
Injective tests of low complexity in the plane

Dominique Lecomte, Rafael Zamora

To cite this version:

Dominique Lecomte, Rafael Zamora. Injective tests of low complexity in the plane. 2015.
<hal-01178086>

HAL Id: hal-01178086

https://hal.archives-ouvertes.fr/hal-01178086

Submitted on 17 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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1 Introduction

The reader should see [K] for the standard descriptive set theoretic notation used in this paper.

This work is a contribution to the study of analytic subsets of the plane. We are looking for results

of the following form: either a situation is simple, or it is more complicated than a situation in a

collection of known complicated situations. The notion of complexity we consider is the following,

and defined in [Lo3].

Definition 1.1 (Louveau) Let X, Y be Polish spaces, B be a Borel subset of X×Y , and Γ be a

class of Borel sets closed under continuous pre-images. We say that B is potentially in Γ
(

denoted

B∈pot(Γ)
)

if there are finer Polish topologies σ and τ onX and Y , respectively, such thatB, viewed

as a subset of the product (X,σ)×(Y, τ), is in Γ.

The quasi-order ≤B of Borel reducibility was intensively considered in the study of analytic

equivalence relations during the last decades. The notion of potential complexity is a natural invariant

for ≤B : if E ≤B F and F ∈pot(Γ), then E∈pot(Γ) too. However, as shown in [L1]-[L6] and [L8],

≤B is not the right notion of comparison to study potential complexity, in the general context, because

of cycle problems. A good notion of comparison is as follows. LetX,Y,X ′, Y ′ be topological spaces

and A,B⊆X×Y , A′, B′⊆X ′×Y ′. We write

(X,Y,A,B) ≤ (X ′, Y ′, A′, B′) ⇔

∃f :X→X ′ ∃g :Y →Y ′ continuous with A⊆(f×g)−1(A′) and B⊆(f×g)−1(B′).

Our motivating result is the following (see [L8]).

Definition 1.2 We say that a class Γ of subsets of zero-dimensional Polish spaces is a Wadge class

of Borel sets if there is a Borel subset A of ωω such that for any zero-dimensional Polish space X,

and for any A⊆X, A is in Γ if and only if there is f :X→ωω continuous such that A=f−1(A). In

this case, we say that A is Γ-complete.

If Γ is a class of sets, then Γ̌ :={¬A | A∈Γ} is the dual class of Γ, and Γ is self-dual if Γ= Γ̌.

We set ∆(Γ) :=Γ ∩ Γ̌.

Theorem 1.3 (Lecomte) Let Γ be a Wadge class of Borel sets, or the class ∆
0
ξ for some countable

ordinal ξ≥1. Then there are concrete disjoint Borel relations S0, S1 on 2ω such that, for any Polish

spaces X,Y , and for any disjoint analytic subsets A,B of X×Y , exactly one of the following holds:

(a) the set A is separable from B by a pot(Γ) set,

(b) (2ω, 2ω ,S0,S1) ≤ (X,Y,A,B).

It is natural to ask whether we can have f and g injective if (b) holds. Debs proved that this is the

case if Γ is a non self-dual Borel class of rank at least three (i.e., a class Σ
0
ξ or Π0

ξ with ξ ≥ 3). As

mentioned in [L8], there is also an injectivity result for the non self-dual Wadge classes of Borel sets

of level at least three. Some results in [L4] and [L8] show that we cannot have f and g injective if (b)

holds and Γ is a non self-dual Borel class of rank one or two, or the class of clopen sets, because of

cycle problems again.
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The work of Kechris, Solecki and Todorčević indicates a way to try to solve this problem. Let us

recall one of their results in this direction. All the relations considered in this paper will be binary.

Definition 1.4 Let X be a set, and A be a relation on X.

(a) ∆(X) :={(x, y)∈X2 | x=y} is the diagonal of X.

(b) We say that A is irreflexive if A does not meet ∆(X).

(c) A−1 :={(x, y)∈X2 | (y, x)∈A}, and s(A) :=A ∪A−1 is the symmetrization of A.

(d) We say that A is symmetric if A=A−1.

(e) We say that A is a graph if A is irreflexive and symmetric.

(f) We say that A is acyclic if there is no injective sequence (xi)i≤n of points of X with n≥ 2,

(xi, xi+1)∈A for each i<n, and (xn, x0)∈A.

(g) We say that A is locally countable if A has countable horizontal and vertical sections (this

also makes sense in a rectangular product X×Y ).

Notation. Let (sn)n∈ω be a sequence of finite binary sequences with the following properties:

(a) (sn)n∈ω is dense in 2<ω . This means that for each s∈2<ω, there is n∈ω such that sn extends

s (denoted s⊆sn).

(b) |sn|=n.

We put G0 :={(sn0γ, sn1γ) | n∈ω ∧ γ∈2ω}. The following result is proved in [K-S-T].

Theorem 1.5 (Kechris, Solecki, Todorčević) Let X be a Polish space, and A be an analytic graph on

X. We assume that A is acyclic or locally countable. Then exactly one of the following holds:

(a) there is c :X→ω Borel such that A⊆(c×c)−1
(

¬∆(ω)
)

,

(b) there is f :2ω→X injective continuous such that s(G0)⊆(f×f)−1(A).

This seems to indicate that there is a hope to get f and g injective in Theorem 1.3.(b) for the first

classes of the hierarchy if we assume acyclicity or local countability. This is the main purpose of this

paper, and leads to the following notation. Let X,Y,X ′, Y ′ be topological spaces and A,B⊆X×Y ,

A′, B′⊆X ′×Y ′. We write

(X,Y,A,B) ⊑ (X ′, Y ′, A′, B′) ⇔

∃f :X→X ′ ∃g :Y →Y ′ injective continuous with A⊆(f×g)−1(A′) and B⊆(f×g)−1(B′).

We want to study the Borel and Wadge classes of the locally countable Borel relations: the Borel

classes of rank one or two, the Lavrentieff classes built with the open sets (the classes of differences

of open sets), their dual classes and their ambiguous classes. We will also study the Lavrentieff classes

built with the Fσ sets and their dual classes.

Definition 1.6 Let η<ω1. If (Oθ)θ<η is an increasing sequence of subsets of a set X, then

D
(

(Oθ)θ<η
)

:=
{

x∈X | ∃θ<η parity(θ) 6=parity(η) and x∈Oθ\
(

⋃

θ′<θ

Oθ′
)}

.

Now Dη(Σ
0
ξ)(X) :=

{

D
(

(Oθ)θ<η
)

| ∀θ < η Oθ ∈ Σ
0
ξ(X)

}

, for each 1 ≤ ξ < ω1. The classes

Dη(Σ
0
ξ), Ďη(Σ

0
ξ) and ∆

(

Dη(Σ
0
ξ)
)

form the difference hierarchy.
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Some recent work of the first author shows that having f and g injective in Theorem 1.3.(b) can

be used to get results of reduction on the whole product, under some acyclicity and also topological

assumptions. Some of the results in the present paper will be used by the first author in a future article

on this topic. This work is also motivated by the work of Louveau on oriented graphs in [Lo4].

Definition 1.7 Let X be a set, and A be a relation on X.

(a) We say that A is antisymmetric if A ∩A−1⊆∆(X).

(b) We say that A is an oriented graph if A is irreflexive and antisymmetric.

It follows from results of Wadge and Martin that inclusion well-orders

{Γ ∪ Γ̌ | Γ Wadge class of Borel sets},

giving rise to an ordinal assignment w(Γ). If G is an analytic oriented graph, then we can define

w(G) as the least w(Γ) such that G is separable from G−1 by a pot(Γ) set C . It is well defined by

the separation theorem. Moreover, it is useless in the definition to distinguish between dual classes,

for if C separates G from G−1, then so does ¬C−1, which is potentially in Γ̌. The main property of

this assignment is that w(G) ≤ w(H) if there is a Borel homomorphism from G into H . Louveau

also considers a rough approximation of w(G), which is the least countable ordinal ξ for which G is

separable from G−1 by a pot(∆0
ξ) set. He proves the following.

Theorem 1.8 (Louveau) Let ξ ∈ {1, 2}. Then there is a concrete analytic oriented graph Gξ on 2ω

such that, for any Polish space X, and for any analytic oriented graph G on X, exactly one of the

following holds:

(a) the set G is separable from G−1 by a pot(∆0
ξ) set,

(b) there is f :2ω→X continuous such that Gξ⊆(f×f)−1(G).

Our main results are the following.

• We generalize Theorem 1.8 to all the ∆
0
ξ’s, and all the Wadge classes of Borel sets.

Theorem 1.9 Let Γ be a Wadge class of Borel sets, or the class ∆0
ξ for some countable ordinal ξ≥1.

Then there is a concrete Borel oriented graph GΓ on 2ω such that, for any Polish space X, and for

any analytic oriented graph G on X, exactly one of the following holds:

(a) the set G is separable from G−1 by a pot(Γ) set,

(b) there is f :2ω→X continuous such that GΓ⊆(f×f)−1(G).

We also investigate the injective version of this, for the first classes of the hierarchies again.

• In the sequel, it will be very convenient to say that a relation A on a set X is s-acyclic if s(A) is

acyclic.

Theorem 1.10 Let Γ∈{Dη(Σ
0
1), Ďη(Σ

0
1),Dn(Σ

0
2), Ďn(Σ

0
2) | 1≤η<ω1, 1≤n<ω}∪{∆0

2}. Then

there are concrete disjoint Borel relations S0, S1 on 2ω such that, for any Polish space X, and for any

disjoint analytic relations A,B on X with s-acyclic union, exactly one of the following holds:

(a) the set A is separable from B by a pot(Γ) set,

(b) (2ω, 2ω ,S0,S1) ⊑ (X,Y,A,B).
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In fact, we prove a number of extensions of this result. It also holds

- for η=0 if we replace 2ω with 1,

- with f=g if Γ /∈{Dη(Σ
0
1), Ďη(Σ

0
1) | η<ω1}; if Γ∈{Dη(Σ

0
1), Ďη(Σ

0
1) | η<ω1}, then there is an

antichain basis with two elements for the square reduction (it is rather unusual to have an antichain

basis but no minimum object in this kind of dichotomy),

- if we assume that A ∪ B is locally countable instead of s-acyclic when Γ⊆Π
0
2 (this also holds in

rectangular products X×Y ),

- if we only assume that A is s-acyclic or locally countable when Γ=Π
0
2.

The situation is more complicated for the ambiguous classes.

Theorem 1.11 Let Γ ∈
{

∆
(

Dη(Σ
0
1)
)

| 1 ≤ η < ω1

}

. Then there is a concrete finite antichain A,

made of tuples (2ω , 2ω,S0,S1) where S0, S1 are disjoint Borel relations S0, S1 on 2ω , such that, for

any Polish space X, and for any disjoint analytic relations A,B on X whose union is contained in a

potentially closed s-acyclic relation R, exactly one of the following holds:

(a) the set A is separable from B by a pot(Γ) set,

(b) there is (2ω, 2ω,A,B)∈A with (2ω, 2ω,A,B) ⊑ (X,Y,A,B).

Here again, we can say more. This also holds

- if we assume that R is locally countable instead of s-acyclic (this also holds in rectangular products

X×Y ),

- in all those cases, A has size three if η is a successor ordinal, and size one if η is a limit ordinal (it is

quite remarkable that the situation depends on the fact that η is limit or not, it confirms the difference

observed in the description of Wadge classes of Borel sets in terms of operations on sets present in

[Lo1]),

- with f =g, but in order to ensure this A must have size six if η is a successor ordinal, and size two

if η is a limit ordinal.

• We characterize when part (b) in the injective reduction property holds.

Theorem 1.12 Let Γ∈{Dη(Σ
0
1), Ďη(Σ

0
1),Dn(Σ

0
2), Ďn(Σ

0
2) | 1≤η<ω1, 1≤n<ω}∪{∆0

2}. Then

there are concrete disjoint Borel relations S0, S1 on 2ω such that, for any Polish space X, and for any

disjoint analytic relations A,B on X, the following are equivalent:

(1) there is an s-acyclic relation R∈Σ
1
1 such that A∩R is not separable from B ∩R by a pot(Γ) set,

(2) (2ω, 2ω,S0,S1) ⊑ (X,Y,A,B).

The same kind of extensions as before hold (except that we cannot assume local countability

instead of s-acyclicity for the classes of rank two).

5



Theorem 1.13 Let Γ ∈
{

∆
(

Dη(Σ
0
1)
)

| 1 ≤ η < ω1

}

. Then there is a concrete finite antichain A,

made of tuples (2ω , 2ω,S0,S1) where S0, S1 are disjoint Borel relations S0, S1 on 2ω , such that, for

any Polish space X, and for any disjoint analytic relations A,B on X, the following are equivalent:

(1) there is a potentially closed s-acyclic relation R∈Σ
1
1 such that A∩R is not separable from B∩R

by a pot(Γ) set,

(2) there is (2ω , 2ω,A,B)∈A with (2ω, 2ω,A,B) ⊑ (X,Y,A,B).

Here again, the same kind of extensions as before hold.

• The injective versions of Theorem 1.9 mentioned earlier are as follows.

Theorem 1.14 Let Γ∈{Dη(Σ
0
1), Ďη(Σ

0
1),Dn(Σ

0
2), Ďn(Σ

0
2) | 1≤η<ω1, 1≤n<ω}∪{∆0

2}. Then

there is a concrete Borel oriented graph GΓ on 2ω such that, for any Polish space X, and for any

analytic s-acyclic oriented graph G on X, exactly one of the following holds:

(a) the set G is separable from G−1 by a pot(Γ) set,

(b) there is f :2ω→X injective continuous such that GΓ⊆(f×f)−1(G).

This result also holds if we assume that G is locally countable instead of s-acyclic when Γ⊆Π
0
2.

Theorem 1.15 Let Γ ∈
{

∆
(

Dη(Σ
0
1)
)

| 1 ≤ η < ω1

}

. Then there is a concrete finite antichain A,

made of Borel oriented graphs on 2ω , such that, for any Polish space X, and for any analytic oriented

graph G on X contained in a potentially closed s-acyclic relation, exactly one of the following holds:

(a) the set G is separable from G−1 by a pot(Γ) set,

(b) we can find GΓ∈A and f :2ω→X injective continuous such that GΓ⊆(f×f)−1(G).

The same kind of extensions as before hold, except that A has size three if η is a successor ordinal,

and size two if η is a limit ordinal.

• At the end of the paper, we study the limits of our results and give negative results.

2 Generalities

The acyclic and the locally countable cases

In [K-S-T], Section 6, the authors introduce the notion of an almost acyclic analytic graph, in

order to prove an injective version of the G0-dichotomy for acyclic or locally countable analytic

graphs. We now give a similar definition, in order to prove injective versions of Theorem 1.3 for

the first classes of the hierarchies. This definition is sufficient to cover all our cases, even if it is not

always optimal.

Definition 2.1 Let X be a Polish space, and A be a relation on X. We say that A is quasi-acyclic if

there is a sequence (Cn)n∈ω of pot(Π0
1) relations on X with disjoint union A such that, for any s(A)-

path (zi)i≤2 with z0 6= z2, and for any n1, ..., nk ∈ω, C ′
ni
∈{Cni

, C−1
ni

} (1≤ i≤ k), x1, y1, ..., xk , yk
in X\{zi | i≤2}, if (z0, x1), (z2, y1)∈C

′
n1

, (x1, x2), (y1, y2)∈C
′
n2

, ..., (xk−1, xk), (yk−1, yk)∈C
′
nk

all hold, then xk 6=yk.
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Lemma 2.2 Let X be a Polish space, and A be a Borel relation on X. We assume that A is either

s-acyclic and pot(Σ0
2), or locally countable. Then A is quasi-acyclic.

Proof. Assume first that A is s-acyclic and pot(Σ0
2). Then we can write A =

⋃

n∈ω Cn, where

(Cn)n∈ω is a disjoint sequence of potentially closed relations on X. The acyclicity of s(A) shows

that A is quasi-acyclic.

Assume now that A is locally countable. By 18.10 in [K], A can be written as
⋃

q∈ω Gq , where

Gq is the Borel graph of a partial function fq, and we may assume that the Gq’s are pairwise disjoint.

By 18.12 in [K], the projections of the Gq’s are Borel. By Lemma 2.4.(a) in [L2], there is, for each

q, a countable partition (Dq
p)p∈ω of the domain of fq into Borel sets on which fq is injective. So the

Cn’s are the Gr(fq |Dq
p
)’s. �

Topologies

Let Z be a recursively presented Polish space (see [M] for the basic notions of effective theory).

(1) The topology ∆Z on Z is generated by ∆
1
1(Z). This topology is Polish (see (iii) ⇒ (i) in the proof

of Theorem 3.4 in [Lo3]). The topology τ1 on Z2 is ∆2
Z . If 2≤ξ<ωCK

1 , then the topology τξ on Z2

is generated by Σ
1
1 ∩Π

0
<ξ(τ1).

(2) The Gandy-Harrington topology on Z is generated by Σ
1
1 (Z) and denoted ΣZ . Recall the

following facts about ΣZ (see [L7]).

(a) ΣZ is finer than the initial topology of Z .

(b) We set ΩZ := {z∈Z | ωz1=ω
CK
1 }. Then ΩZ is Σ 1

1 (Z) and dense in (Z,ΣZ).

(c) W ∩ΩZ is a clopen subset of (ΩZ ,ΣZ) for each W ∈Σ
1
1 (Z).

(d) (ΩZ ,ΣZ) is a zero-dimensional Polish space.

3 The classes Dη(Σ
0
1) and Ďη(Σ

0
1)

Examples

In Theorem 1.3, either S0 or S1 is not locally countable if Γ is not self-dual. If Γ⊆∆
0
2, we can

find disjoint analytic locally countable relations A,B on 2ω such that A is not separable from B by a

pot(Γ) set, as we will see. This shows that, in order to get partial reductions with injectivity, we have

to use examples different from those in [L8], so that we prove the following.

Notation. We introduce examples in the style of G0 in order to prove a dichotomy for the classes

Dη(Σ
0
1), where η≥1 is a countable ordinal.

• If t∈2<ω, then Nt :={α∈2ω | t⊆α} is the usual basic clopen set.
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• As in Section 2 in [L2] we inductively define ϕη :ω
<ω→{−1} ∪ (η+1) by ϕη(∅)=η and

ϕη(sn) =































−1 if ϕη(s)≤0,

θ if ϕη(s)=θ+1,

an odd ordinal such that the sequence
(

ϕη(sn)
)

n∈ω
is cofinal in ϕη(s)

and strictly increasing if ϕη(s)>0 is limit.

If no confusion is possible, then we will write ϕ instead of ϕη. We set Tη :={s∈ω<ω | ϕη(s) 6=−1},

which is a wellfounded tree.

• Let (pq)q∈ω be the sequence of prime numbers, and < . >η :Tη→ω be the following bijection. We

define I :Tη→ω by I(∅) :=0 and I(s) := p
s(0)+1
0 ...p

s(|s|−1)+1
|s|−1 if s 6= ∅. As I is injective, there is an

increasing bijection J : I[Tη ]→ω. We set < . >η := J ◦ I . Note that < sq >η−< s >η ≥ q+1 if

sq∈Tη. Indeed, I(s0), ..., I
(

s(q−1)
)

are strictly between I(s) and I(sq).

• Let ψ : ω → 2<ω be the map defined by ∅, ∅, 0, 0, 1, 1, 02 , 02, 01, 01, 10, 10, 12 , 12, ..., so that

|ψ(q)|≤q and ψ[{2n | n∈ω}], ψ[{2n+1 | n∈ω}]=2<ω.

• For each s ∈ Tη, we define (t0s, t
1
s) ∈ (2×2)<ω by tε∅ = ∅, and tεsq = tεsψ(q)0

<sq>η−<s>η−|ψ(q)|−1ε.
Note that this is well defined, |tεs|=< s >η and Card

(

{l < < s >η| t
0
s(l) 6= t1s(l)}

)

= |s| for each

s∈Tη.

• We set T η :=
{(

t0sw, t
1
sw

)

| s∈Tη ∧ w∈2<ω
}

. The following properties are satisfied.

- T η is a tree on 2×2, and ⌈T η⌉⊆E0 :={(α, β)∈2ω×2ω | ∃m∈ω ∀n>m α(n)=β(n)} is locally

countable.

- If (s, t)∈T η and s(l) 6= t(l), then s(l)<t(l).

- For each l∈ω, there is exactly one sequence (u, v)∈T η ∩ (2l+1×2l+1) such that u(l) 6=v(l) since

t0sq(< sq >η −1) 6= t1sq(< sq >η −1) (in fact, (u, v) is of the form (t0s, t
1
s) for some s). In particular,

s
(

T η ∩ (2l+1×2l+1)
)

\∆(2l+1) is a connected acyclic graph on 2l+1, inductively.

• We set, for ε∈2,

Nηε :=
{

(t0sγ, t
1
sγ) | s∈Tη ∧ parity(|s|)=ε ∧ γ∈2ω

}

.

If s∈Tη, then fs :Nt0s
→Nt1s

is the partial homeomophism with clopen domain and range defined by

fs(t
0
sγ) := t1sγ, so that Nηε =

⋃

s∈Tη ,parity(|s|)=ε Gr(fs). We set Cs :=
⋃

q∈ω Gr(fsq) when it makes

sense (i.e., when ϕη(s)≥1). For η=0, we set Nη0 :=12 and Nη1 :=∅ (in 12).

