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Quasilinear problems involving
a perturbation with quadratic growth in the gradient
and a noncoercive zeroth order term
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Abstract

In this paper we consider the problem
u € Hy(Q),
—div (A(xz)Du) = H(x,u, Du) + f(z) + ao(z)u in D'(Q),

where Q is an open bounded set of RN, N > 3, A(z) is a coercive matrix with coefficients in
L (), H(z,s,&) is a Carathéodory function which satisfies for some v > 0

—co A(x) €€ < H(z,s,8)sign(s) < vA(z)&€ aexze, VseR, Ve RN,

f belongs to LN/? () and ap > 0 to LY(R2), ¢ > N/2. For f and ao sufficiently small, we prove
the existence of at least one solution u of this problem which is moreover such that e®!* — 1
belongs to H () for some §y > v and satisfies an a priori estimate.

Résumé

Dans cet article nous étudions le probléme

u € Hj(Q),
—div (A(x)Du) = H(x,u, Du) + f(z) + ao(z)u dans D'(Q),

ot © est un ouvert borné de RY, N > 3, A(z) est une matrice coercive a coefficients L°°(Q),
H(z,s,£) est une fonction de Carathédory qui satisfait pour un certain v > 0

—co A(w) €€ < H(x,5,¢)sign(s) <7 A(2) € pp. zeQ, VseR, VEeRY,

f appartient a LN/Z(Q) et ap > 0 a LYQ), ¢ > N/2. Pour f et ao suffisamment petits,
nous démontrons qu’il existe au moins une solution u de ce probléme qui est de plus telle que
edolul _ 1 appartient & H} (Q2) pour un certain dg > « et satisfait une estimation a priori.
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1 Introduction
In this paper, we consider the quasilinear problem
u € Hg (),
(1.1)
—div (A(z)Du) = H(z,u, Du) + f(x) + ap(z)u in D'(Q),

where € is a bounded open set of RN, N > 3, where A is a coercive matrix with bounded measurable
coefficients, where H(z, s, &) is a Carathéodory function wich has quadratic growth in £, and more
precisely which satisfies for some v > 0 and ¢y > 0

—co A(z) €€ < H(z,5,€)sign(s) < v A(z) &€, ae. xz €, VseR, VEeRY, (1.2)
where f € LN/2(Q), f # 0, and where ag € L(Q), ¢ > %7 with
ap Z O, ag 7& 0. (13)

When f and ag are sufficiently small (and more precisely when f and ag satisfy the two smallness
conditions (2.14) and (2.15), we prove in the present paper that problem (1.1) has a least one
solution, which is moreover such that

el —1 e HY(Q), (1.4)
with ol
olu| __ 1
S| em 19
%0 laye

where dp > 7 and Zs, are two constants which depend only on the data of the problem (see (6.16),
(6.17), (6.18) for the definitions of dy and Zs,).

The main originality of our result is the fact that we assume that ag satisfies (1.3), namely that
ap is a nonnegative function.

Let us begin with some review of the literature.

Problem (1.1) has been studied in many papers in the case where ag < 0. Among these papers
is a series of papers [8], [9], [10] and [11] by L. Boccardo, F. Murat and J.-P. Puel (see also the
paper [23] by J.-M. Rokotoson), which are concerned with the case where

ap(z) < —ap < 0. (1.6)

In these papers (which also consider nonlinear monotone operators and not only the linear operator
—div (A(z)Du), the authors prove that when a satisfies (1.6) and when f belongs to L(2), ¢ > &,
then there exists at least one solution of (1.1) which moreover belongs to L>(£2) and which satisfies
some a priori estimates. The uniqueness of such a solution has been proved, under some further
structure assumptions, by G. Barles and F. Murat in [4], by G. Barles, A.-P. Blanc, C. Georgelin
and M. Kobylanski in [3] and by G. Barles and A. Porretta in [5].
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The case where
apg = 0 (17)

was considered, among others, by A. Alvino, P.-L. Lions and G. Trombetti in [1], by C. Maderna,
C. Pagani and S. Salsa in [21], by V. Ferone and M.-R. Posteraro in [16], and by N. Grenon-Isselkou
and J. Mossino in [17]. In these papers (which also consider nonlinear monotone operators), the
authors prove that when aq satisfies (1.7) and when f belongs to L(), ¢ > &, with || z4(0)
sufficiently small, then there exists at least one solution of (1.1) which moreover belongs to L (2)
and which satisfies some a priori estimates.

