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Abstract

Consider the directed polymer in one space dimension in log-gamma
environment with boundary conditions, introduced by Seppäläinen [35].
In the equilibrium case, we prove that the end point of the polymer
converges in law as the length increases, to a density proportional to
the exponent of a zero-mean random walk. This holds without space
normalization, and the mass concentrates in a neighborhood of the
minimum of this random walk. We have analogous results out of equi-
librium as well as for the middle point of the polymer with both ends
fixed. The existence and the identification of the limit relies on the
analysis of a random walk seen from its infimum.
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1 Directed polymers and localization

The directed polymer model was introduced in the statistical physics litera-
ture by Huse and Henley [25] to mimic the phase boundary of Ising model
in presence of random impurities, and it is frequently used to study the
roughness statistics of random interfaces. Later, it has been mathemati-
cally formulated as a random walk in a random potential by Imbrie and
Spencer [26]. In the (1 + 1)-dimensional lattice polymer case, the random
potential is defined by a field of random variables {ω(i, j) : (i, j) ∈ Z2} and
a polymer x = (xt; t = 0, . . . n) is a nearest neighbor up-right path in Z2 of
length n. The weight of a path is equal to the exponent of the sum of the
potential it has met on its way. There is a competition between the entropy
of paths and the disorder strength, i.e., the inhomogeneities of the poten-
tial. If the potential is constant, the path behaves diffusively and spreads
smoothly over distances of order of its length. On the contrary, if the poten-
tial has large fluctuations, the path is pinned on sites with large potential
values, and it localizes on a few corridors with width of order of unity. An
early example where this behavior was observed is the parabolic Anderson
model yielding a rigourous framework to analyse intermittency [8]. Recently,
significant efforts have been focused on planar polymer models (i.e. (1 + 1)-
dimensional) which fall in the KPZ universality class (named after Kardar,
Parisi and Zhang), see Corwin’s recent survey [13]. In the line of specific first
passage percolation models and interacting particle systems, a few explicitly
solvable models were discovered, and they allow for detailed descriptions of
new scaling limits and statistics. We namely mention Brownian queues [30],
log-gamma polymer [35], KPZ equation [23, 33]. However, the theory of uni-
versality classes does not explain the localization phenomena. For instance,
the wandering exponent 2/3 from the KPZ class accounts for the typical
transverse displacement of order n2/3 of the polymer of length n, certainly
an important information, however different in nature since it addresses the
location of the corridor but not its width.

Let us start by defining the model of directed polymers in random envi-
ronment. For each endpoint (m,n) of the path, we can define a point-to-point
partition function

Zωm,n =
∑
x

exp
{m+n∑

t=1

ω(xt)
}
,

where the sum is over up-right paths x that start at (0, 0) and end at (m,n).
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The model does not have a temperature in the strict sense of statistical
mechanics, however the parameter µ entering below the log-gamma distri-
bution of ω plays a similar role by tuning the strength of the disorder. The
point-to-line partition function is given by

Zωn =
n∑
k=0

Zωk,n−k.

The point-to-line polymer measure of a path of length n is

Qωn(x) =
1

Zωn
exp

{ n∑
t=1

ω(xt)
}
.

It is known that the polymer at a vanishing temperature concentrates on its
geodesics. However little information is known on the random geodesics [31],
except under assumptions which are often hard to check [15, 19]. A less
ambitious way to analyze this localization phenomenon is to consider the
endpoint of the path, and study the largest probability for ending at a specific
point,

In = max
x∈Z

Qωn−1{xn = x}, (1)

which does not require any information on where the endpoint concentrates.
Observe that In is small when the measure is spread out, for example if
ω is constant, but In should be much larger when Qωn concentrates on a
small number of paths. In large generality it is proved that the polymer is
localized and it is expected from the KPZ scaling that most of the endpoint
density lies in a relatively small region around a random point at distance
n2/3 from the mid-point of the transverse diagonal. The size of this region
is much smaller than n2/3 and is believed that it is order one. Moreover,
Carmona and Hu [7] and Comets, Shiga and Yoshida [10] showed that there
is a constant c0 = c0(β) > 0 such that the event

lim sup
n→∞

In ≥ c0

has P-probability one. This property is called endpoint localization. In fact,
the Césaro mean of the sequence In is a.s. lower bounded by a positive con-
stant. Analyzing terms in semimartingale decompositions, the technique is
quite general, but also very circuitous and thus it only provides rough esti-
mates. Recently, Seppäläinen has introduced in [35] a new solvable polymer
model with a particular choice of the law of the potential. In this paper, we
consider the log-gamma model, taking advantage of its solvability to analyze
the mechanism of localization and obtain an explicit description. The model
can be defined with boundary conditions (b.c.), i.e., with a different law for
vertices inside the quadrant or on the boundary, see (2). From now, we
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will consider this model. First, it is convenient to introduce multiplicative
weights

Yi,j = eω(i,j), (i, j) ∈ Z2
+.

As discovered in the seminal paper [35], some boundary conditions make
the model stationary as in Burke’s theorem [32], and further, they make it
explicitely sovable. In this setting, the point-to-point partition function for
the paths with fixed endpoint is given by

Zm,n =
∑

x∈Πm,n

m+n∏
t=1

Yxt ,

where Πm,n denotes the collection of up-right paths x = (xt)0≤t≤m+n in the
rectangle Λm,n = {0, ...,m} × {0, ..., n} that go from (0, 0) to (m,n). We
assign distinct weight distributions on the boundaries (N×{0})∪ ({0}×N)
and in the bulk N2. In order to make it clear, we use the symbols U and V
for the weights on the horizontal and vertical boundaries:

Ui,0 = Yi,0 and V0,j = Y0,j for i, j ∈ N := {1, 2, . . .}.

Model b.c.(θ): Let µ > 0 be fixed. For θ ∈ (0, µ), we will denote by b.c.(θ)
the model with

{Ui,0, V0,j , Yi,j : i, j ∈ N} are independent with distributions

U−1
i,0 ∼ Gamma(θ, 1), V −1

0,j ∼ Gamma(µ−θ, 1), Y −1
i,j ∼ Gamma(µ, 1).

(2)
where Gamma(θ, r) distribution has density Γ(θ)−1rθxθ−1e−rx with θ >
0, r > 0.

The polymer model with boundary condition posesses a two-dimensional
stationarity property. Using this property, Seppäläinen [35] obtains an ex-
plicit expression for the variance of the partition function, he proves that
the fluctuation exponent of free energy is 1/3 and that the exponent for
transverse displacement of the path is 2/3. This model has soon attracted
a strong interest: large deviations of the partition function [21], explicit for-
mula for the Laplace transform of the partition function at finite size [14],
GUE Tracy-Widom fluctuations for Zn at scale n1/3 [6], computations of
Busemann functions [20].

In fact, the model of directed polymers can be defined in arbitrary di-
mension 1+d and with general environment law, see [26], and we now briefly
mention some results for comparison. In contrast with the above results for
d = 1, if the space dimension is large and the potential has small fluctuations
– the so-called weak disorder regime –, this exponent is 0, and under Qωn the
fluctuation of the polymer path is order O(n1/2) with a Brownian scaling
limit, see [5, 11, 26]. More precisely, if the space dimension d ≥ 3 and if the
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ratio E(e2ω)/(Eeω)2 is smaller than the inverse of the return probability for
the simple random walk, the end point, rescaled by n−1/2, converges to a
centered d-dimensional Gaussian vector. Moreover, under the previous as-
sumptions, In → 0 a.s., at the rate n−d/2 according to the local limit theorem
of [37, 39].

Let us come back to the case d = 1 of up-right polymer paths, more
precisely, to the log-gamma model. We now give a flavour of our results with
an explicit limit description of the endpoint distribution under the quenched
measure.

Qωn
{
xn = (k, n− k)

}
=
Zk,n−k
Zn

, k = 0, . . . , n.

For each n, denote by

ln = arg max{Zk,n−k; 0 ≤ k ≤ n}, (3)

the location maximizing the above probability, and call it the "favourite
endpoint".

