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1 Introduction

The reader should see [K] for the standard descriptive set theoretic notation used in this paper.
This work is a contribution to the study of analytic subsets of the plane. We are looking for results
of the following form: either a situation is simple, or it is more complicated than a situation in a
collection of known complicated situations. The notion of complexity we consider is the following,
and defined in [Lo3].

Definition 1.1 (Louveau) Let X, Y be Polish spaces, B be a Borel subset of X XY, and I be a
class of Borel sets closed under continuous pre-images. We say that B is potentially in I' (denoted
Be pot(I‘)) if there are finer Polish topologies o and T on X and Y, respectively, such that B, viewed
as a subset of the product (X,0)x (Y, 1), isinT.

The quasi-order <p of Borel reducibility was intensively considered in the study of analytic
equivalence relations during the last decades. The notion of potential complexity is a natural invariant
for <p:if E <p F and F €pot(I"), then E € pot(I") too. However, as shown in [L1]-[L6] and [L8],
< p is not the right notion of comparison to study potential complexity, in the general context, because
of cycle problems. A good notion of comparison is as follows. Let X, Y, X', Y’ be topological spaces
and A, BCXxY, A B CX'xY'. We write

(X,Y,A,B) < (X',Y',A',B) =
3f: X — X' 3g:Y =Y’ continuous with AC (f xg)~'(A") and BC (f xg)~}(B’).

Our motivating result is the following (see [L8]).

Definition 1.2 We say that a class T' of subsets of zero-dimensional Polish spaces is a Wadge class
of Borel sets if there is a Borel subset A of w*” such that for any zero-dimensional Polish space X,
and for any AC X, Ais in T if and only if there is f : X — w* continuous such that A= f~1(A). In
this case, we say that A is I'-complete.

If T is a class of sets, then T':={—A | AT} is the dual class of T, and T is self-dual if ' =T
Weset A(T'):=I'NT.

Theorem 1.3 (Lecomte) Let I be a Wadge class of Borel sets, or the class Ag for some countable
ordinal £ > 1. Then there are concrete disjoint Borel relations Sg, S1 on 2% such that, for any Polish
spaces X, Y, and for any disjoint analytic subsets A, B of X XY, exactly one of the following holds:

(a) the set A is separable from B by a pot(T") set,
(b) (2&)7 244.)7 S07 Sl) < (X7 Y7 A7 B)

It is natural to ask whether we can have f and g injective if (b) holds. Debs proved that this is the
case if I' is a non self-dual Borel class of rank at least three (i.e., a class 22 or Hg with £ > 3). As
mentioned in [L8], there is also an injectivity result for the non self-dual Wadge classes of Borel sets
of level at least three. Some results in [L4] and [L8] show that we cannot have f and g injective if (b)
holds and T" is a non self-dual Borel class of rank one or two, or the class of clopen sets, because of
cycle problems again.



The work of Kechris, Solecki and Todorcevi¢ indicates a way to try to solve this problem. Let us
recall one of their results in this direction. All the relations considered in this paper will be binary.

Definition 1.4 Let X be a set, and A be a relation on X.

(a) A(X):={(x,y) € X? | =1y} is the diagonal of X.

(b) We say that A is irreflexive if A does not meet A(X).

(c) A=t :i={(z,y) € X? | (y,z) € A}, and s(A):= A U A~ is the symmetrization of A.

(d) We say that A is symmetric if A= A",

(e) We say that A is a graph if A is irreflexive and symmetric.

(f) We say that A is acyclic if there is no injective sequence (x;)i<p of points of X with n > 2,
(4, xi41) € A for each i <n, and (x,, xo) € A.

(g) We say that A is locally countable if A has countable horizontal and vertical sections (this
also makes sense in a rectangular product X xY').

Notation. Let (s, )ncw be a sequence of finite binary sequences with the following properties:

(@) (Sn)new is dense in 2<%, This means that for each s € 2<%, there is n € w such that s,, extends
s (denoted s C s,,).

() |sn|=n.
We put Go:={(5,07, sp17) | n€w A y€2“}. The following result is proved in [K-S-T].
Theorem 1.5 (Kechris, Solecki, Todorcevic) Let X be a Polish space, and A be an analytic graph on
X. We assume that A is acyclic or locally countable. Then exactly one of the following holds:

(a) there is c¢: X —w Borel such that AC (¢cxc) ™! (~A(w)),

(b) there is f:2 — X injective continuous such that s(Go) C (f x f)~1(A).

This seems to indicate that there is a hope to get f and g injective in Theorem 1.3.(b) for the first
classes of the hierarchy if we assume acyclicity or local countability. This is the main purpose of this
paper, and leads to the following notation. Let X, Y, X', Y’ be topological spaces and A, BC X xY,
A, B'CX'xY'. We write

(X,Y,A,B)C (X",)Y'A",B) &

3f: X — X’ 3g:Y =Y’ injective continuous with AC (f xg)~*(A’) and BC (f xg)~*(B").
We want to study the Borel and Wadge classes of the locally countable Borel relations: the Borel
classes of rank one or two, the Lavrentieff classes built with the open sets (the classes of differences

of open sets), their dual classes and their ambiguous classes. We will also study the Lavrentieff classes
built with the F; sets and their dual classes.

Definition 1.6 Let n<wi. If (Op)o<y, is an increasing sequence of subsets of a set X, then

D((Og)o<y) :={z€X | 30 <n parity(0) #parity(n) and x € Op\ ( U Oy) }.
0'<0
Now Dn(Eg)(X) :={D((0Op)o<y) | Y9 <n O € Eg(X)}, for each 1 < & < wy. The classes
Dy (22), Dy(22) and A(Dyy(%7)) form the difference hierarchy.
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Some recent work of the first author shows that having f and g injective in Theorem 1.3.(b) can
be used to get results of reduction on the whole product, under some acyclicity and also topological
assumptions. Some of the results in the present paper will be used by the first author in a future article
on this topic. This work is also motivated by the work of Louveau on oriented graphs in [Lo4].

Definition 1.7 Let X be a set, and A be a relation on X.
(a) We say that A is antisymmetric if AN A~ C A(X).
(b) We say that A is an oriented graph if A is irreflexive and antisymmetric.

It follows from results of Wadge and Martin that inclusion well-orders
{T'UT | T Wadge class of Borel sets},

giving rise to an ordinal assignment w(T'). If G is an analytic oriented graph, then we can define
w(@) as the least w(T") such that G is separable from G~! by a pot(T) set C. It is well defined by
the separation theorem. Moreover, it is useless in the definition to distinguish between dual classes,
for if C' separates G from G~!, then so does ~C"~!, which is potentially in I". The main property of
this assignment is that w(G) < w(H) if there is a Borel homomorphism from G into H. Louveau
also considers a rough approximation of w(G), which is the least countable ordinal £ for which G is
separable from G~! by a pot(Ag) set. He proves the following.

Theorem 1.8 (Louveau) Let £ € {1,2}. Then there is a concrete analytic oriented graph G¢ on 2
such that, for any Polish space X, and for any analytic oriented graph G on X, exactly one of the
following holds:

(a) the set G is separable from G~ by a pot(Ag) set,
(b) there is f:2* — X continuous such that G¢ C (f x f)~1(G).

Our main results are the following.
e We generalize Theorem 1.8 to all the Ag’s, and all the Wadge classes of Borel sets.

Theorem 1.9 Let I' be a Wadge class of Borel sets, or the class Ag for some countable ordinal £ > 1.
Then there is a concrete Borel oriented graph Gr on 2% such that, for any Polish space X, and for
any analytic oriented graph G on X, exactly one of the following holds:

(a) the set G is separable from G~ by a pot(T") set,

(b) there is f:2 — X continuous such that Gr C (f x f)~H(G).

We also investigate the injective version of this, for the first classes of the hierarchies again.

e In the sequel, it will be very convenient to say that a relation A on a set X is s-acyclic if s(A) is
acyclic.

Theorem 1.10 Let T'€ {D,(29), D,(2Y), D, (29), Dn(29) | 1<n<wi, 1<n<w}U{AS}. Then
there are concrete disjoint Borel relations Sy, S1 on 2 such that, for any Polish space X, and for any
disjoint analytic relations A, B on X with s-acyclic union, exactly one of the following holds:

(a) the set A is separable from B by a pot(T") set,
(b) (2&)7 244.)7 S07 Sl) C (X7 Y7 A7 B)



In fact, we prove a number of extensions of this result. It also holds

- for n=0 if we replace 2“ with 1,

-with f=gif T ¢{D,(29), D,(29) | n<w1 }; if T € {D,(Y), D;;(£9) | n< w1}, then there is an
antichain basis with two elements for the square reduction (it is rather unusual to have an antichain
basis but no minimum object in this kind of dichotomy),

- if we assume that A U B is locally countable instead of s-acyclic when I' C ITY (this also holds in
rectangular products X xY),

- if we only assume that A is s-acyclic or locally countable when I" =TIT9.
The situation is more complicated for the ambiguous classes.

Theorem 1.11 Let T € {A(D,(X2Y)) | 1 <n <wi}. Then there is a concrete finite antichain A,
made of tuples (2*,2%,Sy,S1) where So, S1 are disjoint Borel relations Sy, S1 on 2%, such that, for
any Polish space X, and for any disjoint analytic relations A, B on X whose union is contained in a
potentially closed s-acyclic relation R, exactly one of the following holds:

(a) the set A is separable from B by a pot(T") set,

(D) there is (2¥,2% A, B) e A with (2¥,2¥, A,B) C (X,Y, A, B).
Here again, we can say more. This also holds

- if we assume that R is locally countable instead of s-acyclic (this also holds in rectangular products
X XY),

- in all those cases, .A has size three if 77 is a successor ordinal, and size one if ) is a limit ordinal (it is
quite remarkable that the situation depends on the fact that 7 is limit or not, it confirms the difference
observed in the description of Wadge classes of Borel sets in terms of operations on sets present in
[Loll),

- with f =g, but in order to ensure this .4 must have size six if 7 is a successor ordinal, and size two
if 1 is a limit ordinal.

e We characterize when part (b) in the injective reduction property holds.

Theorem 1.12 Let T € {D,(29), D,(2Y), D, (29), Dn(29) | 1<n<wi, 1<n<w}U{AS}. Then
there are concrete disjoint Borel relations Sy, S1 on 2 such that, for any Polish space X, and for any
disjoint analytic relations A, B on X, the following are equivalent:

(1) there is an s-acyclic relation R € Z% such that AN R is not separable from BN R by a pot(T") set,
(2) (2°,2¥,80,81) C (X,Y, A, B).

The same kind of extensions as before hold (except that we cannot assume local countability
instead of s-acyclicity for the classes of rank two).



Theorem 1.13 Let T € {A(D,(XY)) | 1 <n <wi}. Then there is a concrete finite antichain A,
made of tuples (2*,2“,Sy,S1) where So, S1 are disjoint Borel relations Sy, S1 on 2%, such that, for
any Polish space X, and for any disjoint analytic relations A, B on X, the following are equivalent:
(1) there is a potentially closed s-acyclic relation R € Z% such that AN R is not separable from BN R
by a pot(T') set,

(2) there is (2¥,2% A, B) e Awith (2,2, A,B) C (X,Y, A, B).

Here again, the same kind of extensions as before hold.

e The injective versions of Theorem 1.9 mentioned earlier are as follows.

Theorem 1.14 Let T'c {D,(29), D,(29), Dp(29), Dn(29) | 1<n<wi, 1<n<w}U{AJ}. Then
there is a concrete Borel oriented graph Gr on 2% such that, for any Polish space X, and for any
analytic s-acyclic oriented graph G on X, exactly one of the following holds:

(a) the set G is separable from G~ by a pot(T") set,
(b) there is f:2* — X injective continuous such that G C (f x f)~1(G).

This result also holds if we assume that G is locally countable instead of s-acyclic when T C IT9.

Theorem 1.15 Let T' € {A(D,(2Y)) | 1 <n<wi}. Then there is a concrete finite antichain A,
made of Borel oriented graphs on 2, such that, for any Polish space X, and for any analytic oriented
graph G on X contained in a potentially closed s-acyclic relation, exactly one of the following holds:

(a) the set G is separable from G=1 by a pot(T) set,
(b) we can find Gy € A and f:2% — X injective continuous such that G C (f x f)~YG).

The same kind of extensions as before hold, except that .4 has size three if 7 is a successor ordinal,
and size two if 7 is a limit ordinal.

e At the end of the paper, we study the limits of our results and give negative results.

2 Generalities

The acyclic and the locally countable cases

In [K-S-TT, Section 6, the authors introduce the notion of an almost acyclic analytic graph, in
order to prove an injective version of the Gg-dichotomy for acyclic or locally countable analytic
graphs. We now give a similar definition, in order to prove injective versions of Theorem 1.3 for
the first classes of the hierarchies. This definition is sufficient to cover all our cases, even if it is not
always optimal.

Definition 2.1 Let X be a Polish space, and A be a relation on X. We say that A is quasi-acyclic if
there is a sequence (Cy,)ne., of pot(T1Y) relations on X with disjoint union A such that, for any s(A)-
path (2;)i<o with 29 # 22, and for any n1, ...,ny €w, C;, € {C,,, C,jil} (1<i<k) x1,Y1,..., Tk, Yk
in X\{z; | i<2}, if (20,71), (22,91) €C},, (w1, 72), (Y1, ¥2) €Chps oo (Th—1, 1), (Yr—1,Yr) €Cy,,
all hold, then xj, # yp.



Lemma 2.2 Let X be a Polish space, and A be a Borel relation on X. We assume that A is either
s-acyclic and pot(Zg), or locally countable. Then A is quasi-acyclic.

Proof. Assume first that A is s-acyclic and pot(39). Then we can write A = |J,,c,, Cn, Where
(Cn)new is a disjoint sequence of potentially closed relations on X. The acyclicity of s(A) shows
that A is quasi-acyclic.

Assume now that A is locally countable. By 18.10 in [K], A can be written as | J gew Gy, where
G is the Borel graph of a partial function f,, and we may assume that the G;’s are pairwise disjoint.
By 18.12 in [K], the projections of the G;’s are Borel. By Lemma 2.4.(a) in [L2], there is, for each
g, a countable partition (D}),e. of the domain of f, into Borel sets on which f, is injective. So the
C,,’s are the Gr(fq|Dg)’s. O

Topologies
Let Z be a recursively presented Polish space (see [M] for the basic notions of effective theory).

(1) The topology Az on Z is generated by Al(Z). This topology is Polish (see (iii) = (i) in the proof
of Theorem 3.4 in [Lo3]). The topology 71 on Z? is A%. If 2 §§<w§K, then the topology 7¢ on Z2
is generated by X{ N Hgg(ﬁ).

(2) The Gandy-Harrington topology on Z is generated by X (Z) and denoted X;. Recall the
following facts about X'; (see [L7]).

(a) Xz is finer than the initial topology of Z.
(b) Weset Qz :={z€Z | wf :ng}. Then Qy is X{ (Z) and dense in (Z, Xy).
(c) W N Qy is a clopen subset of (27, X7) for each W € X} (Z).

(d) (Q2z, Xz) is a zero-dimensional Polish space.

3 The classes D, (X9) and D, (%)
Examples

In Theorem 1.3, either Sy or Sy is not locally countable if I is not self-dual. If T' C Ag, we can
find disjoint analytic locally countable relations A, B on 2“ such that A is not separable from B by a
pot(T') set, as we will see. This shows that, in order to get partial reductions with injectivity, we have
to use examples different from those in [L8], so that we prove the following.

Notation. We introduce examples in the style of Gg in order to prove a dichotomy for the classes
D, (XY), where 7> 1 is a countable ordinal.

o If t €2<% then N;:={a€2¥ | t Ca} is the usual basic clopen set.



e As in Section 2 in [L2] we inductively define ¢, :w<“—{—1} U (n+1) by ¢,(0)=n and

—1if ¢, (s) <0,
0 if s)=0+1,
py(sn) = #als)

an odd ordinal such that the sequence (gon(sn))n <., 1s cofinal in ¢, (s)
and strictly increasing if ¢, (s) >0 is limit.

If no confusion is possible, then we will write ¢ instead of ¢,,. We set T;,:={scw<* | ¢, (s)#—1},
which is a wellfounded tree.

e Let (pg)qew be the sequence of prime numbers, and < . >, : T}, —w be the following bijection. We

define I:T;, —w by I(()) :=0 and I(s) ::pg(o)ﬂ...prg"i‘;l)ﬂ if s#0. As [ is injective, there is an
increasing bijection J : I[T})] — w. We set < . >, :=.J o I. Note that < sq¢ >, — < s >, >q+1if

sq€T,. Indeed, I(s0), ..., I (s(g—1)) are strictly between I(s) and I(sq).

o Let 1) : w — 2<% be the map defined by 0,0,0,0,1,1,0%,0%,01,01,10,10,12,12, ..., so that
[Y(g)|<gand [{2n [ new}], P[{2n+1 | new}] =25

e Foreach s € T,), we define (t2,t!) € (2x2)<“ by ty=0,and 5, = t59)(q)0<se>n—<s>n—[¥(a)[-1¢,

S§7°78
Note that this is well defined, [t5| =< s >, and Card({l < < s >,| t2(I) #t:(1)}) =|s| for each
seT,.

o We set 77:={ (tw, tiw) | s€ T, A we2<“}. The following properties are satisfied.

