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Abstract

Background: The analysis of correlations of amino acid occurrences in globular domains has led to the development
of statistical tools that can identify native contacts – portions of the chains that come to close distance in folded
structural ensembles. Here we introduce a direct coupling analysis for repeat proteins – natural systems for which the
identification of folding domains remains challenging.

Results: We show that the inherent translational symmetry of repeat protein sequences introduces a strong bias in
the pair correlations at precisely the length scale of the repeat-unit. Equalizing for this bias in an objective way reveals
true co-evolutionary signals from which local native contacts can be identified. Importantly, parameter values
obtained for all other interactions are not significantly affected by the equalization. We quantify the robustness of the
procedure and assign confidence levels to the interactions, identifying the minimum number of sequences needed to
extract evolutionary information in several repeat protein families.

Conclusions: The overall procedure can be used to reconstruct the interactions at distances larger than repeat-pairs,
identifying the characteristics of the strongest couplings in each family, and can be applied to any system that
appears translationally symmetric.

Keywords: Direct coupling analysis, Repeat proteins, Direct information, Co-evolution

Background
The fact that many protein molecules spontaneously col-
lapse stretches of amino acid chains into defined struc-
tural domains [1] facilitates the description, evolution and
construction of these peculiar physical objects. Higher
order biological functions that correlate with domains
can usually be isolated, recombined and adjusted, akin to
engineering [2], or tinkering [3] using modular compo-
nents. The evolutionary record of natural proteins results
from a balance between sequence exploration and con-
straints: conservation of function within a protein family
imposes strong boundaries on sequence variation, sculpt-
ing the structural forms visited by members of a pro-
tein family. Amino acids that are in spatial proximity
in the mean conformational ensemble are expected to
co-vary on evolutionary timescales, as the energy con-
tributions to fold stabilization can be often localized
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to groups of residues [4]. However, correlated residue
changes throughout proteins’ history may not necessarily
be close in space, as other constraints are always at play
[5]. Since the evolutionary record is inevitably incomplete,
the sequences we find today constitute a biased sample
of the possible outcomes, therefore any search for the
underlying constraints must take into account contingent
factors that may confound the observed correlations. Here
we use sequence correlations to explore the link between
structure and function in repeat proteins, natural systems
for which the identification of functional domains remains
challenging [6].
Many natural proteins contain tandem repeats of simi-

lar amino acid stretches. Repeat proteins represent close
to 6% of polipeptide sequences codified in eukaryotic
genomes [7]. These have been broadly classified in groups
according to the length of the minimal repeating units
[8]. Still, there are open problems of quantitatively defin-
ing the repeat protein families, the number and location
of the repeat occurrences and the grouping of these into
repeat-arrays.
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Typical repeat protein domains are made up of tandem
arrays of ∼20-40 similar amino acid stretches that fold
into elongated architectures of stacked repeating struc-
tural motifs, although unique “domains” are not trivial
to define by structural inspection [6] (Fig. 1). Success-
ful design of repeat proteins with novel functions based
on simple sequence statistics [9] suggests that folding
and functional signals can be partially segregated. Energy
landscape theory predicts that foldable polypeptides are
much easier to realize in the presence of symmetry as
compared to asymmetric arrangements [10]. Funneled
energy landscapes imply that patterns can form in differ-
ent parts of the molecule with relative independence and
subsequently assemble to higher order structures. This
greatly reduces the folding search problem by efficiently
arranging relatively small fundamental building blocks, or
“foldons” in a repetitive fashion [11, 12]. Thus, due to the
approximate translational symmetry, repeat proteins con-
stitute excellent systems in which to study the coupling
between sequential, structural and functional patterns.
The maximum entropy principle proposes a scheme for

approaching the problem of extracting essential pair cou-
plings from multiple sequence alignments of families of
homologous proteins [13–18]. The main technical limita-
tions confounding residue correlations are the transitivity
of the correlations, the statistical noise due to the relative
small number of available observables, and the phyloge-
netic dependence of the set of sequences assembled into
a protein family [19]. Indirect interactions may generate
the dominant correlations, and disentangling direct from
indirect links is a fundamental step towards inferring the
energetics underlying the observed couplings [14]. The
application of direct coupling analysis (DCA) provides an
efficient way of extracting meaningful information from
the apparent junk of massive genomic data [20]. Themean
structure of several protein domains can be reasonably