Theorem 1. Consider the model b.c.(θ) with θ ∈ (0, µ). Define the end-
point distribution ξ̃(n) centered around its mode, by

ξ̃(n) = (ξ̃
(n)
k ; k ∈ Z), with ξ̃

(n)
k = Qωn

{
xn = (ln + k, n− ln − k)

}
.

Thus, ξ̃(n) is a random element of the setM1 of probability measures on Z.
Then, as n→∞, we have convergence in law

ξ̃(n) L−→ ξ in the space (M1, ‖ · ‖TV ), (4)

where ‖µ− ν‖TV =
∑

k |µ(k)− ν(k)| is the total variation distance.

The definition of ξk is given as a functional of a random walk conditioned
to stay positive on Z+ and conditioned to stay strictly positive on Z−. The
explicit expression for ξ is formula (12) below. The convergence is not strong
but only in distribution. The above result yields a complete description of
the localization phenomenon revealed in [7, 10]. In particular, the mass of
the favourite point is converging in the distributional sense.

Corollary 1. Consider the model b.c.(θ) from (2). With In from (1), it
holds

In
L−→ max

{
ξk + ξk+1

2
; k ∈ Z

}
> 0,

as n→∞. By consequence, lim supn In > 0 P-a.s.

Moreover, we derive that the endpoint density indeed concentrates in a
microscopic region, i.e., of size O(1), around the favourite endpoint.
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Corollary 2 (Tightness of polymer endpoint). Consider the model b.c.(θ)
from (2) with θ ∈ (0, µ). Then we have

lim
K→∞

lim sup
n→∞

Qωn
[
‖xn − (ln, n−ln)‖ ≥ K

]
= 0 in probability. (5)

Our results call for a few comments.

Remark 1. (i) Influence of high peaks in the parabolic Anderson model: it
is easy to check that the sequence Zm,n is the unique solution of the parabolic
Anderson equation

Zm,n = eω(m,n)[Zm−1,n + Zm,n−1]

with initial condition Z0,0 = 1 and boundary conditions Z−1,n = Zm,−1 = 0.
Hence, Zm,n can be interpreted as the mean density at time m+ n and loca-
tion (m,n) of a population starting from one individual at the origin, subject
to the following discrete dynamics: each particle splits at each integer time
into a random number (with mean 2eω(m,n) at location (m,n)) of identical
individual moving independently, and jumping instantaneously one step up-
wards or to the right. If e−ω(m,n) ∼ Gamma(µ), e−ω(m,0) ∼ Gamma(θ), and
e−ω(0,n) ∼ Gamma(µ− θ), our result applies, and shows that the population
concentrates around the highest peak and spreads at distance O(1). In partic-
ular, the second high peak does not contribute significantly to the measure, a
feature which is believed to hold in small space dimension only. In large time,
the population density converges, without any scaling, to a limit distribution
given by ξ.

(ii) Corollary 2 states uniqueness of the favourite endpoint, in the sense
that all the mass is concentrated in the neighborhood of the favourite point ln.
This property is analogous to uniqueness of geodesics in planar oriented last
passage percolation. We refer to [15, 19] for a detailed and recent account
on this and related questions.

Besides the point-to-line polymer measure, we also study in this paper
the point-to-point measure, for which the polymer endpoint is prescribed.
Under this measure, we obtain similar localization results, that we will state
in the next section. They deal with the location in the direction transverse
to the overall displacement of the "point in the middle" of the polymer chain,
and with the "middle edge". They are the first results of this nature. The
main reason is that the general approach via martingales in [7, 10] fails to
apply if the endpoint of the path is fixed. We mention that the alternative
method, introduced in [40] to deal with environment without exponential
moments, could be applied to point-to-point measures. A similar comment
holds for another approach, based on integration by parts, which has been
recently introduced in [9] to extend localization results to the path itself – and
then reveal the favourite corridors. So far, it is known to apply to Gaussian
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environment and Poissonian environment [12], but whether it covers the log-
gamma case is still open.

As we will see in section 2, the localization phenomena around the
favourite point in the log-gamma model directly relates to the problem of
splitting a random walk at its local minima. This coupling is also the main
tool to study the recurrent random walk in random environment [18] in one
dimension. In the literature, it was proved by Williams [41], Bertoin [1, 2, 3],
Bertoin and Doney [4], Kersting and Memişoǧlu [28] that if the random walk
is split at its local minimum, the two new processes will converge in law to
certain limits which are related to a process called the random walk con-
ditioned to stay positive/negative. The mechanism is reminiscent of that
of the localization in the main valley of the one-dimensional random walk
in random environment in the recurrent case, discovered by Sinaï [36] and
studied by Golosov [22].

Our results only hold for boundary conditions ensuring stationarity. A
possible way towards the model without boundary conditions could be via
techniques of tropical combinatorics initiated in [14].

Organization of the paper: In section 2, we recall the basic facts
on the log-gamma model and state the main localization results both for
point-to-line and point-to-point measures. In section 3, we introduce the
important properties of the random walk conditioned to stay positive that
we need to define the limits. In section 4 we give the proofs of Theorem 1,
Corollaries 1 and 2. The last section contains the complete statements for
the point-to-point measure, together with their proofs.

2 Polymer model with boundary conditions and re-
sults

2.1 Endpoint under the point-to-line measure

Assume the condition (2). Define for (m,n) ∈ Z2
+,

Um,n =
Zm,n
Zm−1,n

and Vm,n =
Zm,n
Zm,n−1

.

We can associate the U ’s and V ’s to edges of the lattice Z2
+, so that they

represent the weight distribution on a horizontal or vertical edge respectively.
Let e1, e2 denote the unit coordinate vectors in Z2. For an horizontal edge
f = {y − e1, y} we set Tf = Uy, and Tf = Vy if f = {y − e2, y}. Let
z = (zk)k∈Z be a nearest-neighbor down-right path in Z2

+, that is, zk ∈ Z2
+

and zk − zk−1 = e1 or − e2. Denoting the undirected edges of the path by
fk = {zk−1, zk}, we then have

Tfk =

{
Uzk , if fk is a horizontal edge
Vzk−1

if fk is a vertical edge.

7



Seppäläinen proved [35] that the choice of log-gamma distribution pro-
vides a stationary structure to the model:

Fact 1 (Theorem 3.3 in [35]). Assume (2) . For any down-right path (zk)k∈N
in Z2

+, the variables {Tfk : k ∈ Z} are mutually independent with marginal
distributions

U−1 ∼ Gamma(θ, 1), V −1 ∼ Gamma(µ−θ, 1).

By considering the down-right path along the vertices x with x·(e1 + e2) =
n, we deduce the following fact, which will be a fundamental ingredient in
the next two sections.

Fact 2. For each n, the variables (Uk,n−k, Vk,n−k)0≤k≤n are independent,
and

U−1
k,n−k ∼ Gamma(θ, 1) V −1

k,n−k ∼ Gamma(µ−θ, 1). (6)

Now, define for each 1 ≤ k ≤ n the random variable Xn
k

Xn
k = − log(

Zk,n−k
Zk−1,n−k+1

) = − log(
Uk,n−k

Vk−1,n−k+1
),

andXn
0 = 0. By corollary 2, for each n, (Xn

k )1≤k≤n are i.i.d random variables,
and satisfy

Zk,n−k
Z0,n

= exp(−
k∑
i=0

Xn
i ). (7)

Defining Snk =
∑k

i=1X
n
i , for 0 ≤ k ≤ n, we will express the mass at point

(k, n− k) as a function of Sn,

Qωn{xn = (k, n− k)} =
Zk,n−k∑n
i=0 Zi,n−i

=
1∑n

i=0 exp(−(Sni − Snk ))

From (7), the favourite point ln defined in (3) is also the minimum of the
random walk,

ln = arg min{Snk ; 0 ≤ k ≤ n}. (8)

Since we are only interested in the law of Qωn{xn = (k, n − k)}, in order
to simplify the notion, we consider a single set of i.i.d random variables
(Xk)k∈Z+ , with the same distribution under P as log(U/V ), where U and V
are independent with the same distribution as in (6). The associated random
walk is given by

Sn =

n∑
i=1

Xi, (9)

and we define
ξnk =

1∑n
i=0 exp(−(Si − Sk))

