
BocopHJB 1.0.1 – User Guide

Frédéric Bonnans, Daphné Giorgi, Benjamin Heymann, Pierre Martinon,

Olivier Tissot

To cite this version:

Frédéric Bonnans, Daphné Giorgi, Benjamin Heymann, Pierre Martinon, Olivier Tissot. Bo-
copHJB 1.0.1 – User Guide. [Technical Report] RT-0467, INRIA. 2015, pp.24. <hal-01192610>

HAL Id: hal-01192610

https://hal.inria.fr/hal-01192610

Submitted on 3 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47088426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01192610

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-4
67

--
FR

+E
N

G

TECHNICAL
REPORT
N° 467
September 2015

Project-Team Commands

BocopHJB 1.0.1 – User
Guide
Frédéric Bonnans, Daphné Giorgi, Benjamin Heymann, Pierre
Martinon, Olivier Tissot

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

BocopHJB 1.0.1 � User Guide

Frédéric Bonnans∗, Daphné Giorgi†, Benjamin Heymann∗,

Pierre Martinon∗, Olivier Tissot∗

Project-Team Commands

Technical Report n° 467 � September 2015 � 24 pages

Abstract: The original Bocop package implements a local optimization method. The optimal
control problem is approximated by a �nite dimensional optimization problem (NLP) using a time
discretization (the direct transcription approach). The NLP problem is solved by the well known
software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Similarly to the Dy-
namic Programming approach, the optimal control problem is solved in two steps. First we solve
the Hamilton-Jacobi-Bellman equation satis�ed by the value fonction of the problem. Then we
simulate the optimal trajectory from any chosen initial condition. The computational e�ort is
essentially taken by the �rst step, whose result, the value fonction, can be stored for subsequent
trajectory simulations.

Key-words: optimization, optimal control, stochastic control, dynamic programming, HJB,
spaceship, optimal switching

∗ Inria Saclay and CMAP Ecole Polytechnique
† LPMA, Sorbonne University, Paris

BocopHJB 1.0.1 � User Guide

Résumé : The original Bocop package implements a local optimization method. The optimal
control problem is approximated by a �nite dimensional optimization problem (NLP) using a
time discretization (the direct transcription approach). The NLP problem is solved by the well
known software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Similarly to the
Dynamic Programming approach, the optimal control problem is solved in two steps. First we
solve the Hamilton-Jacobi-Bellman equation satis�ed by the value fonction of the problem. Then
we simulate the optimal trajectory from any chosen initial condition. The computational e�ort is
essentially taken by the �rst step, whose result, the value fonction, can be stored for subsequent
trajectory simulations.

Mots-clés : optimisation, controle optimal, controle stochastique, programmation dynamique,
HJB, vaisseau spatial, optimal switching

3

Contents

1 BocopHJB overview 3
1.1 Key features . 3
1.2 Algorithm . 4
1.3 Work�ow . 4

2 Example: the mouse & maze problem 5
2.1 Problem description . 5
2.2 Files for the mouse & maze problem . 6

2.2.1 De�nition �les . 6
2.2.2 Source �les . 6

3 Algorithm description 9
3.1 Stochastic optimal control problem . 9
3.2 Dynamic Programming Principle . 9
3.3 Semi Lagrangian scheme . 10

3.3.1 Time discretization . 10
3.3.2 Space discretization . 11
3.3.3 Control discretization . 11
3.3.4 Simulation . 11

4 Description of problem �les 12
4.1 De�nition �le: problemHJB.def . 12
4.2 State discretization �le: folder stateDisc/ . 13
4.3 Control discretization �le: folder controlDisc/ . 14
4.4 Basic Functions for the optimal control problem 14
4.5 More advanced features . 15

4.5.1 State and/or control constraints . 15
4.5.2 Non uniform control discretization . 16
4.5.3 Out of grid evaluation . 16
4.5.4 Switching modes . 17
4.5.5 Brownian realization for the simulation 17

A Install notes (INSTALL �le) 18

B Code structure 23

1 BocopHJB overview

1.1 Key features

� Global optimization for both deterministic and stochastic optimal control problems.

� Handles switching between discrete modes of the system.

� Stopping time problems can be solved using switchings.

� Built-in simulation module to recompute optimal strategies.

� Supports advanced rules to de�ne the discrete control set.

RT n° 467

4 Bonnans et al.

� Parallel execution with OpenMP.

� Matlab / Python scripts to read value function and simulated trajectories.