well predicted from the statistical analysis of variations in
large sets of sequences [18, 21, 22]. Strong deviations of
the statistically coupled positions from the known domain
structures lead to the exploration of the dynamical aspects
of proteins that are related to biological function [23].
Likewise, specific interactions between domains can be
characterized and good approximations to the interaction
energetics can be obtained [15, 24–26]).
Other methods for inferring contact patterns from

proteins sequences have been recently developed such
as pseudolikelihood maximization (plmDCA [27]) and
Gremlin [28], PconsC2, a deep learning approach to
identify protein-like contact patterns [29], or combined
implementations of various algorithms within a neural
network such as metapsicov [30, 31]. These implemen-
tations were developed and tested mostly with globular
protein domains, with varying degree of success.
In this work we show the limitations of the DCA meth-

ods developed for globular proteins when applied to
repeat proteins. The translational symmetry of repeat pro-
teins confounds the two point correlation introducing a
strong bias at precisely the length scale of the repeated
unit. We propose and implement an analogous proce-
dure for quasi-translationally symmetric repeat proteins.
The resulting correlation matrices allow for the identifi-
cation local native contacts. Furthermore we propose a
systematized way of selecting the main correlated pairs of
positions from these matrices and set a minimum num-
ber of sequences needed to robustly use these procedures.
These implementations can be extended and included in
the calculations on globular protein domains. Addition-
ally, the correction we suggest for repeat proteins is gen-
eral enough such that it can be applied to the most recent
implementations, such as the ones mentioned above.
We apply the overall procedure to infer native contacts

in more than 25 families of repeat proteins of the solenoid
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Fig. 1 Repeat proteins are formed with tandem arrays of repeats. The crystal structures of members of different repeat protein families are shown,
with the backbone colored according to the repeated units. The molecular surface of the repeat array is drawn in transparent gray. a ANK family
(PDB:1IKN, chain D), b WD40 family (PDB:1ERJ, chain A), c TPR family (PDB:4GCO), d LRR family (PDB:4NKH, chain A), e ANEX family (PDB:2ZOC, chain A),
f PUF family (PDB:2YJY, chain A), g HEAT family (PDB:4G3A, chain A), and h ARM family (PDB:2BCT)
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class III (Additional file 1: Table S1, some shown in Fig. 1)
and found that some families have strong coevolutionary
interactions mainly between repeats, while others mainly
within single repeats. These observations may be linked to
the functional characteristics of the families.

Results and discussion
Direct coupling analysis of repeat proteins
We obtained sequences of single repeated units for the
families listed in Additional file 1: Table S1 from the PFAM
database, version 27.0 [32]. Since a repeat domain is typ-
ically formed with multiple tandem copies of repeated
units [6], the minimal sequence that includes an interface
between repeats is composed of two consecutive units.
We thus constructed multiple sequence alignments (MSA)
of pairs of consecutive repeats for each family. The sets
of sequences were corrected for phylogenetic bias and
finite-size sampling as described in the Methods.
Direct information (DI) uses covariance in homolo-

gous protein sequences to deduce structural constraints.
DI (eq 1) uncouples direct interactions from interactions
mediated by a third residue on the complete sequence
of the protein. The upper triangle of Fig. 2b shows the
DI matrices for one of the most abundant repeat pro-
teins, the ANK family. The typical length of these repeats
is 33 residues, so values on columns/rows 1 to 33 and
34 to 66 correspond to interactions between residues
within a repeat, while values on columns 1 to 33 and
rows 34 to 66 correspond to interactions between residues
on consecutive repeats. The values corresponding to
pairs of positions on consecutive repeats reach compa-
rable values to those within each repeated unit. There
appears to be as much evolutionary correlations between
residues on the same repeat as between residues in con-
secutive repeats. A question that arises is whether the
strong signal between repeats is due to the inevitable
similarity of the sequences of the repeat regions or to

