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Abstract

We give a positive answer to a conjecture on the uniqueness of harmonic functions
stated in [20]. More precisely we prove the existence and uniqueness of a positive
discrete harmonic function for a random walk satisfying finite range, centering and
ellipticity conditions, killed at the boundary of an orthant in Zd.
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1 Introduction

An explicit description of the Martin compactification for random walks is usually a
non-trivial problem and the most of the existing results are obtained for so-called homo-
geneous random walks, when the transition probabilities of the process are invariant
with respect to the translations over the state space E (see [5], [18], [22]). In [4] Doney
describes the harmonic functions and the Martin boundary of a random walk (Z(n)) on
Z killed on the negative half-line {z : z < 0}. Alili and Doney [2] extend this result for
the corresponding space-time random walk S(n) = (Z(n), n). Kurkova and Malyshev
[13] describe the Martin boundary for nearest neighbor random walks on Z×N and on
Z2

+ with reflected conditions on the boundary. The recent results of Raschel [20] and
Kurkova and Raschel [14] identify the Martin compactification for random walks in Z2

+

with jumps at distance at most 1 and absorbing boundary. All these results use methods
that seem to be unlikely to apply in a general situation. The methods of Doney [4] and
Alili and Doney [2] rely in an essential way on the one-dimensional structure of the
process (Z(n)). Kurkova and Malyshev [13], Raschel [20] and Kurkova and Raschel [14]
use an analytical method where the geometrical structure of the elliptic curve defined
by the jump generating function of the random walk plays a crucial role. For small steps
walks the method uses the fact that the corresponding elliptic curve is homeomorphic to
the torus. In a very recent paper Fayolle and Raschel [6] show how to extend the method
for random walks with arbitrary big jumps (in this case the algebraic curve is no more
homeomorphic to the torus).
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Discrete harmonic functions on an orthant

The aim of our paper is to offer a general approach allowing to study positive harmonic
functions for random walks killed at the boundary of an orthant in Zd without assuming
invariance with respect the translations over the state space.

More precisely let Γ = −Γ ⊂ Zd, be a symmetric finite subset of Zd containing all
unit vectors in Zd, i.e. all the vectors ek = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd, where the 1 is the
k-th component; and π : Zd × Γ→ [0, 1] be such that∑

e∈Γ

π(x, e) = 1, x ∈ Zd.

Then, we let (Sj)j∈N, be the Markov chain defined by

P[Sj+1 = x+ e/Sj = x] = π(x, e); e ∈ Γ, x ∈ Zd, j = 0, 1, · · ·

We shall impose the following three conditions on the step set Γ and the probabilities
π(x, e):

(Finite range) |Γ| <∞,

(Centering)
∑
e∈Γ

π(x, e)e = 0,

(Ellipticity) there exists α > 0 such that π(x,±e) ≥ α; x ∈ Zd, |e| = 1.

We shall denote by:

D = {(x1, ...., xd) ∈ Zd; x1 > 0, · · · , xd > 0}

and we shall be interested in characterizing the positive harmonic functions for the
random walk killed at the boundary of the orthant D, i.e. in functions u : D → R such
that:

(i) For any x ∈ D, u(x) =
∑
e∈Γ

π(x, e)u(x+ e),

(ii) if x ∈ D, u(x) > 0,

(iii) if x ∈ ∂D, u(x) = 0,

where we denote by

∂D = {x ∈ Dc/x = z + e, for some z ∈ D, and e ∈ Γ} ; and D = D ∪ ∂D.

Theorem 1.1. Let (Sj)j∈N be a spatially inhomogeneous random walk satisfying the
above centering, finite range and ellipticity conditions. Then, up to a multiplicative
constant, there exists a unique positive harmonic function for the random walk killed at
the boundary.