1.2 Algorithm

The original Bocop package implements a local optimization method. The optimal control
problem is approximated by a �nite dimensional optimization problem (NLP) using a time dis-
cretization (the direct transcription approach). The NLP problem is solved by the well known
software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Similarly to the
Dynamic Programming approach, the optimal control problem is solved in two steps. First we
solve the Hamilton-Jacobi-Bellman equation satis�ed by the value fonction of the problem. Then
we simulate the optimal trajectory from any chosen initial condition. The computational e�ort is
essentially taken by the �rst step, whose result, the value fonction, can be stored for subsequent
trajectory simulations.

1.3 Work�ow

BocopHJB package contains core �les and problem �les. Core �les implements the HJB solver
and are problem independent. Each problem is de�ned by a set of c/c++ �les and text �les
located in the problem folder. Solving an optimal control problem with BocopHJB involves the
following steps:

1. Problem De�nition
De�ne the optimal control problem by completing the problem �les. This �les typically
de�ne the dimension, functions, and discretization (time, state and control) of the problem.

2. Build and Run
The build step will create the bocophjp executable. Running the executable will, depending
on the options set in problemHJB.def, compute the value fonction and/or simulate an
optimal trajectory.

3. Visualization
You can use provided python scripts in order to load and visualize the results of the solution
and simulation �les. Note that plotting the value fonction is not always available since it
is a function of n variables, where n is the state dimension.

BocopHJB package includes a folder examples/ with several sample problems to
illustrate the features of the toolbox. These examples are described in more details
in the document `A collection of examples`

Inria

5

2 Example: the mouse & maze problem

2.1 Problem description

To test the use of both several switching possibilities and controls, we designed the following
maze problem. A mouse trapped in a maze tries to get out. This mouse has a "bomberman
typed" control space. The state can be described by the variable (x, y) ∈ R2 describing the
position of the unlucky punctual mouse. The mouse has 4 modes modeling its direction: north,
east, west, south. In addition to the direction modes, the mouse has a control variable for its
velocity, which is positive and upper-bounded. We consider a running cost of 10 per unit of time
in the maze, and each change of direction costs 1 as a switching cost. The mouse starts at the
red square while the exit of the maze is at the green square. The optimal trajectory is shown on
Fig. 1.

Figure 1: The Maze and the mouse trajectory according to BocopHJB

You can run this test and display the results with the following commands in terminal. Locally
from the problem folder (examples/maze/):
> ./build

> ./bocophjb

Or from the root of the package:
> sh bocop build examples/maze

> sh bocop run examples/maze

RT n° 467

6 Bonnans et al.

2.2 Files for the mouse & maze problem

2.2.1 De�nition �les

problemHJB.def, stateDisc/state.grid,
controlDisc/control.grid, controlDisc/control.combination.

This file defines all dimensions and parameters

values for your problem :

Initial and final time :

time.initial double 0

time.final double 3

Dimensions :

state.dimension integer 2

control.dimension integer 1

constant.dimension integer 0

brownian.dimension integer 0

Control :

discretization.control.type string uniform

combination.control.type string uniform

Time discretization :

discretization.time integer 50

Grid type :

grid.type string uniform

Interpolation :

Inner : linear ; other

Outer : final value ; projection ; user function

interpolation.inner string linear

interpolation.outer string user_function

Switching mode :

switching.mode integer 4

Names :

state.0 string x1

state.1 string x2

control.0 string u

Simulation :

simulation.type string from_computed_sol

simulation.noise string none

solution.file string valueFunction.sol

Discretization of the state :

discretization.state.0 integer 30

discretization.state.1 integer 30

Minimum of the state grid :

minimum.state.0 double 0

minimum.state.1 double 0

Maximum of the state grid :

maximum.state.0 double 1

maximum.state.1 double 1

Discretization :

discretization.control.0 integer 11

Minimum of the control grid :

minimum.control.0 double 0

Maximum of the control grid :

maximum.control.0 double 1

2.2.2 Source �les

dynamicsHJB.cpp

/**

* Drift function which describes the deterministic part of the dynamics.

*/

#include "header_drift"

{

double u1 = control[0];

switch(mode)

{

case 0 : // UP

state_dynamics[0] = 0.0;

state_dynamics[1] = u1;

break;

case 1 : // DOWN

state_dynamics[0] = 0.0;

state_dynamics[1] = -u1;

break;

case 2 : // LEFT

state_dynamics[0] = -u1;

state_dynamics[1] = 0.0;

break;

case 3 : // RIGHT

state_dynamics[0] = u1;

state_dynamics[1] = 0.0;

break;

}

}

/**

* Volatility function which describes the stochastic part of the dynamics.