true coevolutionary interactions between neighboring
repeats.
A close inspection of the couplings detected between

repeated units reveals that the strongest signals are
attributed to pairs of positions that are 33 residues apart
(Fig. 2b, upper triangle). Since the ANK repeats aligned are
of this precise length L0, these apparent interactions occur
between residues that occupy equivalent positions in each
repeat, i.e: the pair of positions (i, i + L0) corresponds to
the ith residue on the first repeat and the ith residue on
the second repeat. If repeats in proteins were identical, the
interactions between residue i and i + L0 should get max-
imum DI values as these would show perfect co-variation.
At the same time, the submatrix of positions between
repeats should be identical to the submatrix of pairs of
positions within the repeats. Thus, the identity between
repeated units should be taken into account when evalu-
ating correlations between repeats. One could be tempted
to simply disregard the results for the i, i + L0 positions,
arguing that these are caused by the repetitive nature of
the system. Nevertheless, these pairs of positions may or
may not correspond to actual contacts, as it will be shown
below.
To characterize how the identity between neighbouring

repeats affects the covariation analysis, we compared the
distribution of the percentage of identical residues, %Id,
between pairs of consecutive repeats, and between ran-
domly assembled pairs of repeats (Fig. 2a). For the ANK
family, the distribution of %Id for random pairs is centered
around 30%, while the natural pairs show higher mean
and a large tail towards higher %Id values (Fig. 2a). This
higher similarity between pairs of consecutive repeats is
expected to induce correlations between i and i + L0
positions, as observed. To compensate for the higher %Id
between natural repeats we developed a correction factor
that equalizes the effects of quasi-translational symmetry.
This correction consists of calibrating the weight of each
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Fig. 2 The sequence identity between repeated units can bias the inference of evolutionary couplings. Repeat sequences of the ANK family
were concatenated in a MSA of size 2L0 = 66 positions and ≈73000 sequences and co-variations were measured with direct information metric.
a Sequence identity distributions between consecutive ANK repeats found in (x) natural proteins and (o) randomized pairs of repeats. b Direct
information matrices between positions obtained without correcting (DI, upper half) or with proper equalization for repeat identity (DIid , lower half)
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sequence in the natural neighbours according to the %Id
between the component pair of repeats, and rescaling it
so that it matches the expected frequency of %Id between
random pairs of repeats of the same family (see Methods).
We refer to the obtained values as DIid . Figure 2b shows
the DI matrix corrected only for phylogeny and finite
counts (upper triangle), together with the matrix that
includes this additional factor DIid (lower triangles). The
strong symmetric (i, i + 33) off-diagonal signal is atten-
uated, as expected if the signal originates from biases in
the %Id distributions. Importantly, the DI values obtained
for interactions between all other positions are not signif-
icantly affected by the %Id equalization (Additional file 1:
Figure S1).
The same analysis was performed for all the other repeat

protein families (see Additional file 1: Figure S2). Equiva-
lent results are obtained for several families: for example
TPR, CW and PENTAPEPTIDE families show a strong bias
in the symmetric (i, i+L0) interactions. These also show a
higher sequence identity between true first neighbouring
repeats, which biases the inter-repeat couplings. There are
some families, for example ARM, ANEX and PUF, which do
not show a high (i, i + L0) signal on the DI matrices. For
these, the distributions of %Id between true and random
neighbours are similar, consistent with the notion that the
symmetric signal is caused just by the bias in similarity
between neighbouring repeats. Applying the %Id equal-
ization to these families does not significantly change the
DI values, showing that the correction is not detrimental
to the overall procedure. There are some particular cases
like the HEAT family which has a very rugged %Id dis-
tribution. We believe that these effects are caused by an
insufficient number of effective sequences on the align-
ments, which cannot ensure a robust calculation of DI
(vide infra). The HEXAPEP family has a strong signal on
a diagonal (i,i+L0/2), suggesting that PFAM definition of
repeat may involve in fact pairs of repeats, as we con-
firmed contrasting with an available structure (Additional
file 1: Figure S2). We also analyzed the PPR proteins,
a family for which there are no associated structures in
PFAM. Both DI and DIid maps show a reasonably struc-
tured distribution of values which can be a good predic-
tion of a contact map. There are no significant differences
between DI and DIid values as the identity of consecutive
repeats is low, i.e. similar to the distribution of identi-
ties of random pairs of PPR repeats. We conclude that
sequences of proteins that show quasi-translational sym-
metry should be treated with an additional correction
factor to account for the biases that the internal sequence
identity can bring about.

