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Résumé : The original Bocop package implements a local optimization method. The optimal
control problem is approximated by a �nite dimensional optimization problem (NLP) using a
time discretization (the direct transcription approach). The NLP problem is solved by the well
known software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Similarly to the
Dynamic Programming approach, the optimal control problem is solved in two steps. First we
solve the Hamilton-Jacobi-Bellman equation satis�ed by the value fonction of the problem. Then
we simulate the optimal trajectory from any chosen initial condition. The computational e�ort is
essentially taken by the �rst step, whose result, the value fonction, can be stored for subsequent
trajectory simulations.

Mots-clés : optimisation, controle optimal, controle stochastique, programmation dynamique,
HJB, vaisseau spatial, optimal switching
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1 BocopHJB overview

1.1 Key features

� Global optimization for both deterministic and stochastic optimal control problems.

� Handles switching between discrete modes of the system.

� Stopping time problems can be solved using switchings.

� Built-in simulation module to recompute optimal strategies.

� Supports advanced rules to de�ne the discrete control set.
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4 Bonnans et al.

� Parallel execution with OpenMP.

� Matlab / Python scripts to read value function and simulated trajectories.

1.2 Algorithm

The original Bocop package implements a local optimization method. The optimal control
problem is approximated by a �nite dimensional optimization problem (NLP) using a time dis-
cretization (the direct transcription approach). The NLP problem is solved by the well known
software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Similarly to the
Dynamic Programming approach, the optimal control problem is solved in two steps. First we
solve the Hamilton-Jacobi-Bellman equation satis�ed by the value fonction of the problem. Then
we simulate the optimal trajectory from any chosen initial condition. The computational e�ort is
essentially taken by the �rst step, whose result, the value fonction, can be stored for subsequent
trajectory simulations.

1.3 Work�ow

BocopHJB package contains core �les and problem �les. Core �les implements the HJB solver
and are problem independent. Each problem is de�ned by a set of c/c++ �les and text �les
located in the problem folder. Solving an optimal control problem with BocopHJB involves the
following steps:

1. Problem De�nition
De�ne the optimal control problem by completing the problem �les. This �les typically
de�ne the dimension, functions, and discretization (time, state and control) of the problem.

2. Build and Run
The build step will create the bocophjp executable. Running the executable will, depending
on the options set in problemHJB.def, compute the value fonction and/or simulate an
optimal trajectory.

3. Visualization
You can use provided python scripts in order to load and visualize the results of the solution
and simulation �les. Note that plotting the value fonction is not always available since it
is a function of n variables, where n is the state dimension.

BocopHJB package includes a folder examples/ with several sample problems to
illustrate the features of the toolbox. These examples are described in more details
in the document `A collection of examples`

Inria
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2 Example: the mouse & maze problem

2.1 Problem description

To test the use of both several switching possibilities and controls, we designed the following
maze problem. A mouse trapped in a maze tries to get out. This mouse has a "bomberman
typed" control space. The state can be described by the variable (x, y) ∈ R2 describing the
position of the unlucky punctual mouse. The mouse has 4 modes modeling its direction: north,
east, west, south. In addition to the direction modes, the mouse has a control variable for its
velocity, which is positive and upper-bounded. We consider a running cost of 10 per unit of time
in the maze, and each change of direction costs 1 as a switching cost. The mouse starts at the
red square while the exit of the maze is at the green square. The optimal trajectory is shown on
Fig. 1.

Figure 1: The Maze and the mouse trajectory according to BocopHJB

You can run this test and display the results with the following commands in terminal. Locally
from the problem folder (examples/maze/):
> ./build

> ./bocophjb

Or from the root of the package:
> sh bocop build examples/maze

> sh bocop run examples/maze

RT n° 467



6 Bonnans et al.

2.2 Files for the mouse & maze problem

2.2.1 De�nition �les

problemHJB.def, stateDisc/state.grid,
controlDisc/control.grid, controlDisc/control.combination.