-Tmisatreeon 2x2, and [T7| CEg:={(a, 8) €2¥ x2¥ | Imew Vn>m a(n)=LF(n)} is locally
countable.

-1If (s,t) €T and s(1) #t(1), then s(1) <t(l).

- For each | € w, there is exactly one sequence (u,v) € 7" N (241 x 21+1) such that u(1) # v(l) since
t9,(< sq >y —1) #tL,(< sq >, —1) (in fact, (u,v) is of the form (¢2,¢}) for some s). In particular,

RG]

s(T7 N (2 x271))\ A (21 is a connected acyclic graph on 2!+, inductively.
e We set, fore €2,
NZ::{(tgfy,tify) | seT, A parity(|s|)=¢c A 762“}.

If s€T), then fs: Ny — Ny is the partial homeomophism with clopen domain and range defined by
fs(t%y) :=tlv, so that NY = User, parity(jsp=e Gr(fs). We set Cs:=,e,, Gr(fsq) when it makes
sense (i.e., when ¢, (s)>1). For =0, we set N{|:= 12 and N7 :=0) (in 12).

Lemma 3.1 Let 1) be a countable ordinal, and C be a nonempty clopen subset of 2.
(a) If o, (s)>1 and G is a dense G subset of 2, then Cs N (C NG)2CCs N (C' N G)2
(b) N{ N C? is not separable from N{ N C? by a pot(Dy (X)) set.
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Proof. (a) It is enough to prove that if ¢ € w, then Gr(f54) N C? C Gr(fs4) N (C N G)2. This comes
from the proof of Lemma 3.5 in [L1], but we recall it for self-containedness. Let U, V' be open subsets
of C such that Gr(fs;) N (U x V) #(. Then Ny, NV NGisadense G subset of Njy NV, so that
fiH(V N G) is a dense Gs subset of f;.'(V). Thus G N f,'(V) and G N f.}(V N G) are dense
Gy subsets of fs_ql(V). This gives « in this last set and U N fs_ql(V). Therefore (a, fsq(c)) is in
Gr(fsq) N(CNG)??NUXV).

(b) We may assume that n > 1. We argue by contradiction, which gives P € po‘[(D,7 (2(1))) ,and a dense
Gy subset of 2 such that P N G2 € D, (£9)(G?). So let (Og)g<y, be a sequence of open relations on

2% such that P N G2 = (U9<n,parity(€)7éparity(n) 09\(U0’<9 09/)) N GQ'

e Let us show that if § <7, s € T, and ¢(s) = 6, then Gr(fs) N (C N G)* C =0y if 6 < n, and
Gr(fs) N (C N G)? is disjoint from | Jy_, Og if 6 =1n. The objects s = and 6 = n will give the
contradiction.

e We argue by induction on . Note that if s € T}, |s| is even if and only if ¢(s) has the same parity

as 1. If § = 0, then |s| has the same parity as 7, thus Gr(fs) N (C N G)? gNgarity(n) NG?C-0y.

e Assume that the result has been proved for 8’ < 6. If 6 is the successor of ¢, then the induction
assumption implies that Gr(fs,) N (C N G)? C =Op for each ¢. So Cs N (C' N G)? C =Op and
Cs N (CNG)2C =0y By (a), we get Cs N (C'NG)?CCyn (CNG)2, which gives the desired
inclusion if § =7 since Gr(f5) C Cs.

If # <nand |s| is even, then ((s) has the same parity as 7 and the parity of 6’ is opposite to that of
n. Note that Gr(f5) N (CNG)?CNING?C Ugﬂ<n,parity(9”)¢parity(n) Ogr\(Ugrm <gr Ogrr) S=0.

If |s| is odd, then the parity of ¢(s) is opposite to that of 1 and 6’ has the same parity as 7). But if
s €T;, has odd length, then

Gr(fs) N (CNG)’CNING*CG\(|J Ow)U U Op\( | ) Oom).
0" <n 0" <n,parity (9")=parity (n) 0" <o"
This gives the result.
o If 6 is limit, then (o(sn)), _ is cofinal in ¢(s), and Gr(fs,) N (C' N G)? C =04y by the

induction assumption. If 6y < ¢(s), then there is n(6p) such that ¢(sn) > 6y if n > n(6p). Thus
Gr(fsn) N (C'NG)?C =0y, as soon as n>n (). But

Gr(f:)N(CNG)*C(CNG)P*NCN\Cs=CsnN (CNGACC | Gr(fan) N (C'NG)2C-0y,.
n>n(6o)

Thus Gr(f5) N (CNG)*C~(Uy g Op).

If @ < 1, as |s| has the same parity as 1, we get Gr(fs) N (C N G)%? C Ngarity(n) N G2, so that

Gr(fs) N (C NG)2C-0,. O



A topological characterization

Notation. Let 1 < ¢ < wICK. Theorem 4.1 in [L6] shows that if Ay, A; are disjoint 211 relations
on w*, then Ag is separable from A; by a pot(P) set exactly when Ag N Af = 0. We now

define the versions of Ag N A; ¢ for the classes Dy(22). Solete € 2and n < wCK. We define
No<o Fhe= (w*)?, and, inductively,

3
e .__ .
Fre=Aparityn— N [ Fie -
0<n

We will sometimes denote by Fg 5(AO, Aq) the sets Fg ¢ previously defined. By induction, we can
check that F; (A1, Ao)=F, . *(Ag, A1).

Fix a bijection — ((1)o, (1)1) from w onto w?, with inverse map (m, p) —< m,p >. We define,
for u€w=* and n€w, (u), €WS* by (u)n(p) :=u(< n,p >)if < n,p ><|ul.

Theorem 3.2 Ler 1 <¢< wICK, n=A+2k+e< w1CK with X limit, k € w and € € 2, and Ag, A be
disjoint Y| relations on w*. Then the following are equivalent:

(1) the set Ay is not separable from Ay by a pot (Dn(Zg)) set,
(2) the | set Fg ¢ is not empty.

Proof. This result is essentially proved in [L8]. However, the formula for Fg ¢ is more concrete here,
since the more general and abstract case of Wadge classes is considered in [L8]. So we give some
details.

e In [Lo-SR], the following class of sets is introduced. Let 1 < £ < wp and T, IV be two classes of
sets. Then A€ S¢(T,T") & A=, (4,1 Cp) U (B\U,z, Cp), where 4, €T, BET, and

(Cp)p>1 is a sequence of pairwise disjoint 22 sets. The authors prove the following:

B¢=5:({0}, {0}),
Dy 11(22) =S¢ (Dp(22), 22) if 6 <w,
DA(ED=5¢(] Do, (Z0),{0}) if A=sup,,», 6, is limit,
p=1

They also code the non self-dual Wadge classes of Borel sets by elements of w} as follows (we some-
times identify w{ with (w{’)*). The relations “u is a second type description” and “u describes I'”
(written v €D and I', =T" - ambiguously) are the least relations satisfying the following properties.

(a) If u=0°, then we D and T',, = {0}.

(b) Ifu=¢"1"v, withveD and v(0) =&, then u€ D and T, =T,

(c) If u=¢£"2"< uy > satisfies £ > 1, u, € D, and u,(0) > £ or uy(0) =0, then w € D and
r,= Sg(Ule Ty, Tyy).

They prove that I is a non self-dual Wadge class of Borel sets exactly when there is u € D such
that T'(w®) =T, (w®).
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o In [L8], the elements of D are coded by elements of w*. An inductive operator §) over w* is defined
and there is a partial function ¢:w® — w$ with ¢[$)>°] =D (see Lemma 6.2 in [L8]). Another operator
Jon (w®)3 is defined in [L8] to code the non self-dual Wadge classes of Borel sets and their elements
(see Lemma 6.5 in [L8]). We will need a last inductive operator &, on (w*)5, to code the sets that will
play the role of the X sets F7 .’s, via a universal set ¢ for the class IT{' (w* xw*). More precisely, if
(v, a9, a1, bo, by, ) € R, then by, by and r are completely determined by («, ag, 1) and in practice
a will be in $*°, so that we will write 7 =7(«, ag, a1) =7(u, ag, a1) if u=c(c). Our X} sets Ag, Ay
are coded by ag, a1, in the sense that A. = —l,_. By Lemma 6.6 in [L8], there is a recursive map
A (w?)? = w? such that U (ay = (“Uy) N Nps1 Uy, ! if a € Af codes a wellordering,

where 7 (1)) ., is a bijection from w* onto (w*)“. In the sequel, all the closures will be for 7.

pe

e We argue by induction on 7. As Do(Eg) = {0}, Ay is separable from A; by a DO(Eg) set when
Ao =10, which is equivalent to FOO5 =Ap=0. As D, (22) = 22, Ay is separable from A; by a Dl(Eg)
set when Ay N A1 =() by Theorem 4.1 in [L6], which is equivalent to Fll,5 =AgN A =0.

Let us do these two basic cases in the spirit of the material from [L8] previously described, which
will be done also for the other more complex cases.

- Note that DO(Eg) = {0} = To=. Let a € Al such that (a), codes a wellordering of order type
0 for each n € w. A look at the definition of $) shows that o € $°°. Another look at Definition
6.3 in [L8] shows that « is normalized (this will never be a problem in the sequel as well). Lemma
6.5 in [L8] gives 5,7 € w* with (o, 3,7) € J°. Lemma 6.7 in [L8] gives by, b1,r € w* with
(a, a1, a9, bo, by, r) € K. By Theorem 6.10 in [L8], A; is separable from Ag by a pot(Do(Eg)) set
if and only if =, =(). A look at the definition of & shows that 7 = ag, so that —{,. = Ay.

- Now Dl(Eg) = 22 = Sg({@}, {@}) = Sg(rolooo,rooo) = Sﬁ(Upzl Folooo,rooo) = Fvl’ where
v :=£2 < 0°°,010%°,010°°, ... >. As above, A; is separable from Ay by a pot(Dl(Eg)) set if and
only if =i, = 0. A look at the definition of & shows that r = by = A(«a1, < ag,ai,ay,... >), where
|y | =¢&. Thus U, = Ag N Aj.

In the general case, there is v, € D such that Dn(Zg) =T, and A; is separable from Ag by a
pot(Dn(Eg)) set if and only if ~U,(,, 4, q0) = 0. Moreover,

(a) if v, =0, then r(vy, a1, ag) = ao,

(b) if v, =717 v, then r(vy, a1, ap) = a1,

() if vy, = £727< u, > and 7, = 7(up, a1, ap), then r(vy,a1,ap) = r(uo, b1, by), where by
definition b; := A(a, < a;,71, 72, ... >).

It is enough to prove that F . = =l
discussion.

unsa1,a0) and we may assume that 7 > 2 by the previous

e If 7 is a limit ordinal, then fix a sequence (7),)pe. of even ordinals cofinal in 7. Note that

Dn(zg):‘sé(u an(zg)v {@}):Sg(u I‘U/p7I‘U/O):I‘U7]7

p=>1 p>1

where v, =727 < u, >.
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Therefore, if 1), := r(up, ai,ap), then ng = —U,, if p> 1, by the induction hypothesis. On the
other hand, 7 (ug, b1, bg) = bg. But by =A(a, < ag,r1,r2,... >), so that
“Upy = (—Uag) N ﬂ Uy,
p>1
as required.
o If n=0+1, then
Dy(22)=S5¢(Dy(22), 2) =S¢ (| T, Tug) =T,
p>1

where v, =727 < w, >. Therefore, if r;, := r(uy, a1, ap), then Fj, = Uy, if p> 1, by the
induction hypothesis (there is a double inversion of the superscript, one because the parity of 6 is
different from that of 7, and the other one because there is a complement, so that the roles of Ag, Ay
are exchanged). By the case 7= 1 applied to by and by, ~Uy.( p, by) = ~Us, N —Us, . Note that

—Up, = (—Ua,;) N ﬂ Uy, = (~Uq,;) N Fg,g
p>1
since b; = A(a1, < a;,71,72,... >). If r:=7r(vy, a1, ap), then

Uy = (Uag) N Fi e N “Uay N Fg = Ao N Fi .

because F(;i£ =A1N ﬂp<9 Fp’ig CATNAIN ﬂp<9 F/if CAIN ng (since the parity of 6 is different

from ¢). Finally, =U, = Ag N Fg5 :F;S’

as required. O

The main result

We set, for n<wi and e €2, BZ :={(0a, 13) | (c, 8) €NZ}.

Theorem 3.3 Let > 1 be a countable ordinal, X be a Polish space, and Agy, A1 be disjoint analytic
relations on X such that Ay U A is quasi-acyclic. The following are equivalent:

(1) the set Ay is not separable from Ay by a pot (Dn(Z(l))) set,

(2) there is (Ao, A1) € {(NJ,NY), (BJ,B])} such that (2¥,2¥,Ag,A1) C (X, X, Ao, A1), via a
square map,

(3) (2w72w7N87N717) E (X7 X7 A07A1)-

Proof. (1) = (2) Let € := parity(n), and (C))pe., be a witness for the quasi-acyclicity of Ay U A;.
We may assume that X =w*. Indeed, we may assume that X is zero-dimensional, and thus a closed
subset of w*. As Ag is not separable from A; by a pot(D, (7)) set in X2, it is also the case in
(w?)?, which gives f:2% —w®”. As A(2¥) CN{ and {(0a, 1) | a €2*} C B, the range of A(2¥)
by f x f is a subset of X2, so that f takes values in X. We may also assume that Ag, A; are X!, and
that the relation “(z,y) € C,” is Al in (x,y, p). By Theorem 3.2,

T1
Fe=Agn () F;
0<n

is a nonempty X} relation on X (where F.:=F;

1> for simplicity).
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We set, for § <n, Fp:=A g N Nor<o Fi» so that = Fy™". We put, for 0 < ),

[parity (6)—
Dazz{(tgw,ti )ET" | @(s)=0},

so that (Dp)g<, is a partition of 7. As Dy = A(2<%), Giy1:=5((Up, Do) N (27 x21)) isa

connected acyclic graph on 2/+1 for each [ € w.

Case 1 F,, Z A(X).

Let (z,y) € F,\ A(X), and Og, Oy be disjoint A} sets with (z,y) € Op x O1. We can replace
F,, Ap and Ay with their intersection with Oy x O if necessary and assume that they are contained
in OO X 01 .

e We construct the following objects:

- sequences (Zs)gsco<w, (Ys)sea<w of points of X,
- sequences (X)sco<w, (Ys)sea<w of X subsets of X,
- asequence (Usy)(s,pye7n of X1 subsets of X2, and ®: 77— w.

We want these objects to satisfy the following conditions:

( ) xSGX A ySGY A (1’8,%)6[]5,5

(2) Xse CTXsCOAxNOg N Yee CY,CSQx N0 A UstCCcp(st) NQx2 N (XsxYy)
(3) diamgp (Xs), diamgy (Ys), diamgy (Us,r) <27 sl

(4) Xs0 N Xsl =Ys0N Y1 =0

(5) se, ts = s ,t

(6) Ust CFyif (s,t) €Dy

e Assume that this has been done. Let « € 2“. The sequence (Xa|n)n6w is a decreasing sequence of
nonempty clopen subsets of Qx with vanishing diameters, which defines fo(a) € (,,c,, Xafn- As
the Gandy-Harrington topology is finer than the original topology, fo:2“ — Oy is continuous. By (4),
fo is injective. Similarly, we define f;:2“ — O injective continuous. Finally, we define f:2¥ — X
by f(ea):= f:(«), so that f is also injective continuous since Oy, O; are disjoint.