Note that general results on harmonic functions for killed random walks in half spaces
Z+ × Zd−1 and orthants were obtained in the non-zero drift case in [8, 9, 14]. In this
case, the Martin boundary is composed of infinitely many harmonic functions. Regarding
random walks with zero drift, important results were obtained recently by Raschel in
[20] in the quarter plane. In a sense our results can be seen as complementing those
of [20] because they provide an answer to the conjecture stated in [20] in the case of
random walks with finite support (cf. [20, Conjecture 1, §4.1]). Our methods, using ideas
introduced in [16, 17], allow on the other hand to generalize from the quarter plane to
orthants in higher dimensions and to treat the spatially inhomogeneous walks.

The paper is organized as follows. Section 2 gives in its first part the main technical
ingredients in the proof of Theorem 1.1. A lower estimate of the harmonic measure
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Discrete harmonic functions on an orthant

providing a Hölder continuity property at the boundary is established. Specifically,
Proposition 1 gives a control of the growth of positive harmonic functions vanishing on
the boundary. A Carleson-type estimate in then derived. In section 2.2 we establish
the existence of a positive harmonic function on D. Section 3 is devoted to prove the
uniqueness of such positive harmonic function on D.

2 Proof of Theorem 1.1

2.1 Key technical ingredients

The proof of Theorem 1.1 relies on a systematic use of two fundamental principles of
potential theory, maximum principle and Harnack principle.

Let A ⊂ Zd denote a bounded domain (i.e. a finite connected set of vertices of Zd).
We let

∂A = {x ∈ Ac/x = z + e, for some z ∈ A, and e ∈ Γ} ; and Ā = A ∪ ∂A.

We say that a function u : Ā→ R is harmonic on A if

u(x) =
∑
e∈Γ

π(x, e)u(x+ e), x ∈ A.

The following maximum principle is immediate

Theorem 2.1. (Maximum principle) Let A ⊂ Zd be a bounded domain in Zd and
u : Ā→ R a harmonic function on A. Assume that u ≥ 0 on ∂A. Then u ≥ 0 in A.

The following theorem is a centered version of the Harnack inequality established
by Lawler [15] for spatially inhomogeneous random walk with bounded symmetric
increments.

Theorem 2.2. (Harnack principle) (Cf. [11]) Let u : B2R(y) → R a nonnegative
harmonic function on a discrete Euclidean ball centered at y and with radius 2R (R =

1, 2 · · · and y ∈ Zd). Then
max

x∈BR(y)
u(x) ≤ C min

x∈BR(y)
u(x),

where C = C(d, α,Γ) is independent of y ∈ Zd, R ≥ 1 and u.

In the proof of Theorem 1.1, together with Theorems 2.1 and 2.2, we need their
parabolic versions.

Let B = A × {a ≤ k ≤ b} ⊂ Zd × Z where A ⊂ Zd is a bounded domain of Zd and
a < b ∈ Z. We let:

∂`B = ∪a<k<b∂A× {k}
∂pB = ∂`B ∪

(
Ā× {a}

)
B̄ = B ∪ ∂pB

∂pB is the parabolic boundary of B and ∂`B its lateral boundary. We say that u : B̄ → R

is caloric in B if

u(x, k + 1) =
∑
e∈Γ

π(x, e)u(x+ e, k), (x, k) ∈ A× {a ≤ k < b}.

Caloric functions share with harmonic functions the fundamental property that there
exist quantitative relations between their values at different points. Maximum principle
extends so that we have a control of the values of a caloric function inside the cylinder
B by its values on the parabolic boundary ∂pB. Harnack principle generalizes for
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Discrete harmonic functions on an orthant

nonnegative caloric functions on two conditions: being at distance R – in the parabolic
sense – from the parabolic boundary and observing a waiting period of time ≈ R2. This
requires to be at a distance R2 from the bottom and R from the lateral boundary in
addition to the waiting time. We then obtain a control of the values of the function in the
lower sub-cylinder BR(y)× {s− 3R2 ≤ k ≤ s− 2R2} by those in the upper sub-cylinder
BR(y)× {s−R2 ≤ k ≤ s}.
Theorem 2.3. (Parabolic maximum principle) Let B = A × {a ≤ k ≤ b} ⊂ Zd × Z,
where a < b ∈ Z and A ⊂ Zd is a bounded domain in Zd, and u : B̄ → R a caloric function
in B. If u ≥ 0 on ∂pB then u ≥ 0 on B.