Prediction of native contacts for repeat proteins
Several high resolution structures for repeat proteins are
available. These typically fold into elongated architectures

where most members of a family display an overall similar
topology (Fig. 1). We chose a representative structure for
each family and mapped the numbering to the sequences
of the MSA. On the other hand, we selected the main hits
of DI and DIid using the clustering method described in
the Methods section. Figure 3 shows a comparison of the
contact maps versus DI (upper triangle) and DIid (lower
triangle) hits. Green circles mark the coincidences and
red crosses the DI or DIid hits that are not contact in the
reference structure. The pattern of evolutionary interac-
tions inferred from the clustering of DIid is remarkably
similar to the experimental contact map for most families
(Fig. 3 and (Additional file 1: Figure S3). The signals from
the pairs of positions of consecutive repeats (i, i + L0) do
not always correspond to a high contact probability, yet if
present they are confidently detected.
One of the longest pairs of repeated units we study

belongs to the ANEX family (2L0 ≈ 132 residues). The DIid
hits strongly resemble the average contact map, with 56
out of the 76 DIid pairs found (∼ 73%) within contact dis-
tance (Fig. 3a). Even though DIid matrix does not differ
much from DI matrix, as expected because the %Id his-
togram of consecutive repeats does not differ much from
the one of random repeats (Additional file 1: Figure S2),
we detect a slight improvement. The true positive (TP)
rate of both quantities according to the number of hits
taken can be seen on the right panels of Fig. 3. Most of
the pairs with high DIid correspond to interactions within
each repeat, with few interactions at the repeat interfaces,
unlike the correlations found in other repeat proteins,
such as the ANK family (Fig. 3b). For ANK family, the clus-
tering procedure assigns 44 hits for DIid , 42 of which are
found within contact distance. Most of these are found
outside the usual binding site of these proteins – the β-
hairpin motif [9]. For comparison, DI assigns 79 hits from
which 62 are contacts.
Within the top 43 DIid identified for the TPR fam-

ily, 40 are typically found within contact distance in the
experimental structures and most of the outliers are in
regions physically compatible with the known structures
(Fig. 3c). In this case, the DIid highly impoves the contact
prediction respect to DI.
A particular case is represented in the analysis of

PENTAPEPTIDE family, which has contacts between
residues i and i+L0 (Fig. 3d). In this case the equalization
DIid does not significantly reduce the detection of these
pairs of positions as pairs with high correlation.
In Additional file 1 the results obtained for all fami-

lies are shown. For example the ARM family, where only
12 interactions correspond to contacts among the 31 pre-
dicted (Additional file 1: Figure S3). In the case of the LRR
family, few interactions appear as outliers in DIid distri-
bution, and most of them have been observed to form
close contacts between repeated units (Additional file 1:
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Fig. 3 Native contacts can be predicted from the identity-equalized direct information DIid . On the center we show on grey shadow the contact map
(closest atoms at distance lower than 8 Å) of representative family members a ANEX (PDB:2ZOC, chain A) b ANK (PDB:1N11, chain A) c TPR (PDB:4GCO).
d PENTAPEPTIDE (PDB: 3DU1, chain X). On the upper triangle DI hits are marked in red crosses when they do not match a contact and on green circles
when they do. On the lower triangle DIid hits are marked in red crosses when they do not match a contact and on green circles when they do. On
their side we show the structure used with the backbones as gray ribbons, and the first 20 predicted contacts along multiple repeat pairs in red. On
the right we compare the true positive rate obtained using DI (black triangles) and DIid (red squares) as predictor of contacts on the selected structure
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Figure S3). Few co-evolutionary interactions are assigned
in the HEAT family, probably due to the limited num-
ber of available sequences (see below). Since there are no
experimental structures associated to the NEB family, we
cannot evaluate if the identified DIid hits correspond with
native contacts. This constitutes a prediction of the native
contacts topology for this family.

