 2’ @) — g(2)] < e, (5.4.23)
for all |t/ — T, |2’ — z|,|@’ — | < 6,, with @ € Aj,. Combining (5.4.22) with (5.4.23), we
end up with
v (T,xz) < g(x)+ 2e.

From the arbitrariness of ¢, we get the claim. O

5.5 Appendix

5.5.1 Martingale representation theorem

We present here a martingale representation theorem, which is one of the fundamen-
tal result to derive our nonlinear Feynman-Kac representation formula. It is indeed a
direct consequence of Theorem 4.29, Chapter III, in [59], which is however designed for
local (instead of square integrable) martingales.

Theorem 5.5.1. Let (t,a) € [0,T] x R? and M = (My)i<s<7 be a cadlag square integrable F-
martingale, with M; constant. Then, there exist Z € L 5(W), V € LZ5(B), and U € L 5(7)
such that . 5 .

M, = M, + /t Z,dW, +/t V,dB, +/t /E U, ()7 (dr, de),

forallt < s < T, P“% almost surely.

Proof. Since M is a local martingale, we know from Theorem 4.29, Chapter III, in [59],
that

M, = Mt+/ ZrdWTJr/ VrdBrJr/ /Ur(e)fr(dr, de),
t t t E

for some predictable processes (Zs)i<s<7, (Vs)i<s<r, and (Us)i<s<r, satisfying

5 TATE - ATy
EWU \ZS\st} < o0, EWU |V5\2ds} < o0,
t t

Et’&K /t T [E Us(e)|27r(ds,de)>l/2} < o0,

for all n € N, where (77)nen, (7 )nen, and (7Y),en are nondecreasing sequences of F-
stopping times valued in [t, T], converging pointwise P“@ a.s. to T'. It remains to show that
Z € L}4(W),V € LZ5(B), and U € L4(7). This is indeed a consequence of Theorem
4.1.d in [56]. 0

135



5.5.2 Characterization of 7 and Markov property of (X, /)

In the following lemma, inspired by the results concerning Poisson random measures
(see, e.g., Proposition 1.12, Chapter XII, in [93]), we present a characterization of 7 in
terms of Fourier and Laplace functionals. This shows that 7 is a conditionally Poisson
random measure (also known as doubly stochastic Poisson random measure or Cox ran-
dom measure) relative to o(1,; z > 0).

Proposition 5.5.1 (Fourier and Laplace functionals of 7). Assume that (HFC) holds and fix
(t,a) € [0,T] x RY. Let £: Ry x E — R bea B(R}) ® B(E)-measurable function such that
Io° S 10u(€)ANIL?, de)du < oo, P4 a.s., then, for every s < oo,

)

Rd [ei Iy [ tule)m(du,de) o(Ib%; 2 > 0)} — elo S DAL de)du Phe ..

If 1 is nonnegative, then the following equality holds :

Et’a[ f f Ly (e)m(du,de) (I?a;z > 0)} . fos fE(1*e*Zu(e)))\(lzt;fi,de)du7 Pha g.s.

In particular, if (Fj;)1<k<n, with n € N\{0}, is a finite sequence of pairwise disjoint Borel mea-
surable sets from Ry x E, with [, AILA de)du < oo, Pb% a.s., then

EY? {eizzﬂ Ok 5 (157, 2 > 0) } H o (eI 4y , Pas.

forall 01,...,0, € R. In other words, w(F}),...,n(F,) are conditionally independent relative
to o(IL%; 2 > 0).

Proof. Let J; = [ [ lu(e)m(du, de), for any s > 0, and define

o(s) = Ee[es|o(Ib8 2 >0)], Vs>0.

Applying Ito’s formula to the process e'’+, we find

oids — 1—|—/ / - w“(e — 1) (du, de).

Taking the conditional expectation with respect to o(I4%;u > 0), we get

Et,& [eiJs

o(Ib% 2 >0)] = 1+EWU / W= (€ — 1)\(IL9, de)du

(1252 = 0)
=1+ /0 [E EY4 e | o (16% 2 > 0)] (™€) — 1)\(IL2, de)du.
In terms of ¢ this reads
6(s) = 1+ /0 Tou)b(wdu,  Phias.,

where

vlu) = / (") — )AL, de), P q.s.
E
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Notice that 1) belongs to L*(R..), as a consequence of the integrability condition on f. We
see then that ¢ is continuous, so that

o(s) = elo V(udu, P q.s.,
which yields the first formula of the lemma. The second formula is proved similarly. [

We shall now study the Markov properties of the pair (X, ) in the following two
propositions.

Proposition 5.5.2. Under assumption (HFC), for every (t,z,a) € [0, T] x R? x RY the stochastic
process (XL%0, L4 ~qon (Q, F,F,Pb%) is Markov with respect to F: for every r,s € Ry, r < s,
and for every Borel measurable and bounded function h: R? x RY — R we have

E“*[h(X0™0 10| F] = EM[A(XD5 109 |o(X05 12Y)],  PYas.

Proof. Fix (t,z,a) € [0,7] x R? x RY. Notice that it is enough to show the Markov
property for t < r < s < T. Therefore, let r € [t,T] and consider, on (2, F,F,Pt%), the
following equation for X :

X, = tha+/ b(X,, IL%) du+/ Xy, ILYYaw, (5.5.1)

- / /5 X, I )it (du, de),

forall s € [r,T], P"® a.s., where 7 (du, de) = m(du,de) — 1,cr 3 A(I5*, de)du. Under as-
sumption (HFC), it is known (see, e.g., Theorem 14.23 in [57]) that there exists a unique
solution to equation (5.5.1), which is clearly given by the process (X!*%) (. 7). We recall
that this solution is constructed using an iterative procedure, which relies on a recursi-
vely defined sequence of processes (X' ("))n, see, e.g., Lemma 14.20 in [57]. More precisely,
we set X(©) = 0 and then we define X ("*1 from X as follows :

XénJrl) _ Xtma+/ bX(n Ita du+/ Ita dw,

//5 () 1'% )i (du, de),

for all s € [r, T], P"® a.s., for every n € N. It can be shown that X (™) converges uniformly
towards the solution X**% of (5.5.1) on [r, T|, P“® a.s., namely sup¢(, 7 XM _xtwa) 0
as n tends to infinity, P“¢ almost surely. This shows that X% (and also (X%*@, I1%)) is F-
adapted, where F = (]?S)SG[T,T] is the augmentation of the filtration G = (QNS)SG[T’T} given
by :
Gs = o(XpP8 IV FY GV F gV T g

where .7-"[‘7/}7/5] = oWy —Wyr <u <s), Fﬁsl = o0(By — Br;r < u < s), and .7-"[175] =
o(n(F); F € B([r, s]))®B(F)). Since -7:[3[,/3] and ]-"ﬁs] are independent with respect to 7, it is
enough to prove that 77 , and 7, are conditionally independent relative to o(XL@a Jha),
To prove this, take C' € F, and a B(R) ® B(E)-measurable function ¢: Ry x £ — R such
that [° [5 [€u(e)IN(IL%, de)du < oo, PH% almost surely. Then, the claim follows if we prove
that

Et,a[ez’911c+i02 I [, tu(e)m(du,de)

o(Xpe, 1) (5.5.2)

137



]Eta[ 10110’0_ Xta:zz Ita)]Eta[ z@gf fEZu 7(du,de)

(X;f’m’dv Iﬁ’&):| ) Pt’a a.s.,

for all 01,6, € R. Firstly, let us prove that 1¢ and [ [; £, (e)7(du, de) are conditionally
independent relative to o(IL%; 2z > r), i.e

Eta {6101 1o+ib2 fj IE Ly (e)m(du,de)

o(It% 2 > 1) (5.5.3)
— ]Et,& [€i9110|0'(fi’a; 2> T)] f f (ettu(e)f2_1) /\(Ltj&,de)du’ ptﬁ s,
Proceeding as in Proposition 5.5.1, let J; = [7 [ €, (e)m(du, de) and

p(s) = EH [ewllCHGQ‘]S o(Ib%; 2 > )], Vs>

Applying Itd’s formula to the process e'/s, we find

Et,fl [ei91lc+i92Js O'(I;’a; P Z 7’)} _ Et,& [€i9110|0,(]'§,&; P 2 T)]

+ Et,fz |:/S/ €i9110+i92JU_ (eifu(e)Qz . 1)/\(It’& de)du
u
r JE
— Et,fl[ i9110|0_ It,fl,z > ,,,,)}

+ / / Eta r1o+ib2J, — o ( (IL% 2 > r) ](eie“(e)e2 — l)A(IZ’&,de)du.

(1252 > 0)]

In terms of ¢ this reads
6 = 1+ [ o wlwdu,  Plas,

where
P(u) = / (eifu(e)(’? —1))\(If;‘~’,de), Phe g.s.
E

Notice that ¢ belongs to L* (R ), as a consequence of the integrability condition on f. We
see then that ¢ is continuous, so that

8(s) = BY (1o (1802 2 el VO, B,
which yields (5.5.3). Let us come back to (5.5.2). We have, using (5.5.3),

Rba {ei9110+i92 I [, tu(e)m(du,de)

o(XPPIEY)| = EY[ViYalo (X157, 167)],
where

y; = Eb [ei9110|0(I§’&; z2>r)V U(Xﬁ’g”’&,lf’d)],

Y, = Eba {61192 I [, tu(e)m(du,de)

o(Ib% 2 > r) vV o(XH0, Iﬁ’a)}.

Since (IL%),>o is Markov with respect to F, we have that F, and o(I}% 2 > r) are inde-
pendent relative to o(It%). Therefore, Y1 can be written as

vy = EMeiic|o(xbn0 1h)).
It follows that Y7 is o(X%®@, It:%)-measurable, so that

Ehd {62‘911C+i92 [ [ tule)m(du,de)

U(Xﬁ’m’a,fﬁ’a)] = VEY([Ys|o(XEo0 100)],  Phigs,

which proves (5.5.2). O
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Proposition 5.5.3. Under assumption (HFC), the family (Q, F, (X4, [63) PL®), & is Mar-
kovian with respect to F and satisfies, for every (t,x,a) € [0, T) x RIxRY, r, s € Ry withr < s,
and for every Borel measurable and bounded function h: R? x RY — R,

EY [(X 5% 10| F] = / L b ad)p(r, (X %), s, da'ddl), P a.s. (5.54)
R%x R4

where p is the Markovian transition function given by
p(r, (a',@),5,T) = P (X0 I1%) € T),
for every r,s € Ry, r < s, (2/,a') € R? x RY, and every Borelian set T' C RY x R4,

Remark 5.5.1. For the proof of Proposition 5.5.3 we shall need to consider simultaneously
two distinct solutions { (X %@, 14@) s > 0} and {(X!*"@ 1t@") s > 0},for (t,x,a), (t',2',d') €
[0, T]xRIxRY. According to Lemma 5.2.2, {(X,%@ 144), s > 0} is defined on (€2, F,F, P:4)
and {(X%*"¢" 14" s > 0} on (Q, F,F,P*®), respectively. However, we can construct
a single probability space supporting both solutions. More precisely, we can construct a
single probability space supporting both the random measure with compensator given
by 1{s<r. 3 AMIL%, de)ds and the random measure with compensator 1{S<TOO}A(I§/’&/, de)ds,
proceeding as follows.

Let Q" be a copy of €/, with corresponding canonical marked point process denoted
by (T}, &} )nen, canonical random measure 7", T/, := lim,, 7}/, and filtration F” = (F});>o0.
Define (2, F,F = (F)i>0) with Q := Q x Q", F := F @ F,and F; := Ny=i Fs @ F'. Mo-
reover, set W (&) := W(w), B(&) := B(w), #/(®,") = 7(w,-), and #"(®,") := 7" (",").
Set also T/ (&) := Tro(w) and T7 (&) := T (w"). Let PH@!%" be the probability mea-
sure on (2, F) given by Pt&!% (d0) = P(dw) @ P14 (@, dw') @ P (@, dw”). Finally,
set (X-t,z,d’ ft,&)(@) — (Xt,ac,&, It’&)(@, w/) and (Xt’,x’,&’, ft’,&’)(w) — (Xt/’z/’&l, It/’&/)(@,w”).
Then (X*®@, [%) solves (5.2.1)-(5.2.2) on [t, T] starting from (z, @) at ¢, and (X*#@ [,
solves (5.2.1)-(5.2.2) on [t, T starting from (z/,a’) at time ¢'. O

Proof (of Proposition 5.5.3). We begin noting that from Proposition 5.5.2 the left-hand
side of (5.5.4) is equal to Eb4[h(X1%a [L4)|g(XL®a, [L3)], PL4 almost surely. Let us now
divide the proof into two steps.