*/

#include "header_volatility"

{

// This function is unused since the problem is deterministic.

Inria

7

costFunctions.cpp

/**

* Running cost for the computation of the criterion.

*/

#include "header_runningCost"

{

double x1 = state[0];

double x2 = state[1];

if ((x1 > 0.9) && (x2 < 0.1))

running_cost = 0;

else

running_cost = 10;

}

/**

* Final cost for the computation of the criterion.

*/

#include "header_finalCost"

{

final_cost = 0;

}

/**

* Switching cost for the computation of the criterion.

*/

#include "header_switchingCost"

{

if (current_mode == next_mode)

switching_cost = 0;

else

switching_cost = 1;

}

constraints.cpp

/**

* User function used to check if a state is admissible or not.

*/

#include "header_checkAdmissibleState"

{

// We use state contraints to describe the maze (position of walls).

double x = state[0];

double y = state[1];

if((x>1) || (x<0) || (y<0) || (y>1)){return false;}

if((x<0.4) && (y<0.6)){return false;}

if((x>=0.1) && (x<0.4) && (y>=0.7)){return false;}

if((x>=0.4) && (x<0.9) && (y<0.2)){return false;}

if((x>=0.4) && (x<0.9) && (y>=0.9)){return false;}

if((x>=0.9) && (y>=0.6)){return false;}

if((x>=0.5) && (x<0.8) && (y>=0.7) && (y<0.8)){return false;}

if((x>=0.5) && (x<0.8) && (y>=0.3) && (y<0.6)){return false;}

if((x>=0.7) && (x<0.8) && (y>=0.6) && (y<0.7)){return false;}

if((x>=0.8) && (y>=0.3) && (y<0.5)){return false;}

return true;

}

/**

* User function used to check if a combination of controls and a state is admissible or not.

*/

#include "header_checkAdmissibleControlState"

{

return true;

}

simulation.cpp

/**

*\fn void simulationStartingPoint(std::vector<double>& starting_point)

* User function to define the starting point of the simulation.

*/

#include "header_simulationStartingPoint"

{

starting_point[0] = 0.05;

starting_point[1] = 0.95;

}

/**

*\fn void simulationStartingMode(int& starting_mode)

* User function to define the starting mode of the simulation.

*/

#include "header_simulationStartingMode"

RT n° 467

8 Bonnans et al.

{

starting_mode = 0;

}

optionalFunctions.cpp

/**

* User function to compute the value of the value function for the points outside the grid.

*/

#include "header_userOutOfGridValueFunction"

{

// we return a huge value to prevent exit from the grid

result = 10000;

}

/**

* User function used to define the discretized controls.

*/

#include "header_userControlDiscretization"

{

//unused function for this example (see control.discretization in problemHJB.def)

return 0;

}

/**

* User function used to compute the combinations of controls.

* Each line of the resulting matrix is a combination of controls (u_0,..., u_p).

*/

#include "header_userControlCombination"

{

//unused function for this example (see control.discretization in problemHJB.def)

return vector< vector<double> >();

}

/**

* User function used to compute the combinations of controls when it depends of state.

* Each line of the resulting matrix is a combination of controls (u_0,..., u_p).

*/

#include "header_userControlCombinationStateDependent"

{

//unused function for this example (see control.discretization in problemHJB.def)

return vector< vector<double> >();

}

Inria

9

3 Algorithm description

3.1 Stochastic optimal control problem

Let yt be a stochastic process described by{
dyt = f(t, ut, yt)dt+ σ(t, ut, yt)dWt

y0 = x
(1)

where the control ut ∈ U and t ∈ [0,∞[, Wt is a standard Brownian motion and the drift f and
the volatility σ are Lipschitz and bounded.

We de�ne U the set of mappings with value in U adapted to the �ltration generated by the
Brownian motion (which means that we can take u(t) as a function of the past history of the
Brownian). We want to solve the stochastic optimal control problem

min
u∈U

E

(∫ T

t0

`(t, us, ys)ds+ φ(yT)

)
(2)

where ` is the running cost and φ the �nal cost.

Remark: Our framework includes additional state and control constraints of the form g(t, u(t), y(t)) ≤
0. It also handles switchings between several modes, which allows in particular to solve stopping
time problems, on/o� state of plants, etc.