The case where ag satisfies (1.7) but where f only belongs to LY/2(Q) for N > 3 (and no
more to L?(2) with ¢ > &) was considered by V. Ferone and F. Murat in [13] (and in [14] in the
nonlinear monotone case). These authors proved that when || f||,~/2(q) is sufficiently small, there
exists at least one solution of (1.1) which is moreover such that e?l*l — 1 € H}(Q) for some § > 7,
and that such a solution satisfies an a priori estimate. Similar results were obtained in the case
where f € LV/2(Q) by A. Dall’Aglio, D. Giachetti and J.-P. Puel in [12] for possibly unbounded
domains when ag satisfies (1.6); in this case no smallness condition is required on f. Finally, in [15],
V. Ferone and F. Murat considered (also in the case of nonlinear monotone operators) the case
where ag satisfies ag < 0 and where f belongs to the Lorentz space LN/%°°(£); in this case two
smallness conditions should be fulfilled.

To finish with the case where ag satisfies ag < 0, let us quote the paper [22] by A. Porretta,
where the author studies the asymptotic behaviour of the solution w of (1.1) when ag is a strictly
positive constant which tends to zero, and proves that an ergodic constant appears at the limit
ap = 0. Let us also mention the case where the nonlinearity H(x, s,£) has the “good sign property”,

namely satisfies
—H(x,s,&)sign(s) > 0. (1.8)

In this case, when ay < 0 and when f belongs to H~1(f2), L. Boccardo, F. Murat and J.-P. Puel
in [7] and A. Bensoussan, L. Boccardo and F. Murat in [6] proved the existence of at least one
solution of (1.1) which belongs to H}(Q).

In contrast with the cases (1.6) and (1.7), the present paper is concerned with the case (1.3)
where ay > 0 and ay # 0.

In this setting we are only aware of four papers, which are recent. In [20], L. Jeanjean and
B. Sirakov proved the existence of at least two solutions of (1.1) (which moreover belong to L>(2))
when A(z) = Id, H(x,s,&) = plé]?, p >0, f € LY(Q), ¢ > %, f >0, and ag € L), ag > 0,
ag # 0, with || f||Le() and [|aol|La(q) sufficiently small. In [2], D. Arcoya, C. De Coster, L. Jeanjean
and K. Tanaka proved the existence of a continuum (u, \) of solutions (with u which moreover
belongs to L>(2)) when A(z) = Id, H(x,s,£) = u(z)|&|?, with p € L®(Q) , u(z) > p > 0,
feLN), qg>%, f>0,f#0and ap(z) = Aaf(z) with aff € LY(Q), af > 0 and af # 0;
moreover, under some further conditions on f, these authors proved that this continuum is defined
for A €] — 0o, Ag] with Ag > 0, and that there are at least two nonnegative solutions of (1.1)
when A > 0 is sufficiently small. In [24], in a similar setting, assuming only that u(z) > 0
but that the supports of p and of af have a nonempty intersection and that N < 5, P. Souplet
proved the existence of a continuum (u, A) of solutions, and that there are at least two nonnegative
solutions of (1.1) when A > 0 is sufficiently small. In [19], L. Jeanjean and H. Ramos Quoirin
proved the existence of two positive solutions (which moreover belong to L>°(£2)) when A(z) = Id,
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H(x,s,&) = p|é?, u>0, f e LIQ), ¢ > %, f>0, f#0,and ay € C(Q2) which can change sign
with ag # 0 and which satisfies the so called “thick zero set condition”, when the first eigenvalue
of the operator —A — (ag + pf) in H}(Q) is positive.

With respect to the results obtained in the four latest papers, we prove in the present paper,
as said above, the existence of (only) one solution of (1.1) in the case (1.3) (ap > 0) when ag and
f satisfy the two smallness conditions (2.14) and (2.15), but our result is obtained in the general
case of a nonlinearity H(z, s, &) which satisfies only (1.2), with f € LV/2(Q) and with ag € LI(f),
q> % Moreover, the method which allows us to prove this result continues mutatis mutandis to
work in the nonlinear monotone case where the linear operator —div (A(z)Du) is replaced by a
Leray-Lions operator —div (a(x, u, Du)) working in Wol’p(Q), for some 1 < p < N, and where the
quasilinear term H (z,u, Du) has p-growth in |Dul.

Let us now describe the contents of the present paper.

The precise statement of our result is given in Section 2 (Theorem 2.1), as well as the precise
assumptions under which we are able to prove it. These conditions in particular include the two
smallness conditions (2.14) and (2.15).

Our method for proving Theorem 2.1 is based on an equivalence result (see Theorem 3.5) that
we state in Section 3 once we have introduced the functions Kj(x,s,() and gs(s) (see (3.6) and
(3.7)) and made some technical remarks on them. This result is very close to the equivalence result
given in the paper [14] by V. Ferone and F. Murat.