# This file defines all dimensions and parameters

# values for your problem :

# Initial and final time :

time.initial double 0

time.final double 3

# Dimensions :

state.dimension integer 2

control.dimension integer 1

constant.dimension integer 0

brownian.dimension integer 0

# Control :

discretization.control.type string uniform

combination.control.type string uniform

# Time discretization :

discretization.time integer 50

# Grid type :

grid.type string uniform

# Interpolation :

# Inner : linear ; other

# Outer : final value ; projection ; user function

interpolation.inner string linear

interpolation.outer string user_function

# Switching mode :

switching.mode integer 4

# Names :

state.0 string x1

state.1 string x2

control.0 string u

# Simulation :

simulation.type string from_computed_sol

simulation.noise string none

solution.file string valueFunction.sol

# Discretization of the state :

discretization.state.0 integer 30

discretization.state.1 integer 30

# Minimum of the state grid :

minimum.state.0 double 0

minimum.state.1 double 0

# Maximum of the state grid :

maximum.state.0 double 1

maximum.state.1 double 1

# Discretization :

discretization.control.0 integer 11

# Minimum of the control grid :

minimum.control.0 double 0

# Maximum of the control grid :

maximum.control.0 double 1

2.2.2 Source �les

dynamicsHJB.cpp

/**

* Drift function which describes the deterministic part of the dynamics.

*/

#include "header_drift"

{

double u1 = control[0];

switch(mode)

{

case 0 : // UP

state_dynamics[0] = 0.0;

state_dynamics[1] = u1;

break;

case 1 : // DOWN

state_dynamics[0] = 0.0;

state_dynamics[1] = -u1;

break;

case 2 : // LEFT

state_dynamics[0] = -u1;

state_dynamics[1] = 0.0;

break;

case 3 : // RIGHT

state_dynamics[0] = u1;

state_dynamics[1] = 0.0;

break;

}

}

/**

* Volatility function which describes the stochastic part of the dynamics.

*/

#include "header_volatility"

{

// This function is unused since the problem is deterministic.

Inria
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costFunctions.cpp

/**

* Running cost for the computation of the criterion.

*/

#include "header_runningCost"

{

double x1 = state[0];

double x2 = state[1];

if ( (x1 > 0.9) && (x2 < 0.1) )

running_cost = 0;

else

running_cost = 10;

}

/**

* Final cost for the computation of the criterion.

*/

#include "header_finalCost"

{

final_cost = 0;

}

/**

* Switching cost for the computation of the criterion.

*/

#include "header_switchingCost"

{

if (current_mode == next_mode)

switching_cost = 0;

else

switching_cost = 1;

}

constraints.cpp

/**

* User function used to check if a state is admissible or not.

*/

#include "header_checkAdmissibleState"

{

// We use state contraints to describe the maze (position of walls).

double x = state[0];

double y = state[1];

if( (x>1) || (x<0) || (y<0) || (y>1) ){return false;}

if( (x<0.4) && (y<0.6) ){return false;}

if( (x>=0.1) && (x<0.4) && (y>=0.7) ){return false;}

if( (x>=0.4) && (x<0.9) && (y<0.2) ){return false;}

if( (x>=0.4) && (x<0.9) && (y>=0.9) ){return false;}

if( (x>=0.9) && (y>=0.6) ){return false;}

if( (x>=0.5) && (x<0.8) && (y>=0.7) && (y<0.8) ){return false;}

if( (x>=0.5) && (x<0.8) && (y>=0.3) && (y<0.6) ){return false;}

if( (x>=0.7) && (x<0.8) && (y>=0.6) && (y<0.7) ){return false;}

if( (x>=0.8) && (y>=0.3) && (y<0.5) ){return false;}

return true;

}

/**

* User function used to check if a combination of controls and a state is admissible or not.

*/

#include "header_checkAdmissibleControlState"

{

return true;

}

simulation.cpp

/**

*\fn void simulationStartingPoint(std::vector<double>& starting_point)

* User function to define the starting point of the simulation.

