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Abstract Gaseous carbon dioxide (CO2) and radon-222 release from the ground was investigated
along the Main Central Thrust zone in the Nepal Himalayas. From 2200 CO2 and 900 radon-222 flux
measurements near 13 hot springs from western to central Nepal, we obtained total CO2 and radon
discharges varying from 10�3 to 1.6mol s�1 and 20 to 1600 Bq s�1, respectively. We observed a coherent
organization at spatial scales of ≈ 10 km in a given region: low CO2 and radon discharges around
Pokhara (midwestern Nepal) and in the Bhote Kosi Valley (east Nepal); low CO2 but large radon
discharges in Lower Dolpo (west Nepal); and large CO2 and radon discharges in the upper Trisuli Valley
(central Nepal). A 110 km long CO2-producing segment, with high carbon isotopic ratios, suggesting
metamorphic decarbonation, is thus evidenced from 84.5°E to 85.5°E. This spatial organization could be
controlled by geological heterogeneity or large Himalayan earthquakes.

1. Introduction

Convergent zones play an essential role in the global carbon dioxide (CO2) balance of the Earth [Kerrick
and Caldeira, 1998]. In addition to their role of atmospheric CO2 sink through silicate weathering
[Gaillardet et al., 1999; Gaillardet and Galy, 2008; Wolff-Boenisch et al., 2009], large orogens are also the
location of the production and release of CO2-rich fluids [Irwin and Barnes, 1980]. Major active fault
zones appear as a complex system where fluid circulation, crustal permeability, and possibly
earthquake occurrence might be interrelated dynamically [Manning and Ingebritsen, 1999; Ingebritsen
and Manning, 2010; Manga et al., 2012].

The Himalayas offer a natural laboratory where this essential coupling can be studied. High seismic activity is
concentrated on a midcrustal ramp located below the Main Central Thrust (MCT) zone on the Main
Himalayan Thrust accommodating the 2 cm yr�1 convergence between India and Southern Tibet [Avouac,
2003; Ader et al., 2012], where fluid occurrence might explain the high electrical conductivity observed by
magnetotelluric sounding [Lemonnier et al., 1999]. Seasonal variations of seismicity [Bollinger et al., 2007] and
deformation [Bettinelli et al., 2008; Chanard et al., 2014] can be related to surface hydrological forcing.

Evidence of CO2 release exists in the MCT zone of central Nepal. First, high alkalinity of hot springs up to
56× 10�3mol L�1 was shown to contribute from 0.5 to 25% to the total dissolved inorganic carbon (DIC) of
the entire Narayani watershed [Evans et al., 2004]. Furthermore, the high carbon isotopic ratios (δ13C) of the
hot springs, with values reaching +13‰, suggested a metamorphic decarbonation source at depth and a
massive CO2 degassing near the water table, larger than 75% in the Trisuli andMarsyandi Valleys [Becker et al.,
2008; Evans et al., 2008]. Second, explicit CO2 emission from the ground was discovered near hot springs of
the Trisuli Valley, in the Syabru-Bensi hydrothermal system (SBHS) [Perrier et al., 2009], where it was found to
be associated with a radon-222 signature and was subsequently mapped in detail [Girault et al., 2014],
providing a valuable baseline for long-term monitoring [Girault et al., 2009]. In this paper, we present the
results of systematic search and measurement of gaseous CO2 release in the vicinity of other significant hot
springs from western to eastern Nepal.
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2. Description of the Sites in the MCT Zone

The 2 to 10 km thick MCT shear zone in Nepal (Figure 1), associated with the steep topographic rise of the
High Himalayas, places high-grade metamorphic rocks of the Greater Himalayan Sequence over low-grade
metamorphic rocks of the Lesser Himalayan Sequence [Le Fort, 1975; Upreti, 1999]. This region is also
characterized by numerous hot springs [Evans et al., 2004].