If (Ocr, 13) € B, then there is 6 <7 of the same parity as 7 such that (a, 3)|n € Dy if n>ng. In
this case, by (1)-(3) and (5)-(6), (U (a, 5)|")n>n0 is a decreasing sequence of nonempty clopen subsets
of Ag N Q2 with vanishing diameters, so that its intersection is a singleton {F(a, 3)} C Ag. As

(Zajn»Ypn) converges (for X2, and thus for Y3 to Fa, B8), (f(0c), f(18)) = F(a, B) € Ag. If
(Ocr, 13) €BY, then the parity of § is opposite to that of 7 and, similarly, (f(0c), f(13)) € A;.

e So let us prove that the construction is possible. Note that (¢§, t5)= (0, 0), 7N (2°%x2%) ={(0,0)}
and (0, 0) € Dy. Let (9, yp) € F;y N Qx2, and (0, ) €w such that (9, yy) € Co(p,0). As Qx2 CO%,
7, yg € Qx. We choose X subsets Xy, Yy of X with GH-diameter at most 1 such that

(ac@,y@) eXyxYyC (QX N Oo) X (QX N 01),
as well as a X subset Uy g of X? with GH-diameter at most 1 such that
(@, yp) € Up,p S F N Cop(p,0) N x2 N (X x Yp),

which completes the construction for the length { =0.
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Assume that we have constructed our objects for the sequences of length [. Let u € w<* and g€ w
with [+1=< uq >, which gives w € w< with (J, . )= (tSw0, t;wl). We set

U::{xeX ’ 3(%’;)5621 €H8€2l X H(yé)SEQI EHSEQl Ys T =1 A

0
ty,w

V(s,t)eTmn (28 x2h) (@, y;) €Usy s

V::{yEX | El(x,s)seﬂ GHSEZZ Xs El(y;)sEZZ GHSEQI Y y:yg}lw A
V(s,t)eT™N (2l ><2l) (@, y;) €Us i}

Note that U,V are X and (T19w> Ytrw) € Fipuy N (U X V) S MNgcppu) Fp"' 0 (UxV). This gives
(Z40.w0s Yrrw1) € Fip(uqy N (UXV)NQx2. Let (x50) scon (10} be Witnesses for the fact that 29,0 €U,
and (xsl)sezl\{t;w} be witnesses for the fact that 21, € V.

We need to show that x4y # x41 (and similarly for ys9 and ys1). First observe that if s £t € 2l
then z,. € X and zr € Xy, so that x4 # x4 by condition 4. Similarly, ysc # yser. As p(u) and
¢(ug) do not have the same parity, there is € € 2 such that (2400, Ys1,,1) € Ac and

(xtgwla yt}lwl) € Utgw,t}lw CA .

As Ag and A; are disjoint, 240,07 10,1 Similarly, y0.,0 7 Y101

So we may assume that [ > 1 and s # t2w. The fact that G| is a connected graph provides a G;-path
from s to tDw. This path gives us two s(Ag U Aj)-paths by the definition of U and V, one from yo
to 49,0, and another one from y,; to x40,,1. Moreover, the same ®(s',t')’s are involved in these two
pathes since they are induced by the same G-path. Observe that (24040 Yttt )s (T4 1, Y¢L 1) are in
s(AgUA7). Also, since xs. € Og and yir € O1, no “z” is equal to no “y”. Thus, by quasi-acyclicity,
Ys0 7 Ys1. Similarly, one can prove that x50 xs1. The following picture illustrates the situation when
[=1:

Yoo Yo1

n / A1
Z0oo Zo1
Cs(0,1) Cs(0,1)
Y10 Y11
Ca0,0) Ca0,0)
10 T11

Let ®(tw0, t,,wl) €w such that (20,0, Yet w1) € Cor0wo 11wy, and B(se, te) :=B(s, ) if (s,t) is in
770 (2! x2!) and € € 2. Tt remains to take disjoint X} sets X0, X1 C X (respectively Yy, Ys1 CY5)
with the required properties, as well as V. ;.r, accordingly.

Case 2 F,, CA(X).

Let us indicate the differences with Case 1. We set S := {z € X | (z,z) € F},}, which is a
nonempty X[ set by our assumption.
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e We construct the following objects:

- a sequence (xs)geco<w Of points of S,
- a sequence (X ) co<w of X subsets of X,
- asequence (Us,y)(s,1)e7n of X} subsets of X2, and ®: 77— w.

We want these objects to satisfy the following conditions:
) zseXs A (x5,2) €Us

2) Xse CXsCOAx NS A UstCCq>(st)ﬂQX2ﬂ(X X Xt)
Is|

(1)
(2)
(3) diamGy(Xs), diamgy (Us,r) <27
(4) s0 melz(b

(5) se taCUst

(6) UstCFg if (S t)EDg

e Assume that this has been done. As in Case 1, we get f: 2% — X injective continuous such that
N{ C(f x f)~1(A,) for each e €2.

e So let us prove that the construction is possible. Let (zg,yp) € Fy, N Qx2. As F, C A(X),
yp=zp€S. Let ®(0,0) €w with (z9, 7p) € Cop(p,g).- As Qx2 CO%, 29 € Qx. We choose a I} subset
Xy of X with GH-diameter at most 1 such that 7y € Xy C Qx N S, as well as a X subset Up g of
X? with GH-diameter at most 1 such that (z¢, ) € Uy g C F;) N Ca(p gy N Qx2 N (Xg x Xy), which
completes the construction for the length [ =0.

For the inductive step, we set

U={zeX |I2))sen €Myen Xy = xto AV(s,t) €T N (28 x2Y) (2, 2}) €Usy},
Vi={zeX | 3(x))en €Meq X5 = :U /\V( s,0) €T N (28 x2Y) (o, 2}) €Uy}

Again, we need to check that Ty #* 41 if ¢ € w. Note first that A; N S? is irreflexive, since
otheéwise it contains (x,z) € A N F;) C A; N Ap. By construction, (mtg,:cté) € Fy(q) € Ay, and we
are done.

(2) = (3) Note that (2¢, 2%, NJ,N}) C (2¥,2¢ B/, BY), with witnesses a — O and S — 113.
(3) = (1) This comes from Lemma 3.1. ]

Proposition 3.4 Let 1) be a countable ordinal. The pairs (N},N) and (B, B}) are incomparable
for the square reduction.

Proof. There is no map f:2% — 2% such that NZ C (f x f)~1(B{) since A(2*) is a subset of N{.

There is no injection f : 2% — 2¢ for which there is o € 2¢ such that f(0a) = f(la). Using
this fact, assume, towards a contradiction, that there is f : 2 — 2“ injective continuous such that
BZC (f x f)"1(NZ). Let (00, 1tLy) € B, so that (f(0t2y), f(1tlv)) = (t)7/, t14") eNL.
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We claim that ¢(s) < ¢(v). We proceed by induction on ¢(s). Notice that is is obvious for
©(s) = 0. Suppose that it holds for all § < ¢(s). Note that we can find py, € w and -y, € 2% such that

(19, ks b i) ENT__ and (¢9, vk, L, &) — (t27,t1v). By continuity,

(0,7 to, ) = (F(OL2,, i), F(At,, k) — (L0 1)

In particular, for k large, (¢9,t1) C (¢9 ;). This implies that the sequence v, is a strict extension
of v. Therefore p(vy) < ¢(v). By the induction hypothesis, p(spx) < ¢(vg) <@(v). If p(s) =0+1,
then 0 = p(spy) < ¢(v), so we are done. If p(s) is a limit ordinal, then (go(spk))kEW is cofinal in it,

so we are done too.

Finally, let v € 2, so that (Ocv, 1or) = (O, 1tja) € By Then (f(0a), f(1er)) = (t97,t7)
with p(v) =n, so that v=1{), which contradicts the injectivity of f. O

Consequences

Lemma 3.5 Let T be a class of sets contained in A which is either a Wadge class or A, X be a
Polish space, and A, B be disjoint analytic relations on X. Then exactly one of the following holds:
(a) the set A is separable from B by a pot(T") set,
(b) there are K, sets A’ C A and B’ C B such that A’ is not separable from B’ by a pot(T") set.

Proof. Assume that (a) does not hold. Theorems 1.9 and 1.10 in [L8] give 28 relations Sy, S; on 2%
and g, h:2* — X continuous with So C (gxh) " (A) and S; C (gxh)~(B). We set A":=(gxh)[So]
and B':=(gxh)[S1]. O

Corollary 3.6 Ler n < wi, X be a Polish space, and A, B be disjoint analytic relations on X such
that A U B is s-acyclic or locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Dn(E(l])) set,

(b) (2¥,2¢ NJ,N7) C (X, X, A,B) ifn>1and (1,1,N],N]) C (X, X, A, B) if n=0.

Proof. By Lemma 3.1, N{ is not separable from N by a pot(D,(X9)) set. This shows that (a) and
(b) cannot hold simultaneously. So assume that (a) does not hold. We may assume that 7 > 1. By
Lemma 3.5, we may assume that A, B are £9. By Lemma 2.2, we may also assume that A U B is
quasi-acyclic. It remains to apply Theorem 3.3. U

Corollary 3.7 Let n be a countable ordinal, X,Y be Polish spaces, and A, B be disjoint analytic
subsets of X XY such that A U B is locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Dn(E(l])) set,

(b) (2¥,2¥ NJ,N]) C (X,Y, A, B) ifn>1and (1,1,N],N]) C (X,Y, A, B) if n=0.

Proof. We may assume that > 1. As in the proof of Corollary 3.6, (a) and (b) cannot hold simultane-
ously. So assume that (a) does not hold. We put Z:=X®Y, A":={((z,0), (y,1)) € Z? | (z,y)€ A}
and B':={((x,0), (y,1)) € Z* | (z,y) € B}. Then Z is Polish, A’, B’ are disjoint analytic relations
on Z, A'U B’ is locally countable, and A’ is not separable from B’ by a pot(D,(X9)) set.
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Corollary 3.6 gives f, ¢’ : 2* — Z injective continuous such that N C (f'x ¢')~1(4’), and also
N C (' xg/) " (B'). We set f(a) i=TIo[f'(a)], and g(8) :=Tlylg' (B)]. As A(2°) C NJ, f' takes
values in X x{0} and ¢’ takes values in Y x{1}. This implies that f:2¥ — X, g:2“ — Y are injective
continuous. We are done since N} C (f x g) 71 (A) and N C (f x g)~}(B). O

Notation. If A is a relation on 2%, then we set G 4:={(0a, 13) | (o, B) € A}.
Lemma 3.8 Let A be an antisymmetric s-acyclic relation on 2. Then G 4 is s-acyclic.

Proof. We argue by contradiction, which gives n >2 and an injective s(G 4)-path (&;%;)i<p such that
(€020, €n2n) € $(G4). This implies that €; # ;41 if ¢ <n and n is odd. Thus (z;)i<p is a s(A)-
path such that (22;)2j<, and (22j41)2j+1<n are injective and (2o, 2,) € s(A). As s(A) is acyclic,
the sequence (2;);<y is not injective. We erase 2,11 from this sequence if 2911 € {22;, 22j42} and
2j+1 < n, which gives a sequence (z]);<,/ which is still a s(A)-path with (z(, z/,,) € s(A), and
moreover satisfies z; # z;, | if i <n/.

If n’ <2, then n=3, 29 =2 and 2o = 23. As A is antisymmetric and 3 = g1 # €9 = g9, we get
zp = 2, which is absurd. If n’ > 2, then (z});<, is not injective again. We choose a subsequence of
it with at least three elements, made of consecutive elements, such that the first and the last elements
are equal, and of minimal length with these properties. The acyclicity of s(A) implies that this
subsequence has exactly three elements, say (z;, 2, 1, 2o = 2;)-

If Z; = 22j+1, then Z£+1 = 22§42, ZZ/-JFQ = 22j+4 and 22j+3 = 22j42- As A is antisymmetric and
€2j43 =E2j+1 7 €2j42 = E2j44, We get 2pj o= 2aj 14, Which is absurd. If 2] = 2, then 2 | = 20549,
and ZZ/-JFQ =22j+3. As A is antisymmetric and €2j+3 =€25+1 %€2j+2 =¢&gj5, We get z9; = 22542, which
is absurd. U

Corollary 3.9 Let n> 1 be a countable ordinal, X be a Polish space, and A, B be disjoint analytic
relations on X. The following are equivalent:

(1) there is an s-acyclic relation R € X1 such that ANR is not separable from BNR by a pot(Dn(E(l)))
set,

(2) there is a locally countable relation R € Z% such that A N R is not separable from B N R by a
pot(Dy (7)) set,

(3) (2¥,2¥,NJ,N]) C (X, X, A, B),

(4) there is (Ag, A) € {(N{,NT), (BJ,BY)} such that (2¥,2%, Ay, A1) C (X, X, A, B), via a square
map.

A similar result holds for n=0 with 1 instead of 2*.

Proof. (1) = (3),(4) and (2) = (3),(4) This is a consequence of Corollary 3.6 and its proof.

(4) = (1) By the remarks before Lemma 3.1, NJ U N7 has s-acyclic levels. This implies that N UN7
is s-acyclic. As NJ UNT is antisymmetric, B U B is s-acyclic too, by Lemma 3.8. Thus we can take
R:=(fxf)[ApU Aq] since the s-acyclicity is preserved by images by the square of an injection, and
by Lemma 3.1.
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(4) = (2) We can take R:=(fx f)[Ag U A4] since Ay U A is locally countable, by Lemma 3.1.
(3) = (2) We can take R:=(f x f)[N{ UNY] since N} U N7 is locally countable, by Lemma 3.1. [

Remark. There is a version of Corollary 3.9 for D,,(29) instead of D, (£7), obtained by exchanging
the roles of A and B. This symmetry is also present in Theorem 3.3.

We now give some complements when 77=1. At the beginning of this section, we mentioned the
fact that our examples are in the style of Gg. If =1, then Gy itself is involved.

Corollary 3.10 Let X be a Polish space, and A, B be disjoint analytic relations on X such that
- either A U B is s-acyclic or locally countable,
- or A is contained in a potentially closed s-acyclic or locally countable relation.
Then exactly one of the following holds:
(a) the set A is separable from B by a pot(I1Y) set,
(b) (29,2%,Go, A(2¥)) C (X, X, A, B).

Corollary 3.11 Let X, Y be Polish spaces, and A, B be disjoint analytic subsets of X XY such that
AUB is locally countable or A is contained in a potentially closed locally countable set. Then exactly
one of the following holds:

(a) the set A is separable from B by a pot(I1Y) set,
(b) (29,2%,Go, A(2¥)) C (X,Y, A, B).

0
4 The class A(D,(X9))
Examples
Notation. We set, for each countable ordinal > 1 and each € € 2,
St:= {(tgw, tiw) | s€T;,)\{0} A parity(|s|)=1— ‘parity(s(())) —£| ANYyE 2“}.

Lemma 4.1 Let 1 > 1 be a countable ordinal, and C be a nonempty clopen subset of 2¥. Then
So N C? is not separable from S| N C? by a pot (A (DW(Z?))) set.

Proof. We use the notation in the proof of Lemma 3.1. We argue by contradiction, which gives P in
pot (A (DMZ?))), and a dense G subset of 2 such that P N G%,G?\ P € D, (Z9)(G?). So let, for
each e €2, (0F)g<y be a sequence of open relations on 2 such that

PNG*=( U oN(J o)) ne?
0<n,parity (9)#parity (n) 0'<0

and G2\P: (U9<n,parity(9)7éparity(n) Oé\(U@k@ Oé’)) N Gz'
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e Note that S = UseTn\{@}ypaﬁty(ls\)zlf\pari_ty(s(o)),d Gr(fs). Let us show that if § <7, s€ T, and

©(s)=0, then Gr(f;) N (CNG)2C ﬂOéfpamy(s(O)) if @ <n, and Gr(fs) N (C N G)? is disjoint from
Ugr<p (09 UO}) if §=n. The objects s=0 and =1 will give the contradiction.

e We argue by induction on . Note that Gr(f;) N (CNG)2C 8717 iparity (1s))—parity (s(0))| NG2if =0

since s#0. AsS! N G2 C ﬁO(\]parlty(n)—e\ for each £ €2 and |s| has the same parity as n if § = 0, we
are done.

e Assume that the result has been proved for § < 6. If € is the successor of &, then the induction

assumption implies that Gr(fs,) N (C'N G)2_§ ﬂOéf Party («)O) gy each q. We set, for each e €2,
Cs :=Ukew Gr(fs(ar+e))> so that Gr(fs) CC¢, by the choice of 1. If s =), then

C5iN(CNG)*C-0, ™,

Gr(fs)N(CNG):C Cgn(Cn G)?2cC C;N(CNG)EC -0, ¢, which gives the desired inclusion
for 6 =n.