Lemma 3.1 Let η be a countable ordinal, and C be a nonempty clopen subset of 2ω.

(a) If ϕη(s)≥1 and G is a dense Gδ subset of 2ω , then Cs ∩ (C ∩G)2⊆Cs ∩ (C ∩G)2.

(b) Nη0 ∩ C
2 is not separable from Nη1 ∩C

2 by a pot
(

Dη(Σ
0
1)
)

set.
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Proof. (a) It is enough to prove that if q ∈ω, then Gr(fsq) ∩ C
2 ⊆Gr(fsq) ∩ (C ∩G)2. This comes

from the proof of Lemma 3.5 in [L1], but we recall it for self-containedness. Let U, V be open subsets

of C such that Gr(fsq) ∩ (U×V ) 6=∅. Then Nt1sq
∩ V ∩ G is a dense Gδ subset of Nt1sq

∩ V , so that

f−1
sq (V ∩ G) is a dense Gδ subset of f−1

sq (V ). Thus G ∩ f−1
sq (V ) and G ∩ f−1

sq (V ∩ G) are dense

Gδ subsets of f−1
sq (V ). This gives α in this last set and U ∩ f−1

sq (V ). Therefore
(

α, fsq(α)
)

is in

Gr(fsq) ∩ (C ∩G)2 ∩ (U×V ).

(b) We may assume that η≥1. We argue by contradiction, which gives P ∈pot
(

Dη(Σ
0
1)
)

, and a dense

Gδ subset of 2ω such that P ∩G2∈Dη(Σ
0
1)(G

2). So let (Oθ)θ<η be a sequence of open relations on

2ω such that P ∩G2=
(
⋃

θ<η,parity(θ)6=parity(η) Oθ\(
⋃

θ′<θ Oθ′)
)

∩G2.

• Let us show that if θ ≤ η, s ∈ Tη and ϕ(s) = θ, then Gr(fs) ∩ (C ∩ G)2 ⊆ ¬Oθ if θ < η, and

Gr(fs) ∩ (C ∩ G)2 is disjoint from
⋃

θ′<θ Oθ′ if θ = η. The objects s= ∅ and θ = η will give the

contradiction.

• We argue by induction on θ. Note that if s∈Tη, |s| is even if and only if ϕ(s) has the same parity

as η. If θ = 0, then |s| has the same parity as η, thus Gr(fs) ∩ (C ∩G)2⊆Nη
parity(η)

∩G2⊆¬O0.

• Assume that the result has been proved for θ′ < θ. If θ is the successor of θ′, then the induction

assumption implies that Gr(fsq) ∩ (C ∩ G)2 ⊆ ¬Oθ′ for each q. So Cs ∩ (C ∩ G)2 ⊆ ¬Oθ′ and

Cs ∩ (C ∩G)2 ⊆ ¬Oθ′ . By (a), we get Cs ∩ (C ∩ G)2 ⊆ Cs ∩ (C ∩G)2, which gives the desired

inclusion if θ=η since Gr(fs)⊆Cs.

If θ<η and |s| is even, then ϕ(s) has the same parity as η and the parity of θ′ is opposite to that of

η. Note that Gr(fs)∩ (C ∩G)2⊆Nη0 ∩G
2⊆

⋃

θ′′<η,parity(θ′′)6=parity(η) Oθ′′\(
⋃

θ′′′<θ′′ Oθ′′′)⊆¬Oθ.

If |s| is odd, then the parity of ϕ(s) is opposite to that of η and θ′ has the same parity as η. But if

s∈Tη has odd length, then

Gr(fs) ∩ (C ∩G)2⊆Nη1 ∩G
2⊆G2\(

⋃

θ′′<η

Oθ′′) ∪
⋃

θ′′<η,parity(θ′′)=parity(η)

Oθ′′ \(
⋃

θ′′′<θ′′

Oθ′′′).

This gives the result.

• If θ is limit, then
(

ϕ(sn)
)

n∈ω
is cofinal in ϕ(s), and Gr(fsn) ∩ (C ∩ G)2 ⊆ ¬Oϕ(sn) by the

induction assumption. If θ0 < ϕ(s), then there is n(θ0) such that ϕ(sn) > θ0 if n ≥ n(θ0). Thus

Gr(fsn) ∩ (C ∩G)2⊆¬Oθ0 as soon as n≥n(θ0). But

Gr(fs)∩ (C ∩G)2⊆(C∩G)2∩Cs\Cs=Cs ∩ (C ∩G)2\Cs⊆
⋃

n≥n(θ0)

Gr(fsn) ∩ (C ∩G)2⊆¬Oθ0 .

Thus Gr(fs) ∩ (C ∩G)2⊆¬(
⋃

θ′<θ Oθ′).

If θ < η, as |s| has the same parity as η, we get Gr(fs) ∩ (C ∩ G)2 ⊆Nη
parity(η)

∩ G2, so that

Gr(fs) ∩ (C ∩G)2⊆¬Oθ. �
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A topological characterization

Notation. Let 1 ≤ ξ < ωCK
1 . Theorem 4.1 in [L6] shows that if A0, A1 are disjoint Σ 1

1 relations

on ωω, then A0 is separable from A1 by a pot(Σ0
ξ) set exactly when A0 ∩ A1

τξ = ∅. We now

define the versions of A0 ∩ A1
τξ

for the classes Dη(Σ
0
ξ). So let ε ∈ 2 and η < ωCK

1 . We define
⋂

θ<0 F
ε
θ,ξ :=(ωω)2, and, inductively,

F εη,ξ :=A|parity(η)−ε| ∩
⋂

θ<η

F εθ,ξ

τξ
.

We will sometimes denote by F εη,ξ(A0, A1) the sets F εη,ξ previously defined. By induction, we can

check that F εη,ξ(A1, A0)=F
1−ε
η,ξ (A0, A1).

Fix a bijection l 7→
(

(l)0, (l)1
)

from ω onto ω2, with inverse map (m, p) 7→< m, p >. We define,

for u∈ω≤ω and n∈ω, (u)n∈ω
≤ω by (u)n(p) :=u(< n, p >) if < n, p >< |u|.

Theorem 3.2 Let 1≤ ξ <ωCK
1 , η=λ+2k+ε<ωCK

1 with λ limit, k∈ω and ε∈ 2, and A0, A1 be

disjoint Σ 1
1 relations on ωω. Then the following are equivalent:

(1) the set A0 is not separable from A1 by a pot
(

Dη(Σ
0
ξ)
)

set,

(2) the Σ
1
1 set F εη,ξ is not empty.

Proof. This result is essentially proved in [L8]. However, the formula for F εη,ξ is more concrete here,

since the more general and abstract case of Wadge classes is considered in [L8]. So we give some

details.

• In [Lo-SR], the following class of sets is introduced. Let 1≤ ξ < ω1 and Γ, Γ′ be two classes of

sets. Then A∈Sξ(Γ,Γ
′) ⇔ A=

⋃

p≥1 (Ap ∩ Cp) ∪
(

B\
⋃

p≥1 Cp

)

, where Ap ∈Γ, B ∈Γ
′, and

(Cp)p≥1 is a sequence of pairwise disjoint Σ0
ξ sets. The authors prove the following:

Σ
0
ξ=Sξ({̌∅}, {∅}),

Dθ+1(Σ
0
ξ)=Sξ(Ďθ(Σ

0
ξ),Σ

0
ξ) if θ<ω1,

Dλ(Σ
0
ξ)=Sξ(

⋃

p≥1

Dθp(Σ
0
ξ), {∅}) if λ=supp≥1 θp is limit.

They also code the non self-dual Wadge classes of Borel sets by elements of ωω1 as follows (we some-

times identify ωω1 with (ωω1 )
ω). The relations “u is a second type description” and “u describes Γ”

(written u∈D and Γu=Γ - ambiguously) are the least relations satisfying the following properties.

(a) If u=0∞, then u∈D and Γu={∅}.

(b) If u=ξ⌢1⌢v, with v∈D and v(0)=ξ, then u∈D and Γu= Γ̌v.

(c) If u = ξ⌢2⌢< up > satisfies ξ ≥ 1, up ∈ D, and up(0) ≥ ξ or up(0) = 0, then u ∈ D and

Γu=Sξ(
⋃

p≥1 Γup ,Γu0).

They prove that Γ is a non self-dual Wadge class of Borel sets exactly when there is u∈D such

that Γ(ωω)=Γu(ω
ω).
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• In [L8], the elements of D are coded by elements of ωω. An inductive operator H over ωω is defined

and there is a partial function c :ωω→ωω1 with c[H∞]=D (see Lemma 6.2 in [L8]). Another operator

J on (ωω)3 is defined in [L8] to code the non self-dual Wadge classes of Borel sets and their elements

(see Lemma 6.5 in [L8]). We will need a last inductive operator K, on (ωω)6, to code the sets that will

play the role of the Σ
1
1 sets F εη,ξ’s, via a universal set U for the class Π 1

1 (ω
ω×ωω). More precisely, if

(α, a0, a1, b0, b1, r)∈K∞, then b0, b1 and r are completely determined by (α, a0, a1) and in practice

α will be in H∞, so that we will write r=r(α, a0, a1)=r(u, a0, a1) if u=c(α). Our Σ 1
1 sets A0, A1

are coded by a0, a1, in the sense that Aε = ¬Uaε . By Lemma 6.6 in [L8], there is a recursive map

A : (ωω)2 → ωω such that ¬UA(α,r) = (¬U(r)0) ∩
⋂

p≥1 ¬U(r)p
τ|α| if α ∈∆

1
1 codes a wellordering,

where r 7→
(

(r)p
)

p∈ω
is a bijection from ωω onto (ωω)ω . In the sequel, all the closures will be for τξ.

• We argue by induction on η. As D0(Σ
0
ξ) = {∅}, A0 is separable from A1 by a D0(Σ

0
ξ) set when

A0=∅, which is equivalent to F 0
0,ξ=A0=∅. AsD1(Σ

0
ξ)=Σ

0
ξ ,A0 is separable fromA1 by aD1(Σ

0
ξ)

set when A0 ∩A1=∅ by Theorem 4.1 in [L6], which is equivalent to F 1
1,ξ=A0 ∩ A1=∅.

Let us do these two basic cases in the spirit of the material from [L8] previously described, which

will be done also for the other more complex cases.

- Note that D0(Σ
0
ξ) = {∅} = Γ0∞ . Let α ∈ ∆

1
1 such that (α)n codes a wellordering of order type

0 for each n ∈ ω. A look at the definition of H shows that α ∈ H∞. Another look at Definition

6.3 in [L8] shows that α is normalized (this will never be a problem in the sequel as well). Lemma

6.5 in [L8] gives β, γ ∈ ωω with (α, β, γ) ∈ J∞. Lemma 6.7 in [L8] gives b0, b1, r ∈ ωω with

(α, a1, a0, b0, b1, r)∈K∞. By Theorem 6.10 in [L8], A1 is separable from A0 by a pot
(

Ď0(Σ
0
ξ)
)

set

if and only if ¬Ur=∅. A look at the definition of K shows that r=a0, so that ¬Ur=A0.

- Now D1(Σ
0
ξ) = Σ

0
ξ = Sξ({̌∅}, {∅}) = Sξ(Γ010∞ ,Γ0∞) = Sξ(

⋃

p≥1 Γ010∞ ,Γ0∞) = Γv1 , where

v1 := ξ2 < 0∞, 010∞, 010∞, ... >. As above, A1 is separable from A0 by a pot
(

Ď1(Σ
0
ξ)
)

set if and

only if ¬Ur = ∅. A look at the definition of K shows that r= b0 =A(α1, < a0, a1, a1, ... >), where

|α1|=ξ. Thus ¬Ur=A0 ∩ A1.

In the general case, there is vη ∈D such that Dη(Σ
0
ξ) = Γvη and A1 is separable from A0 by a

pot
(

Ďη(Σ
0
ξ)
)

set if and only if ¬Ur(vη ,a1,a0)=∅. Moreover,

(a) if vη=0∞, then r(vη, a1, a0)=a0,

(b) if vη=ξ
⌢1⌢v, then r(vη, a1, a0)=a1,

(c) if vη = ξ⌢2⌢< up > and rp = r(up, a1, a0), then r(vη, a1, a0) = r(u0, b1, b0), where by

definition bi :=A(α1, < ai, r1, r2, ... >).

It is enough to prove that F εη,ξ = ¬Ur(vη ,a1,a0), and we may assume that η ≥ 2 by the previous

discussion.

• If η is a limit ordinal, then fix a sequence (ηp)p∈ω of even ordinals cofinal in η. Note that

Dη(Σ
0
ξ)=Sξ(

⋃

p≥1

Dηp(Σ
0
ξ), {∅})=Sξ(

⋃

p≥1

Γup ,Γu0)=Γvη ,

where vη=ξ
⌢2⌢ < up >.
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Therefore, if rp := r(up, a1, a0), then F εθp,ξ=¬Urp if p≥ 1, by the induction hypothesis. On the

other hand, r(u0, b1, b0) = b0. But b0=A(α1, < a0, r1, r2, ... >), so that

¬Ub0=(¬Ua0) ∩
⋂

p≥1

¬Urp ,

as required.

• If η=θ+1, then

Dη(Σ
0
ξ)=Sξ(Ďθ(Σ

0
ξ),Σ

0
ξ)=Sξ(

⋃

p≥1

Γup ,Γu0)=Γvη ,

where vη = ξ⌢2⌢ < up >. Therefore, if rp := r(up, a1, a0), then F εθ,ξ = ¬Urp if p ≥ 1, by the

induction hypothesis (there is a double inversion of the superscript, one because the parity of θ is

different from that of η, and the other one because there is a complement, so that the roles of A0, A1

are exchanged). By the case η=1 applied to b0 and b1, ¬Ur(u0,b1,b0)=¬Ub0 ∩ ¬Ub1 . Note that

¬Ubi =(¬Uai) ∩
⋂

p≥1

¬Urp =(¬Uai) ∩ F
ε
θ,ξ

since bi=A(α1, < ai, r1, r2, . . . >). If r :=r(vη, a1, a0), then

¬Ur=(¬Ua0) ∩ F
ε
θ,ξ ∩ ¬Ua1 ∩ F

ε
θ,ξ=A0 ∩ F

ε
θ,ξ ,

because F εθ,ξ=A1 ∩
⋂

ρ<θ F
ε
ρ,ξ⊆A1 ∩A1 ∩

⋂

ρ<θ F
ε
ρ,ξ⊆A1 ∩ F εθ,ξ (since the parity of θ is different

from ε). Finally, ¬Ur=A0 ∩ F εθ,ξ=F
ε
η,ξ , as required. �

The main result

We set, for η<ω1 and ε∈2, Bηε :={(0α, 1β) | (α, β)∈Nηε}.

Theorem 3.3 Let η≥1 be a countable ordinal, X be a Polish space, and A0, A1 be disjoint analytic

relations on X such that A0 ∪A1 is quasi-acyclic. The following are equivalent:

(1) the set A0 is not separable from A1 by a pot
(

Dη(Σ
0
1)
)

set,

(2) there is (A0,A1) ∈ {(Nη0 ,N
η
1), (B

η
0 ,B

η
1)} such that (2ω, 2ω,A0,A1) ⊑ (X,X,A0, A1), via a

square map,

(3) (2ω, 2ω,Nη0,N
η
1) ⊑ (X,X,A0, A1).

Proof. (1) ⇒ (2) Let ε := parity(η), and (Cp)p∈ω be a witness for the quasi-acyclicity of A0 ∪ A1.

We may assume that X=ωω. Indeed, we may assume that X is zero-dimensional, and thus a closed

subset of ωω. As A0 is not separable from A1 by a pot
(

Dη(Σ
0
1)
)

set in X2, it is also the case in

(ωω)2, which gives f : 2ω→ωω. As ∆(2ω)⊆Nη0 and {(0α, 1α) | α∈ 2ω}⊆Bη0, the range of ∆(2ω)
by f×f is a subset of X2, so that f takes values in X. We may also assume that A0, A1 are Σ

1
1 , and

that the relation “(x, y)∈Cp” is ∆1
1 in (x, y, p). By Theorem 3.2,

F εη =A0 ∩
⋂

θ<η

F εθ

τ1

is a nonempty Σ
1
1 relation on X (where F εη :=F

ε
η,1, for simplicity).
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We set, for θ≤η, Fθ :=A|parity(θ)−ε| ∩
⋂

θ′<θ F
ε
θ′ , so that F εθ =Fθ

τ1
. We put, for θ ≤ η,

Dθ :=
{

(t0sw, t
1
sw)∈T η | ϕ(s)=θ

}

,

so that (Dθ)θ≤η is a partition of T η. As Dη =∆(2<ω), Gl+1 := s
(

(
⋃

θ<η Dθ) ∩ (2l+1×2l+1)
)

is a

connected acyclic graph on 2l+1 for each l∈ω.

Case 1 Fη 6⊆∆(X).

Let (x, y) ∈ Fη \∆(X), and O0, O1 be disjoint ∆0
1 sets with (x, y) ∈ O0×O1. We can replace

Fη , A0 and A1 with their intersection with O0×O1 if necessary and assume that they are contained

in O0×O1.

• We construct the following objects:

- sequences (xs)s∈2<ω , (ys)s∈2<ω of points of X,

- sequences (Xs)s∈2<ω , (Ys)s∈2<ω of Σ 1
1 subsets of X,

- a sequence (Us,t)(s,t)∈T η of Σ 1
1 subsets of X2, and Φ:T η→ω.

We want these objects to satisfy the following conditions:

(1) xs∈Xs ∧ ys∈Ys ∧ (xs, yt)∈Us,t
(2) Xsε⊆Xs⊆ΩX ∩O0 ∧ Ysε⊆Ys⊆ΩX ∩O1 ∧ Us,t⊆CΦ(s,t) ∩ΩX2 ∩ (Xs×Yt)

(3) diamGH(Xs), diamGH(Ys), diamGH(Us,t)≤2−|s|

(4) Xs0 ∩Xs1=Ys0 ∩ Ys1=∅
(5) Usε,tε⊆Us,t
(6) Us,t⊆Fθ if (s, t)∈Dθ

• Assume that this has been done. Let α∈2ω . The sequence (Xα|n)n∈ω is a decreasing sequence of

nonempty clopen subsets of ΩX with vanishing diameters, which defines f0(α) ∈
⋂

n∈ω Xα|n. As

the Gandy-Harrington topology is finer than the original topology, f0 :2
ω→O0 is continuous. By (4),

f0 is injective. Similarly, we define f1 : 2
ω→O1 injective continuous. Finally, we define f : 2ω→X

by f(εα) :=fε(α), so that f is also injective continuous since O0, O1 are disjoint.

If (0α, 1β)∈Bη0 , then there is θ≤η of the same parity as η such that (α, β)|n∈Dθ if n≥n0. In

this case, by (1)-(3) and (5)-(6),
(

U(α,β)|n

)

n≥n0
is a decreasing sequence of nonempty clopen subsets

of A0 ∩ ΩX2 with vanishing diameters, so that its intersection is a singleton {F (α, β)} ⊆ A0. As

(xα|n, yβ|n) converges (for ΣX2 , and thus for Σ 2
X) to F (α, β),

(

f(0α), f(1β)
)

= F (α, β) ∈A0. If

(0α, 1β)∈Bη1 , then the parity of θ is opposite to that of η and, similarly,
(

f(0α), f(1β)
)

∈A1.

• So let us prove that the construction is possible. Note that (t0∅, t
1
∅)=(∅, ∅), T η ∩ (20×20)={(∅, ∅)}

and (∅, ∅)∈Dη . Let (x∅, y∅)∈Fη ∩ΩX2 , and Φ(∅, ∅)∈ω such that (x∅, y∅)∈CΦ(∅,∅). As ΩX2 ⊆Ω2
X ,

x∅, y∅∈ΩX . We choose Σ
1
1 subsets X∅, Y∅ of X with GH-diameter at most 1 such that

(x∅, y∅)∈X∅×Y∅⊆(ΩX ∩O0)×(ΩX ∩O1),

as well as a Σ
1
1 subset U∅,∅ of X2 with GH-diameter at most 1 such that

(x∅, y∅)∈U∅,∅⊆Fη ∩ CΦ(∅,∅) ∩ΩX2 ∩ (X∅×Y∅),

which completes the construction for the length l=0.
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Assume that we have constructed our objects for the sequences of length l. Let u∈ω<ω and q∈ω
with l+1=< uq >η, which gives w∈ω<ω with (t0uq, t

1
uq)=(t0uw0, t

1
uw1). We set

U :={x∈X | ∃(x′s)s∈2l ∈Πs∈2l Xs ∃(y′s)s∈2l ∈Πs∈2l Ys x=x
′
t0uw

∧

∀(s, t)∈T η ∩ (2l ×2l) (x′s, y
′
t)∈Us,t},

V :={y∈X | ∃(x′s)s∈2l ∈Πs∈2l Xs ∃(y′s)s∈2l ∈Πs∈2l Ys y=y
′
t1uw

∧

∀(s, t)∈T η ∩ (2l ×2l) (x′s, y
′
t)∈Us,t}.