Distant couplings along a repeat array
Folding of repeat domains usually involves the cooperative
formation of structures at a length scale that exceeds first
neighbours [33]. Folding in some regions nucleates the
folding of contiguous segments, allowing for a quasi-one-
dimensional treatment of the dynamics [34]. A natural
question that arises is how do evolutionary couplings in
and between repeats change as the separation between the
repeats increases.
An analogous correction to the weights of the sequences

must be made to treat n-neighbours interactions (lower
triangle of Additional file 1: Figure S5 for the uncor-
rected DCA of three consecutive repeats of the ankyrin
family). When the proper equalization is performed, the
symmetric signals attenuate and the true coevolution-
ary correlations appear (DIid lower triangle of Additional
file 1: Figure S5). In principle the correction to the sym-
metric (i, i+nL0) interactions can be applied to arbitrarily
large repeat proteins. Yet the sampling needed is much
larger and the computing time growths as L2, restrict-
ing the application to longer repeat arrays. Since in ANKs,
as in most of the repeat protein families, interactions are
concentrated at relatively short sequences separations, we
reconstructed a DIid matrix from a parallel calculation
of repeat pairs. For first neighbours we estimated DIid
as described previously, and for second neighbours we
concatenated the sequences in an MSA of size 2L0. The
reconstructed matrix for all interactions is very similar
to the one calculated on the whole three-repeat MSA

(Additional file 1: Figure S5), facilitating the application of
the analysis for larger repeat arrays. On Fig. 4a we show
the first 50 hits of DI (upper triangle) and DIid (lower tri-
angle) overlaid on a contact map of three consecutive ANK
repeats (PDB:1N11,A; resid 436 to 534). The necessity
of the equalization becomes more evident when longer
repeat arrays are considered.
We observed that as the separation between repeats

increases, the DI and DIid between repeats decay signifi-
cantly (Fig. 4b). True repeat pair interactions are less fre-
quent, and this is reflected in the evolutionary couplings
between units. While DIid decays to almost zero, there
remains a fraction of DI hits between distant repeats, indi-
cating the need for the equalization for similarity along the
repeat array. The number of interactions between repeats
decreases roughly exponentially with repeat separation,
with a half-length of about 1.4 repeats (Fig. 4b), suggesting
that the evolutionary interaction length of Ankyrin repeat
arrays is ∼1.5 units.

Robustness and confidence of the analysis
For a robust calculation of the DI one must have a suf-
ficiently large number of effective sequences to approx-
imate the marginal and joint probability distributions
from the observed frequencies of occurrences of amino
acids. Since there is no general principle indicating how
many sequences are necessary and sufficient for robust
estimation, we empirically quantified the minimum num-
ber of effective sequences in various repeat protein
families.
We constructed subsets of alignments by recurrently

removing random groups of sequences from each dataset
of repeat pairs, and calculated DCA on each of these sub-
sets. The reduction in the number of sequences typically
decrease the absolute values of the high ranking DIid
matrix elements and at the same time increases the back-
ground DIid signals (Additional file 1: Figure S6), making

A B

Fig. 4 Correlations along ANK repeat arrays. a Direct information first 50 hits over a contact map (PDB:1N11,A, resid 436 to 534) calculated for three
consecutive ANK repeats without (upper triangle) or with (lower triangle) the DIid equalization. b Proportion of DI (black diamonds) and DIid (red
circles) hits between repeated units for alignments of n-th neighbours. The red line is a non-linear fit of the DIid data to an exponential decay