If s#£0, then Gr(f5,) N (CNG)?C ﬁO;fparlty(s(o)) for each ¢, so that

Gr(f.) N (C NG CTLN(CNG)2CT, N (CNGEC-0,, PayEO),
Thus
Gr(fs)N (CmG)QQ(G2\O;fParity(s(0))) (01 parity (s( \01 parity (s(0 )))C 01 parity(s(0))
since parity (0) = [parity |s|) —parity (n)|.

o If ¢ is limit, then (y(sn)), __ is cofinal in o(s), and Gr(fs) N (C N G)>C ﬁo;(‘sfjf)‘“ty“s")(o”, b
the induction assumption. If 6y < ¢(s), then there is n(6p) such that p(sn) > 6y if n>n(6y). Thus

Gr(fa) N(CNG)C O1 parity ((sn)(0)) if n>n(6p). If s=1), then, for each e € 2,

Gr(fs) N(CNG)2C(CNG)PNCE\CE=Cen (CNG)2\CE
< Un>n (6o),parity (n)= c Gr(fsn) N(CNG)*C _'Oéo_a‘

Thus Gr(fs)N(CNG)? € =(Ugr <,y (03U04)). If s 70, then Gr(f.,)N(CNG)? C =0, parity (s(0))
for each n, so that Gr(f,) N (C NG CC,N(CNGPCCN(CNG)2C 01 parlty( s(0) A
parity(|s) =parity (n), Gr(f,) N (C'N G)2 05 PO g above, 0

A topological characterization

Notation. We define, for 1 <¢ < wCK and n < wl ﬂe ~o Goe:=(w*)? and, inductively,

G Moy Go if nis limit (possibly 0),
meT AQﬂGg,ngﬂAlﬂGg,glg ifn=0+1.
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Theorem 4.2 Let 1<£< wICK, 1<n=A+2k+e< wICK with X\ limit, k €w and € €2, and Ag, Ay be
disjoint Y| relations on w*. Then the following are equivalent:

(1) the set Ay is not separable from Ay by a pot <A (D,,(Eg))) set,
(2) the X} set G is not empty.

Proof. The proof is in the spirit of that of Theorem 3.2. The proof of Theorem 1.10.(2) in [L8] gives
a suitable such that ¢(«) codes the class Dn(Zg). By Theorem 6.26 in [L8] and Theorem 3.2, (1) is
equivalent to R'(«, ag, a1)# 0, where

F. N Fjifn=0+1,

MNp>1 F(S]m£ if n=sup,,>; 0 is limit A 6, is odd.

R'(a,a9,a1):= {
So it is enough to prove that

oo Fg N F} ifn=0+1,
"N Nyt Fp, ¢ if n=sup,5 0, is limit A 6, is odd.

We argue by induction on 7. Note first that G ¢ = Ag N Ay = ) N F{) . Then, inductively,

G9+27§ =ApN G9+17§ NALN G9+17§:A0 N Feof N F91,§ NALN Feof N F91,§

=N B PO 0 n YO =R F

If A is limit, then

G)\JrLg =ApN G)wﬁ NAN G)\@:Ao N ﬂe<x G@@ NAN ﬂe<x G@@
=A0Nper Gor1,e N A0 Ngn Gorig
=A0NNgor Fe N Fj e N AIN gy Fpe NFy,
=A0Ngar FRe N AN Nger Fpe=FeNFy ¢

_ _ _ 0 1 0o _ 0
and Gre=Ngor Go.e=Nger Gor1.6=Nocr Foe N Fge=Nocr Fe=p>1 Fo, ¢ O

The main result

We prove a version of Theorem 3.3 for the class A (D, (X7)). We set, for 1 <n<w; and € €2,
CL:={(0c,183) | (o, B) €SI}.

Theorem 4.3 Let 1> 1 be a countable ordinal, X be a Polish space, and Ag, A1 be disjoint analytic
relations on X such that Ag U A1 is contained in a potentially closed quasi-acyclic relation. The
following are equivalent:

(1) the set Ay is not separable from Ay by a pot <A (D,,(E?))) set,

(2) there is (Ao, A1) € {(N],N0), (B, B]), (N}, N7), (BJ,BY), (S§, SY), (C8, CY)} for which the in-
equality (2,2 Ay, A1) C (X, X, Ao, A1) holds, via a square map,

(3) there is (Ag, A1) € {(N],N{), (NJ,NY), (SE,ST)} such that (2,24, Ag, A1) C (X, X, Ag, A1).
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Proof. (1) = (2) The proof is partly similar to that of Theorem 3.3. Let R be a potentially closed
quasi-acyclic relation containing Ay U Ay, and (C),)ne,, be a witness for the fact that R is quasi-
acyclic. We may assume that X is zero-dimensional (and thus a closed subset of w*) and R is closed.

In fact, we may assume that X =w®. Indeed, as Ay is not separable from A; by a pot (A (Dn(Z?)))

set in X2, it is also the case in (w®)?2, which gives f:2% —w®“. Note that
AgUAC(fxf) (AU A C(fxf) H(X?),
which implies that Ag U A; C (fx f)~1(X?). As A(2¥)CNI N STUST and
{(0a, 1) | @€2“} CBINCIUCT,

the range of A(2¥) by f x f is a subset of X2, so that f takes values in X. We may also assume
that Ag, A; are X}, and that the relation “(z,y) € C,” is A} in (z,y,p). By Theorem 4.2, G, is a
nonempty Y} relation on X (we denote Grn:=Gp and Fy = Fp ,, for simplicity). We also consider
Fy with F5:=F,". In the sequel, all the closures will refer to the topology 71, so that, for example,

GnUAQUAlgAQUAlgR: U Ch,.

new

e Let us show that A, N G, C E\?parlty(n)fq if € € 2. We argue by induction on 7. If n =1, then
A NGICA.NA;_.C Fllfe. If n is limit, then A. NG, C AN ﬂ6<n Fy QF;. Finally, if n=0-+1,
then without loss of generality suppose that 6 is even, so that 7 is odd and

AcNG,CANA_ NGyCANF, "
Note that this last set is contained in Fnl*e, as required.

So, if Ac N G, # 0 for some € € 2 and e is the correct digit, then F,’ # (). Theorem 3.3 gives
(Ao, A1) € {(N?,ND), (B?,BY), (NI, N7), (B, BY)} for which (2¢,2%, Ag, A) C (X, X, Ag, Ay),
via a square map.

e Thus, in the sequel, we suppose that G, N (Ag U A1) =0. We put
Dy={(tdw, tiw) eT" | s=0} =A(2<)
and, for <7 and e€2,
D= {(tgw,t;w) €T | s€T,\{0} A p(s)=6 A parity(|s|)=1—|parity (s(0)) —e\},
so that {D,} U{Dg | 0 <n A e€2} defines a partition of 7.
Case 1 G, Z A(X).

Let (z,y) € G, \A(X), and O, Oy be disjoint A sets with (z,y) € Og x O1. We can replace
Gy, Ap and Ay with their intersection with Og x Oy if necessary and assume that they are contained
in Oy x Oy. Let us indicate the differences with the proof of Theorem 3.3.
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e Condition (6) is changed as follows:

G, if (s,t) €D
C n ’ n
(6) U”—{Ae NGy if (s,t) € D

o If (Ocr, 18) € CZ, then there is § <7 such that (o, )|n € Dj if n>ny. In this case, (U(O‘vﬁ)‘n)n>no
is a decreasing sequence of nonempty clopen subsets of A, N € x2 with vanishing diameters, so that
its intersection is a singleton {F'(c, 8)} C A, and (f(0cv), f(18)) =F (e, B) € Ae.

e So let us prove that the construction is possible. Let (zg,yp) € G, N Qx2. We choose a X}
subset Uy ¢ of X? such that (g, ) € Uy g C Gy N Copg) N Qx2 N (X< Yp), which completes the
construction for the length [ =0. Assume that we have constructed our objects for the sequences of
length [. Note that (xt2w7 ythw) € G(p(u) NUxV)C G¢(uq)+1 NUxV)CA N G¢(uq) N (U xV),
where € satisfies (tgq, t}lq) € D5 - This gives (Z40 00> Ytrw1) € Ae N Gppug) N (U X V) N Qx2. IF
u=1, then (tSwl,tLwl) € D,, so that (%4015 Yt wt) € U 11 © Gy and (4005 Y11 1) € Ae- As
Gy N (Ao U A1) =0, 2400 # 401 Similarly, y,0.,0 7 Y40.,1- If w70, then we argue as in the proof
of Theorem 3.3 to see that x5y # x5 (and similarly for ys9 and ys1).

Case 2 G, CA(X).
Let us indicate the differences with the proof of Theorem 3.3 and Case 1. We set
S:={reX|(z,x)eGy},

which is a nonempty X set by our assumption. We get f : 2* — X injective continuous such that
SEC(f x f)~Y(A.) for each e €2. In this case, Ag N S? and A1 N S? are irreflexive.

(2) = (3) Note that (2¥,2¥,NJ,N]) C (2¥,2¥,B{,B) and (2¥,2¥,S{,S]) C (2¥,2¥,C{,CY),
with witnesses a— 0« and S — 15.

(3) = (1) This comes from Lemmas 3.1 and 4.1. ]

Proposition 4.4 Let n>1 be a countable ordinal.

(a) If 1 is a successor ordinal, then the pairs (N],N{}), (BY,B{), (N{,N7), (B{,BY), (S{,SY) and
(C{, CY) are incomparable for the square reduction.

(b) If  is a limit ordinal, then (2¢,2%,S{,ST)C (2¢,2% N7, N{)), (2¢, 2%, N{J,N7) and
(2v,2¢,CJ,CchC(2v,2¥, B],BY), (2,2, B, BY),
via a square map, and the pairs (S{},S!) and (C{}, C) are incomparable for the square reduction.
Proof. (a) We set, for <17, Cy:= U¢(5)20 Gr(fs).
Claim. Let 0 <. Then Cy is a closed relation on 2%,

Indeed, this is inspired by the proof of Theorem 2.3 in [L2].
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We first show that C!:= Usewst p(s)>0 Gr(fs) is closed, by induction on [ € w. This is clear for
I = 0. Assume that the statement is true for /. Note that C'*+! = C! U Usewts1 p(s)>0 Gr(fs). Let
Pm € C'T1 such that (p,,)me., converges to p. By induction assumption, we may assume that, for
each m, there is (8, 7 ) € w! X w such that ¢ (8,1, ) > 0 and p,, € Gr(fs ). As the Gr(fe,)’s
are closed, we may assume that there is ¢ <[ such that the sequence ((smnm) ]z)m c., 18 constant and
the sequence ((sy7m)(7)), _  tends to infinity. This implies that p € Gr(f(s)ng)ji) C C'*1, which is
therefore closed.

me

Now let p,,, € Cy such that (p,,)mewn converges to p. The previous fact implies that we may
assume that, for each m, there is s, such that ¢(s},,) > 6 and p,, € Gr(f,; ), and that the sequence
(|8}, ])mew tends to infinity. Note that there is [ such that the set of s/, (1)’s is infinite. Indeed, assume,
towards a contradiction, that this is not the case. Then {s € T}, | 3m € w s C s),} is an infinite
finitely branching subtree of T},. By Konig’s lemma, it has an infinite branch, which contradicts the
wellfoundedness of T},. So we may assume that there is  such that the sequence (s, |!)me., is constant

and the sequence (s7,(1)), ., tends to infinity. This implies that p € Gr(fy ;) C C. o

e By Lemma 3.1, N{ is not separable from NY by a pot(D, (X)) set, and, by Lemma 4.1, S{ is not
separable from S by a pot (A (Dn(Z?))) set.

e Let us show that N{] is separable from NY by a D, (X£9) set. In fact, it is enough to see that
Ny € D, (2Y) if n is odd and N] € D, (29) if  is even. If 7 is odd, then

N= U Gr(f)=CyU | J  Co\Copr.
s€Ty,p(s) odd 0<n,0 odd

We set, for § < n, Og := —Cyy1, which defines an increasing sequence of open relations on 2%
with N§ = =01 U Uy, g odd O\ Op—1. Thus Nj € D, (XY). Similarly, if 1 is even, then

Ny = UseTn,fn(s) odd Gr(fs) =Ugscg0dd Co\Cos1. We set, for 6 <n, Og := =Cp1, which
defines an increasing sequence of open relations on 2¥ with NY = U <n,0 odd Op\ Og_1. Thus
N{ € D,,(£9). This shows that (2¢,2%,N7,N{) is not C-below (2, 2%, N{!, N7), and consequently
that (2¥,2¥, N{I, N7) is not C-below (2¢, 2%, NJ, N{/).

e Let us show that S is separable from S} __ by a D, (29) set if £ €2. We set, for 6 <1,

Cg = U Gl”(fs)

¢(s)>0, parity (s(0))=e

As in the claim, (C§)s<y, is a decreasing sequence of closed sets.
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Note that

S2=User,\(0), parity (|s|)=1- parity(s(0)) | Cr(/s)
=User,\{0}. parity((s))—parity (n) =1 parity (s(0))—¢| GF(fs)
=User,\ (o}, parity (s(0))= 1~ parity e (s))—parity () —|| Gr(fs)
=Up<np(s)=0 U parity (s(0))=/1-| parity o) parity ()| —<|| Gr(/s)
=Us<y (U120, parity (s(0))=/1 - iparity (6)parity () | <] Gr(fs));

Usp()>0+1, parity(s(0))— 1| parity(6)-parity () || GT(fs)
- parity(0)-parity </, 1 parity(o)-parity o) |
_U9<n [% \

Assume first that 7=6y+1 is a successor ordinal. We define an increasing sequence (Op)g,, of open

sets as follows: .
Opi— (C’9+fUCa)1f9<90,
—\CE if 0= 90,

so that D := —\D((Og)g<n) S Dn(El).

We now check that D separates S? from S]__. If § < ) has a parity opposite to that of 7, then
either 6 = 0y and C5\Cj,; € C5, € (U<, Op) S D. Or 6 <6, 6+1 <6y < has the same
parity as 77, and C5\Cj, | € Op11\(Ug<y O) € D. If now 0 <1 has the same parity as 7, then
Cy\Cyr1 SO0\ (Ug <y O9)C D. Thus SIC D. Similarly, S7__ C~D. If n is a limit ordinal, then

we set Op :=—(Cy;{ U C5) and argue similarly. This shows that (2,2, NZ,NY__) is not C-below

(2v,2%,8(,SY) for each e €2.

e Let us prove that (2¥,2¥,S{,S}) is not C-below (2¥,2¥,NZ,N/__) if € € 2 and n is a successor
ordinal. Let us do it for € = 0, the other case being similar. We argue by contradiction, which gives
f, g injective continuous with SZ C (f x g)~*(NZ) for each £ €2. We set, for <7 and £ €2,

Us = U Gr(fs).
0<0'<n,p(s)=0", parity (s(0))=|1-||parity (¢")—parity (n)| —<||
Note that the sequence (U )g<, is decreasing, S{ =Ug,
UJUUY=CJuCyg=Ug UU; UA(2¥)=C,
and C,, UCj,,=U3 N U} if § <1 since
U_§:Cg+1 U091+1 U U Gr(fs)v
¢(s)=0, parity(s(0))=|1-||parity (¢) —parity (n)| —||

as in the claim. Let us prove that U U U} C (f x g)~!(Cp) if @ <n. We argue by induction on 6, and
the result is clear for 6 =0. If §=0"+1 is a successor ordinal, then

U UUFCCYUCE=US NULC(fxg) L (NI N Cy NNT N Cyr) C(f x9)"H(Ch).

If 6 is a limit ordinal, then U U Ui C(Nyop (U UU) C(fx9) H(Ngr<o Cor) = (fx9)"1(Ch).
This implies that CO U C’1 (f xg)~1(Cy). In particular A(2%) is sent into itself by fxgand f=g.
As n=0+11is a successor ordinal, U C (f x f)" (NI N Cy) C (fx f)~*(A(2*)), which contradicts
the injectivity of f.
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e So we proved that A:={(N},N{), (N{,N7), (S{,S7)} is a C-antichain if 7 is a successor ordinal.
For the same reasons, 5:={(B},B]), (B{,BY), (CJ,C!)} is a C-antichain if 7 is a successor ordinal.
Moreover, no pair in A is below a pair in B for the square reduction since A(2¢) CNJ NS) U S and
the element of the pairs in B are contained in the clopen set Ng x Nj.

It remains to prove that we cannot find (A, B), (A’,B’) € A and a continuous injection f:2% — 2%
such that G, C (fxf)~*(A") and Gg C (fxf)~(B'). We argue by contradiction. If (A, B) # (A’, B')
and € € 2, then we define continuous injections f. : 2 — 2¢ by f.(«) := f(e«). Note that fox f1
reduces (A, B) to (A’,B’), which contradicts the fact that A is a C-antichain. Thus (A, B)=(A/,B’),
and (A,B)=(S{,S7) by Proposition 3.4. As in the proof of Proposition 3.4, p(s) <p(v). If « €2,
then (O, Lev) is the limit of (0t9 vy, 1t} k). Note that (f(0tS k), f(1ty, k) = (9 Vs to, Vi)
and o(pg) < p(vg). As (gp(pk)gk@ is cofinal in () = 7, so is (¢ (vx)),.,- This implies that
(f(0c), f(1r)) € A(2¢), which contradicts the injectivity of f.