Note that U, V are Σ
1
1 and (xt0uw, yt1uw) ∈ Fϕ(u) ∩ (U×V )⊆

⋂

θ<ϕ(u) Fθ
τ1 ∩ (U×V ). This gives

(xt0uw0, yt1uw1)∈Fϕ(uq)∩ (U×V )∩ΩX2 . Let (xs0)s∈2l\{t0uw} be witnesses for the fact that xt0uw0∈U ,

and (xs1)s∈2l\{t1uw} be witnesses for the fact that xt1uw1∈V .

We need to show that xs0 6= xs1 (and similarly for ys0 and ys1). First observe that if s 6= t ∈ 2l,
then xsε ∈Xs and xtε′ ∈Xt, so that xsε 6= xtε′ by condition 4. Similarly, ysε 6= ytε′ . As ϕ(u) and

ϕ(uq) do not have the same parity, there is ǫ∈2 such that (xt0uw0, yt1uw1)∈Aǫ and

(xt0uw1, yt1uw1)∈Ut0uw,t1uw⊆A1−ǫ.

As A0 and A1 are disjoint, xt0uw0 6=xt0uw1. Similarly, yt0uw0 6=yt0uw1.

So we may assume that l≥1 and s 6= t0uw. The fact thatGl is a connected graph provides aGl-path

from s to t0uw. This path gives us two s(A0 ∪ A1)-paths by the definition of U and V , one from ys0
to xt0uw0, and another one from ys1 to xt0uw1. Moreover, the same Φ(s′, t′)’s are involved in these two

pathes since they are induced by the same Gl-path. Observe that (xt0uw0, yt1uw1), (xt0uw1, yt1uw1) are in

s(A0∪A1). Also, since xsε ∈ O0 and ytε′ ∈ O1, no “x” is equal to no “y”. Thus, by quasi-acyclicity,

ys0 6=ys1. Similarly, one can prove that xs0 6=xs1. The following picture illustrates the situation when

l=1:

y00 y01

x00

A1

OO

CΦ(0,1)

��

A0

44
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

x01

CΦ(0,1)

��

A1

OO

y10 y11

x10

CΦ(∅,∅)

OO

x11

CΦ(∅,∅)

OO

Let Φ(t0uw0, t
1
uw1)∈ω such that (xt0uw0, yt1uw1)∈CΦ(t0uw0,t

1
uw1)

, and Φ(sε, tε) :=Φ(s, t) if (s, t) is in

T η ∩ (2l×2l) and ε∈2. It remains to take disjoint Σ 1
1 sets Xs0,Xs1⊆Xs (respectively Ys0, Ys1⊆Ys)

with the required properties, as well as Vsε,tε′ , accordingly.

Case 2 Fη⊆∆(X).

Let us indicate the differences with Case 1. We set S := {x ∈ X | (x, x) ∈ Fη}, which is a

nonempty Σ
1
1 set by our assumption.
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• We construct the following objects:

- a sequence (xs)s∈2<ω of points of S,

- a sequence (Xs)s∈2<ω of Σ 1
1 subsets of X,

- a sequence (Us,t)(s,t)∈T η of Σ 1
1 subsets of X2, and Φ:T η→ω.

We want these objects to satisfy the following conditions:

(1) xs∈Xs ∧ (xs, xt)∈Us,t
(2) Xsε⊆Xs⊆ΩX ∩ S ∧ Us,t⊆CΦ(s,t) ∩ ΩX2 ∩ (Xs×Xt)

(3) diamGH(Xs), diamGH(Us,t)≤2−|s|

(4) Xs0 ∩Xs1=∅
(5) Usε,tε⊆Us,t
(6) Us,t⊆Fθ if (s, t)∈Dθ

• Assume that this has been done. As in Case 1, we get f : 2ω →X injective continuous such that

Nηǫ ⊆(f×f)−1(Aǫ) for each ǫ∈2.

• So let us prove that the construction is possible. Let (x∅, y∅) ∈ Fη ∩ ΩX2 . As Fη ⊆ ∆(X),
y∅=x∅∈S. Let Φ(∅, ∅)∈ω with (x∅, x∅)∈CΦ(∅,∅). As ΩX2⊆Ω2

X , x∅∈ΩX . We choose a Σ 1
1 subset

X∅ of X with GH-diameter at most 1 such that x∅ ∈X∅ ⊆ΩX ∩ S, as well as a Σ
1
1 subset U∅,∅ of

X2 with GH-diameter at most 1 such that (x∅, x∅)∈U∅,∅⊆Fη ∩ CΦ(∅,∅) ∩ ΩX2 ∩ (X∅×X∅), which

completes the construction for the length l=0.

For the inductive step, we set

U :={x∈X | ∃(x′s)s∈2l ∈Πs∈2l Xs x=x
′
t0uw

∧ ∀(s, t)∈T η ∩ (2l ×2l) (x′s, x
′
t)∈Us,t},

V :={x∈X | ∃(x′s)s∈2l ∈Πs∈2l Xs x=x
′
t1uw

∧ ∀(s, t)∈T η ∩ (2l ×2l) (x′s, x
′
t)∈Us,t}.

Again, we need to check that xt0q 6= xt1q if q ∈ ω. Note first that A1 ∩ S2 is irreflexive, since

otherwise it contains (x, x)∈A1 ∩ Fη ⊆A1 ∩ A0. By construction, (xt0q , xt1q )∈Fϕ(q) ⊆A1, and we

are done.

(2) ⇒ (3) Note that (2ω, 2ω,Nη0,N
η
1) ⊑ (2ω, 2ω,Bη0,B

η
1), with witnesses α→0α and β→1β.

(3) ⇒ (1) This comes from Lemma 3.1. �

Proposition 3.4 Let η be a countable ordinal. The pairs (Nη0,N
η
1) and (Bη0,B

η
1) are incomparable

for the square reduction.

Proof. There is no map f :2ω→2ω such that Nηε⊆(f×f)−1(Bηε) since ∆(2ω) is a subset of Nη0.

There is no injection f : 2ω → 2ω for which there is α ∈ 2ω such that f(0α) = f(1α). Using

this fact, assume, towards a contradiction, that there is f : 2ω → 2ω injective continuous such that

Bηε⊆(f×f)−1(Nηε). Let (0t0sγ, 1t
1
sγ)∈Bηε , so that

(

f(0t0sγ), f(1t
1
sγ)

)

=(t0vγ
′, t1vγ

′)∈Nηε .

15



We claim that ϕ(s) ≤ ϕ(v). We proceed by induction on ϕ(s). Notice that is is obvious for

ϕ(s) = 0. Suppose that it holds for all θ<ϕ(s). Note that we can find pk ∈ω and γk ∈2ω such that

(t0spkγk, t
1
spk
γk)∈Nη1−ε and (t0spkγk, t

1
spk
γk)→(t0sγ, t

1
sγ). By continuity,

(t0vkγ
′, t1vkγ

′) :=
(

f(0t0spkγk), f(1t
1
spk
γk)

)

→(t0vγ
′, t1vγ

′).

In particular, for k large, (t0v, t
1
v)⊆(t0vk , t

1
vk
). This implies that the sequence vk is a strict extension

of v. Therefore ϕ(vk)<ϕ(v). By the induction hypothesis, ϕ(spk)≤ϕ(vk)<ϕ(v). If ϕ(s)= θ+1,

then θ=ϕ(spk)<ϕ(v), so we are done. If ϕ(s) is a limit ordinal, then
(

ϕ(spk)
)

k∈ω
is cofinal in it,

so we are done too.

Finally, let α ∈ 2ω , so that (0α, 1α) = (0t0∅α, 1t
1
∅α) ∈ Bη0. Then

(

f(0α), f(1α)
)

= (t0vγ
′, t1vγ

′)
with ϕ(v)=η, so that v=∅, which contradicts the injectivity of f . �

Consequences

Lemma 3.5 Let Γ be a class of sets contained in ∆
0
2 which is either a Wadge class or ∆0

2, X be a

Polish space, and A,B be disjoint analytic relations on X. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Γ) set,

(b) there are Kσ sets A′⊆A and B′⊆B such that A′ is not separable from B′ by a pot(Γ) set.

Proof. Assume that (a) does not hold. Theorems 1.9 and 1.10 in [L8] give Σ
0
2 relations S0,S1 on 2ω

and g, h :2ω→X continuous with S0⊆(g×h)−1(A) and S1⊆(g×h)−1(B). We set A′ :=(g×h)
[

S0
]

and B′ :=(g×h)
[

S1
]

. �

Corollary 3.6 Let η < ω1, X be a Polish space, and A,B be disjoint analytic relations on X such

that A ∪B is s-acyclic or locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot
(

Dη(Σ
0
1)
)

set,

(b) (2ω, 2ω ,Nη0,N
η
1) ⊑ (X,X,A,B) if η≥1 and (1, 1,Nη0 ,N

η
1) ⊑ (X,X,A,B) if η=0.

Proof. By Lemma 3.1, Nη0 is not separable from Nη1 by a pot
(

Dη(Σ
0
1)
)

set. This shows that (a) and

(b) cannot hold simultaneously. So assume that (a) does not hold. We may assume that η ≥ 1. By

Lemma 3.5, we may assume that A,B are Σ
0
2. By Lemma 2.2, we may also assume that A ∪ B is

quasi-acyclic. It remains to apply Theorem 3.3. �

Corollary 3.7 Let η be a countable ordinal, X,Y be Polish spaces, and A,B be disjoint analytic

subsets of X×Y such that A ∪B is locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot
(

Dη(Σ
0
1)
)

set,

(b) (2ω, 2ω ,Nη0,N
η
1) ⊑ (X,Y,A,B) if η≥1 and (1, 1,Nη0 ,N

η
1) ⊑ (X,Y,A,B) if η=0.

Proof. We may assume that η≥1. As in the proof of Corollary 3.6, (a) and (b) cannot hold simultane-

ously. So assume that (a) does not hold. We put Z :=X⊕Y ,A′ :=
{(

(x, 0), (y, 1)
)

∈Z2 | (x, y)∈A
}

and B′ :=
{(

(x, 0), (y, 1)
)

∈Z2 | (x, y)∈B
}

. Then Z is Polish, A′, B′ are disjoint analytic relations

on Z , A′ ∪B′ is locally countable, and A′ is not separable from B′ by a pot
(

Dη(Σ
0
1)
)

set.
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Corollary 3.6 gives f ′, g′ : 2ω →Z injective continuous such that Nη0⊆(f ′×g′)−1(A′), and also

Nη1 ⊆ (f ′×g′)−1(B′). We set f(α) := Π0[f
′(α)], and g(β) := Π0[g

′(β)]. As ∆(2ω)⊆Nη0, f ′ takes

values in X×{0} and g′ takes values in Y×{1}. This implies that f :2ω→X, g :2ω→Y are injective

continuous. We are done since Nη0⊆(f×g)−1(A) and Nη1⊆(f×g)−1(B). �

Notation. If A is a relation on 2ω , then we set GA :={(0α, 1β) | (α, β)∈A}.

Lemma 3.8 Let A be an antisymmetric s-acyclic relation on 2ω . Then GA is s-acyclic.

Proof. We argue by contradiction, which gives n≥2 and an injective s(GA)-path (εizi)i≤n such that

(ε0z0, εnzn) ∈ s(GA). This implies that εi 6= εi+1 if i < n and n is odd. Thus (zi)i≤n is a s(A)-
path such that (z2j)2j≤n and (z2j+1)2j+1≤n are injective and (z0, zn) ∈ s(A). As s(A) is acyclic,

the sequence (zi)i≤n is not injective. We erase z2j+1 from this sequence if z2j+1∈{z2j , z2j+2} and

2j+1 ≤ n, which gives a sequence (z′i)i≤n′ which is still a s(A)-path with (z′0, z
′
n′) ∈ s(A), and

moreover satisfies z′i 6=z
′
i+1 if i<n′.

If n′< 2, then n=3, z0 = z1 and z2 = z3. As A is antisymmetric and ε3 = ε1 6= ε2 = ε0, we get

z0= z2, which is absurd. If n′≥ 2, then (z′i)i≤n′ is not injective again. We choose a subsequence of

it with at least three elements, made of consecutive elements, such that the first and the last elements

are equal, and of minimal length with these properties. The acyclicity of s(A) implies that this

subsequence has exactly three elements, say (z′i, z
′
i+1, z

′
i+2=z

′
i).

If z′i = z2j+1, then z′i+1 = z2j+2, z′i+2 = z2j+4 and z2j+3 = z2j+2. As A is antisymmetric and

ε2j+3=ε2j+1 6=ε2j+2=ε2j+4, we get z2j+2=z2j+4, which is absurd. If z′i=z2j , then z′i+1=z2j+2,

and z′i+2=z2j+3. As A is antisymmetric and ε2j+3=ε2j+1 6=ε2j+2=ε2j , we get z2j=z2j+2, which

is absurd. �

Corollary 3.9 Let η≥ 1 be a countable ordinal, X be a Polish space, and A,B be disjoint analytic

relations on X. The following are equivalent:

(1) there is an s-acyclic relationR∈Σ
1
1 such thatA∩R is not separable fromB∩R by a pot

(

Dη(Σ
0
1)
)

set,

(2) there is a locally countable relation R ∈Σ
1
1 such that A ∩ R is not separable from B ∩ R by a

pot
(

Dη(Σ
0
1)
)

set,

(3) (2ω, 2ω,Nη0,N
η
1) ⊑ (X,X,A,B),

(4) there is (A0,A1)∈{(Nη0,N
η
1), (B

η
0 ,B

η
1)} such that (2ω, 2ω,A0,A1) ⊑ (X,X,A,B), via a square

map.

A similar result holds for η=0 with 1 instead of 2ω .

Proof. (1) ⇒ (3),(4) and (2) ⇒ (3),(4) This is a consequence of Corollary 3.6 and its proof.

(4) ⇒ (1) By the remarks before Lemma 3.1, Nη0 ∪Nη1 has s-acyclic levels. This implies that Nη0 ∪Nη1
is s-acyclic. As Nη0 ∪Nη1 is antisymmetric, Bη0 ∪Bη1 is s-acyclic too, by Lemma 3.8. Thus we can take

R :=(f×f)[A0 ∪A1] since the s-acyclicity is preserved by images by the square of an injection, and

by Lemma 3.1.
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(4) ⇒ (2) We can take R :=(f×f)[A0 ∪A1] since A0 ∪ A1 is locally countable, by Lemma 3.1.

(3) ⇒ (2) We can take R :=(f×f)[Nη0 ∪ Nη1] since Nη0 ∪ Nη1 is locally countable, by Lemma 3.1. �

Remark. There is a version of Corollary 3.9 for Ďη(Σ
0
1) instead of Dη(Σ

0
1), obtained by exchanging

the roles of A and B. This symmetry is also present in Theorem 3.3.

We now give some complements when η=1. At the beginning of this section, we mentioned the

fact that our examples are in the style of G0. If η=1, then G0 itself is involved.

Corollary 3.10 Let X be a Polish space, and A,B be disjoint analytic relations on X such that

- either A ∪B is s-acyclic or locally countable,

- or A is contained in a potentially closed s-acyclic or locally countable relation.

Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Π0
1) set,

(b)
(

2ω, 2ω,G0,∆(2ω)
)

⊑ (X,X,A,B).

Corollary 3.11 Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of X×Y such that

A∪B is locally countable orA is contained in a potentially closed locally countable set. Then exactly

one of the following holds:

(a) the set A is separable from B by a pot(Π0
1) set,

(b)
(

2ω, 2ω,G0,∆(2ω)
)

⊑ (X,Y,A,B).

4 The class ∆
(

Dη(Σ
0
1)
)

Examples

Notation. We set, for each countable ordinal η≥1 and each ε∈2,

Sηε :=
{

(t0sγ, t
1
sγ) | s∈Tη\{∅} ∧ parity(|s|)=1−

∣

∣parity
(

s(0)
)

−ε
∣

∣ ∧ γ∈2ω
}

.

Lemma 4.1 Let η ≥ 1 be a countable ordinal, and C be a nonempty clopen subset of 2ω . Then

Sη0 ∩ C
2 is not separable from Sη1 ∩ C

2 by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set.

Proof. We use the notation in the proof of Lemma 3.1. We argue by contradiction, which gives P in

pot
(

∆
(

Dη(Σ
0
1)
)

)

, and a dense Gδ subset of 2ω such that P ∩G2, G2\P ∈Dη(Σ
0
1)(G

2). So let, for

each ε∈2, (Oεθ)θ<η be a sequence of open relations on 2ω such that

P ∩G2=
(

⋃

θ<η,parity(θ)6=parity(η)

O0
θ \(

⋃

θ′<θ

O0
θ′)

)

∩G2

and G2\P =
(
⋃

θ<η,parity(θ)6=parity(η) O
1
θ \(

⋃

θ′<θ O
1
θ′)

)

∩G2.
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• Note that Sηε=
⋃

s∈Tη\{∅},parity(|s|)=1−|parity(s(0))−ε| Gr(fs). Let us show that if θ≤η, s∈Tη and

ϕ(s)=θ, then Gr(fs)∩ (C ∩G)2⊆¬O
1−parity(s(0))
θ if θ<η, and Gr(fs)∩ (C ∩G)2 is disjoint from

⋃

θ′<θ (O0
θ′ ∪O

1
θ′) if θ=η. The objects s=∅ and θ=η will give the contradiction.

• We argue by induction on θ. Note that Gr(fs)∩ (C∩G)2⊆Sη
1−|parity(|s|)−parity(s(0))|

∩G2 if θ=0

since s 6=∅. As Sηε ∩G2⊆¬O
|parity(η)−ε|
0 for each ε∈2 and |s| has the same parity as η if θ = 0, we

are done.

• Assume that the result has been proved for θ′ < θ. If θ is the successor of θ′, then the induction

assumption implies that Gr(fsq) ∩ (C ∩G)2⊆¬O
1−parity((sq)(0))
θ′ for each q. We set, for each ε∈2,

Cεs :=
⋃

k∈ω Gr(fs(2k+ε)), so that Gr(fs)⊆Cεs , by the choice of ψ. If s=∅, then

Cε∅ ∩ (C ∩G)2⊆¬O1−ε
θ′ ,

Gr(fs) ∩ (C ∩ G)2⊆Cε∅ ∩ (C ∩ G)2⊆Cε∅ ∩ (C ∩G)2⊆¬O1−ε
θ′ , which gives the desired inclusion

for θ=η.

If s 6=∅, then Gr(fsq) ∩ (C ∩G)2⊆¬O
1−parity(s(0))
θ′ for each q, so that

Gr(fs) ∩ (C ∩G)2⊆Cs ∩ (C ∩G)2⊆Cs ∩ (C ∩G)2⊆¬O
1−parity(s(0))
θ′ .

Thus

Gr(fs)∩ (C ∩G)2⊆(G2\O
1−parity(s(0))
θ′ )∩¬(O

1−parity(s(0))
θ \O

1−parity(s(0))
θ′ )⊆¬O

1−parity(s(0))
θ

since parity(θ)= |parity(|s|)−parity(η)|.

• If θ is limit, then
(

ϕ(sn)
)

n∈ω
is cofinal in ϕ(s), and Gr(fsn)∩ (C ∩G)2⊆¬O

1−parity((sn)(0))
ϕ(sn) , by

the induction assumption. If θ0<ϕ(s), then there is n(θ0) such that ϕ(sn)>θ0 if n≥n(θ0). Thus

Gr(fsn) ∩ (C ∩G)2⊆¬O
1−parity((sn)(0))
θ0

if n≥n(θ0). If s=∅, then, for each ε∈2,

Gr(fs) ∩ (C ∩G)2 ⊆(C ∩G)2 ∩ Cεs \C
ε
s =C

ε
s ∩ (C ∩G)2\Cεs

⊆
⋃

n≥n(θ0),parity(n)=ε Gr(fsn) ∩ (C ∩G)2⊆¬O1−ε
θ0

.

Thus Gr(fs)∩(C∩G)2⊆¬
(
⋃

θ′<η (O0
θ′∪O

1
θ′)

)

. If s 6=∅, then Gr(fsn)∩(C∩G)2⊆¬O
1−parity(s(0))
θ0

for each n, so that Gr(fs) ∩ (C ∩ G)2 ⊆Cs ∩ (C ∩ G)2 ⊆Cs ∩ (C ∩G)2 ⊆¬O
1−parity(s(0))
θ0

. As

parity(|s|)=parity(η), Gr(fs) ∩ (C ∩G)2⊆¬O
1−parity(s(0))
θ as above. �

A topological characterization

Notation. We define, for 1≤ξ<ωCK
1 and η<ωCK

1 ,
⋂

θ<0 Gθ,ξ :=(ωω)2, and, inductively,

Gη,ξ :=

{ ⋂

θ<η Gθ,ξ if η is limit (possibly 0),

A0 ∩Gθ,ξ
τξ ∩ A1 ∩Gθ,ξ

τξ
if η=θ+1.
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Theorem 4.2 Let 1≤ξ<ωCK
1 , 1≤η=λ+2k+ε<ωCK

1 with λ limit, k∈ω and ε∈2, and A0, A1 be

disjoint Σ 1
1 relations on ωω. Then the following are equivalent:

(1) the set A0 is not separable from A1 by a pot
(

∆
(

Dη(Σ
0
ξ)
)

)

set,

(2) the Σ
1
1 set Gη,ξ is not empty.

