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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47088691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00998371v2




Error estimates for second order Hamilton-Jacobi-Bellman

equations. Approximation of probabilistic reachable sets∗

Mohamed Assellaou† Olivier Bokanowski ‡ Hasnaa Zidani§

Abstract This work deals with numerical approximations of unbounded and discon-
tinuous value functions associated to some stochastic control problems. We derive error
estimates for monotone schemes based on a Semi-Lagrangian method (or more generally
in the form of a Markov chain approximation). A motivation of this study consists in
approximating chance-constrained reachability sets. The latters will be characterized as
level sets of a discontinuous value function associated to an adequate stochastic control
problem. A precise analysis of the level-set approach is carried out and some numerical
simulations are given to illustrate the approach.

2010 Mathematics Subject Classification. Primary: 65M15, 93E20; Sec-
ondary: 49L25

Keywords. Error estimates for HJB equations, numerical approximation, un-
bounded and discontinuous value function, chance constraints, level-set approach, stochas-
tic reachability analysis.

1 Introduction

Throughout this paper, we denote by T > 0 a fixed final horizon. Consider a controlled
process Xu

t,x satisfying :{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), ∀s ∈ [t, T ]

X(t) = x.
(1)

where the diffusion σ and drift b are two Lipschitz continuous functions, W (·) is the
classical Brownian motion, and u is a control function that takes its values in a compact
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subset U of Rq (q ≥ 1). Under suitable assumptions on b, σ and on U , equation (1)
admits a unique solution (see Section 2, for precise assumptions). Now, consider the
following control problem

ϑ(t, x) := sup
u∈U

E
[
Φ(Xu

t,x(T ))
]

(2)

where Φ : Rd → R is measurable, with linear growth. In this paper, we are interested
in error estimates of numerical approximations of ϑ.

The first approximation that will be considered here is a very classical one that con-
sists of introducing a family of Lipschitz continuous functions (Φε)ε converging point-
wisely to Φ. Then the value function ϑ can be itself approximated by the value functions
ϑε defined as:

ϑε(t, x) := sup
u∈U

E
[
Φε(X

u
t,x(T ))

]
.

It is known that under quite general assumptions on the data and on Φε, one can
show that ϑε converges pointwisely towards ϑ, when ε → 0. In this paper, we are also
interested in the error estimate of ϑ − ϑε depending on the measure of the set where
the two functions Φ and Φε differ. The result that will be studied here is obtained
under an ellipticity condition of the diffusion matrix. An extension to the more general
case whith degenerate matrices is still a challenging problem that is not covered in this
paper.

The second step in the approximation of ϑ is to discretize the Hamilton-Jacobi-
Bellman equation satisfied by ϑε. Indeed ϑε will be shown to be the unique continuous
viscosity solution of:

−∂tϑε +H(t, x,Dϑε, D
2ϑε) = 0 in (0, T )× Rd

ϑε(T, x) = Φε(x) in Rd

where H(t, x, p,Q) := supa∈U
(
−b(t, x, a) · p− Tr([σσT](t, x, a)Q)

)
. In the case when

the the drift b and the diffusion σ are bounded and when the value function ϑε is itself
bounded, error estimates of monotone schemes have been obtained first by Krylov [27]
for a case where σ is a constant function. These results were developed further in
[28, 29, 6, 7, 8] by introducing new tools that allow to consider the case where σ can
depend on time, space and also on the control variable. Several other extensions of the
theory have been analysed in the literature, let us mention some of these extensions
for stopping-game problems [13], for impulsive control systems [14], for integro-partial
differential HJB equations [18, 9, 10], and for a general class of coupled HJB systems
[16]. Note also that the case of fully uniformly elliptic operators have been also studied
in [17] using a different approach than the one introduced by Krylov. Here, we extend
the theory of error estimates to an unbounded Lipschitz setting. The proof is still based
on “Krylov regularization” and on some refined consistency estimates. To the best of
our knowledge, this is the first result in the case where b, σ and the solution to the HJB
equation itself are unbounded with respect to the space variable (with linear growth).

The study in this paper is partly motivated by reachability analysis for stochastic
systems. Let C be a non-empty subset of Rd (“the target”). Let ρ ∈ [0, 1[ and t ≤ T .
Consider the backward reachable set under probability of success ρ, that is, the set of
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initial points x for which the probability that there exists a process Xu
t,x solution of (1),

associated with an admissible control u ∈ U and that reaches C at time T is higher
than ρ:

Ωρ
t =

{
x ∈ Rd

∣∣∃u ∈ U , P[Xu
t,x(T ) ∈ C] > ρ

}
. (3)

The sets Ωρ
t can be characterized by using the level-set approach. Indeed, it is straith-

forward to see that Ωρ
t is equivalent to:

Ωρ
t =

{
x ∈ Rd

∣∣ ∃u ∈ U , E[1C(X
u
t,x(T ))] > ρ

}
.

Moreover, by considering the control problem (2) with φ(x) := 1C(x), it is possible to
show that for every ρ > 0 and every t ∈ [0, T ], the backward reachable set Ωρ

t is given
by the level-set:

Ωρ
t = {x ∈ Rd, ϑ(t, x) > ρ}.

The level approach has been introduced in [33] to model front propagation problems.
Then, the method has attracted a big interest for studying backward reachable sets of
continuous non-linear dynamical systems under general conditions, see [31, 11] and the
references therein. The idea of using the level set approach in discrete time stochastic
setting has been also considered in [5, 1, 2]. In this case, the value function is obtained
by solving the dynamic programming principle. In the present paper, we are interested
in the approximation of the probabilistic backward reachable sets for time-continuous
stochastic processes. We analyse the approach and we provide error estimates between
the exact sets and their numerical approximation.

Let us mention that other numerical methods for reachability analysis have been
introduced and analysed in the literature. The most natural numerical algorithm con-
sists in using Monte Carlo [34] simulations to generate a set of trajectories starting from
a given initial position x ∈ Rd. Then the percentage of trajectories reaching the tar-
get gives an approximation of the probability of success (for reaching the target) when
starting from this position x. On the other hand, for linear stochastic systems, a bound
for the probability of hitting a target can be obtained by using the enclosing hulls of the
probability density function for time intervals, see [4, 3] for instance. Note that these
approaches are used to calculate the probabilities of success but do not allow to define
the entire set of points that have the same given probability. In addition, Monte-Carlo-
based methods often require a large number of simulations to obtain a good accuracy.
We will use such simulations in Section 6 to validate our level-set approach.

The paper is organized as follows: Section 2 introduces the notations and the setting
of the control problems (2). In section 3, we derive an error estimate for the value
functions when the payoff function Φ is approximated by smooth functions. In section
4, we analyse the error estimates for a semi-Lagrangian scheme for the approximation
of the value function. In section 5, we study the characterization and approximation of
probabilistic backward reachable sets. Section 6 is devoted to some illustrative numerical
examples.
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2 Setting of the problem. Basic assumptions

Throughout this paper, | · | denotes the Euclidean norm for any RN type space, and BR
is the closed ball centred at the origin and with radius R.

For a given set S ⊂ RN , the indicator function is given by 1S(x) = 1 if x ∈ S and
1S(x) = 0 otherwise. The distance function to S is dist(x,S) = inf{|x − y| : y ∈ S}.
We also denote by µ(S) the measure of S with respect to Lebesgue’s measure.

For any real valued function ϕ : [0, T ]× Rd → R, we say that ϕ ∈ Ck,l([0, T ]× Rd)
(for non-negative integers k, l) iff all the partial derivatives ∂i

ti
∂j
xj
ϕ, for 0 ≤ i ≤ k and

0 ≤ j ≤ l, exist and are continuous functions. Moreover, we denote by ‖ϕ‖0 the norm
given by:

‖ϕ‖0 := sup
(t,x)∈[0,T ]×Rd

|ϕ(t, x)|,

and for the matrix Dkϕ (the k-th derivative with respect to the variable x):

‖Dkϕ‖0 := max
αi≥0,

∑
αi=k
‖ ∂k

∂xα1
1 · · · ∂x

αd
d

ϕ‖0.

Let {Ω,Ft, {Ft}t≥0, P} be a filtered probability space, W (.) be a givenm-dimensional
Brownian motion, and T > 0. We denote by U the set of progressively measurable
1 processes valued in U ⊂ Rq (q ≥ 1) where U is a non empty compact set. Let
(Xu

t,x(s))0≤s≤T be a controlled process valued in Rd solution of the following stochastic
differential equation:{

dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s) ∀s ∈ [t, T ],

X(t) = x,
(4)

where σ : [0, T ] × Rd × U → Rd×m and b : [0, T ] × Rd × U → Rd are two continuous
functions satisfying the following standard assumption:

(H1a) there exists L0 > 0 such that for any (s, t, x, y, u) ∈ [0, T ]×[0, T ]×Rd×Rd×U ,
we have:

|b(t, x, u)− b(s, y, u)|+ |σ(t, x, u)− σ(s, y, u)| ≤ L0(|x− y|+ |t− s|
1
2 ).