(b) Let us prove that (2,2, S{,S}) C (2¥,2%,NZ,N{__) with a square map if € € 2. Let us do it for
£ =0, the other case being similar. We construct a map ¢: 2<% — 2<% satisfying the following:

(1) View Ik cw ¢)2|C2k

(2) () S p(se)

(3) ¢(s0)# ¢(s1)

(4) Vs e T,\{0} <parity(|s|):1—{parity(s(()))—s‘) = Jus €Ty, parity(|vg|)=¢ A
a) Vwe2<¥ Ju' e 2<¥ (qb(tgw), qb(t;w)) = (tgsw’, t})sw’)

b) ¢(s) < (vs)

o~ o~

Assume that this is done. Then the map f: > lim,,,~ ¢(a|n) is as desired. So let us check that the
construction of ¢ is possible. We construct ¢(s) by induction on the length of s.

- We set ko:=0 and ¢(():=10.

- Note that < 0 >, =1 and (£],¢})=(0,1). Asn>1 is limit, (1) > ¢(0) are odd ordinals, so
that ¢(10) > ¢(0) is an even ordinal. We set k1 :=< 10 >,, ¢(¢) :=1t7, and vg:= 10. This completes
the construction of ¢[2!], and our conditions are satisfied since k1 > 0.

- We next want to construct ¢(s) for s € 241, with [ > 1, assuming that we have constructed
$(s) if |s| < 1. Note that there is exactly one sequence u such that (2 ¢1) € 2+, We first define

uu

simultaneously ¢(#0) and ¢(t}), and then extend the definition to the other sequences in 2/+1.

If [u| > 2, then there are ug € w<* and w € 2<¥ such that t; = t; we. By condition (4),
(9, w), d(tS w)) = (thw’, tiw’) for some v € w=* and w’ € 2<*. Let g €w such that w’ C1)(q) and
o(u) <p(vq). We can find such a ¢ because if p(v) =v+1, then p(vq) =v, but p(u) <p(ug) <v+1
so that p(u) <wv. If p(v) is limit, then (gp(vq))qew is cofinal in ¢(v) and p(u) < @(up) < p(v). We
set ¢(t5, we) :=t5,. By definition, there is N € w such that t5, =t5w'0"e. We set ¢(se):=¢(s)0Ne,
for any s € 2!. Conditions (1)-(3) clearly hold. So let us check condition (4). First note that
(o(t9), o(tL)) = (t9,, t3,) by definition, so that (4) holds for u since |u|—|ug|=|vg|—|v]=1.
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Suppose now that there are u; € w<%, 2 €2<¥ and e € 2 such that (s, t)=(t, ze,t} ze). By the

induction hypothesis, (¢(t9 ze), ¢t} ze)) = (¢(t%, 2)0Ne, p(t1, 2)0Ve) = tgu Z/0Ne tlu1 Z'0Ne).
Thus conditions (4) is checked.

Otherwise, |u| =1 and u =< p > for some p € w\{0}. Let w :=t%|l. Note there are infinitely
many ¢’s such that ¢(w) C ¥(q). As 7 is a limit ordinal, (ap(q))qe is strictly increasing. Thus ¢
can be chosen SO that o(p ) ¢(q). If pis odd, then we set @(t) :=tZ . If p is even, then we set
B(5) :=15,. Let w® and w' be the sequences such that ¢(t5,) = ¢(w)w=e. Note that they are different

if p is even. As in the previous case, we define ¢(sc) := ¢(s)wse, for any s € 2'. Notice how the
choice of w® only depends on the last coordinate of se. The conditions are verified as before for
(6(t3), #(ty,)). For the other cases,

(p(t9 ze), p(ty, ze)) = (d)(tglz)wee, Pty z)w’e) = (tgu1 w'we, t}m w'we),
by the induction hypothesis. So the conditions are checked.

It remains to note that (2*,2%,C{,CY) C (2¥,2¥,BZ,B}__) with a square map if ¢ € 2, with
witness ea— e f(a). O

Consequences

Corollary 4.5 Let n> 1 be a countable ordinal, X be a Polish space, and A, B be disjoint analytic
relations on X such that A U B is contained in a potentially closed s-acyclic or locally countable
relation. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(A(Dn(E(f))) set,
(b) there is (Ag, Ar) € {(N],N{), (NI, NY), (S{, ST)} with (2¢,2¥, Ag, A1) C (X, X, A, B).
Proof. By Lemmas 3.1 and 4.1, (a) and (b) cannot hold simultaneously. So assume that (a) does not

hold. By Lemma 2.2, we may assume that A U B is contained in a potentially closed quasi-acyclic
relation. It remains to apply Theorem 4.3. U

Corollary 4.6 Let n>1 be a countable ordinal, X,Y be Polish spaces, and A, B be disjoint analytic
subsets of X XY such that A U B is contained in a potentially closed locally countable set. Then
exactly one of the following holds:

(a) the set A is separable from B by a pot(A(Dn(E(f))) set,
(b) there is (Ag, Ar) € {(N],N{), (NI, NY), (S{, ST)} with (2¢,2¥, Ag, A1) C (X, X, A, B).

Proof. As in the proof of Corollary 4.5, (a) and (b) cannot hold simultaneously. Then we argue as in
the proof of Corollary 3.7. A’ U B’ is contained in a potentially closed locally countable relation, and

A’ is not separable from B’ by a pot <A (DMZ?))) set. Corollary 4.5 gives [, ¢ :2¥ — Z. O
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Corollary 4.7 Let > 1 be a countable ordinal, X be a Polish space, and A, B be disjoint analytic
relations on X. The following are equivalent:

(1) there is a potentially closed s-acyclic relation R € X} such that AN R is not separable from BN R
by apot(A (Dn(E?))> set,

(2) there is a potentially closed locally countable relation R € 31 such that A N R is not separable
from BN R by apot(A (DMZ?))) set,

(3) there is (Ag, A) € {(N],N{), (NJ,NT), (S{, ST) } with (2,2%,Ag, A1) C (X, X, A, B),

(4) there is (Ao, A1) € {(N],N7), (B, B]), (NJ,N), (B],BY), (Sg,ST), (C{,C])} such that the in-
equality (2¢,2% Ao, A1) C (X, X, A, B) holds, via a square map.

Proof. (1) = (3),(4) and (2) = (3),(4) This is a consequence of Corollary 4.5 and its proof.

(4) = (1) By the remarks before Lemma 3.1, NJ U N7 has s-acyclic levels. This implies that N/ UN7
and S U ST are s-acyclic. As NJ U N7 is antisymmetric, B] U B} and C{ U C7 are s-acyclic too, by
Lemma 3.8. Thus we can take R:=(f X f)[Ap U A4] since the s-acyclicity is preserved by images by
the square of an injection, and by Lemmas 3.1 and 4.1.

(3),(4) = (2) We can take R:=(f X f)[Ag U A;] since Ay U A is locally countable, by Lemmas 3.1
and 4.1. U
S Background

We now give some material to prepare the study of the Borel classes of rank two.

Potential Wadge classes

In Theorem 1.3, Sy U S; is a subset of the body of a tree 7" on 22 which does not depend on T.
We first describe a simple version of 1", which is sufficient to study the Borel classes (see [L6]). We
identify (2')? and (22), for each [ €w+1.

Definition 5.1 (1) Let F CJ,,, (2')>=(2%)<*. We say that F is a frame if

(a)Vlcw 3(s;, 1) € FN(2H)?,
(b) ¥p, g €w Yw €2<¢ AN €w (s,0w0N |, 1w0N) € F and (|s,0w0™ |—1)g=p,
(c)VI>03g<lIwe2<¥ (s, ;) = (s,0w, tylw).

(2) If F={(s;,t;) | LEw} is a frame, then we will call T the tree on 2% generated by F:

T::{(s,t)e(22)<‘” | s=0V (Jgew Iwe 2 (s,t)=(sq0w, t1w)) }.

The existence condition in (a) and the density condition (b) ensure that [7T'] is big enough to
contain sets of arbitrary high potential complexity. The uniqueness condition in (a) and condition
(c) ensure that [77] is small enough to make the reduction in Theorem 1.3 possible. The last part of
condition (b) gives a control on the verticals which is very useful to construct complicated examples.
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In the sequel, 7" will be the tree generated by a fixed frame F (Lemma 3.3 in [L6] ensures the
existence of concrete frames). Note that [7'] C Ny x N1, which will be useful in the sequel (recall that
Ny is the basic clopen set of sequences beginning with s € 2<%),

Acyclicity

We will use some material from [L.6] and [L8], where some possibly different notions of acyclicity
of the levels of 7" are involved. We will check that they coincide in our case.

Definition 5.2 Let X be a set, and A be a relation on X.

(a) An A-path is a finite sequence (x;)i<y, of points of X such that (x;,z;11) € Aifi<n.

(b) We say that A is connected if for any x,y € X there is an A-path (x;)i<p with vo = and
Tp=1.

(c) An A-cycle is an A-path (x;)i<p, with L >3, (x;)i<1, is injective and x1, = x¢ (so that A is
acyclic if and only if there is no A-cycle).

Lemma 5.3 Let [ €w, and T;:=T N (2!)? be the ith level of T.
(a) s(T) is connected and acyclic. In particular, [T'] is s-acyclic.

(b) A tree S on 22 has acyclic levels in the sense of [L6] if and only if S has suitable levels in the
sense of [L8], and this is the case of T.

Proof. (a) We argue by induction on [. The statement is clear for [ = 0. For the inductive step we
use the fact that Tj,1 = {(se,te) | (s,t) € Ty ANe €2} U{(s0,%;1)}. As the map se+— s defines an
isomorphism from {(se, te) | (s,t) € T;} onto T}, we are done. A cycle for s([1']) gives a cycle for
s(Ty), for I big enough to ensure the injectivity of the initial segments.

(b) Assume that .S has acyclic levels in the sense of [L6]. This means that, for each [, the graph G,
with set of vertices 2! @2 (with typical element 77 := (2., ) € 2! x 2) and set of edges

{{zo, 71} | &= (w0, 21) €51}

is acyclic. We have to see that S has suitable levels in the sense of [L8]. This means that, for each [,
the following hold:

- S; is finite,
-Jee2 20#alif sV £l e S,
- consider the graph G*t with set of vertices S; and set of edges

{{z0, 21} | 2042 NJe€2 al=zl};
then for any G'-cycle (27),,<,, there are e €2 and k <m <n < L such that z¥ =2 =27

The first two properties are obvious. So assume that (:c_h)ng 1 is a G%'-cycle for which we cannot
find e €2 and k<m <n < L such that ¥ =z =27
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Case 1 z)=uz.
Subcase 1.1 L is odd.

Note that L > 5. Indeed, L > 3 since (:c_ﬁ)ngL is a GSi-cycle. So we just have to see that L # 3.
As ) =1z} and 20 # 21, 29 x}. By the choice of (27),<,, 2} #x2. Thus z} =22. By the choice of

-

(2™) <, 23 #x3. Thus 23 =1x3 and x3 # 2. Therefore 23 #x0 and L#3.

Then 29, z1, 23, ..., xf*Q, 56(1]171 is a Gg,-cycle, by the choice of (z7),,</.

Subcase 1.2 L is even, in which case L >4.

Then 0, x1, 22, ..., 25~ 2l is a Gg,-cycle, by the choice of (27),,<r.

Case 2 20 £ z}.

The same arguments work, we just have to exchange the indexes.
e Conversely, assume that (22 ),<r, is a G'g,-cycle. Then L is even, and actually L > 4.
Case 1¢9=0.

Then (22, 21)), (22,,2L)), ..., (@l 2 a1, (ak al71), (20 ,xl)) is a GSi-cycle of length

L+1. If e €2, then each eth coordinate appears exactly twice before the last element of the cycle.
Case2¢9=1.
The same argument works, we just have to exchange the coordinates.

e By Proposition 3.2 in [L6], T  has acyclic levels in the sense of [L6]. ]

6 The classes IT) and X

Example
We will use an example for I =TI different from that in [L6], so that we prove the following.
Lemma 6.1 [T'] N Ey is not separable from [T|\Eq by a pot(I19) set.

Proof. We argue by contradiction, which gives P € pot(I1}), and also a dense G5 subset G of 2 such
that P N G? € TIY(G?). Let (O, )new be a sequence of dense open subsets of 2% with intersection
G. Note that [T NEgNG?>=[T] N PNG%2e AY[T] N G?). By Baire’s theorem, it is enough to
prove that [T] N Ey N G? is dense and co-dense in the nonempty space [T'] N G2. So let ¢ € w and
w € 2<¥. Pick ug € 2% such that N, 0wuo € O, vo € 2 such that Ny 1ugv, € Op, u1 € 2 such that
N, 0wugvous € O1, v1 € 2% such that Ny 1wuguouv; © O1, and so on.
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Then (sq0wugvouivi..., tglwugvouivy...) € [T NEy N G?. Similarly, pick Ny € w such that
(SqOUJONO , tq 1’I,UONO) & f, uO & 2(1.) SuCh that N ONOOUO g O(], ’UO [ 2w SuCh that th 1’!1}0N0 Tugvo g OO,

sq0w

N7 €w such that (5,0w0™° 0ugueO™, ¢, 1w0N0 1ugugONt) € F, uy €2¢ such that

qu0w0N00u0v00N1 ouy & O1,
v1 € 2% such that thleNO Luguo0N1 1us v, < O1, and so on. Then
(quwON0 0ugug0™ Ouq vy ..., tqleNO Lugvg0™M 1ugvy...) € [T] N G\ E,.
This finishes the proof. U

The main result

We reduce the study of disjoint analytic sets to that of disjoint Borel sets of low complexity, for
the first classes we are considering.

Lemma 6.2 Let X be a Polish space, and A, B be disjoint analytic relations on X. Then exactly one
of the following holds:

(a) the set A is separable from B by a pot(I13) set,
(b) there is a K, relation A' C A which is not pot(T13) such that A’\ A’ C B.

Proof. Theorem 1.10 in [L8] and Lemmas 6.1, 5.3 give g,h : 2 — X continuous such that the
inclusions [T NEqC (gxh)~!(A) and [T1\Eo C (9xh) " (B) hold. We set A":= (gxh) [[T]NEo],
B':=(gxh)[[T]\Eo] and C":=(gxh)[[T]]. Note that A" is a K, subset of A, B'C B, so that the
compact set C” is the disjoint union of A’ and B’. As [T'] NEy is dense in [T'|, C" is also the closure
of A”. As [T] NEq=[T] N (gxh)~L(A"), A" is not pot(I19), by Lemma 6.1. O

Theorem 6.3 Let X be a Polish space, and A, B be disjoint analytic relations on X such that A is
quasi-acyclic. Then one of the following holds:

(a) the set A is separable from B by a pot(I13) set,

(b) there is f:2% — X injective continuous such that the inclusions [T] NEqC (fx f)~(A) and
[TT\Eo C (f x f)~*(B) hold.

Proof. Assume that (a) does not hold. By Lemma 6.2, we may assume that B is the complement of A.
Let (C,)new be a witness for the fact that A is quasi-acyclic. Note that there are disjoint Borel subsets
0o, 01 of X such that A N (O x Oy) is not pot(II9). We may assume that X is zero-dimensional,
the C,’s are closed, and Og, O; are clopen, refining the topology if necessary. We can also replace A
and the C};’s with their intersection with Og x O and assume that they are contained in Oy x O1.

e We may assume that X is recursively presented, Og, O; € A} and the relation “(z,y) € C,,” is Al
in (z,y,n). As Ax is Polish finer than the topology on X, A ¢ TI$(X?2,71). We now perform the
following derative on A. We set, for FeII)(X?, 1), F/:=FNA ' NF\A" (see 22.30 in [K]).
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Then we inductively define, for any ordinal &, F¢ by

Fy:=X?
F£+1 = Fé
Fy:=Neey Fe if s limit

(see 22.27 in [K]). As (F) is a decreasing sequence of closed subsets of the Polish space (X2, 1),
there is 6 < wy such that Fy = Fyp;. In particular, Fy = Fyy 1 = Fy=FyN A" N Fg\All, so that
Fy N Aand Fy\ A are 11-dense in Fy.

e Let us prove that Fy is not empty. We argue by contradiction:

X*=-Fy=J ~Fe=J Fen () B)={J Fe\Fer,

£<0 £<0 n<é€ &<

sothat A={J, g ANF\Fep1. BuANF\Fep  =ANF\(F N A" NF\A")=F\F\A™.
This means that (Fg\ F11)¢<p is a countable partition of (X2, 7;) into AJ sets, and that A is A on
each piece of the partition. This implies that A is AJ(X?2, 1), which is absurd.

e Let us prove that Fy is 211. We use 7C in [Mo]. We define a set relation by

p(r,y, P) & (z,y) ¢ (-P)'.