In this work, we measured the diffuse CO2 discharge in the vicinity of 13 of these hot springs (Table 1 and
Table S1 in the supporting information). All the main hot springs along the Trisuli River in central Nepal were
studied (Figure 1, inset): Timure and Chilime, Langtang, and Bharku, located north, east, and south of the
SBHS, respectively. Springs located in midwestern Nepal, such as the Myagdi (Beni), Kali Gandaki (Tatopani,
Narchyeng), Seti, and Marsyandi Rivers were also examined (Figure 1). This set was complemented (Figure 1)
by the Kodari hot spring east of Kathmandu and two hot springs in Lower Dolpo (western Nepal) near
tributaries of the Thuli Bheri River: Sulighad near Juphal airport, and Tarakot 20 km eastward.

These hydrothermal systems show various settings (Tables 1, S1, and S2). Kodari, Chilime, Beni, and Tatopani
springs, with significant flow rate (>1 L s�1), are major pilgrimage and touristic sites. Sulighad, Tarakot,
Timure, Bharku, and Langtang springs, with smaller flow rate (<1 L s�1), are largely preserved in natural
conditions due to their remote location. SBHS, Timure, and Seti springs, with insufficient flow rate to attract
much economic activity, show moderate human impacts limited to cemented basins. SBHS, Tatopani, and
Chilime sites have pronounced H2S odor helpful to identify CO2 degassing [Girault et al., 2009], a signature
totally lacking at Sulighad and Tarakot sites despite a similar geological context. At SBHS and Timure sites,
several independent CO2 discharge zones, separated by >500m, were found.

3. Measurement Methods

At each site, a systematic experimental approach developed in the SBHS was implemented. Methods are
briefly recalled here. Details are given in Girault et al. [2014].

Figure 1. Overview of sites in the Nepal Himalayas. Main Central Thrust (MCT) (brown), Main Frontal Thrust (MFT) faults (green), and highest summits (white triangles)
are shown. Earthquake epicenters are taken from the 1994–2012 catalog (Nepal National Seismological Centre) [Pandey et al., 1999]. The bottom left inset shows
geographical location. The top right inset shows location of sites in the upper Trisuli Valley. SBHS is the Syabru-Bensi hydrothermal system in central Nepal.

Geophysical Research Letters 10.1002/2014GL060873

GIRAULT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2



CO2 and radon fluxes, expressed in g m�2 d�1 and Bq m�2 s�1, respectively, were measured with the
accumulation chamber method. After the chamber is installed on the ground, gas concentration
was monitored as a function of time, and the initial rate of increase provides a measurement of
the flux. The method was tested in detail in the field, and experimental uncertainties were determined
to be 5–40% for CO2 flux and 8–35% for radon flux. An overall common uncertainty of 5% was
added quadratically. Mean CO2 and radon fluxes in background locations without degassing were
16.6 ± 1.3 gm�2 d�1 and 0.10 ± 0.02 Bqm�2 s�1, respectively. To obtain the total discharge, expressed in
mol s�1 or t d�1 for CO2 and Bq s�1 or MBq d�1 for radon, spatial integration was performed using kriging
and interpolation of the available flux data, with uncertainty varying from 10 to 60% as estimated by
Monte Carlo simulations.

Sampling of gas and spring water was performed using glass tubes and copper tubes, respectively.
Determination of the CO2 fraction was done manometrically. Carbon isotopic ratios of CO2 (δ

13C, defined
relative to the standard values of Pee Dee belemnite, PDB) were obtained by mass spectrometry.

Table 1. Characteristics of CO2 and Radon Emission From the Ground

Site

Estimated DIC
Discharge From
Hot Springs

(10�3mol s�1)

Diffuse Gaseous CO2 Discharge

CO2 Fluxes Radon Fluxes
Correlation CO2-
Radon (Figure 2)

Estimated Global
Discharges

δ13Cgas From CO2
(PDB) (‰) Mean
± 1σ (Min/Max)N a

Min–Max
Range

(gm�2 d�1) Na
Min–Max Range

(10�3 Bqm�2 s�1) N b
CO2 Discharge
(10�3mol s�1)

Radon Discharge
(Bq s�1)

Western Nepal
Lower Dolpo
Sulighad 8.4 ± 3.3 g 65 1.1–259 50 7.0–3070 44 3.0 ± 0.6 180± 40 �10.2 ± 0.1

(�10.2/–10.1)
Tarakot 1.1 ± 0.3 g 119 0.8–70 45 0–1410 35 3.8 ± 0.8 70 ± 15 �11.7 ± 0.3

Midwestern Nepal
Beni 14.1 ± 4.2 f,g 49 0.7–35 23 0–27 23 <0.4 <16 n.m.
Kali Gandaki Valley
Narchyeng 9.7 ± 3.9 g 33 1.7–70 18 7.0–111 14 <0.4 <16 n.m.
Tatopani 14.7 ± 4.5 f,g 81 0.6–163 36 0–403 36 <0.4 <16 n.m.