*/

#include "header_simulationStartingPoint"

{

starting_point[0] = 0.05;

starting_point[1] = 0.95;

}

/**

*\fn void simulationStartingMode(int& starting_mode)

* User function to define the starting mode of the simulation.

*/

#include "header_simulationStartingMode"

RT n° 467
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{

starting_mode = 0;

}

optionalFunctions.cpp

/**

* User function to compute the value of the value function for the points outside the grid.

*/

#include "header_userOutOfGridValueFunction"

{

// we return a huge value to prevent exit from the grid

result = 10000;

}

/**

* User function used to define the discretized controls.

*/

#include "header_userControlDiscretization"

{

//unused function for this example (see control.discretization in problemHJB.def)

return 0;

}

/**

* User function used to compute the combinations of controls.

* Each line of the resulting matrix is a combination of controls (u_0,..., u_p).

*/

#include "header_userControlCombination"

{

//unused function for this example (see control.discretization in problemHJB.def)

return vector< vector<double> >();

}

/**

* User function used to compute the combinations of controls when it depends of state.

* Each line of the resulting matrix is a combination of controls (u_0,..., u_p).

*/

#include "header_userControlCombinationStateDependent"

{

//unused function for this example (see control.discretization in problemHJB.def)

return vector< vector<double> >();

}

Inria
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3 Algorithm description

3.1 Stochastic optimal control problem

Let yt be a stochastic process described by{
dyt = f(t, ut, yt)dt+ σ(t, ut, yt)dWt

y0 = x
(1)

where the control ut ∈ U and t ∈ [0,∞[, Wt is a standard Brownian motion and the drift f and
the volatility σ are Lipschitz and bounded.

We de�ne U the set of mappings with value in U adapted to the �ltration generated by the
Brownian motion (which means that we can take u(t) as a function of the past history of the
Brownian). We want to solve the stochastic optimal control problem

min
u∈U

E

(∫ T

t0

`(t, us, ys)ds+ φ(yT )

)
(2)

where ` is the running cost and φ the �nal cost.

Remark: Our framework includes additional state and control constraints of the form g(t, u(t), y(t)) ≤
0. It also handles switchings between several modes, which allows in particular to solve stopping
time problems, on/o� state of plants, etc.

3.2 Dynamic Programming Principle

We de�ne the value function V (x, t) such that

V (x, t) := min
u∈U

E

(∫ T

t

`(t, us, ys)ds+ φ(yT )

∣∣∣∣∣ yt = x

)

and
V (x, T ) = φ(x)

Let us take τ ∈ (t0, T ). We can write

V (y0, t0) = min
u∈U

Et0

(∫ τ

t0

`(t, us, ys)ds+

∫ T

τ

`(t, us, ys)ds+ φ(yT )

)
which leads to the dynamic programming equation

V (y0, t0) = min
u∈U

Et0
(∫ τ

t0

`(t, us, ys)ds+ V (yτ , τ)

)
(3)

We can discretize on time the stochastic process (using for instance an Euler scheme), so that
we have yk+1 as a function of yk, σk, uk. Let tk = h0k with tN = T . The discretized problem is

min
uk∈U

E

(
h0

N−1∑
k=0

`(tk, u
k, yk) + φ(yN )

)
where we set yk = y(tk) and u

k = u(tk). The value function is de�ned as

RT n° 467
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V k(x) := min
u∈U

E

h0 N−1∑
j=0

`(ti, u
j , yj) + φ(yN )

∣∣∣∣∣∣ yk = x


which leads to

V k(x) := min
u∈U

Ex
(
h0l(tk, u, x) + V k+1(yk+1)

)
(4)

with �nal condition
V N (x) = φ(x) (5)

We can extend this reasoning to cases where the dynamics and the cost functions depend of a
mode : a diesel engine for example which can be turned o� or on. If we denote M the number of
modes, with a subscript i (or j) the functions corresponding to the mode i and cij the switching
cost from mode i to mode j (assuming that cii = 0), this leads to