.
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Then one can check that for every n:

(ξnk )0≤k≤n
L
=
(
Qωn{xn = (k, n− k)}

)
0≤k≤n,

where L= means equality in law. Then instead of considering for each n a
new set of i.i.d random variables to calculate ξ̃(n)

k , we just need the n first
steps of the random walk Sn to compute the law of ξnk . Hence Theorem 1
can be reformulated as follows:

{ξn`n+k}k∈Z
L−→ {ξk}k∈Z , in the `1 − norm, (10)

with
`n = arg min

k≤n
Sk. (11)

Since the environment has a continuous distribution, the minimum is a.s.
unique. The complete construction of the limit ξk will be given in Section 4
below in two different cases when θ = µ/2 and θ 6= µ/2. However, for the
convenience of the reader, we give an informal definition, starting with the
case θ = µ/2. Let (S↑k , k ≥ 0), (S↓k , k ≥ 0) be two independent processes, with
the first one distributed as the random walk S conditioned to be non-negative
(forever), and the second one distributed as the random walk S conditioned
to be positive (for positive k). Since we condition by a negligible event, the
proper definition requires some care, it relies on Doob’s h-transform. Then,

ξk =



exp(−S↑k)

1 +
∞∑
i=1

exp(−S↑i ) +
∞∑
i=1

exp(−S↓i )

, if k ≥ 0,

exp(−S↓k)

1 +

∞∑
i=1

exp(−S↑i ) +

∞∑
i=1

exp(−S↓i )

, if k < 0.

(12)

In the case θ < µ/2, then ln = O(1), but the limit is still given by the
formula (12), provided that S↓ has a lifetime (equal to the time for the walk
to reach its absolute minimum), after which it is infinite. S↑ is as before,
and it is defined in a classical manner. Thus, the concatenated process is
simply equal to S with a space shift by its minimum value, and time shift
by the time to reach the minimum. The last case θ > µ/2 is similar under
the change k 7→ n− k.

In particular in the equilibrium case θ = µ/2, Sk is a random walk with
expectation zero. By Donsker’s invariance principle, the random walk has a
scaling limit, ( 1√

n
S[nt]

)
t

L−→ (Wt)t .
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withW a Brownian motion with diffusion coefficient 2Ψ1(µ/2) (there, Ψ1(θ) =
(log Γ)”(θ) is the trigamma function). By consequence, the scaling limit of
the favourite endpoint is easy to compute in the present model with bound-
ary conditions.

Theorem 2. Consider the model b.c.(θ) from (2).
(i) When θ = µ/2, we have

ln
n

L−→ arg min
t∈[0,1]

Wt ,

where the limit has the arcsine distribution with density
[
π
√
s(1− s)

]−1 on
the interval [0, 1].
(ii) When θ < µ/2, n− ln converges in law, so

ln
n

P−→ 1,

though when θ > µ/2, ln converges in law, so

ln
n

P−→ 0.

In words, the favourite location for the polymer endpoint is random at
a macroscopic level in the equilibrium case, and degenerate otherwise. Fur-
ther, the (doubly random) polymer endpoint xn has the same asymptotics
under Qωn , since, by (5), xn/n and ln/n are asymptotic as n → ∞. These
results disagree with KPZ theory, where the endpoint fluctuates at distance
n2/3 around the diagonal. A word of explanation is necessary. The difference
comes from the boundary conditions. In the equilibrium case µ/2 = θ the di-
rection of the endpoint has a maximal dispersion, though in non equilibrium
ones it sticks to one of the coordinate axes. In the model without bound-
ary conditions –that we leave untouched in this paper–, we expect an extra
entropy term to come into the play and balance the random walk Sn in the
potential, a factor being of magnitude n and quadratic around its minimum
(which is the diagonal by symmetry), making the localization happen close
to the diagonal and with fluctuations of order n2/3.

Finally, we derive a large deviation principle for the endpoint distribution:

Theorem 3. Consider the model b.c.(θ) from (2).
(i) Assume θ = µ/2. In the Skorohod space D

(
[0, 1],R+

)
equipped with

Skorohod topology,(
−1√
n

logQωn
{
xn = ([ns], n−[ns])

})
s∈[0,1]

L−→
(
W (s)−min

[0,1]
W

)
s∈[0,1]

.

(13)
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Moreover, for all segment A ⊂
{

(s, 1− s); s ∈ [0, 1]
}
in the first quadrant,

−1√
n

logQωn(xn ∈ nA)
L−→ inf

A
W −min

[0,1]
W . (14)

(ii) Assume θ > µ/2. Then, as n→∞,

− 1

n
logQωn

{
xn = ([ns], n−[ns])

} P−→ s
∣∣Ψ0(θ)−Ψ0(µ− θ)

∣∣ , (15)

where Ψ0(θ) = (log Γ)′(θ) is the digamma function. Similarly, if θ < µ/2,

− 1

n
logQωn

{
xn = ([ns], n−[ns])

} P−→ (1− s)
∣∣Ψ0(θ)−Ψ0(µ− θ)

∣∣ .
Then, at logarithmic scale, the large deviation probability for the end-

point is of order
√
n in the equilibrium case, whereas it is of order n otherwise.

This is again specific to boundary conditions, since it is shown in [21] for
the model without boundaries that the large deviation probabilities have ex-
ponential order n with a rate function which vanishes only on the diagonal
(s = 1/2).

2.2 Middle point under the point-to-point measure

In this section, we consider the point-to-point measure with boundary condi-
tions. Fix µ > 0, (p, q) ∈ (Z∗+)2 and for each N ∈ N, let RN be the rectangle
with vertices (0, 0), (0, qN), (pN, 0) and (pN, qN). With some fixed

θS , θN ∈ (0, µ), let θE = µ− θN , θW = µ− θS ,

and denote Θ = (θN , θS , θE , θW ). To sites (i, j) strictly inside RN we assign
inverse Gamma variables Yi,j with parameter µ, whereas to sites on the
boundary we assign inverse Gamma variables with parameter θN , θS , θE or
θW depending if the boundary is north, south, east or west.

Model P2P-b.c.(Θ): Assume

Yi,j : (i, j) ∈ RN \ {0, (pN, qN)} are independent with

Y −1
i,0 ∼ Gamma(θS , 1) for i∈ [1, pN ], Y −1

pN,j ∼ Gamma(θE , 1) for j∈ [1, qN−1],

Y −1
0,j ∼ Gamma(θW , 1) for j∈ [1, qN ], Y −1

i,qN ∼ Gamma(θN , 1) for i∈ [1, pN−1],

Y −1
i,j ∼ Gamma(µ, 1) for 1 ≤ i ≤ pN − 1 and 1 ≤ j ≤ qN − 1.

(16)
The point-to-point polymer measure is the probability measure on ΠpN,qN

given by

QωpN,qN (x) =
1

ZωpN,qN
exp

{ (p+q)N−1∑
t=1

ω(xt)
}
.
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For a path x ∈ ΠpN,qN denote by

t− = max{t : xt · (qe1 + pe2) ≤ pqN}

the "time it crosses the transverse diagonal". The coordinate of the crossing
point can be described up to a multiplicative factor by the integer

F (x) = (xt− + xt−+1) · (qe1 − pe2). (17)

Theorem 4. Consider the model P2P-b.c.(Θ). Then, there exist a random
integer mN depending on ω and a random probability measure ξ̂ on Z such
that, as N →∞,(

QωpN,qN (F (x) = mN + k); k ∈ Z
)
L−→ ξ̂,

in the space (M1, ‖ · ‖TV ).

We recall that middle-point localization for the point-to-point measure is
not covered by the usual martingale approach to localization, and this result
is the first one of this nature. Here also the limit can be described in terms
of the minimum of a functional of random walks. The appropriate form of
the claim and the limit itself are given in Theorem 3, section 5. We end with
a complement.

Theorem 5. Consider the model P2P-b.c.(Θ), and recall mN from Theorem
4.

(i) When θN = θS, as N →∞,

mN

4Npq
+

1

2

L−→ arg min
t∈[0,1]

Wt , (18)

where the limit has the arcsine distribution.