Note that ¢ is monotone, and thus operative. It is also I} on II!. By 3E.2, 3F.6 and 4B.2 in [Mo],
we can apply 7C.8 in [Mo], so that x> (2, ) is IT}. An induction shows that ©%(z,y) is equivalent

to “(2,y) & Fei1”. Thus (z,y) ¢ Iy is equivalent to (z,y) ¢ (e Fe=(¢ Fet1, (2,y) €U ~Fea
and ¢ (z,y).

e We are ready to prove the following key property:
Vgcw YU, VEXHX) Fyn(UxV)#£) = In>q FpnC, N (UXV) A,

Indeed, this property says that I := Fyp N (Un2 4 C,) is X%-dense in Fy for each ¢ € w. We fix
q €w, and prove first that I is 7i-dense in Fy. So let U, V € Al such that F N (U x V) is nonempty.
As Fy\ A is 1i-dense in Fy, we get (z,y) € (Fp\A) N (UxV). As Fyp N A is 7-dense in Fy, we
get (zx,yi) € Fy N A converving to (z,y) for 7. Pick ny € w such that (xy,yx) € Cp,. As Cy,
is closed, and thus 71-closed, we may assume that the sequence (ny)xe, is strictly increasing. Now
(wx,yr) €I N (UxV) if k is big enough. In order to get the statement for X', we have to note that [
is X} since Fyis X} and the relation “(x,y) € C,,” is A} in (2, y,n). This implies that 7' 272’2(, by

=T —x2 . .
a double application of the separation theorem. Therefore Fy CI ' =1 X and I is 2)2( -dense in Fjp.
e We set, for = (ug, uy) GT\{(Z},

13(1?) := Card ({i < |d] | uo(i) #u1(4)}),
t(w) =(s540,t41) if @=(s40w,t,1lw).
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e We are ready for the construction of f. We construct the following objects:

- sequences (Zs)sea<w\ [0},5(0)=05 (Us)se2<w\{0},s(0)=1 Of points of X,
- sequences (Xs)gea<w\ (0},5(0)=0> (¥Ys)se2<w\{0},5(0)=1 Of 2! subsets of X,

-amap ®: {#(1) | JET\{(Z}} —w.
We want these objects to satisfy the following conditions:

(1

Jas€Xs AN ys€Ys

(2) Xee CX,CQx N0y A Y, CY,CQx N Oy
(3) diamgp (Xs), diamgyy (V) <27 sl

(4) (@ugs Yur) € Fo N Coany)

(5) (Xug xYu,) N (Un<n(u) Cn)=0

(6) Xs0N Xs1=Y50N Y51 =0

e Assume that this has been done. As in the proof of Theorem 3.3, we get f: N. — O, injective con-
tinuous, so that f:2% — X is injective continuous. If (a, 3) € [T'] NEo, then ®(£((a, B)n))=Nifn
is big enough. In this case, by (4), (Zajn, Ys|s) € Cv Which is closed, so that (f(a), g(8)) € Cn C A.
If (a, B) € [T \Eo, then the sequence (n((c, 8)|n))n>0 tends to infinity. Thus (f(c), g(8)) is not
inU,c, Cn=ADby (5).

e So let us prove that the construction is possible. The key property gives ®(0,1) > 1 and (z¢, y1)
in Fy N Cyo,1) N Qy2. As Qx2 C Qg(, T0,y1 € Qx. We choose X subsets Xg, Y] of X with GH-
diameter at most 2~ such that (o, y1) € Xox Y1 C ((2x N Op) x (2x N O1))\Co, which completes
the construction for the length [=1.

Let [ > 1. We now want to build z,, X, s, Ys for s € 21+1, as well as ®(s;0,#;1). Note that
(s, yr,) € Fp N (U % V'), where

Usi={z, € X, | 3(2)seor\(s},5000=0 € sz gs13,s0=0 Xs 3 (We)sear,s(0)=1 € Mear s0)=1 ¥
VieT N (2'%2Y) (2, Y0,) € Fo N Co i b

Vi= {0, € [ 3@ sent si0)=0 € Moeatso)=0 Ko I0seatv(n 5011 € Mhseanvtt) o= Yo
VaeT N (2'%2") (2, Y0,) € Fo N Coiin }-

The key property gives ®(s;0, ;1) >max(n(510, t11), maxq<; P(s40, tql)) and
(25,0, y1,1) € Fop N Cop(5,0,4,1) N (UXV).

The fact that x50 € U gives witnesses (250)scoi {s,},5(0)=0 ad (Ys0)seat s(0)=1- Similarly, the fact
that y¢,1 €V gives (s1)seat s(0)=0 a0d (Ys1)scan f1,},5(0)=1- Note that x50 # 75,1 because
(75,0, Y1,1) € Ca(s,0,4,1)»

(€51, Y1) € Copggiay 11y ad (500, 441) > @ (E{s1,141)). Similarly, yy0 7 1. If s €2, then the
connectedness of s(7;) gives an injective s(7')-path ps from s to s;. This gives a s(A)-path from x4
to x4 if s(0) =0, and a s(A)-path from y, to ys; if s(0) = 1. Using the quasi-acyclicity of A, we
see, by induction on the length of py, that x40 # xs1 and ys0 F Ys1-
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The following picture illustrates the situation when [ =2.

Y100 Y101

T000 001
Ca(00,11) C3(00,11)
Y110 Y111
Ca(0,1) Cs(0,1)
Zo10 Zo11

Then we take small enough 211 neighborhoods of the z.’s and y,.’s to complete the construction. [

Consequences

Corollary 6.4 Let X be a Polish space, and A, B be disjoint analytic relations on X such that A is
either s-acyclic, or locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(I13) set,

(b) there is f:2% — X injective continuous such that the inclusions [T NEqC (fx f)~1(A) and
[TI\Eo C (f x f)~1(B) hold.

Proof. By Lemma 6.1, [T] N Ey is not separable from [T']\ Eq by a pot(IT3) set. This shows that
(a) and (b) cannot hold simultaneously. So assume that (a) does not hold. By Lemma 6.2, we may
assume that A is 9 and B is the complement of A. By Lemma 2.2, we may also assume that A is
quasi-acyclic. It remains to apply Theorem 6.3. O

Corollary 6.5 Ler X,Y be Polish spaces, and A, B be disjoint analytic subsets of X XY such that A
is locally countable. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(I13) set,
(b) (2&)’ 2w, |7T—| N ]EO’ |7T—| \EO) C (X’ K A’ B)

Proof. As in the proof of Corollary 6.4, (a) and (b) cannot hold simultaneously. So assume that (a)
does not hold. We argue as in the proof of Corollary 3.7. Corollary 6.4 gives f':2 — Z. g

Corollary 6.6 Ler X be a Polish space, and A, B be disjoint analytic relations on X. The following
are equivalent:

(1) there is an s-acyclic relation R € Z% such that A N R is not separable from BN R by a pot(Hg)
set,

(2) there is f:2* — X injective continuous with [T]NEq C (fxf)~Y(A) and [T)\Eo C (fxf)~1(B).
Proof. (1) = (2) We apply Corollary 6.4.
(2) = (1) We can take R:=(fx f)[[T]. O

Remark. There is a version of Corollary 6.6 for XY instead of ITJ, obtained by exchanging the roles
of A and B. This symmetry is not present in Theorem 6.3.
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Corollary 6.7 Let X be a Polish space, and A, B be disjoint analytic relations on X such that A is
contained in a pot(Fy) s-acyclic relation, or A U B is s-acyclic. Then exactly one of the following

holds:
(a) the set A is separable from B by a pot(X9) set,

(b) there is f:2¥ — X injective continuous such that the inclusions [T1\Eq C (f x f)"1(A) and
[T]NEyC (f < f)~YB) hold.

Proof. Let R be a pot(F,,) s-acyclic relation containing A. Then there is no pot(X9) set P separating
AN R= A from BN R, since otherwise P N R € pot(XY) and separates A from B. Corollary 6.6
gives f:2% — X injective continuous with [T NEqC (f x f)~1(B) and [T\Eq C (f x f)~1(A).

If AU B is s-acyclic, then we apply Corollary 6.4. O

Remarks. (1) Corollary 6.7 also holds when A U B is locally countable, but we did not mention it in
the statement since (a) always holds in this case. Indeed, by reflection, AU B is contained in a locally
countable Borel set C. As A, B are disjoint analytic sets, there is a Borel set D separating A from B.
Thus C' N D is a locally countable Borel set separating A from B. But a locally countable Borel set
has X9 vertical sections, and is therefore pot(XY) (see [Lo2]).

(2) There is a version of Corollary 6.7 for I' = 39, where we replace the class F, with the class of
open sets. We do not state it since (a) always holds in this case. Indeed, a potentially open s-acyclic
relation is a countable union of Borel rectangles for which at least one side is a singleton, so that this
union is potentially clopen, just like any of its Borel subsets.

7 The class A}

Example

We set, for each € € 2,

o:={(, ) €2 %x2% | IMm >0 a(m)#LB(m) AVn>m a(n)=p5(n) A (m—1)y=¢c (mod 2)}.
Lemma 7.1 [T'] NEY is not separable from [T NEY by a pot(AY) set.

Proof. The proof is similar to that of Lemma 6.1. We argue by contradiction, which gives D in
pot(AY), and also a dense G5 subset G of 2 such that D N G2 € AY(G?). Let (Oy)new be a
sequence of dense open subsets of 2 with intersection G. Note that [T] NESNG*C [T N DN G2,
[TINE{NG*C [TTNGA\D and [T1NDNG? € AY([T]NG?). By Baire’s theorem, it is enough to
prove that [T] NEJ N G? and [T] NEy N G? are dense in [T N G2. Let us do it for [T] NEJ N G?,
the other case being similar. So let ¢ € w and w € 2<. Pick N € w such that (s,0w0™° ¢,1w0")
is in 7 and (|s,0w0"|—1)o=0. Then we argue as in the proof of of Lemma 6.1: pick ug € 2% with
quOwONOUO C Oy, vg € 2¥ with thleNluovo C Oy, uq € 2% with quOwONOU()vom C O, v €2¢
with Ny 1,0N 1ugugure; © O1, and so on. Then (840wW0N Qugvouy vy ..., tg 1wON Tugvgug vy ...) is in
[T]NEY N G2, O
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The main result

We will prove a version of Theorem 6.3 for the class AY.

Theorem 7.2 Let X be a Polish space, and A, B be disjoint analytic relations on X such that AU B
is quasi-acyclic. Then one of the following holds:

(a) the set A is separable from B by a pot(AY) set,

(b) there is f:2% — X injective continuous such that the inclusions [T1NEJC (fx f)~1(A) and
T AELC (f % f)-\(B) hold.

Proof. The proof is similar to that of of Theorem 6.3. Assume that (a) does not hold. By Lemma
3.5, we may assume that A, B are Y. Let (C,,)ne. be a witness for the fact that A U B is quasi-
acyclic. As A, B are X, we may assume that each C,, is either contained in A, or contained in B.
Note that there are disjoint Borel subsets Op, O; of X such that A N (Og x O1) is not separable from
BN (0OpxO01) by apot(AY) set. We may assume that X is zero-dimensional, the C,,’s are closed, and
Oy, O are clopen, refining the topology if necessary. We can also replace A, B and the C},’s with
their intersection with Oy x O and assume that they are contained in Og x O1. This gives a sequence
(C9)ew (resp., (C1)new) of pairwise disjoint closed relations on X with union A (resp., B).

e We may assume that X is recursively presented, Op, O; are Al and the relation “(z,y) € C=” is
Alin (z,y,e,n). As Ax is Polish finer than the topology on X, A is not separable from B by a
AY(X2?, ) set. Weset, for FETI)(X?, 1), F:=FNA'NEFNB" (see22.30 in [K]). Then

Fy=Fy,1=Fj=FNnA"NnFNB",
so that Fy N A and Fy N B are 7-dense in Fy.

e Let us prove that Fy is not empty. We argue by contradiction, so that A= Ug <o ANF¢\Feyq. But
ANF\Fe=ANF\Fe N A" NFeNB"")CF\F; N B" C—B. This means that (F\F41)e<g
is a countable partition of (X2, 7{) into AJ sets, and that A is separable from B by a AJ set on each
piece of the partition. This implies that A is separable from B by a A9(X2, 7;) set, which is absurd.

e As in the proof of Theorem 6.3, Fy is X[, and the following key property holds:
Vee2 Vgew YU,VeXH(X) Fon(UxV)#0 = 3In>q F,NCEN(UxV)#0.
e We construct again sequences (zs), (ys), (Xs), (Ys) and ® satisfying the following conditions:

(1) zs€ X A ys€Y5

(2) XsenggQX N OO A Y:eeg}/;gQX N Ol
(3) diamgp (Xs), diamgpy (Ys) < g*ls\

(4) (Tug, Yuy ) € Fp N C;({(ﬁ)) if (|t(@)|—2)p=¢ (mod 2), with the convention (—1)y=0
(5) Xso N Xs1=Y50 N Y51 =0

e Assume that this has been done. If (a, ) € [T"] N EY, then ®(¢((r, 8)|n)) =N if n is big enough.
In this case, by (4), (Zajn, Ysjn) € C Which is closed, so that (f(c),g(8)) € C} C A. Similarly, if
(@, 8) € [T] NEL, then (f(a),g()) €CL C B.
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e So let us prove that the construction is possible. The key property gives ®(0,1) € w and (o, y1)

in Fyp N Cg(O,l) N 2 x2. We choose 211 subsets X, Y; of X with GH-diameter at most 2~ such that

(x0,y1) € Xox Y1 C(Qx N Op) x (2x N O1), which completes the construction for the length [ =1.

Let [ >1. We now want to build z,, X, s, Ys for s € 2/, as well as ®(s,0,%;1). Fix n €2 such
that (I—1)p=n (mod 2). Note that (z,, y¢,) € Fp N (U x V'), where

Ui={zy, € X5, | Ix}) scon {5,},50)=0 € sean 15,1,5(0)=0 Xs I(Ws)se2t s(0)=1 € seat s0)=1 ¥s

vaeT N (2'x2Y) (al,, v, ) €L N Co ity if (|t(@)|—2)o=¢ (mod 2)},

Vi={y;, €Yy, | 3(x))seat s(0)=0 l€ Hslte,s(O):O Xs 3(Ys)sean g, },5(00=1 € Msean (1, 1,5(0)=1 Ys
- / / : 77 —
VaeT N (2°x2") (x3,,,Y,,) €EFp N C;({(ﬁ)) if (|t(@)|—2)p=¢ (mod 2)}.
The key property gives ®(s;0,¢;1) >max,«; P(s40,%,1) and

(510, y11) EFp N Cg(sl07tl1) NUxV).

Note that 5,0 # x5,1 because (5,0, Yt,1) € Cg(slo,tll)’ (Ts,1,Y1) € Cé(g(sll’tll)) if
(Jt(s;1,41)|—2)g=¢ (mod 2),

and ®(s;0,%;1) > @(f(sll, t;1)). Similarly, ys,0 # ys,1. If s € 2!, then there is an injective s(T")-path
ps from s to s;. This gives a s(A U B)-path from x4 to zs; if s(0) =0, and a s(A U B)-path from
Yso to ys1 if s(0) = 1. Using the quasi-acyclicity of s(A U B), we see, by induction on the length of

s, that 740 # 251 and yso 7 Ys1- =

Consequences

Corollary 7.3 Let X be a Polish space, and A, B be disjoint analytic relations on X such that
- either A U B is either s-acyclic or locally countable
- or A is contained in a pot(Ag) s-acyclic or locally countable relation.

Then exactly one of the following holds:
(a) the set A is separable from B by a pot(AY) set,

(b) there is f:2¥ — X injective continuous such that the inclusions [T1NEJC (fx f)~1(A) and
T AELC (f % f)~\(B) hold.

Proof. By Lemma 7.1, [T] N EY is not separable from [T'] N E} by a pot(AY) set. This shows that
(a) and (b) cannot hold simultaneously. So assume that (a) does not hold.

- If AU B is s-acyclic or locally countable, then by Lemma 3.5, we may assume that A, B are 9.
By Lemma 2.2, we may also assume that A U B is quasi-acyclic. It remains to apply Theorem 7.2.

- Assume that R is pot(AY) and contains A. Then there is no pot(AY) set P separating AN R= A
from BN R, since otherwise PN R € pot(AY) separates A from B. It remains to apply the first point.
This finishes the proof. O]
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Corollary 7.4 Let X,Y be Polish spaces, and A, B be disjoint analytic subsets of X XY such that
AU B is locally countable or A is contained in a pot(Ag) locally countable set. Then exactly one of
the following holds:

(a) the set A is separable from B by a pot(AY) set,
(b) (2¢,2¢ [T NEY, [TINEY) C (X,Y, A, B).

Proof. As in the proof of Corollary 7.3, (a) and (b) cannot hold simultaneously. Then we argue as in
the proof of Corollary 3.7. The set A’ U B is locally countable or A’ is contained in a pot(AY) locally
countable set, and A’ is not separable from B’ by a pot(AY) set. Corollary 7.3 gives f/:2* — Z. [

Corollary 7.5 Let X be a Polish space, and A, B be disjoint analytic relations on X. The following
are equivalent:

(1) there is an s-acyclic or locally countable relation R € E% such that A N R is not separable from
BN R by a pot(AY) set,
(2) there is f:2% — X injective continuous with [T]NEY C (fxf)~1(A) and [TINEL C (fxf)~1(B).