Step 1. (X1%4, IL%) is a discrete random variable. Suppose that

(X;f,x,&’lﬁ,&) = Z(xiadi)lFi7
i>1
for some (z;,a;) € R? x RY and a Borel partition (I';);>; of R x R? satisfying P(I';) > 0,
for any ¢ > 1. In this case, (5.5.4) becomes
ESC[h(XE50 I0M) o (XP™0 10 = Y 1p ER% [a(XP70% I10%)],  P"%a.s. (5.5.5)
i>1
Now notice that the process (X%®1r,),>, satisfies on ({2, F,F, P44 (using the same
notation as in Remark 5.5.1)

A ~ 8 A ~ A ~ 8 A ~ A ~ A
Xt = a1y, + / bi( XL IR, )dr + / o (XL5 My, IH 1, )dW,
T

r

139



S A -~ A ~ ~
+ / / BXL" 1, I 1r,, e)7i(du, de),
r JE

with b; = bly,, 0; = olyr,, and 7; is the compensated martingale measure associated to
the random measure 7;, which has 1pi)\(fzf Ir,,de)ds, s > r, as compensator. Similarly,
the process (X7##% 11 )5, satisfies on (2, F, F, PHa"a:)

A ~ S A ~ A ~ s A ~ A ~ ~
X;"»mi,ailri — :I:z]-Fl'i_/ bi(Xg:Ei,ailF“Ig,ailri)dr+/ Ui(XZ,xi,CLilF”Ig,ailri)qu
T T
s A - 2 7y ~
—l—/ /B(X;’f“azlpi,ffﬁllpi,e)ﬁ'g(du,de),
r JE

where 7/ is the compensated martingale measure associated to the random measure 7/,
which has lpi/\(f;"’_d" Ir,,de)ds, s > r, as compensator. Since the two processes (I5%1r,) s>,
and (I7%1r,)s>, have the same law, we see that (X“®@1r,)s>, and (X% 1p,) s>, solve
the same equation, and, from uniqueness, they have the same law, as well. This implies
(denoting E4@7@: the expectation with respect to P%47d:)

Et,dﬂ’,di I:h(X;,Z‘,EL’ f;,a) 11_‘1] — Et,d,’r’,di I:h(X;’,Z‘i,&i ’ f;‘,&i ) 11—‘1] .

Notice that
E1On (058, 1101y, | = EM(h(X50, 1001
and
Ebarai [h(X;’mi’ai, fg’ai)lri] — Rbama: [Et,&,r,&i [h(Xg,xl,a,’ f;’,di)lri ]:r]]
Et,d,r,&l [Et’&’r’&l [h(X;',acl,sz’ Isr,&i) fr] 1Fz:|
— Et,flﬂ“@i Et,&,r,&i [h(Xr,x“dz fr,&i)} 1 ]
s yds

In other words, we have

B [h(XG™®, Ig%)1r,] = EM (BN [A(X770%, I2%)]1r ],

k3

from which (5.5.5) follows.

Step 2. General case. From estimate (5.2.5), we see that (X% [9) is square integrable,
so that there exists a sequence (X5®@n [H@n)  of square integrable discrete random
variables converging to (X% I%%) pointwise P a.s. and in L?(Q, F,P4@; R? x RY).
The sequence (X1®@n [L@1), can be chosen in such a way that (X!®@ntl jh.antl) jg
a better approximation of (X.%@, [t@) than (X5®%" [H4m) in other words such that
o(Xbwan Jtany c g(XLeantl [tantl) 1et us denote (X5%%n [L@") the solution to
(5.2.1)-(5.2.2) starting at time 7 from (X!%@n [tdn") Notice that, from classical conver-
gence results of diffusion processes with jumps (see, e.g., Theorem 4.8, Chapter IX, in
[59]), it follows that (X5®@n L") converges weakly to (X5%%, I1). From Step 1, for
any n we have

BN (X170, [80)| g (XL, [16)] = p(r, (XE20n, [16) 5. 1), P as. (556)

where
p(r, (2',), 5,h) = BN [R(XpT 0, Ip0m)],
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for every r,s € Ry, r < s, (2/,d@') € R x RY, and every Borel measurable and bounded
function h: R? x R? — R. Let us suppose that h is bounded and continuous. Since the se-
quence (EY4[p(Xbman Jhan)|g(Xbman 1han)]), is uniformly bounded in L?(Q, F,Pb9),
there exists a subsequence (Eb@[h( XL®@mk  [Lank)|o(XE2ame hane)]), which converges
weakly to some Z € L2(, F,P4@). Forany N € Nand I'y € o(XL%%N [L4N) we have,
by definition of conditional expectation,

Et,& []Et,d [h(X;‘,,.T,&,TLk ’ I;,d,nk) ’O'(Xﬁ’x’&’nk , Iﬁ’&’nk)} 1FN} — Et,d [h(X;’x’a’nk , I;’&’nk)].l"

wls
for all ni, > N. Letting k — oo, we deduce
E"[Z1ry] = E"[A(X™% I0%)1ry].

Since o(X!®@ [L3) = v, o(XL®an THEn) it follows that

Z = EY[p(XL50 19| o(XE50, 150)],  Pha.s.
Notice that every convergent subsequence of (Eb4[h(XL%an LA |g(XL®an [LAM)]),
has to converge to Eb@ [ (X 1®@ [44)|o(XL%@, [H@)], so that the whole sequence converges.
On the other hand, when h is bounded and continuous, it follows again from classi-
cal convergence results of diffusion processes with jumps (see, e.g., Theorem 4.8, Chap-

ter IX, in [59]), that p = p(r, (2/,@), s, h) is continuous in (2/,d’). Since (XL%@", [LA"),
converges pointwise P4 a.s. to (X1%%, 1), letting n — oo in (5.5.6) we obtain

EU [h(X000, 160) o(XE20, 160)] = p(r, (X090, 10%), 5,3),  Phias.  (557)

for any h bounded and continuous. Using a monotone class argument, we conclude that
(5.5.7) remains true for any h bounded and Borel measurable. O

5.5.3 Comparison theorem for equation (5.3.1)-(5.3.2)

We shall prove a comparison theorem for viscosity sub and supersolutions to the
fully nonlinear IPDE of HJB type (5.3.1)-(5.3.2). Inspired by Definition 2 in [4], we begin
recalling the following result concerning an equivalent definition of viscosity super and
subsolution to (5.3.1)-(5.3.2), whose standard proof is not reported.

Lemma 5.5.1. Let assumption (HFC), (HBC), and (H\) hold. A locally bounded and Isc (resp.
usc) function uwon [0, T] x R% is a viscosity supersolution (resp. viscosity subsolution) to (5.3.1)-
(5.3.2) if and only if

u(T,xz) > (resp. <) g(x)

for any x € R%, and, for any § > 0,

1
- %:(ta z) = sup b(w, a).Dyip(t, @) + Str(00™ (@, a) Dip(t, @) + IM(t, z,0)

+ 13 (t, 2, Dap(t, ), u) + f(w,a,u(t, 2),07 () Dap(t, x)) | 2 (resp. <)0,
forany (t,x) € [0,T) x R and any ¢ € C12([0,T] x R?) such that

(u—o)(t.z) = [OgﬁanRd(u —¢) (resp. [O%i%d(u —9)).
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As in [4], see Definition 4, for the proof of the comparison theorem it is useful to adopt
another equivalent definition of viscosity solution to equation (5.3.1)-(5.3.2), see Lemma
5.5.2 below, where we mix test functions and sub/superjets. We first recall the definition
of sub and superjets.

Definition 5.5.1. Let u: [0,T] x R? — R be a Isc (resp. usc) function.

(i) We denote by P>~ u(t, z) (resp. P> Tu(t, z)) the parabolic subjet (resp. parabolic superjet)
of wat (t,x) € [0,T) x RY, as the set of triples (p,q, M) € R x R? x S¢ (we denote by S¢ the set
of d x d symmetric matrices) satisfying

1
u(s,y) = (resp. <) u(t,z) +p(s —t) +q.(y —2) + 5(y — ). M(y —2)
+o(|s —t| + |y — z?), as (s,y) — (t,x).
(ii) We denote by P>~ u(t, x) (resp. P>Tu(t, z)) the parabolic limiting subjet (resp. parabolic
limiting superjet) of uat (t,z) € [0,T) x R?, as the set of triples (p,q, M) € R x R? x S such
that
(g, M) = lim (pn, gn, M)
with (P, Gn, My) € P>~ u(ty, o) (resp. P> u(ty, x,)), where
(t,z,u(t,x)) = nli_)n;o(tn, Ty U(tp, Tp))-

Lemma 5.5.2. Let assumption (HFC), (HBC), and (H)) hold. A locally bounded and Isc (resp.
usc) function uon [0, T] x R is a viscosity supersolution (resp. viscosity subsolution) to 1(5.3.1)-
(5.3.2) if and only if

w(T,z) = (resp. <) g(x)
for any x € R%, and, for any § > 0,

1
—p—sup |b(z,a).qg+ itr(a(ﬂ(x, a)M) + IM(t, x, )
acA

+ 120t 2, q,0) + f (2, a,ult,z),07(x,a)q) | = (resp. <) 0,

for any (t,z) € [0,T) x RY, (p,q, M) € P>~ u(t,z) (resp. (p,q, M) € P>*u(t,z)), and
any ¢ € CY2([0,T] x RY), with 22(t,2) = p, Dyp(t,x) = q, and D2p(t,x) < M (resp.
D2p(t,z) > M), such that

(u—o)(t,z) = [O%@Rd(u — ) (resp. o (U= )

Proof. The proof can be done along the lines of the proof of Proposition 1in [4]. [

We can now state the main result of this appendix.

Theorem 5.5.2. Assume that (HFC), (HBC), and (H)) hold. Let u be a usc viscosity subsolution
to (5.3.1)-(5.3.2) and w a Isc viscosity supersolution to (5.3.1)-(5.3.2), satisfying a linear growth
condition
t
qp BB D) (55.8)
(t,z)€[0,T]xRd 1+ ||

Ifu(T,z) < w(T,x) forall z € RY, then u < won [0,T] x R4
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Proof We shall argue by contradiction, assuming that

sup (u—w) > 0. (5.5.9)
[0,7]xR4

Step 1. For some p > 0 to be chosen later, set
a(t,z) = eflu(t,z), w(t,x) = ePw(t,z), (t,z) € [0,T] x RY.

Then, we see that @ (resp. W) is a viscosity subsolution (resp. supersolution) to the follo-
wing equation :

00

PO~ 57 ~SWD (L% + f(-ya,0,07(-,a)Dy8)) = 0, on[0,T)xR% (5.5.10)
o(T,x) = glx), zeR% (5.5.11)
where
ft,z.a,y,2) = e’ flz,a,e Py, e ™2),  glz) = "g(),

forall (t,z,a,y,2) € [0,T] x R x A x R x R4,
Step 2. Denote, for all (¢, s,z,y) € [0,7]? x R??, and for any n € N\{0} and y > 0,

t—sf eyl
2 2

(I)n,v(tasaxvy) = ﬂ(th) - UNJ(Say) -n 7(|$’2 + ‘y|2)

By the linear growth assumption on u and w, for each n and v, there exists (¢, ~, Sny; Zn ~,
Yn) € [0,T]? x R? attaining the maximum of ®,,., on [0,7]? x R??. Using standard
techniques from the theory of viscosity solutions, we see that, for each v, there exists
(ty, ) € [0,T] x R? such that

(tnm Snyys Tnyys yn,v) =y (t'ya Ly, Ty, x,y), (5.5.12)
n|zn sy — 20 4 nlyny — y,* =50, (5.5.13)
Wltnrs Tnn) — D(Snys Uny) "X @ty 2y) — W(S4, n). (5.5.14)

We also notice that, proceeding by contradiction, we can prove that, if -y is small enough,
thent, < T,sothatt, -, s,, < T,up to asubsequence. Finally, we derive a useful inequa-
lity. More precisely, for any ¢,¢" € R, from the maximum property ®,, - (tn, v, Sn.ys Tnqy +
d7 Yn,y + d/) < (I>n,7 (tn,’yv Snys Tnyys ynﬁ) we get

a(tn77’ xnv’y + d) - a(tnﬁ? ‘/L‘ny'Y) - nd'(xnv'y - yn,’Y)
S w<3nﬂ7 yn,w + d/) - w(sn,vv yn,w) - nd/-<$n,v - yn,v)
jd—d'?