Proof. The proof is in the spirit of that of Theorem 3.2. The proof of Theorem 1.10.(2) in [L8] gives

α suitable such that c(α) codes the class Dη(Σ
0
ξ). By Theorem 6.26 in [L8] and Theorem 3.2, (1) is

equivalent to R′(α, a0, a1) 6=∅, where

R′(α, a0, a1) :=

{

F 0
θ,ξ ∩ F

1
θ,ξ if η=θ+1,

⋂

p≥1 F
0
θp,ξ

if η=supp≥1 θp is limit ∧ θp is odd.

So it is enough to prove that

Gη,ξ=

{

F 0
θ,ξ ∩ F

1
θ,ξ if η=θ+1,

⋂

p≥1 F
0
θp,ξ

if η=supp≥1 θp is limit ∧ θp is odd.

We argue by induction on η. Note first that G1,ξ=A0 ∩ A1=F
0
0,ξ ∩ F

1
0,ξ . Then, inductively,

Gθ+2,ξ =A0 ∩Gθ+1,ξ ∩A1 ∩Gθ+1,ξ=A0 ∩ F 0
θ,ξ ∩ F

1
θ,ξ ∩A1 ∩ F 0

θ,ξ ∩ F
1
θ,ξ

=A0 ∩ F
1−parity(θ)
θ,ξ ∩A1 ∩ F

parity(θ)
θ,ξ =F 0

θ+1,ξ ∩ F
1
θ+1,ξ.

If λ is limit, then

Gλ+1,ξ =A0 ∩Gλ,ξ ∩A1 ∩Gλ,ξ=A0 ∩
⋂

θ<λ Gθ,ξ ∩A1 ∩
⋂

θ<λ Gθ,ξ
=A0 ∩

⋂

θ<λ Gθ+1,ξ ∩ A1 ∩
⋂

θ<λ Gθ+1,ξ

=A0 ∩
⋂

θ<λ F
0
θ,ξ ∩ F

1
θ,ξ ∩A1 ∩

⋂

θ<λ F
0
θ,ξ ∩ F

1
θ,ξ

=A0 ∩
⋂

θ<λ F
0
θ,ξ ∩A1 ∩

⋂

θ<λ F
1
θ,ξ=F

0
λ,ξ ∩ F

1
λ,ξ

and Gλ,ξ=
⋂

θ<λ Gθ,ξ=
⋂

θ<λ Gθ+1,ξ=
⋂

θ<λ F
0
θ,ξ ∩ F

1
θ,ξ=

⋂

θ<λ F
0
θ,ξ=

⋂

p≥1 F
0
θp,ξ

. �

The main result

We prove a version of Theorem 3.3 for the class ∆
(

Dη(Σ
0
1)
)

. We set, for 1≤ η <ω1 and ε∈ 2,

Cηε :={(0α, 1β) | (α, β)∈Sηε}.

Theorem 4.3 Let η≥1 be a countable ordinal, X be a Polish space, and A0, A1 be disjoint analytic

relations on X such that A0 ∪ A1 is contained in a potentially closed quasi-acyclic relation. The

following are equivalent:

(1) the set A0 is not separable from A1 by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set,

(2) there is (A0,A1)∈{(Nη1,N
η
0), (B

η
1 ,B

η
0), (N

η
0 ,N

η
1), (B

η
0,B

η
1), (S

η
0 ,S

η
1), (C

η
0,C

η
1)} for which the in-

equality (2ω, 2ω,A0,A1)⊑(X,X,A0, A1) holds, via a square map,

(3) there is (A0,A1)∈{(Nη1 ,N
η
0), (N

η
0 ,N

η
1), (S

η
0,S

η
1)} such that (2ω, 2ω,A0,A1)⊑(X,X,A0, A1).
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Proof. (1) ⇒ (2) The proof is partly similar to that of Theorem 3.3. Let R be a potentially closed

quasi-acyclic relation containing A0 ∪ A1, and (Cn)n∈ω be a witness for the fact that R is quasi-

acyclic. We may assume that X is zero-dimensional (and thus a closed subset of ωω) and R is closed.

In fact, we may assume that X=ωω. Indeed, as A0 is not separable from A1 by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set in X2, it is also the case in (ωω)2, which gives f :2ω→ωω . Note that

A0 ∪ A1⊆(f×f)−1(A0 ∪A1)⊆(f×f)−1(X2),

which implies that A0 ∪ A1⊆(f×f)−1(X2). As ∆(2ω)⊆Nη0 ∩ Sη0 ∪ Sη1 and

{(0α, 1α) | α∈2ω}⊆Bη0 ∩Cη0 ∪ Cη1,

the range of ∆(2ω) by f×f is a subset of X2, so that f takes values in X. We may also assume

that A0, A1 are Σ
1
1 , and that the relation “(x, y) ∈Cp” is ∆

1
1 in (x, y, p). By Theorem 4.2, Gη is a

nonempty Σ
1
1 relation on X (we denote Gη :=Gη,1 and F εη :=F

ε
η,1, for simplicity). We also consider

Fθ with F εθ :=Fθ
τ1

. In the sequel, all the closures will refer to the topology τ1, so that, for example,

Gη ∪A0 ∪A1⊆A0 ∪A1⊆R=
⋃

n∈ω

Cn.

• Let us show that Aǫ ∩ Gη ⊆ F
|parity(η)−ǫ|
η if ǫ ∈ 2. We argue by induction on η. If η = 1, then

Aǫ ∩G1⊆Aǫ ∩A1−ǫ⊆F
1−ǫ
1 . If η is limit, then Aǫ ∩Gη⊆Aǫ ∩

⋂

θ<η F
ǫ
θ ⊆F

ǫ
η . Finally, if η=θ+1,

then without loss of generality suppose that θ is even, so that η is odd and

Aǫ ∩Gη⊆Aǫ ∩ A1−ǫ ∩Gθ⊆Aǫ ∩ F
1−ǫ
θ .

Note that this last set is contained in F 1−ǫ
η , as required.

So, if Aǫ ∩ Gη 6= ∅ for some ǫ ∈ 2 and e is the correct digit, then F eη 6= ∅. Theorem 3.3 gives

(A0,A1) ∈ {(Nη1,N
η
0), (B

η
1 ,B

η
0), (N

η
0 ,N

η
1), (B

η
0,B

η
1)} for which (2ω , 2ω,A0,A1) ⊑ (X,X,A0, A1),

via a square map.

• Thus, in the sequel, we suppose that Gη ∩ (A0 ∪A1)=∅. We put

Dη :=
{(

t0sw, t
1
sw

)

∈T η | s=∅
}

=∆(2<ω)

and, for θ<η and ǫ∈2,

Dǫ
θ :=

{

(t0sw, t
1
sw

)

∈T η | s∈Tη\{∅} ∧ ϕ(s)=θ ∧ parity(|s|)=1−
∣

∣parity
(

s(0)
)

−ǫ
∣

∣

}

,

so that {Dη} ∪ {Dǫ
θ | θ<η ∧ ǫ∈2} defines a partition of T η.

Case 1 Gη 6⊆∆(X).

Let (x, y) ∈Gη \∆(X), and O0, O1 be disjoint ∆0
1 sets with (x, y) ∈O0×O1. We can replace

Gη , A0 and A1 with their intersection with O0×O1 if necessary and assume that they are contained

in O0×O1. Let us indicate the differences with the proof of Theorem 3.3.
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• Condition (6) is changed as follows:

(6) Us,t⊆

{

Gη if (s, t)∈Dη

Aǫ ∩Gθ if (s, t)∈Dǫ
θ

• If (0α, 1β)∈Cηǫ , then there is θ<η such that (α, β)|n∈Dǫ
θ if n≥n0. In this case,

(

U(α,β)|n

)

n≥n0

is a decreasing sequence of nonempty clopen subsets of Aǫ ∩ ΩX2 with vanishing diameters, so that

its intersection is a singleton {F (α, β)}⊆Aǫ , and
(

f(0α), f(1β)
)

=F (α, β)∈Aǫ.

• So let us prove that the construction is possible. Let (x∅, y∅) ∈ Gη ∩ ΩX2 . We choose a Σ
1
1

subset U∅,∅ of X2 such that (x∅, y∅)∈U∅,∅⊆Gη ∩ CΦ(∅,∅) ∩ ΩX2 ∩ (X∅×Y∅), which completes the

construction for the length l=0. Assume that we have constructed our objects for the sequences of

length l. Note that (xt0uw, yt1uw)∈Gϕ(u) ∩ (U×V )⊆Gϕ(uq)+1 ∩ (U×V )⊆Aǫ ∩Gϕ(uq) ∩ (U×V ),
where ǫ satisfies (t0uq, t

1
uq)∈D

ǫ
ϕ(uq). This gives (xt0uw0, yt1uw1)∈Aǫ ∩ Gϕ(uq) ∩ (U×V ) ∩ ΩX2 . If

u= ∅, then (t0uw1, t
1
uw1)∈Dη, so that (xt0uw1, yt1uw1)∈Ut0uw,t1uw ⊆Gη and (xt0uw0, yt1uw1)∈Aǫ. As

Gη ∩ (A0 ∪A1)=∅, xt0uw0 6=xt0uw1. Similarly, yt0uw0 6=yt0uw1. If u 6=∅, then we argue as in the proof

of Theorem 3.3 to see that xs0 6=xs1 (and similarly for ys0 and ys1).

Case 2 Gη⊆∆(X).

Let us indicate the differences with the proof of Theorem 3.3 and Case 1. We set

S :={x∈X | (x, x)∈Gη},

which is a nonempty Σ
1
1 set by our assumption. We get f : 2ω →X injective continuous such that

Sηǫ ⊆(f×f)−1(Aǫ) for each ǫ∈2. In this case, A0 ∩ S
2 and A1 ∩ S

2 are irreflexive.

(2) ⇒ (3) Note that (2ω, 2ω,Nη0,N
η
1) ⊑ (2ω, 2ω,Bη0,B

η
1) and (2ω, 2ω ,Sη0,S

η
1) ⊑ (2ω, 2ω,Cη0,C

η
1),

with witnesses α→0α and β→1β.

(3) ⇒ (1) This comes from Lemmas 3.1 and 4.1. �

Proposition 4.4 Let η≥1 be a countable ordinal.

(a) If η is a successor ordinal, then the pairs (Nη1,N
η
0), (B

η
1 ,B

η
0), (N

η
0,N

η
1), (B

η
0 ,B

η
1), (S

η
0 ,S

η
1) and

(Cη0,C
η
1) are incomparable for the square reduction.

(b) If η is a limit ordinal, then (2ω, 2ω,Sη0,S
η
1)⊑(2ω, 2ω ,Nη1,N

η
0), (2

ω, 2ω ,Nη0,N
η
1) and

(2ω, 2ω,Cη0 ,C
η
1)⊑(2ω, 2ω,Bη1,B

η
0), (2

ω , 2ω,Bη0,B
η
1),

via a square map, and the pairs (Sη0,S
η
1) and (Cη0,C

η
1) are incomparable for the square reduction.

Proof. (a) We set, for θ≤η, Cθ :=
⋃

ϕ(s)≥θ Gr(fs).

Claim. Let θ≤η. Then Cθ is a closed relation on 2ω .

Indeed, this is inspired by the proof of Theorem 2.3 in [L2].
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We first show that C l :=
⋃

s∈ω≤l,ϕ(s)≥θ Gr(fs) is closed, by induction on l∈ω. This is clear for

l = 0. Assume that the statement is true for l. Note that C l+1 = C l ∪
⋃

s∈ωl+1,ϕ(s)≥θ Gr(fs). Let

pm ∈ C l+1 such that (pm)m∈ω converges to p. By induction assumption, we may assume that, for

each m, there is (sm, nm)∈ ω
l×ω such that ϕ(smnm)≥ θ and pm ∈ Gr(fsmnm). As the Gr(fsn)’s

are closed, we may assume that there is i≤ l such that the sequence
(

(smnm)|i
)

m∈ω
is constant and

the sequence
(

(smnm)(i)
)

m∈ω
tends to infinity. This implies that p∈Gr(f(s0n0)|i)⊆C

l+1, which is

therefore closed.

Now let pm ∈ Cθ such that (pm)m∈ω converges to p. The previous fact implies that we may

assume that, for each m, there is s′m such that ϕ(s′m)≥ θ and pm ∈ Gr(fs′m), and that the sequence

(|s′m|)m∈ω tends to infinity. Note that there is l such that the set of s′m(l)’s is infinite. Indeed, assume,

towards a contradiction, that this is not the case. Then {s ∈ Tη | ∃m ∈ ω s ⊆ s′m} is an infinite

finitely branching subtree of Tη. By König’s lemma, it has an infinite branch, which contradicts the

wellfoundedness of Tη . So we may assume that there is l such that the sequence (s′m|l)m∈ω is constant

and the sequence
(

s′m(l)
)

m∈ω
tends to infinity. This implies that p∈Gr(fs′0|l)⊆Cθ. ⋄

• By Lemma 3.1, Nη0 is not separable from Nη1 by a pot
(

Dη(Σ
0
1)
)

set, and, by Lemma 4.1, Sη0 is not

separable from Sη1 by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set.

• Let us show that Nη0 is separable from Nη1 by a Ďη(Σ
0
1) set. In fact, it is enough to see that

Nη0∈Ďη(Σ
0
1) if η is odd and Nη1∈Dη(Σ

0
1) if η is even. If η is odd, then

Nη0=
⋃

s∈Tη,ϕ(s) odd

Gr(fs)=Cη ∪
⋃

θ<η,θ odd

Cθ\Cθ+1.

We set, for θ < η, Oθ := ¬Cθ+1, which defines an increasing sequence of open relations on 2ω

with Nη0 = ¬Oη−1 ∪
⋃

θ<η,θ odd Oθ \Oθ−1. Thus Nη0 ∈ Ďη(Σ
0
1). Similarly, if η is even, then

Nη1 =
⋃

s∈Tη ,fη(s) odd Gr(fs) =
⋃

θ<η,θ odd Cθ \Cθ+1. We set, for θ < η, Oθ := ¬Cθ+1, which

defines an increasing sequence of open relations on 2ω with Nη1 =
⋃

θ<η,θ odd Oθ \Oθ−1. Thus

Nη1 ∈Dη(Σ
0
1). This shows that (2ω, 2ω,Nη1,N

η
0) is not ⊑-below (2ω, 2ω ,Nη0,N

η
1), and consequently

that (2ω , 2ω,Nη0,N
η
1) is not ⊑-below (2ω, 2ω,Nη1,N

η
0).

• Let us show that Sηε is separable from Sη1−ε by a Ďη(Σ
0
1) set if ε∈2. We set, for θ≤η,

Cεθ :=
⋃

ϕ(s)≥θ, parity(s(0))=ε

Gr(fs).

As in the claim, (Cεθ)θ≤η is a decreasing sequence of closed sets.
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Note that

Sηε=
⋃

s∈Tη\{∅}, parity(|s|)=1−|parity(s(0))−ε| Gr(fs)

=
⋃

s∈Tη\{∅},| parity(ϕ(s))−parity(η)|=1−|parity(s(0))−ε| Gr(fs)

=
⋃

s∈Tη\{∅}, parity(s(0))=|1−||parity(ϕ(s))−parity(η)|−ε|| Gr(fs)

=
⋃

θ<η,ϕ(s)=θ

⋃

parity(s(0))=|1−||parity(θ)−parity(η)|−ε|| Gr(fs)

=
⋃

θ<η

(
⋃

ϕ(s)≥θ, parity(s(0))=|1−||parity(θ)−parity(η)|−ε|| Gr(fs)
)

\
(
⋃

ϕ(s)≥θ+1, parity(s(0))=|1−||parity(θ)−parity(η)|−ε|| Gr(fs)
)

=
⋃

θ<η C
1−||parity(θ)−parity(η)|−ε|
θ \C

1−||parity(θ)−parity(η)|−ε|
θ+1 .

Assume first that η=θ0+1 is a successor ordinal. We define an increasing sequence (Oθ)θ<η of open

sets as follows:

Oθ :=

{

¬(C1−ε
θ+1 ∪C

ε
θ ) if θ<θ0,

¬Cεθ if θ=θ0,

so that D :=¬D
(

(Oθ)θ<η
)

∈Ďη(Σ
0
1).

We now check that D separates Sηε from Sη1−ε. If θ < η has a parity opposite to that of η, then

either θ = θ0 and Cεθ \C
ε
θ+1 ⊆ Cεθ0 ⊆ ¬(

⋃

θ′<η Oθ′) ⊆D. Or θ < θ0, θ+1< θ0 < η has the same

parity as η, and Cεθ \C
ε
θ+1 ⊆Oθ+1\(

⋃

θ′≤θ Oθ′)⊆D. If now θ < η has the same parity as η, then

C1−ε
θ \C1−ε

θ+1⊆Oθ\(
⋃

θ′<θ Oθ′)⊆D. Thus Sηε⊆D. Similarly, Sη1−ε⊆¬D. If η is a limit ordinal, then

we set Oθ :=¬(C1−ε
θ+1 ∪ C

ε
θ ) and argue similarly. This shows that (2ω, 2ω,Nηε ,N

η
1−ε) is not ⊑-below

(2ω, 2ω ,Sη0,S
η
1) for each ε∈2.

• Let us prove that (2ω, 2ω ,Sη0,S
η
1) is not ⊑-below (2ω, 2ω,Nηε ,N

η
1−ε) if ε ∈ 2 and η is a successor

ordinal. Let us do it for ε=0, the other case being similar. We argue by contradiction, which gives

f, g injective continuous with Sηε⊆(f×g)−1(Nηε) for each ε∈2. We set, for θ<η and ε∈2,

U εθ :=
⋃

θ≤θ′<η,ϕ(s)=θ′, parity(s(0))=|1−||parity(θ′)−parity(η)|−ε||

Gr(fs).

Note that the sequence (U εθ )θ<η is decreasing, Sηε=U ε0 ,

U0
θ ∪ U1

θ =C
0
θ ∪ C

1
θ =U

0
θ ∪ U1

θ ∪∆(2ω)=Cθ,

and C0
θ+1 ∪C

1
θ+1=U

0
θ ∩ U1

θ if θ<η since

U εθ =C
0
θ+1 ∪ C

1
θ+1 ∪

⋃

ϕ(s)=θ, parity(s(0))=|1−||parity(θ)−parity(η)|−ε||

Gr(fs),

as in the claim. Let us prove that U0
θ ∪ U1

θ ⊆(f×g)−1(Cθ) if θ<η. We argue by induction on θ, and

the result is clear for θ=0. If θ=θ′+1 is a successor ordinal, then

U0
θ ∪ U1

θ ⊆C
0
θ ∪ C

1
θ =U

0
θ′ ∩ U

1
θ′ ⊆(f×g)−1(Nη0 ∩ Cθ′ ∩ Nη1 ∩ Cθ′)⊆(f×g)−1(Cθ).

If θ is a limit ordinal, then U0
θ ∪ U1

θ ⊆
⋂

θ′<θ (U0
θ′ ∪ U

1
θ′)⊆ (f×g)−1(

⋂

θ′<θ Cθ′)= (f×g)−1(Cθ).
This implies that C0

η ∪C
1
η⊆(f×g)−1(Cη). In particular, ∆(2ω) is sent into itself by f×g and f=g.

As η=θ+1 is a successor ordinal, U0
θ ⊆(f×f)−1(Nη0 ∩Cθ)⊆(f×f)−1

(

∆(2ω)
)

, which contradicts

the injectivity of f .
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• So we proved that A :={(Nη1,N
η
0), (N

η
0 ,N

η
1), (S

η
0 ,S

η
1)} is a ⊑-antichain if η is a successor ordinal.

For the same reasons, B :={(Bη1,B
η
0), (B

η
0 ,B

η
1), (C

η
0 ,C

η
1)} is a ⊑-antichain if η is a successor ordinal.

Moreover, no pair in A is below a pair in B for the square reduction since ∆(2ω)⊆Nη0 ∩ Sη0 ∪ Sη1 and

the element of the pairs in B are contained in the clopen set N0×N1.

It remains to prove that we cannot find (A,B), (A′,B′)∈A and a continuous injection f :2ω→2ω

such that GA⊆(f×f)−1(A′) and GB⊆(f×f)−1(B′). We argue by contradiction. If (A,B) 6=(A′,B′)
and ε ∈ 2, then we define continuous injections fε : 2

ω → 2ω by fε(α) := f(εα). Note that f0×f1
reduces (A,B) to (A′,B′), which contradicts the fact that A is a ⊑-antichain. Thus (A,B)=(A′,B′),
and (A,B)=(Sη0 ,S

η
1) by Proposition 3.4. As in the proof of Proposition 3.4, ϕ(s)≤ϕ(v). If α∈2ω,

then (0α, 1α) is the limit of (0t0pkγk, 1t
1
pk
γk). Note that

(

f(0t0pkγk), f(1t
1
pk
γk)

)

= (t0vkγ
′
k, t

1
vk
γ′k)

and ϕ(pk) ≤ ϕ(vk). As
(

ϕ(pk)
)

k∈ω
is cofinal in ϕ(∅) = η, so is

(

ϕ(vk)
)

k∈ω
. This implies that

(

f(0α), f(1α)
)

∈∆(2ω), which contradicts the injectivity of f .