Proof. (1) = (2) We apply Corollary 7.3.

(2) = (1) We can take R:=(f x f)[[T] N Eo]. O

8 The classes D, (X9) and D,,(X9)

Examples

Notation. Let 7> 1 be a countable ordinal, and .S, : w — 1 be onto. We set
Co:={ae€2” | Imew Yp>m «a(p)=0}

and, for 1 <O<n, Cp:={ac2¥ |Imew Ypew a(< m,p >)=0AS,((m)y) <8}, so that
(Cp)o<y is an increasing sequence of X9 subsets of 2. We then set Dy, := D ((Cp)g<y)-

Lemma 8.1 The set D, is D, (X3)-complete.

Proof. By 21.14 in [K], it is enough to see that D, is not D, (29) since it is D,,(£9). We will prove
more. Let us say that a pair (6, F') is suitable if § < n, F'is a chain of finite binary sequences,
Ir:=Nsep {a €Ny | (a))s =0} is not empty and S, ((|s])o) > 6 for each s € F. Let us prove
that I N D((Cyr)gr<p) is not Dg(E9) if (0, F) is suitable. This will give the result since (1, ()) is
suitable.

We argue by induction on 6. If § =1, then the X9 set I N Cj is dense and co-dense in the closed

set I, so that it is not ITJ, by Baire’s theorem. Assume the result proved for §’ <. We argue by
contradiction, which gives an increasing sequence (Hgr)g < of 39 sets with

Ir N D((Co)or<o) =—D((Ho)or<o)-
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As ~(Ugg Cor) is comeager in I, Ir NJy .y Hy too, which gives 6’ < 6 with parity opposite
to that of § and s’ D max e s such that S, ((|s])o) =6’ and 0 #£Ip NNy C Hyr. Weset F/:=FU{s'},
so that (¢, F') is suitable. By induction assumption, Iz N D ((Cpr)gr<gr) is not Dy (£9). But
IF/ N D((Cg//)gu<9/) = IF/ \D((Hg//)g//<9/) € Dg/(zg) since IF/ c Cg/, which is absurd. ]

Notation. We now fix an effective frame in the sense of Definition 2.1 in [L8], which are frames in
the sense of Definition 5.1. Lemma 2.3 in [L8] proves the existence of such an effective frame. Note
that (s1,t1) =(0,1), so that s1(0) #¢1(0). But s;11(I) =t;+1({) if { > 1. Indeed, it is enough to see

that (((l <( (D1) 1) < [ in this case, by the proof of Lemma 2.3 in [L8]. As (q)o+(¢)1 <4q,

and (q)o+(q )1 <qif ¢>2, we may assume that (();), €2. If ((1)1), =0, then we are done since
1>1.1f ((1)1),=1, then [ >2 and we are done too.

e The shift map S : 2° — 2171 is defined by S(a)(m) := a(m+1) when 1 < L < w, with the
convention w—1:=w.

e The symmetric difference aAj3 of a, 3 € 2 is the element of 27 defined by (aAB)(m) =1 exactly
when a(m)# p(m), if L<w.

o We set N, :={(c, ) € [T'] | S(aAB) ¢ Dy}
Lemma 8.2 The D, (X9) set N, is not separable from [T1\N, by a pot(D,(X9)) set.

Proof. As [T is closed, D, is D,(£9) and S, A are continuous, N, is D, (29). By Lemma 2.6 in
[L8], it is enough to check that D), is ccs (see Definition 2.5 in [L8]). We just have to check that
the Cy’s are ccs. So let o, g € 2¥ and F': 2 — 2% satisfying the conclusion of Lemma 2.4.(b) in
[L8]. Note that o € Cy exactly when {m € w | a(m) = 1} is finite, so that Cy is ccs. If § > 1,
then a ¢ Cy exactly when, for each m, Sy,((m)o) < 0 or there is p with a(< m,p >) = 1. As
(Ba(< m,p >)),=(< m,p >)o=m, Cy is ccs too. O

The main result

Notation. From now on, n <w. We set, for 2<60 <n and (s, t) € (2x2)<“\{(0, 0)},
mgt::min{mew | (S(sAt)), C0® AS,((m)o) <6}

We also set s~ :=< 5(0), ..., s(|s| —2) > if s€2<¥.
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e We define the following relation on (2x2)<“:

(s,t) R (s',t') & (s,t)C(s',t') A <|5|§1 Y <|s|22 A 32<0<n mg,ﬁémg_ — N
V(s,t)C(s",t")C (s, ') VO<O' <n mg:t:mel =m%, )V

st s’

(Is1=2 A sls|=1) #8(]s]~1) A

V(s,t) S (s",¢") C (s, 1)) V2<O<n mf=m?_ :mg,,i,,) vV
<|5|22 AY(s, 1) C(s" 1) C (s ) (Y2<0<n md,=mf_ _=mb, ) A

s”(!s"r—m:t"us"\—l))).

Note that R is a tree relation, which means that it is a partial order (it contains the diagonal, is
antisymmetric and transitive) with minimum element (), (), the set of predecessors of any sequence is
finite and lineary ordered by R. Moreover, R is distinguished in C, which means that (s, t) R (s',t’)
if (s,t) C(s',t')C(s",¢") and (s,t) R (s”,t") (see [D-SR]).

e We set

Dy:={(s,t)eT | |s|>2= mg7t#mz,7t,} if n>2,
Dy:={(s,t)eT | |s|>2 A mgt#mz,’t, A YO<O0' <n mzjt:mgl,’t,}if2§9<n,

Dy:={(s,t)eT | |s|>2 AN V2<6<n mgt:me A s(|s|—1)#t(|s|—-1)},

st~
Do:={(s,) €T [ |s|=2 A s(|s|=1)=t(]s|-1)},
so that the (Dyg)g<y, is a partition of 7.

Theorem 8.3 Let 1 <n<w. Let X be a Polish space, and Aqg, A1 be disjoint analytic relations on X
such that Ay U Ay is s-acyclic. Then exactly one of the following holds:

(a) the set Ay is separable from A; by a pot (Dn(Eg)) set,
(b) (2¢,2% N, [T\N,) C (X, X, Ao, A1), via a square map.

Proof. By Lemma 8.2, (a) and (b) cannot hold simultaneously. So assume that (a) does not hold. Note
first that we may assume that AgUA; is compact and A; is D, (£9). Indeed, Theorems 1.9 and 1.10 in
[L8] give S€ D, (X9)([T7) and f’, ¢’ :2* — X continuous such that the inclusions S C (f'xg’) 71 (4;)
and [T1\S C (f'x g’ )~ (Ap) hold. Let (Xg)g<, be an increasing sequence of X9([7]) sets with
S=D((Z¢)o<n). K :=(f'xg")[[T1]. and Rg:=(f"xg')[S¢|. Note that K is compact, Ry is K,
D((R9)9<77) C A4, K\D((R9)9<n) C Ay, D((Rg),9<n) =KnNA, K\D((R9)9<n) =K nN Ap, so
that D ((Rg)g<y) is not separable from K\ D((Rg)g<y) by a pot(Dy(3X9)) set. So we can replace
Ay, Ag with D((Rg)o<y), K\D((Rg)o<n). respectively.
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e We may also assume that X is zero-dimensional and there are disjoint clopen subsets Og, O1 of X
such that Ag N (Op x O1) is not separable from A; N (Og x O1) by a pot(D;,(X9)) set. So, without
loss of generality, we will assume that Ag U A; C Oy x O1. We may also assume that X is recursively
presented, Ag, A1, Og, O1, Ry are Al, and Ry is the union of Al NTI{ C X NTI9() C =9 (7o) sets.

We set, for 6 < 1, Np := Rg\ (Ug—p Rer) N (Ngrcy No . Note that the Ny’s are pairwise
disjoint, which will be useful in the construction to get the injectivity of our reduction maps. We use
the notation of Theorem 3.2. For simplicity, we set F5 :=F}; ,.

Claim. (a) Assume that k+1<m. Then F; = N, U Ey, where Ej, C Ry is To-closed.
(b) Ao N Mgy F5=Nyi=E\(Upe,, Ro) Mgy No~
(a) Indeed, we argue by induction on k to prove (a). In the proof of this claim, all the closures will

refer to 7. Note first that Ry C A, C Ry U =Ry, so that Ff = A, = Ry U Eg = Ny U Ey. Then,
inductively,

Fg,, =A NEF=A N (N, U Ey)

1—|parity (k) —e] 1—|parity (k) —e]

= ((RkJrl\Rk) @] (Rk+3\Rk+2)...) N (Fk U Ek) =Ngi1 UFEgyq.

(b) Note then that Fiy_y = A1 N (Vyy1o, Ff =410 Nip1cy (Ng U Ej) =N, _1, so that

Ao () Fs=E\(J Ro)n () No.

0<n 0<n 0<n

This proves the claim. o
e We construct the following objects:
- sequences (Zs)sco<w 0Cs» (Ys)sc2<w 15 of points of X,
- sequences (X)sea<w ocs, (Ys)sea<w 1cs of X subsets of X,
- asequence (Us,)(s.pyer\{(0,0)} Of 27 subsets of X2,
We want these objects to satisfy the following conditions:

(1) Ts€EXs N Ys€Ys A (xs,yt)eUst
(2) XeeCTX;COxNOg A Y CY,COxNO A UStCQXQQ(X xYy)
(3) diamgp (Xs), diamgpy (Ys), diamgy (Us) <271°
(4) sOmel—YsomYsl—Q)
(5) ( ) ( ) A 36<2 (Sat)7(8/7t/)€D9) = U5’7t’gUS,t
(6) UStCNglf(S t)EDg

(7) (s,8) R (s/,1') = Ugrr CUss "
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e Assume that this has been done. As in the proof of Theorem 3.3, we get f : 2 — X injective
continuous. If (o, 5) €N, then we can find 6 <1 of parity opposite to that of 7 and (ny) ke, strictly
increasing such that (o, §)|ng € Dy and (o, B)|ng R (o, B)|ng+1 for each k € w. In this case, by
(1)-(3) and (5)-(6), (U (a, B)Ink) rew is a decreasing sequence of nonempty clopen subsets of AgNQx2
with vanishing diameters, so that its intersection is a singleton {F'(«, 8)} C Ao. As (Zan,Ygjn)
converges (for Xx2 and thus for X%) to F(a, 8), (f(a), f(B)) =F(a, B) € Ap. If (v, B) € [T]\N,,
then we argue similarly to see that (f(a), f(8)) € As.

e So let us prove that the construction is possible. Let (o, y1) € N, N Qx2, Xo, Y] be X} subsets of
X with diameter at most 27! such that 2o € Xo C Qx N Op and y; € Y; C Qx N Oy, and Up1 bea
2| subset of X? with diameter at most 27! such that (z¢,y1) € Up1 € N, N Qx2 N (X x Y7). This
completes the construction for [=1 since (0,1) € D,,.

- Note that (0?,1%) € D, since m( ; =0 and Mg 12 =1if n>2. We set So :=Up1 ' N (XoxY7)and
S1:=50NNogNQx2. AsUpy1 C Ny, Sy CS1'". In particular, I1.[S;] is Xx-dense in II.[Sp)] for
each € € 2, by continuity of the projections. As (xq,y1) € Up,1 N (I[So] x II1[Sp]), this implies that
Up1 N (I1g[S1] xI1;[S1]) is not empty and contains some (g2, y;2) (the projections maps are open).
This gives y19 € X with (1‘02, ylo) €51, and xg; € X with (.%'01, y12) €57. As U071 C Nn and S7 C Ny,
T2 # o1 and Y10 # yp2. It remains to choose X} subsets X2, Xo1, Y10, Y2 of X with diameter at
most 272 such that (zoe, Y1) € XoexY1. € XoxY7 and Xp2N X1 = Y10NY;2 =0, as well as £ subsets
Ug2 12, Uz 105 Upy 12 of X? with diameter at most 22 such that (2, y;2) € Upz 12 CUp 1 N(X2xY2)
and (2oz, Y1c) € Upe, 12 gm“ N No N Qx2 N (Xoe xY71:). This completes the construction for [ =2.

- Assume that our objects are constructed for the level [ > 2, which is the case for [ = 2. Note that
(5,0,%;1) ¢ Dy, and we already noticed that s;(I—1)=¢;(I—1) since [ >2, so that (s;,¢;) € Dy. We set

(8,t):=(81-10,%;—11) (which is not in Dy), and

So:={ ((Es)s€2l,0§sa @t)tte,th) ex? | V(s,t) eTN(2' x2)\{(5,1)} (Ts,7y) €Usy A
(@5, 7)) €No " N7 N (X5 xYp) ),

Sp:={ ((fs)sezl,ogsa @t)t@hlg) €S0 | (Ts,J7) €No N Q2§

We equip X 2" with the product of the Gandy-Harrington topologies. Let us show that S is dense in
So- Let (Us) seat ocs and (Vy)year 1+ be sequences of X sets with

(Mg gcs Us) X (Myear 14 Vi) N So#0

with witness ((z}), (y})), Ac:= {s€2 | s(I—1)=¢}, and

U:={Ts €Uz | I(Ts)scans) € Uscangsy Us I(Ui)tea, €lica, Vi
V(s,t)eT N (AgxAg) (Ts,T;) €Usnt,

Vi={g;€V; | 3(Ts)sea, €Msen, Us 3(W)reaniiy € e anysy Ve
V(s,t)eT N (A1 x A1) (Ts,7) €Ust}-
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Then (27, y}) eNo’ N @n N (U x V). This gives (T3, 7;) in No N @TI NU x V)N Qxe.
We choose witnesses (T's)sc 4o\ {5}s (Yr)tedo (tesp., (Ts)scars (Yo)rea,\qiy) for the fact that T5 € U
(resp., J; € V). Then ((Ts), (7)) € (et gcs Us) ¥ (Hyeor 14 Vi) N St as desired.

The sets U, :=11;,[S:] and V. :=11,[S.] are X} sets. As Sy is dense in S, U (resp., V1) is dense
in Uy (resp., Vp). Note that (z,,ys,) € Us,;, N (Upx Vp). As Uy (resp,. V1) is dense in Uy (resp.,
Vo), Us, t, meets Uy x V7.

Let (s,0,#1)® be the R-predecessor of (s,0,#;1). Assume first that (s,0,%1) € D,. Then
(510,4,1)® € D, too. Note that Uy, , QU(letll)RTl since (5;0,;1)" R (s;,t;). Thus U(sl07tl1)RT1
meets Uy x V1. This gives (25,0, Y4,1) € U,0,4,1)r N (U1xV1). We choose witnesses (750) a1\ {5,},0Cs0
(Y10)1eat 1ct (r€SP-s (Ts1)seat ocss (Yt1)rean f1,3,1c¢) Tor the fact that x50 € Uy (resp., g1 € V1). As
(25,0, Y1,1) € Uts,0,41)7 € Ny and (@s,e, Ytye) € No, 5,0 # 5,1 and Yg,0 # Yy,1- As in the proof of The-
orem 3.3, the s-acyclicity of AgU A and the fact that Oy, O; are disjoint ensure the fact that x40 # x4
and yy # y41 for s, ¢ arbitrary with the right first coordinate. Then we choose 211 subsets X, Y;. of
X with diameter at most 27/~1 such that (5., ¥z ) € XoexYie € X xY; and X 0N X1 = YsoN Ve =0,
as well as X subsets Uy 1o of X2, with diameter at most 2/, containing (7, ys./) and contained
in X, X Y, such that

- Us0,1 g U(Slo,tll)R’
-U.. . CU-; "N NyNQye,

se,te = s,i

- Use e CUs 4 if (5,1) # (3, 1).

The argument is the same if (s;0,%;1), (5;0,4;1) € Dy. So it remains to study the case where
(5:0,t;1) € Dy and (5;0,t;1)% € Dy, and 6’ < 0. In this case, note that Us,0,41)8 N (Ur x V1) is not
empty and contained in Ny C Ny . This gives (25,0, yt,1) € Ngr N U(le,tll)RTl N Qx2 N (U x V),
and we conclude as before. ]

Consequences

Corollary 8.4 Let 1 <n<w, X be a Polish space, and A, B be disjoint analytic relations on X such
that A is contained in a pot(AY) s-acyclic relation. Then exactly one of the following holds:

(a) the set A is separable from B by a pot(Dn(Eg)) set,
(b) (2¥,2°,N,, [T1\N,) C (X, X, A, B), via a square map.