(B0 + A = [2ns |+ sy + P = [ynsl?)- (5.5.15)

Step 3. We shall apply the nonlocal Jensen-Ishii’s lemma (see Lemma 1 in [4]). To this end,
let v € (0,~7*] and define
t—s® |-y

QOn(t, 57m>y) =n 2 + n 2 + 7(|$|2 + |y|2) - (I)n,'y(t'n,’}’v Sn,’yaxn,'yayn,’y);
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for all (¢,s,7,y) € R?+24 and for any n € N\{0}. Then (ty, $n, Tn, Yn) = (tn,'ya Snyyy Tnyys
Yn.~) is a zero global maximum point for @(t, z) — w(s,y) — ¢n(t,s,x,y) on [0, T]? x R4
Set

0
(Pan) = ﬂ(tnaSnal‘nvyn)an(Pn(tnuSnaxnvyn) )
ot

0
(_p;u_Q;z) = (g;n(tnaSn;xmyn)7Dy@n<tn75nawn7yn))-

Then, for any # > 0, it follows from the nonlocal Jensen-Ishii’s lemma that there exists
&(7) > 0 such that, for any 0 < a < &(7), we have : there exist sequences (for simplicity,
we omit the dependence on &) (¢, i, Sn.k, Tr ks YUn,k) = (Ens Sns Tns Yn), (tnks Snoks Trks Yn k) €
[0,T)% X R, (s D)y s Ger Ao i) = (P> Py @ 47,), Matrices Ny g, Ny, ;. € S%, with (N,
N,, ;) converging to some (M, o, M, ), and a sequence of functions ¢, . € CH2([0,T)% x
R2?) such that :

(i) (tn.k» Snks Tnk, Yn,k) is a global maximum point of & — @ — ¢y, 1 ;

(i) a(tnk,nk) = W(tn, zn) and W(sy k, Ynk) — W(Sn,Yn), as k tends to infinity ;

(111) (Pn,k, Adn.k> Nn,k) S P27+ﬂ(tn,k7 xn,k)/ (pln,kv Q;L,kv qu%k) € 7)27_@(571,,167 yn,k)/ and

Opnk
(Prjes Gn k) = 2 (b ks Smks Tres Ynk)s Daon ke (ks Snks Tndes Ynke) | »
ot

0Pk
(_p;L,kv _Q:@,k) = ( 62’ (tn,ka Sn,ks Tn,ks yn,k)> DySOn,k(tn,ka Sn,ks Tn,ks yn,k)> ;

(iv) The following inequalities hold (we denote by I the 2d x 2d identity matrix and by

D(Zx ,)¢n.k the Hessian matrix of ¢y, x with respect to (z,y))
1 Nk 0
- EI < < 8, _NT/L k) < D%Ly)@n,k(tn,ka Sn,ks Tn ks yn,k)- (5516)

(V) ¢n,k converges uniformly in R2+2d and in C?(Bj(tn, $n, Tn, Yn)) (Where By (ty, sn, Tn,
yn) is the ball in R?*2¢ of radius # and centered at (t,,, Sn, Tn, yn)) towards 1, o =
R*[on) (-, (Pn Phys Gn- 4,) ), where, for any & € R*T24,

! 2
ROl (2,6) == sup {@n<z'>—§.<z'—z>—'zz'}, Ve e R,
|2/ —2|<1 2a

Then, from Lemma 5.5.2 and the viscosity subsolution property to (5.5.10)-(5.5.11) of 4,
we have :

pa(tn,ka xn,k) — Pn,k — Sup
acA

I3 (ks Tes Pk (S s Ynk)) + 12 (b s s G @)

1
b(l'nyk, a).qu + §tr(UgT(xn7k, a)Nn,k)

+f(tn,k7 Tn ks A, ﬂ(tn,k‘a xn,k’)a o’ (xn,ka a)Qn,k) S 0.

On the other hand, from the viscosity supersolution property to (5.5.10)-(5.5.11) of @, we
have :

N 1
P (Sn s Yn,k) — Prg — sup b(Yn k> @) -Gy i + §tr(UUT(yn,k7 a)N,, 1)
a&
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+I;75(5n,k’7 Yn,ky —Pnk (tn,ka Tk )) + 1375(371,]9’ Yn,k> qilvk’ ’(ZJ)

+f(5n,k7 Yn,k, A, w(sn,ka yn,k)7 o’ (yn,ka a)q;17k) > 0.

For every k € N\{0}, consider a;, € A such that

- 1
Pty s Tnk) — Pnk — b(Tnk, Ak)-Gn ke — §tr(00T(3«“n,k, ar) N k) (5.5.17)
_I;;f (tn,Im T ks @n,k(w Sn,ky s yn,k)) - Ig;f (tn,k; Tn,ky dn,k» ﬂ)
_ ) 1
— [ (ko> T o Wy Wt s Trk), O (T oy Ak )G ks) < T

From the compactness of A, we can suppose that a — ax € A, up to a subsequence.
Moreover, for every a € A we have

- 1
PU(Sn ks Yn k) = P = O(Yn ks @)-Gryjo — 5“(0’07(%71& a) Ny, k) (5.5.18)
_1376(371,]{7 Yn,ky _Son,k(tn,ka Yy ks )) - 1376(371,]67 Yn ks qz,ka ’U~})

— F (Snsks Yrnsks @5 W (Snsks Ynsk)s " (Yo )@y i) = 0.

Set r* := 28upP(y o)eax(Bn{le|<s}) (|B(z", a,e)| V |B(y*, a,e)]), where from (5.5.12) we de-
fine (z*,y*) = limy 00 (Tn, yn), and a* := &(r*). Notice that for all n € N\{0} we have
SUD(g,e)c Ax (En{|e|<6}) (|B(Tn, @, €)[V[B(yn, a, €)[) < r*, up to a subsequence. Therefore, sen-
ding k to infinity, we get vy, k. — ¥n o, as k tends to infinity, uniformly in C? (B« (ty, $n, Tn,
yn)) for any 0 < a < a*. Moreover, from assumption (HA)(iii) we have

lim Sup/ (@(tn k> T + B(@n g, ak,€)) — Wtn g, Tng) — B(Tn ks Ok €)-Gn i) Mag, de)
k—oo JEN{|e|>d}

</ (@(tns T + B(ns Qoo €)) — Wltns Tn) — B(En, oo, €)-Gn) Moo, de).
En{le|>6}
Therefore, from (5.5.17) we obtain
1
pﬂ(tn, l‘n) — DPn — b(xm aoo)~Qn - itr(UUT(l‘na aoo)Mn,a) - I;;i (tm Tn, ¢n,a('a Sny yn))
_Isﬁ (tna LTnyQn,y ﬂ) - f(tna Tn, Aoosy ﬂ(tna xn)a UT(xn> aoo)Qn) < 0.

A fortiori, if we take the supremum over a € A we conclude

- 1
Pu(tn, xn) — Pn — Sug b((]?n, a)-Qn + §t1'(0'O'T (xrw a)Mn,a) + I;a(t?u T, wn,a(H Sny yn))
ac

"‘Ig’é(tnav@nanﬂ) + f(tn,xn,a,ﬂ(tn,xn),UT(xn,a)qn) S 0’ (5519)

for any 0 < o < a*. On the other hand, letting % to infinity in (5.5.18) for every fixed
a € A, and then taking the supremum, we end up with

- 1
pw(Sn, yn) - p; - Sug b(ym a)-%/z + itr(O—UT(ym a)M'r,L7a) + I;,é(sn? Yn, _wn,a(tna Yy Ly ))
ac

+ T2 (S0y Yy @y ) + F (S Yny @5 B(Sny Yn), 0 (Y, @)gl) | > 0, (5.5.20)
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for any 0 < o < o*. Moreover, from (5.5.16) we have

Muo 0
I< ( ’ ) < D, y¥na(tn, $n, Tn, Un) (5.5.21)

1
a 0o -M,,

and by direct calculation

D(2w7y)1/)n,a(tn, Sny Ty Yn) = D%x,y)cpn(tn, Sn, Tny Yn) + 0(1), asa— 0. (55.22)

Step 4. From (5.5.19), for any n, consider a,, € A such that

- 1
pu(tm -Tn) — Pn — b(xm an)‘Qn - itr(UUT (xn, an)Mn,a) - I;;f(tna Tn, ¢n,a('7 Snsy yn))

- 1

- Igf(tnv Tn, dn, a) - f(tna Tn, Qn, a(tna $n)a o’ (xm an)Qn) < E (5523)

On the other hand, from (5.5.20) we deduce that

- 1
Pw(sna yn) - p/n - b(yna an)i.b/@ - 5’(1‘(00'1' (ynv an)MT/L,a) - Ial;:s(s’ﬂ’ Yn, _wn,a(tna *y Ly ))
- Ig;f(é’n, Yn,s q':w ﬁ}) - f(sm Yn, An, ’LZJ(Sn, yn)a o’ (ym an)q7/1) > 0. (5'5-24)

By subtracting (5.5.24) to (5.5.23), we obtain :

1
p(ﬂ(tna xn) - w(sm yn)) < E + pn — piz +AF, + AI,}/(S + AI%(S (5525)
+ b<wn7 an)-Qn - b(yn7 an)-Q;

1
+ itr(aJT (Zn, an) Mn,o — 00" (Yn, an) M, ),

where

AF, = f(tml'naanaa(tna$n)aUT(1’naan)Qn) - ]E(Snaynaanaﬁ)(smyn)aaT(ynaan)Q;L)7
AI%,(; - ];T’f(tnaxnﬂ/’n,a('ﬁm'7yn)) _I;;f(snvyn7_wn,oc(tnf?xna'))a
AI%& Ig;f(tna Tn, qn>ﬂ) - Igf(sn’yn7%,ww)

We have 5 5
gy = n gen _
Pn—Dp = ot (tns Sns Ty Yn) + Ds (tn, Sns Tns Yn) 0.
By the uniform Lipschitz property of b with respect to =, and (5.5.13), we see that
lim (b(xn, an).gn — b(Yn, an).q,,)

n—o0

= lim (b(xman)'Dx‘Pn(tmxmyn)+b(ynaan)-DySOn(tmxmyn)) = 0.

n—oo

Regarding the trace term in (5.5.25), by the uniform Lipschitz property of o with respect
to x, (6.5.21), (5.5.22), and (5.5.13), we obtain

lim sup lim sup tr(o0™ (2, an)My.a — 00 (Yn, an)M;, ) < 0.
n—0o a0+ ’

Moreover, from assumption (HBC) and (5.5.13)-(5.5.14), we find

lim |AF,|=0.
n—oo
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Concerning the integral term AT, we have, for some ¢, 9" € (0, 1),

AI}J(S = / [Diwn,a(tm Spy Ty + 19,6('7;7“ Gn, 6), yn)ﬁ(xna an, 6).5(1‘7“ Qp, 6)
En{le|<é}
+ Dzwn,a(tna Sny Tns Yn + ﬁl’ﬂ(ynv A, e))ﬂ(xn, Qp, e)ﬂ@:m G, 6)] /\(anu de)-

Therefore, using (5.5.22) we see that there exists a positive constant C},, depending only
on (zn, yn), the Lipschitz constant of /5, and on SUDy 97 e[0,1] |D20,, (tn, Sny Tn+0 B(Tp, an, €),
Yn) IV D2 (tns Sns Ty Yn + 9" B(Yn, an, €))], such that

lim sup |AIL?

a—0t

<C’/ 1A lel?)Aan, de).
<af AP

Finally, it remains to consider the integral term AT 2,9, Integrating inequality (5.5.15), with
d = B(xn,an,e) and d' = B(yn, an, €), we find

2
Ty Gy €) — LG, €
Ig;f(tna‘Tanaa) < Ig;f(smqu;,w)*'n/ |B( = ) B(yn 2 )‘ A(anade)

En{le|>d} 2
7/ (’xn—i_/@(wn?anae)‘g - \iﬁn\g))\(an,de)
EN{le|>3}

+’}// (’yn+/6(yn7an7e)|2 - ’yn‘Q)A(an,de).
En{|e|>6}

Then, it follows from assumption (HFC) that there exists a positive constant C”, such that

2
- - In — Y
Ig;f(tna Tn,dn, u) < Igf(sn) Yn, Q;La w) + n0//|712n + ’YC”'

In conclusion, taking the lim sup,, , . lim sups_,+ lim sup,,_,o+ in both sides of (5.5.25), we
see that the we get the required contradiction for v small enough. O
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Chapitre 6

Conditional asset liability
management

6.1 Introduction

The purpose of this chapter is the design of optimal Asset Liability policy, in a fra-
mework where the asset manager faces a constraint on the distribution of its terminal
wealth. More precisely, the investor requires to pay for simplicity a constant liability Dy
at maturity 7" and allows for this constraint to be violated with a given small probability
1 —p. In practice, whenever a conservative investor imposes an almost-sure constraint on
the terminal value of an investment strategy, this leads to rather overcautious investment
policies. This mainly comes from the fact that it is too costly to take some risk, since it will
complicate the necessity of satisfying the constraint at maturity. The main objective of the
chapter is to quantify the effect of relieving slightly this constraint by only imposing the
probability of success at maturity to exceed p, and to measure the dependence in p on the
optimal asset management policy.