(b) Let us prove that (2ω , 2ω,Sη0,S
η
1) ⊑ (2ω, 2ω ,Nηε ,N

η
1−ε) with a square map if ε∈2. Let us do it for

ε=0, the other case being similar. We construct a map φ :2<ω→2<ω satisfying the following:

(1) ∀l∈ω ∃kl∈ω φ[2l]⊆2kl

(2) φ(s)$φ(sε)
(3) φ(s0) 6=φ(s1)

(4) ∀s∈Tη\{∅}
(

parity(|s|)=1−
∣

∣parity
(

s(0)
)

−ε
∣

∣

)

⇒ ∃vs∈Tη parity(|vs|)=ε ∧

(a) ∀w∈2<ω ∃w′∈2<ω
(

φ(t0sw), φ(t
1
sw)

)

=(t0vsw
′, t1vsw

′)
(b) ϕ(s)≤ϕ(vs)

Assume that this is done. Then the map f :α 7→ limn→∞ φ(α|n) is as desired. So let us check that the

construction of φ is possible. We construct φ(s) by induction on the length of s.

- We set k0 :=0 and φ(∅) :=∅.

- Note that < 0 >η =1 and (t00, t
1
0)= (0, 1). As η≥ 1 is limit, ϕ(1)>ϕ(0) are odd ordinals, so

that ϕ(10)≥ϕ(0) is an even ordinal. We set k1 :=< 10 >η, φ(ε) := tε10 and v0 :=10. This completes

the construction of φ[21], and our conditions are satisfied since k1>0.

- We next want to construct φ(s) for s ∈ 2l+1, with l ≥ 1, assuming that we have constructed

φ(s) if |s| ≤ l. Note that there is exactly one sequence u such that (t0u, t
1
u) ∈ 2l+1. We first define

simultaneously φ(t0u) and φ(t1u), and then extend the definition to the other sequences in 2l+1.

If |u| ≥ 2, then there are u0 ∈ ω<ω and w ∈ 2<ω such that tεu = tεu0wε. By condition (4),
(

φ(t0u0w), φ(t
0
u0w)

)

=(t0vw
′, t1vw

′) for some v∈ω<ω and w′∈2<ω. Let q∈ω such that w′⊆ψ(q) and

ϕ(u)≤ϕ(vq). We can find such a q because if ϕ(v)=ν+1, then ϕ(vq)=ν, but ϕ(u)<ϕ(u0)≤ν+1
so that ϕ(u)≤ ν. If ϕ(v) is limit, then

(

ϕ(vq)
)

q∈ω
is cofinal in ϕ(v) and ϕ(u)<ϕ(u0)≤ϕ(v). We

set φ(tεu0wε) := t
ε
vq . By definition, there is N ∈ω such that tεvq= t

ε
vw

′0Nε. We set φ(sε) :=φ(s)0N ε,

for any s ∈ 2l. Conditions (1)-(3) clearly hold. So let us check condition (4). First note that
(

φ(t0u), φ(t
1
u)
)

=(t0vq, t
1
vq) by definition, so that (4) holds for u since |u|−|u0|= |vq|−|v|=1.
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Suppose now that there are u1∈ω
<ω, z∈ 2<ω and e∈ 2 such that (s, t)= (t0u1ze, t

1
u1
ze). By the

induction hypothesis,
(

φ(t0u1ze), φ(t
1
u1
ze)

)

=
(

φ(t0u1z)0
Ne, φ(t1u1z)0

Ne
)

=(t0vu1
z′0Ne, t1vu1

z′0Ne).
Thus conditions (4) is checked.

Otherwise, |u|= 1 and u=< p > for some p∈ ω\{0}. Let w := t0u|l. Note there are infinitely

many q’s such that φ(w) ⊆ ψ(q). As η is a limit ordinal,
(

ϕ(q)
)

q∈ω
is strictly increasing. Thus q

can be chosen so that ϕ(p)≤ϕ(q). If p is odd, then we set φ(tεu) := tε<q>. If p is even, then we set

φ(tεu) := t
ε
q0. Let w0 and w1 be the sequences such that φ(tεu)=φ(w)w

εε. Note that they are different

if p is even. As in the previous case, we define φ(sε) := φ(s)wεε, for any s ∈ 2l. Notice how the

choice of wε only depends on the last coordinate of sε. The conditions are verified as before for
(

φ(t0u), φ(t
1
u)
)

. For the other cases,

(

φ(t0u1ze), φ(t
1
u1ze)

)

=
(

φ(t0u1z)w
ee, φ(t1u1z)w

ee
)

=(t0vu1w
′wee, t1vu1w

′wee),

by the induction hypothesis. So the conditions are checked.

It remains to note that (2ω , 2ω,Cη0,C
η
1) ⊑ (2ω , 2ω,Bηε ,B

η
1−ε) with a square map if ε ∈ 2, with

witness εα 7→εf(α). �

Consequences

Corollary 4.5 Let η≥ 1 be a countable ordinal, X be a Polish space, and A,B be disjoint analytic

relations on X such that A ∪ B is contained in a potentially closed s-acyclic or locally countable

relation. Then exactly one of the following holds:

(a) the set A is separable from B by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set,

(b) there is (A0,A1)∈{(Nη1,N
η
0), (N

η
0 ,N

η
1), (S

η
0,S

η
1)} with (2ω, 2ω ,A0,A1)⊑(X,X,A,B).

Proof. By Lemmas 3.1 and 4.1, (a) and (b) cannot hold simultaneously. So assume that (a) does not

hold. By Lemma 2.2, we may assume that A ∪ B is contained in a potentially closed quasi-acyclic

relation. It remains to apply Theorem 4.3. �

Corollary 4.6 Let η≥1 be a countable ordinal, X,Y be Polish spaces, and A,B be disjoint analytic

subsets of X×Y such that A ∪ B is contained in a potentially closed locally countable set. Then

exactly one of the following holds:

(a) the set A is separable from B by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set,

(b) there is (A0,A1)∈{(Nη1,N
η
0), (N

η
0 ,N

η
1), (S

η
0,S

η
1)} with (2ω, 2ω ,A0,A1)⊑(X,X,A,B).

Proof. As in the proof of Corollary 4.5, (a) and (b) cannot hold simultaneously. Then we argue as in

the proof of Corollary 3.7. A′ ∪B′ is contained in a potentially closed locally countable relation, and

A′ is not separable from B′ by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set. Corollary 4.5 gives f ′, g′ :2ω→Z . �
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Corollary 4.7 Let η≥ 1 be a countable ordinal, X be a Polish space, and A,B be disjoint analytic

relations on X. The following are equivalent:

(1) there is a potentially closed s-acyclic relation R∈Σ
1
1 such that A∩R is not separable from B∩R

by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set,

(2) there is a potentially closed locally countable relation R∈Σ
1
1 such that A ∩ R is not separable

from B ∩R by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set,

(3) there is (A0,A1)∈{(Nη1 ,N
η
0), (N

η
0 ,N

η
1), (S

η
0,S

η
1)} with (2ω, 2ω ,A0,A1)⊑(X,X,A,B),

(4) there is (A0,A1)∈{(Nη1 ,N
η
0), (B

η
1,B

η
0), (N

η
0 ,N

η
1), (B

η
0 ,B

η
1), (S

η
0,S

η
1), (C

η
0 ,C

η
1)} such that the in-

equality (2ω, 2ω,A0,A1)⊑(X,X,A,B) holds, via a square map.

Proof. (1) ⇒ (3),(4) and (2) ⇒ (3),(4) This is a consequence of Corollary 4.5 and its proof.

(4) ⇒ (1) By the remarks before Lemma 3.1, Nη0 ∪Nη1 has s-acyclic levels. This implies that Nη0 ∪Nη1
and Sη0 ∪ Sη1 are s-acyclic. As Nη0 ∪ Nη1 is antisymmetric, Bη0 ∪ Bη1 and Cη0 ∪ Cη1 are s-acyclic too, by

Lemma 3.8. Thus we can take R :=(f×f)[A0 ∪A1] since the s-acyclicity is preserved by images by

the square of an injection, and by Lemmas 3.1 and 4.1.

(3),(4) ⇒ (2) We can take R :=(f×f)[A0 ∪ A1] since A0 ∪ A1 is locally countable, by Lemmas 3.1

and 4.1. �

5 Background

We now give some material to prepare the study of the Borel classes of rank two.

Potential Wadge classes

In Theorem 1.3, S0 ∪ S1 is a subset of the body of a tree T on 22 which does not depend on Γ.

We first describe a simple version of T , which is sufficient to study the Borel classes (see [L6]). We

identify (2l)2 and (22)l, for each l∈ω+1.

Definition 5.1 (1) Let F⊆
⋃

l∈ω (2l)2≡(22)<ω. We say that F is a frame if

(a) ∀l∈ω ∃!(sl, tl)∈F∩(2l)2,

(b) ∀p, q∈ω ∀w∈2<ω ∃N ∈ω (sq0w0
N , tq1w0

N )∈F and (|sq0w0
N |−1)0=p,

(c) ∀l>0 ∃q<l ∃w∈2<ω (sl, tl)=(sq0w, tq1w).

(2) If F={(sl, tl) | l∈ω} is a frame, then we will call T the tree on 22 generated by F:

T :=
{

(s, t)∈(22)<ω | s=∅ ∨
(

∃q∈ω ∃w∈2<ω (s, t)=(sq0w, tq1w)
)}

.

The existence condition in (a) and the density condition (b) ensure that ⌈T ⌉ is big enough to

contain sets of arbitrary high potential complexity. The uniqueness condition in (a) and condition

(c) ensure that ⌈T ⌉ is small enough to make the reduction in Theorem 1.3 possible. The last part of

condition (b) gives a control on the verticals which is very useful to construct complicated examples.
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In the sequel, T will be the tree generated by a fixed frame F (Lemma 3.3 in [L6] ensures the

existence of concrete frames). Note that ⌈T ⌉⊆N0×N1, which will be useful in the sequel (recall that

Ns is the basic clopen set of sequences beginning with s∈2<ω).

Acyclicity

We will use some material from [L6] and [L8], where some possibly different notions of acyclicity

of the levels of T are involved. We will check that they coincide in our case.

Definition 5.2 Let X be a set, and A be a relation on X.

(a) An A-path is a finite sequence (xi)i≤n of points of X such that (xi, xi+1)∈A if i<n.

(b) We say that A is connected if for any x, y ∈X there is an A-path (xi)i≤n with x0 = x and

xn=y.

(c) An A-cycle is an A-path (xi)i≤L with L≥ 3, (xi)i<L is injective and xL = x0 (so that A is

acyclic if and only if there is no A-cycle).

Lemma 5.3 Let l∈ω, and Tl :=T ∩ (2l)2 be the lth level of T .

(a) s(Tl) is connected and acyclic. In particular, ⌈T ⌉ is s-acyclic.

(b) A tree S on 22 has acyclic levels in the sense of [L6] if and only if S has suitable levels in the

sense of [L8], and this is the case of T .

Proof. (a) We argue by induction on l. The statement is clear for l = 0. For the inductive step we

use the fact that Tl+1 = {(sε, tε) | (s, t)∈ Tl ∧ ε∈ 2} ∪ {(sl0, tl1)}. As the map sε 7→ s defines an

isomorphism from {(sε, tε) | (s, t)∈Tl} onto Tl, we are done. A cycle for s(⌈T ⌉) gives a cycle for

s(Tl), for l big enough to ensure the injectivity of the initial segments.

(b) Assume that S has acyclic levels in the sense of [L6]. This means that, for each l, the graph GSl

with set of vertices 2l⊕2l (with typical element xε :=(xε, ε)∈2l×2) and set of edges

{

{x0, x1} | ~x :=(x0, x1)∈Sl
}

is acyclic. We have to see that S has suitable levels in the sense of [L8]. This means that, for each l,
the following hold:

- Sl is finite,

- ∃ε∈2 x0ε 6=x
1
ε if ~x0 6= ~x1∈Sl,

- consider the graph GSl with set of vertices Sl and set of edges

{

{ ~x0, ~x1} | ~x0 6= ~x1 ∧ ∃ε∈2 x0ε=x
1
ε

}

;

then for any GSl-cycle ( ~xn)n≤L, there are ε∈2 and k<m<n<L such that xkε=x
m
ε =xnε .

The first two properties are obvious. So assume that ( ~xn)n≤L is a GSl-cycle for which we cannot

find ε∈2 and k<m<n<L such that xkε=x
m
ε =xnε .
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Case 1 x00=x
1
0.

Subcase 1.1 L is odd.

Note that L≥ 5. Indeed, L≥ 3 since ( ~xn)n≤L is a GSl-cycle. So we just have to see that L 6=3.

As x00=x
1
0 and ~x0 6= ~x1, x01 6=x

1
1. By the choice of ( ~xn)n≤L, x10 6=x

2
0. Thus x11=x

2
1. By the choice of

( ~xn)n≤L, x21 6=x
3
1. Thus x20=x

3
0 and x30 6=x

0
0. Therefore ~x3 6= ~x0 and L 6=3.

Then x00, x
1
1, x

2
0, ..., x

L−2
1 , xL−1

0 is a GSl
-cycle, by the choice of ( ~xn)n≤L.

Subcase 1.2 L is even, in which case L≥4.

Then x00, x
1
1, x

2
0, ..., x

L−1
1 , xL0 is a GSl

-cycle, by the choice of ( ~xn)n≤L.

Case 2 x00 6=x
1
0.

The same arguments work, we just have to exchange the indexes.

• Conversely, assume that (xnεn)n≤L is a GSl
-cycle. Then L is even, and actually L≥4.

Case 1 ε0=0.

Then (x0ε0 , x
1
ε1), (x

2
ε2 , x

1
ε1), ..., (x

L−2
εL−2

, xL−1
εL−1

), (xLεL , x
L−1
εL−1

), (x0ε0 , x
1
ε1) is a GSl-cycle of length

L+1. If ε∈2, then each εth coordinate appears exactly twice before the last element of the cycle.

Case 2 ε0=1.

The same argument works, we just have to exchange the coordinates.

• By Proposition 3.2 in [L6], T has acyclic levels in the sense of [L6]. �

6 The classes Π0
2 and Σ

0
2

Example

We will use an example for Γ=Π
0
2 different from that in [L6], so that we prove the following.

Lemma 6.1 ⌈T ⌉ ∩ E0 is not separable from ⌈T ⌉\E0 by a pot(Π0
2) set.

Proof. We argue by contradiction, which gives P ∈pot(Π0
2), and also a dense Gδ subset G of 2ω such

that P ∩ G2 ∈Π
0
2(G

2). Let (On)n∈ω be a sequence of dense open subsets of 2ω with intersection

G. Note that ⌈T ⌉ ∩ E0 ∩G
2= ⌈T ⌉ ∩ P ∩ G2∈∆

0
2(⌈T ⌉ ∩ G

2). By Baire’s theorem, it is enough to

prove that ⌈T ⌉ ∩ E0 ∩ G
2 is dense and co-dense in the nonempty space ⌈T ⌉ ∩ G2. So let q ∈ω and

w∈ 2<ω. Pick u0∈ 2ω such that Nsq0wu0 ⊆O0, v0∈ 2ω such that Ntq1wu0v0 ⊆O0, u1∈ 2ω such that

Nsq0wu0v0u1 ⊆O1, v1∈2ω such that Ntq1wu0v0u1v1 ⊆O1, and so on.
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Then (sq0wu0v0u1v1..., tq1wu0v0u1v1...) ∈ ⌈T ⌉ ∩ E0 ∩ G
2. Similarly, pick N0 ∈ ω such that

(sq0w0
N0 , tq1w0

N0)∈F , u0∈2ω such thatNsq0w0N00u0
⊆O0, v0∈2ω such thatNtq1w0N01u0v0

⊆O0,

N1∈ω such that (sq0w0
N00u0v00

N1 , tq1w0
N01u0v00

N1)∈F , u1∈2ω such that

Nsq0w0N00u0v00N10u1
⊆O1,

v1∈2ω such that Ntq1w0N01u0v00N11u1v1
⊆O1, and so on. Then

(sq0w0
N00u0v00

N10u1v1..., tq1w0
N01u0v00

N11u1v1...)∈⌈T ⌉ ∩G2\E0.

This finishes the proof. �

The main result

We reduce the study of disjoint analytic sets to that of disjoint Borel sets of low complexity, for

the first classes we are considering.

Lemma 6.2 Let X be a Polish space, and A,B be disjoint analytic relations on X. Then exactly one

of the following holds:

(a) the set A is separable from B by a pot(Π0
2) set,

(b) there is a Kσ relation A′⊆A which is not pot(Π0
2) such that A′\A′⊆B.

Proof. Theorem 1.10 in [L8] and Lemmas 6.1, 5.3 give g, h : 2ω → X continuous such that the

inclusions ⌈T ⌉∩E0⊆(g×h)−1(A) and ⌈T ⌉\E0⊆(g×h)−1(B) hold. We set A′ :=(g×h)
[

⌈T ⌉∩E0

]

,

B′ :=(g×h)
[

⌈T ⌉\E0

]

and C ′ :=(g×h)
[

⌈T ⌉
]

. Note that A′ is a Kσ subset of A, B′⊆B, so that the

compact set C ′ is the disjoint union of A′ and B′. As ⌈T ⌉ ∩E0 is dense in ⌈T ⌉, C ′ is also the closure

of A′. As ⌈T ⌉ ∩ E0=⌈T ⌉ ∩ (g×h)−1(A′), A′ is not pot(Π0
2), by Lemma 6.1. �

Theorem 6.3 Let X be a Polish space, and A,B be disjoint analytic relations on X such that A is

quasi-acyclic. Then one of the following holds:

(a) the set A is separable from B by a pot(Π0
2) set,

(b) there is f :2ω→X injective continuous such that the inclusions ⌈T ⌉ ∩E0⊆(f×f)−1(A) and

⌈T ⌉\E0⊆(f×f)−1(B) hold.

Proof. Assume that (a) does not hold. By Lemma 6.2, we may assume that B is the complement ofA.

Let (Cn)n∈ω be a witness for the fact that A is quasi-acyclic. Note that there are disjoint Borel subsets

O0, O1 of X such that A ∩ (O0×O1) is not pot(Π0
2). We may assume that X is zero-dimensional,

the Cn’s are closed, and O0, O1 are clopen, refining the topology if necessary. We can also replace A
and the Cn’s with their intersection with O0×O1 and assume that they are contained in O0×O1.

• We may assume that X is recursively presented, O0, O1 ∈∆
1
1 and the relation “(x, y)∈Cn” is ∆1

1

in (x, y, n). As ∆X is Polish finer than the topology on X, A /∈Π
0
2(X

2, τ1). We now perform the

following derative on A. We set, for F ∈Π
0
1(X

2, τ1), F
′ :=F ∩A

τ1 ∩ F \A
τ1

(see 22.30 in [K]).
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Then we inductively define, for any ordinal ξ, Fξ by







F0 :=X
2

Fξ+1 :=F
′
ξ

Fλ :=
⋂

ξ<λ Fξ if λ is limit

(see 22.27 in [K]). As (Fξ) is a decreasing sequence of closed subsets of the Polish space (X2, τ1),

there is θ < ω1 such that Fθ = Fθ+1. In particular, Fθ = Fθ+1 = F ′
θ = Fθ ∩A

τ1 ∩ Fθ\A
τ1

, so that

Fθ ∩A and Fθ\A are τ1-dense in Fθ.

• Let us prove that Fθ is not empty. We argue by contradiction:

X2=¬Fθ=
⋃

ξ≤θ

¬Fξ=
⋃

ξ≤θ

(¬Fξ ∩
⋂

η<ξ

Fη)=
⋃

ξ<θ

Fξ\Fξ+1,

so that A=
⋃

ξ<θ A ∩ Fξ\Fξ+1. But A ∩ Fξ\Fξ+1=A ∩ Fξ\(Fξ ∩A
τ1 ∩ Fξ\A

τ1
)=Fξ\Fξ\A

τ1
.

This means that (Fξ\Fξ+1)ξ<θ is a countable partition of (X2, τ1) into ∆
0
2 sets, and that A is ∆0

2 on

each piece of the partition. This implies that A is ∆0
2(X

2, τ1), which is absurd.

• Let us prove that Fθ is Σ 1
1 . We use 7C in [Mo]. We define a set relation by

ϕ(x, y, P ) ⇔ (x, y) /∈(¬P )′.

Note that ϕ is monotone, and thus operative. It is also Π
1
1 on Π

1
1 . By 3E.2, 3F.6 and 4B.2 in [Mo],

we can apply 7C.8 in [Mo], so that ϕ∞(x, y) is Π 1
1 . An induction shows that ϕξ(x, y) is equivalent

to “(x, y) /∈Fξ+1”. Thus (x, y) /∈Fθ is equivalent to (x, y) /∈
⋂

ξ Fξ =
⋂

ξ Fξ+1, (x, y)∈
⋃

ξ ¬Fξ+1

and ϕ∞(x, y).

• We are ready to prove the following key property:

∀q∈ω ∀U, V ∈Σ
1
1 (X) Fθ ∩ (U×V ) 6=∅ ⇒ ∃n≥q Fθ ∩ Cn ∩ (U×V ) 6=∅.

Indeed, this property says that I := Fθ ∩ (
⋃

n≥q Cn) is Σ
2
X-dense in Fθ for each q ∈ ω. We fix

q∈ω, and prove first that I is τ1-dense in Fθ. So let U, V ∈∆
1
1 such that Fθ ∩ (U×V ) is nonempty.