Espada et al. BMC Bioinformatics  (2015) 16:207 Page 7 of 10

DIid signals indistinguishable from the background for
small sample sizes.
For well determined parameters we expect the true

value will be better estimated as sampling increases.
Examples of the robustness of the DIid assignments are
shown in the panels of Fig. 5a. While the DIid of some
residue pairs can be confidently established with about
500 effective sequences, other pairs do not reach stable
values even when all the available sequences are taken
into account (Fig. 5a). To globally quantify the conver-
gence of the DIid matrix we evaluated how many of the
residue pairs reach a limiting value within 1% of the one
obtained with the largest sample size. For every subset
of sequences, s, we require that |DIsij − DIij| < 0.01 ·
(max(DI) − min(DI)), where DIsij is the DI between posi-
tion i and j calculated over the s-th subset, DIij is the DI
on the largest set of sequences, and max(DI) and min(DI)
are the maximum and minimum values for all positions
in all subsets. Additionally all subsets larger than the sub-
set s one must have a standard deviation lower than 1% of
the standard deviation of the DI values from all the sub-
sets. If a residue pair fulfills these conditions, we say it has
converged at the particular s sample size. We quantified
how many of the residue pairs satisfy the convergence cri-
teria at various sample sizes (Fig. 5b). The best sampled
families, ANK and TPR, contain enough sequences to con-
verge the DIid for almost all residue pairs of consecutive
repeats. Reducing the number of input sequences results
in a loss of convergence of some sites; the DIid of around
90% of the residue pairs can be confidently established
with about 10% of the total sequences (Meff ≈ 3000)
(Fig. 5b). If the subsamples are further reduced, the pro-
portion of positions that converge drops catastrophically.
Yet even more relaxed criteria for convergence give confi-
dent results for the high-ranking DI pairs, as exemplified

by the PUF and ANEX families (Fig. 5b). However the sam-
ples for the HEAT family are not sufficient to confidently
quantify repeat pairs co-evolving.

Conclusions
Repeat proteins are formed with various tandem repeti-
tions of similar amino acid stretches. Due to the approx-
imate translational symmetry, regions in proximity in the
amino acid chain show similarities in their sequence pat-
terns, which can result in close to perfect co-variation
in a multiple sequence alignment and hence bias the
inferred interactions between residues (Fig. 2). To com-
pensate for this natural bias we developed an equalization
that re-weights each sequence in themultiple alignment to
account for correlations characteristic of the protein fam-
ily. This procedure reveals the true co-evolutionary signals
in the case of strong biases, importantly leaving the quan-
tifications unchanged in the absence of bias. One cannot
simply disregard the results for the i, i+L0 positions, argu-
ing that these are caused by the repetitive nature of the
system, as these pairs of positions may or may not corre-
spond to actual contacts in different families. For example,
in the PENTAPEPTIDE family (Fig. 3d) all pairs i, i + L0
are true contacts thus the symmetric interactions cannot
be ignored. Conversely, Fig. 3c shows the contact map of
TPR pairs of repeats wheremost of these pairs of positions
i, i + L0 are not in contact. Hence, it is necessary to apply
a general method that can distinguish which of these pairs
of positions can be safely predicted as true contacts.
In this work we tested this correction for the mean field

DCA method, but the correction can be applied to other
methods. As an example, we applied the correction to
plmDCA (Additional file 1: Figure S8).We see that there is
an improvement of the contact predictions, comparable to

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

log10(Meff)

C
on

ve
rg
ed

pa
irs

Family

ANEX
ANK
PUF
TPR
HEAT

A B

0.1

0.2

0.3

Pair of positions 63 − 64

0.00

0.05

Pair of positions 34 − 51

−0.10

−0.05

0.00

Pair of positions 11 − 29

log10(Meff)

D
I id

2.0 2.5 3.0 3.5 4.0 4.5

Fig. 5 Robustness of the DIid procedure. Subsets of alignments were constructed by recurrently removing random groups of sequences from each
dataset of repeat pairs. Meff is the number of effective sequences used in the alignment. a Particular examples of the stability of DIid assignments as
sampling changes on the ANK family. The gray shadow delimits the 1% fluctuation interval set as a convergence criteria. b Overall stability of the
DIid assignments in several repeat protein families