Seti 32 ± 16 f,g 23 2.4–176 15 0.3–66 15 2.5 ± 0.5 <16 n.m.
Marsyandi 14.1 ± 6.1 d,e,f,g 2 2800–3600 0 n.m. 0 >130 n.m. �2.8 ± 0.1
Central Nepal
Chilime 15.7 ± 3.3 d,g 192 3.4–123,000 61 5.0–3810 59 390± 100 290± 70 �1.6 ± 0.1
Bharku n.m. 7 1.9–20 0 n.m. 0 <0.4 n.m. n.m.
SBHSc

GZ1-2 123± 38 d,f,g 427 2.5–236,000 184 4.5–38,500 112 900± 100 340± 70 �0.88 ± 0.09
(�1.3/–0.77)

GZ3 21.1 ± 9.3 g 580 2.0–19,000 203 1.2–10,400 82 740± 130 1040± 210 �0.5 ± 0.1

Total 150± 50 d,f,g 1314 2.0–236,000 529 1.2–38,500 240 1600± 400 1600± 300 �0.85 ± 0.09
(�1.3/–0.5)

Timure 12.9 ± 2.6 d,f,g 294 0.7–11,100 123 0–1640 114 830± 170 840± 170 �1.1 ± 0.4
(�1.6/–0.6)

Langtang 0.45 ± 0.14 f,g 5 3.5–6.5 0 n.m. 0 <0.4 n.m. n.m.
Kodari 25 ± 10 f,g 5 0–31 0 n.m. 0 <0.4 n.m. n.m.
Total >300±100 2189 0–236,000 900 0–38,500 580 >3000±700 >3000±600 (−11.7/–0.5)

aNumber of CO2 and radon flux measurements.
bNumber of measurement points for CO2-radon correlation (see Figure 2).
cData from the SBHS are detailed in Girault et al. [2014].
dData from Becker [2005].
eData from Becker et al. [2008].
fData from Evans et al. [2008].
gData from this study.
n.m.: not measured.
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Radon concentration, expressed in Bq L�1, was systematically measured on site in hot and cold water springs
by radon emanometry in air [Girault and Perrier, 2014]. Experimental uncertainties were 5–30%. Radium
concentration in water, expressed in Bq L�1, was determined in a similar manner in the laboratory.

Methods could not always be applied optimally, owing to several factors (electricity, permission,
human impact, and lack of time). Searches were initiated in the immediate vicinity of the hot springs,
assisted by infrared thermal imaging. Local people could sometimes indicate suspected gas discharge
zones where lethal accidents had occurred.

4. Results

Measurements were carried out during the dry winter seasons between December 2007 and January 2011.
Uncertainties correspond to one sigma standard deviation (68% confidence interval), and averages are
geometric means.

4.1. CO2 Flux and Integrated Discharge

A total of 2189 CO2 and 900 radon fluxes were measured at 580 measurement points (Table 1 and Figure 2).
Maximum CO2 fluxes of 236 ± 50 kgm�2 d�1 and 123± 25 kgm�2 d�1 were recorded in the SBHS and at
Chilime, respectively. Significant CO2 discharges of 1.6 ± 0.4, 0.83 ± 0.17, and 0.39 ± 0.10mol s�1 were
observed at the SBHS, Timure, and Chilime sites, respectively. At Timure, significant discharge was observed
despite smaller CO2 fluxes (maximum of 11.1 ± 2.8 kgm�2 d�1), due to a larger surface area of CO2 degassing,
extending 150m from the hot spring on an infrared image (Table S1). Significant CO2 discharge is thus not a
specific feature of the SBHS but is a widespread feature of the upper Trisuli Valley in central Nepal.