As Fθ \A is τ1-dense in Fθ, we get (x, y) ∈ (Fθ \A) ∩ (U×V ). As Fθ ∩ A is τ1-dense in Fθ , we

get (xk, yk) ∈ Fθ ∩ A converving to (x, y) for τ1. Pick nk ∈ ω such that (xk, yk) ∈ Cnk
. As Cnk

is closed, and thus τ1-closed, we may assume that the sequence (nk)k∈ω is strictly increasing. Now

(xk, yk)∈I ∩ (U×V ) if k is big enough. In order to get the statement for Σ 2
X , we have to note that I

is Σ 1
1 since Fθ is Σ 1

1 and the relation “(x, y)∈Cn” is ∆1
1 in (x, y, n). This implies that I

τ1 =I
Σ

2
X , by

a double application of the separation theorem. Therefore Fθ⊆I
τ1 =I

Σ
2
X and I is Σ 2

X -dense in Fθ .

• We set, for ~u=(u0, u1)∈T \{~∅},

n(~u) := Card
(

{i< |~u| | u0(i) 6=u1(i)}
)

,
~t(~u) :=(sq0, tq1) if ~u=(sq0w, tq1w).
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• We are ready for the construction of f . We construct the following objects:

- sequences (xs)s∈2<ω\{∅},s(0)=0, (ys)s∈2<ω\{∅},s(0)=1 of points of X,

- sequences (Xs)s∈2<ω\{∅},s(0)=0, (Ys)s∈2<ω\{∅},s(0)=1 of Σ 1
1 subsets of X,

- a map Φ:
{

~t(~u) | ~u∈T \{~∅}
}

→ω.

We want these objects to satisfy the following conditions:

(1) xs∈Xs ∧ ys∈Ys
(2) Xsε⊆Xs⊆ΩX ∩O0 ∧ Ysε⊆Ys⊆ΩX ∩O1

(3) diamGH(Xs), diamGH(Ys)≤2−|s|

(4) (xu0 , yu1)∈Fθ ∩ CΦ(~t(~u))

(5) (Xu0×Yu1) ∩ (
⋃

n<n(~u) Cn)=∅

(6) Xs0 ∩Xs1=Ys0 ∩ Ys1=∅

• Assume that this has been done. As in the proof of Theorem 3.3, we get f :Nε→Oε injective con-

tinuous, so that f :2ω→X is injective continuous. If (α, β)∈⌈T ⌉∩E0, then Φ(~t
(

(α, β)|n
)

)=N if n
is big enough. In this case, by (4), (xα|n, yβ|n)∈CN which is closed, so that

(

f(α), g(β)
)

∈CN ⊆A.

If (α, β)∈ ⌈T ⌉\E0, then the sequence (n
(

(α, β)|n
)

)n>0 tends to infinity. Thus
(

f(α), g(β)
)

is not

in
⋃

n∈ω Cn=A by (5).

• So let us prove that the construction is possible. The key property gives Φ(0, 1)≥ 1 and (x0, y1)
in Fθ ∩ CΦ(0,1) ∩ ΩX2 . As ΩX2 ⊆Ω2

X , x0, y1 ∈ΩX . We choose Σ
1
1 subsets X0, Y1 of X with GH-

diameter at most 2−1 such that (x0, y1)∈X0×Y1⊆
(

(ΩX ∩O0)×(ΩX ∩O1)
)

\C0, which completes

the construction for the length l=1.

Let l ≥ 1. We now want to build xs,Xs, ys, Ys for s ∈ 2l+1, as well as Φ(sl0, tl1). Note that

(xsl , ytl)∈Fθ ∩ (U×V ), where

U :={x′sl ∈Xsl | ∃(x
′
s)s∈2l\{sl},s(0)=0∈Πs∈2l\{sl},s(0)=0 Xs ∃(y′s)s∈2l,s(0)=1∈Πs∈2l,s(0)=1 Ys

∀~u∈T ∩ (2l×2l) (x′u0 , y
′
u1)∈Fθ ∩ CΦ(~t(~u))},

V :={y′tl ∈Ytl | ∃(x
′
s)s∈2l,s(0)=0∈Πs∈2l,s(0)=0 Xs ∃(y′s)s∈2l\{tl},s(0)=1∈Πs∈2l\{tl},s(0)=1 Ys

∀~u∈T ∩ (2l×2l) (x′u0 , y
′
u1)∈Fθ ∩CΦ(~t(~u))}.

The key property gives Φ(sl0, tl1)>max
(

n(sl0, tl1),maxq<l Φ(sq0, tq1)
)

and

(xsl0, ytl1)∈Fθ ∩ CΦ(sl0,tl1) ∩ (U×V ).

The fact that xsl0 ∈ U gives witnesses (xs0)s∈2l\{sl},s(0)=0 and (ys0)s∈2l,s(0)=1. Similarly, the fact

that ytl1∈V gives (xs1)s∈2l,s(0)=0 and (ys1)s∈2l\{tl},s(0)=1. Note that xsl0 6=xsl1 because

(xsl0, ytl1)∈CΦ(sl0,tl1),

(xsl1, ytl1)∈CΦ(~t(sl1,tl1))
, and Φ(sl0, tl1)>Φ

(

~t(sl1, tl1)
)

. Similarly, ytl0 6= ytl1. If s∈ 2l, then the

connectedness of s(Tl) gives an injective s(T )-path ps from s to sl. This gives a s(A)-path from xs0
to xs1 if s(0) = 0, and a s(A)-path from ys0 to ys1 if s(0) = 1. Using the quasi-acyclicity of A, we

see, by induction on the length of ps, that xs0 6=xs1 and ys0 6=ys1.
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The following picture illustrates the situation when l=2.
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Then we take small enough Σ
1
1 neighborhoods of the xsε’s and ysε’s to complete the construction. �

Consequences

Corollary 6.4 Let X be a Polish space, and A,B be disjoint analytic relations on X such that A is

either s-acyclic, or locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Π0
2) set,

(b) there is f :2ω→X injective continuous such that the inclusions ⌈T ⌉ ∩E0⊆(f×f)−1(A) and

⌈T ⌉\E0⊆(f×f)−1(B) hold.

Proof. By Lemma 6.1, ⌈T ⌉ ∩ E0 is not separable from ⌈T ⌉\E0 by a pot(Π0
2) set. This shows that

(a) and (b) cannot hold simultaneously. So assume that (a) does not hold. By Lemma 6.2, we may

assume that A is Σ0
2 and B is the complement of A. By Lemma 2.2, we may also assume that A is

quasi-acyclic. It remains to apply Theorem 6.3. �

Corollary 6.5 Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of X×Y such that A
is locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Π0
2) set,

(b) (2ω, 2ω , ⌈T ⌉ ∩ E0, ⌈T ⌉\E0) ⊑ (X,Y,A,B).

Proof. As in the proof of Corollary 6.4, (a) and (b) cannot hold simultaneously. So assume that (a)

does not hold. We argue as in the proof of Corollary 3.7. Corollary 6.4 gives f ′ :2ω→Z . �

Corollary 6.6 Let X be a Polish space, and A,B be disjoint analytic relations on X. The following

are equivalent:

(1) there is an s-acyclic relation R∈Σ
1
1 such that A ∩ R is not separable from B ∩ R by a pot(Π0

2)
set,

(2) there is f :2ω→X injective continuous with ⌈T ⌉∩E0⊆(f×f)−1(A) and ⌈T ⌉\E0⊆(f×f)−1(B).

Proof. (1) ⇒ (2) We apply Corollary 6.4.

(2) ⇒ (1) We can take R :=(f×f)
[

⌈T ⌉
]

. �

Remark. There is a version of Corollary 6.6 for Σ0
2 instead of Π0

2, obtained by exchanging the roles

of A and B. This symmetry is not present in Theorem 6.3.
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Corollary 6.7 Let X be a Polish space, and A,B be disjoint analytic relations on X such that A is

contained in a pot(Fσ) s-acyclic relation, or A ∪ B is s-acyclic. Then exactly one of the following

holds:

(a) the set A is separable from B by a pot(Σ0
2) set,

(b) there is f : 2ω→X injective continuous such that the inclusions ⌈T ⌉\E0⊆ (f×f)−1(A) and

⌈T ⌉ ∩ E0⊆(f×f)−1(B) hold.

Proof. Let R be a pot(Fσ) s-acyclic relation containing A. Then there is no pot(Σ0
2) set P separating

A ∩ R=A from B ∩ R, since otherwise P ∩ R ∈ pot(Σ0
2) and separates A from B. Corollary 6.6

gives f :2ω→X injective continuous with ⌈T ⌉ ∩ E0⊆(f×f)−1(B) and ⌈T ⌉\E0⊆(f×f)−1(A).

If A ∪B is s-acyclic, then we apply Corollary 6.4. �

Remarks. (1) Corollary 6.7 also holds when A ∪B is locally countable, but we did not mention it in

the statement since (a) always holds in this case. Indeed, by reflection, A∪B is contained in a locally

countable Borel set C . As A,B are disjoint analytic sets, there is a Borel set D separating A from B.

Thus C ∩D is a locally countable Borel set separating A from B. But a locally countable Borel set

has Σ0
2 vertical sections, and is therefore pot(Σ0

2) (see [Lo2]).

(2) There is a version of Corollary 6.7 for Γ=Σ
0
1, where we replace the class Fσ with the class of

open sets. We do not state it since (a) always holds in this case. Indeed, a potentially open s-acyclic

relation is a countable union of Borel rectangles for which at least one side is a singleton, so that this

union is potentially clopen, just like any of its Borel subsets.

7 The class ∆0
2

Example

We set, for each ε∈2,

Eε0 :={(α, β)∈2ω×2ω | ∃m>0 α(m) 6=β(m) ∧ ∀n>m α(n)=β(n) ∧ (m−1)0≡ε (mod 2)}.

Lemma 7.1 ⌈T ⌉ ∩ E0
0 is not separable from ⌈T ⌉ ∩ E1

0 by a pot(∆0
2) set.

Proof. The proof is similar to that of Lemma 6.1. We argue by contradiction, which gives D in

pot(∆0
2), and also a dense Gδ subset G of 2ω such that D ∩ G2 ∈ ∆

0
2(G

2). Let (On)n∈ω be a

sequence of dense open subsets of 2ω with intersection G. Note that ⌈T ⌉ ∩E0
0 ∩G

2⊆⌈T ⌉ ∩D ∩G2,

⌈T ⌉∩E1
0∩G

2⊆⌈T ⌉∩G2\D and ⌈T ⌉∩D∩G2∈∆
0
2(⌈T ⌉∩G

2). By Baire’s theorem, it is enough to

prove that ⌈T ⌉ ∩ E0
0 ∩G

2 and ⌈T ⌉ ∩E1
0 ∩G

2 are dense in ⌈T ⌉ ∩G2. Let us do it for ⌈T ⌉ ∩E0
0 ∩G

2,

the other case being similar. So let q ∈ ω and w ∈ 2<ω . Pick N ∈ ω such that (sq0w0
N0 , tq1w0

N )
is in F and (|sq0w0

N |−1)0=0. Then we argue as in the proof of of Lemma 6.1: pick u0∈ 2ω with

Nsq0w0N0u0 ⊆ O0, v0 ∈ 2ω with Ntq1w0N1u0v0 ⊆ O0, u1 ∈ 2ω with Nsq0w0N0u0v0u1 ⊆ O1, v1 ∈ 2ω

with Ntq1w0N1u0v0u1v1 ⊆ O1, and so on. Then (sq0w0
N0u0v0u1v1..., tq1w0

N1u0v0u1v1...) is in

⌈T ⌉ ∩ E0
0 ∩G

2. �
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The main result

We will prove a version of Theorem 6.3 for the class ∆0
2.

Theorem 7.2 Let X be a Polish space, and A,B be disjoint analytic relations on X such that A∪B
is quasi-acyclic. Then one of the following holds:

(a) the set A is separable from B by a pot(∆0
2) set,

(b) there is f :2ω→X injective continuous such that the inclusions ⌈T ⌉ ∩E0
0⊆(f×f)−1(A) and

⌈T ⌉ ∩ E1
0⊆(f×f)−1(B) hold.

Proof. The proof is similar to that of of Theorem 6.3. Assume that (a) does not hold. By Lemma

3.5, we may assume that A,B are Σ
0
2. Let (Cn)n∈ω be a witness for the fact that A ∪ B is quasi-

acyclic. As A,B are Σ
0
2, we may assume that each Cn is either contained in A, or contained in B.

Note that there are disjoint Borel subsets O0, O1 of X such that A ∩ (O0×O1) is not separable from

B∩ (O0×O1) by a pot(∆0
2) set. We may assume that X is zero-dimensional, the Cn’s are closed, and

O0, O1 are clopen, refining the topology if necessary. We can also replace A,B and the Cn’s with

their intersection with O0×O1 and assume that they are contained in O0×O1. This gives a sequence

(C0
n)n∈ω (resp., (C1

n)n∈ω) of pairwise disjoint closed relations on X with union A (resp., B).

• We may assume that X is recursively presented, O0, O1 are ∆
1
1 and the relation “(x, y) ∈ Cεn” is

∆
1
1 in (x, y, ε, n). As ∆X is Polish finer than the topology on X, A is not separable from B by a

∆
0
2(X

2, τ1) set. We set, for F ∈Π
0
1(X

2, τ1), F
′ :=F ∩A

τ1 ∩ F ∩B
τ1

(see 22.30 in [K]). Then

Fθ=Fθ+1=F
′
θ=Fθ ∩A

τ1 ∩ Fθ ∩B
τ1

,

so that Fθ ∩A and Fθ ∩B are τ1-dense in Fθ .

• Let us prove that Fθ is not empty. We argue by contradiction, so that A=
⋃

ξ<θ A ∩ Fξ\Fξ+1. But

A∩Fξ\Fξ+1=A∩Fξ\(Fξ ∩A
τ1 ∩Fξ ∩B

τ1)⊆Fξ\Fξ ∩B
τ1 ⊆¬B. This means that (Fξ\Fξ+1)ξ<θ

is a countable partition of (X2, τ1) into ∆
0
2 sets, and that A is separable from B by a ∆

0
2 set on each

piece of the partition. This implies that A is separable from B by a ∆
0
2(X

2, τ1) set, which is absurd.

• As in the proof of Theorem 6.3, Fθ is Σ 1
1 , and the following key property holds:

∀ε∈2 ∀q∈ω ∀U, V ∈Σ
1
1 (X) Fθ ∩ (U×V ) 6=∅ ⇒ ∃n≥q Fθ ∩ C

ε
n ∩ (U×V ) 6=∅.

• We construct again sequences (xs), (ys), (Xs), (Ys) and Φ satisfying the following conditions:

(1) xs∈Xs ∧ ys∈Ys
(2) Xsε⊆Xs⊆ΩX ∩O0 ∧ Ysε⊆Ys⊆ΩX ∩O1

(3) diamGH(Xs), diamGH(Ys)≤2−|s|

(4) (xu0 , yu1)∈Fθ ∩ C
ε
Φ(~t(~u))

if (|~t(~u)|−2)0≡ε (mod 2), with the convention (−1)0=0

(5) Xs0 ∩Xs1=Ys0 ∩ Ys1=∅

• Assume that this has been done. If (α, β)∈⌈T ⌉ ∩ E0
0, then Φ(~t

(

(α, β)|n
)

)=N if n is big enough.

In this case, by (4), (xα|n, yβ|n)∈C
0
N which is closed, so that

(

f(α), g(β)
)

∈C0
N ⊆A. Similarly, if

(α, β)∈⌈T ⌉ ∩ E1
0, then

(

f(α), g(β)
)

∈C1
N⊆B.
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• So let us prove that the construction is possible. The key property gives Φ(0, 1) ∈ ω and (x0, y1)
in Fθ ∩ C

0
Φ(0,1) ∩ ΩX2 . We choose Σ

1
1 subsets X0, Y1 of X with GH-diameter at most 2−1 such that

(x0, y1)∈X0×Y1⊆(ΩX ∩O0)×(ΩX ∩O1), which completes the construction for the length l=1.

Let l≥1. We now want to build xs,Xs, ys, Ys for s∈2l+1, as well as Φ(sl0, tl1). Fix η∈2 such

that (l−1)0≡η (mod 2). Note that (xsl , ytl)∈Fθ ∩ (U×V ), where

U :={x′sl ∈Xsl | ∃(x
′
s)s∈2l\{sl},s(0)=0∈Πs∈2l\{sl},s(0)=0 Xs ∃(y′s)s∈2l,s(0)=1∈Πs∈2l,s(0)=1 Ys
∀~u∈T ∩ (2l×2l) (x′u0 , y

′
u1)∈Fθ ∩ C

ε
Φ(~t(~u))

if (|~t(~u)|−2)0≡ε (mod 2)},

V :={y′tl ∈Ytl | ∃(x
′
s)s∈2l,s(0)=0∈Πs∈2l,s(0)=0 Xs ∃(y′s)s∈2l\{tl},s(0)=1∈Πs∈2l\{tl},s(0)=1 Ys
∀~u∈T ∩ (2l×2l) (x′u0 , y

′
u1
)∈Fθ ∩ C

ε
Φ(~t(~u))

if (|~t(~u)|−2)0≡ε (mod 2)}.

The key property gives Φ(sl0, tl1)>maxq<l Φ(sq0, tq1) and

(xsl0, ytl1)∈Fθ ∩ C
η
Φ(sl0,tl1)

∩ (U×V ).

Note that xsl0 6=xsl1 because (xsl0, ytl1)∈C
η
Φ(sl0,tl1)

, (xsl1, ytl1)∈C
ε
Φ(~t(sl1,tl1))

if

(|~t(sl1, tl1)|−2)0≡ε (mod 2),

and Φ(sl0, tl1)>Φ
(

~t(sl1, tl1)
)

. Similarly, ytl0 6= ytl1. If s∈ 2l, then there is an injective s(T )-path

ps from s to sl. This gives a s(A ∪ B)-path from xs0 to xs1 if s(0) = 0, and a s(A ∪ B)-path from

ys0 to ys1 if s(0)=1. Using the quasi-acyclicity of s(A ∪ B), we see, by induction on the length of

ps, that xs0 6=xs1 and ys0 6=ys1. �

Consequences

Corollary 7.3 Let X be a Polish space, and A,B be disjoint analytic relations on X such that

- either A ∪B is either s-acyclic or locally countable

- or A is contained in a pot(∆0
2) s-acyclic or locally countable relation.

Then exactly one of the following holds:

(a) the set A is separable from B by a pot(∆0
2) set,

(b) there is f :2ω→X injective continuous such that the inclusions ⌈T ⌉ ∩E0
0⊆(f×f)−1(A) and

⌈T ⌉ ∩ E1
0⊆(f×f)−1(B) hold.

Proof. By Lemma 7.1, ⌈T ⌉ ∩ E0
0 is not separable from ⌈T ⌉ ∩ E1

0 by a pot(∆0
2) set. This shows that

(a) and (b) cannot hold simultaneously. So assume that (a) does not hold.

- If A ∪ B is s-acyclic or locally countable, then by Lemma 3.5, we may assume that A,B are Σ
0
2.

By Lemma 2.2, we may also assume that A ∪B is quasi-acyclic. It remains to apply Theorem 7.2.

- Assume that R is pot(∆0
2) and contains A. Then there is no pot(∆0

2) set P separating A ∩ R=A
from B∩R, since otherwise P ∩R∈pot(∆0

2) separates A from B. It remains to apply the first point.

This finishes the proof. �
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Corollary 7.4 Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of X×Y such that

A ∪B is locally countable or A is contained in a pot(∆0
2) locally countable set. Then exactly one of

the following holds:

(a) the set A is separable from B by a pot(∆0
2) set,

(b) (2ω, 2ω , ⌈T ⌉ ∩ E0
0, ⌈T ⌉ ∩ E1

0) ⊑ (X,Y,A,B).

Proof. As in the proof of Corollary 7.3, (a) and (b) cannot hold simultaneously. Then we argue as in

the proof of Corollary 3.7. The set A′∪B′ is locally countable or A′ is contained in a pot(∆0
2) locally

countable set, and A′ is not separable from B′ by a pot(∆0
2) set. Corollary 7.3 gives f ′ :2ω→Z . �

Corollary 7.5 Let X be a Polish space, and A,B be disjoint analytic relations on X. The following

are equivalent:

(1) there is an s-acyclic or locally countable relation R∈Σ
1
1 such that A ∩ R is not separable from

B ∩R by a pot(∆0
2) set,

(2) there is f :2ω→X injective continuous with ⌈T ⌉∩E0
0⊆(f×f)−1(A) and ⌈T ⌉∩E1

0⊆(f×f)−1(B).

Proof. (1) ⇒ (2) We apply Corollary 7.3.

(2) ⇒ (1) We can take R :=(f×f)
[

⌈T ⌉ ∩ E0

]

. �

8 The classes Dn(Σ
0
2) and Ďn(Σ

0
2)

Examples

Notation. Let η≥1 be a countable ordinal, and Sη :ω→η be onto. We set

C0 :={α∈2ω | ∃m∈ω ∀p≥m α(p)=0}

and, for 1≤ θ < η, Cθ :=
{

α ∈ 2ω | ∃m ∈ ω ∀p ∈ ω α(< m, p >) = 0 ∧ Sη
(

(m)0
)

≤ θ
}

, so that

(Cθ)θ<η is an increasing sequence of Σ0
2 subsets of 2ω . We then set Dη :=D

(

(Cθ)θ<η
)

.