3.2 Dynamic Programming Principle

We de�ne the value function V (x, t) such that

V (x, t) := min
u∈U

E

(∫ T

t

`(t, us, ys)ds+ φ(yT)

∣∣∣∣∣ yt = x

)

and
V (x, T) = φ(x)

Let us take τ ∈ (t0, T). We can write

V (y0, t0) = min
u∈U

Et0

(∫ τ

t0

`(t, us, ys)ds+

∫ T

τ

`(t, us, ys)ds+ φ(yT)

)
which leads to the dynamic programming equation

V (y0, t0) = min
u∈U

Et0
(∫ τ

t0

`(t, us, ys)ds+ V (yτ , τ)

)
(3)

We can discretize on time the stochastic process (using for instance an Euler scheme), so that
we have yk+1 as a function of yk, σk, uk. Let tk = h0k with tN = T . The discretized problem is

min
uk∈U

E

(
h0

N−1∑
k=0

`(tk, u
k, yk) + φ(yN)

)
where we set yk = y(tk) and u

k = u(tk). The value function is de�ned as

RT n° 467

10 Bonnans et al.

V k(x) := min
u∈U

E

h0 N−1∑
j=0

`(ti, u
j , yj) + φ(yN)

∣∣∣∣∣∣ yk = x

which leads to

V k(x) := min
u∈U

Ex
(
h0l(tk, u, x) + V k+1(yk+1)

)
(4)

with �nal condition
V N (x) = φ(x) (5)

We can extend this reasoning to cases where the dynamics and the cost functions depend of a
mode : a diesel engine for example which can be turned o� or on. If we denote M the number of
modes, with a subscript i (or j) the functions corresponding to the mode i and cij the switching
cost from mode i to mode j (assuming that cii = 0), this leads to

V ki (x) = min
j∈{0,...,M}

(
cij +min

u∈U

{
h0`j(tk, u, x) + Ex

[
V k+1
j

(
yk+1

)]})
(6)

The algorithm used to compute the Value function at tk is the following

Algorithm 1 Compute V k

Require: 0 ≤ k ≤ N
for x ∈ Grid do
if k = N then
V N (x) = φ(x)

else
for i ∈ {0, . . . ,M} do
Ṽ ki (x) = min

u∈U

(
h0`j(tk, u, x) + Ex

[
V k+1
j

(
yk+1

)])
end for
for i ∈ {0, . . . ,M} do
V ki (x) = min

j∈{0,...,M}

(
cij + Ṽ kj (x)

)
end for

end if
end for

This algorithm is independent of the way of calculating Ex
[
V k+1
j

(
yk+1

)]
. A classical method is

to use an interpolation on the grid of V k+1 and an Euler scheme for the dynamics: this is the
semi-Lagrangian method, as used in BocopHJB.

3.3 Semi Lagrangian scheme

3.3.1 Time discretization

Remark: in the following we drop the argument tk in functions f, l for clarity.

In the deterministic case, we naturally discretize the dynamics:

yk+1 = yk + h0f(u
k, yk) (7)

Inria

11

In the stochastic case, remembering that a Brownian motion has independent increments follow-
ing a Normal law, W (tk+1)−W (tk) ∼

√
h0N (0, 1), we obtain

yk+1 = yk + h0f(u
k, yk) +

√
h0σ(u

k, yk)N (0, 1) (8)

According to [3], N (0, 1) can be replaced by any law with the same �rst two moments. We use
a binary choice and obtain

yk+1 ' yk + h0f(u
k, yk) + α

√
h0eσX (u

k, yk) (9)

P(e = 1) = P(e = −1) = 1

2

where X follows an uniform distribution on {1, . . . , q} and we have to choose α such that the
expected value and the variance of this approximated process correspond to the ones of the
original process in (8). Since the normal distribution and the random variable e are centered,
and e and X are independent, the expected value is the same for any α. The variance in (8) is
h0σσ

T . The variance in (9) writes

E
(
α
√
h0eσX (α

√
h0eσX)

T
)
= α2h0E

(
e2σXσ

T
X
)
= α2h0

1

q

q∑
s=1

σsσ
T
s =

α2

q
h0σσ

T

therefore we have α =
√
q. Plugging (9) in (3) we obtain

V k(x) = min
u∈U

(
h0`(u, x) +

1

2q

q∑
s=1

V k+1
(
x+ h0f(u, x)±

√
qh0σs(u, x)

))
. (10)

3.3.2 Space discretization

We know the value of V at the points of the grid, and we want to interpolate at the point y. We
choose the coe�cients αi ∈ [0, 1] such that yj = (1− αj)xij + αjxij+1. We interpolate the value
function at the point y as follows (see [2]):

V k+1(y) =
∑

(k1,...,kn)∈{0,1}n

 n∏
j=1

(1− αj)1−kjα
kj
j

V k+1(xi1+k1 , . . . , xin+kn)

where the sum is made on the 2n elements of {0, 1}n.