V ki (x) = min
j∈{0,...,M}

(
cij +min

u∈U

{
h0`j(tk, u, x) + Ex

[
V k+1
j

(
yk+1

)]})
(6)

The algorithm used to compute the Value function at tk is the following

Algorithm 1 Compute V k

Require: 0 ≤ k ≤ N
for x ∈ Grid do
if k = N then
V N (x) = φ(x)

else
for i ∈ {0, . . . ,M} do
Ṽ ki (x) = min

u∈U

(
h0`j(tk, u, x) + Ex

[
V k+1
j

(
yk+1

)])
end for
for i ∈ {0, . . . ,M} do
V ki (x) = min

j∈{0,...,M}

(
cij + Ṽ kj (x)

)
end for

end if
end for

This algorithm is independent of the way of calculating Ex
[
V k+1
j

(
yk+1

)]
. A classical method is

to use an interpolation on the grid of V k+1 and an Euler scheme for the dynamics: this is the
semi-Lagrangian method, as used in BocopHJB.

3.3 Semi Lagrangian scheme

3.3.1 Time discretization

Remark: in the following we drop the argument tk in functions f, l for clarity.

In the deterministic case, we naturally discretize the dynamics:

yk+1 = yk + h0f(u
k, yk) (7)

Inria
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In the stochastic case, remembering that a Brownian motion has independent increments follow-
ing a Normal law, W (tk+1)−W (tk) ∼

√
h0N (0, 1), we obtain

yk+1 = yk + h0f(u
k, yk) +

√
h0σ(u

k, yk)N (0, 1) (8)

According to [3], N (0, 1) can be replaced by any law with the same �rst two moments. We use
a binary choice and obtain

yk+1 ' yk + h0f(u
k, yk) + α

√
h0eσX (u

k, yk) (9)

P(e = 1) = P(e = −1) = 1

2

where X follows an uniform distribution on {1, . . . , q} and we have to choose α such that the
expected value and the variance of this approximated process correspond to the ones of the
original process in (8). Since the normal distribution and the random variable e are centered,
and e and X are independent, the expected value is the same for any α. The variance in (8) is
h0σσ

T . The variance in (9) writes

E
(
α
√
h0eσX (α

√
h0eσX )

T
)
= α2h0E

(
e2σXσ

T
X
)
= α2h0

1

q

q∑
s=1

σsσ
T
s =

α2

q
h0σσ

T

therefore we have α =
√
q. Plugging (9) in (3) we obtain

V k(x) = min
u∈U

(
h0`(u, x) +

1

2q

q∑
s=1

V k+1
(
x+ h0f(u, x)±

√
qh0σs(u, x)

))
. (10)

3.3.2 Space discretization

We know the value of V at the points of the grid, and we want to interpolate at the point y. We
choose the coe�cients αi ∈ [0, 1] such that yj = (1− αj)xij + αjxij+1. We interpolate the value
function at the point y as follows (see [2]):

V k+1(y) =
∑

(k1,...,kn)∈{0,1}n

 n∏
j=1

(1− αj)1−kjα
kj
j

V k+1(xi1+k1 , . . . , xin+kn)

where the sum is made on the 2n elements of {0, 1}n.

When a point doesn't belong to the grid we cannot interpolate the value function at this point.
A typical choice is to take the value of the nearest point of the grid. Depending on the problem,
another sensible choice can be to take the �nal cost.

3.3.3 Control discretization

The minimizer of (10) is approximated by discretizing the control set U .

3.3.4 Simulation

BocopHJB includes a built-in module to simulate the optimal strategies provided by the dy-
namic programming algorithm. At each time step, the optimal control is taken as the minimizer
of (4) over the discrete control set.