For convenience, we assume also that |σ(0, 0, u)|+ |b(0, 0, u)| ≤ L0 for any u ∈ U .
Assumption (H1a) imposes that b and σ are Lipschitz continuous with respect to x

and 1
2 -Hölder continuous with respect to t. Note that the uniform Lipschitz property

on b and σ and the compactness of U guarantee the existence of a controlled process
on the time interval [t, T ] for each given initial data x, and for every admissible control
u ∈ U (see [23] for more details). A process Xu

t,x solution of (4) associated to a control
u ∈ U will be said admissible. Moreover, there exists K0 depending only on L0, T, d and
m (see [35, page 42] or [23, Appendice D]) such that for any u ∈ U , 0 ≤ t ≤ t′ ≤ T and

1A precise definition of a progressively measurable function can be found in [23, page 159]
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x, x′ ∈ Rd

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t,x′(θ)
∣∣2] ≤ K2

0 |x− x′|2, (5a)

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t′,x(θ)
∣∣2] ≤ K2

0 (1 + |x|2) |t− t′|. (5b)

Furthermore, for every p ≥ 1, there exists Kp > 0 such that:

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)− x

∣∣p] ≤ Kp(1 + |x|p) |t− t′|. (5c)

For a part of the results that will be presented in this paper, we will also need an
ellipticity condition that we state as follows:

(H1b) σ depends only on (t, x) and there exists a real number Λ ≥ 1, such that:

∀(t, x) ∈ (0, T )× Rd, ΛId ≥ σ(t, x)σ(t, x)T ≥ Λ−1Id (6)

where Id is the identity matrix, and the inequalities (6) are in the sense of symmetric
matrices: Λ‖ξ‖2 ≥ 〈ξ, σσT ξ〉 ≥ Λ−1‖ξ‖2, ∀ξ ∈ Rd.

Assumption (H1b) will be used in section 3. It is useful to derive Aronson type
estimates [22] on the density of probability associated with the process Xu

t,x, precise
statement is given in Lemma 3.3.

Remark 2.1 Note that more generally, assumption (H1b) can be replaced by a weak
Hörmander condition where the diffusion takes part only in some components and the
noise propagates through a chain of differential equations. In that context, Aronson
type estimates can still be obtained as in [22], and the results of the present paper
could be extended.

Throughout the paper, we denote by Φ : Rd → R a given final cost function satisfying
the assumption:

(H2) Φ is measurable, and with linear growth, i.e, there exists M0 > 0 such that:

|Φ(x)| ≤M0(1 + |x|) a.e. x ∈ Rd.

Now, consider the following optimal control problem:

ϑ(t, x) := sup
u∈U

E
[
Φ(Xu

t,x(T ))
]
. (7)

Under assumptions (H1a)-(H2), the value function ϑ is well defined but it may be
discontinuous. Moreover, according to [25], if Φ is upper semi-continuous (u.s.c) and
under some additional convexity assumptions on the drift and the diffusion coefficients,
ϑ is u.s.c and satisfies the following HJB equation:

−∂tϑ+H(t, x,Dϑ,D2ϑ) = 0 in (0, T )× Rd (8a)

ϑ(T, x) = Φ(x) in Rd. (8b)
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In this paper, we are interested in the error estimates theory for numerical approx-
imations of the value function ϑ. Since ϑ is discontinuous, we shall first introduce a
regularized problem with a controlled error with respect to the original problem, and
on which further analysis and numerical approximation will be more convenient. For
this aim, we consider a family of regularized functions (Φε)ε>0, and denote by Dε (for
any ε > 0) the set where Φε and Φ take different values:

Dε := {x ∈ Rd | Φε(x) 6= Φ(x)}.

Then we consider the following assumption:
(H3) (i) For every ε ∈]0, 1], Φε : Rd → R is a Lipschitz continuous function with

Lipschitz constant Lε ≥ 0,
(ii) there exists a constants M0 > 0 (independent of ε), such that

|Φε(x)| ≤M0(1 + |x|), x ∈ Rd,

(iii) there exists a constants M1 > 0 (independent of ε), such that for any A > 0

µ(Dε ∩ BA) ≤M1Aε, ε ∈]0, 1].

(The constant M0 in (H3)-(ii) can be chosen to be the same constant as in (H2) without
loss of generality.)

Of course the existence of such approximated Lipschitz continuous functions implic-
itly imposes some more requirements on the function Φ itself. However, (H3) is satisfied
in many cases. For instance, it is possible to construct a family Φε satisfying (H3) when
the function Φ is piecewise Lipschitz function with discontinuities lying in a union of
compact regular sub-manifolds of dimension d− 1. See also remark 5.2 or Section 5 for
construction of such approximations in some particular cases.

Notice also that if Dε ⊂ BA for some given A ≥ 1 and for all ε ∈]0, 1], then (H3)-(iii)
is simply equivalent to assume that there exists M1 > 0 such that µ(Dε) ≤ M1ε for
every ε ∈]0, 1].

Now, consider an approximation of ϑ given by the value function associated to the
following control problem:

ϑε(t, x) := sup
u∈U

E
[
Φε(X

u
t,x(T ))

]
. (9)

Under (H3) and using the ellipticity condition (H1b), we shall derive an error estimate
of ϑ− ϑε.

The next step consists of deriving error estimates for numerical approximation of
ϑε which is a Lipschitz continuous function with linear growth in x variable. For every
ε > 0, this new value function can be characterized as unique Lipschitz viscosity solution
of the HJB equation:

−∂tϑε +H(t, x,Dϑε, D
2ϑε) = 0 in (0, T )× Rd (10a)

ϑε(T, x) = Φε(x) in Rd. (10b)

The Lipschitz regularity is suitable for deriving the error estimates when the HJB equa-
tion is approximated by a monotone scheme. However, error estimates for second order
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HJB equations have been studied so far only for Lipschitz bounded viscosity solutions,
as well as bounded coefficients b, and σ. Here, we are concerned by the case of un-
bounded viscosity solutions with linear growth and unbounded coefficients with respect
to the x variable (which is the case of many real applications such as call options in
mathematical finance). We recall here that thouroughout all the paper the control set
U is bounded.

3 The regularized problem

Notation. Throughout this sections and the following ones, the constant C will denote
a generic positive real number that may depend only on T, d,m,L0,K0,Kp.

3.1 Error estimate for the regularization procedure

Here we focus on the error estimate between ϑ and the approximated value function ϑε.

Theorem 3.1 Assume (H1a), (H1b), (H2), and (H3). Let ϑ and ϑε be the value func-
tions defined respectively by (7) and (9).
(i) There exist a constant C0 > 0 (depending only on T, L0,Λ,M0,M1) and ε0 ∈]0, 1],
such that for every 0 < ε < ε0 the following estimate holds:

|ϑ(t, x)− ϑε(t, x)| ≤ C0
1 + |x|2 + | log ε|

(T − t)d/2
ε (11)

for every 0 ≤ t < T and x ∈ Rd.
(ii)Furthermore, if there exists A > 0 such that Dε ⊂ BA for every ε ∈]0, 1], then there
exist C1, C2 > 0 (depending only on T,M0,M1 and A) such that the following estimate
holds:

|ϑ(t, x)− ϑε(t, x)| ≤ C1

(T − t)d/2
e
−C2

dist(x,Dε)2
(T−t) ε (12)

for every ε ∈]0, 1], for every x ∈ Rd and every 0 ≤ t < T .

Remark 3.2 In particular, if there exists A > 0 such that Dε ⊂ BA for every ε > 0,
then Theorem 3.1(ii) leads directly to the following bound (since dist(x,Dε) ≥ 0) :

|ϑ(t, x)− ϑε(t, x)| ≤ C1

(T − t)d/2
ε (13)

for every 0 ≤ t < T and every x ∈ Rd. Moreover, by using (12) and the fact that
e−r ≤ C/rd/2 for all r > 0 (for some constant C ≥ 0), we conclude that there exists
C ′1 ≥ 0 depending on T,M0,M1, A such that:

|ϑ(t, x)− ϑε(t, x)| ≤ C ′1
[dist(x,Dε)]d

ε (14)

for every 0 ≤ t ≤ T and any x ∈ Rd \ Dε.
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Before giving the proof of Theorem 3.1, we first recall some known results on the
density of probability of the process Xu

t,x(·), for a given (t, x) ∈ [0, T ) and an admissible
control u ∈ U . We will denote by y 7−→ pu(t, x; s, y) the density of probability function
associated to the process Xu

t,x(s) (for a given admissible control u ∈ U).

Lemma 3.3 Assume (H1a) and (H1b). There exist c1, c2, c3 > 0 such that for any
(t, s, x, y) ∈ [0, T )× Rd × Rd such that t < s, and for any admissible control u ∈ U , the
following estimate holds:

|pu(t, x; s, y)| ≤ c1

(s− t)
d
2

e
−c2 |x−y|

2

2(s−t) ec3|x|
2
. (15)

Proof. Let u ∈ U . From [22, Theorem 1.1], there exists c1, c2 > 0 such that for every
0 ≤ t < s ≤ T and every x, y ∈ Rd, we have:

pu(t, x; s, y) ≤ c1

(s− t)
d
2

exp

(
− c2

|θut,x(s)− y|2

s− t

)
(16)

where θ(s) := θut,x(s) is the solution of the differential equation:

d

ds
θ(s) = b(s, θ(s), u(s)), s ≥ t,

θ(t) = x.

Note that by [22, Theorem 1.1], the constants c1 and c2 depend only on d,Λ and do
not depend neither on θu nor on the control u. Therefore, the estimate (15) is valid
for any control function u ∈ U . By assumption (H1a) and by some classical estimates
we get: |θut,x(s)− x| ≤ L0(1 + |x|)(s− t)eL0(s−t). On the other hand, a straightforward
calculation yields to: |x− y| ≤ |θut,x(s)− y|+ |θut,x(s)− x|. Hence

−
|θut,x(s)− y|2

s− t
≤ −|x− y|

2

2(s− t)
+ 2L2

0(1 + |x|2)(s− t)e2L0(s−t).

Thus, we obtain

pu(t, x; s, y) ≤ c1

(s− t)
d
2

e
−c2 |x−y|

2

2(s−t) ec3(1+|x|2)

≤ c1e
c3

(s− t)
d
2

e
−c2 |x−y|

2

2(s−t) ec3|x|
2
,

with c3 = 2c2L
2
0Te

2L0T , which gives the desired upper bound. The lower bound can be
derived in the same way. �

Now we turn to the proof of theorem 3.1.