When a point doesn't belong to the grid we cannot interpolate the value function at this point.
A typical choice is to take the value of the nearest point of the grid. Depending on the problem,
another sensible choice can be to take the �nal cost.

3.3.3 Control discretization

The minimizer of (10) is approximated by discretizing the control set U .

3.3.4 Simulation

BocopHJB includes a built-in module to simulate the optimal strategies provided by the dy-
namic programming algorithm. At each time step, the optimal control is taken as the minimizer
of (4) over the discrete control set.

RT n° 467

12 Bonnans et al.

4 Description of problem �les

In BocopHJB a problem is de�ned by the following �les:

� a set of (C/C++) �les:
- constraints.cpp for the constraints of the problem (state and/or control-state)
- costFunctions.cpp for the running, �nal and switching cost functions
- dynamicsHJB.cpp for the drift and volatility
- simulation.cpp for the initial conditions of the simulated trajectory
- optionalFunctions.cpp for several optional functions see 4.5

� a set of text �les:
- problemHJB.def for general de�nition and settings
- stateDisc/ folder for state discretization
- controlDisc/ folder for control discretization

4.1 De�nition �le: problemHJB.def

This �le de�nes the dimensions and names for the variables, as well as several general parameters.
Note that the ordering of the lines in this �le does not matter. Blank lines can be used for more
clarity, as well as comments beginning by #. We recommend renaming every variable and control,
however this is not mandatory. The line format is the following: keyword type value, where
the keywords are listed below and the type can be integer, double or string.

� Initial and �nal time
- time.initial: initial time t0
- time.final: �nal time tf

� Dimensions
- state.dimension: dimension of state variables y
- control.dimension: dimension of control variables u
- constants.dimension: number of numerical constants
- brownian.dimension: dimension of brownian motion W

� Control discretization
- discretization.control.type: discretization for each component of the control, can
be "uniform" (automatic), "user_function" (see 4.5.2), or "user_�le". The values for the
i-th control component are in the �les controlDisc/control.i.disc and must be �lled
manually if option is set to "user_�le".
- combination.control.type: how to build the discretized control set. It can be "uniform"
(automatic), "user_function"(see 4.5.2), or "user_�le". The control set is written in the
�le controlDisc/control.combination, one element per row. As above, the �le must be
�lled manually if option is set to "user_�le", in which case "discretization.control.type" is
ignored.

� Time discretization
- discretization.time: number of time steps

� Grid type
- grid.type: type of state grid, for now the only available option is "uniform".

Inria

13

� Interpolation
- interpolation.inner: type of interpolation for the points inside the grid, for now the
only available option is "linear_interpolation".
- interpolation.outer: type of interpolation for the points outside the grid, can be
"�nal_value" for the �nal value, "projection" for the projection on the nearest point of
the grid, or "user_function" (see 4.5.3) for a speci�c function coded by the user.

� Switching mode
- switching.modes: number of modes among which the system can switch. Set to 1 if
there are no switchings.

� Simulation
- simulation.directory: the name of an existing directory inside the problem directory
where the simulation results will be saved. The simulated trajectory consist in the �les
simulatedTrajectory.[times,states,controls, modes] that contain the values for (t, x(t), u(t))
and the mode.

- simulation.type: can be "none" (only compute the value function, no trajectory simula-
tion), "from_computed_sol" (�rst compute the value function, then simulate the optimal
trajectory from the given initial conditions), or "from_sol_�le" (read a previously com-
puted value function �le then simulate the optimal trajectory).

- simulation.noise: type of noise (i.e. realization of the Brownian for the simulation),
can be "none", "gaussian", or "user_function" (see 4.5.5). This parameter has no e�ect
for deterministic problem with brownian.dimension set to 0.

- simulation.starting.mode: set the initial mode for the simulation; "auto" picks the
initial mode i0 giving the lowest value of V (t0, x0, i0), "user_function� lets the user set
explicitly the initial mode i0 in simulation.cpp (see 4.4).

� Names
- state.i: name of component i of y
- control.i: name of component i of u

� Constants
- constant.i: name and value of ith constant, the name replaces the type for constants
(ex: constant.0 c0 1.0)

� Solution �le
- solution.file: name of the solution �le (default "valueFunction.sol")

� Output frequency
- timestep.output.frequency: frequency of the displayed output (in the terminal), can
be 0 for no output at all, 1 to output every time step, or n (with n an integer less than the
number of time step) to output only the time steps which are multiple of n.