RT n° 467



12 Bonnans et al.

4 Description of problem �les

In BocopHJB a problem is de�ned by the following �les:

� a set of (C/C++) �les:
- constraints.cpp for the constraints of the problem (state and/or control-state)
- costFunctions.cpp for the running, �nal and switching cost functions
- dynamicsHJB.cpp for the drift and volatility
- simulation.cpp for the initial conditions of the simulated trajectory
- optionalFunctions.cpp for several optional functions see 4.5

� a set of text �les:
- problemHJB.def for general de�nition and settings
- stateDisc/ folder for state discretization
- controlDisc/ folder for control discretization

4.1 De�nition �le: problemHJB.def

This �le de�nes the dimensions and names for the variables, as well as several general parameters.
Note that the ordering of the lines in this �le does not matter. Blank lines can be used for more
clarity, as well as comments beginning by #. We recommend renaming every variable and control,
however this is not mandatory. The line format is the following: keyword type value, where
the keywords are listed below and the type can be integer, double or string.

� Initial and �nal time
- time.initial: initial time t0
- time.final: �nal time tf

� Dimensions
- state.dimension: dimension of state variables y
- control.dimension: dimension of control variables u
- constants.dimension: number of numerical constants
- brownian.dimension: dimension of brownian motion W

� Control discretization
- discretization.control.type: discretization for each component of the control, can
be "uniform" (automatic), "user_function" (see 4.5.2), or "user_�le". The values for the
i-th control component are in the �les controlDisc/control.i.disc and must be �lled
manually if option is set to "user_�le".
- combination.control.type: how to build the discretized control set. It can be "uniform"
(automatic), "user_function"(see 4.5.2), or "user_�le". The control set is written in the
�le controlDisc/control.combination, one element per row. As above, the �le must be
�lled manually if option is set to "user_�le", in which case "discretization.control.type" is
ignored.

� Time discretization
- discretization.time: number of time steps

� Grid type
- grid.type: type of state grid, for now the only available option is "uniform".

Inria
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� Interpolation
- interpolation.inner: type of interpolation for the points inside the grid, for now the
only available option is "linear_interpolation".
- interpolation.outer: type of interpolation for the points outside the grid, can be
"�nal_value" for the �nal value, "projection" for the projection on the nearest point of
the grid, or "user_function" (see 4.5.3) for a speci�c function coded by the user.

� Switching mode
- switching.modes: number of modes among which the system can switch. Set to 1 if
there are no switchings.

� Simulation
- simulation.directory: the name of an existing directory inside the problem directory
where the simulation results will be saved. The simulated trajectory consist in the �les
simulatedTrajectory.[times,states,controls, modes] that contain the values for (t, x(t), u(t))
and the mode.

- simulation.type: can be "none" (only compute the value function, no trajectory simula-
tion), "from_computed_sol" (�rst compute the value function, then simulate the optimal
trajectory from the given initial conditions), or "from_sol_�le" (read a previously com-
puted value function �le then simulate the optimal trajectory).

- simulation.noise: type of noise (i.e. realization of the Brownian for the simulation),
can be "none", "gaussian", or "user_function" (see 4.5.5). This parameter has no e�ect
for deterministic problem with brownian.dimension set to 0.

- simulation.starting.mode: set the initial mode for the simulation; "auto" picks the
initial mode i0 giving the lowest value of V (t0, x0, i0), "user_function� lets the user set
explicitly the initial mode i0 in simulation.cpp (see 4.4).

� Names
- state.i: name of component i of y
- control.i: name of component i of u

� Constants
- constant.i: name and value of ith constant, the name replaces the type for constants
(ex: constant.0 c0 1.0)

� Solution �le
- solution.file: name of the solution �le (default "valueFunction.sol")

� Output frequency
- timestep.output.frequency: frequency of the displayed output (in the terminal), can
be 0 for no output at all, 1 to output every time step, or n (with n an integer less than the
number of time step) to output only the time steps which are multiple of n.