The modern portfolio theory in continuous time goes back to the seminal paper of
Merton [82], who consider an agent trying to maximize his expected utility from termi-
nal wealth or expected time-integrated utility from consumption. In a Markovian frame-
work, the optimal policy identifies in terms of the solution of the corresponding Hamilton-
Jacobi-Bellman equation, or alternatively can be derived using duality arguments, see e.g.
Karatzas, Lehoczky et Shreeve [64]. This framework has raised a large literature, with the
introduction of additional constraints : e.g. on the investment policy by Cvitanic and Ka-
ratzas in [30], with a given almost sure portfolio insurance by El Karoui, Jeanblanc and
Lacoste in [36] or with drawdown constraints by Elie and Touzi in [35]. In this context,
considering the constraint of beating a given benchmark with a given probability of suc-
cess, this problem has already been studied by Boyle and Tian in [18], via a duality ar-
gument, mainly inspired from the approach of Follmer and Leukert in [44] for quantile
hedging problems. In the recent literature, a new approach introduced by Bouchard, Elie
and Touzi in [15] allows to study these a priori dynamically inconsistent problems in a
dynamic manner.
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The main difficulty in considering constraints written in terms of probability, is that
the probability of success p is imposed at time 0, but trying to build up a dynamic pro-
gramming principle, one requires to be able to quantify the effect of such constraint at any
given intermediate date t. The proper way to do this has been identified in [15], where the
dynamic probability of success is viewed as a new forward controlled martingale process.
This new variable allows to solve the problem in a dynamically consistent manner. The
resolution of stochastic control problems under such quantile has been more specifically
been studied in [14], via the derivation of a dynamic programming principle. The objec-
tive of this chapter is to provide a realistic financial application of such methodology in
the framework of asset liability management, via the derivation of a proper converging
numerical approximation procedure.

More specifically, we consider an investor, who can at any time ¢ choose the invest-
ment policy §;, as well as the instantaneous rate ¢; of additional endowment to the portfo-
lio, which is non-negative and upper-bounded by a given constant ¢. Hence the dynamics
of the wealth is the following :

dS;

axie = etXf’C? + cydt,
t

and the wealth is contained to remain non-negative as well as to satisfy the constraint :
P[X%° > Do) > p.

Under theses constraints, the objective of the risk-neutral investor is to minimize the total
discounted amount of additional endowment required in the portfolio by solving

T
infE [/ eﬁtctdt] .
c,0 0

The solution of this problem rewrites as w(0, z, p), where the function w is identified he-
reafter as the unique viscosity solution of a corresponding HJB equation.

The main difficulty consists first in deriving the proper domain of definition of this
function, by identifying the minimal wealth (¢, p), for which there exists an admissible
investment strategy (c, ), allowing to satisfy the constraint at maturity 7. The function
u identifies to the unique viscosity solution of a non linear variational inequality, which
can be solved numerically. It is worth noticing that the Fenchel transform of « in the p
variable solves a simpler linear variational inequality. We observe that function u(t,.) is
convex in p and the convexity decreases slowly to a linear limit as ¢ converges to the ma-
turity 7. We also exhibit empirical numerical results for the more complex case, where
the investor faces additional fixed constraints on the investment strategy 0.

As for the optimal policy (c,6) of the investor, we observe that no extra endowment
c is required whenever the current wealth = at time ¢ is far enough from the minimal
wealth function u(t, p). In terms of investment strategy 6, we observe that the investor
does not take any risk by cutting the financial market investment § whenever the current
wealth is sufficiently high, but prefers investing on the financial market for lower wealth,

150



anticipating that he may get closer to the minimal admissible wealth u(¢,p) and hereby
require to add extra endowment c to his portfolio.

The chapter is organized as follows : Section 6.2 is dedicated to the proper formulation
of the problem as well as its reformulation as a stochastic control problem with almost
sure constraints. Section 6.3 is focused on the determination of the minimal admissible
wealth function u allowing the existence of a portfolio strategy satisfying the constraint.
Section 6.4 provides a characterization of the value function of the asset liability problem,
whereas Section 6.5 presents the numerical approximating scheme and discusses the ob-
tained numerical results.

Notations : We also denote, for u € R", Bs(u) the ball of radius 7 around u, 0X the
frontier of a set X and 7}, 7 the set of stopping times taking values in [¢, .

6.2 Problem formulation

Throughout this chapter, we consider a complete filtered probability space (2, F, {F; }+>0,P)
endowed with a Brownian motion W = {W;, 0 < ¢t < T'} with values in R, and we denote
by F .= {]:t, t> 0}

The financial market consists of a non-risky asset, with process normalized to unity,
and one risky asset with price process defined by the Black and Scholes model :

dSt = St (,U,dt + O'th) y

where o > 0 is the volatility parameter, and i € R is the drift of the financial asset.

The normalization of the non-risky asset to unity is as usual a reduction of the model
obtained by taking this asset as a numéraire. Hence, all amounts are evaluated in terms
of their discounted values.

6.2.1 Endowment-investment strategy and partial hedging constraint

We now introduce the set of admissible income-investment strategies, whose induced
wealth process satisfies the following constraints

X > 0foreveryt > 0aus. and P[Xr > Dy >p, (6.2.1)

where Dy is a constant (discounted) liability at maturity 7" and p € [0, 1] is the probability
parameter of success.

In order to satisfy the quantile liability constraint, the asset manager can invest on the
risky asset S as well as bringing new endowment.
A portfolio strategy is an F—adapted process § = {6, 0 < t < T}, with values in R,
satisfying the integrability condition

T
/ 10,X,%dt < oo forall T>0. (6.2.2)
0

We denote A the set of such portfolio strategies.
A consumption strategy is an F—adapted process ¢ = {¢;, t > 0}, with values in [0, ¢/,
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where c is a given maximum rate of endowment. We denote C the set of such consump-
tion strategies.

Here, 6, and ¢; denote respectively the proportion of wealth invested in the risky asset
and the running endowment at time ¢. By the self-financing condition, the wealth process
induced by such a pair (c, ) is defined by

s dSs. s

Xbete = _|_/ G, X Lw0e 1 +/ cudu, t<s<T (6.2.3)
t Su t

where x is some given initial capital at time ¢. We shall denote by A,(¢, x) the collec-

tion of all such consumption-investment strategies whose corresponding wealth process

satisfies the partial hedging constraint (6.2.1).

6.2.2 The optimal endowment-investment problem

We consider a risk neutral asset manager whose subjective discount factor is denoted
by a constant 3 > 0. For a given initial wealth > 0 and probability p of success, the
asset manager wishes to solve the following endowment-investment problem under the
partial hedging constraint (6.2.1) :

T
0,z,p) = inf E / “Pledt| .
w( m‘p) (C,G)EIB\p(O,w) [0 ca

Remark 6.2.1. For p = 0, the partial hedging constraint is automatically satisfied, so that
the optimal policy is obviously given by (¢, #) = (0,0) and w(0, .,0) = 0 on R*. Similarly,
observe that, for p = 1, the partial hedging constraint becomes an almost sure classical
one.

We now introduce the dynamic version of the problem as

T
/ e_ﬁ(s_t)csds] )
t

6.3 The minimal admissible wealth

t = inf E
’U)( 7x7p) (C,G)ér}lp(t,x)

6.3.1 Definition and viscosity solution property

We introduce an additional controlled state variable, valued in [0, 1] and defined by :
PP =p, dPRP® = a,dW,, s € [t,T),

where the additional control « is an F-progressively measurable R-valued P-a.s. square
integrable process. We denote B the set of such controls.
The minimal p-admissible wealth at time ¢ is given by

u(t, p)
= inf{z >0s.t.3(0,¢c) € AxC,Vs € [t,T], X;®%¢ > 0and IP’[X%””’G’C > Dol > p}
= inf{z € Rst. 30 € A Vs e [t,T], X1%%¢ > 0and ]P’[X%"”’@’E > Dy > p}
= inf{z € Rs.t.3(0,a) € Ax B,Vs € [t,T], X% >0
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T _dS T
and 1{z + ¢(T — 1) —|—/ GUXZ’I’97CS—U > Do} >p —|—/ asdWs}
0 u t
= inf{z € Rs.t.3(0,a) € Ax B,Vs € [t,T], X;®"¢ > 0 and X;x’e’é > Dolpipa}
T

where the third equality follows from Paragraph 3.5 of [15].
Denoting g(s,p) = 0 x 13«7 + Dol,~01s—7, we finally obtain

u(t,p) = inf{z € Rs.t. 3(0,a) € A x B,Vs € [t,T], X2%9¢ > g(s, PLP*)}
Therefore, by Example 2.1 of [17], u(., P%) satisfies the following dynamic programming

principle :

- (DPY) If z > u(t, p), then there exists (6%, a*) € A x B such that
X0 > (1, PUPT for all T € T, 11
— (DP2) If z < u(t,p), then there exists 7* € T}; ) such that
PIXET0F > u(r, PEPOYL, o 4 g(17, PP 5] < 1
forall 7 € Ty and (0, ) € A x B.
We set, for (z,q,a) € R3:
o2
Fz,a) = -5 + bz +c

and

F(z,q,a):= sup F(z,a).
{(a,0)€R2, ag=006z}

However, since R? is not bounded, the operator F is not necessarily continuous and we
shall have to relax it and consider its lower semicontinuous and upper semicontinuous
envelopes F and F* on R3. The Dynamic Programming Principle leads to the PDE :

wind[ =~ 22(0,p) + Flott. ), 52,0, S 0009 =0 (631)
Besides, the terminal condition is
¢(T,p) = Dop. (6.3.2)
Definition 6.3.1. — The lower semicontinuous envelope of the function w is defined on [0, T'| x
[0, 1] by
us(t, z) = lim inf u(t', p)

(t',p")€[0,7)%(0,1)—(t.p)
— The upper semicontinuous envelope of the function w is defined on [0, x [0, 1] by

ut(t,z) = lim sup u(t',p')
(#.0")€[0.7) % (0,1) = (t.p)

Theorem 6.3.1. u is a viscosity solution to (6.3.1) in the sense it verifies :
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(i) Viscosity supersolution property :

D Dy 2

i - 99 4 . 97
mln([ - E(tvp) + F ((P(tvp)a ap (t7p)a 8p2

forany (t,p) € [0,T) x (0,1) and any p € CH2([0,T) x (0,1)) such that

(t,p))],u) 20

c—)(tp) = inf  w— o
(ux — )(t,p) oy ) e ¥

(ii) Viscosity subsolution property :
0%
in(| — == F — —
min([ ~ G2 (60) + Fleltp). 5 (40). 5 %

for any (t,p) € [0,T) x (0,1) and any ¢ € CH2([0,T) x (0, 1)) such that

% o (t.p)].w) <0

(u" —@)(t,p) = sup  u' =
0,77 (0,1)
Proof We adapt the proof of Theorem 2.1 in [15].
Supersolution property on [0,T) x (0,1)
Let (¢,p) € [0,T) x (0,1) and ¢ be a smooth function such that

u > 0 by definition and therefore w, > 0. It thus suffices to show that
dp . dp o
—— F - —r >
5¢ (bP) + 7 (p(tp), o (t,p), 02 (t,p)) =0

Assume to the contrary that

dy Oy 0%
——( F*(p(t — (¢ — (¢ = -2 . 3.4
(4.0) + F*(p(t.0), Go(t.0). G2 00) = =2 <0 (6349
By smoothness of ¢ there exists § > 0 such that :
Jp a? 9%
“Z(t,p) —

oy ?sz(t’p) +ubdr+c<—e<0 (6.3.5)

for any («a, 6, z,t,p) € R3 x [0,T] x (0,1) such that |t —#| < §, [p—p| < 5, |z — ¢(t,p)| <
and

|oOx — a(ZZ(t,pﬂ <46

Let 9,B5(t,p) :={t+ 0} x [p—0,p+ 6| U[t,t + ) x {p — J,p + d} and observe that, since

(t,p) is a strict minimum of u, — ¢ on [0, 7] x (0, 1),

E= min u,—¢ >0. (6.3.6)
apBé(t»ﬁ)

We now show that (6.3.5) and (6.3.6) lead to a contradiction to (DP1). Let (¢,,p,) be a
sequence in [0,7") x (0, 1) which converges to (¢, p) and such that u(t,, p,) — u.(t, D). Set
T, = u(ty, pn) +n~ 1 and observe that

Tn ‘= Tn — So(tnvpn) — 0. (637)
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For each n > 1, z,, > u(ty, ps) > 0. Then, by (DP1) there exists some (§",a") € A x B
such that, denoting X" := XtnwnOne

X7 > u(r, Plbm™) VT € Ty, my
We now define the stopping times

70 :=inf{s > t, : (s, PP & Bs(t,p)}, 7 :=inf{s >t, : | X" — @(s, PlmPron)| > §} ATO

and set
890 tn,Pn,Qn (O‘?)2 8290 tn,Pn,0n, nyn =
An = {SE [tnaTn} :_E(Saps b )_ 92 aipg(svps P )+/’L98Xs +C>—€(b.3.8)
By (6.3.5), the process
n nyn na(p t « sl n
Yy =00t X! —al 8—p(s, PpPran) satisfies |¢y| > d for s € Ay, (6.3.9)

By definition of (6", a™),
X > u(t ATy, PP, > .
Using the definition of £ and 7", this implies that

Xtr}\m Sp(t N Tn, Ptt/r\b;'in’an) + (61{7';{:7'”} + 61{7’,‘{>Tn})1{t:m}

>
> @t AT, PP 4 (EA S mrys £ b

Since ¢ is smooth, it follows from [t6’s Lemma, (6.3.7), the definition of )" and (6.3.8) that

AN ppcry < = €A+ [ i Xodut [ edu— [ S Pl du
tAtn tAtn tAL, O
Tn (an)2 82@ " Tn
— Y —— (u, PP ) du + AW,
/t/\tn 2 Op? ( ) tAtn v
< M =g —ENS+ by, du + Y dW,, (6.3.10)
tAtn tAtn

where we set

n nyn = 890 T, Pn,Qn (O‘Z)Z 62()0 T, Pn,Qn

bu = (MeuXu+C_E(u7Pu b )_ 9 Tpg(uwpu P ))1An(u)

Let L™ be the exponential local martingale defined by L} = 1 and, for s > t,,
ALY = — L7202 (¢7) " dW (s),

which is well defined by (6.3.9).