(ii) When θN < θS, then mN + 2pqN converges in law, so

mN

4Npq
+

1

2

P−→ 0,

but when θN > θS, mN − 2pqN converges in law, so

mN

4Npq
+

1

2

P−→ 1,

We stress that the equilibrium relation (18) holds whatever p and q are,
provided that θN = θS .

In order to prove all these results, the direct approach is to understand
the growth of the random walk seen from its local minima. In the next
section, we will present different results about the decomposition of random
walk around its minima.
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3 Splitting at the infimum and random walk con-
ditioned to stay positive

Through this section, we will only consider the equilibrium case θ = µ/2,
i.e. when the random walk S = (Sk, k ≥ 0) in (9) has mean 0. The prob-
lem of path decomposition for Markov chains at its infimum points is well
studied in the literature by Williams [41], Bertoin [1, 2, 3, 4], Kersting and
Memişoǧlu [28]. We will follow the fine approach of Bertoin [3]. We mention
at this point that the case of a walk drifting to infinity was considered by
Doney [16]. However for our purpose, we do not need such sophisticated
results when θ is different from µ/2.

First we will introduce the random walk conditioned to stay non nega-
tive and explain how it relates to the decomposition of random walk at its
minimum. Then we present Tanaka’s construction and its consequence on
the growth of the walk around the minimum.

3.1 Random walk conditioned to stay non negative

Recall that S0 = 0. Define the event that the random walk stays non negative

Λ = {Sk ≥ 0 for all k ≥ 0}.

As the random walk does not drift to +∞ this event has probability P[Λ] = 0.
In order to give a meaning for the conditioning with respect to Λ, we can
approximate Λ with some other event Λn. The natural choice here is

Λn = {Sk ≥ 0,∀ 0 ≤ k ≤ n}.

and we would like to study the asymptotics for large n of the law of S
conditioned by Λn.

Let us introduce some basic notation. For every real number x, we denote
by Px the law of the random walk S started at x, and we put P = P0. Let τ
be the first entrance time in (−∞, 0):

τ = min{k ≥ 1 : Sk < 0}.

In particular Λn = {τ > n}. Let (H,T ) = ((Hk, Tk), k ≥ 0) be the strict
ascending ladder point process of the reflected random walk −S. That is,
T0 = 0 and, for k = 0, 1, . . .,

Hk = −STk , Tk+1 = min{j > Tk : −Sj > Hk},

with the convention Hk=∞ when Tk=∞. The variable H1 is called the first
strict ascending height of −S, they are depicted in Figure 1. The renewal
function associated with H1 is

V (x) =

∞∑
k=0

P(Hk ≤ x).

13



T1 T2 T3

−H1

−H2

−H3

Figure 1: The strict ascending ladder of the random walk −S. Line segments
represent jumps. T1 is the first time the walk is positive, −H1 = −ST1

is the value.
T2 is the next time the walk takes a larger value, denoted by −H2. Etc.. . .

By the duality lemma ([17], Sect. XII.2), we can rewrite the renewal function
for x ≥ 0 as

V (x) = 1 + E(

σ(0)−1∑
i=1

1{−x≤Si}), (19)

where
σ(0) = min{k ≥ 1 : Sk ≥ 0}.

Now we define Doob’s h-transform P Vx of Px by the function V , i.e., the
law of the homogeneous Markov chain on the nonnegative real numbers with
transition function:

pV (x, y) =
V (y)

V (x)
p(x, y)1{y≥0}. (20)

Here p, Px denote the transition density and the law of the chain S starting
from x. By definition, if f(S) = f(S0, S1, ..., Sk) is a functional depending
only on the k first steps of the random walk, then

EVx [f(S)] =
1

V (x)
Ex[V (Sk)f(S), k < τ ].

(We use the standard notation E[Z,A] = E[Z1A] for an integrable r.v. Z
and an event A.) We denote by (S↑k)k≥0 the chain starting from 0,

E(f(S↑1 , . . . , S
↑
k)) = EV0 (f(S)). (21)

The following result shows that it yields the correct description of the random
walk conditioned to stay non negative.
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Proposition 1. For a bounded Borel function f(S) = f(S1, . . . , Sk),

lim
n→∞

E(f(S)|Λn) = E(f(S↑)).

Proof. First we will prove the following lemma:

Lemma 1. For every x ≥ 0, we have

lim inf
n→∞

Px(Λn)

P(Λn)
≥ V (x).

Proof of Lemma 1. Recall that (Hk, Tk) denotes the kth ascending ladder
point of −S. Let an,k be the event {Hk ≤ x, Tk ≤ n, Tk+1 − Tk > n}.
On the event an,k, we have maxk∈[0,n]{−Sk} = Hk ≤ x. It implies that
mink∈[0,n] Sk + x ≥ 0, and by consequence τ > n under Px. Moreover the
events an,k are clearly disjoint, then we have:

Px(τ > n) ≥
∞∑
k=0

P(an,k).

By the Markov property at Tk, we have:

Px(τ > n) ≥ P(τ > n)

∞∑
k=0

P(Hk ≤ x, Tk ≤ n).

By monotone convergence,

lim
n→∞

∞∑
k=0

P(Hk ≤ x, Tk ≤ n) =
∞∑
k=0

P(Hk ≤ x) = V (x).

which yields the lemma.

Now, we can complete the proof of Proposition 1. Without loss of gen-
erality we may assume that 0 ≤ f ≤ 1. By the Markov property, for k ≤ n,

E(f(S),Λn) = E
(
f(S)PSk(Λn−k), τ > k

)
≥ E

(
f(S)PSk(Λn), τ > k

)
.

We deduce from Lemma 1 and Fatou’s lemma that

lim inf
n→∞

E(f(S)|Λn) ≥ E(f(S)V (Sk), τ > k) = EV0 (f(S))

since V (0) = 1. Replacing f by 1− f , we get

lim sup
n→∞

E(f(S)|Λn) = 1− lim inf
n→∞

E((1− f)(S)|Λn)

≤ 1− EV0 ((1− f)(S)) = EV0 (f(S)),

which completes the proof of Proposition 1.

Now we will show that the random walk conditioned stay non negative
is the natural limit for the random walk seen from its local minima. Recall
`n from (11). The following property is crucial.
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Proposition 2. For a bounded function f(x1, . . . , xk) and ε ∈ (0, 1), we
have

lim
n→∞

E
(
f(S`n+1−S`n , . . . , S`n+k−S`n)|n− `n > nε

)
= EV0 (f(S)).

Proof. We have

E
[
f(S`n+1−S`n , . . . , S`n+k−S`n), n− `n > nε

]
=

dn−nεe−1∑
i=0

E
[
f(Si+1−Si, . . . , Si+k−Si), `n = i

]
. (22)

On the other hand we can write the event {`n = i} as

{`n = i} = {Sj ≥ Si, ∀j ≤ i} ∩ {Sj ≥ Si,∀j ∈ [i, n]}.

Both random variables f(Si+1 − Si, . . . , Si+k − Si) and 1{Sj≥Si,∀j∈[i,n]} are
measurable with respect to σ(Xi+1, . . . , Xn) and thus are independent of the
event {Sj ≥ Si, ∀j ≤ i} which is in σ(X1, . . . , Xi). Then we obtain:

E
[
f(Si+1 − Si, . . . , Si+k − Si), `n = i

]
=

E
(
f(Si+1 − Si, . . . , Si+k − Si)1{Sj≥Si,∀j∈[i,n]}

)
× P(Sj ≥ Si, ∀j ≤ i).

Applying the Markov property at time i(0 < i < n− nε), we obtain

E
[
f(Si+1 − Si, ..., Si+k − Si), `n = i

]
= E

[
f(S1, . . . , Sk), τ > n− i

]
× P(Sj ≥ Si,∀j ≤ i). (23)

From Proposition 1, for fixed δ > 0, there exists n(δ) such that for n ≥ n(δ),∣∣E[f(S1, . . . , Sk)|τ > nε
]
− EV0 [f(S1, . . . , Sk)]

∣∣ ≤ δ. (24)

Combining (22), (23) and (24), we obtain

E
[
f(S`n+1 − S`n , . . . , S`n+k − S`n), n− `n > nε

]
≥ (EV0 [f(S1, . . . , Sk)]− δ)

×
∑dn−nεe−1

i=0 P(Sj ≥ Si, ∀j ∈ [i, n])P(Sj ≥ Si,∀j ≤ i)
=
(
EV0 [f(S1, . . . , Sk)]− δ

)
× P(n− `n ≥ nε).