This equivalence result implies that in order to prove the existence of a solution u of (1.1) which
satisfies (1.4) and (1.5), it is equivalent to prove (see Theorem 3.8) the existence of a function w
defined by (3.31), i.e.

w = i(e‘go‘“l — 1) sign(u), (1.9)
do
which satisfies (3.33), i.e.
w e H(Q),
—div(A(xz)Dw) + Ks,(x,w, Dw) sign(w) = (1.10)

= (1+ dolw|) f(x) + ao(z) w + ap(x) gs, (w) sign(w) in D'(Q),

and the estimate (3.34), i.e.
lwilz ) < Zso (1.11)

(which is nothing but (1.5)).

Our goal thus becomes to prove Theorem 3.8, namely to prove the existence of a solution w
which satisfies (1.10) and (1.11).

Problem (1.10) is very similar to problem (1.1), since it involves a term —Kj, (z, w, Dw) sign(w)
which has quadratic growth in Dw, as well as a zeroth order term & |w|f(x) +
+ap(z) w + ap(x) gs, (w) sign(w). But this problem is also very different from (1.1), since the
term — K, (x, w, Dw) sign(w) with quadratic growth has now the “good sign property” (see (1.8)),
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since K, (x, s, &) satisfies
Ks,(2,5,£) >0,

while the zeroth order term is now no more a linear but a semilinear term with |s|'*? growth (see
(6.20)) due to presence of the term ag(x) gs, (w) sign(w).

We will prove Theorem 3.8 essentially by applying Schauder’s fixed point theorem. But there
are some difficulties to do it directly, since the term with quadratic growth K, (x, w, Dw) sign(w)
only belongs to L!(Q) in general. We therefore begin by defining an approximate problem (see
(4.1)) where Ks(z,w, Dw) is remplaced by its truncation at height k, namely Ty (Ks(z, w, Dw)),
and we prove (see Theorem 4.1) that if f and ag satisfy the two smallness conditions (2.14) and
(2.15), this approximate problem has at least one solution wy, which satisfies the a priori estimate

lwill 52 0) < Zso- (1.12)

This result, which is proved in Section 4, is obtained by applying Schauder’s fixed point theorem
in a classical way.

We then pass to the limit as k tends to infinity and we prove in Section 5 that (for a subsequence
of k) wy tend to some w* strongly in H}(Q) (see (5.2)) and that this w* is a solution of (1.10)
which also satisfies (1.11) (see End of the proof of Theorem 3.8).

This completes the proof of Theorem 3.8, and therefore proves Theorem 2.1, as announced.

This proof follows along the lines of the proof used by V. Ferone and F. Murat in [13] in
the case where ag = 0. As mentionned above, this method can be applied mutatis mutandis to
the nonlinear case where the linear operator —div(A(z)Du) is replaced by a Leray-Lions oper-
ator —div(a(z,u, Du)) working in W} (Q) for some 1 < p < N, and where the quasilinear term
H(z,u, Du) has p-growth in | Dul|, as it was done in [14] by V. Ferone and F. Murat in this nonlinear
setting when ag = 0. This will be the goal of our next paper [18].

2 Main result

In this paper we consider the following quasilinear problem

u € Hg(9),
(2.1)
—div (A(z)Du) = H(z,u, Du) + ag(x)u+ f(z) in D'(Q),
where the set  satisfies (note that no regularity is assumed on the boundary of Q)
Q is a bounded open subset of RY, N > 3, (2.2)
where the matrix A is a coercive matrix with bounded measurable coefficients, i.e.
A€ (L=(@)NH,
(2.3)

Ja >0, A(x)é€>alé? ae xze€Q, VEERN,
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where the function H(z,s,§) is a Carathéodory function with quadratic growth in ¢, and more
precisely satisfies

H:Q xR xRN = Ris a Carathéodory function such that
—co A(z) €€ < H(x,s,&)sign(s) < yA(z) &€, ae.xz €, VseR, VEERY, (2.4)
where v > 0 and ¢g > 0,

where sign : R — R denotes the function defined by

+1  if s>0,

sign(s) = 0 if s=0, (2.5)
-1 if s<0,
where the coefficient aq satisfies
N
ag € LY(Q) for some ¢ > 5 o >0, ag#0, (2.6)

N
as well as the technical assumption (note that, since > < N when 3 < N < 6 and since 2 is

bounded, this assumption can be made without loss of generality once hypothesis (2.6) is assumed)

N<<
2‘1

- when 3 < N <6, (2.7)

and finally where

ferL™N%Q), f+#o0. (2.8)