Espada et al. BMC Bioinformatics  (2015) 16:207 Page 8 of 10

the application of the correction to mean field DCA . We
are confident that the same correction can be included in
other methods to avoid biases due to the repetitive nature
of these proteins.
The DIid metric resulting from this equalized DCA is a

good predictor of native interactions at the sub-domain
level for proteins with a quasi translational symmetry,
similarly to the original DI metric for globular proteins
[19]. The highest ranking DIid pairs are usually found
in spatial proximity in all of the repeat protein families
analyzed (Figs. 3 and Additional file 1: Figure S3). Inter-
estingly, the patterns of co-evolutionary interactions are
not a random subset of all the native-interactions, but
segregate into particular groups in each family. Some fam-
ilies display relative high inter-repeat correlations, while
in others the repeats appear to be independent evolu-
tionary units. In general, the families we study show the
same amount of interactions in repeated units as between
repeat-units (Additional file 1: Figure S7), which can be
related to the coupling of the folding of the repeat-arrays.
In their native environment, most repeat proteins par-

ticipate in binding other macromolecules, and are thus
expected to show co-variations in the positions that cor-
respond to the binding interfaces. We observed that some
architectures do show higher co-variations at the typical
binding interface, like the nucleic-acid binding PUF fam-
ily, while in the ubiquitous ANK family the typical binding
interface is depleted of DIid pairs.
A reliable estimation of DI requires a sufficiently large

number of sequences. This number depends on the
length, the topology and the ontology of the proteins
under scrutiny. We empirically quantified the minimum
number of effective sequences needed by analyzing sub-
samples of repeat protein families (Fig. 5). In most families
we found that ∼90% of the residue pairs can be confi-
dently established with ∼ 3000 sequences (Fig. 5). The
highest ranking DI interactions confidently predict native
contacts even for much scarcer sampling.
Repeat proteins usually fold cooperatively several con-

secutive repeats [33]. Nucleation of the folding in some
region facilitates the folding of contiguous segments,
allowing for a quasi-one-dimensional treatment of the
dynamics [34]. We found that the statistical couplings
calculated from sequence variations in the ANK family
decay roughly exponentially (Fig. 4) as the separation
between repeats increases. The predicted global corre-
lation length of ∼1.4 repeated units is remarkably close
to that inferred from statistical mechanical analysis of
folding experiments [35, 36] and folding simulations [37].
These predictions are based on approximating long-range
covariations from sets of pair-wise inter-repeat interac-
tions, allowing for the application of the procedure for
arbitrarily large structures for which an exact calculation
would be computationally prohibitive.

Methods
Selection of repeat protein families
Wedetected 159 PFAMaccession numbers repeatedmore
than once in a same PDB chain among all PDB entries
classified as repeat proteins in the database RepeatsDB
[38]. We chose to analyze all the repetitive domains which
appear in the structures catalogued in class III.
We used HMMER [39] to get all the PFAM assignments

[40] that match these structures. We kept only those
repeats whose length is less than 70 residues, that are
repeated at least once in the same protein, and which
have an associated structure in the PFAM database [40].
Families analyzed are listed in Additional file 1: Table S1.

Multiple sequence alignments
We obtained the MSA (multiple sequence alignment) for
repeat units with NCBI data from the PFAM [40] database.
For each MSA we ignored the columns that contain gaps
in more than the 70% of the members. The remaining
number of residues in each case is referred as L0, the
typical lenght of a repeat-unit. In order to reconstruct tan-
dem arrays of repeats, we concatenated the sequences that
belong to the same protein according to identifier in the
PFAM’s alignments, and for which the sequence separation
is less than L0/3. We analysed MSAs which have a num-
ber of sequences larger than 1500. The alignment thus
generated is referred as first neighbour alignment and has
L = 2L0 columns (positions) withM rows (sequences) for
each of the prototypical families of repeat proteins listed
in Additional file 1: Table S1.
To make three or larger repeats MSAs we followed an

analogous procedure, imposing the listed restrictions to
consecutive repeats.