Proof of Theorem 3.1. Let t ∈ [0, T ] and x ∈ Rd. We have

|ϑ(t, x)− ϑε(t, x)| =

∣∣∣∣ sup
u∈U

E[Φ(Xu
t,x(T ))]− sup

u∈U
E[Φε(X

u
t,x(T ))]

∣∣∣∣
≤ sup

u∈U
E[
∣∣Φ(Xu

t,x(T ))− Φε(X
u
t,x(T ))

∣∣]
≤ sup

u∈U

∫
Rd
|Φ(y)− Φε(y)| pu(t, x;T, y)dy,

8



where y → pu(t, x;T, y) is the density of probability associated to the process Xu
t,x(T )

associated to a control function u ∈ U . Since supp(Φ− Φε) ⊂ Dε, it comes:

|ϑ(t, x)− ϑε(t, x)| ≤ sup
u∈U

∫
Dε
|Φ(y)− Φε(y)| pu(t, x;T, y)dy. (17)

We first consider the proof of (ii). We assume that Dε ⊂ BA for some A > 0 and
for every ε > 0. Then by taking into account Lemma 3.3 (using the fact that for every
y ∈ Dε, we have |x− y| ≥ dist(x,Dε)), and by assumption (H3) (which implies also that
for any y ∈ Rd, |Φ(y)− Φε(y)| ≤ 2M0(1 + |y|)), we get:∫

Dε
(Φ(y)− Φε(y))pu(t, x;T, y)dy

≤ 2M0(1 +A)c1(T − t)−
d
2 e−c2

dist(x,Dε)2
T−t ec3A

2
µ(Dε ∩ BA)

≤ 2M0M1c1(T − t)−
d
2 e−c2

dist(x,Dε)2
T−t ec3A

2
(1 +A)Aε, (18)

for every u ∈ U , which concludes to the desired bound for (ii).
We come back to the general case (i). For ε ∈]0, 1], let Xε ∈ R be the unique

parameter such that Xε ≥ d−1
2c2

(where c2 is introduced in Lemma 3.3) and

X(d−1)/2
ε e−c2Xε = ε. (19)

Then, as ε→ 0, it holds Xε ∼ 1
c2
| log ε| and therefore, Xε = O(| log(ε)|). Introduce also

the positive constant Rε :=
√

(T − t)Xε.
Let u ∈ U be fixed. Using the estimate (16), we obtain a first bound as follows:∫
Dε∩(θut,x(T )+BRε )

(Φ(y)− Φε(y))pu(t, x;T, y)dy

≤ 2M0(1 + |θut,x(T )|+Rε)
c1

(T − t)
d
2

µ

(
Dε ∩ (θut,x(T ) + BRε)

)
≤ 2M0M1(1 + |θut,x(T )|+Rε)

2 c1

(T − t)
d
2

ε.

≤ 2M0M1C(1 + |x|+Rε)
2 c1

(T − t)
d
2

ε (20)

where we have used that |θut,x(T )| ≤ C(1 + |x|) for some constant C > 0 that only
depends on T and L0 (and does not depend on u).
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On the other hand,∫
Dε∩ Rd\(θut,x(T )+BRε )

(Φ(y)− Φε(y))pu(t, x;T, y)dy

≤
∫
Rd\(θut,x(T )+BRε )

|Φ(y)− Φε(y))|pu(t, x;T, y)dy

≤
∫
|y−θut,x(T )|≥Rε

2M0(1 + |y|) c1

(T − t)d/2
e−c2

|θut,x(T )−y|2

T−t dy

=

∫
|y|≥Rε
2M0(1 + |y + θut,x(T )|) c1

(T − t)d/2
e−c2

|y|2
T−t dy

≤ 2c1M0

∫
|z|≥ Rε√

T−t

(1 + |θut,x(T )|+
√
T − t|z|)e−c2|z|2 dz (21)

On the other hand, we have the following Lemma (see the proof in Appendice B):

Lemma 3.4 For any α ≥ 0, there exists a constant qα > 0 (depending also on c2 and
d), such that ∫

|z|≥a,z∈Rd
|z|αe−c2|z|2dz ≤ qα aα+d−1e−c2a

2
, as |a| ≥ 1.

Hence, with a := Rε/
√

(T − t) =
√
Xε, it comes:∫

Dε∩ Rd\(θut,x(T )+BRε )
(Φ(y)− Φε(y))pu(t, x;T, y)dy

≤ 2c1M0

(
q0(1 + C(1 + |x|))X

d−1
2

ε + q1

√
T − tX

d
2
ε

)
e−c2Xε

≤ 2c1M0C(1 + |x|+Rε)Xε
d−1
2 e−c2Xε (22)

for some constant C ≥ 0, under the condition that Xε ≥ 1 (which is satisfied whenever
ε is small enough).

By combining (20) and (22), and taking into account that the two estimates do not
depend on the control variable u, we get for every ε small enough:

|ϑ(t, x)− ϑε(t, x)|

≤ 2(c1+M1)M0C(1 + |x|+Rε)
2

(
(T − t)−d/2 ε+X

d−1
2

ε e−c2Xε
)
. (23)

By using the definition of Xε and its properties, we get:

|ϑ(t, x)− ϑε(t, x)| ≤ 2(c1+M1)M0C(1 + |x|+Rε)
2(1 + (T − t)−d/2)ε

≤ 2(c1+M1)M0C(1 + |x|+ C| log ε|1/2)2(1 + (T − t)−d/2)ε

≤ C0
1 + |x|2 + | log ε|

(T − t)d/2
ε

where the constant C0 > 0 depends only on T, L0,M0,M1, c1, c2, which concludes the
proof of (i). �
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3.2 Some regularity results for ϑε

In this subsection, we provide an upper bound of the Hölder constant of ϑε. By using
the fact that the function Φε is Lε-Lipschitz continuous, we obtain the following:

Lemma 3.5 Assume (H1a), (H2) and (H3). There exists a constant C > 0 such that
for every ε > 0, the value function ϑε satisfies:

|ϑε(t, x)− ϑε(t, y)| ≤ CLε|x− y|, (24)

for all x, y ∈ Rd, t ∈ [0, T ]. Moreover,

|ϑε(t, x)− ϑε(s, x)| ≤ CLε(1 + |x|) |t− s|
1
2 (25)

for all x ∈ Rd, t, s ∈ [0, T ]

Proof. (i) By straightforward calculations, we obtain:

|ϑε(t, x)− ϑε(t, y)| ≤ sup
u∈U
|E[Φε(X

u
t,x(T ))]− E[Φε(X

u
t,y(T ))]|

≤ sup
u∈U

E[|Φε(X
u
t,x(T ))− Φε(X

u
t,y(T ))|].

Then by using the Lipschitz regularity of Φε, it follows that:

|ϑε(t, x)− ϑε(t, y)| ≤ Lε sup
u∈U

E
[∣∣Xu

t,x(T )−Xu
t,y(T )

∣∣].
By using (5), we get the inequality:

|ϑε(t, x)− ϑε(t, y)| ≤ K0Lε |x− y|.

(ii) Without loss of generality, we assume that s = t+ h for some h > 0. By using
the definition of ϑ, we have:

|ϑε(t+h, x)− ϑε(t, x)| ≤ sup
u∈U

(
E
[
Φε(X

u
t+h,x(T ))

]
− E

[
Φε(X

u
t,x(T ))

])
≤ sup

u∈U
E
[
E
[∣∣Φε(X

u
t+h,x(T ))− Φε(X

u
t+h,Xu

t,x(t+h)(T ))
∣∣ | Ft+h] |Ft]

≤ sup
u∈U

Lε E
[
E
[∣∣Xu

t+h,x(T )−Xu
t+h,Xu

t,x(t+h)(T )
∣∣ | Ft+h] |Ft]

Finally, taking into account (5), we deduce that:

|ϑε(t+h, x)− ϑε(t, x)| ≤ K2
0Lε(1 + |x|)h1/2.

Therefore, taking any C ≥ max(K0,K
2
0 ), the desired result follows. �

It is also known that ϑε satisfies the following dynamic programming principle and
the HJB equation:
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Proposition 3.6 Assume (H1a), (H2) and (H3).
(i) Let (t, x) ∈ [0, T ]×Rd, and denote T[t,T ] the set of (Fθ)θ∈[t,T ]-adapted stopping times
with values a.e. in [t, T ]. Let {τu;u ∈ U} be a subset of T[t,T ] (independant of Ft).
Then

ϑε(t, x) = sup
u∈U

E[ϑε(τ
u, Xu

t,x(τu))] (26)

(ii) The function ϑε is the unique continous viscosity solution (see definition 3.7), with
linear growth, of the following HJB equation:

−∂tϑε +H(t, x,Dϑε, D
2ϑε) = 0 in (0, T )× Rd (27a)

ϑε(T, x) = Φε(x) in Rd. (27b)

where H denotes the Hamiltonian function defined by:

H(t, x, p,Q) := inf
u∈U

{
−1

2
Tr(σ(t, x, u)σT (t, x, u)Q)− b(t, x, u) · p

}
(28)

for every t ∈ [0, T ], x ∈ Rd, p ∈ Rd and for every symmetric d× d-matrix Q.

Definition 3.7 A usc function ϑ (resp. lsc function ϑ) on [0, T ] × Rd is a viscosity

sub-solution (resp. super-solution) of (27), if for each function ϕ ∈ C1,2([0, T ] × Rd),
at each maximum (resp. minimum) point (t, x) of ϑ − ϕ (resp. ϑ − ϕ) the following
inequalities hold{

−∂tϕ+H(t, x,Dxϕ,D
2
xϕ) ≤ 0 in [0, T )× Rd

min
(
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ), ϑ− Φε

)
≤ 0 on {T} × Rd.

(resp. {
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ) ≥ 0 in [0, T )× Rd

max
(
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ), ϑ− Φε

)
≥ 0 on {T} × Rd.