Figure 2. CO2 flux versus radon-222 flux.
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By contrast, modest CO2 discharge, similar to background values, was identified southward at Bharku and
eastward at Langtang and Kodari. Similarly, in midwestern Nepal, modest CO2 discharge was observed at
Tatopani. Modest CO2 fluxes were also measured at all sites investigated from Beni to Seti hot springs. In
Marsyandi Valley, only two points were measured, but they gave significant flux values (mean of
3200 ± 300 gm�2 d�1). In western Nepal at Sulighad and Tarakot, maximum CO2 fluxes from the ground
(259 ± 22 and 70± 5 gm�2 d�1) were significantly above local background flux of 6.5 ± 0.5 gm�2 d�1, but
CO2 discharges are small.

To summarize, substantial CO2 discharge has thus far only been detected between the Marsyandi and upper
Trisuli Valleys, i.e., along a 110 km long region of the Nepal Himalayan belt. Westward and eastward of this
region, only low CO2 discharge, close to background level, was identified (Figure 3).

4.2. Radon Signature of the CO2 Discharge

Significant radon flux was observed in association with the CO2 at all sites (Figure 2 and Table 1).
Radon fluxes >1 Bqm�2 s�1, similar to fluxes in the SBHS [Girault et al., 2014], were observed at Timure
and Chilime, yielding radon discharges of 840 ± 170 and 290 ± 70 Bq s�1, respectively, significant
compared with the discharge in the SBHS (1600 ± 300 Bq s�1). In Dolpo, radon discharges were also
significant (180 ± 40 and 70 ± 15 Bq s�1). Insignificant radon discharge, consistent with the regional
background, characterized all other sites.

Figure 3. Characteristics of CO2 degassing from the ground and from water along the Nepal Himalayan arc: (a) Carbon isotope ratios of gaseous CO2 from the
ground and bubbles in springs, (b) carbon isotope ratios of water (dissolved inorganic carbon), (c) radon concentration in spring waters, and (d) CO2 and radon
discharge from the ground (see supporting information). Data are summarized in Tables 1, S1, and S2. Epicenter and rupture lengths of the last significant earth-
quakes are displayed: the megaquakes of 1505 (M ≥ 8) [Ambraseys and Jackson, 2003] and 1934 (Mw8.2) [Ambraseys and Douglas, 2004; Sapkota et al., 2013], and the
intermediate earthquakes of 1833 (Mw7.3), 1866 (Mw7.2), and 1936 (Mw7.0) [Gutenberg and Richter, 1949; Szeliga et al., 2010].
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The relationship between radon flux and
CO2 flux varied from site to site (Figures 2
and 3). For example, the case of Dolpo
(Sulighad and Tarakot) is conspicuously
different, with maximum radon flux
reaching 3.1±0.6 and
1.4± 0.2Bqm�2 s�1, similar to fluxes
measured in central Nepal, while the CO2

flux is relatively low. We therefore
propose a classification of the sites based
on CO2 and radon flux data: a first group
(group I) with large CO2 and radon
discharges (upper Trisuli Valley including
SBHS, Timure, and Chilime, possibly
Marsyandi); a second group (group II)
with low CO2 discharge but large radon
discharge (Sulighad and Tarakot in Lower
Dolpo); and a third group (group III) with
low CO2 and radon discharges (Langtang

and Bharku in central Nepal, Kodari to the east, Tatopani, Narchyeng, Beni, and Seti in midwestern Nepal). We
did not observe a case of large CO2 discharge with low radon discharge.

Values of radon concentration in the hot springs confirm this organization (Figure 3 and Table S2): large in
Dolpo (205 ± 10 and 33± 2 Bq L�1), but small in the hot springs of midwestern and central Nepal
(0.70 ± 0.18 Bq L�1 at Marsyandi, 3.8 ± 0.2 Bq L�1 at Chilime, from 0.7 ± 0.1 to 19 ± 1 Bq L�1 in the SBHS, from
5.8 ± 0.4 to 12 ± 4 Bq L�1 at Timure, and 0.90 ± 0.09 Bq L�1 at Kodari). Except at Langtang and Kodari, radon
concentration in water was high when CO2 discharge was insignificant and low in the presence of large
CO2 discharge.