Theorem 2.4. (Cf. [12]) Let u be a nonnegative caloric function on B2R(y)× {s− 4R2 ≤
k ≤ s}, where (y, s) ∈ Zd ×Z and R ≥ 1. Then

max
{
u(x, k); x ∈ BR(y), s− 3R2 < k < s− 2R2

}
≤ C min

{
u(x, k); x ∈ BR(y), s−R2 < k < s

}
,

where C = C(d, α,Γ) is independent of (y, s) ∈ Zd ×Z, R ≥ 1 and u.

2.2 A lower estimate of the harmonic measure

For a finite set A ⊂ Zd we denote by τA the exit time from A. We define the harmonic
measure hxA(E) (E ⊂ ∂A) of (Sj)j∈N in A at the point x ∈ A, by

hxA(E) = Px [SτA ∈ E] .

Lemma 2.5. Let y ∈ ∂D and R ≥ 1 denote a large integer. Then

hxB2R(y)∩D [∂D ∩B2R(y)] ≥ θ, x ∈ BR(y) ∩ D, (2.1)

where θ = θ(d, α,Γ) > 0 is independent of y and R.

The proof of (2.1) we give below is the only place where caloric functions are used. It
may seem strange that an issue regarding harmonic functions requires going through
caloric functions. Indeed, it would have been more natural to estimate the left hand
side of (2.1) by hxB2R(y)(∂B2R(y) ∩ Dc) (using the maximum principle) and then establish
the desired lower estimate for hxB2R(y)(∂B2R(y) ∩ Dc). Such an approach may lead to
the conclusion provided we have good estimates of the Green kernel as in [7, p. 511];
or by using a barrier argument as in [3, p. 157], but this is difficult to implement for
inhomogeneous walks. A way to get round the difficulty is to apply Harnack principle to
a harmonic extension of hxB2R(y)(∂B2R(y) ∩ Dc), but harmonic functions are difficult to
extend; hence the idea of going through a caloric function defined on a cylinder outside
of D × Z and much easier to extend so that it is possible to apply parabolic Harnack
principle. The idea of such a construction is inspired by the proof of lemma 4.1 in [21].

Proof. Let z = y− R

2
ei (i = 1, · · · , d) (the direction ei to be chosen in an appropriate way

depending on the piece of the boundary to which y belongs) and u1, u2 and u3 the three
caloric functions defined by:

• u1 : (B2R(y) ∩ D)× {−4R2 ≤ k ≤ 0} → R,

u1(x, k) = hxB2R(y)∩D (∂D ∩B2R(y)) .
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Discrete harmonic functions on an orthant

• u2 : Ω = B2R(y) × {−4R2 ≤ k ≤ 0} → R, the solution of the parabolic boundary
problem

u2(x, k + 1) =
∑
e∈Γ

π(x, e)u2(x+ e, k), if (x, k) ∈ B2R(y)× {−4R2 ≤ k < 0}

u2(x,−4R2) = 1BR/8(z)(x)

u2|∂pΩ \BR
8

(z) = 0

• u3 : Ω′ = BR/8(z) × {−4R2 ≤ k ≤ 0} → R, the solution of the parabolic boundary
problem

u3(x, k + 1) =
∑
e∈Γ

π(x, e)u3(x+ e, k), if (x, k) ∈ BR/8(z)× {−4R2 ≤ k < 0}

u3(x,−4R2) = 1BR/8(z)(x)

u3|∂lΩ′ = 0

The parabolic maximum principle implies:

u1(x, k) ≥ u2(x, k), (x, k) ∈ (D ∩B2R(y))× {−4R2 ≤ k ≤ 0}

u2(x, k) ≥ u3(x, k), (x, k) ∈ BR/8(z)× {−4R2 ≤ k ≤ 0}

Combining with parabolic Harnack principle gives that for x ∈ BR(y) ∩ D:

hxB2R(y)∩D [∂D ∩B2R(y)] ≥ c u3(z,−R2) ≥ θ > 0,

simply because the caloric function u3 can be extended to a larger domain ( e.g. BR
8

(z)×
{−10R2 ≤ k ≤ 0}) so that u3 = 1 on BR

8
(z)× {−10R2 ≤ k ≤ −4R2}.