The proof of Proposition 3.6 can be found in [23, Chapter 5]. For the uniqueness of
viscosity solution we will use in particular the following comparison principle that holds
for unbounded solutions (see [20] for the proof).

Proposition 3.8 Let v1, v2 : [0, T ] × Rd → R and assume that v1 is u.s.c and v2 is
l.s.c, that there exists a constant c ≥ 0 and p ≥ 1 such that v1 ≥ −c(1 + |x|p) and
v2 ≤ c(1 + |x|p) for all x ∈ Rd, and that v1 and v2 are respectively viscosity subsolution
and supersolution of (27). Then v1(t, x) ≤ v2(t, x),∀(t, x) ∈ [0, T ]× Rd.

4 Error estimate for numerical approximations by a Semi-
Lagrangian scheme

4.1 Time semi-discrete scheme

We aim at approximating v, the unique continous viscosity solution, with linear growth,
of the following HJB equation:

−∂tv +H(t, x,Dv,D2v) = 0 in (0, T )× Rd (29a)

v(T, x) = φ(x) in Rd. (29b)
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where H is the same Hamiltonian function as in (28). This is the same as HJB equa-
tion (27) but with a general terminal data φ instead of Φε. Throughout this section, we
assume satisfied the assumption (H1) on the drift and diffusion coefficients b, σ. Also
φ is assumed to be a Lipschitz continuous function, with Lipschitz constant Lφ. The
Hölder constant of v will be denoted by Lv.

We aim to give new error estimates for semi-Lagrangian schemes [19], in the case
of Lipschitz continuous b and σ yet that can be unbounded (as well as the solution v
itself).

For convenience, we will denote by σk the column vectors of the matrix σ :

σ(t, x, a) =
[
σ1, . . . , σm

]
(t, x, a),

and let us denote the vectors (σ̄k)k=1,...,2m as follows

σ̄k(t, x, a) := (−1)k
√
m σb k−1

2
c(t, x, a) (30)

(where bpc denotes the integer part of p ∈ R).

Let h = h > 0 denote a given time step, and consider a semi-discrete scheme defined
as (for x ∈ Rd):

V N (x) = φ(x) (31a)

and, for every n = N, . . . , 1,

V n−1(x) = Sh(tn, x, V
n), (31b)

with, for any t ∈ [0, T ], x ∈ Rd, and any function w : Rd → R,

Sh(t, x, w) :=
1

2m
max
a∈U

{
2m∑
k=1

w(x+ hb(t, x, a) +
√
hσ̄k(t, x, a))

}

By V we will denote the linear interpolation of V 0, · · · , V n on t0, · · · , tN .

The main result of this section is the following:

Theorem 4.1 Assume that (H1a) is satisfied and that φ is Lipschitz continuous func-
tion with Lipschitz constant Lφ. There exists C ≥ 0, ∀n ∈ [0, . . . , N ],

|V n(x)− v(tn, x)| ≤ CLφ (1 + |x|)7/4 h1/4.

The above theorem is an extension to the error estimates known in the literature
for bounded Hölder continuous value functions with bounded and Lipschitz continuous
drift b and diffusion σ, see [6, 8, 21]. The proof given here is based on classical shaking
and regularization techniques introduced by Krylov [27, 28] combined with a precise
consistency estimate and an interpretation of the numerical scheme as value function of
a discrete-time control problem.
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Remark 4.1 More precisely if we assume, for some constant L0,0, L0,1 ≥ 0:

|b(t, x, a)|+ |σ(t, x, a)| ≤ L0,0 + L0,1|x|, |φ(x)| ≤ L0,0 + L0,1|x|, (32)

for every (t, x, a) ∈ [0, T ]× Rd × U , then there exists a constant C ≥ 0, such that:

|V n(x)− v(tn, x)| ≤ CLφ (1 + L0,0 + L0,1|x|)7/4 h1/4.

In particular if φ, b and σ are bounded functions then the previous estimates hold with
L0,1 := 0 and we find the usual error estimate bounded by h1/4 up to a universal constant
(i.e. no growth term in |x|7/4).

4.1.1 Properties of (31)

First, we derive the following consistency property:

Lemma 4.2 For any regular function ϕ ∈ C2,4([0, T ]×Rd), denoting ϕn(x) = ϕ(tn, x)
and Enϕ(x) as

Enϕ(x) := −∂tϕ(tn, x) +H(tn, x,Dϕ,D
2ϕ)− ϕn−1(x)− Sh(tn, x, ϕ

n)

h
(33)

where Sh is defined in (31), it holds

|Enϕ(x)| ≤ C (‖ϕtt‖0 +
∑

k=2,3,4

‖Dkϕ‖0) sup
a∈U

(
|b(tn, x, a)|2 + |σ(tn, x, a)|4

)
h,

where C ≥ 0 is a constant independent of n, h and ϕ.

Proof. The result is straightforward by first using a Taylor expansion of fourth order
of ϕ(t−h, y+

√
hσ̄k(t, x, a)) around ϕ(t, y), where y = x+ b(t, x, a)h, and then by using

a second order Taylor expansion of the result around x. �

In particular, by using the Lipschitz regularity of b and σ, and their linear growth-
ness, it also holds that

|Enϕ(x)| ≤ C (‖ϕtt‖0 +
∑

k=2,3,4

‖Dkϕ‖0) (1 + |x|4) h. (34)

Remark 4.3 More precisely if we assume (32) for some constant L0,0, L0,1 ≥ 0, then
it also holds, for a constant C ≥ 0:

|Enϕ(x)| ≤ C (‖ϕtt‖0 +
∑

k=2,3,4

‖Dkϕ‖0) (1 + L0,0 + L0,1|x|)4 h. (35)

Now, by considering Q ∈ {1, . . . , 2m} a random variable such that
P[Q = k] = 1

2m , it follows that the scheme (31) is equivalent to:

V n−1(x) = max
a∈U

E
[
V n(x+ hb(tn, x, a) +

√
h σ̄Q(tn, x, a))

]
.
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For the sequel of the section, it will be useful to define recursively the Markov chain
Zk,an,x as follows. For a given x ∈ Rd, a given k ≥ n ≥ 0, a sequence of controls a =
(an, . . . , ak, . . . ) with ai ∈ U , and a sequence (Qn, Qn+1, . . . , Qk, . . . ) of i.i.d. random
variables with same law as Q,

- If k = n,
Zn,an,x := x.

- If k ≥ n,

Zk+1,a
n,x := Zk,an,x + hb(tk, Z

k,a
n,x, ak) +

√
hσ̄Qk(tk, Z

k,a
n,x, ak).

Clearly, Zk,an,x will depend only of n, x, the first k − n values of (an, . . . , ak−1) and of
Qn, . . . , Qk−1.

The scheme can then be written equivalently in the form

V n−1(x) = max
a∈U

E
[
V n(Zn+1,a0

n,x )

]
. (36)

By standard estimates, there exists a constant C > 0 (depending on L0, d,m and
T ) such that for all x, y ∈ Rd, for all 0 ≤ n ≤ k ≤ N and 0 ≤ m ≤ N − k, we have:

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x|4

]
· · ·
]]
≤ C(1 + |x|4), (37a)

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x − Zk,an,y |

]
· · ·
]]
≤ C|x− y|, (37b)

max
an,...,ak

E
[

max
ak+1

E
[
· · · max

ak+m−1

E
[
|Zk+m,a
n,x − Zk,an,x|

]
· · ·
]]

≤ C(1 + |x|)(tk+m − tk)
1
2 . (37c)

For sake of completeness, a proof of the above estimates is given in Appendix C. Finally,
we recall that the scheme is 1

2 -hölder in time and Lispchitz continuous in space:

Lemma 4.4 There exists C > 0 (independent of h), for 0 ≤ n ≤ n+ k ≤ N :

|V n+k(x)− V n(y)| ≤ CLφ
(

(1 + |x|)(tn+k − tn)
1
2 + |x− y|

)
,

for x, y ∈ Rd.

Proof. By recursion we have

V n(x) = max
an+1

E
[
V n+1(Z

n+2,an+1

n+1,x )

]
= max

an+1

E
[

max
an+2

E
[
· · ·max

an+k
E
[
V n+k(Zn+k+1,a

n+1,x )
]
· · ·
]]

with a = (an+1, an+2, . . . , an+k). In particular, with k = N − n and knowing that
V N (x) = φ(x), it follows that:

V n(x) = max
an+1

E
[

max
an+2

E
[
· · ·max

aN
E
[
φ(ZN,an,x )

]
· · ·
]]
.
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By using (37b), we deduce that:

|V n(x)− V n(y)| ≤ LφC|x− y|. (38)

Similarly, by using (37c) with k := n and m := k, we obtain:

|V n(x)− V n+k(x)|

=

∣∣∣∣max
an+1

E
[

max
an+2

E
[
· · ·max

an+k
E
[
V n+k(Zn+k+1,a

n+1,x )− V n+k(x)
]
· · ·
]]∣∣∣∣

≤ LφC max
an+1

E
[

max
an+2

E
[
· · ·max

an+k
E
[
|Zn+k+1,a
n+1,x − x|

]
· · ·
]]

≤ LφC
2(1 + |x|)(tn+k − tn)

1
2 (39)

By combining the inequalities (38) and (39), the desired statement is proved. �

4.1.2 Upper bound

First, we consider a regular super-solution of (29), denoted w, and aim derive an upper
bound for

en := V n − wn, (40)

where wn(x) = w(tn, x).

Lemma 4.5 Let w be a regular super-solution of (29). For all 0 ≤ n ≤ N − 1 and
every x ∈ Rd, we have:

en(x) ≤ max
an+1

E
[

max
an+2

E
[
· · ·max

aN
E
[
eN (ZN+1,a

n+1,x )

]
. . .

]]
+ h

∑
n+1≤k≤N

max
an+1

E
[

max
an+2

E
[
· · ·max

ak−1

E
[
Ekw
(
Zk,an+1,x

)]
· · ·
]]
.