Lemma 8.1 The set Dη is Dη(Σ
0
2)-complete.

Proof. By 21.14 in [K], it is enough to see that Dη is not Ďη(Σ
0
2) since it is Dη(Σ

0
2). We will prove

more. Let us say that a pair (θ, F ) is suitable if θ ≤ η, F is a chain of finite binary sequences,

IF :=
⋂

s∈F {α ∈Ns | (α)|s| =0∞} is not empty and Sη
(

(|s|)0
)

≥ θ for each s∈ F . Let us prove

that IF ∩ D
(

(Cθ′)θ′<θ
)

is not Ďθ(Σ
0
2) if (θ, F ) is suitable. This will give the result since (η, ∅) is

suitable.

We argue by induction on θ. If θ=1, then the Σ
0
2 set IF ∩C0 is dense and co-dense in the closed

set IF , so that it is not Π0
2, by Baire’s theorem. Assume the result proved for θ′<θ. We argue by

contradiction, which gives an increasing sequence (Hθ′)θ′<θ of Σ0
2 sets with

IF ∩D
(

(Cθ′)θ′<θ
)

=¬D
(

(Hθ′)θ′<θ
)

.

37



As ¬(
⋃

θ′<θ Cθ′) is comeager in IF , IF ∩
⋃

θ′<θ Hθ′ too, which gives θ′<θ with parity opposite

to that of θ and s′⊇maxs∈F s such that Sη
(

(|s′|)0
)

=θ′ and ∅ 6=IF ∩Ns′ ⊆Hθ′. We set F ′ :=F∪{s′},

so that (θ′, F ′) is suitable. By induction assumption, IF ′ ∩ D
(

(Cθ′′)θ′′<θ′
)

is not Ďθ′(Σ
0
2). But

IF ′ ∩D
(

(Cθ′′)θ′′<θ′
)

=IF ′\D
(

(Hθ′′)θ′′<θ′
)

∈Ďθ′(Σ
0
2) since IF ′ ⊆Cθ′ , which is absurd. �

Notation. We now fix an effective frame in the sense of Definition 2.1 in [L8], which are frames in

the sense of Definition 5.1. Lemma 2.3 in [L8] proves the existence of such an effective frame. Note

that (s1, t1)= (0, 1), so that s1(0) 6= t1(0). But sl+1(l)= tl+1(l) if l≥ 1. Indeed, it is enough to see

that
(

(

(l)1
)

1

)

0
+
(

(

(l)1
)

1

)

1
<l in this case, by the proof of Lemma 2.3 in [L8]. As (q)0+(q)1≤ q,

and (q)0+(q)1<q if q≥ 2, we may assume that
(

(l)1
)

1
∈ 2. If

(

(l)1
)

1
=0, then we are done since

l≥1. If
(

(l)1
)

1
=1, then l≥2 and we are done too.

• The shift map S : 2L → 2L−1 is defined by S(α)(m) := α(m+1) when 1 ≤ L ≤ ω, with the

convention ω−1:=ω.

• The symmetric difference α∆β of α, β∈2L is the element of 2L defined by (α∆β)(m)=1 exactly

when α(m) 6=β(m), if L≤ω.

• We set Nη :={(α, β)∈⌈T ⌉ | S(α∆β) /∈Dη}.

Lemma 8.2 The Ďη(Σ
0
2) set Nη is not separable from ⌈T ⌉\Nη by a pot

(

Dη(Σ
0
2)
)

set.

Proof. As ⌈T ⌉ is closed, Dη is Dη(Σ
0
2) and S,∆ are continuous, Nη is Ďη(Σ

0
2). By Lemma 2.6 in

[L8], it is enough to check that Dη is ccs (see Definition 2.5 in [L8]). We just have to check that

the Cθ’s are ccs. So let α,α0 ∈ 2ω and F : 2ω → 2ω satisfying the conclusion of Lemma 2.4.(b) in

[L8]. Note that α ∈ C0 exactly when {m ∈ ω | α(m) = 1} is finite, so that C0 is ccs. If θ ≥ 1,

then α /∈ Cθ exactly when, for each m, Sη
(

(m)0
)

≤ θ or there is p with α(< m, p >) = 1. As
(

Bα(< m, p >)
)

0
=(< m, p >)0=m, Cθ is ccs too. �

The main result

Notation. From now on, η<ω. We set, for 2≤θ≤η and (s, t)∈(2×2)<ω\{(∅, ∅)},

mθ
s,t :=min

{

m∈ω |
(

S(s∆t)
)

m
⊆0∞ ∧ Sη

(

(m)0
)

<θ
}

.

We also set s− :=< s(0), ..., s(|s|−2) > if s∈2<ω .
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• We define the following relation on (2×2)<ω :

(s, t) R (s′, t′) ⇔ (s, t)⊆(s′, t′) ∧

(

|s|≤1 ∨
(

|s|≥2 ∧ ∃2≤θ≤η mθ
s,t 6=m

θ
s−,t−

∧

∀(s, t)⊆(s′′, t′′)⊆(s′, t′) ∀θ<θ′≤η mθ′

s,t=m
θ′

s−,t−
=mθ′

s′′,t′′

)

∨
(

|s|≥2 ∧ s(|s|−1) 6= t(|s|−1) ∧

∀(s, t)⊆(s′′, t′′)⊆(s′, t′) ∀2≤θ≤η mθ
s,t=m

θ
s−,t−

=mθ
s′′,t′′

)

∨
(

|s|≥2 ∧ ∀(s, t)⊆(s′′, t′′)⊆(s′, t′)
(

∀2≤θ≤η mθ
s,t=m

θ
s−,t−

=mθ
s′′,t′′

)

∧

s′′(|s′′|−1)= t′′(|s′′|−1)
)

)

.

Note that R is a tree relation, which means that it is a partial order (it contains the diagonal, is

antisymmetric and transitive) with minimum element (∅, ∅), the set of predecessors of any sequence is

finite and lineary ordered by R. Moreover, R is distinguished in ⊆, which means that (s, t) R (s′, t′)
if (s, t)⊆(s′, t′)⊆(s′′, t′′) and (s, t) R (s′′, t′′) (see [D-SR]).

• We set

Dη :={(s, t)∈T | |s|≥2 ⇒ mη
s,t 6=m

η

s−,t−
} if η≥2,

Dθ :={(s, t)∈T | |s|≥2 ∧ mθ
s,t 6=m

θ
s−,t−

∧ ∀θ<θ′≤η mθ′

s,t=m
θ′

s−,t−
} if 2≤θ<η,

D1 :={(s, t)∈T | |s|≥2 ∧ ∀2≤θ≤η mθ
s,t=m

θ
s−,t−

∧ s(|s|−1) 6= t(|s|−1)},

D0 :={(s, t)∈T | |s|≥2 ∧ s(|s|−1)= t(|s|−1)},

so that the (Dθ)θ≤η is a partition of T .

Theorem 8.3 Let 1≤η<ω. Let X be a Polish space, and A0, A1 be disjoint analytic relations on X
such that A0 ∪A1 is s-acyclic. Then exactly one of the following holds:

(a) the set A0 is separable from A1 by a pot
(

Dη(Σ
0
2)
)

set,

(b) (2ω, 2ω ,Nη, ⌈T ⌉\Nη) ⊑ (X,X,A0, A1), via a square map.

Proof. By Lemma 8.2, (a) and (b) cannot hold simultaneously. So assume that (a) does not hold. Note

first that we may assume thatA0∪A1 is compact andA1 isDη(Σ
0
2). Indeed, Theorems 1.9 and 1.10 in

[L8] give S∈Dη(Σ
0
2)(⌈T ⌉) and f ′, g′ :2ω→X continuous such that the inclusions S⊆(f ′×g′)−1(A1)

and ⌈T ⌉\S ⊆ (f ′×g′)−1(A0) hold. Let (Σθ)θ<η be an increasing sequence of Σ0
2(⌈T ⌉) sets with

S=D
(

(Σθ)θ<η
)

, K := (f ′×g′)
[

⌈T ⌉
]

, and Rθ :=(f ′×g′)
[

Σθ
]

. Note that K is compact, Rθ is Kσ,

D
(

(Rθ)θ<η
)

⊆A1, K \D
(

(Rθ)θ<η
)

⊆A0, D
(

(Rθ)θ<η
)

=K ∩A1, K\D
(

(Rθ)θ<η
)

=K ∩A0, so

that D
(

(Rθ)θ<η
)

is not separable from K \D
(

(Rθ)θ<η
)

by a pot
(

Ďη(Σ
0
2)
)

set. So we can replace

A1, A0 with D
(

(Rθ)θ<η
)

, K\D
(

(Rθ)θ<η
)

, respectively.
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• We may also assume that X is zero-dimensional and there are disjoint clopen subsets O0, O1 of X
such that A0 ∩ (O0×O1) is not separable from A1 ∩ (O0×O1) by a pot

(

Dη(Σ
0
2)
)

set. So, without

loss of generality, we will assume that A0 ∪A1⊆O0×O1. We may also assume that X is recursively

presented, A0, A1, O0, O1, Rθ are ∆1
1, and Rθ is the union of ∆1

1 ∩Π
0
1⊆Σ

1
1 ∩Π

0
1(τ1)⊆Σ

0
1(τ2) sets.

We set, for θ < η, Nθ := Rθ \ (
⋃

θ′<θ Rθ′) ∩
⋂

θ′<θ Nθ′
τ2

. Note that the Nθ’s are pairwise

disjoint, which will be useful in the construction to get the injectivity of our reduction maps. We use

the notation of Theorem 3.2. For simplicity, we set F εθ :=F
ε
θ,2.

Claim. (a) Assume that k+1<η. Then F εk =Nk
τ2 ∪ Ek, where Ek⊆¬Rk+1 is τ2-closed.

(b) A0 ∩
⋂

θ<η F
ε
θ =Nη :=K\(

⋃

θ<η Rθ) ∩
⋂

θ<η Nθ
τ2

.

(a) Indeed, we argue by induction on k to prove (a). In the proof of this claim, all the closures will

refer to τ2. Note first that R0 ⊆ Aε ⊆ R0 ∪ ¬R1, so that F ε0 = Aε = R0 ∪ E0 = N0 ∪ E0. Then,

inductively,

F εk+1 =A1−|parity(k)−ε| ∩ F
ε
k =A1−|parity(k)−ε| ∩ (Nk ∪ Ek)

=
(

(Rk+1\Rk) ∪ (Rk+3\Rk+2)...
)

∩ (Nk ∪ Ek)=Nk+1 ∪ Ek+1.

(b) Note then that F εη−1=A1 ∩
⋂

k+1<η F
ε
k =A1 ∩

⋂

k+1<η (Nk ∪ Ek)=Nη−1, so that

A0 ∩
⋂

θ<η

F εθ =K\(
⋃

θ<η

Rθ) ∩
⋂

θ<η

Nθ.

This proves the claim. ⋄

• We construct the following objects:

- sequences (xs)s∈2<ω ,0⊆s, (ys)s∈2<ω ,1⊆s of points of X,

- sequences (Xs)s∈2<ω ,0⊆s, (Ys)s∈2<ω ,1⊆s of Σ 1
1 subsets of X,

- a sequence (Us,t)(s,t)∈T\{(∅,∅)} of Σ 1
1 subsets of X2.

We want these objects to satisfy the following conditions:

(1) xs∈Xs ∧ ys∈Ys ∧ (xs, yt)∈Us,t
(2) Xsε⊆Xs⊆ΩX ∩O0 ∧ Ysε⊆Ys⊆ΩX ∩O1 ∧ Us,t⊆ΩX2 ∩ (Xs×Yt)

(3) diamGH(Xs), diamGH(Ys), diamGH(Us,t)≤2−|s|

(4) Xs0 ∩Xs1=Ys0 ∩ Ys1=∅
(5)

(

(s, t) R (s′, t′) ∧ ∃θ≤2 (s, t), (s′, t′)∈Dθ

)

⇒ Us′,t′ ⊆Us,t
(6) Us,t⊆Nθ if (s, t)∈Dθ

(7) (s, t) R (s′, t′) ⇒ Us′,t′ ⊆Us,t
τ1
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• Assume that this has been done. As in the proof of Theorem 3.3, we get f : 2ω → X injective

continuous. If (α, β)∈Nη, then we can find θ<η of parity opposite to that of η and (nk)k∈ω strictly

increasing such that (α, β)|nk ∈ Dθ and (α, β)|nk R (α, β)|nk+1 for each k ∈ ω. In this case, by

(1)-(3) and (5)-(6),
(

U(α,β)|nk

)

k∈ω
is a decreasing sequence of nonempty clopen subsets of A0∩ΩX2

with vanishing diameters, so that its intersection is a singleton {F (α, β)} ⊆ A0. As (xα|n, yβ|n)
converges (for ΣX2 and thus for Σ 2

X ) to F (α, β),
(

f(α), f(β)
)

=F (α, β)∈A0. If (α, β)∈⌈T ⌉\Nη ,

then we argue similarly to see that
(

f(α), f(β)
)

∈A1.

• So let us prove that the construction is possible. Let (x0, y1)∈Nη ∩ ΩX2 , X0, Y1 be Σ
1
1 subsets of

X with diameter at most 2−1 such that x0 ∈X0 ⊆ΩX ∩ O0 and y1 ∈ Y1 ⊆ΩX ∩ O1, and U0,1 be a

Σ
1
1 subset of X2 with diameter at most 2−1 such that (x0, y1)∈U0,1⊆Nη ∩ ΩX2 ∩ (X0×Y1). This

completes the construction for l=1 since (0, 1)∈Dη .

- Note that (02, 12)∈Dη since mη
0,1=0 and mη

02,12
=1 if η≥2. We set S0 :=U0,1

τ1 ∩ (X0×Y1) and

S1 := S0 ∩ N0 ∩ ΩX2 . As U0,1 ⊆N0
τ2

, S0 ⊆ S1
τ1

. In particular, Πε[S1] is ΣX-dense in Πε[S0] for

each ε∈2, by continuity of the projections. As (x0, y1)∈U0,1 ∩ (Π0[S0]×Π1[S0]), this implies that

U0,1 ∩ (Π0[S1]×Π1[S1]) is not empty and contains some (x02 , y12) (the projections maps are open).

This gives y10∈X with (x02 , y10)∈S1, and x01∈X with (x01, y12)∈S1. As U0,1⊆Nη and S1⊆N0,

x02 6= x01 and y10 6= y12 . It remains to choose Σ
1
1 subsets X02 ,X01, Y10, Y12 of X with diameter at

most 2−2 such that (x0ε, y1ε)∈X0ε×Y1ε⊆X0×Y1 andX02∩X01=Y10∩Y12 =∅, as well as Σ 1
1 subsets

U02,12 , U02,10, U01,12 ofX2 with diameter at most 2−2 such that (x02 , y12)∈U02,12 ⊆U0,1∩(X02×Y12)

and (x0ε, y1ε)∈U0ε,1ε⊆U0,1
τ1 ∩N0 ∩ΩX2 ∩ (X0ε×Y1ε). This completes the construction for l=2.

- Assume that our objects are constructed for the level l ≥ 2, which is the case for l = 2. Note that

(sl0, tl1) /∈D0, and we already noticed that sl(l−1)= tl(l−1) since l≥2, so that (sl, tl)∈D0. We set

(s̃, t̃) :=(sl−10, tl−11) (which is not in D0), and

S0 :=
{(

(xs)s∈2l,0⊆s, (yt)t∈2l,1⊆t
)

∈X2l | ∀(s, t)∈T∩(2l×2l)\{(s̃, t̃)} (xs, yt)∈Us,t ∧

(xs̃, yt̃)∈N0
τ2 ∩ Us̃,t̃

τ1 ∩ (Xs̃×Yt̃)
}

,

S1 :=
{(

(xs)s∈2l,0⊆s, (yt)t∈2l,1⊆t
)

∈S0 | (xs̃, yt̃)∈N0 ∩ΩX2

}

.

We equip X2l with the product of the Gandy-Harrington topologies. Let us show that S1 is dense in

S0. Let (Us)s∈2l,0⊆s and (Vt)t∈2l,1⊆t be sequences of Σ 1
1 sets with

(

(Πs∈2l,0⊆s Us)×(Πt∈2l ,1⊆t Vt)
)

∩ S0 6=∅

with witness
(

(x′s), (y
′
t)
)

, Aε := {s∈2l | s(l−1)=ε}, and

U :={xs̃∈Us̃ | ∃(xs)s∈A0\{s̃}∈Πs∈A0\{s̃} Us ∃(yt)t∈A0 ∈Πt∈A0 Vt

∀(s, t)∈T ∩ (A0×A0) (xs, yt)∈Us,t},

V :={yt̃∈Vt̃ | ∃(xs)s∈A1 ∈Πs∈A1 Us ∃(yt)t∈A1\{t̃}
∈Πt∈A1\{t̃}

Vt

∀(s, t)∈T ∩ (A1×A1) (xs, yt)∈Us,t}.
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Then (x′s̃, y
′
t̃
)∈N0

τ2 ∩ Us̃,t̃
τ1 ∩ (U × V ). This gives (xs̃, y t̃) in N0 ∩ Us̃,t̃

τ1 ∩ (U × V ) ∩ ΩX2 .

We choose witnesses (xs)s∈A0\{s̃}, (yt)t∈A0 (resp., (xs)s∈A1 , (yt)t∈A1\{t̃}
) for the fact that xs̃ ∈ U

(resp., yt̃ ∈ V ). Then
(

(xs), (yt)
)

∈
(

(Πs∈2l,0⊆s Ut)× (Πt∈2l ,1⊆t Vt)
)

∩ S1, as desired.

The sets Uε :=Πsl [Sε] and Vε :=Πtl [Sε] are Σ 1
1 sets. As S1 is dense in S0, U1 (resp., V1) is dense

in U0 (resp., V0). Note that (xsl , ytl) ∈ Usl,tl ∩ (U0×V0). As U1 (resp,. V1) is dense in U0 (resp.,

V0), Usl,tl meets U1×V1.

Let (sl0, tl1)
R be the R-predecessor of (sl0, tl1). Assume first that (sl0, tl1) ∈ Dη. Then

(sl0, tl1)
R ∈ Dη too. Note that Usl,tl ⊆U(sl0,tl1)R

τ1
since (sl0, tl1)

R R (sl, tl). Thus U(sl0,tl1)R
τ1

meets U1×V1. This gives (xsl0, ytl1)∈U(sl0,tl1)R
∩(U1×V1). We choose witnesses (xs0)s∈2l\{sl},0⊆s,

(yt0)t∈2l,1⊆t (resp., (xs1)s∈2l,0⊆s, (yt1)t∈2l\{tl},1⊆t) for the fact that xsl0 ∈U1 (resp., ytl1 ∈ V1). As

(xsl0, ytl1)∈U(sl0,tl1)R
⊆Nη and (xslε, ytlε)∈N0, xsl0 6=xsl1 and ytl0 6=ytl1. As in the proof of The-

orem 3.3, the s-acyclicity ofA0∪A1 and the fact thatO0, O1 are disjoint ensure the fact that xs0 6=xs1
and yt0 6=yt1 for s, t arbitrary with the right first coordinate. Then we choose Σ

1
1 subsets Xsε, Ytε of

X with diameter at most 2−l−1 such that (xsε, ytε)∈Xsε×Ytε⊆Xs×Yt and Xs0∩Xs1=Ys0∩Ys1=∅,

as well as Σ 1
1 subsets Usε,tε′ of X2, with diameter at most 2−l−1, containing (xsε, ytε′) and contained

in Xsε×Ytε, such that

- Usl0,tl1⊆U(sl0,tl1)R ,

- Us̃ε,t̃ε⊆Us̃,t̃
τ1 ∩N0 ∩ ΩX2 ,

- Usε,tε⊆Us,t if (s, t) 6=(s̃, t̃).

The argument is the same if (sl0, tl1), (sl0, tl1)
R ∈Dθ . So it remains to study the case where

(sl0, tl1)∈Dθ′ and (sl0, tl1)
R ∈Dθ, and θ′<θ. In this case, note that U(sl0,tl1)R ∩ (U1×V1) is not

empty and contained in Nθ⊆Nθ′
τ2

. This gives (xsl0, ytl1)∈Nθ′ ∩ U(sl0,tl1)R
τ1 ∩ ΩX2 ∩ (U1×V1),

and we conclude as before. �

Consequences

Corollary 8.4 Let 1≤η<ω, X be a Polish space, and A,B be disjoint analytic relations on X such

that A is contained in a pot(∆0
2) s-acyclic relation. Then exactly one of the following holds:

(a) the set A is separable from B by a pot
(

Dη(Σ
0
2)
)

set,

(b) (2ω, 2ω ,Nη, ⌈T ⌉\Nη) ⊑ (X,X,A,B), via a square map.