4.2 State discretization �le: folder stateDisc/

This �le state.grid gives, for each component of the state, the lower and upper bounds and the
number of discretization steps (uniformly spread). For instance, 10 steps in [0, 1] give the dis-
cretized set {0, 0.1, . . . , 1}.
- discretization.state.i: number of discretization steps for component i
- minimum.state.i: lower bound for component i
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- maximum.state.i: upper bound for component i

4.3 Control discretization �le: folder controlDisc/

The �les to be completed depend on the options �discretization.control.type� and �control.combination.type�.

� Discretized control set: if �control.combination.type� is set to
- �uniform�, the control set will be built automatically by taking the values from each
control component (see below).
- �user_function� or �user_function_statedependent�: the control set will be built by the
corresponding user function (see 4.5.2).
- �user_�le�: complete the �le control.combination, each row containing a m-tuple where
m is the dimension of the control space.

� IF CONTROL.COMBINATION.TYPE=UNIFORM.
Individual control components: if �discretization.control.type� is set to
- �uniform�: complete the �le control.grid with a syntax similar to state.grid. Individual
�les control.i.disc will be written automatically.
- �user_function�: the control component will be discretized by the corresponding user
function (see 4.5.2).
- �user_�le�: complete the individual �les control.i.disc for each component of the control.
Each �le contains the set of discretized values for the corresponding component.

Example: Assume we have a problem with a two-dimensional control u with u0 ∈ {0, 1} and
u1 ∈ {0, 1}. Setting control.combination.type to �uniform� gives the discretized control set
{(0, 0), (0, 1), (1, 0), (1, 1)}. If we want to impose the constraint u0 ≥ u1, we can de�ne directly the
control set with control.combination.type set to user_�le, and write the �le controlDisc/control.combination
as follows

0 0

1 0

1 1

4.4 Basic Functions for the optimal control problem

The user has to write the functions which de�ne the problem: the drift and the (optional) volatil-
ity to describe the dynamics, the running cost, the �nal cost and the (optional) switching cost
to describe the criterion to optimize; if there are constraints, the functions to check the admis-
sibility of the states and the controls; and some other optional functions, if the user wants to
give its own functions to discretize the single controls, to make the control combinations, or to
interpolate inside and/or outside the grid.

The dynamics functions f and σ are in dynamicsHJB.cpp:

// Drift function which describes the deterministic part of the dynamics.
void drift(const double& initial_time,

const double& final_time,
const double& time,
const vector<double>& control,
const vector<double>& state,
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const int mode,
const int dim_constant,
const double* constants,
vector<double>& state_dynamics)

// Volatility function which describes the stochastic part of the dynamics.
void volatility(const double& initial_time,

const double& final_time,
const double& time,
const vector<double>& control,
const vector<double>& state,
const int mode,
const int dim_constant,
const double* constants,
vector<double>& volatility_dynamics)

Cost functions are in costFunctions.cpp:

// Running cost for the computation of the criterion.
void runningCost(const double& initial_time,

const double& final_time,
const double& time,
const vector<double>& control,
const vector<double>& state,
const int mode,
const int dim_constant,
const double* constants,
double& running_cost)

// Final cost for the computation of the criterion.
void finalCost(const double& initial_time,

const double& final_time,
const vector<double>& state,
const int mode,
const int dim_constant,
const double* constants,
double& final_cost)

For the simulation step, one has to set the initial state and mode in simulation.cpp. Modes are
numbered from 0 to NbModes-1.

// Starting point definition.
void simulationStartingPoint(vector<double>& starting_point)

// Starting mode definition.
void simulationStartingMode(int& starting_mode)

4.5 More advanced features

In this part we describe some optional more advanced functions.