Thus, for n > n(δ),

E
(
f(S`n+1 − S`n , . . . , S`n+k − S`n)|n− `n > nε

)
≥ EV0 [f(S1, . . . , Sk)]− δ,

and by the same argument,

E
(
f(S`n+1 − S`n , . . . , S`n+k − S`n)|n− `n > nε

)
≤ EV0 [f(S1, . . . , Sk)] + δ.
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This yields the desired result.

In the above result we proved convergence of the post-infimum process.
Since the random variables X are centered, by considering the reflected ran-
dom walk −S, we derive a similar convergence result for the pre-infimum
process to a limit that we now introduce. Since the environment has a den-
sity, the model enjoys a simplification: conditioning the walk to be positive
is the same as conditioning it to be non-negative. Define the process (S↓k) as
the homogeneous Markov chain starting from 0 with transition function pV̂

given by (20) with

V̂ (x) = 1 + E
( σ̂(0)−1∑

i=1

1{Si≤x}

)
, x ≥ 0,

and
σ̂(0) = min{k ≥ 1 : Sk ≤ 0}.

Corollary 3. For a bounded function f(x1, ..., xk) and ε ∈ (0, 1), we have

lim
n→∞

E
(
f(S`n−1 − S`n , . . . , S`n−k − S`n)|`n > nε

)
= E(f(S↓1 , . . . , S

↓
k)).

Since the walk is centered, the event {nε < `n < n − nε} will happen
with high probability for ε small enough. Then Theorem 2 and Corollary 3
imply that

Corollary 4. For fixed K, the following convergence results hold as n→∞:

(S`n+k − S`n)1≤k≤K
L−→ (S↑k)1≤k≤K ,

(S`n+k − S`n)−1≥k≥−K
L−→ (S↓k)1≤k≤K ,(

K∑
k=−K

e−(Sk−S`n )

)−1

L−→

(
1 +

K∑
k=1

e−S
↑
k +

K∑
k=1

e−S
↓
k

)−1

. (25)

3.2 Growth of random walk conditioned to stay positive

In the literature, it is well known that the random walk conditioned to stay
positive can be constructed based on an infinite number of time reversal at
the ladder time set of the walk (S,P). The first proof is given by Golosov [22]
for the case of random walk with expectation zero and later Tanaka [38] gave
a proof for more general case. We first present Tanaka’s construction [38],
and sumarize the results.

Let {(H+
k , σ

+
k )}k≥0 be the sequence of strictly increasing ladder heights

and times respectively of (S,P) with H+
0 = σ+

0 = 0. Define e1, e2, ... the
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sequence of excursions of (S,P) from its supremum that have been time
reversed:

en = (0, Sσ+
n
− Sσ+

n−1, Sσ+
n
− Sσ+

n−2, ..., Sσ+
n
− Sσ+

n−1+1, Sσ+
n
− Sσ+

n−1
) ,

for n ≥ 1. Write for convenience en = (en(0), en(1), ..., en(σ+
n − σ+

n−1)) as
an alternative for the step of each en. By Markov property, e1, e2, ... are
independent copies of e = (0, Sσ+ − Sσ+−1, Sσ+ − Sσ+−2, ..., Sσ+ − S1, Sσ+)
where σ+ = inf{k ≥ 0 : Sk ∈ (0,+∞)} is from (19). Tanaka’s construction
for the reflected random walk (−S) consists in the following process W ↑ =

{W ↑n : n ≥ 0}:

W ↑n =


e1(n), for 0 ≤ n ≤ σ+

1

H+
1 + e2(n− σ+

1 ) for σ+
1 < n ≤ σ+

2

. . .
H+
k−1 + ek(n− σ+

k−1) for σ+
k−1 < n ≤ σ+

k

. . .

(26)

Under the condition P{σ+ < ∞} = 1, the main theorem in [38] states
that {W ↑n} is a Markov chain process on [0,+∞) with transition function
p̂(x, dy), which is given by

p̂(x, dy) =
g(y)

g(x)
P(x+X ∈ dy)1(0,+∞)(y) ,

where

g(x) = E
[ σ+∑
n=0

1{−x<Sn}

]
.

As we consider here log-gamma variables with θ = µ/2, then we have P-a.s
σ+ = σ(0) < 1 and g = V from (19). Therefore the processW ↑ has the same
law as the random walk conditioned to stay non negative, i.e., S↑ defined
above proposition 1. This identity provides an elegant way to determine the
growth rate of the limit process S↑.

Lemma 2. For every ε > 0, then we have :

lim
n→∞

S↑n

n1/2−ε = +∞, P− a.s .

As a consequence, for fixed δ > 0 there exists a constant k = k(δ) such that

P(S↑n ≥ n1/2−ε, ∀ n ≥ k) ≥ 1− δ .

Proof: We follow the lines of [24]. Let {M+
k , v

+
k }k≥0 be the space-time

points of increase of the future minimum of (W ↑,P). That is,M+
0 = v+

0 = 0,

v+
k = inf{n > v+

k−1 : min
r≥n

W ↑r = W ↑n} and M+
k = W ↑

v+k
,
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for k ≥ 1. From the construction of W ↑, we can deduce that for each path,
the sequence {(M+

k , v
+
k )}k≥0 corresponds precisely to {(H+

k , σ
+
k )}k≥0. Let

L = {Ln}n≥0 be the local time at the maximum in (S,P), that is

Ln = |{k ≤ n : max
i≤k

Si = Sk}| .

Because W ↑ is obtained by time reversal from S, then L is also the local
time at the future minimum of (W ↑,P). Hence it’s clear that :

Sn ≤ H+
Ln

= M+
Ln
≤W ↑n .

Now we need the following lemma (e.g., Theorem 3 in [24]):

Lemma 3. Consider the random walk (S,P). Now suppose that Φ ↓ 0 and
that E(S1) = 0 and E(S2

1) <∞. Then

Px(max
k≤n

Sk <
√
nΦ(n) i.o.) = 0 or 1 .

according to ∫ ∞
1

Φ(t)

t
dt <∞ or =∞ .

We use the standard notations "i.o." for "infinitely often" and "ev." for
"eventually". For Φ(n) = n−ε, the integral converges and Lemma 3 yields

1 = P(maxi≤n Si ≥
√
nΦ(n) ev.)

= P(W ↑n ≥
√
nΦ(n) ev.) .

Again using the fact that we may replace Φ by cΦ for any c > 0, and that
the integral in the lemma still converges, it follows easily that

lim inf
n→∞

W ↑n√
nΦ(n)

=∞ ,

P-almost surely. As W ↑ and S↑ have the same law under P, we get the first
result. Then it’s clear for fixed δ, there exists k such that

P(S↑n ≥ n1/2−ε, ∀ n ≥ k) = P(Ak) ≥ 1− δ .

We complement Lemma 2 with the following version for the conditioned
random walk, proved by Ritter [34].

Theorem 6 ([34]). Fixed η < 1/2 then :

lim
δ→0

inf
n

P[ inf
k≤n

(Sk − δkη) ≥ 0|τ > n] = 1 .
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Note now that the time `n of the first minimum of S on [0, n] is such
that, for fixed ε ∈ (0, 1) we have for large n,

P[`n < (1− ε2)n] > 1− ε . (27)

Indeed, by the invariance principle of Donsker(1951), `n/n converges in law
to the time of the global minimum of the standard Brownian motion on
[0, 1], which obeys the arcsine distribution [27, problem 8.18]. Therefore,
conditionally on the event {`n < (1− ε2)n}, Theorem 6 gives us the growth
of the random walk after the minimum:

Corollary 5. If η ∈ (0, 1/2), then uniformly in n :

lim
δ→0

P[Sk+`n − S`n > δkη for all k ≤ n− `n] = 1 .