Proof. By definition of the scheme,

V n−1(x) = Sh(tn, x, V
n) = max

an∈U
E
[
V n(Zn+1,an

n,x )

]
,

and by the consistency estimate of Lemma 4.2 and the super-solution property, it comes
that

wn−1(x) ≥ Sh(tn, x, w
n)− hEnw(x) = max

an∈U
E
[
wn(Zn+1,an

n,x )

]
− hEnw(x).

Therefore, for en = V n − wn we get the estimate

en−1(x) ≤ max
an∈U

E
[
en(Zn+1,an

n,x )

]
+ hEnw(x).
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Hence, by recursion,

en−1(x) ≤ max
an

E
[

max
an+1

E
[
en+1(Z

n+2,an+1

n+1,Zn+1,an
n,x

)

]
+ hEn+1

w (Zn+1,an
n,x )

]
+ hEnw(x)

≤ max
an

E
[

max
an+1

E
[
en+1(Zn+2,a

n,x )

]]
+ hmax

an
E
[
En+1
w (Zn+1,an

n,x )

]
+ hEnw(x)

...

≤ max
an

E
[

max
an+1

E
[
· · ·max

an+k
E
[
en+k(Zn+k+1,a

n,x )

]
· · ·
]]

+h
∑

0≤j≤k
max
an

E
[

max
an+1

E
[
· · · max

an+j−1

E
[
En+j
w

(
Zn+j,a
n,x )

]
· · ·
]]

(where we have denoted max
an∈U

≡ max
an

, and the term j = 0 in the sum corresponds only

to E[Enw(x)]). We finally obtain:

en−1(x) ≤ max
an

E
[

max
an+1

E
[
· · ·max

aN
E
[
eN (ZN+1,a

n,x )

]
· · ·
]]

+h
∑

n≤k≤N
max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
Ekw
(
Zk,an,x)

]
· · ·
]]

The desired result follows by changing n into n+ 1. �

The previous result holds for any smooth function w that is super-solution of (29).
The viscosity solution v is just Hölder continuous. However it is possible to construct a
regular function w ≡ vη, close to v, and which is a classical sub-solution of (29). More
precisely, by using the shaking coefficients techniques introduced in [26] combined with
a standard regularization by mollification, we have the following result.

Lemma 4.6 Under assumtion (H1a), for every η > 0 there exists a C∞ function vη
such that vη is a classical super-solution to (29). Moreover, there exists C > 0 such that
for every η > 0 the following estimates hold:

|v(t, x)− vη(t, x)| ≤ CLφ(1 + |x|)η (41a)

|∂
kvη
dtk

(t, x)| ≤
CLφ
η2k−1

(1 + |x|) and ‖∂
kvη
dxk
‖0 ≤

CLφ
ηk−1

(41b)

for any k ≥ 1, and for every (t, x) ∈ [0, T ]× Rd.

The proof of this result can be found in [26] under the additional assumption that
b, σ and φ are bounded functions. However the arguments used in [26] can be easily
extended to the case when (H1a) is satisfied and φ is a Lipschitz function (not necessarily
bounded). For convenience of the reader, the outline of the proof is given in Appendix A.

Now, we have all the ingredients to conclude the upper bound:

Proof of theorem 4.1: upper bound of V n − v(tn, ·).
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Let η > 0. By using Lemma 4.6, there exists C ≥ 0 such that for every x ∈ Rd, it
holds:

Envη(x) ≤ CLφ(1 + |x|4)
h

η3
,

max
an

E
[

max
an+1

E
[
· · ·max

aN−1

E
[
|V N (ZN,an,x )− vη(T,ZN,an,x )

]
· · ·
]]
≤ CLφ(1 + |x|)η.

By applying the result of Lemma 4.5 with w = vη, and taking into account estimates
(37), we obtain:

V n(x)− vη(tn, x) ≤ CLφ(1 + |x|)η + TCLφ(1 + |x|4)
h

η3
.

Therefore for |x| ≤ R, we can choose for η an optimal value of order η ≡ (R3h)1/4 to
derive the ”upper” bound:

‖(V n − v(tn, ·))+‖L∞(BR) ≤ CLφR7/4h1/4

for any n = 0, · · · , N , with C independant of h, φ and R. �

4.1.3 Lower bound

Now, we aim at deriving the lower bound estimate for the semi-discrete scheme (31). For
this, we will apply exactly the same techniques as used for the upper bound, reversing
the role of the equation and the scheme. The key point is that the solution V of the semi-
discrete scheme is also Hölder continuous. We first build a function V η by considering
a scheme with shaking coefficients :

V η(t, x) = max
−η2≤e1≤0
|e2|≤η
a∈U

E
[
V η(t+ h, x+ (hb+

√
hσ̄)(t+ e1, x+ e2, a))

]
(42a)

in [−2η2, T )× Rd,
V η(T, x) = φ(x) in Rd, (42b)

(where σ, b are extended in time interval [−2η2, T ] in such way (H1a) is still valid).
We define by convolution Vη := V η∗ρη where ρη is a sequence of mollifiers defined by

ρη(t, x) := 1
ηd+2 ρ( t

η2
, xη ) and with ρ such that {ρη}η is the sequence of mollifiers defined

by

ρη =
1

ηd+2
ρ(

t

η2
,
x

η
)

ρ ∈ C∞(Rd+1), ρ ≥ 0, supp ρ ⊂ [0, 1]×B1,

∫
R

∫
Rd
ρ(s, x) dxds = 1. (43)

Then, by sing the same arguments as in Appendix A, we get the following Lemma.
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Lemma 4.7 Under assumtion (H1a), for every η > 0, Vη is a C∞ function such that

Vη(t, x)− Sh(t+ h, x, Vη(t+ h, ·)) ≥ 0 ∀(t, x) ∈ [0, T − h]× Rd.

Moreover, there exists C > 0 depending on T and L0 such that for every η > 0 the
following estimates hold for every t ∈ [0, T ] and every x ∈ Rd:

|V (t, x)− Vη(t, x)| ≤ CLφ (1 + |x|)η (44a)

|∂
kVη
dtk

(t, x)| ≤
CLφ
η2k−1

(1 + |x|) and ‖∂
kVη
dxk
‖0 ≤

CLφ
ηk−1

(44b)

for any k ≥ 1.

By straithforward calculations, one can check that:

EnVη(x) ≥ −
CLφ
η3

(1 + |x|4)h. (45)

By using the consistency estimate of Lemma 4.2, and the Hölder estimates on Vη (that
can be inferred from the one of the scheme), we then deduce:

−∂tVη +H(tn, x,DVη, D
2Vη) =

V n−1
η (x)− Sh(tn, x, V

n
η )

h
+ EnVη(x)

≥ EnVη(x)

≥ −
CLφ
η3

(1 + |x|4)h

(for some constant C ≥ 0). In the same way we establish the same estimate for any
t ∈ [tn−1, tn]. Hence

−∂tVη +H(t, x,DVη, D
2Vη) ≥ −

CLφ
η3

(1 + |x|4)h, ∀(t, x) ∈ [0, T ]× Rd. (46)

Let ζ be the following function:

ζ(t, x) := C̄Lφe
λ(T−t)

(
(1 + |x|4)

h

η3
+
√

1 + |x|2η
)

where λ > 0, C̄ > 0 will be fixed later on. The definitions of H and of ζ, and the linear
growth of b and σ with respect to |x|, yield the following bounds:

−∂tζ = λζ ≥ λC̄eλ(T−t)
(

(1 + |x|4)
h

η3
+ |x|η

)
H(t, x,Dζ,D2ζ) ≥ −KC̄eλ(T−t)(|x|4 h

η3
+ |x|η

)
for some constant K ≥ 0 tht depends on L0. In particular, choosing λ := K + 1, it
holds

−∂tζ +H(t, x,Dζ,D2ζ) ≥ C̄

(
(1 + |x|4)

h

η3
+
√

1 + |x|2η
)
. (47)
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Combining (46) and (47), it comes for any t ∈ [0, T ] and x ∈ Rd:

−∂t(Vη + ζ) +H(t, x,D(Vη + ζ), D2(Vη + ζ))

≥ −∂tVη +H(t, x,DVη, D
2Vη)− ∂tζ +H(t, x,Dζ,D2ζ)

≥ −CLφ(1 + |x|4)
h

η3
+ C̄

(
(1 + |x|4)

h

η3
+
√

1 + |x|2η
)

≥ 0, (48)

for any C̄ ≥ CLφ. On the other hand it also holds

Vη(T, x) + ζ(T, x) ≥ φ(x)− CLφ(1 + |x|)η + C̄
√

1 + |x|2η
≥ 0, (49)

for any C̄ ≥
√

2CLφ. Hence by choosing C̄ :=
√

2CLφ, (48) and (49) hold and Vη + ζ
is a viscosity super-solution of (29). Furthermore, Vη + ζ has a quadratic upper bound
growth: Vη(t, x) + ζ(t, x) ≤ ca (1 + |x|4) for some constant ca > 0. The exact solution
v is also a viscosity sub-solution of (29), with a linear growth (so a linear bound from
below of the form v(t, x) ≥ −cb(1 + |x| for some constant cb > 0). Therefore, according
to the comparison principle stated in Lemma 3.8, it comes that Vη+ζ ≥ v on [0, T ]×Rd.
By consequence,

v(tn, x)− V n(x) ≤ ζ(tn, x) ≤
√

2CLφe
λT
(
(1 + |x|4)

h

η3
+
√

1 + |x|2η
)
.

Finally, by choosing η such that η4 ≡ R3h and for |x| ≤ R we obtain the following
reverse estimate, for some constant C ≥ 0:

‖(v(tn, .)− V n)+‖L∞(BR) ≤ CLφR7/4 h1/4.

This concludes the proof of theorem 4.1.