4.5.1 State and/or control constraints

State and control admissibility functions are in constraints.cpp:

// User function used to check if a combination of controls is admissible or not.
bool checkAdmissibleControl(const vector<double> control,

const int dim_constant,
const double* constants)
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// User function used to check if a state is admissible or not.
bool checkAdmissibleState(const double initial_time,

const double final_time,
const double time,
const vector<double> state,
const int mode,
const int dim_constant,
const double* constants)

// User function used to check if a combination of controls and a state is admissible or not.
bool checkAdmissibleControlState(const double initial_time,

const double final_time,
const double time,
const vector<double> control,
const vector<double> state,
const int mode,
const int dim_constant,
const double* constants)

4.5.2 Non uniform control discretization

Control discretization functions are in optionalFunctions.cpp. :

This function allows to de�ne explicitly the discretized values taken by each component of the
control.

// User function used to define the discretized controls.
// The user has to fill the values of m_discretizedControl[i][j] with i=0,...,m_dimControl
// and j=0,...,m_discretizedControl[i].size()
int userControlDiscretization()

This function allows to de�ne explicitly the elements of the discret control set. Each element
is an m-tuple, where m is the dimension of the control space. It can be used in particular to
enforce some constraints on the control.

// User function to compute the combinations of controls.
// Each line of the resulting matrix is a combination of controls (u_0,..., u_p)
vector< vector<double> > userControlCombination(const int dim_constant,

const double* constants)

The next function is similar but also take into account the state variables.

// User function to compute the combinations of controls when it depends on state.
// Each line of the resulting matrix is a combination of controls (u_0,..., u_p)
vector< vector<double> > userControlCombinationStateDependent(const double initial_time,

const double final_time,
const double time,
const vector<double> state,
const int mode,
const int dim_constant,
const double* constants)

4.5.3 Out of grid evaluation

Interpolation of the value function when it is out of the grid is in optionalFunctions.cpp:

// User function to compute the value of the value function for the points outside the grid.
void userOutOfGridValueFunction(const double initial_time,

const double final_time,
const double time,
const vector<double>& state,
const int dim_constant,
const double* constants,
double& result)
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4.5.4 Switching modes

If the system has several modes (set in problemHJB.def) we must de�ne the cost of switching
from one mode to another. Modes are numbered from 0 to NbModes-1.

// Switching cost for the computation of the criterion.
void switchingCost(const int initial_mode,

const int final_mode,
const int dim_constant,
const double* constants,
double& switching_cost)

4.5.5 Brownian realization for the simulation

If simulation.noise is set to user_function, user_noise() in optionalFunctions.cpp de�nes the
Brownian realization used in the simulation.

// User function to compute the noise for the simulation.
std::vector<double> user_noise()
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A Install notes (INSTALL �le)

*************************

BOCOP HJB INSTALL NOTES

*************************

----------------------------------------

LINUX

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

A. PREREQUISITES

BocopHJB requires the compiler g++ and CMake.

Please install them if necessary (using yum, apt-get or the system tools).

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> ./bocop build examples/maze

> ./bocop run examples/maze

To define a new problem you can call the following command:

> ./bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> ./bocop build problems/PROBLEM_NAME

> ./bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> ./bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> ./bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> ./bocop visualize -v -d <BOCOPHJB>/examples/maze -m 0 -t 0
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NB: you can use the -h option to print an help message.

----------------------------------------

MAC OS

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

A. PREREQUISITES

BocopHJB requires Xcode and CMake.

Please install them if necessary according to the following guideline.

A.1 XCODE

Download and install Xcode from the appstore. Please note that you have to accept

Xcode license in order to use the C++ compiler.

A.2 CMAKE

1) Get cmake from internet, put it in /Applications

2) Check that the file 'cmake', 'ccmake' are in the directory

/Applications/CMake.app/Contents/bin/

3) Open a terminal and create symbolic links to /usr/bin as follows:

sudo ln -s /Applications/CMake.app/Contents/bin/ccmake /usr/bin/ccmake

sudo ln -s /Applications/CMake.app/Contents/bin/ccmake /usr/bin/cmake

4) Check the result by typing in terminal

which cmake

which ccmake

The answers should be

/usr/bin/cmake

/usr/bin/ccmake

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> ./bocop build examples/maze

> ./bocop run examples/maze
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To define a new problem you can call the following command:

> ./bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> ./bocop build problems/PROBLEM_NAME

> ./bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> ./bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> ./bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> ./visualize_solution -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.