Proof: The proof is similar to the proof of Proposition 2. To simplify
the notation define

Aδ = {Sk+`n − S`n > δkη for all k ≤ n− `n} ,

and
Aδ,j = {Sk+`n − S`n > δkη for all k ≤ n− `n, `n = j} .

Then we have

P[Aδ] =
n∑
j=1

P[Aδ,j ] =
n∑
j=1

P[Aδ,j |`n = j]P[`n = j] .

We know that the event {`n = i} can be written as

{`n = i} = {Sj ≥ Si,∀j ≤ i} ∩ {Sj ≥ Si, ∀j ∈ [i, n]} ,

Both random variables Aδ,j and 1{Sj≥Si,∀j∈[i,n]} are measurable with respect
to σ(Xi+1, ..., Xn) and are independent of the event {Sj ≥ Si,∀j ≤ i}. By
the Markov property, it follows that

P[Aδ,j |`n = j] = P[Sk > δkη for all k ≤ n− j|τ > n− j] .

For ε > 0 by using Theorem 6, there exists δε and nε such that for for all
δ < δε, m > nε

P[ inf
k≤m

(Sk − δkη) ≥ 0|τ > m] ≥ 1− ε .

By putting m = n− j and summing j ∈ {1, 2, ..., [(1− ε)n]} we obtain

P[Aδ] ≥ (1− ε)P[`n < (1− ε)n] .

So by (27), for n large enough, we have

P[Aδ] ≥ 1− 2ε ,

which implies easily the corollary.
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4 Proof of the main results in the point-to-line case

We split the section according to θ = µ/2 or not, starting with the first case,
which is more involved than the second one. The reason why θ = µ/2 is
special is that the random variable X in (9) is centered, and even symmetric.

4.1 Equilibrium case

In the equilibrium setting θ = µ/2, we know that the post- and pre-infimum
chain converge in law to the random walk conditioned to stay positive. As
these limit processes grow fast enough, we can indeed prove that the endpoint
densities of the polymer converge when its length goes to infinity. Firstly we
consider the distribution at the favourite endpoint, and we later extend the
arguments to all the points:

Lemma 4. For n→∞,

ξn`n =

(
n∑
i=0

e−(Si−S`n )

)−1
L−→ ξ0 =

(
1 +

∞∑
i=1

e−S
↑
i +

∞∑
i=1

e−S
↓
i

)−1

.

Proof. From Lemma 2, the random walk conditioned to stay positive is
lower bounded by some factor of n1/2−ε, thus the random variable ξ0 is well
defined and strictly positive. By the continuous mapping theorem, the claim
is equivalent to convergence in law of the inverse random variables. Then,
in order to prove the lemma, it suffices to show that, for all bounded and
uniformly continuous function f , we have

E
[
f
( n∑
i=0

e−(Si−S`n )
)]
−→ E

[
f
(

1 +
∞∑
i=1

e−S
↑
i +

∞∑
i=1

e−S
↓
i

)]
, (28)

as n→∞. By (25) in Corollary 4, we already know that, for a fixed K,

E
[
f
( i=`n+K∑
i=`n−K

e−(Si−S`n )
)]
−→ E

[
f
(

1 +
K∑
i=1

e−S
↑
i +

K∑
i=1

e−S
↓
i

)]
. (29)

By uniform continuity, given an ε > 0 there exists ρ > 0 such that |f(x) −
f(y)| < ε for all x, y with |x−y| < ρ. Now we will prove that, for all positive
ε, we can find finite K = K(ε) and n0(ε) such that for n ≥ n0(ε), it holds

∣∣∣E[f( n∑
i=0

e−(Si−S`n )
)]
− E

[
f
( i=`n+K∑
i=`n−K

e−(Si−S`n )
)]∣∣∣ < ε , (30)

and∣∣∣E[f(1+

K∑
i=1

e−S
↑
i +

K∑
i=1

e−S
↓
i

)]
−E
[
f
(

1+

∞∑
i=1

e−S
↑
i +

∞∑
i=1

e−S
↓
i

)]∣∣∣ < ε . (31)
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Then, by combining (29), (30) and (31) we get (28) and the proof is finished.
In order to get (30), it is enough to prove that for all positive ρ, ε there

exists a finite K such that

P
( `n−K∑

i=0

e−(Si−S`n ) +
n∑

i=`n+K

e−(Si−S`n ) < ρ
)
> 1− ε (32)

for all n large enough, while, in order to get (31), it is enough to prove that
for all positive ρ, ε there exists a finite K such that

P
(∑
i≥K

e−S
↑
i +

∑
i≥K

e−S
↓
i < ρ

)
> 1− ε (33)

for all n large enough.
To prove (32), we use Corollary 5: For any fixed η < 1/2, choose δ > 0,

such that for all n ∈ N :

P[Sk+`n − S`n > δkη; k = 1, 2, . . . , n− `n] ≥ 1− ε/2 .

Because the random variable X is symmetric, the pre-infimum process veri-
fies the same properties, i.e for n ∈ N :

P
[
S`n−k − S`n > δkη; k = 1, . . . , `n

]
≥ 1− ε/2 .

Then, choosing K such that
∑∞

k=K e
−δkη < ρ/2 yields (32). A similar argu-

ment leads to (33). This completes the proof of the lemma.

In the course of the proof we have discovered the limit endpoint densities
(ξk)k∈Z is given by formula (12). Repeating the argument in the proof of
Lemma 4, it is straightforward to extend the result to a finite set of points
around the maximum point:

Lemma 5. For fixed K, n→∞ :

(ξn`n+k)−K≤k≤K
L−→ (ξk)−K≤k≤K

Proof of Theorem 1 in the case of θ = µ/2. Recall that ξ̃(n) and ξn

have the same law, and that the total variation distance between probability
measures on Z coincides with the `1-norm. Taking a function f : `1 → R
bounded and uniformly continuous in the norm |.|1 and one needs to prove
that

E[f((ξn`n+k)k∈Z)]→ E[f((ξk)k∈Z)]. (34)

We will use almost the same idea as in the proof of Lemma 4. From Lemma
5 we have, with a slight abuse of notation,

E[f((ξn`n+k)k∈[−K,K])]→ E[f((ξk)k∈[−K,K])] (35)
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Fixing ε > 0, there exists by continuity some δ > 0 such that |x − y|1 < δ
implies |f(x)− f(y)| < ε. Hence,

E
[
f((ξn`n+k)k∈[−K,K])− f((ξn`n+k)k∈Z)

]
≤ ε (36)

provided that
E[

∑
k:|k|>K

ξn`n+k] ≤ δ , (37)

and similarly for ξ instead of ξn. Since E[ξk] is a probability measure on Z,
we can take K large enough so that E[

∑
k:|k|>K ξk] ≤ δ. Then, from Lemma

5, we see that, as n→∞,

E
[ ∑
k:|k|>K

ξn`n+k

]
= 1−E

[ ∑
k:|k|≤K

ξn`n+k

]
−→ E

[ ∑
k:|k|>K

ξk
]

= 1−E
[ ∑
k:|k|≤K

ξk
]
,

yielding (37). By combining (35) and (36), we obtain (34).

Proof of Corollary 2. It is enough to note that

lim
n→∞

Qωn [|xn · e1 − ln| ≥ K] =
∑

k:|k|>K

ξk in law,

which vanishes as K →∞.

Proof of Corollary 1. Recall first that under Qωn−1, the steps after the
final time n− 1 are uniformly distributed, and independent from everything
else. Then, it is enough to note that

Qωn−1[xn = x] = Qωn−1[xn−1 = x− e1, xn − xn−1 = e1] +

Qωn−1[xn−1 = x− e2, xn − xn−1 = e2]

=
(
Qωn−1[xn−1 = x− e1] +Qωn−1[xn−1 = x− e2]

)
× 1

2
L−→ ξk + ξk+1

2
,

with k determined by (x− e1) · e1 = ln−1 + k.