4.2 Fully discrete scheme

Now, Consider a spatial discretisation of Rd (which can be assumed uniform for sim-
plicity): for some given mesh steps ∆xi > 0, xi = i∆x ≡ (i1∆x1, . . . , id∆xd) with
i ∈ Zd. We will denote |∆x| the Euclidean norm of ∆x, G := {i∆x, i ∈ Zd}, and
Gh := {t0, . . . , tN} × G.

Fully discrete scheme: for n = N, . . . , 1, for all xi ∈ G:

V n−1
i = V n−1(xi) =

1

2m
max
a∈U

{
2m∑
k=1

[V n](xi + h b(tn, xi, a) +
√
h σ̄k(tn, xi, a))

}
, (50)

where [V n] denotes the bilinear interpolation of (V n
i ) on (xi), and with

V N
i = V N (xi) = φ(xi), ∀xi ∈ G. (51)
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Theorem 4.2 Assume (H1a) and assume φ is a Lφ-Lipschitz continuous function. Let
v be the continuous solution of (29) , and let V ∆ the numerical solution satisfying the
scheme (50), with ∆ = (h,∆x) the time and space steps. There exists C > 0 depending
only on T, L0 such that for every R > 0, we have:

‖v − V ∆‖L∞(BR) ≤ CLφ
(
R7/4h1/4 +

|∆x|
h

)
.

Proof. By theorem 4.1, we have already an error estimate between v and the solution
V of the semi-discrete scheme (31). Now, the error between V and V ∆ is a classical
result (see [21, 12] for details). �

4.3 Comments

The convergence and error estimates results of this section are still valid for more general
schemes in the form of Markov chain approximations as (36) with general probability
density (see also [30, 32]). Indeed, all the arguments developed in this section are mainly
based on the formulation (36) and do not depend on the probability distribution of the
random variable Q neither on the formulation as semi-Lagrangian scheme (31).

For the numerical simulations in section 6, we will consider the scheme (related to
Milstein’s approximation):

Sh(t, x, w) :=
1

2m
max
a∈U

{
2m∑
k=1

w(x+ hb̃(t, x, a) +
√
hσ̄k(t, x, a))

}
(52)

where b̃(t, x, a) := 1
2(b(t, x, a) + b(t, x + hb(t, x, a), a)). This scheme is a little bit more

precise for the approximation of the deterministic part of the processes when b(·, ·, a) is
non-constant. The error estimates of the present section can be easily extended to such
an approximation.

5 Application: Probabilistic reachability analysis

Let C be a nonempty subset of Rd with non-zero measure (“the target”). Let ρ ∈ [0, 1[
and t ≤ T . Consider Ωρ

t the backward reachable set under probability of success ρ, that
is, the set of initial points x for which the probability that there exists trajectory Xu

t,x

solution of (4), associated with an admissible control u ∈ U and that reaches C at time
T is at least ρ:

Ωρ
t =

{
x ∈ Rd

∣∣∃u ∈ U , P[Xu
t,x(T ) ∈ C] > ρ

}
. (53)

Such backward reachable sets play an important role in many applications. For
instance the set Ωρ

t can be interpreted as a “safety region” for reaching C, with confidence
ρ.

For time discrete stochastic systems, stochastic backward reachable sets of the form
of (53) have been analysed and characterized via an adequate stochastic optimal control
problem in [1] and [2]. In this case, the control problem is solved via the dynamic
programming approach.
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In the context of financial mathematics, the problem of characterizing the backward
reachable set with a given probability was first introduced by Föllmer and Leukert [24].
This problem was also studied and converted into the class of stochastic target problems
by Touzi, Bouchard and Elie in [15].

In order to characterize the domain Ωρ
t for different values of ρ, we consider the

level-set approach and introduce the following optimal control problem:

ϑ(t, x) := sup
u∈U

E
[
1C(X

u
t,x(T ))

]
≡ sup

u∈U
P
[
Xu
t,x(T ) ∈ C

]
. (54)

Therefore, it is straightforward to show the following:

Proposition 5.1 Assume (H1a), and let ϑ defined in (54). Then, ∀t ∈ [0, T ]:

Ωρ
t = {x ∈ Rd, ϑ(t, x) > ρ}. (55)

Following the results of section 3, we first regularize the function 1C(·) by functions
Φε (for ε > 0), defined as follows:

Φε(x) = min(1,max(0,−1

ε
dist(x, C))). (56)

Notice that the Φε is 1
ε -Lipschitz continuous (see Figure 1).

x

1

C
ε ε

φ
φε

Figure 1: Regularization Φε of the indicator function 1C for a given set C.

Then, we consider the following “regularized” control problem:

ϑε(t, x) := sup
u∈U

E[Φε(Xu
t,x(T ))],

and we denote by ϑε,∆ a numerical approximation of ϑε obtained by solving the fully
discretized scheme (50). In order to obtain an error estimates of ϑ−ϑε,∆, we shall need
to assume the following hypothesis on the target set C:

(H4) C is a non-empty Borelean subset of Rd. Moreover, if we denote by Cε the set
defined by:

Cε := {x ∈ C, dist(x, ∂C) ≤ −ε},

then there exists a constant M1 > 0 such that, for every A > 0 ,

µ((C \ Cε) ∩ BA) ≤M1Aε.
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Remark 5.2 The above assumption is satisfied in many cases, for example when C is
a half space or when C is a finite union of bounded, convex polytopes Oi ⊂ Rd with non
empty interiors:

C :=
⋃

i=1,...,p

Oi.

Theorem 5.3 Assume that (H1a), (H1b) and (H4) are satisfied.
(i) There exists C > 0 such that for every ε > 0 and every ∆ = (h,∆x) mesh steps, for
every ∀t ∈ [0, T ), ∀x ∈ Rd, the following holds:

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C 1 + |x|2 + | log ε|
(T − t)

d
2

ε+
C

ε

(
|x|

7
4h

1
4 +

∆x

h

)
(57)

(ii) If there exists A > 0 such that C \ Cε ⊂ BA for every ε ∈]0, 1], then there exists
C > 0 such that

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C 1

(T − t)
d
2

e−C2
dist(x,C\Cε)2

T−t ε+
C

ε

(
|x|

7
4h

1
4 +

∆x

h

)
(58)

for every ∀t ∈ [0, T ), ∀x ∈ Rd, ∀ε ∈]0, 1].

Proof. Under assumption (H4), all the requirements of assumptions (H2)-(H3) are
satisfied for Φ = 1C and the regularized function Φε defined in (56). Thus the result of
theorems 3.1 and 5.3 can be applied and lead to the result. �

To get the optimal rates in (57) and (58), one can choose ε, h and ∆x in such way
to minimize the error in the right hand side of the estimates. For instance in case there
exists A > 0 such that C \ Cε ⊂ BA, and for every 0 ≤ T − δ (with δ > 0), and for every
x ∈ BR with R > 1, the error estimate in (58) becomes:

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C ε

δ
d
2

+
C

ε
R

7
4

(
h

1
4 +

∆x

h

)
.

The optimal estimate is then obtained by choosing ε, h1/4

ε and 1
ε

∆x
h to be of the same

order. This leads to ε ∼ h1/8 ∼ ∆x1/10 and to the following estimate:

|ϑε,∆(t, x)− ϑ(t, x)| ≤ CR
7
4

δ
d
4

∆x1/10. (59)

Therefore, we obtain the following approximation of Ωρ
t , for 0 ≤ t ≤ T − δ:{

x, ϑε,∆(x, t) > ρ+ C
R

7
4

δ
d
4

∆x
1
10

}
⊂ Ωρ

t ∩ BR. (60a)

and

Ωρ
t ∩ BR ⊂

{
x, ϑε,∆(x, t) > ρ− CR

7
4

δ
d
4

∆x
1
10

}
, (60b)
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Hence we can approximate the region Ωρ
t by levels sets of the numerical approximation

of ϑε,∆.
The above approximation, of order O(∆x1/10), is rough. However, in practice, we

have observed numerically that it is sufficient to take h ≡ ∆x and, in that case, the
error behaves like O(∆x), so the errors in (59) or (60) are also of the order of ∆x (see
section 6 for more details).

To conclude, we have given a simple numerical approximation procedure for the
characterisation of probabilistic backward reachable sets and how to control rigorously
the error made in the approximation.

6 Numerical simulations

In all this section the numerical scheme considered is the fully discrete Semi-Lagrangian
scheme (52) where the maximization operation is performed on a subset of control values
{a1, . . . , aNu} that represents a discretization of U with a mesh size ∆u. In all the
simulations, the regularization parameter ε will be chosen as ε = 1

∆x .

Example 1. We consider the following stochastic differential equation with no drift
term and no control: (

dX1

dX2

)
= σ

(
c 1
−1 0

)(
dW 1

t

dW 2
t

)
(61)

where c = 0.2 and σ = 0.2. The time horizon is T = 1.0. The target C is the diamond of
summits (−0.8, 1), (1.2, 1), (0.8, 1), (−1.2, 1) (see Figure 2(up-left)). If we consider the
initial data

φ(x, y) =

{
1 if x ∈ C
0 otherwise

(62)

then the exact solution to the HJB equation is known and the level-set function is given
by:

ϑ(t, x, y) = v1(t, x+ cy) v1(t, y)

where v1(t, r) := 1√
2π σ2 t

∫ 1−r
−1−r e

− s2

2σ2 tds.

First, Figure 2(up-right) shows the backward reachable set Ωρ
t for ρ = 0.05 at time

t = 0. For this simulation, we have considered the computational domain D = [−4, 4]2

with a uniform grid and zero condition outside the domain D:

ϑ(t, x, y) = 0, ∀t ∈ [0, T ], ∀(x, y) /∈ D (63)

(which amounts to take homogenous Dirichlet boundary condition on ∂D). One can
observe a good matching between the numerical front (computed using the scheme
approximation), and the exact front (computed by using the exact value function).