By Itd’s formula and (6.3.10), we see that L™ M™ is a local martingale which is bounded
from below by the submartingale —(£ A §)L". Then L™ M" is a supermartingale, and it
follows from (6.3.10) that M is nonnegative, therefore

0 <E[L? MP) < LP MP = M =, — (€A D),
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which contradicts (6.3.7) for n large enough.
Subsolution property on [0,T) x (0,1)
Let (¢,p) € [0,T) x (0,1) and ¢ be a smooth function such that

0= (u"=9)(&,p) > (W = )(t,p), (1,p) # (t,p) € [0,T) x (0,1) (6.3.11)
Assume to the contrary that

op - _ 20%p _ _ - —

. « '
min ( sup [_Ot(’p)_78p2

{a€R,0€R, a%—i(ﬂﬁ):a@@(ﬂﬁ)}

We may find (&,0) € R? and ¢ > 0 such that

agz (t,p) = oby(t, p) (6.3.12)
and
Oy a? 0% ~ _
—= - — -t > 3.
Y (t,p) > (t,p) + pbx + ¢ > 2¢ (6.3.13)

for any (z,t,p) € R x [0,T] x (0,1) such that [t — | < J, |p — p| < d and |z — ¢(¢,p)| < 6.
Since ¢(t,p) > 4eand g = 0 on [0,7) x [0, 1], we may assume without loss of generality
that

x—g(t,p) =x > 2 (6.3.14)

for any (z,t,p) € R x [0,T] x (0,1) such that [t — | < J, |p — p| < d and |z — ¢(¢,p)| < 6.
We define 6 and a by

x —
at(x) ;= @—=— and 0 =
/) o(t,p) )
Clearly, V(x,p) € R x (0,1),a(z) € Band §(p) € A. Besides, by (6.3.12), az(¢(f,p)) = @

and 67(p) = 6. Therefore for sufficiently small § > 0,

a Oy

U(’O(ﬂp)a—p(t,p), (z,t,p) e Rx[0,T) x (0,1) (6.3.15)

Op a(z)? 0% = _
—=2(t,p) — k4 > 3.
5t (LP) 5 o (t,p) + pbi(p)z +c > e (6.3.16)
for any (z,t,p) € R x [0,7] x (0,1) such that [t —t| < J, |p — p| < 3, |z — ¢(¢,p)| < 6.
Observe that, since (¢, p) is a strict maximizer in (6.3.11), we have

—¢:= max u"—p <0, (6.3.17)

apBé(t»ﬁ)

where 0,B;(t,p) := {t+ 8} X [p—08,p+ 0] U[t,t +0) x {p— J,p+ ¢} denotes the parabolic
boundary of Bs(t, p).
We now show that (6.3.16) and (6.3.17) lead to a contradiction of (DP2). Let (¢,,p,) be
a sequence in [0,7) x (0,1) which converges to (¢,p) and such that u(t,, p,) — u*(t,p).
Set &, = u(tn,pn) — n~ L. Since p(t,p) > 4e, x, > 0 for n large enough. Without loss of
generality, we can assume that |z,, — ¢(t,, py)| < 0 for each n. Observe that

Yn i = Tp — @(tn, Pn) — 0. (6.3.18)
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Let X := X*tnn.9".¢ denote the solution of (6.2.3) starting from ¢ = ¢,, associated to the
initial condition z,, the running endowment ¢ and the Markovian controls

al' := & (X)) and 67 :=0,(X!, PI"P"), t, <t <T. (6.3.19)

We next define the stopping times

70 :=1inf{s > t, : (s, P"Pr?") & Bs(t,p)}, T :=inf{s > t, : | X" — (s, PlnPr™)| > §} A

Note that X" is well defined on [¢,,, 7,,]. Besides, by (6.3.16), (6.3.18) and a standard com-
parison theorem implies that X' — (s, P #") > §on {s > t, : | X' — (s, Plr#e")| >
0} for n large enough. Since u < u* < ¢, we then deduce from (6.3.17) and the definition
of 7" that
Xt’n}\Tn - u(t /\ Tn7 Ptt/T\L;—Zn,an) > 17n<7_g {th/\Tn _ SD(t /\ Tn’ PttX;_ﬁn’an)}

+17—n:7'»g{th/\Tn - U*(t N Tn, Ptt/"\l;_invo‘n)}
517n<r;; + lTn:T;;{Xg\Tn — U (t A Th, PttX}in’an)}
O, <rg + Trmrg A X{hr, + & — @t AT, PR}
oA £+ 1Tn=Tﬁ{th/\Tn - (P(t N Tn, PttX}Zn’an)}

AVARLY,

We continue by using Itd’s formula :

n n

n T T
Xinm, = u(t An, Pfﬁ%ﬁ”’a ) = OAE+ L —re(mt /t (10, X du + /t cdu —

n

T Oy
Lot

Tn (an)2 62()0 ' " T
— u _ Pn7p’n7a n '
|G Pk [ )

where

0 n
Y =007 X — a?a—w(s,PSf"’pn’a ), th <s< T,
p

By (6.3.16) the drift term is greater than ¢ and by (6.3.15) and (6.3.19), Y™ = 0.
Since &, > 0 and v, — 0, this implies that for sufficiently large n,

t’VL? mnH "
X{ne > u(t Ao, PPVt > .

Moreover, by definition of 7,, and by (6.3.14), X™ — ¢(_, PtoPne™) = X™ > 2¢ on [tn, Tn)-
Recalling that the initial position of the process X™ is z,, = u(tn,pn) — n~ 1 < u(ty,pn),
this is clearly in contradiction with (DP2). O

6.3.2 Boundary condition

Theorem 6.3.2. 1. u*(.,0) =00n [0,T) and u.(.,0) = 0on [0,T].

2. uy(., 1) is a viscosity supersolution of (6.3.1) in the following sense :

o Op ) O 0%p
— >
min ( 5 (t, 1) + F*(p(t, 1), 9 (t,1), " (t,1)),(t,1)) >0
forany t € [0,T) and any p € CH2([0,T) x (0, 1] such that

(u* - @)(ta 1) = * — P

inf w
[0,7]x(0,1]
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Proof We adapt the proof of Theorem 3.1 in [15].
The endpoint p = 0
Lett € [0,T) and ¢ be a smooth function such that

0= (u"=)(t,0) > (u" = p)(t,p), (£0)#(t,p)€[0,T)x[0,1)

By following the arguments in the proof of the subsolution property of v* on [0,7") x (0, 1),
we obtain that

2 52
min ( sup [— %"(z, 0) — ﬁ%({’ 0) + ubo(f,0)+, (6.3.20)
{(a.0)€R?, a2 (£,0)=00(10)} ¢ 2 0p
p(t,0)) <0
Let ¢ be a smooth function on [0, 7] and ¢ € [0, T] be such that
0=u"(t,0) —o(t) > u*(t,0) —p(t), t#tel[0,T) (6.3.21)

By definition, u*(¢,0) > 0. We now assume that
u*(t,0) > 0

and work towards a contradiction. Define

1 e2k
Vilp) = "“/lp R gz k>0

and oy (t,p) = o(t) + (t — 1) + Yr(p). Observe that

k 62k

/ —
=1 <p(p) = kek(%p) T <2k for klarge enough (6.3.22)
e4k7pk

" _ 2
Vi(p) =~k (eh2—p) _ o2kt

5 <0 forallk>0 (6.3.23)

Let (¢, pr) be a maximizer of u* — ¢y on [0, 7] x [0, 1]. Then,

u*(£,0) —p(t) = (u* — pp)(t,0)
< (v — or)(tk; pr)
= u*(tp, pr) — o(tr) — (tk — 1)* — Vi(pk)
< W) — ot = (= 1~ 5

where the last inequality follows from (6.3.22) for k large enough and the fact that 1 (0) =
0. Since u* < Dy by construction and ¢ is bounded, this implies that the sequence (¢, px)
is bounded and therefore converges to some (¢, p.) up to a subsequence. Clearly, p, = 0
since otherwise we would have kp, — oc. By (6.3.21), this implies that

u*(t,0) — (t) < limsup(u* — @) (tk, pr)

k—o00

_ —k
< wM(te, 0) — o(ts) — (£ — ) + lim sup Dk
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_ _ _ —k
< UL, 0) — o(t) — (t, — 1) + 1
< uwi(t,0) —e(t) = ( ) i sup 5y P

This shows that, after possibly passing to a subsequence,

(ks pr) = (£,0),  u*(tg, pr) = u™(£,0), and @ (te, pr) = (1)

Hence, since u*(t,0) = ¢(¢) > 0, we have u*(tg, pr) > 0 and o (¢, pr) > 0 for all k, after
possibly passing to a subsequence. Then, it follows from the subsolution property of v*
that for all %,

0 a? 0?
sup [—%(%pk) > a(pgk(tk,pk)+M9<Pk(tk7pk)+0] <0
{(0.0)€R2, %2k (s pr) =00y (th,pr)}
Therefore,
sup [ 22 (1 py = SO oy COPE i <0
aeg ot k> Pk 2 op? kyPk) T H— o dp k> Pk = U

Since by (6.3. 23), 2 ap E(tg,pr) = ¥y (p) < 0, this inequality does not hold and therefore
u*(.,,0) =00n [0,7) x [0,1).

Hence, we can find a sequence (t,,p,) € [0,T) x (0,1) such that (¢,,p,) — (7,0) and
0 < u*(tn,pn) < 1/n forall n > 0, which shows that u.(7,0) = 0.

The endpoint p =1 on [0,T)

Adapt in the straightforward way the proof of the supersolution property of u, on [0, T) x
(0,1).

6.3.3 Terminal condition
Proposition 6.3.1. Foranyt € [0,T), u*(t,.) is convex on [0, 1].

Proof Let ¢ € [0,T]. Since, by definition, for any ¢’ € [0,7], u(¢,.) is non decreasing
and nonnegative, u*(¢, .) is also non decreasing and nonnegative. Therefore it suffices to
show that u*(¢,.) is convex on {p € [0,1]|u*(¢',p) > 0} := U,. Let p € Up, by Theorem
6.3.1 and Theorem 6.3.2,

e

a? 9%
Ealih ¢l <
5 tp) =3 0 (t,p) + pbep(t,p) +¢] <0

sup [—
{(c,0)€R?, a§ S2(t.p)=00p(tp)}

for any ¢ € C12([0,T) x (0, 1)) such that

(u* —)(t,p) = sup u*—o.
[0,7]x(0,1)

Let ¢ be such a smooth function, therefore ¢(t,p) = u*(t,p) > 0. Then,

a2 9? ad
sup [ — 22 (t,p) - 7%’( P+ p g (p) + <O

This implies that gipf(t, p) > 0. The convexity then follows from the same arguments as
in Proposition 5.2 of [32]. O
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Theorem 6.3.3. w is a viscosity solution to (6.3.2) in the sense it verifies :
1. u(T,p) > pDy forall p € [0,1].
2. u*(T,p) < pDy forall p € [0,1].

Hence, u. (T, p) = u*(T, p) = pDy forall p € [0, 1].

Proof It follows from Theorem 6.3.2 and Proposition 6.3.1 that, for all (¢, p) € [0, T] x
[0,1],

u*(t,p) < pu*(t,1) + (1 = p)u”(t,0) < pDo.

On the other hand, given a sequence (¢, p,) in [0,7") x (0,1) such that (¢,,p,) — (T, p)
and u(ty, pn) — u«(T,p), we can find (6, an,c,) € A x B x C such that, denoting z,, =
u(tn,pn) +1/n — uy(T,p) and X" = Xtn@nbncn,

tn,Pn,0n

1ixn>pyy = Pr

Besides, we can assume without loss of generality that X7 < 2D for all n. This implies
that X% > PyP" Dy, Taking the expectation and recalling that P'n?n%n is a bounded
martingale, we get E[X 7] > p, Dy. Passing to the limit, since X7\ < 2Dy, we obtain that
U*(Tap) > pDy. 0

Corollary 6.3.1.
vp € (0,1), lim u(t,p) = Dop # Do = u(T, p).
5T

Therefore w is discontinuous on {T'} x (0,1).

6.3.4 Continuousness
The following proposition is admitted.

Proposition 6.3.2. Let V' (resp. U) be a nonnegative lower-semicontinuous (resp. upper-semicontinuous)
bounded map on [0, T] x (0, 1). Assume that V (resp. U) is a supersolution (resp. subsolution) of
(6.3.1) on [0,T) x (0,1) such that V(T .) (resp. U(T, .)) is a supersolution (resp. subsolution) of
(6.3.2) on (0,1). Then, V> U on [0,T] x (0,1).