2.3 The Hölder continuity at the boundary

An important consequence of the lower bound of Lemma 2.5 is that:

Proposition 2.6. Let y ∈ ∂D and R ≥ 1 denote a large integer. Let u be a nonnegative
harmonic function in D ∩B2R(y) which vanishes on ∂D ∩B2R(y). Then

max
x∈D∩BR(y)

u(x) ≤ ρ max
x∈D∩B2R(y)

u(x) (2.2)

with 0 < ρ = ρ(d, α,Γ) < 1.

Proof. Let x ∈ D ∩BR(y). Let τ denote the exit time from D ∩B2R(y).

We have

u(x) =
∑

z∈∂(D∩B2R(y))

u(z)Px [Sτ = z]

=
∑

z∈∂(D∩B2R(y)) \ (∂D∩B2R(y))

u(z)Px [Sτ = z] .

Hence

u(x) ≤ Px [Sτ ∈ ∂ (D ∩B2R(y)) \ (∂D ∩B2R(y))] max
x∈D∩B2R(y)

u(x)

= (1− Px [Sτ ∈ ∂D ∩B2R(y)]) max
x∈D∩B2R(y)

u(x).
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Discrete harmonic functions on an orthant

Using Lemma 2.5 and taking supremum on x ∈ D ∩BR(y) we deduce that:

max
x∈D∩BR(y)

u(x) ≤ (1− θ) max
x∈D∩B2R(y)

u(x),

which implies (2.2) with ρ = 1− θ.

2.4 The Carleson principle

This principle provides control of the bound of nonnegative harmonic functions
vanishing on a portion of the boundary.

Theorem 2.7. Let R ≥ 1 denote a large integer. Assume that u is a nonnegative
harmonic function in D. Assume that u = 0 on ∂D ∩ B2R (where BR is the discrete
Euclidean ball centered on 0 of radius R). Then

sup {u(x), x ∈ D ∩BR} ≤ C u(Re), (2.3)

where e = (1, ..., 1) and C = C(d, α,Γ) > 0.

Proof. To prove (2.3) we first observe that the ellipticity assumption implies that u(x) ≤
CeC|x−y|u(y), x, y ∈ D; where C = C(d, α,Γ) > 0. This "local" Harnack principle allows
us to assume that the distance of x = (x1, ..., xd) ∈ D ∩ B2R to the boundary ∂D is
sufficiently large. Without loss of generality we may assume that min1≤i≤d xi = x1 ≥ C.
On the other hand, the Harnack principle implies (by the classical chain argument) that

u(x) ≤ C
(
R

x1

)γ
u(Re); x ∈ B2R ∩ D, (2.4)

where γ and C are positive constants depending only on d, α and Γ. Let x0 = (0, x2, ..., xd) ∈
∂D. By Proposition 2.6 applied to the positive harmonic function in B2x1(x0) ∩ D, we
have

u(x) ≤ ρu(z),

where z ∈ D ∩B2x1
(x0) satisfies

u(z) = max{u(y), y ∈ D ∩B2x1
(x0)}.

We distinguish two cases: (i) where x1 ≤
1

2N
(2R− | x |) and (ii) where x1 >

1
2N

(2R− |
x |). The constant N that appears in the definition of these conditions is appropriately
large and will be chosen later.

Case (i). In this case we observe that z ∈ D ∩B2R. This is because:

| z | ≤ | z − x | + | x |≤ 8x1+ | x |

≤ 1

2N−3
(2R− | x |)+ | x |

≤ R

2N−4
+ (1− 1

2N−3
)|x|

=
R

2N−4
+ (1− 1

2N−3
)2R ≤ 2R.