In Figure 2(down), we have also plotted different sets corresponding to different
level set values (when using ∆x = ∆y = 0.016). This corresponds to different level of
confidence for reaching the target.
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t=1

  

t=0 ; ρ=0.05

Figure 2: Example 1 with σ = 0.2: Target (up-left); backward reachable set Ωρ
0 for

ρ = 0.05 (up-right); backward reachable sets Ωρ
0 for different values of ρ (down).

Remark 6.1 The reason behind the use of a diamond as a target set is to validate the
behaviour of the numerical scheme for non standard target shape.

We consider also a case with smaller target, and set σ = 0.5 (σ is taken large in
order to see the impact of the diffusion). Similar simulations as in before are performed
in this case and the results are given in Figure 3, where we can observe again a good
approximation of the backward reachable sets.

In Table 1, we summarize the error estimates between the exact solution and the
numerical approximation, for σ = 0.25, showing L∞, L1 and L2 errors. The discretiza-
tion parameters h and ∆x are chosen of the same order (h ≡ ∆x), and the numerical
simulations show (roughly) a convergence of first order.

Table 1: Example 1 with σ = 0.25: Error estimates ϑ−V at time t = 0, using h = T/N
and ∆x = h.
N error L∞ error L1 error L2 CPU time (s)

20 3.31 e-2 1.02 e-1 3.88 e-2 3.33 ×10−1

40 1.56 e-2 4.65 e-2 1.82 e-2 2.43 ×100

80 6.97 e-3 1.99 e-2 8.01 e-3 2.05 ×101

160 3.78 e-3 1.14 e-2 4.34 e-3 1.55 ×102

320 2.01 e-3 6.13 e-3 2.36 e-3 1.27 ×103
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t=1

  

 

t=0 ; ρ=0.05

Figure 3: Example 1 with σ = 0.5: the target set (up-left); backward reachable set Ωρ
0

for ρ = 0.05 (up-right); backward reachable sets for different values of ρ.

Remark 6.2 In this simple case, we can observe numerically that the error estimate
decreases with order 1 which is better than what one can prove theoretically (order of
1/4). Also, the choice h = ∆x seems to give better numerical approximations than what
we would get if we choose the optimal ratio between h and ∆x established in section 6.
The first-order numerical behavior can be justified in this example by the fact that the
exact solution is very smooth on [0, T )× R2.

Example 2. Now we deal with the following controlled stochastic system:(
dX1

dX2

)
= uσ

(
c 1
−1 0

)(
dW 1

t

dW 2
t

)
(64)

where u is a control taking values in [0, 1], c = 0.2, σ = 0.25 and T = 1.0. The initial data
and the boundary conditions are the same as the ones used in the first example. For this
kind of problem the exact solution is not known. The solution obtained with N = 160
is taken as the reference solution. The error estimates computed at time t = 0 are
summarized in Table 2. As for Example 1, we observe again a convergence of order 1.

Example 3. In this example, we consider a controlled stochastic system with a drift:

dx(t) =

(
−1 −4
4 −1

)
x(t)dt+ u(t)dt+

(
0.7 0
0.7 0.7

)(
dW 1

t

dW 2
t

)
(65)

where u(t) =

(
u1(t)
u2(t)

)
and ui ∈ [−0.1, 0.1], for i = 1, 2.
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Table 2: (Example 2) Error table, using ∆x = h = T/N .
N error L∞ error L1 error L2 CPU time (s)

10 1.68 e-1 1.16 e-3 8.41 e-3 6.42×10−1

20 8.80 e-2 7.49 e-4 4.34 e-3 5.06×100

40 4.43 e-2 2.55 e-4 1.79 e-3 4.01×101

80 1.62 e-2 1.12 e-4 7.13 e-4 3.20×102

The linear system (65) is used in [4] to illustrate an approximation of the probability
of reaching a target by using enclosing hulls of probability density functions. Here, we
set T = 1.75 and consider a target set represented by the green small square in Figure 4.
We compute for different times t ∈ {0.75; 0.25; 0}, the set Ωρ

t for ρ = 0.4, see Figure 4.
The numerical simulation is performed on a computational domain D = [−8, 8]2 with a
uniform grid and boundary conditions as (63).

  

t=0.75 ; ρ=0.4

  

t=0.25 ; ρ=0.4

  

t=0 ; ρ=0.4

Figure 4: (Example 3) Reachable sets at different times t ∈ {0.75, 0.25, 0} for a time
horizon T = 1.75. The target set is represented by the green square.

Once the numerical approximation V of the value function and the backward reach-
able set Ωρ

tn are computed, and in order to validate the numerical simulations, we
generate different trajectories starting from the backward reachable set using the algo-
rithm described below. Let x̄ a given initial position, the following algorithm aims to
reconstruct a trajectory on starting at time tn from the position x̄:

Algorithm (trajectory reconstruction) Initialization: Set Xn = x̄.
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For k = n to N − 1:

Step 1 Compute optimal control at t = tk:

uk = argmax
a∈{a1,...,aNu}

E[V (Xa
k+1, tk+1)].

Step 2 Compute the next point at iteration k:

Xk+1 := Xk + b(tk, Xk, uk)dt+ σ(tk, Xk, uk)
√
hB (66)

where B is a random variable with the normal law N (0, 1).

Figure 5 shows some controlled process issued from a starting point located in the
backward reachable sets Ωρ

t for t ∈ {0.75, 0.25, 0}.

Figure 5: Example 3: Behaviour of controlled processes starting from the backward
reachable sets at times t ∈ {0.75, 0.25, 0} for a final time horizon T = 1.75.

Now consider x̄ := (−1.0, 2.0)T and set tn = 0.75. We compute an approximation
V (tn, x̄) of the level-set function (by numerically solving the corresponding HJB equa-
tion). On a grid with the discretization parameters ∆u = ∆x = h = T

N , we obtain
the values given in the second column of Table 3. The third column of this table gives
the differences between two values of V (tn, x̄) computed on two successive grids. When
N = 80, we obtain that V (tn, x̄) is approximately 0.503, and the difference between the
last two computed values is of order 0.014. Hence we can extrapolate numerically to say
that a process starting from x̄ reaches the target set with a probability 0.503± 0.007.
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Table 3: Example 3: The value of V (tn, x̄) for different mesh parameters, and difference
between two successive values (here tn = 0.75 and x̄ = (−1.0, 2.0)T ).
N V (tn, x̄) estimate differences

10 0.41768 -

20 0.46359 0.046

40 0.48926 0.026

80 0.50326 0.014

Now, let N = 20 and call the trajectory reconstruction algorithm described above to
generate some trajectories starting from x̄ (by Monte Carlo simulations). The results
are reported in Table 4 with M is the number of the simulated trajectories, p is the
percentage of trajectories reaching the target set and C.I denotes the confidence interval
at 95%. Notice that the percentage p is an approximation of the probability to reach
the target. The results of Table 4 show that the value V (tn, x̄) at point x̄ is inside the
confidence interval.

Table 4: Example 3: Percentage p of simulated trajectories that reach the target set,
corresponding confidence interval (C.I.), and a Monte Carlo error estimate (MC-error)

M p C.I. MC-error

3000 0.51233 (0.4944, 0.5302) 0.0179
6000 0.51317 (0.5005, 0.5258) 0.0127

12000 0.51575 (0.5068, 0.5247) 0.0090
25000 0.50912 (0.5029, 0.5153) 0.0062
50000 0.50876 (0.5044, 0.5131) 0.0044

100000 0.50969 (0.5066, 0.5128) 0.0031

A Proof of Lemma 4.5

First, we notice that the functions σ and b are defined for times t ∈ [0, T ], but they can
be extended to times [−2η2, T + 2η2] in such a way that assumption (H1a) still holds.

For any η > 0, let E be the set of progressively measurable processes (α, χ) valued
in [−η2, 0]× Bη ⊂ R× Rd that is,

E :=
{

prog. meas. process (α, χ) valued in [−η2, 0]× Bη
}
.

Now, consider the function vη associated to the perturbed control problem (with
η > 0):

vη(t, x) := inf
u∈U ,

(α,χ)∈E

E
[
φ
(
X
u,(α,χ)
t,x (T ))

)]
,

where X
u,(α,χ)
t,x is the solution of the perturbed system of SDEs{

dX(s)=b(s+ α(s),X(s) + χ(s),u(s))ds+σ(s+ α(s),X(s)+χ(s),u(s))dB(s)
X(t) = x.
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By classical arguments, we can show that vη is the unique viscosity solution of the
perturbed HJB equation:−∂tv

η
t + inf

−η2≤s≤0,|e|≤η
H(t+ s, x+ e,Dvη, D2vη) = 0 in Qη2

vη(T, x) = φ(x) in Rd
(67)

where Qη2 := (−η2, T ] × Rd. Using similar argument to those used in Lemma 3.5, the
function vη satisfies the following relations:

|vη(t, x)− vη(t, y)| ≤ CLφ|x− y| (68a)

|vη(t, x)− vη(s, x)| ≤ CLφ(1 + |x|)|t− s|
1
2 (68b)

for all x, y ∈ Rd , t, s ∈ [0, T ].