DCA calculations
On every constructed MSA we performed DCA using the
matrix inversion method detailed in [18]. To correct for
the phylogenetic bias in the ensembles of sequences, we
weighted them with the Henikoff and Henikoff heuristic
[41], by assigning a weight wi = ∑

j
1

rj·sij
to each sequence.

rj is the number of different amino acids present in posi-
tion j of the MSA and sij is the number of sequences that
have the same amino acid on position j than sequence i.
We approximated the effective number of sequences as
Meff = ∑

i wi. We calculated direct information (DI) as:

DIij =
∑
A,B

Pdirij (A,B) ln
(
Pdirij (A,B)

fi(A)fj(B)

)
(1)

where fi(A) is the marginal frequency of amino acid A at
position i of the MSA, fj(B) is the marginal frequency of
amino acid B at position j of the MSA and Pdirij (A,B) is the
probability of having amino acid A at position i and amino
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acid B at position j simultaneously generated by the direct
coupling between these pairs of residues [18].

DIid calculation
To account for the self-similarity of repeated units, we
weighted the sequences according to the sequence iden-
tity (%Id) of a pair of repeats. We calculated the frequency
a sequence has a determined %Id between its repeats
(ν(%Id)) and the probability of having the same %Id
between pairs of repeats of the same family, but belonging
to different proteins, νrandom(%Id). Since aligned repeats
have L0 residues each, the %Id can only take discrete val-
ues n/L0 with n an integer between 0 and L0.We weighted
each sequence by:

wc
i = wi

νrandom(%Id = n/L0)
ν(%Id = n/L0)

(2)

where wi is the Henikoff weight of a sequence that has
%Id = n/L0. The DCA calculations that include these
weights are referred to as DIid .

Finite-size correction
The finite-size of the ensemble of sequences generates
spurious correlations that must be corrected. By scram-
bling each of the columns of a natural MSA we generate
MSAIM which keeps themarginal frequencies of the amino
acids in each position but breaks all true correlations.
We calculated direct information for this site-independent
alignment and subtracted the results from the direct infor-
mation calculated on the original MSA. These values are
presented in the matrices DI and DIid .

Selection of top DIid
For several globular domains it has been shown that native
contacts can be inferred from the inspection of the top-
list of residue pairs according to the DI ranking [19]. There
is no established way to discern the minimum value of DI
to be used as the cutoff, as these depend on the topol-
ogy of the fold, the sampling of sequences and the details
of the method used to obtain DI, thus 50 to 200 pairs are
empirically used [19, 24]. Since domains of repeat pro-
teins are composed with multiple copies of repeated units,
we asked whether DI and DIid metrics are useful predic-
tors of direct native interactions at the sub-domain level.
We observed that the absolute values of DI we calculated
for pairs of repeats are lower than those computed for
globular domains, (Fig. 2 and Additional file 1: Figure S2),
complicating the distinction of positive DI outliers from
the background signal. We developed a clustering method
to systematically delimit the true positive interactions.We
first calculated the euclidean distance between each pair
of DI values as dDIa,b = √

(DIa − DIb)2; and made a hier-
archical clustering of the obtained distances. To delimit
the clusters we used the dynamic tree cut method [42],

which allows us to distinguish nested clusters. We found
that most of the DI pairs fall in one big cluster which
we assigned to the background signal (Additional file 1:
Figure S4). The other clusters have fewer members and
constitute outliers of the normal distribution. We con-
sider the true coevolutionary signals as those within small
clusters of positive DI values.

Structural data
All structural data has been downloaded from the PDB
database [32], and corresponding IDs are referred.

Contact maps
Contact maps are a two dimensional representation of
structural information. In these matrices, each position
represents the interaction between two residues, scoring
one when the residues are in contact and zero when they
are not. We define that two residues are in contact when
their closest heavy atoms are at less than 8 Å, following
the definition of [18].

Data accessibility
MSAs data from pfam.xfam.org, version 27.0 using PFAM
Identifier [32]. Structure models fromwww.pdb.org, using
PDB ID [43].
All calculations and analysis have been done with

R scripts available at https://github.com/roespada/
DCAforRpackage.git.
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