We have

2R− | z |≥ 2R− | x | −8x1 ≥ (1− 1

2N−3
)(2R− | x |).
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Discrete harmonic functions on an orthant

From which it follows that

(2R− | x |)γu(x) ≤ (1− 1

2N−3
)−γ(2R− | z |)γρ u(z)

≤ (1− 1

2N−3
)−γρ max

x∈D∩B2R

(2R− | x |)γu(x)

and we choose N large enough such that (1− 1

2N−3
)−γρ = ρ′ < 1.

Case (ii). In this case we observe that:

(2R− | x |)γu(x) ≤ 2γNxγ1u(x) ≤ C 2γNRγu(Re)

where the last inequality follows from (2.4).
Combining case (i) and case (ii) we deduce that for all x ∈ D ∩B2R

(2R− | x |)γu(x) ≤ ρ′ max
x∈D∩B2R

(2R− | x |)γu(x) + C2γNRγu(Re).

Using the fact that ρ′ < 1 and (2R− | x |) ≈ R for x ∈ D ∩ BR we deduce the estimate
(2.3).

2.5 Existence of a positive harmonic function on D
In order to establish the existence of a positive harmonic function on D vanishing on

∂D, let:

ul(x) = αl(Gl+1(x, e)−Gl(x, e)), x ∈ B2l ∩ D,

where Gl(x, e); l = 1, 2, · · · is the Green function of (Sn)n∈N in the discrete ball B2l , with
pole at e = (1, · · · , 1) and where the αl are chosen so that ul(e) = 1; l = 1, 2, · · · . Harnack
principle combined with Carleson estimate (2.3) implies that the ul satisfy

ul(x) ≤ C, x ∈ B2k ∩ D; l > k,

with a constant C = C(k) depending only on k. The diagonal process then allows
us to deduce the existence of a positive harmonic function defined globally in D and
vanishing on ∂D. More precisely, for each k = 1, 2, ... there exists an extraction ϕk so that
(uϕk(n))n≥1 converges on B2k ∩ D. An easy induction on k gives a sequence of harmonic
functions

(
uϕ1◦ϕ2◦···◦ϕk(n)

)
n≥1

converging on B2k ∩ D. Taking ψ(n) = ϕ1 ◦ · · · ◦ ϕn(n)

and setting u(y) = limn→∞ uψ(n)(y) gives the required harmonic function. A similar
construction of the harmonic function u can be found in [10, p. 104].

3 Uniqueness of the positive harmonic function

3.1 Boundary Harnack principle

The previous section provides us a positive harmonic function in D vanishing on ∂D.
It remains to show that up to a multiplicative constant, this function is unique. One way
that this can be seen is by using boundary Harnack principle.

Theorem 3.1. Assume that u and v are two positive harmonic functions in D. Assume
that u = 0 on ∂D. Then

sup
x∈D∩BR/2

u(x)

v(x)
≤ C u(Re)

v(Re)
, R ≥ C, (3.1)

where C = C(d, α,Γ) > 0.
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Discrete harmonic functions on an orthant

Proof. Using (2.3) we see that

u(x) ≤ Cu(Re), x ∈ ∂BR ∩ D.

Hence the maximum principle implies that

u(x) ≤ Cu(Re)hxBR∩D [∂BR ∩ D] (3.2)

for all x ∈ BR ∩ D. For x ∈ (∂BR ∩ D) ∩ {xi ≥ εR, i = 1, ..., d} (for an appropriate small
ε > 0), Harnack principle gives

v(x) ≥ cv(Re),

and so the maximum principle implies that

v(x) ≥ cv(Re)hxBR∩D [(∂BR ∩ D) ∩ {xi ≥ εR, i = 1, ..., d}] (3.3)

for all x ∈ BR ∩ D. The proof will follow from the following claim.
Claim. Let x = (x1, ..., xd) ∈ BR/2 ∩ D with 0 < xi < εR for some i = 1, ..., d. Then