Proof. Let R be a pot(AY) s-acyclic relation containing A. By Lemma 8.2, (a) and (b) cannot
hold simultaneously. So assume that (a) does not hold. Then A is not separable from B N R by
a pot(D,(X9)) set. This allows us to apply Theorem 8.3. O

Corollary 8.5 Let 1 <n<w, X be a Polish space, and A, B be disjoint analytic relations on X. The
following are equivalent:

(1) there is R€ 31 s-acyclic such that A N R is not separable from B N R by a pot (Dn(Eg)) set,
(2) there is f:2° — X injective continuous such that N, C (fx f)~1(A) and [T1\N, C (fx f)~}(B).
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Proof. (1) = (2) We apply Theorem 8.3.

(2) = (1) We can take R:=(fx f)[[T]. O

9 Oriented graphs

Proof of Theorem 1.9. Theorem 1.3 provides Borel relations Sy, S1 on 2. We saw that Sg U S; is
a subset of the body of a tree 1", which does not depend on I', and is contained in Ny x [N;. We set
Gr :=So U (S1)71, so that Gr is Borel. As Sp US; € Ny x Ny and Sy, S are disjoint, Gr is an
oriented graph. If (a) and (b) hold, then Gr is separable from G ! by a pot(T") set S. Note that S
also separates So = Gr N (Ng x N1) from S; = Glil N (No x N1), which is absurd. Thus (a) and (b)
cannot hold simultaneously.

Assume now that (a) does not hold. Then there are g,h : 2 — X continuous such that the
inclusions Sg C (g x h)~1(G) and S C (g x h)~1(G1) hold. It remains to set f(0a) := g(0c) and
f(AB):=h(1p). O

Proof of Theorem 1.14. We argue as in the proof of Theorem 1.9. The things to note are the follow-
ing:

- if G is s-acyclic or locally countable, then s(G) too,

- as noted in [Lo4], if G is separable from G~! by a pot(T") set S, then S~! € pot(T") separates
G~! from G, and S~ € pot(T") separates G from G~ 1, so that we can restrict our attention to the
classes Dn(Zg) and AY.

o If T’ has rank two, then Theorem 8.3 and Corollary 7.3 provide Borel relations Sg, S; on 2¢.

o If I'=D,(XY), then Corollaries 3.6 and 3.9 provide f:2% — X injective continuous such that one
of the following holds:

@NGC(fxf)"HG) and NYC(fx f)"HG),
() BYC (fx f)"H(G) and B C (fx f)~1(G).
The case (a) cannot happen since G~ is irreflexive. O

Proof of Theorem 1.15. Note first that S{ U (S7)~*,CJ u (C])~1,Bj U (BY)~! and B} U (B])~*
are Borel oriented graphs with locally countable closure. As in the proof of Theorem 1.9, G is not
separable from G~! by a pot(A(Dn(E‘l)))) setif Ge {CJ U (C))~1, By U (BY)~L,BY U (BJ)~'}.

By Lemma 3.1, S} U (S}) ™! is not separable from (S7)~* US/ by a pot<A (DU(E?))> set.
e Assume now that (a) does not hold. Corollaries 4.5 and 4.7 provide
(A,B) € {(N],N7), (BY, Bg), (Ng, N7), (B, BY), (Sg. 7). (C3, CY)}

and f:2% — X injective continuous such that AC (f x f)"1(G) and BC (f x f)~HG™1).
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The pair (A, B) cannot be in {(N7,N7), (N{, N7)} since G and G~! are irreflexive. It is enough to
show the existence of f:2* — 2% injective continuous such that BjU(B}) ! C (fxf)"{(BJU(B]) ™)
to see that (b) holds.

- We use the notation of the proof of Proposition 4.4. Let us show that

parity(n) ,_ pparity (n)
F Py CCy

if § <n (where A. =N and the closures refer to 71). We argue by induction on 6. Note first that

= U Gr(fs)g?O:COa

arity(n) _ <m
F(P yn ——Ng
parity(cp(s)):o

arity ()

by the proof of Proposition 4.4. Then, inductively,

parity(n) _ parity ()
i _N\Pafity(G)—parity(n)\ NNyr<o Fo

- Uparity(<p(s)):parity(9) Gr(fs) N Nor<o Uw(s)zef Gr(fs)=Cy=Cy,

by the proof of Proposition 4.4.

- From this we deduce that N} N (1), <n Fep Anty () i contained in
( U Gr(fs)) N (1) CoSGr(fy)=A(2).

parity (o(s))=parity (n) <n

As Nj UNT is locally countable and Nj N (,_, F, ep anity () A(2%), the proof of Theorem 3.3 gives
h:2* — 2% injective continuous such that N{ C (hxh)~! ((N{)~!) and NY C (hxh) ™1 ((N]) 1) (we
are in the case 2 of this proof). The map f:car— (1—¢)h(w) is as desired.

e As A(2%) is contained in the closure of S{ U (S7) ™!, this last relation is not below the two others.

- Assume, towards a contradiction, that B{ U (B}) ™1 is below S{ U (S7) 1. This gives s € 2<% and
€ € 2 such that (NOS,le,Bg N (Nos Xle),IB? N (Nos ¥ le)) C (Qw’ 2w, (82)1_25, (871775)1_26)'
By Lemma 3.1, Ny N N2 is not separable from N7 N N2 by a pot(D,(29)) set. As NJ UNY is locally

countable and NJ N, < F 0P arity () C A(2%), the proof of Theorem 3.3 gives h:2“ — N injective
continuous such that NY C (hxh)~1(N? N N2) for each € €2 (we are in the case 2 of this proof). This
implies that (2, 2%, B, BY) T (Nos, Nis, BI N (Nos x N14), BY N (Nog x Ni,)) and

(2w’ 2w’Bg,B717) C (2w’ 2w’ (82)1—25’ (871775)1_26)'
By Corollary 3.9, (2¥,2% NJ,N{) C (2v,2¥,B], B}), so that
(20.), 20.), Ng, N717) C (20.), 20.), (82)1_26, (811775)1_26) .

But this contradicts the proof of Proposition 4.4.
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- We will show that (2¢,2¢,C{,C}) C (2¥,2¥,S{,S}). Using the proof of the previous point,
this will show that Bj U (BY)~! is not below C U (C7)~L.

We use the notation of the proof of Proposition 4.4. Let us show that Gig: =Gy 1 CCpif 1<6<n
(where A, =S and the closures refer to 7). We argue by induction on 6. Note first that

G1=S]NS]=UnUl=Cc?uct=0,

by the proof of Proposition 4.4. Then, inductively,

G9+1:SgﬂG9 ﬂS?ﬂG@QUSﬂC@ﬂU& NCyCCyyq
and G)\:ﬂ9<)\ G@Qﬂ9<)\ Cyp=C), if A is limit.

From this we deduce that G,, C C,, = Gr(fy) = A(2¥). As S] U S/ is locally countable and
G, € A(2¥), the proof of Theorem 4.3 gives h:2“ — N injective continuous such that the inclusion
S¢ C (hxh)~1(S? N NE) holds for each € € 2 (we are in the case 2 of this proof). The maps defined
by f(0a):=h(a), f(la):=1a, g(18):=h(F) and g(03):=14, are as desired.

- Assume, towards a contradiction, that CJ U (C7)~! is below S{ U (S7) ™1, with witness f. This
gives s€2<%\ {}} and ¢ €2 such that C{ N (Nos x N15) C (fx f)~! ((S?ﬁfd)lfzs) for each e€2. As
in the previous point, there is h:2% — N, injective continuous such that

STC (hxh)" (ST N NZ)
for each e €2. This implies that if we set k(ea):=€h(a) and [:= f o k, then
CIC(kxk) (TN (Nos x N1s))

and C! C (Ix1)~1((S]

‘Fel)l*26 ) As in the proof of Proposition 4.4, we see that the image of

{0, 1) | € €2¥}
by I x [ is contained in the diagonal of 2*, which is not possible by injectivity of .

- Assume that 7 is a successor ordinal. The previous points show that if C{ U (C7)~! is below
Bg U (BY)~!, then (2+,2¢,CJ,CY) C (2¥,2%, (B2)! =2, (BY_,)' %) for some € € 2. We saw that
there is h:2¥ — Ny injective continuous such that N{ C (hxh) ™1 (N? N NE) for each € € 2. The maps
defined by f(0c) := h(w), f(la) :=la, g(18) := h(S) and g(05) := 13 are witnesses for the fact
that (2¥, 2%, B, BY) C (2, 2%, NJ,N7), so that (2, 2%, CJ,CY) C (2v,2%, (NZ)1 =2 (N7__)'~%).
The maps « — Oc and 3 — 13 are witnesses for the fact that (2+,2%,S{,S]) C (2¥,2¥,C{,CY).
Thus (2*,2¢,S{,S7) € (2¥,2%, (N2)! 25, (N7_,)'~%), which contradicts the proof of Proposition
4.4.

- Assume that 7 is a limit ordinal. Let us show that C{ U (C})~! is below BJ U (B})~*. The proof
1

of Proposition 4.4 provides h: 2% — 2* injective continuous such that S? C (hx h)~(NZ) for each
e €2. It remains to set f(ca):=eh(a). O
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10 Negative results

- By Theorem 15 in [L4], we cannot completely remove the assumption that A is s-acyclic or locally
countable in Corollary 6.4. We can wonder whether there is an antichain basis if this assumption is
removed (for this class TI$ or any other one appearing in this section). This also shows that we cannot
simply assume the disjointness of the analytic sets A, B in Theorem 6.3 and Corollaries 6.5, 6.7.

- We can use the proof of the previous fact to get a negative result for the class AJ.

Theorem 10.1 There is no tuple (X,Y, A, B), where X, Y are Polish and A, B are disjoint analytic
subsets of XxY, such that for any tuple (X,Y, A, B) of this type, exactly one of the following holds:

(a) A is separable from B by a pot(AY) set,
(b) (X,Y,A,B) E (X7y7~’47 B)
Proof. We argue by contradiction. By Lemma 7.1, we get (X, Y, A, B) C (2v, 2%, [T]NEY, [TNEY).
This shows that A, B are locally countable. As (a) and (b) cannot hold simultaneously, A is not
separable from B by a pot(AY) set. By Corollary 7.4 we get
(2¢,2¢ [T1NES, [T1NEY) C (X, Y,A,B),
so that we may assume that (X, Y, A, B)=(2¥,2%, [T NEY, [T] N E}).

e In the proof of Theorem 15 in [L4], the author considers a set A=[J ¢, 103)<« Gr(ls|c), where the
ls’s are partial continuous open maps from 2% into itself with dense open domain, and G is the inter-
section of their domain. Moreover, the /s’s have the properties that [s(x) #l;(x) if t # s, and I5(z) is
the limit of (lsk(x))k@, for each x € G. We set, fore €2, A, := Use(w\{o})<w,\s|zs (mod 2 Gr(ls|c)
so that Ay and A; are disjoint Borel sets.

Let us check that A is not separable from A; by a pot(AY) set. We argue by contradiction, which
gives D € pot(AY) and a dense G subset H of 2 such that D N H? € AY(H?). We may assume that
H C G. Note that H N (¢, fo1)<= I;1(H) is a dense G subset of 2¢, and thus contains a point

S
x. The vertical section A, is contained in H. In particular, the disjoint sections (Ag), and (A1), are

separable by a AJ subset D of the Polish space H. It remains to note that D N A_mH is a dense and

co-dense AY subset of A_xH, which contradicts Baire’s theorem.
This gives u: No— 2% and v: Ny — 2% with [T N E§C (uxv)~1(A.).

e We set By := [T N (EY UE}). Note that B ¢ pot(Gs), since otherwise [T] N EY and [T N E}
are two disjoint pot(G) sets, and thus pot(AY)-separable. Then we can follow the proof of Theorem
15 in [L4]. This proof gives U : F'— G and V : F'— 2 injective continuous satisfying the inclusion

Unew Gr(fn) S(UXV)~H(A).

The only thing to check is that there is (c,d) in |J,,,, w™ xw" ! and a nonempty open sub-
set R of Dy, , such that (U(m),V(fc,d(x))> ¢ Gr(lp) for each x € R. We argue by contradic-
tion, which gives a dense Gy subset K of F such that {J,c,, Gr(fujx) € (Uix x V)~ (Gr(ly|c))-
As (Ugx V)™t (Gr(l@‘G)) is the graph of a partial Borel map, (J,,c, Gr(fn k) too. Therefore
Unew Gr(fn|x) €pot(TI})\pot(G;), which is absurd. O
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This shows that we cannot completely remove the assumption that A U B is s-acyclic or locally
countable in Corollary 7.3. This also shows that we cannot simply assume the disjointness of the
analytic sets A, B in Theorem 7.2 and Corollary 7.4.

- By Theorem 2.16 in [L3], we cannot completely remove the assumption that A U B is s-acyclic or
locally countable in Corollary 3.10. This also shows that we cannot simply assume disjointness in
Theorem 3.3 and Corollary 3.11.

We saw that there is a version of Corollary 6.7 for I' = X, where we replace the class F, with
the class of open sets. We cannot replace the class F}, with the class of closed sets.

Proposition 10.2 There is no triple (X, A,B), where X is Polish and A, B are disjoint analytic re-
lations on X such that A is contained in a potentially closed s-acyclic or locally countable relation
such that, for each triple (X, A, B) of the same type, exactly one of the following holds:

(a) the set A is separable from B by a pot(XY) set,
(b) (X,X,A,B) E (X7 X7~’47 B)

Proof. We argue by contradiction, which gives a triple. Note that A is not separable from B by a
pot(X£9) set. Theorem 9 in [L5] gives F, G: 2 — X continuous such that A(2*) C (FxG)~!(A) and
GoC (FxG) 1(B). Weset A’ := (F xG)[A(2¢)], B':= (F x G)[Go] and C’:= (F x G)[Gy). Note
that A’, C’ are compact and C’ is the locally countable disjoint union of A’ and B’. In particular, B’
is Do(X9), A’ C A, B’ C B, and A’ is not separable from B’ by a pot(X{) set. So we may assume
that A, B are Borel with locally countable union which is the closure of B. Corollary 3.10 gives
f', ¢’ :2¥ — X injective continuous such that Go=Gg N (' x ¢’')~'(B). In particular,

A@2°)S(f'xg) T B\B)=(f"xg)""(A).
This means that we may assume that X=2“, A=A(2%) and B=Gy.

The proof of Theorem 10 in [L5] provides a Borel graph B on X :=2“ with no Borel countable
coloring such that any locally countable Borel digraph contained in 3 has a Borel countable coloring.
Consider the closed symmetric acyclic locally countable relation A := A(2“). As there is no Borel
countable coloring of B, A is not separable from B by a pot(X?) set. If f, g exist, then f =g since A
is contained in (f x g)~!(A). This implies that f is a homomorphism from G into 3. The digraph
(f % f)[Go] is locally countable and Borel since f is injective. Thus it has a Borel countable coloring,
and Gg too, which is absurd. O

For oriented graphs, we cannot completely remove the assumption that G is s-acyclic or locally
countable in Theorem 1.14. Let us check it for I'=AY.

Proposition 10.3 There is no tuple (X, G), where X is Polish and G is an analytic oriented graph on
X, such that for any tuple (X, G) of this type, exactly one of the following holds:

(a) the set G is separable from G~ by a pot(AY) set,
(b) there is f:2 — X injective continuous such that G C (f x f)~1(G).
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Proof. We use the notation of the proof of Theorem 10.1, and argue by contradiction. Recall the
analytic s-acyclic oriented graph G = ([7'] NEYU([T]NE) ! considered in the proof of Theorem
1.14. Note that there is fo: X — 2“ injective continuous such that G C (fox fo) (G A9)- In particular,
G is s-acyclic and Theorem 1.14 applies. This shows that we may assume that (X, G) = (2, Gg).

If R is a relation on 2¢, then we set Gr:={(0c, 153) | (o, B) € R}. As Ay is not separable from
A1 by a pot(AY) set, G 4, is not separable from G 4, by a pot(AY) set. As G4, U Ga, € Nox Ny
and G 4,, G 4, are disjoint, H := G4, U (G 4,) ! is a Borel oriented graph, and H is not separable
from H~! by a pot(AY) set, as in the proof of Theorem 1.9. If f:2% — 2 is injective continuous and
([TTNEY) U ([T NEF)~! CH, then on a nonempty clopen set S:= N, x Ny, the first coordinate
is either preserved, or changed.

As in the proof of Lemma 7.1, we see that [T'] N EY N S is not separable from [T] NE} N S by a
pot(AY) set. By Corollary 7.3, there is f:2% — 2% injective continuous such that

[TTNEFC (fx )~ ([T1NEGNS)
for each € € 2. This proves the existence of g:2“ — 2“ injective continuous such that
(TN (E§UE) S (9%9) ™" (Ga)-
This gives u: Ng— 2% and v: Ny — 2* injective continuous such that [T N (EJUE}) C (uxv)~1(A)

since the maps ea — « are injective. But we saw that this is not possible in the proof of Theorem
10.1. O

Question. Are there versions of our results for the classes D, (£3), D;,(£9) (when w <7 <w1) and
A(Dy(29)) (when 2<n<w1)?
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