The following theorem is a consequence of the Proposition 6.3.2 and the fact that by
definition 0 < v < D.

Theorem 6.3.4. u, = u* is continuous on [0,T] x [0,1) and is the unique viscosity solution of
(6.3.1)-(6.3.2) in the class of nonnegative and bounded functions.

6.3.5 The Fenschel-Legendre dual transform

For sake of clarity, we extend u to [0, 7] x R by setting

u(.,p):=0forp<0 and wu(.,p):=ocforp> 1. (6.3.24)
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We introduce the Fenchel-Legendre dual transform associated with « with respect to
the p variable :

u(t,q) = Slelp{pq —u(t,p)},  (t,q) €[0,T] xR

Note that by (6.3.24) and since u(.,0) = 0 on [0, 7] by definition of w,

v(.,q) =occforqg<0 and v(.,q)= sup {pg—u(t,p)} forq >0 (6.3.25)
pE[O,l}

Theorem 6.3.5. v is a viscosity solution on [0,T") x (0, c0) of

dp W 5 0% d¢
max(~—-(t,q) 2q o 5(tq) —¢p—q aq) 0 (6.3.26)
with the terminal condition
o(T,q) = (¢ — Do) ™. (6.3.27)

Proof

First note that the fact that v is upper-semicontinuous on [0, 7] x (0, co) follows from the
lower-semicontinuity of u, = u and (6.3.25) which allows to reduce the computation of
the sup to the compact set [0, 1]. Moreover, the boundary condition (6.3.27) is an imme-
diate consequence of the point 1 in Theorem 6.3.1 and (6.3.25) again.

We now turn to the PDE characterization inside the domain. We only prove the subsolu-
tion part. Let ¢ be a smooth function with bounded derivatives and (¢, g) € [0, 7] x (0, o)
be a local maximizer of v — ¢ such that (v — )(¢,q) = 0. As shown in the page 17 of
[15], we can reduce to the case where the map ¢ — ¢(., q) is strictly convex. Let ¢ be the
Fenchel transform of ¢ with respect to q, i.e.

@(t,p) = sup{pqg — »(t,q)} (6.3.28)
geR

Since ¢ is strictly convex in ¢ and smooth on its domain, ¢ is strictly convex in p and
smooth on its domain, see e.g. [94]. Moreover, we have
p(t,q) = sup{pqg—@(t,p)}
peER
= J(t,q)p— @(t,J(t,q)) on (0,T) x (0,00) C int(dom(p)) (6.3.29)

where ¢ — J(.,q) denotes the inverse of p — D,(., p), recall that ¢ is strictly convex in
P.

We now deduce from the assumption ¢ > 0 and (6.3.25) that we can find p > 0 such that
v(t,q) = pq — u(t, p) which, by using the very definition of (¢, p, ¢) and v, implies that

(t,p) is a local minimizer of u — ¢ such that (u — @)(¢,p) =0 (6.3.30)
and
o(t,q) = SUP{PQ —¢(t,p)} = pq — ¢(t,p) withp = J(t,q), (6.3.31)
pER

where the last equality follows from (6.3.29) and the strict convexity of the map p —
pq — §(t, p) in the domain of .
We conclude the proof by discussing three alternative cases depending on the value of p.
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1. If p € (0,1) then (6.3.30) implies that ¢ verifies the hypothesis of (i) of Theorem
6.3.1 and the required result follows by exploiting the link between the derivatives
of ¢ and the derivatives of its p-Fenchel transform ¢, which can be deduced from
(6.3.28) and (6.3.29).

2. If p = 0, using that u(.,0) = 0, we can conclude as in 1. above.

3. If p=1, using that u(.,1) = (Dy — ¢(T — t))4, we can argue as in the first case.

6.4 Back to the control problem of interest

Once the minimal admissible wealth function u is known, we can rewrite the control
problem of interest as follows

T
w(t,z,p) =  inf { / e PEDE[c,)ds, with Vs € [t,T], X5®%¢ > 0 and P[X5""¢ > Dg] > p}
(0,c)eAXC " Jt

T
inf  { / e PEDR[e,ds, with Vs € [t,T], Xb™0¢ > g(s, PLP)}
(0,a,c)eAXBXC " J¢t

Definition 6.4.1. For (t,z,p) € [0,T] x Ry x [0,1], (0, a, ¢) € A x B x C is suitable relatively
to (t,x,p) when

Vs € [t,T], XL50¢ > g(s, PiP*)
We denote (A x B x C)(t,z,p) the set of suitable controls relatively to (t,z,p).

Therefore

T
w(t,z,p) = /t e PEIE[c,)ds

(H,a,c)é(./éli}(llfS’XC)(t,x,p)
Remark 6.4.1. For z < u(t,p), (A x B x C)(t,z,p) = 0.
Hence we introduce the following sets.
Definition 6.4.2.
int(u) :={(t,x,p) € [0,T) x Ry x (0,1) : z > u(t,p)}
O(u) :={(t,z,p) € [0,T) x Ry x (0,1) : x = u(t,p)}

Definition 6.4.3. For any (t,z,p) € int(u) U d(u),

t,z,p) = lim inf w(t', o', p/
wy(t, , p) (t" 2! p ) Eint(u)—(t,2,p) ( v)
w*(t,z,p) = lim sup w(t’,x/,p,)

(¢’ p)€int(u)—(t,x,p

)
Remark 6.4.2. By definition of w, for any (t, z,p) € int(u) U 0(u),
T
0 <w(t,z,p) < Eeﬂt/ e s = — (1 — ST (6.4.1)
t

Therefore w(T, .,.) = w*(T,.,.) = w(T,.,.) = 0on {(z,p) € Ry x (0,1);2 > u(T,p)} =
[Do, 00) x (0,1).
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Remark 6.4.3. For x > Dy, w(., z,.) = 0. Besides, w(.,.,0) = 0.

We set, for (z, 2, q, a11, ais, az) € R :

020?22 a?
ail — aaﬁxalg — ?CLQQ —Cc+ 62:

He,a,C(x’ z,q,a11, 012, 022) = —(pbzx + c)q —
and

yp— 9, 9
H(z,z,q,a11,a12,a922) := sup HY%¢,
(6,01,0) ER? % [0,7]

Since R? x [0, ¢] is not bounded, the operator H is not necessarily continuous and we
shall have to relax it and consider its lower semicontinuous and upper semicontinuous
envelopes H, and H* on We now show that on the domain int(u), w solves the PDE :

Dy D D% o) % B
5 T H @ etz p), 5o (t2,p), 55 (L2, p), awp(t,xyp% o2 (t,z,p)) =0 (6.4.2)

Theorem 6.4.1. w is a viscosity solution to (6.4.2) in the sense it verifies :
(i) Viscosity supersolution property :
2 2

O O Pp P Py

forany (t,x,p) € [0,T) x R%. x (0,1) such that x > u(t, p) and any ¢ € C122([0,T] x
R* x (0, 1)) such that

Wy — t,x,p) = inf Wy —
( (P) ( p) int(u)Uo(u) v

(i) Viscosity subsolution property :

Oy Op 0% 0% 0%
L H - - r -
+ ( (t w7p)? ax(tﬂr?p)?axQ(t7x?p)78x8p(t7:€ ) 8 2

i (t,2.p) <0

for any (t,z,p) € [0,T) x Ry x (0,1) such that x > u(t,p) and any ¢ € CH22([0, T x
Ry x (0,1)) such that

(w* —)(t,x,p) = sup w"—p
int(u)Uo(u)

We first need to provide a dynamic programming principle for our control problem
with the following lemma.

Lemma 6.4.1. Fix (t,x,p) € int(u) and let U be a set of stopping times and let {7, v € U} be
a family of stopping times with values in [t,T|. Then,

e Pw(t, x,p) > sup sup E[e*BTVw*(T”,XifC’H’C, PLPy / Buc, du)
velU (0,a,c)e(AxBXC)(t,z,p)

“Blu(t < nf E[e 7 XL, phpe / du]
CTWETP) SSUP | - edm et T )+ Heudu
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Proof First inequality

Let (t,z,p) € int(u), v € U, and (0, ,¢c) € (A x B x C)(t,z,p). By the flow property,

ta.0.c T",Xt’f"e’cﬁ,c ..
Xorhe =X 77 . Then, by definition of w,

T v T
e_ﬁt/ e PEE[e]ds = / e P Elcs|ds + e_BTV/ e PR e ]ds
t t ™

/ e P Elcy]ds + Ele P w(r¥, XE20e phpe]
t

Vv

inf Ele 7™ w, (77, X550, ptpey /
(0,a,0)€(AXBXC)(t,x,p)
and the result follows from the arbitrariness of v € U and (0, o, ¢) € (A x B x C)(t, x, p).
Second inequality
It follows from Lemma 6.6.2 that the set {(¢, z,p, 0, a,¢) € [0, T] x R} x (0,1) x Ax BxC :
(0,a,¢) € (Ax B xC)(t,z,p)} is an analytic set. Clearly, (¢,¢) — ftT e BE=DR[c,]ds is
Borel measurable and therefore upper semianalytic. It thus follows from Proposition
7.50 in [10] that, for each € > 0, we can find an analytically measurable triple of maps
(a°,0¢,&) € (A x B x C)(t,z,p) such that [;" e PE=DE[e]ds < w(t, z, p) + . Since analy-
tically measurable maps are also universally measurable, it follows from Lemma 7.27 in
[10] that, for any probability measure m on [0, 7] x R} x [0, 1], we can find a Borel measu-
rable triple of map (65, a5,,¢,) : (t,z,p) € [0,T] x RF x [0,1] = (A x B x C)(t, x,p) such
that ftT e PB—DE e (t z,p))]ds < w(t,z,p) + € < w*(t, z,p) + € for m-almost every ele-
ment of [0, T] xR} x [0, 1]. Let us now fix (61, a1, ¢1) € (AxBxC)(t, z,p) for some (£, Z, p) €
int(u). Let m be the measure induced by (, Xt%01.c1 pLoety on [0, T] x R} x [0, 1]. Since
(01,a1,c1) € (Ax BxC)(t,z,p) P-as.,

(96 &€ )(7. Xtr91,61 Pt,P a1) e (.A % B % C)(T, X£7i,91,01’p£7ﬁ,&1)

m’m

and
T - -
/ e PEDR[E (r, XET0ver phpeny|ds < w*(t,z,p) + € P-as.
¢

Moreover it follows from Lemma 2.1 of [99] that we can find (65, a5, ¢5) € A x B x C such
that

m?m

(605,05, c5) 1 qq = (05, 65, ¢5,) (r, XEB0ver phpenyy 0 dt x dP-a.e.
This implies that (6, o, ¢°) = (61, o1, e1) 1) + (05, 5, ¢5) 17 € (A x B x C)(t, %, p) and
e[ C e BT (r, XEPOer PERO)] < ¢ BTy (7, XTI PP | o~re
and therefore
e Pult,zp) < EleVE] C BT (7, XERO, pipen)) | e
T
< E[e PTw*(r, XbP00er ptpory 4 /tT e Pley(u)du] + €

The required result then follows from the arbitrariness of (61, a1, ¢1) € (Ax B xC)(t,z,p)
and € > 0. O
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Proof of Theorem 6.4.1 We adapt the proof of Theorem 3.1 in [14].
Subsolution property on [0,T) x Ry x (0,1)
Let (t,7,p) € int(u) and ¢ be a smooth function such that

0=(w*=¢)t,z,p) > (W —@)(t,z,p), (t,7,p) # (,x,p) €int(u) UO(u) (64.3)

We argue by contradiction and assume that the subsolution property does not hold at
(t,z,p) for ¢, i.e.,

aso 292 2&_@ 0 82g0 Oz28290

[- 22 2
Ox 2 0x? 0xOp 2 Op?

sup —— —(ubx+c
(G.a,0)eR?x[0,d  OF ( )

By smoothness of ¢ and continuousness of u, there exists (6, &, &) € R? x [0,¢ and § > 0
suchthatT >t+4, B:=[t—0,t+ 8] x [t — 6,2+ 0] x [p— 0,p + 6] C int(u), and for any
(t,z,p) € B,

020242 2 92 52 92
[—8—@—(#9334—0)8@ 0z %9 0“p  a® 0%

ot

ar 2 o2 a0 o a2

— ¢+ Bo](t,x,p) > 06.4.4)
Let (tn, Zn, prn) be a sequence in B such that w(ty,, Tn, pn) — w*(t,Z,p) and (¢, Tn, pn) —
(t,z,p). Denote X" = X!n#nb"c" and P" = PtPr” where (6", a",c?) € (A x B x
C)(tn, Tn,pn) - We now define

" :=inf{s > t, : (s, X', P!') ¢ B} AT.