hxBR∩D [∂BR ∩ D] ≤ C hxBR∩D [(∂BR ∩ D) ∩ {xi ≥ εR, i = 1, ..., d}] (3.4)

provided that ε is small enough.
Let us take the claim for granted and show how to finish the proof. We can assume,

in the proof of (3.1), that dist(x, ∂D) ≤ εR (otherwise (3.1) is an immediate consequence
of Harnack principle). Combining (3.2) and (3.4) we deduce that

u(x)

u(Re)
≤ ChxBR∩D [(∂BR ∩ D) ∩ {xi ≥ εR, i = 1, ..., d}] .

Since

hxBR∩D [(∂BR ∩ D) ∩ {xi ≥ εR, i = 1, ..., d}] ≤ C v(x)

v(Re)
,

by (3.3), our inequality is verified.

Proof of the claim. Let x = (x1, ..., xd) ∈ BR/2 ∩ D. Without loss of generality we can
assume that x1 = dist(x, ∂D) < εR. Using, as in §2.4, a sequence of balls, connecting x
to R

2 e and observing that

h
R
2 e

BR∩D [∂BR ∩ D] ≥ c

(with a similar proof as in §2.2), we deduce by Harnack principle that

1 ≤ C1

(
R

x1

)γ
hxBR∩D [∂BR ∩ D] .

Hence

hxBR∩D [∂BR ∩ D] ≥ 1

C1

(x1

R

)γ
.

On the other hand, the same considerations, as in §2.3, show that

hxBR∩D [(∂BR ∩ D) ∩ {xi ≤ εR, i = 1, ..., d}] ≤ C2 ρ
R
x1 ,

where 0 < ρ < 1. Setting ρ = e−r, for an appropriate r > 0 and choosing ε sufficiently
small and satisfying

C2ε
−γe−

r
ε <

1

C1

gives the inequality (3.4).
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Discrete harmonic functions on an orthant

3.2 The denouement

Let us consider u1 and u2, two positive harmonic functions on D vanishing on ∂D. By
the boundary Harnack principle, we have

1

C

u1(x)

u1(Re)
≤ u2(x)

u2(Re)
≤ C u1(x)

u1(Re)
, x ∈ BR/2 ∩ D, R ≥ C,

where C > 1 is an appropriate large positive constant. Assume that u1 and u2 are
normalized so that u1(e) = u2(e) = 1. It follows then that

1

C
u1(Re) ≤ u2(Re) ≤ Cu1(Re), R ≥ C.

Then by letting R→ +∞ we deduce that:

1

C2
≤ u2(x)

u1(x)
≤ C2, x ∈ D.

Define

u3(x) = u2(x) +
1

C2 − 1
(u2(x)− u1(x)) , x ∈ D.

We have

u3(x) =
C2

C2 − 1

(
u2(x)− 1

C2
u1(x)

)
≥ 0, x ∈ D,

and clearly u3 is harmonic function, vanishing on the boundary ∂D and satisfies the
normalization condition u3(e) = 1. We iterate and define (for p ≥ 4)

up(x) = up−1(x) +
1

C2 − 1
(up−1(x)− u1(x)) .

An easy computation shows that up is a non-negative harmonic function on D, vanishing
on the boundary ∂D, satisfying the normalization condition up(e) = 1 and such that

1

C2
≤ up(x)

u1(x)
≤ C2, x ∈ D.

On the other hand, combining

up(x) =
C2

C2 − 1
up−1(x)− 1

C2 − 1
u1(x)

u1(x) =
C2

C2 − 1
u1(x)− 1

C2 − 1
u1(x).

We deduce that

up(x)− u1(x) =
C2

C2 − 1
(up−1(x)− u1(x)) , x ∈ D, p ≥ 3.

From which it follows that

up(x) =

(
C2

C2 − 1

)p−2

(u2(x)− u1(x)) + u1(x).