4.3. Carbon Isotopic Anomalies

In central Nepal, gaseous CO2 samples showed δ13C between �1.6 ± 0.1 and �0.5 ± 0.1‰ (mean of
�1.2 ± 0.2‰), consistent with previous data which support the concept of a deep metamorphic
decarbonation source [Becker et al., 2008; Evans et al., 2008; Perrier et al., 2009]. In Dolpo, similar δ13C are
obtained at both sites,�10.2 ± 0.1 and�11.7 ± 0.3‰, intermediate values between the mean δ13C of central
Nepal and that of biogenic carbon (�25± 5‰) [Cerling, 1984].

A synthesis of available values of δ13CDIC for the dissolved inorganic carbon in hot springs is given in Figure 3
and Table S2. Compared with the δ13C of gas, there was a larger dispersion of δ13CDIC in water along the Nepal
Himalayan belt, ranging from �13.8 to +13.2‰. The largest average values were observed in the Marsyandi
(12.5‰) [Becker et al., 2008] and upper Trisuli Valleys (12.3 ± 0.7‰) [Becker, 2005; Evans et al., 2008].

5. Discussion

We divide the studied sites into three groups, on the basis of CO2 and radon data (Figures 3 and S1). These
must reflect source and transport processes, and a preliminary interpretation is proposed below. In the
hydrothermal model of Becker et al. [2008] and Evans et al. [2008], metamorphic reactions at 10–20 km depth
produce CO2 which percolates through fracture networks, reaching the MCT fault system, where it mixes with
meteoric water which eventually is discharged at 60–80°C at the surface. At or near the water table, CO2 may
interact with the atmosphere and degas, enhancing the remnant δ13CDIC. The simplest model for the radon
signature is degassing of the radon contained in water [Girault and Perrier, 2014]. This model predicts a
relationship between radon and CO2 discharge (Figure S1). For some sites (group II), the radon signature can
be accounted for by a small amount of degassing of radon-rich hydrothermal water. By contrast, even when a
broad range of conditions are considered (gray band), this model cannot account for the largest CO2 and
radon discharges observed at group I sites Timure and SBHS. The Chilime site appears here intermediate,
marginally compatible with simple degassing of radon-bearing water. This analysis indicates that group I is

Figure 4. Surface area versus estimated total CO2 degassing from the
ground for our sites together with other selected sites (see review in
Girault et al. [2014]). Solid lines are power law best fits: black line for
volcanic sites and gray line for fault-related sites.
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anomalous and signals the presence of another mechanism, with radon being incorporated at a depth after
CO2 is degassed from water or perhaps suggesting that CO2 is transported and released independently from
hydrothermal circulations [Girault and Perrier, 2014]. Differences in the radon flux can be accounted for by
different depths of CO2 degassing or by variations in the effective radium concentration of rocks (i.e., the
radon source term) [Girault et al., 2012; Girault and Perrier, 2014, Figure 14].

In a given region, sites separated by 5–10 km showed remarkably similar characteristics, suggesting that
local topography and hydrology are not major factors controlling the CO2 heterogeneity. Instead, this
consistency indicates a CO2 source depth of the same typical spatial scale (5 to 10 km). The similar δ13C of
�1.6 ± 0.4‰ points indeed the same CO2 source, most likely metamorphic decarbonation, over the Nepal
Himalayan belt. However, CO2 emission is modulated along the arc. Indeed, a 110 km long region (Figure 3),
which here coincides with group I, showed large CO2 and radon discharges where hot springs yielded
δ13CDIC> 10‰. Outside this region, CO2 discharge was low, and hot springs gave δ13CDIC<�4‰.
Numerous factors might control this large-scale heterogeneity. First, the CO2 production rate must strongly
depend on the available rock material (e.g., the thickness of Greater Himalayan Sequence units), lateral
lithology (e.g., along strike changes in lithology, or the lithology of Lesser Himalayan Sequence units),
temperature distribution, and other rheological factors associated with MCT activity. Second, the midcrust
permeability must affect the CO2 discharge. A more detailed petrological modeling of the metamorphic
reactions [Groppo et al., 2013] is however necessary before the role of permeability can be assessed.
Alternative mechanisms for CO2 production involving sulfuric acid [Torres et al., 2014] may also need to be
considered in this case.