Since B C int(u), we can assume without loss of generality that (6", a", ") = (0, &, &) on
t € [tn,T"]. Therefore an application of It&’s formula to e #™" (7", X%, P"%) yields, by
(6.4.4),

2 (u, X", P du

" o
e X P) = € ot + [

~ 8 e—ﬁucp(u,xg,Pg)dqua/ P xn pryaw,
tn tn dp

n n
T

o ) ~ 9
+ / (10, X + éu)e*5“6—¢(u, X" PMdu+ | 00, X"e P EE (u, X7, PMYAW,
tn X

n “ Oz

17"22 2—58 ~2/ _58280

- 62(X" u X", PMYdu + — u X", PMYdu
+2/tn 2(X1)2e 82( Ddut G [ e )
B L T (u, X", P")du

t u Bxap Truw T
< eiﬁtnw(tma?mpn) _/ eiﬁuéudu‘i‘d/ 7ﬁu8 ( Xn Pn)dW
tn tn op

n

T dp
G, X"e Pu X" PMdW,
+ / - L, )

Then,

T

PL) + e PUE[e,]du

tn

e_Bt”go(tn,xn,pn) > E[e_ﬂT ot X

T

Tn

w* (7", X%, P + e PUe,du] + EE[eP7"|(6.4.5)

tn

v
=
[
=)
3
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where, defining A = 0B C int(u),
£ = mfin(gp —w*) >0

Let € = inf,en fE[e_ﬁTn] > £e T > 0. Since (o — w)(tn, Tn,pn) — (@ — w*)(t,Z,p) = 0,
there exists n € N such that |e ™" p(t,,, 2, pn) — e P w(tp, T, pn)| < €. Then by (6.4.5),

n

e P (ty, xp, pn) > € Pp(ty, Tn, pn) — € > Ele P w, (17, X1, PR + e PG, du]
in

which contradicts Lemma 6.4.1.

Supersolution property on [0,T) x R} x (0,1)
This proof avoids delicate limit arguments of the supersolution derivation in [99] and in
[100].
Let ¢ be a smooth function such that (¢, z,p) € int(u) U d(u) achieves a strict minimum
(equal to 0) of w, — ¢ on int(u) U d(u). We proceed by contradiction, assuming that
do 020222 0% e a2 0%
- — — —aofz

0
oub ~ g W) Ox 2 0x2 0xOp 2 Op?

(G.a,0)eR?x[0,g  Of

By smoothness of ¢, there exists > 0 such that T > ¢ + §, and, denoting O :=
(t—0,t+0) x (z—0,2+9) x (p—J, p+6), for any (t, z,p) € O and for any (0, o, c) € R*x [0, ¢,
dp  %0%x? 0% P a?d

9e 2 02 “Pomap 2o T Y a.p) <U646)

Let (tn,xn,pn) be a sequence in O N int(u) such that w(t,, zn,pn) — ws«(t,Z,p) and
(tn, Tn,pn) — (t,7,p). For each n, since (t,, Tn,pn) € int(u), there exists (0", a", c") €
(A x B x C)(xn,tn, pn). Denote X" = Xtn#n0".c" and P = ptnPna” 'We now define

" i=inf{s > t, : (s, X, PI') ¢ ON (int(u) UA(u))} AT.

Since (0™, a™,c") € (A x B x C)(xn,tn,pn), (7", X%, P%) € int(u) U d(u), and there-
fore (77, X7, P%) € 00. An application of Ito’s formula to e 77" (77, X", P%.) yields,

T

recalling (6.4.6),

e Pmo(tn, wn,pn) < Ble T wi(r", X, Pl) + /t e ey du] — EE[e"T"(6.4.7)
where, defining A = 00,
—& = m}in(w* —p) <0
Let € = inf,en EE[e ™" > €e7PT > 0. Since (¢ — w)(tn, Zn, pn) — (p — wi)(t,Z,D) = 0,

there exists n € N such that |e = (t,,, 2, pn) — e P w(ty, 2, pn)| < €. Then by (6.4.7),

™

e P w(ty, T, pn) < € P o(tn, Tny pn) + € < Ele P w, (77, X2, PR + e Pué, dul
tn

which contradicts Lemma 6.4.1.

The following corollaries follow directly from Theorem 6.4.1.
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Corollary 6.4.1. The optimal consumption is ¢ = 0 whenever g—gf > —1 and ¢ = ¢ whenever

ow
Bu < 1.

Corollary 6.4.2. For p such that u(t,p) = 0, denoting p = max{p € [0, 1]|u(t,p) = 0}, wy is
the viscosity supersolution of :

«
su —— —c¢(=4+1)— ——+ £0,p)=0 Ypel0,p
aER,CE[O,E] [ ot ( ) 2 Op? B‘P]( p) p € [0,p]

For u(t,p) > 0 it is optimal to invest the maximum by definition of the minimal
wealth.

Proposition 6.4.1. Let (t,p) € [0,T] x [0, 1] such that u(t,p) > 0. Then

lim  w(t,z,p) = = (1 — 21, (6.4.8)

z—u(t,p)t

™| o

Proof Let (¢, p) € [0,T] x [0, 1] such that u(¢,p) > 0. By (6.4.1),

Vo > u(t,p), w(t,z,p) < %(1 _ BT,
We suppose that
c
e:=—(1—eD) — liminf w(t,z,p) > 0.
B( ) z—u(t,p)t ( p)

Therefore, by definition of w, there exist x € [u(t, p), u(t,p) +€/4] and (0, o, ¢) € (A x B x
C)(t,z,p) such that

T
Bt e du < liminf w(t -
/t e Cy u_xigl(gg)+w(,x,p)+2

(1 - P10y % (6.4.9)

™| ol

We now define

/

t
h(t') = / e B DG _c)du, €[t T].
t

Note that by (6.4.9), h(T) > ¢/2. We now suppose h(T) < z. Let § € B such that

i Xt,x—h(T),é,é
t/

u = 0p X570 e [t,T).

Therefore we obtain that, for s € [¢,T7],
XteohMAe — 5 B(T) + /t G, XL k(D)0 | /t " cdu
— e h(T) + /t T, X0y 4 /t " cudu + h(s)
= X194 h(s) — W(T).
Hence, since h(T') < z and (0, a, ¢) € (A x B x C)(t,x,p),

Vs € [t,T), X1oMT08 > p(s) — ,(T) and PXLE"D0C > Dol > p.
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Therefore, by definition of u, recalling that z € [u(t, p), u(t,p) + ¢/4] and h(T) > €/2,

u(t,p) <z — h(T) < ult,p) — %

which is a contradiction.
If h(T') > x, we may choose ¢ € C such that ¢ < ¢ and

h(T) := /tT e PG, — ¢,)du € (z — u(t, p), z.

Adapting the previous proof we obtain

u(t,p) <x—h(T) < u(t,p)

which is the required contradiction. O
The following proposition is admitted.

Proposition 6.4.2. Let V' (resp. U) be a nonnegative lower-semicontinuous (resp. upper-semicontinuous)
bounded map on int(u) U O(u). Assume that V (resp. U) is a supersolution (resp. subsolution)

of (6.4.2) on int(u) and that V. > U on O(u). Assume further that for all (z,p) € xR4 X
(0,1),U(T,z,p) =0. Then, V> U on int(u) U d(u).

The following theorem is a consequence of Proposition 6.4.2 and of the boundedness
of w.

Theorem 6.4.2. w, = w* is continuous on int(u) and is the unique viscosity solution of (6.4.2)
on int(u) and of (6.4.8) on O(u) which nullifies at time T in the class of nonnegative and bounded
functions.

Remark 6.4.4.

T
w(t,z,1) = inf / e PEE[ey)ds YO<t<T, x> (Do—&T—t)"
(0,0)EAXCs.t. X5 >(Do—&(T—1))* Vs>t Jt

This is a Merton type problem which shall be solved numerically.

6.5 Numerical resolution of the PDEs

In this section we provide some numerical methods to compute the continuous visco-
sity solution of equation (6.3.1) u with the boundary conditions obtained previously and
the continuous viscosity solution of (6.4.2) w, together with its boundary conditions as
well.

In a first subsection we give a scheme to solve the equation (6.3.1) by using a finite dif-
ference implicit-explicit scheme : an explicit treatment of the obstacle is used, while an
implicit treatment of the PDE is used. This implicit treatment permits to get an uncondi-
tionnal stable resolution method. The order of the method is one in both time and space.
We prove that the scheme converge towards the viscosity solution of the problem. In
order to check the efficiency of the resolution, we next solve the equation (6.3.26) obtai-
ned by the Fenchel approach and use the solution calculated to estimate the function w.
We use an implicit scheme to solve equation (6.3.26). It is easy to show that it converges
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towards the unique viscosity solution of equation (6.3.26). Then we can compare nume-
rically the two approaches and we show that the obtained solution are equal. With the
solved PDE and the obtained optimal control, we can test the method numerically by
Monte carlo and show that we are able to target a probability of success.

We then give a numerical finite difference scheme (without proving its convergence) to
tackle the difficult non convex case where the portfolio is constrained. Because the initial
condition is discontinuous, see [17], we have to approximate it by a continuous function.
We give some numerical examples for the u function obtained with different levels of
constraints on the portfolio.

In the last subsection we are back to the estimation of the function w. The 2 dimensio-
nal PDE obtained is degenerated and no finite difference scheme can be used. For this
case we decide to use Semi Lagrangian methods that are known to converge towards the
(unique) viscosity solution of the equation (6.4.2). We give the different boundary condi-
tions used : some of them need the resolution of a one dimensional Merton type HJB
equation that is solved by finite difference methods. Because the function w is defined
above the function u, the domain of resolution is time varying and non rectangular. In
order to follow the boundaries accurately we have to refine a lot the meshes and we de-
cided to use a low order method explained in [20] to solve the problem. We then give the
obtained solution at the end of the resolution period and show that the investment area
corresponds to a thin layer near some boundaries of the domain.

6.5.1 Minimal wealth problem
Direct approach

Reverting the problem in time, the admissible wealth function u satisfies :

1 — k) Loul(t, t,p)) =0,
in (sup(l — k) Lault, p) + su p))

ou a? 0%u o Ou(t, p _
Lou(t,p) = E(t,p) - 787192(@19) + Uép) +c

with u(x,0) = pDo, u(0,t) = 0, u(1,t) = (Dy — ct)*.
First the control is truncated by K such that we solve :

min ( sup (1 —k)Lqu(t,p) + Ku(t,p)) =0 (6.5.1)
k€{0,1} " ae[-K,K]
Equation (6.5.1) admits a comparison theorem easily proved by classical arguments with
truncated controls. Besides a viscosity solution of equation (6.5.1) exists and corresponds
to the solution of an optimization problem with « truncated. So there exists a unique
viscosity solution of equation (6.5.1) and this solution is continuous.
Using a time discretization ¢, = nAt with T' = NAt and a space dicretization z; = iAx
with 1 = Az, we denote u}' = u(t,,x;) and a discrete form of the equation (6.5.1) is
given by the following scheme, setting <) = 0 fori = 0 to I :
— Calculate the solution u ™! of

2
sup (1— w)[u ”+1<1+At—+\“““|>— w1

a€[—K,K] Ax?
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A )

M A G T ) A R =0 (65.2)

— Then

a? MaAtD_ m A a2 p(a)

1
Q" — arg max ((1 - H?)[u?Jr (1+ At i—1 2A 12 + oAr )

@ Ax? + ocAx

—ul LAY o | n (O‘)J:Q<)53)

2Ax2 oA

— Update " by :

n+1\2 n—i—lAt (an+1)2 (an—i-l)—i—
n+1 — in(l — ’(H—l 1 At (a ) pne o ’(H—lAt 1%
" Efeg{glll]{l( )l (1 + Ax? +| oAz ) — iz Al 2Ax? + oAz )
(@2 p(ant)- )

_u’;jllAt( INE + Az ) — uf + eAt] + rul8.5.4)

where 27 = max(0,z) and 2~ = max(0, —x). Notice that the discretization of %ﬁ;p)

is chosen such that it is monotone. At the boundary ugt* = 0 and «}** = Dj.

Remark 6.5.1. Expliciting the constraint, we guess that the scheme is of order one in time. The-
refore, high order time schemes such as Crank Nicholson schemes are useless.

We denote A(k, o) the matrix such that, for a vector v := (v;)i=0,1,

a? paAt o? pu(a)*
(Als, aJv)i = (1= mi)ui(l + AthQ + oAz - Ui_lAt(QAxZ + oAz )
a? pnlo)™
_v,-HAt(Qsz + J(A)x )] + Kiv;.

We propose the algorithm 1 in order to solve the equation (6.5.2) at each time step.

Algorithm 1 Fixed point iteration algorithm at a time step n
0

Initialize «
for k£ =0,1,2.. until convergence do

of = argmax, (A(K", @)vk — kMu" + K"CAL)
Solve A(k™, af)wF*l = k™M™ — K"eAL
if [vF T — vF| <& then

set u"t! = v¥*1 break from iteration
end if

end for

Theorem 6.5.1. The algorithm 1 converges to the unique solution u™ ! of the scheme 6.5.2.