Proof. Let R be a pot(∆0
2) s-acyclic relation containing A. By Lemma 8.2, (a) and (b) cannot

hold simultaneously. So assume that (a) does not hold. Then A is not separable from B ∩ R by

a pot
(

Dη(Σ
0
2)
)

set. This allows us to apply Theorem 8.3. �

Corollary 8.5 Let 1≤η<ω, X be a Polish space, and A,B be disjoint analytic relations on X. The

following are equivalent:

(1) there is R∈Σ
1
1 s-acyclic such that A ∩R is not separable from B ∩R by a pot

(

Dη(Σ
0
2)
)

set,

(2) there is f :2ω→X injective continuous such that Nη⊆(f×f)−1(A) and ⌈T ⌉\Nη⊆(f×f)−1(B).
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Proof. (1) ⇒ (2) We apply Theorem 8.3.

(2) ⇒ (1) We can take R :=(f×f)
[

⌈T ⌉
]

. �

9 Oriented graphs

Proof of Theorem 1.9. Theorem 1.3 provides Borel relations S0, S1 on 2ω . We saw that S0 ∪ S1 is

a subset of the body of a tree T , which does not depend on Γ, and is contained in N0×N1. We set

GΓ := S0 ∪ (S1)−1, so that GΓ is Borel. As S0 ∪ S1 ⊆N0×N1 and S0, S1 are disjoint, GΓ is an

oriented graph. If (a) and (b) hold, then GΓ is separable from G−1
Γ

by a pot(Γ) set S. Note that S
also separates S0=GΓ ∩ (N0×N1) from S1=G−1

Γ
∩ (N0×N1), which is absurd. Thus (a) and (b)

cannot hold simultaneously.

Assume now that (a) does not hold. Then there are g, h : 2ω → X continuous such that the

inclusions S0 ⊆ (g×h)−1(G) and S1 ⊆ (g×h)−1(G−1) hold. It remains to set f(0α) := g(0α) and

f(1β) :=h(1β). �

Proof of Theorem 1.14. We argue as in the proof of Theorem 1.9. The things to note are the follow-

ing:

- if G is s-acyclic or locally countable, then s(G) too,

- as noted in [Lo4], if G is separable from G−1 by a pot(Γ) set S, then S−1 ∈ pot(Γ) separates

G−1 from G, and ¬S−1 ∈ pot(Γ̌) separates G from G−1, so that we can restrict our attention to the

classes Dη(Σ
0
ξ) and ∆

0
2.

• If Γ has rank two, then Theorem 8.3 and Corollary 7.3 provide Borel relations S0, S1 on 2ω .

• If Γ=Dη(Σ
0
1), then Corollaries 3.6 and 3.9 provide f : 2ω→X injective continuous such that one

of the following holds:

(a) Nη0⊆(f×f)−1(G) and Nη1⊆(f×f)−1(G−1),

(b) Bη0⊆(f×f)−1(G) and Bη1⊆(f×f)−1(G−1).

The case (a) cannot happen since G−1 is irreflexive. �

Proof of Theorem 1.15. Note first that Sη0 ∪ (Sη1)
−1,Cη0 ∪ (Cη1)

−1,Bη0 ∪ (Bη1)
−1 and Bη1 ∪ (Bη0)

−1

are Borel oriented graphs with locally countable closure. As in the proof of Theorem 1.9, G is not

separable from G−1 by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set if G∈{Cη0 ∪ (Cη1)
−1,Bη0 ∪ (Bη1)

−1,Bη1 ∪ (Bη0)
−1}.

By Lemma 3.1, Sη0 ∪ (Sη1)
−1 is not separable from (Sη0)

−1 ∪ Sη1 by a pot
(

∆
(

Dη(Σ
0
1)
)

)

set.

• Assume now that (a) does not hold. Corollaries 4.5 and 4.7 provide

(A,B)∈{(Nη1 ,N
η
0), (B

η
1,B

η
0), (N

η
0 ,N

η
1), (B

η
0 ,B

η
1), (S

η
0,S

η
1), (C

η
0 ,C

η
1)}

and f :2ω→X injective continuous such that A⊆(f×f)−1(G) and B⊆(f×f)−1(G−1).
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The pair (A,B) cannot be in {(Nη1,N
η
0), (N

η
0 ,N

η
1)} since G andG−1 are irreflexive. It is enough to

show the existence of f :2ω→2ω injective continuous such that Bη0∪(B
η
1)

−1⊆(f×f)−1(Bη1∪(B
η
0)

−1)
to see that (b) holds.

- We use the notation of the proof of Proposition 4.4. Let us show that

F
parity(η)
θ :=F

parity(η)
θ,1 ⊆Cθ

if θ<η (where Aε=Nηε and the closures refer to τ1). We argue by induction on θ. Note first that

F
parity(η)
0 =Nη

parity(η)
=

⋃

parity(ϕ(s))=0

Gr(fs)⊆C0=C0,

by the proof of Proposition 4.4. Then, inductively,

F
parity(η)
θ =Nη

|parity(θ)−parity(η)|
∩
⋂

θ′<θ F
parity(η)
θ′

⊆
⋃

parity(ϕ(s))=parity(θ) Gr(fs) ∩
⋂

θ′<θ

⋃

ϕ(s)≥θ′ Gr(fs)=Cθ=Cθ,

by the proof of Proposition 4.4.

- From this we deduce that Nη0 ∩
⋂

θ<η F
parity(η)
θ is contained in

(

⋃

parity(ϕ(s))=parity(η)

Gr(fs)
)

∩
⋂

θ<η

Cθ⊆Gr(f∅)=∆(2ω).

As Nη0 ∪Nη1 is locally countable and Nη0 ∩
⋂

θ<η F
parity(η)
θ ⊆∆(2ω), the proof of Theorem 3.3 gives

h :2ω→2ω injective continuous such that Nη0⊆(h×h)−1
(

(Nη0)
−1

)

and Nη1⊆(h×h)−1
(

(Nη1)
−1

)

(we

are in the case 2 of this proof). The map f :εα 7→(1−ε)h(α) is as desired.

• As ∆(2ω) is contained in the closure of Sη0 ∪ (Sη1)
−1, this last relation is not below the two others.

- Assume, towards a contradiction, that Bη0∪(Bη1)
−1 is below Sη0∪(Sη1)

−1. This gives s∈2<ω and

ε∈ 2 such that
(

N0s, N1s,B
η
0 ∩ (N0s×N1s),B

η
1 ∩ (N0s×N1s)

)

⊑
(

2ω, 2ω, (Sηε)1−2ε, (Sη1−ε)
1−2ε

)

.

By Lemma 3.1, Nη0 ∩N
2
s is not separable from Nη1 ∩N

2
s by a pot

(

Dη(Σ
0
1)
)

set. As Nη0 ∪Nη1 is locally

countable and Nη0 ∩
⋂

θ<η F
parity(η)
θ ⊆∆(2ω), the proof of Theorem 3.3 gives h : 2ω→Ns injective

continuous such that Nηǫ ⊆(h×h)−1(Nηǫ ∩N2
s ) for each ǫ∈2 (we are in the case 2 of this proof). This

implies that (2ω, 2ω,Bη0,B
η
1) ⊑

(

N0s, N1s,B
η
0 ∩ (N0s×N1s),B

η
1 ∩ (N0s×N1s)

)

and

(2ω, 2ω,Bη0,B
η
1) ⊑

(

2ω, 2ω, (Sηε)
1−2ε, (Sη1−ε)

1−2ε
)

.

By Corollary 3.9, (2ω , 2ω,Nη0,N
η
1) ⊑ (2ω , 2ω,Bη0,B

η
1), so that

(2ω, 2ω,Nη0,N
η
1) ⊑

(

2ω, 2ω, (Sηε)
1−2ε, (Sη1−ε)

1−2ε
)

.

But this contradicts the proof of Proposition 4.4.
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- We will show that (2ω, 2ω,Cη0,C
η
1) ⊑ (2ω, 2ω ,Sη0,S

η
1). Using the proof of the previous point,

this will show that Bη0 ∪ (Bη1)
−1 is not below Cη0 ∪ (Cη1)

−1.

We use the notation of the proof of Proposition 4.4. Let us show that Gθ :=Gθ,1⊆Cθ if 1≤θ≤η
(where Aε=Sηε and the closures refer to τ1). We argue by induction on θ. Note first that

G1=Sη0 ∩ Sη1=U
0
0 ∩ U1

0 =C
0
1 ∪ C1

1 =C1

by the proof of Proposition 4.4. Then, inductively,

Gθ+1=Sη0 ∩Gθ ∩ Sη1 ∩Gθ⊆U
0
0 ∩ Cθ ∩ U1

0 ∩Cθ⊆Cθ+1

and Gλ=
⋂

θ<λ Gθ⊆
⋂

θ<λ Cθ=Cλ if λ is limit.

From this we deduce that Gη ⊆ Cη = Gr(f∅) = ∆(2ω). As Sη0 ∪ Sη1 is locally countable and

Gη⊆∆(2ω), the proof of Theorem 4.3 gives h : 2ω→Ns injective continuous such that the inclusion

Sηǫ ⊆ (h×h)−1(Sηǫ ∩N2
0 ) holds for each ǫ∈2 (we are in the case 2 of this proof). The maps defined

by f(0α) :=h(α), f(1α) :=1α, g(1β) :=h(β) and g(0β) :=1β, are as desired.

- Assume, towards a contradiction, that Cη0 ∪ (Cη1)
−1 is below Sη0 ∪ (Sη1)

−1, with witness f . This

gives s∈2<ω\{∅} and ε∈2 such that Cηǫ ∩ (N0s×N1s)⊆(f×f)−1
(

(Sη|ǫ−ε|)
1−2ε

)

for each ǫ∈2. As

in the previous point, there is h :2ω→Ns injective continuous such that

Sηǫ ⊆(h×h)−1(Sηǫ ∩N
2
s )

for each ǫ∈2. This implies that if we set k(ǫα) :=ǫh(α) and l :=f ◦ k, then

Cηǫ ⊆(k×k)−1
(

Cηǫ ∩ (N0s×N1s)
)

and Cηǫ ⊆(l×l)−1
(

(Sη
|ǫ−ε|

)1−2ε
)

. As in the proof of Proposition 4.4, we see that the image of

{(0α, 1α) | α∈2ω}

by l×l is contained in the diagonal of 2ω , which is not possible by injectivity of l.

- Assume that η is a successor ordinal. The previous points show that if Cη0 ∪ (Cη1)
−1 is below

Bη0 ∪ (Bη1)
−1, then (2ω, 2ω ,Cη0,C

η
1) ⊑

(

2ω, 2ω, (Bηε)1−2ε, (Bη1−ε)
1−2ε

)

for some ε∈ 2. We saw that

there is h :2ω→N0 injective continuous such that Nηǫ ⊆(h×h)−1(Nηǫ ∩N2
0 ) for each ǫ∈2. The maps

defined by f(0α) := h(α), f(1α) := 1α, g(1β) := h(β) and g(0β) := 1β are witnesses for the fact

that (2ω, 2ω ,Bη0,B
η
1) ⊑ (2ω, 2ω ,Nη0,N

η
1), so that (2ω, 2ω ,Cη0,C

η
1) ⊑

(

2ω, 2ω, (Nηε)1−2ε, (Nη1−ε)
1−2ε

)

.

The maps α 7→ 0α and β 7→ 1β are witnesses for the fact that (2ω, 2ω,Sη0,S
η
1) ⊑ (2ω, 2ω,Cη0,C

η
1).

Thus (2ω, 2ω,Sη0,S
η
1) ⊑

(

2ω, 2ω, (Nηε)1−2ε, (Nη1−ε)
1−2ε

)

, which contradicts the proof of Proposition

4.4.

- Assume that η is a limit ordinal. Let us show that Cη0 ∪ (Cη1)
−1 is below Bη0 ∪ (Bη1)

−1. The proof

of Proposition 4.4 provides h : 2ω → 2ω injective continuous such that Sηε ⊆ (h×h)−1(Nηε) for each

ε∈2. It remains to set f(εα) :=εh(α). �
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10 Negative results

- By Theorem 15 in [L4], we cannot completely remove the assumption that A is s-acyclic or locally

countable in Corollary 6.4. We can wonder whether there is an antichain basis if this assumption is

removed (for this class Π0
2 or any other one appearing in this section). This also shows that we cannot

simply assume the disjointness of the analytic sets A,B in Theorem 6.3 and Corollaries 6.5, 6.7.

- We can use the proof of the previous fact to get a negative result for the class ∆0
2.

Theorem 10.1 There is no tuple (X,Y,A,B), where X,Y are Polish and A,B are disjoint analytic

subsets of X×Y, such that for any tuple (X ,Y,A,B) of this type, exactly one of the following holds:

(a) A is separable from B by a pot(∆0
2) set,

(b) (X,Y,A,B) ⊑ (X ,Y,A,B).

Proof. We argue by contradiction. By Lemma 7.1, we get (X,Y,A,B) ⊑ (2ω, 2ω, ⌈T ⌉∩E0
0, ⌈T ⌉∩E

1
0).

This shows that A,B are locally countable. As (a) and (b) cannot hold simultaneously, A is not

separable from B by a pot(∆0
2) set. By Corollary 7.4 we get

(2ω, 2ω , ⌈T ⌉ ∩ E0
0, ⌈T ⌉ ∩ E1

0) ⊑ (X,Y,A,B),

so that we may assume that (X,Y,A,B)=(2ω , 2ω, ⌈T ⌉ ∩ E0
0, ⌈T ⌉ ∩ E1

0).

• In the proof of Theorem 15 in [L4], the author considers a setA=
⋃

s∈(ω\{0})<ω Gr(ls|G), where the

ls’s are partial continuous open maps from 2ω into itself with dense open domain, and G is the inter-

section of their domain. Moreover, the ls’s have the properties that ls(x) 6= lt(x) if t 6=s, and ls(x) is

the limit of
(

lsk(x)
)

k∈ω
, for each x∈G. We set, for ε∈2, Aε :=

⋃

s∈(ω\{0})<ω ,|s|≡ε (mod 2) Gr(ls|G),
so that A0 and A1 are disjoint Borel sets.

Let us check that A0 is not separable fromA1 by a pot(∆0
2) set. We argue by contradiction, which

gives D∈pot(∆0
2) and a dense Gδ subset H of 2ω such that D∩H2∈∆

0
2(H

2). We may assume that

H ⊆G. Note that H ∩
⋂

s∈(ω\{0})<ω l−1
s (H) is a dense Gδ subset of 2ω , and thus contains a point

x. The vertical section Ax is contained in H . In particular, the disjoint sections (A0)x and (A1)x are

separable by a ∆
0
2 subset D of the Polish space H . It remains to note that D ∩ Ax

H
is a dense and

co-dense ∆
0
2 subset of Ax

H
, which contradicts Baire’s theorem.

This gives u :N0→2ω and v :N1→2ω with ⌈T ⌉ ∩ Eε0⊆(u×v)−1(Aε).

• We set B1 := ⌈T ⌉ ∩ (E0
0 ∪ E1

0). Note that B1 /∈ pot(Gδ), since otherwise ⌈T ⌉ ∩ E0
0 and ⌈T ⌉ ∩ E1

0

are two disjoint pot(Gδ) sets, and thus pot(∆0
2)-separable. Then we can follow the proof of Theorem

15 in [L4]. This proof gives U :F →G and V :F → 2ω injective continuous satisfying the inclusion
⋃

n∈ω Gr(fn)⊆(U×V )−1(A).

The only thing to check is that there is (c, d) in
⋃

n∈ω ωn×ωn+1 and a nonempty open sub-

set R of Dfc,d such that
(

U(x), V
(

fc,d(x)
)

)

/∈ Gr(l∅) for each x ∈ R. We argue by contradic-

tion, which gives a dense Gδ subset K of F such that
⋃

n∈ω Gr(fn|K) ⊆ (U|K×V )−1
(

Gr(l∅|G)
)

.

As (U|K ×V )−1
(

Gr(l∅|G)
)

is the graph of a partial Borel map,
⋃

n∈ω Gr(fn|K) too. Therefore
⋃

n∈ω Gr(fn|K)∈pot(Π0
1)\pot(Gδ), which is absurd. �
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This shows that we cannot completely remove the assumption that A ∪ B is s-acyclic or locally

countable in Corollary 7.3. This also shows that we cannot simply assume the disjointness of the

analytic sets A,B in Theorem 7.2 and Corollary 7.4.

- By Theorem 2.16 in [L3], we cannot completely remove the assumption that A ∪ B is s-acyclic or

locally countable in Corollary 3.10. This also shows that we cannot simply assume disjointness in

Theorem 3.3 and Corollary 3.11.

We saw that there is a version of Corollary 6.7 for Γ=Σ
0
1, where we replace the class Fσ with

the class of open sets. We cannot replace the class Fσ with the class of closed sets.

Proposition 10.2 There is no triple (X,A,B), where X is Polish and A,B are disjoint analytic re-

lations on X such that A is contained in a potentially closed s-acyclic or locally countable relation

such that, for each triple (X ,A,B) of the same type, exactly one of the following holds:

(a) the set A is separable from B by a pot(Σ0
1) set,

(b) (X,X,A,B) ⊑ (X ,X ,A,B).

Proof. We argue by contradiction, which gives a triple. Note that A is not separable from B by a

pot(Σ0
1) set. Theorem 9 in [L5] gives F,G :2ω→X continuous such that ∆(2ω)⊆(F×G)−1(A) and

G0⊆ (F×G)−1(B). We set A′ := (F×G)[∆(2ω)], B′ := (F×G)[G0] and C′ := (F×G)[G0]. Note

that A′, C′ are compact and C′ is the locally countable disjoint union of A′ and B′. In particular, B′

is D2(Σ
0
1), A

′ ⊆ A, B′ ⊆ B, and A′ is not separable from B′ by a pot(Σ0
1) set. So we may assume

that A,B are Borel with locally countable union which is the closure of B. Corollary 3.10 gives

f ′, g′ :2ω→X injective continuous such that G0=G0 ∩ (f ′×g′)−1(B). In particular,

∆(2ω)⊆(f ′×g′)−1(B\B)=(f ′×g′)−1(A).

This means that we may assume that X=2ω , A=∆(2ω) and B=G0.

The proof of Theorem 10 in [L5] provides a Borel graph B on X := 2ω with no Borel countable

coloring such that any locally countable Borel digraph contained in B has a Borel countable coloring.

Consider the closed symmetric acyclic locally countable relation A := ∆(2ω). As there is no Borel

countable coloring of B, A is not separable from B by a pot(Σ0
1) set. If f, g exist, then f=g since A

is contained in (f×g)−1(A). This implies that f is a homomorphism from G0 into B. The digraph

(f×f)[G0] is locally countable and Borel since f is injective. Thus it has a Borel countable coloring,

and G0 too, which is absurd. �

For oriented graphs, we cannot completely remove the assumption that G is s-acyclic or locally

countable in Theorem 1.14. Let us check it for Γ=∆
0
2.

Proposition 10.3 There is no tuple (X,G), where X is Polish and G is an analytic oriented graph on

X, such that for any tuple (X ,G) of this type, exactly one of the following holds:

(a) the set G is separable from G−1 by a pot(∆0
2) set,

(b) there is f :2ω→X injective continuous such that G⊆(f×f)−1(G).
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Proof. We use the notation of the proof of Theorem 10.1, and argue by contradiction. Recall the

analytic s-acyclic oriented graph G
∆0

2
=(⌈T ⌉∩E0

0)∪(⌈T ⌉∩E
1
0)

−1 considered in the proof of Theorem

1.14. Note that there is f0 :X→2ω injective continuous such that G⊆(f0×f0)
−1(G

∆0
2
). In particular,

G is s-acyclic and Theorem 1.14 applies. This shows that we may assume that (X,G)=(2ω ,G
∆0

2
).

If R is a relation on 2ω , then we set GR :={(0α, 1β) | (α, β)∈R}. As A0 is not separable from

A1 by a pot(∆0
2) set, GA0 is not separable from GA1 by a pot(∆0

2) set. As GA0 ∪ GA1 ⊆N0×N1

and GA0 , GA1 are disjoint, H :=GA0 ∪ (GA1)
−1 is a Borel oriented graph, and H is not separable

from H−1 by a pot(∆0
2) set, as in the proof of Theorem 1.9. If f :2ω→2ω is injective continuous and

(⌈T ⌉ ∩ E0
0) ∪ (⌈T ⌉ ∩ E1

0)
−1⊆H, then on a nonempty clopen set S :=Nsq×Ntq , the first coordinate

is either preserved, or changed.

As in the proof of Lemma 7.1, we see that ⌈T ⌉ ∩E0
0 ∩ S is not separable from ⌈T ⌉ ∩E1

0 ∩S by a

pot(∆0
2) set. By Corollary 7.3, there is f :2ω→2ω injective continuous such that

⌈T ⌉ ∩ Eε0⊆(f×f)−1(⌈T ⌉ ∩ Eε0 ∩ S)

for each ε∈2. This proves the existence of g :2ω→2ω injective continuous such that

⌈T ⌉ ∩ (E0
0 ∪ E1

0)⊆(g×g)−1(GA).

This gives u :N0→2ω and v :N1→2ω injective continuous such that ⌈T ⌉∩ (E0
0∪E1

0)⊆(u×v)−1(A)
since the maps εα 7→ α are injective. But we saw that this is not possible in the proof of Theorem

10.1. �

Question. Are there versions of our results for the classes Dη(Σ
0
2), Ďη(Σ

0
2) (when ω≤ η <ω1) and

∆
(

Dη(Σ
0
2)
)

(when 2≤η<ω1)?
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