Now we give the proof for Theorem 2 and 3:

Proof of Theorem 2 for θ = µ/2. First, recall that ln and `n have the
same law, so we can focus on the latter one. By definition of `n and Donsker’s
invariance principle, we have directly

`n
n

=
1

n
arg min
i∈[0,n]

Si
L−→ arg min

t∈[0,1]
Wt .

By Lévy’s arcsine law [29], the location of the minimum of the Brownian
motion, i.e. the above limit, has the density π−1

(
s(1−s)

)−1/2 on the interval
[0, 1].
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Proof of Theorem 3 for θ = µ/2. We can express the first term in (13)
as

−1√
n

logQωn
(
xn = ([ns], n−[ns])

) L
=
−1√
n

(S[ns]−S`n)+
1√
n

log(

n∑
k=1

e−(Sk−S`n )) ,

(38)
with L

= the equality in law. As the second term in the right-hand side is
almost surely dominated by logn√

n
, then again, Donsker’s invariance principle

yields (13).
On the other hand, let A be an interval. For all s ∈ A, we have

Qωn
(
xn = ([ns], n−[ns])

)
≤ Qωn(xn ∈ nA)

≤ nmax
x∈A

Qωn
(
xn = ([nx], n−[nx])

)
,

which means that

max
x∈A

Qωn
(
xn = ([ns], n−[ns])

)
≤ Qωn(xn ∈ nA)

≤ nmax
x∈A

Qωn
(
xn = ([nx], n−[nx])

)
.

From Donsker’s invariance principle it follows

−1√
n

max
x∈A

logQωn
(
xn=([ns], n−[ns])

) L
= min

x∈A

S[nx]−S`n√
n

+
1√
n

log(

n∑
k=1

e−(Sk−S`n ))

L−→ min
x∈A

W (x)−min
[0,1]

W ,

which, in turn, yields (14).

4.2 Non-equilibrium case

Proof of Theorem 1 in the case of θ 6= µ/2. Without loss of generality, we
assume that θ < µ/2, which implies that m = E[X] > 0 and the random
walk S drifts to +∞. By the law of large number, we have for all a ∈ (0,m),

M = min
n

(Sn − na) > −∞ P− a.s

It follows that P-a.s for every integer n,

e−Sn ≤ e−na−M

Then the sum of e−Sn converges P-a.s and we can identify the limit distri-
bution ξ as

ξk =
e−Sk∑∞
i=0 e

−Si
.
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Indeed, it is clear that, for k ∈ Z+,

ξnk =
e−Sk∑n
i=0 e

−Si
→ ξk, P− a.s

Since the random walk drifts to +∞ the global minimizer

` = arg min{Sk, k ∈ Z+}

is P-a.s finite. Moreover, for n large enough we have `n = `, and by centering
the measure ξn and ξ around `n and ` respectively, we can easily obtain that

ξ̃(n) L−→ ξ in the space (M1, ‖ · ‖TV ),

where ξ̃(n) is defined as in (4) and ξk = ξ`+k. This yields Theorem 1 in the
case θ < µ/2.

Proof of Theorem 2 for θ 6= µ/2. It is a straightforward consequence of
the above, since `n = O(1) if θ < µ/2 or n− `n = O(1) if θ > µ/2.

Proof of Theorem 3 for θ 6= µ/2. Though it was already proved in [35,
21], we give another argument for completeness. Applying the law of large
numbers for i.i.d. variables in (38), we directly obtain the claim.

5 Localization of the point-to-point measure

In this section, we consider the point-to-point measure with mirror boundary
conditions. Recall the definition of the model P2P-b.c.(Θ) from (16).

In this situation, beside the usual partition function Zm,n, we will also
define the reverse partition function Z̃m,n for (m,n) ∈ RN as

Z̃m,n =
∑

x∈Π̃Nm,n

(p+q)N−1∏
t=m+n

Yxt , (39)

where Π̃N
m,n denotes the collection of up-right paths x = (xt;m + n ≤ t ≤

(p + q)N) in the rectangle RN that go from (m,n) to (pN, qN). Note that
in the reverse partition function we exclude the weight at (pN, qN). Also, it
depends on N, p and q, but we omit to indicate it in the notation. Moreover,
we can also define the ratios Ũ and Ṽ as in the usual case,

Ũm,n =
Z̃m,n

Z̃m+1,n

(40)

Ṽm,n =
Z̃m,n

Z̃m,n+1

(41)
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Figure 2: Upper and lower "transverse diagonal" with p = 5, q = 2, N = 4.
Their vertices are indicated by dots and crosses respectively. H−,Np,q is the
region below the diagonal. The boundary conditions are indicated on the
boundaries of the rectangle.

If we take the point (pN, qN) as the initial point then the reverse envi-
ronment (Z̃, Ũ , Ṽ ) is also a stationary log-gamma system with boundary
conditions. Indeed one sees from (39), (40) and (41) that Ũm,qN = Ym,qN
and ṼpN,v = YpN,n. We partition the rectangle RN according to the lower
half space

H−,Np,q = {(i1, i2) ∈ Z2 : qi1 + pi2 ≤ pqN}

and its complement. In order to simplify the notations, we denote for an
edge f with endpoints in RN ,

Tf =


Ux if f ∈ H−,Np,q and f = 〈·, x〉 is horizontal
V −1
x if f ∈ H−,Np,q and f = 〈·, x〉 is vertical
Ũ−1
x if f /∈ H−,Np,q and f = 〈x, ·〉 is horizontal

Ṽx if f /∈ H−,Np,q , and f = 〈x, ·〉 is vertical

(42)

From Fact 1 of section 2.1 and independence of the weights in H−,Np,q and
its complement, for every down-right path z it follows that the variables
{Tf : f ∈ z} are mutually independent. We stress that independence relies
also on the expressions of Zm,n and Z̃m′,n′ , where there are no shared weights.
The marginal distribution of Tf is given by the stationary structure, it is a
log-gamma distribution with the appropriate parameter. Let ∂H−,Np,q be the
transverse diagonal in RN , which is given as

∂H−,Np,q = {(i1, i2) ∈ H−,Np,q : (i1 + 1, i2 + 1) /∈ H−,Np,q }.

Consider the "lower transverse diagonal" given as

LNp,q is the down-right path x = (xi) : (0, qN)→ (pN, 0) with xi ∈ ∂H−,Np,q ,
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and the "upper transverse diagonal",

UNp,q = (1, 1) + LNp,q,

see Figure 2. Define also the set of up-right edges across the transverse
diagonal,

ANp,q = {〈z1, z2〉 : z1 ∈ H−,Np,q , z2 /∈ H−,Np,q , |z1 − z2|1 = 1}.

Each up-right path x that goes from (0, 0) to (pN, qN), intersects the trans-
verse diagonal once and only once. Precisely, the mapping

x = (xj)j 7→ G(x) = 〈xi, xi+1〉, with 〈xi, xi+1〉 ∈ ANp,q,

is well defined, and it indicates where the crossing takes place. (We have
i = t− in (17).) Our main question in this section is the behaviour of
the crossing edge when N increases. By definition of the polymer measure,
for 〈z1, z2〉 ∈ ANp,q we can write, with the notation

∑
∗ for the sum over

x ∈ ΠpN,qN , xt− = z1, xt−+1 = z2,

QωpN,qN (G(x) = 〈z1, z2〉) =
1

ZpN,qN

∑
∗

exp
{ t−∑
t=1

ω(xt) +

(p+q)N∑
t=t−+1

ω(xt)
}

=
1

ZpN,qN
Zz1 × Z̃z2 × exp{ω(pN, qN)} ,

where the last factor is the contribution of the last point x(p+q)N = (pN, qN).
In view of (40), (41), (42), this term can be expressed as

QωpN,qN (G(x) = 〈z1, z2〉) =
1

ZpN,qN
Z0,qN × Z̃1,qN ×

exp
(
−
∑

Π1(z1)

log(Tf )−
∑

Π2(z2)

log(Tf )
)

× exp{ω(pN, qN)} ,

where Π1(z1) is the restriction of LNp,q from (0, qN) to z1, and Π2(z2) is the
restriction of UNp,q from (1, qN) to z2. Note that, when computing the ratio of
the left-hand side for two different values of the crossing edge 〈z1, z2〉, both
the first and last lines of the right-hand side cancel. Thus, we consider

W (〈z1, z2〉) =
∑

Π1(z1)

log(Tf ) +
∑

Π2(z2)

log(Tf ) .