4.2 State discretization �le: folder stateDisc/

This �le state.grid gives, for each component of the state, the lower and upper bounds and the
number of discretization steps (uniformly spread). For instance, 10 steps in [0, 1] give the dis-
cretized set {0, 0.1, . . . , 1}.
- discretization.state.i: number of discretization steps for component i
- minimum.state.i: lower bound for component i

RT n° 467

14 Bonnans et al.

- maximum.state.i: upper bound for component i

4.3 Control discretization �le: folder controlDisc/

The �les to be completed depend on the options �discretization.control.type� and �control.combination.type�.

� Discretized control set: if �control.combination.type� is set to
- �uniform�, the control set will be built automatically by taking the values from each
control component (see below).
- �user_function� or �user_function_statedependent�: the control set will be built by the
corresponding user function (see 4.5.2).
- �user_�le�: complete the �le control.combination, each row containing a m-tuple where
m is the dimension of the control space.

� IF CONTROL.COMBINATION.TYPE=UNIFORM.
Individual control components: if �discretization.control.type� is set to
- �uniform�: complete the �le control.grid with a syntax similar to state.grid. Individual
�les control.i.disc will be written automatically.
- �user_function�: the control component will be discretized by the corresponding user
function (see 4.5.2).
- �user_�le�: complete the individual �les control.i.disc for each component of the control.
Each �le contains the set of discretized values for the corresponding component.

Example: Assume we have a problem with a two-dimensional control u with u0 ∈ {0, 1} and
u1 ∈ {0, 1}. Setting control.combination.type to �uniform� gives the discretized control set
{(0, 0), (0, 1), (1, 0), (1, 1)}. If we want to impose the constraint u0 ≥ u1, we can de�ne directly the
control set with control.combination.type set to user_�le, and write the �le controlDisc/control.combination
as follows

0 0

1 0

1 1

4.4 Basic Functions for the optimal control problem

The user has to write the functions which de�ne the problem: the drift and the (optional) volatil-
ity to describe the dynamics, the running cost, the �nal cost and the (optional) switching cost
to describe the criterion to optimize; if there are constraints, the functions to check the admis-
sibility of the states and the controls; and some other optional functions, if the user wants to
give its own functions to discretize the single controls, to make the control combinations, or to
interpolate inside and/or outside the grid.

The dynamics functions f and σ are in dynamicsHJB.cpp:

// Drift function which describes the deterministic part of the dynamics.
void drift(const double& initial_time,

const double& final_time,
const double& time,
const vector<double>& control,
const vector<double>& state,

Inria

15

const int mode,
const int dim_constant,
const double* constants,
vector<double>& state_dynamics)

// Volatility function which describes the stochastic part of the dynamics.
void volatility(const double& initial_time,

const double& final_time,
const double& time,
const vector<double>& control,
const vector<double>& state,
const int mode,
const int dim_constant,
const double* constants,
vector<double>& volatility_dynamics)

Cost functions are in costFunctions.cpp:

// Running cost for the computation of the criterion.
void runningCost(const double& initial_time,

const double& final_time,
const double& time,
const vector<double>& control,
const vector<double>& state,
const int mode,
const int dim_constant,
const double* constants,
double& running_cost)

// Final cost for the computation of the criterion.
void finalCost(const double& initial_time,

const double& final_time,
const vector<double>& state,
const int mode,
const int dim_constant,
const double* constants,
double& final_cost)

For the simulation step, one has to set the initial state and mode in simulation.cpp. Modes are
numbered from 0 to NbModes-1.

// Starting point definition.
void simulationStartingPoint(vector<double>& starting_point)

// Starting mode definition.
void simulationStartingMode(int& starting_mode)

4.5 More advanced features

In this part we describe some optional more advanced functions.

4.5.1 State and/or control constraints

State and control admissibility functions are in constraints.cpp:

// User function used to check if a combination of controls is admissible or not.
bool checkAdmissibleControl(const vector<double> control,

const int dim_constant,
const double* constants)

RT n° 467

16 Bonnans et al.

// User function used to check if a state is admissible or not.
bool checkAdmissibleState(const double initial_time,

const double final_time,
const double time,
const vector<double> state,
const int mode,
const int dim_constant,
const double* constants)

// User function used to check if a combination of controls and a state is admissible or not.
bool checkAdmissibleControlState(const double initial_time,

const double final_time,
const double time,
const vector<double> control,
const vector<double> state,
const int mode,
const int dim_constant,
const double* constants)

4.5.2 Non uniform control discretization

Control discretization functions are in optionalFunctions.cpp. :

This function allows to de�ne explicitly the discretized values taken by each component of the
control.