The bound on the difference between the pertubed function vη and the value function v
at every point (t, x) follows by the Lipschitz property of φ and (H1a). Indeed, we have:

|v(t, x)− vη(t, x)| =

∣∣∣∣ sup
u∈U

(α,χ)∈E

E
[
φ(Xu

t,x(T ))
]
− sup

u∈U
(α,χ)∈E

E
[
φ(X

u,(α,χ)
t,x (T ))

]∣∣∣∣
≤

∣∣∣∣ sup
u∈U

(α,χ)∈E

E
[
φ(Xu

t,x(T ))− φ(X
u,(α,χ)
t,x (T ))

]∣∣∣∣
≤ Lφ sup

u∈U
(α,χ)∈E

E
[∣∣Xu

t,x(T )−Xu,(α,χ)
t,x (T )

∣∣] (69)

On the other hand, for every τ ∈ [t, T ], we have:

E
[∣∣Xu

t,x(τ)−Xu,(α,χ)
t,x (τ)

∣∣2]
≤ E

[∣∣∣∣ ∫ τ

t

[
b(s+ α(s),X

u,(α,χ)
t,x (s) + χ(s),u(s))− b(s,X(s), u(s))

]
ds

+

∫ τ

t

[
σ(s+ α(s),X

u,(α,χ)
t,x (s)+χ(s),u(s))− σ(s,X(s), u(s))

]
dW (s)

∣∣∣∣2].
With assumption (H1a), Cauchy-Schwartz inequality and Gronwall Lemma, we obtain
that:

E
[∣∣Xu

t,x(T )−Xu,(α,e)
t,x (T )

∣∣2] ≤ Cη2. (70)

By combining (69) and (70), we finally get:

|v(t, x)− vη(t, x)| ≤ LφCη. (71)

On the other hand, by a change of variables, we see that for −η2 ≤ s ≤ 0, |e| ≤ η, the
function vµ(· − s, · − e) is a supersolution of the following equation:

−∂tϕ+H(t, x,Dϕ,D2ϕ) = 0 in (−η2, T + s)× Rd (72)
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In order to regularize vη, we construct the following sequence vη = vη ∗ ρη where {ρη}η
is the sequence of mollifiers defined by

ρη =
1

ηd+2
ρ(

t

η2
,
x

η
)

ρ ∈ C∞(Rd+1), ρ ≥ 0, supp ρ ⊂ [0, 1]×B1,

∫
R

∫
Rd
ρ(s, x) dxds = 1. (73)

A Riemmann-sum approximation shows that vη(t, x) can be viewed as the limit of
convex combinaisons of vη(t−s, x−e). By the stability result for viscosity supersolutions,
and by using same arguments as in [6, Appendix A], we can conclude that vη is itself
a supersolution of (72).

Moreover, for a small η << 1 and using (68a)-(68b), we have

|vη(t, x)− vη(t, x)| =

∫ 1

0

∫
B1

|vη(t− η2τ, x− ηz)− vη(t, x)|ρ(τ, z) dzdτ

≤ CLφη

∫ 1

0

∫
B1

(
(1 + |x|+ η|z|)

√
τ + |z|

)
ρ(τ, z) dzdτ

Thus, we obtain for η ∈ (0, 1) that |vη(t, x)− vη(t, x)| ≤ CLφ(1 + |x|)η, which together
with (71) yield to the desired estimate:

|v(t, x)− vη(t, x)| ≤ CLφη(1 + |x|) For all t, x ∈ [0, T ]× Rd (74)

for a positive constant C > 0.
Bound estimates (41b) for the derivatives of vη can be derived in straightforward

way by using the definition of mollification and the Hölder estimates of vη (see [14,
section] for instance).

B Proof of Lemma 3.4

By using spherical coordinates in Rd it first holds that

I(a) :=

∫
|z|≥a,z∈Rd

|z|αe−c2|z|2dz = |Sd|
∫ ∞
a

rβe−c2r
2
dr, with β := α+ d− 1,

where |Sd| denotes the surface of the unit sphere of Rd. Then the following identity
holds:

2(1 +
1− β
2c2

1

r2
)rβe−c2r

2
= − 1

c2

d

dr
(rβ−1e−c2r

2
).

In the case when a2 ≥ 2 |β−1|
2c2

= |β−1|
c2

, and for r ≥ a, we observe that 1 ≤ 2(1 + 1−β
2c2

1
r2

),
hence

rβe−c2r
2 ≤ − 1

c2

d

dr
(rβ−1e−c2r

2
).

By integration over r ∈ [a,∞[, we obtain I(a) ≤ |Sd|c2 a
β−1e−c2a

2
. On the other hand, if

a ∈ J := [1,
√
|β−1|
c2

], then F (a) := I(a)/
(
aβ−1e−c2a

2)
is a continuous function on the
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interval J so it is bounded by some qα > 0. We can furthermore chose qα ≥ |Sd|
c2

. In

all cases, for a ≥ 1, it holds F (a) ≤ qα. Hence I(a) ≤ qα a
α+d−2e−c2a

2
. Using that

aα+d−2 ≤ aα+d−1 for a ≥ 1, we obtain the desired result.

C Proof of estimates (37)

Let us first prove, by recursion, the following estimate: there exists C ≥ 0 such that,
for any p ∈ {2, 4}, for 0 ≤ n ≤ k ≤ N , ∀x and h ≤ 1:

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x|p

]
· · ·
]]

≤ ≤ eC(k−n)h

(
|x|p + C(k − n)h

)
(75)

For p = 4 and using that (k − n)h ≤ Nh = T , this will give the desired estimate (37a).
We first start with the case p = 2. Using conditional expectations, let us first show

that, for some constant C1, C2 ≥ 0:

max
ak−1

E
[
|Zk,an,x|2 |Zk−1,a

n,x = y
]
≤ |y|2eC1h + C2h. (76)

Denoting b(y) = b(tk, y, ak) as well as σ̄q(y) = σ̄q(tk, y, ak), it holds

E
[
|Zk,an,x|2 |Zk−1,a

n,x = y
]

= E
[
|y + hb(y) +

√
hσ̄Q(y)|2

]
= |y + hb(y)|2 + hE[|σ̄Q(y)|2

]
,

where we have used that E[σ̄Q(y)] = 0 by the definition of the random variable σ̄Q.
Hence it holds, since σ̄Q(y) has a linear growth in y:

E
[
|Zk,an,x|2 |Zk−1,a

n,x = y
]
≤ |y + hb(y)|2 + Ch(1 + |y|2).

Notice that for h ≤ 1 it holds, for the Euclidean norm, and for any vectors A and B of
Rd,

|A+ hB|2 ≤ |A|2(1 + h) + 2h|B|2 (77)

(using Cauchy-Schwarz inequality and h2 ≤ h). Hence we obtain a bound of the form

max
ak−1

E
[
|Zk,an,x|2 |Zk−1,a

n,x = y
]
≤ |y|2(1 + C1h) + C2h.

We conclude to (76) by using 1 + C1h ≤ eC1h.
Then we can iterate the previous bound, to obtain

max
ak−2

E
[

max
ak−1

E
[
|Zk,an,x|2 |Zk−2,a

n,x = y

]]
≤ max

ak−2

E
[
|Zk−1,a
n,x |2eC1h + C2h|Zk−2,a

n,x = y

]
≤

(
|y|2eC1h + C2h

)
eC1h + C2h

≤ |y|2e2C1h + C2h(1 + eC1h).
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By a recursion argument and since Zn,an,x = x, it holds

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x|2

]
· · ·
]]

≤ eC1(k−n)h|x|2 + C2h
∑

j=0,...,k−n−1

eC1jh

≤ eC1(k−n)h

(
|x|2 + C2(k − n)h

)
.

Now we turn to the case p = 4. Let us show that a similar estimate to (76) holds,
mainly:

max
ak−1

E
[
|Zk,an,x|4 |Zk−1,a

n,x = y

]
≤ |y|4eC1h + C2h. (78)

The rest of the proof of (75) then follows the same idea as for the case p = 2, and is
left to the reader.

To prove (78), assuming first that d = 1 to simplify the argument, denoting A =
y + hb(y) and B = σ̄Q(y), we have

E
[
|Zk,an,x|4 |Zk−1,a

n,x = y
]

= E[|A+
√
hB|4]

= |A|4 + 16hA2E[B2] + h2E[B4],

where we have used that E[B] = E[B3] = 0. Then E[B2] ≤ C(1 + |y|2) and E[B4] ≤
C(1 + |y|4), it can be shown that |y + hb(y)|4 ≤ |y|4(1 + Ch) + Ch for some constant
C ≥ 0 (for intance by using twice (77)), and (78) is deduced from these estimates. The
case d ≥ 1 can be treated in a similar way.

The proof of (37b) can be obtained in a similar way as for the proof of (37a) for
p = 2. It is first established that

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x − Zk,an,y |2

]
· · ·
]]
≤ C|x− y|2. (79)

Then, using that E[|X|] ≤ (E[|X|2)1/2, the desired estimate is obtained.

Finaly we consider the proof of (37c). In a complete similar manier as for the proof
of (75), we can establish that for any given x0 ∈ Rd,

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x − x0|2

]
· · ·
]]

≤ eC(k−n)h

(
|x− x0|2 + C(k − n)h(1 + |x|2)

)
. (80)

In particular for x0 = x, for some other constant C ≥ 0, we obtain:

max
an

E
[

max
an+1

E
[
· · ·max

ak−1

E
[
|Zk,an,x − x|2

]
· · ·
]]

≤ C(1 + |x|2) (k − n)h (81)
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By using (81) and the fact that for y := Zk,an,x, Zk+m,a
n,x = Zm,a

′

k,y (with controls a′ =
(ak, ak+1, . . . , ak+m−1)), we have

max
ak

E
[

max
ak+1

E
[
· · · max

ak+m−1

E
[
|Zk+m,a
n,x − Zk,an,x|2 |Zk,an,x = y

]
· · ·
]]
≤ C(1 + |y|2)mh

Then

max
ak

E
[

max
ak+1

E
[
· · · max

ak+m−1

E
[
|Zk+m,a
n,x − Zk,an,x|2

]
· · ·
]]
≤ CE

[
1 + |Zk,an,x|2

]
mh,

By using (37a), the right hand side term is bounded by C(1 + |x|2)mh = C(1 +
|x|2)(tm+k − tk). Using again inequalities of the type E[|x|] ≤ E[|X|2]1/2, we obtain
the desired bound (37c).
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