Observe that the variables {Tf : f ∈ Π1(z1)} and {Tf : f ∈ Π2(z2)} are
independent but not identically distributed, so that in order to apply the
same method as in previous section, we should divide UNp,q and LNp,q into
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identical blocks to obtain a centered random walk. Blocks are shifts of the
right triangle with vertices 0, pe1, qe2. Precisely we denote by

zk1 = (kp, (N − k)q), for 0 ≤ k ≤ N,

the vertices in RN which sit on the line of equation qi1 + pi2 = pqN , by

zk2 = zk1 + e1,

and by A the set of crossing edges in the basic block R1 shifted by qe2,

A =
{
〈z1, z2〉 up or right edge: z1+qe2 ∈ L1

p,q, z2+qe2 ∈ U1
p,q, 1 ≤ z2·e1 ≤ p

}
as shown in Figure 3. Note that 〈0, e1〉 ∈ A and the shifted edge (p,−q) +
〈0, e2〉 ∈ A but 〈0, e2〉 /∈ A. We will use A and the set (〈zk1 , zk2 〉)k to
parametrize the set ANp,q as follows. For 〈z1, z2〉 ∈ ANp,q we can find a unique
k such that, relative to any coordinate, z1 is between zk1 and zk+1

1 . Then by
translation, there exists a unique edge a ∈ A such that:

〈z1, z2〉 = 〈zk1 , zk2 〉+ a

Figure 3: The set A with p = 5, q = 2 contains 7 crossing edges in the first
block, indicated by solid lines.

On the other hand, we have:

Wk = W (〈zk1 , zk2 〉) =
∑

Π1(zk1 )

log(Tf ) +
∑

Π2(zk2 )

log(Tf ) =
k∑
i=1

Xi

where
Xk =

∑
f∈Π1(zk1 ,z

k+1
1 )

log(Tf ) +
∑

f∈Π2(zk2 ,z
k+1
2 )

log(Tf ) (43)
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with Π1(zk1 , z
k+1
1 ) the restriction of LNp,q from zk1 to zk+1

1 and Π2(zk2 , z
k+1
2 )

the restriction of UNp,q from zk2 to zk+1
2 .

Let B = {edges f ∈ Π1(z1
1) ∪ Π2(z1

2)}, the edge set of the first block.
Then it is clear that the edge set of a general block is a shift of that one,

{f ∈ Π1(zk1 , z
k+1
1 ) ∪Π2(zk2 , z

k+1
2 )} = zk−1

1 + B

By consequence, the variables (Xi)i≤n are i.i.d and moreover

E(Xi) = p
{

Ψ0(θS)−Ψ0(θN )
}

+ q
{

Ψ0(θE)−Ψ0(θW )
}

= 0
> 0
< 0

if θN = θS ,
if θN < θS ,
if θN > θS .

We first consider the case θN = θS . Then Wk is a centered random walk and
we can define

lN = arg min
0≤k<N

Wk (44)

as in the previous section. Before presenting the key lemma, we introduce
the limit law. Denote by ν(·|u) a regular version of the conditional law of
(W (a), a ∈ A) given

∑
a∈AW (a) = u. Let (Xi, i ≥ 1) be an i.i.d. sequence

distributed as in (43), and S↑ [resp. S↓] associated to X [resp., −X] as in
(21), and Ŝ the sequence with Ŝ0 = 0 and

Ŝk =

{
S↑k if k > 0

S↓k if k < 0

Consider also, on the same probability space, a random sequence (Yk,a :
k ∈ Z, a ∈ A) such that the vectors Yk = (Yk,a : a ∈ A) are, for k ∈ Z,
independent conditionally on Ŝ with conditional law ν(·|Ŝk+1 − Ŝk).
Lemma 6. For fixed K ∈ Z+,[
W (〈zlN+k

1 , zlN+k
2 〉+ a)−W (〈zlN1 , zlN2 〉)

]
|k|≤K,a∈A

L−→ (Ŝk + Yk,a)|k|≤K,a∈A.

Proof. Applying Corollary 4 to the centered random walk Wk we obtain
for fixed K[

W (〈zlN+k
1 , zlN+k

2 〉)−W (〈zlN1 , zlN2 〉)
]
|k|≤K

L−→ (Ŝk)|k|≤K (45)

with lN from (44). On the other hand, by independence of the Tf ’s we know
that the vectors[

W (zk1 + a)−W (〈zk1 , zk2 〉)
]
a∈A

are i.i.d. for k ≥ 0.

Thus, with Wk = W (〈zk1 , zk2 〉), their joint law, conditionally on (Wk; k ≥ 0),
is ⊗kν(·|Wk+1 −Wk). Then the result follows from (45).

Now we can state the main result of our construction, which reformulates
Theorem 4 in the equilibrium case.
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Proposition 3. Assume θN = θS. With the notations of Lemma 6, let

ξk,a =
exp{−Ŝk − Yk,a}

1 +
∑∞

k=−∞
∑

a∈A exp{−Ŝk − Yk,a}

Then, as N →∞,(
QωNp,Nq(G(x) = zlN+k

1 + a)
)
k∈Z,a∈A

L−→ (ξk,a)k∈Z,a∈A. (46)

on the space (`1(Z×A), | · |1).

Proof. We will use the same method as in the section 4.1 to prove (46).
With Lemma 6 at hand, we only need here to control the tail of sums as in
(32) and (33). Define

(l∗N , a
∗
N ) = arg min

(k,a)

[
W (zk1 + a)

]
for ∈ {0, . . . , N − 1} × A,

the minimum location ofW . Now we consider the process (k, a) 7→W (zk1 +a)
indexed by integer time t = kN + ` if a is the ` element in A, relative to its
infimum, i.e., with the shift s 7→ t = s+l∗N×N+a∗N . Note that t 7→W (zk1 +a)
is a sum of independent but not identically distributed random variables, it
can be viewed as a Markov chain, which is not time-homogeneous but has
periodic transitions with period equal by the cardinality of A. Then, the law
of the post-infimum process

s 7→W (zk1 + a)−min
m,b

W (zm1 + b), s ≥ 0,

is also a Markov chain with a lifetime, i.e., a Markov chain killed at a stopping
time. Similar to proposition 2, we can prove that the law of this post-
infimum process converges as N →∞ to a Markov chain on R+, with non-
homogeneous transitions but periodic with period given by the cardinality
of A. The product of N consecutive transition kernels coincides with the
one of S↑, it is homogeneous. Similar to Theorem 6, we conclude that the
post-infimum process grows algebraically: with probability arbitrarily close
to 1, we have for some positive δ and all large N ,

W (z
l∗N+k
1 + a)−min

m,b
W (zm1 + b) ≥ δkη , k ∈ {1, . . . , N − 1− l∗N}.

Then, it is plain to check that lN − l∗N = O(1) in probability using that the
former minimizes Wk = W (〈zk1 , zk2 〉), and we derive (32) and (33) as well.
The rest of the proof follows from similar arguments to those of Theorem 1
in the case of θ = µ/2 and from Lemma 6.

Proof of Theorem 4: In the equilibrium case θN = θS , the above propo-
sition 3 yields the conclusion by taking

mN = (zlN1 + zlN2 ) · (qe1 − pe2),
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so that any path x through the edge 〈zlN1 , zlN2 〉 has F (x) = mM .
Consider now the opposite case where, by symmetry, we may assume

θN < θS without loss of generality. Then, the walk (Wk)k≥0 has a global
minimum. Interpolating (Wk)k≥0 with independent pieces with law ν defined
as above, we construct a process ξ̂. Repeating the arguments of section 4.2,
we check that it is the desired limit.

Similar to that of Theorem 2, the proof of Theorem 5 is straightforward
and left to the reader.
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[36] Ya. G. Sinăı. The limit behavior of a one-dimensional random walk in a random
environment. Teor. Veroyatnost. i Primenen., 27(2):247–258, 1982.
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