// User function used to define the discretized controls.
// The user has to fill the values of m_discretizedControl[i][j] with i=0,...,m_dimControl
// and j=0,...,m_discretizedControl[i].size()
int userControlDiscretization()

This function allows to de�ne explicitly the elements of the discret control set. Each element
is an m-tuple, where m is the dimension of the control space. It can be used in particular to
enforce some constraints on the control.

// User function to compute the combinations of controls.
// Each line of the resulting matrix is a combination of controls (u_0,..., u_p)
vector< vector<double> > userControlCombination(const int dim_constant,

const double* constants)

The next function is similar but also take into account the state variables.

// User function to compute the combinations of controls when it depends on state.
// Each line of the resulting matrix is a combination of controls (u_0,..., u_p)
vector< vector<double> > userControlCombinationStateDependent(const double initial_time,

const double final_time,
const double time,
const vector<double> state,
const int mode,
const int dim_constant,
const double* constants)

4.5.3 Out of grid evaluation

Interpolation of the value function when it is out of the grid is in optionalFunctions.cpp:

// User function to compute the value of the value function for the points outside the grid.
void userOutOfGridValueFunction(const double initial_time,

const double final_time,
const double time,
const vector<double>& state,
const int dim_constant,
const double* constants,
double& result)

Inria

17

4.5.4 Switching modes

If the system has several modes (set in problemHJB.def) we must de�ne the cost of switching
from one mode to another. Modes are numbered from 0 to NbModes-1.

// Switching cost for the computation of the criterion.
void switchingCost(const int initial_mode,

const int final_mode,
const int dim_constant,
const double* constants,
double& switching_cost)

4.5.5 Brownian realization for the simulation

If simulation.noise is set to user_function, user_noise() in optionalFunctions.cpp de�nes the
Brownian realization used in the simulation.

// User function to compute the noise for the simulation.
std::vector<double> user_noise()

References

[1] Kristian Debrabant and Espen Jakobsen. Semi-lagrangian schemes for linear and fully non-
linear di�usion equations. Mathematics of Computation, 82(283):1433�1462, 2013.

[2] Maurizio Falcone and Roberto Ferretti. Semi-Lagrangian approximation schemes for linear
and Hamilton-Jacobi equations. SIAM, 2013.

[3] Harold Kushner and Paul G Dupuis. Numerical methods for stochastic control problems in
continuous time, volume 24. Springer Science & Business Media, 2013.

[4] Huyên Pham. Continuous-time stochastic control and optimization with �nancial applica-
tions, volume 61. Springer Science & Business Media, 2009.

RT n° 467

18 Bonnans et al.

A Install notes (INSTALL �le)

BOCOP HJB INSTALL NOTES

--

LINUX

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

A. PREREQUISITES

BocopHJB requires the compiler g++ and CMake.

Please install them if necessary (using yum, apt-get or the system tools).

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> ./bocop build examples/maze

> ./bocop run examples/maze

To define a new problem you can call the following command:

> ./bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> ./bocop build problems/PROBLEM_NAME

> ./bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> ./bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> ./bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> ./bocop visualize -v -d <BOCOPHJB>/examples/maze -m 0 -t 0

Inria

19

NB: you can use the -h option to print an help message.

--

MAC OS

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

A. PREREQUISITES

BocopHJB requires Xcode and CMake.

Please install them if necessary according to the following guideline.

A.1 XCODE

Download and install Xcode from the appstore. Please note that you have to accept

Xcode license in order to use the C++ compiler.

A.2 CMAKE

1) Get cmake from internet, put it in /Applications

2) Check that the file 'cmake', 'ccmake' are in the directory

/Applications/CMake.app/Contents/bin/

3) Open a terminal and create symbolic links to /usr/bin as follows:

sudo ln -s /Applications/CMake.app/Contents/bin/ccmake /usr/bin/ccmake

sudo ln -s /Applications/CMake.app/Contents/bin/ccmake /usr/bin/cmake

4) Check the result by typing in terminal

which cmake

which ccmake

The answers should be

/usr/bin/cmake

/usr/bin/ccmake

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> ./bocop build examples/maze

> ./bocop run examples/maze

RT n° 467

20 Bonnans et al.

To define a new problem you can call the following command:

> ./bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> ./bocop build problems/PROBLEM_NAME

> ./bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> ./bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> ./bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> ./visualize_solution -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.