The spatial organization of the CO2 emissions may be discussed also in relation with the distribution of
earthquakes. Group II is located in the section of the MCT which shows the least seismic activity over the
1994–2012 time period. This is also (Figure 3) the region covered by the rupture of the large earthquake
(M ≥ 8) of 1505. The eastern group III section is approximately bordered to the east by the 220 km long
rupture of the 1934 Mw8.2 Bihar Nepal earthquake [Sapkota et al., 2013; Bollinger et al., 2014], a region where
no hot springs are reported. Group I, by contrast, is located in the seismic gap (Figure 3) between the two
1505 and 1934 earthquakes, with smaller major earthquakes (7 ≤Mw ≤ 8) which have only partially released
the accumulated slip deficit since 1505. These relations are unlikely to be coincidental, as Himalayan
megaquakes must have a dramatic effect on the large-scale crustal permeability, but the current data are not
sufficient to substantiate hypotheses at this stage.

The systems presented in this study are among the first examples of degassing in an active orogen away from
volcanic activity. To first order, we can characterize the CO2 emission by the value of the discharge and the
area of the emission, defined as the area with flux larger than 500 gm�2 d�1. In Figure 4, we compare these
two parameters for our sites with more familiar instances of mofette sites and a selection of volcanic and
hydrothermal sites (reviewed in Girault et al. [2014]). The points of group I (SBHS, Timure, and Chilime) with
significant discharge over a comparatively small surface area fall at the lower edge of the trend of volcanic
and hydrothermal sites. Points of this group therefore are not fundamentally different from volcanic sites,
and we can name them “tectonic fumaroles.” The contribution of such features, over all active orogens and
convergent margins, might not be insignificant compared with active volcanoes. Group II (Sulighad and
Tarakot) by contrast, are outside this trend but could be considered as extending the trend of points from
major faults.

6. Conclusions

Diffuse CO2 emissions in the Nepal Himalayas have a remarkably uniform isotopic signature. The
accompanying radon signature varies from site to site but shows coherent spatial organization. Over the
350 km long Nepal Himalayan arc that we investigated, significant CO2 and radon discharges appear
concentrated in a 110 km long region spanning about 84.5°E to 85.5°E. We measured a total diffuse CO2

discharge thus far of 3.0 ± 0.7mol s�1 (or 11 ± 3 t d�1). This minimum estimate, dominated by three sites
located in the upper Trisuli Valley in central Nepal, is larger than the contribution from dissolved inorganic
carbon in hot springs (<0.5mol s�1). This direct observation confirms previous inference [Becker et al., 2008;
Evans et al., 2008] that gaseous release of CO2 dominates the total contribution of the Himalayas, and
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this may also be the case in other active orogens. The observed heterogeneity, however, makes extrapolation
to a whole chain from a few sites particularly difficult.

This study can only be considered a first step toward obtaining a reliable estimate of CO2 release by the
Himalayas. Degassing has not yet been studied in large areas of the Nepal Himalayas, including the far
western region characterized by an intense seismic activity (Figure 1) and the eastern region East from
Makalu. No CO2 emissions have been measured so far in India, Bhutan, or Pakistan. In western Nepal, the
region from Marsyandi Valley to Ganesh Himal deserves more detailed mapping. Furthermore, we have
sometimes observed degassing away from the hot springs along the MCT, at Timure or in the SBHS,
for example, and our ability to measure large CO2 fluxes was due to the use of infrared images or an
element of luck.

The origin of the CO2 released in the Nepal Himalayas, while likely metamorphic, remains insufficiently
constrained. A better understanding of the source, including petrological [Groppo et al., 2013] and
thermomechanical modeling [Bollinger et al., 2006], is mandatory before transport properties of the MCT zone
can be assessed. The spatial distribution of our data suggests that in the future some attention should
definitely be given to relationships between CO2 emissions, deformation, and Himalayan earthquakes. The
presence of different types of diffuse CO2 emissions makes the Himalayas a unique natural laboratory where,
for example, a dynamic connection between crust permeability and the earthquake cycle [Ingebritsen et al.,
2006] can be studied. Such working hypotheses may have important consequences in terms of coseismic
or preseismic gas bursts.
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