----------------------------------------

WINDOWS

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

WARNING : BocopHJB must be installed in a directory without any blanks or

spaces, in particular not in Program Files !

A. PREREQUISITES

BocopHJB requires MinGW and CMake to run on Windows.

A.1 MINGW

Due to some incompatibilities with the latest MinGW version, we

recommend that you use the provided full MinGW archive, available on the

Download page of bocop.org.

Simply extract the archive to a location without spaces in its

name (for instance C:\, but NOT C:\Program Files\).

In the following, <MINGW> is the installation target directory

(for example C:\MinGW which is the preferred one).
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* Change the Path environment variable, as explained here :

- Right-click on your "My Computer" icon and select "Properties".

- Click on the "Advanced" tab, then on the "Environment Variables" button.

- Click on the PATH entry and edit it.

- Scroll to the BEGINNING of the string and add the directories for your MinGW:

<MinGW>\msys\1.0\bin;<MinGW>\bin;

Note: we recommend to put the two directories for MinGW at the beginning of the

PATH to avoid the confusion with other versions of files such as sed.exe or

libtools that may be present in your system folders. Such files can be installed

by other applications, and may not be compatible with the building process in

Bocop.

A.2 CMAKE

The building process requires CMake. You can download the installer here:

http://www.cmake.org/cmake/resources/software.html

During the installation process choose the option to add the CMake path

in the Path environment variable.

When this is done please reboot your computer to update the Path

environment variable.

IMPORTANT:

CMake under Windows assumes building with Visual Studio by default.

Since we currently use MinGW instead, we have to add the option

-G "MSYS Makefiles" as stated below.

A.3 PYTHON

Visualization process need Python 2.7 installed.

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> sh bocop build examples/maze

> sh bocop run examples/maze

/!\ Please note that the check need python installed to be passed /!\

To define a new problem you can call the following command:

> sh bocop create_problem PROBLEM_NAME
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Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> sh bocop build problems/PROBLEM_NAME

> sh bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> sh bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> sh bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> sh bocop visualize -v -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.
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B Code structure

Definition of the problem
● Read data from input files : .def (.constants), .grid

● Calculate controls and modes
from value function

● Calculate (stochastic or not)
dynamics

● Estimate adjoint state in 
t0,x0

Dynamic Programming 
Algorithm

● For time step equal N-1 to 0
● For each point at time 

step k of the grid
● For each possible 

mode
➔ Compute min over u 

of admissible 
transitions and store 
it in W(j)

● End for
● For each possible 

current mode
➔ Compute min over j 

of switching cost 
from i to j plus W(j)

● End for
● End for

● End for

Save value function
● valueFunction.sol.t*
● valueFunction.sol.log

Save solution
● simulatedTrajectory.controls
● simulatedTrajectory.states
● simulatedTrajectory.modes
● simulatedTrajectory.log

Compute value Function Simulate trajectory

Pre-processing

Post-processing
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Simulate Trajectory
upwards in time

Compute
value function

backwards in time

Interface

Bocop core

Input files

BOCOP HJB

● problemHJB.def
● gridDisc/state.grid
● controlDisc/control.grid
● problemHJB.constants

● dynamicsHJB.cpp
● costFunctions.cpp
● constraints.cpp
● optionalFunctions.cpp
● Simulation.cpp

Controls
Modes

Dynamics

Output files
● simulatedTrajectory.controls
● simulatedTrajectory.modes
● simulatedTrajectory.states
● simulatedTrajectory.times
● simulatedTrajectory.log

● valueFunction.sol.t*
● valueFunction.sol.log

Randomness

Interpolation

Output scripts
Python or Matlab

Parallelization
OpenMP

Third Party
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