--

WINDOWS

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

WARNING : BocopHJB must be installed in a directory without any blanks or

spaces, in particular not in Program Files !

A. PREREQUISITES

BocopHJB requires MinGW and CMake to run on Windows.

A.1 MINGW

Due to some incompatibilities with the latest MinGW version, we

recommend that you use the provided full MinGW archive, available on the

Download page of bocop.org.

Simply extract the archive to a location without spaces in its

name (for instance C:\, but NOT C:\Program Files\).

In the following, <MINGW> is the installation target directory

(for example C:\MinGW which is the preferred one).

Inria

21

* Change the Path environment variable, as explained here :

- Right-click on your "My Computer" icon and select "Properties".

- Click on the "Advanced" tab, then on the "Environment Variables" button.

- Click on the PATH entry and edit it.

- Scroll to the BEGINNING of the string and add the directories for your MinGW:

<MinGW>\msys\1.0\bin;<MinGW>\bin;

Note: we recommend to put the two directories for MinGW at the beginning of the

PATH to avoid the confusion with other versions of files such as sed.exe or

libtools that may be present in your system folders. Such files can be installed

by other applications, and may not be compatible with the building process in

Bocop.

A.2 CMAKE

The building process requires CMake. You can download the installer here:

http://www.cmake.org/cmake/resources/software.html

During the installation process choose the option to add the CMake path

in the Path environment variable.

When this is done please reboot your computer to update the Path

environment variable.

IMPORTANT:

CMake under Windows assumes building with Visual Studio by default.

Since we currently use MinGW instead, we have to add the option

-G "MSYS Makefiles" as stated below.

A.3 PYTHON

Visualization process need Python 2.7 installed.

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> sh bocop build examples/maze

> sh bocop run examples/maze

/!\ Please note that the check need python installed to be passed /!\

To define a new problem you can call the following command:

> sh bocop create_problem PROBLEM_NAME

RT n° 467

22 Bonnans et al.

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> sh bocop build problems/PROBLEM_NAME

> sh bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> sh bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> sh bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> sh bocop visualize -v -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.

Inria

23

B Code structure

Definition of the problem
● Read data from input files : .def (.constants), .grid

● Calculate controls and modes
from value function

● Calculate (stochastic or not)
dynamics

● Estimate adjoint state in
t0,x0

Dynamic Programming
Algorithm

● For time step equal N-1 to 0
● For each point at time

step k of the grid
● For each possible

mode
➔ Compute min over u

of admissible
transitions and store
it in W(j)

● End for
● For each possible

current mode
➔ Compute min over j

of switching cost
from i to j plus W(j)

● End for
● End for

● End for

Save value function
● valueFunction.sol.t*
● valueFunction.sol.log

Save solution
● simulatedTrajectory.controls
● simulatedTrajectory.states
● simulatedTrajectory.modes
● simulatedTrajectory.log

Compute value Function Simulate trajectory

Pre-processing

Post-processing

RT n° 467

24 Bonnans et al.

Simulate Trajectory
upwards in time

Compute
value function

backwards in time

Interface

Bocop core

Input files

BOCOP HJB

● problemHJB.def
● gridDisc/state.grid
● controlDisc/control.grid
● problemHJB.constants

● dynamicsHJB.cpp
● costFunctions.cpp
● constraints.cpp
● optionalFunctions.cpp
● Simulation.cpp

Controls
Modes

Dynamics

Output files
● simulatedTrajectory.controls
● simulatedTrajectory.modes
● simulatedTrajectory.states
● simulatedTrajectory.times
● simulatedTrajectory.log

● valueFunction.sol.t*
● valueFunction.sol.log

Randomness

Interpolation

Output scripts
Python or Matlab

Parallelization
OpenMP

Third Party

Inria

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803

	BocopHJB overview
	Key features
	Algorithm
	Workflow

	Example: the mouse & maze problem
	Problem description
	Files for the mouse & maze problem
	Definition files
	Source files

	Algorithm description
	Stochastic optimal control problem
	Dynamic Programming Principle
	Semi Lagrangian scheme
	Time discretization
	Space discretization
	Control discretization
	Simulation

	Description of problem files
	Definition file: problemHJB.def
	State discretization file: folder stateDisc/
	Control discretization file: folder controlDisc/
	Basic Functions for the optimal control problem
	More advanced features
	State and/or control constraints
	Non uniform control discretization
	Out of grid evaluation
	Switching modes
	Brownian realization for the simulation

	Install notes (INSTALL file)
	Code structure