Proof
First we prove that (v*); is bounded. For k € N, recalling that v* is nonnegative, we
denote i* the index such that v% = ||v*||. Note that % = 0, then :

()2 oA kg g (e )?  plai T
1+ At~ L =00 At~ C
(T+ Ax? +| ocAx Dvi Vi AL 2Ax2 + ocAx )
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k—1\2 k—1\—
k,l (i) o) —_
Foi AL 21Ax2 + aZAx )+ — At
SO

(M) | paf T A (D2 ()T

14+ At~ t D < vl At(— 2
(1+ Ax? +| oAz Dui < vy ( 2Ax? )+ oAz )

E—142 E—1y—
k,l (ai* ) N(ai* ) n
+u,2 At( N )+ As )]+ ulk

and [[v"]]os < [Ju"[]os < Do.

The A matrix is a M matrix, so A~! > 0. First fixing [, as done in [47] :

A(K", P (FTL — ok = —A(K", PP + kMU — KMEAL,

= [A(k", ook — kM + kPEAL] — [A(K", oF)0F) — kMU + KPEAL,

< 0

because o maximizes [A(k", a)v¥) — k"u" + k"EAt]. Then using A=% > 0, vF 1 — vk <0
and the sequence is decreasing. Because it is bounded, it is converging.
Suppose that there are two solutions v and w associated to the controls o, and «,,, then

AR" ap)(v —w) = [A(K", ap)w — k"u" + K"cAt] — [A(K", ap)w — K"u" + K" cAt]
> 0

because a,, maximizes A(k", a)w — k"u" + k"cAt. Then v > w. Inverting v and w, we
obtain that v = w.

Theorem 6.5.2. The scheme (6.5.2)-(6.5.3)-(6.5.4) converges to the unique solution of equation
(6.5.1).

First the scheme is I, stable since the solution is bounded by D, as shown above. We
now show that the scheme is consistent. Suppose  is regular such that v} = u(t",z;) is
solution of the scheme.

- If n?“ =0, then

A0, a)u™tt —yn
At

[sup Lau(t" ™, 2)] = | sup(( )it e —sup Lou(t", z;)]

A0, a)utt —
At

< sup|( )i + € — Lou(t™ z;)| < O(At) + O(Ax)

using the fact that the max is taken on a bounded set. Using equation (6.5.4), we get

that
n+1)2 n+1A¢ (an—i-l)z (an+1)+
ntl 5+l At<a ) Ho TN J
ug T > [T (14 A2 +| oAzr ) — wT Al 2A 22 + ocAx )
n+1)2 n+1)—
n+1 (Oé ) /‘L(O‘ ) n —
—ui AL A2 T oAs ) — uj + cAt]

and using equations (6.5.2) and (6.5.3) we get that u?“ > 0. Then | min,¢ o 1} (sup,(1—

K)Lou(t™ T 2;) + ku(t™ 1 z;))| < O(At) + O(Az).
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- If /@?’H =1, then u?“ =0, and

n+1\2 n+1At (an+1)2 M(an+1)+
< [u™ (1 A(a ) He _ WA
0< [ui™(1+ At Ax? + oAz ) — sy Al 2A 2 + oAz )
n+1\2 n+1\—
n+1 (Oé ) /L(Oé ) n —
—ui AL A2 T oAn ) — ul + cAt]
So
A n+1\, n+1 _ . n
Loniru™ T z) = Lonrru(t™ ;) — [( (0,0 Aﬁ: . )i + ¢
A0, oyt — gy _
( 2 )i +7l
and

sup Lou(t™z,) > O(AY)
Therefore we get

| rr%(i)nl} (sup(1 — k) Lou(t™ ™ ;) + ku(t™, 2;))| < O(At)
k€0, «

and the consistency is checked.
So using [6] it is converging towards the viscosity solution of (6.5.1).

The fenchel approach

It is also possible to solve (6.3.26) to get the Fenchel transform of the admissible
wealth. First, reverting time, h(t,y) = v(t, 2) where ¢ = log(x) solves :

oh u? 0%h Oh _ oh,
max [a(t, q) — ﬁ(aiqg(ta q) — 8—q(t, q)) — ¢ h— 877] =0, (6.5.5)
with the initial condition
h(0,q) = (¢ — Do), (6.5.6)

and the boundary condition £(0, 0) = 0.

The discretization scheme is then

(1 m e A (L Ly gy L
wel0.1)7+1 Sk o2 Ar?2 ' 2Az 17952 A2 T Ax
2 1 1
_prHAr— P g GA TRt )yt ) = 0. (65.7
hz—l—l t202Ax2 hz c t]+ﬁl[hz ( +AJ}> hz—l A.%']) 0 (65 )

It can be solved using an algorithm similar to algorithm 1. Besides the scheme is mono-
tone, consistent, [, stable and we get the following convergence theorem :

Theorem 6.5.3. The scheme (6.5.7) converges to the unique viscosity solution of (6.5.5).

Remark 6.5.2. In the direct approach, we had to truncate the control in order to solve the problem.
In the Fenchel approach, this truncation is replaced by a truncation of the domain. The size D of
the domain is chosen such that the Fenchel transform of the calculated solution is nearly inde-
pendent of D. In the sequel, the right boundary condition chosen is max(%2(t, D) — &, h(t, D) —

o, D)) = 0.
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Numerical results

We choose 1 =0.1,0 =02, T =1, Dy =1, ¢ = 0.1. We take N = 800 for the number
of time steps, I = 800 for the number of meshes. On figure (6.1), we give the Fenchel
transform h of the minimal wealth.

35

Fenchel transform '

3

25

2

15

1

05

0

0 05 1 15 2 25 3 35 4

FIGURE 6.1 — Fenchel transform of the minimal wealth

By taking the Fenchel transform of h we get an estimation @ of the minimal wealth
u. On figure (6.2), we compute a direct estimation of u by solving (6.5.2) and @ : the two
curves are nearly identical.

09

Direct calculation
08 with Fenchel transform

07

06

05

0.4

Wealth

03

02

01

0.1

0 02 0.4 06 08 1
Probability

FIGURE 6.2 — Minimal wealth by direct calculation and using the Fenchel transform.

The minimal wealth function is interesting but we may try to check if we are able to
simulate the optimal strategy. In optimization, (¢, p) and the optimal values u(t,p) are
stored. In a simulation phase, we simulate the strategy for u(0,p) > 0:

— the wealth is initialized with the minimal wealth associated to the initial probability,

— at each time step, given the wealth, the probability level p is obtained by inverting

p — u(t,p), 0(t,p) is obtained by interpolation and used to update the portfolio
composition.
In the table 6.5.1, we simulate the optimal strategy with 1000 time steps (optimization and
simulation) and 500000 trajectories in simulation. For a high probability target, results
obtained in simulation perfectly match the target.
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Target probability | 02 | 03 | 04 | 05 | 0.6 | 0.7 | 0.8 | 09 | 1L
Probability reached | 0.18 | 0.28 | 0.37 | 0.47 | 0.58 | 0.68 | 0.78 | 0.90 | 1.

TABLE 6.1 — Simulate the optimal strategy and compute the probability of success.

Possible extension

A case of interest is the special case where the portfolio is constrained : we may consi-
der the case where 6 € [0,0)/]. In this case we guess using [17] that the value function u
is solution of

ou a? 0% o Ou(t, _
min _( sup (I_H)[a (t )_282(t’p)+ﬂép)+c]+
R0} {(a.0)eRx[0,1] a8 (t.p)=0Bu(t.p)} t b 7
ku(t,p)) =0,

with the initial condition :

Dy, if p # 0,
w(0,p) = { 0 2fp:7(é)

The solution u is no longer continuous nor convex and no finite difference scheme can
handle the discontinuity. In this case we choose to approximate the initial condition with
the following

SR Dotifp < .

We propose the following scheme :
— Calculate ™! solution of

2
(1— k) ' max [u? (1 + At—) uln"'llAt
al (H—l%;z (i=1) _ 00u"(z) Ax?
6 e0,0u],acR

2Ax?

—u?fllAt2A 5 +;u9u?+1 uy — ¢At] + k' u "H] 0,
— Then
o2
atogntly = arg max 11—kl "H 1+ At
(a7, g i A2
0 €0,0p],aeR
au”(i*FlQ);Zn(ifl) — U@un(z)
« n n n
Ui At ZfllAt2A 5 + pou; ol — Al + KT ul
— Update " by :
n+1\2 n+1\2
n+l _ in(1 — n+1 At (Oé ) _ n+1At (Oé )
K Teg{]érff}n( )l (1 + At—s) = uiZp At
(Ozn+1)2
—u™ AL + "y — GAL] 4 !

Yit1 2Ax2
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Remark 6.5.3. In order to be able to solve this scheme by an iterative procedure using a fixed
point iteration as in algorithm 1, we had to explicit the constraint in the max.

We took p = 0.01, N = 400, I = 2000 so the scheme converges numerically.
The numerical solution is given on figure (6.3).
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FIGURE 6.3 — Minimal weath function for constrained portfolio.

6.5.2 The function w
Scheme

We are now interested in the resolution of (6.4.2) where x > wu(t,p). The PDE is
degenerated and in order to have a monotone scheme we propose to use Camilli Fal-
cone’s scheme [20]. Let us introduce Y; = (Xy, P;)!, a time discretization ¢, = nAt,
w™(t,Yn) = w(t", X¢n, Pn). Camilli Falcone’s scheme is the following one :

1 <IMw”(y+ ( Hy1 + ) At + < obx ) VAL +

inf
(9,a,c)€[9mm,9maz]XRX[Oﬂ l2 O «

Inw™(y + ( gﬁzﬂ T > At — ( ZHm ) @)) — BAtw™ (y) + cAﬁ%SB)

W (y) =

with w® = 0 as initial condition, and I, is a linear interpolator on a grid with meshes of
size Ax.

The boundary conditions are w™((.,0)") = 0, w™((Dy,.)") = 0 and w"((u(t",.),.)") =
51— BTy if w(t™,p) # 0. Note that if u(t",p) = 0, due to the advection term, no
special boundary condition is required.

Atlast, for x € [(Dy — ct™)*, Do|, w"((x, 1)) = @(ty, ) where

o o o?0%x? 0%
POt z) = (uh+ )28 27T 70 b= 5.
R (t, ) = (b + c) 5 5 g —CctA=0, (6.5.9)
with (0, Dg) = 0, w(t, (Do — ét)™) = %(1 — eA=T)) In order to solve (6.5.9), we use the
following discrete scheme :
292,.2 - 292,.2
1 o0z bz +cf, g, WOz + ) N

9,2%?8?6] (wi (1+ Ak Ax? o+ Ax ) —wiiy AU Ax * 2Ax2 )



(ubz + c)f) n 020z
Az 2Ax2

wit AL ) —cAt—w?) =0
Note that no truncation is necessary for 6 because the optimal value maximizing the pre-
vious equation is bounded. The scheme used is an iteration policy combining two nests :
an outer nest iterating on the optimal c and an internal nest iterating on the optimal 6 for
a given c.

The scheme (6.5.8) is known to converge towards the unique viscosity solution of equa-
tion (6.4.2) where the controls are bounded ([5, 20, 33]).

Numerical results

We keep the same parameters as in section 6.5.1 and 8 = 0.05. On figure 6.4, we give
the solution numerically calculated for @ at time ¢ = T taking a number of time steps
equal to N = 400, and a mesh size Az equal to cAt. This choice of mesh size imposes the
computation on previous calculated points, even if the resolution domain changes with
time.

Boundary condition for w

w values
=)
o
(5]

FIGURE 6.4 — Boundary condition at ¢ = T as a function of y = z — Dy + ¢T for y € [0, cT]

All solution calculated on boundaries are stored at each time step and an interpolator
in time and space is used to recover the values used in the problem (6.5.8).
On figure 6.5, we give the value function w taking a number of time steps N = 200, a
number of meshes [ in = and p equal to 1600. We impose 0,,i, = —20, O1ae = 20 and we
discretize the possible 6 values with a thin mesh in order to estimate the optimal control
in 6. The very high value taken by n is due to the very slow spacial convergence of the
scheme. In order to get converged results we had to parallelize the scheme on 192 cores
running during two days using the methodology developped in [104].
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FIGURE 6.5 — Value function w at time ¢t = T..

The optimal strategy in c consists in not investing except close to the boundary defi-
ned by the minimal wealth as shown in figure 6.6 and the optimal strategy in 6 is given

on figure 6.7.
1 —
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FIGURE 6.6 — Optimal strategy in c at time ¢t = T.
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FIGURE 6.7 — Optimal strategy in 0 at time ¢t = 7.
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6.6 Appendix

The following lemmas follows exactly from the same arguments as in the proof of
Lemma 3.1 of [99]

Lemma 6.6.1. The set {(t,z,p,a,0,c) € [0,T] x R} x [0,1] x A x B xC : (a,0,c) €
(Ax B xC)(t,x,p)}isaBorel setin [0,T] x RS x [0,1] x Ax B x C.

Lemma 6.6.2. For any probability measure m on ([0, T] x R} x [0,1], B([0,T] x R x [0,1])),
there exists a Borel measurable map ¢y, such that ¢, (t,xz,p) € (A x B x C)(t,z,p) for m-a.e.
(t.2,p) € [0,T] x B x [0, 1]
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