Dividing by u1(x) we deduce that:

1

C2
≤
(

C2

C2 − 1

)p−2(
−1 +

u2(x)

u1(x)

)
+ 1 ≤ C2, x ∈ D, p ≥ 4.

Letting p→ +∞ we deduce that we necessarily have

u1(x) = u2(x), x ∈ D.

The previous construction of the sequence (up) is inspired by the proof of Lemma 6.2 of
[1].
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3.3 Examples

Here we illustrate our main result by two examples of a spatially inhomogeneous
random walk in the quarter plane Z2

+.
Example 1. We consider a random walk with alternating transition probabilities

defined as follows. On the lines Lk = {(x, x + 2k); x ∈ Z} (k ∈ Z) the transition
probabilities are those of the simple random walk, see 1.

 

Figure 1: The simple random walk in the quarter plane.

On the lines L′k = {(x, x+ 2k+ 1); x ∈ Z} the walk is allowed to visit its eight nearest

neighbors with probabilities pi,j =
1

8
, −1 ≤ i, j ≤ 1, see 2.

The resulting random walk with killing at ∂Z2
+ is represented on 3.

Easy computation shows that the function

u(x, y) = xy (3.5)

satisfy, as in the case of the simple random walk, conditions i), ii) and iii) of §1 with
respect to our random walk and is then the unique harmonic function found in §2.

The previous example can be generalized as follows. Let (Sn)n∈N denote a random
walk as in 2, but where the transition probabilities pij = pij(x, y) depend on the position
(x, y). Assume that

p1,0; p−1,0; p0,−1; p−1,−1 ≥ α > 0

(i.e the ellipticity condition is satisfied) and that (Sn)n∈N is centered:∑
−1≤i,j≤1

ipij =
∑

−1≤i,j≤1

jpij = 0. (3.6)
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Figure 2: Walks with small steps in the quarter plane.

Then u as defined by (3.5) is harmonic for the random walk (Sn)n∈N, if it satisfies the
finite difference equation ∑

−1≤i,j≤1

pij(x, y)u(x+ i, y + j) = u(x, y). (3.7)

We observe that the right hand side of (3.7) is given by

∑
−1≤i,j≤1

pij(x, y)(x+ i)(y + j) =

 ∑
−1≤i,j≤1

pij(x, y)

xy

+

 ∑
−1≤i,j≤1

jpij(x, y)

x+

 ∑
−1≤i,j≤1

ipij(x, y)

 y

+
∑

−1≤i,j≤1

ijpij(x, y).

Using (3.6) and the fact that
∑

−1≤i,j≤1

pij = 1, we see that equation (3.7) is satisfied if and

only if ∑
−1≤i,j≤1

ijpij(x, y) = 0.

This condition is obviously satisfied by the random walk represented on 3.
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Figure 3: The walk has alternating transition probabilities inside the quarter plane and
is killed on the boundary of Z2

+ which consists of {(x, 0) ; x ∈ N∗} ∪ {(0, y) ; y ∈ N∗}.

A second example. We now give a second example, more sophisticated than the
previous one and whose harmonic function is not of the product form xy. We start from
the random walk in the Weyl chamber of the the Lie algebra sl3(C) (cf. [20, §3.5]) and
we reflect this walk with respect to the diagonal x = y. The obtained walk is assigned to
the even lines Lk where it is allowed to visit its six neighbors with equal probabilities

p1,0 = p−1,0 = p0,1 = p0,−1 = p1,−1 = p−1,1 = 1/6.

On the odd lines L′k we modify these probabilities as follows:

p1,0 = p−1,1 = p0,−1 =
2− α

6
, p0,1 = p−1,0 = p1,−1 =

α

6
,

where 0 < α < 1 is fixed. Easy computations show that

u(x, y) =
xy(x+ y)

2
,

(the same function as in [20, §3.5]) is harmonic for our inhomogeneous walk. Finally, we
observe that we can allow α to take different values on the odd lines as it varies within a
range ensuring ellipticity.
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