Since N > 3, let 2* be the Sobolev’s exponent defined by
1 1

_L 1
2* 2 N’
and let C'xy be the Sobolev’s constant defined as the best constant such that
[ellzr < CnlIDgll2, Vo € Hg(Q). (2.9)

We claim that in view of (2.6) and (2.7), one has

*

2
O<?—2<1, (2.10)

where ¢’ the Holder’s conjugate of the exponent ¢, i.e.
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indeed easy computations show that

2*
0<——-2 <= > —
7 9>,
o 2<1 1>6_N
q q 2N '

2N
where the latest inequality is satisfied when N > 6 and is equivalent to ¢ < N when N < 6

(see (2.7)).
We now define the number 8 by

2*
o="-2 (2.11)
In view of (2.10) we have
0<0<1. (2.12)

Since € is bounded, we equip the space H}(f2) with the norm

lull 2 ) = [Dul| 2oy~ (2.13)

We finally assume that f and ao are sufficiently small (see Remark 2.2), and more precisely
that
a—CXllaollnsz = YCR I fllnyz > 0, (2.14)

0 (a—C%llaollny2 — 7012v||f||N/2)(1+9)/9

<
S+ (1 +60)GCR laollg)*/?

where the constant G is defined by (6.14).
Observe that in place of (2.14) we could as well have assumed that

: (2.15)

Nl -1 o)

o — CIQVHQOHN/Q — 7012\/Hf||1v/2 >0,

but that when equality takes places in the latest inequality, inequality (2.15) implies that f = 0,
and then u = 0 is a solution of (2.1), so that the result of Theorem 2.1 becomes trivial.

Our main result is the following Theorem.

Theorem 2.1 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that the two smallness conditions (2.14) and (2.15) hold true.

Then there exist a constant 6o with dg > v, and a constant Zs,, which are defined in Lemma 6.2
(see (6.16), (6.17)) and (6.18) ), such that there exists at least one solution u of (2.1) which further
satisfies

(ePlvl —1) e HE(Q), (2.16)
with ol
oju|l _ 1
€21 D[ v = || ——— < Zs,. (2.17)
%0 o
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Our proof of Theorem 2.1 is based on an equivalence result (Theorem 3.5) which will be stated
and proved in Section 3. This equivalence Theorem will allows us to replace proving Theorem 2.1
by proving Theorem 3.8 which is equivalent to Theorem 2.1.

Remark 2.2 In this Remark, we consider that the open set €2, the matrix A and the function
H are fixed (and therefore in particular that the constants a > 0 and v > 0 are fixed), and we
consider the functions ag and f as parameters.

Our first set of assumptions on these parameters (assumptions (2.6) and (2.7)) is that ag belongs
to L7(Q) with ¢ > & (and that g < % when 3 < N < 6; as said above this assumption can be
made without loss of generality). This first set of assumptions is essential to ensure (see (2.10)) that
the exponent @ defined by (2.11) satisfies 0 < 6 < 1 (see (2.12)). We also assume ag > 0 and ag # 0.

Our second set of assumptions on these parameters is made of the two smallness conditions
(2.14) and (2.15).
Indeed, if, for example, ag is sufficiently small such that it satisfies

a— CRllaollny2 > 0,

then the two smallness conditions (2.14) and (2.15) are satisfied if || f|| y/2 (and therefore || f|| -1 (),
since LN/2(Q) ¢ H~1(Q)) is sufficiently small.
Similarly, if, for example, f is sufficiently small such that it satisfies

o — VC12VHf||N/2 > 0,

then the two smallness conditions (2.14) and (2.15) are satisfied if ||ao||, is sufficiently small (which
implies, since L¢(Q) C LN/?(Q), that |lag| n/2 is sufficiently small), since ||lao||, appears in the
denominator of the right-hand side of (2.15). O

Remark 2.3 The definitions of the two constants dy and Zs, which appear in Theorem 2.1 are
given in (the technical) Appendix 6 (see Lemma 6.2). These definitions are based on the properties
of the family of functions ®;5 (see (6.13)) which look like convex parabolas (see Figure 2 and
Remark 6.3): the constant dy is the unique value of the parameter ¢ for which the function ®s,
has a double zero, and Zjs, is the value of this double zero. The two smallness conditions (2.14)
and (2.15) ensure that dy satisfies dg > 7, a condition which is essential in our proof.

In Remark 3.9 we try to explain where the two smallness conditions (2.14) and (2.15) come
from.

In Remark 3.10, we explain why we have chosen to state Theorem 3.8 with § = §y rather than
with a fixed § with v < § < dg. O

Remark 2.4 In assumption (2.2) we have assumed that N > 3, because we use the Sobolev’s
embedding (2.9). All the proofs of the present paper can nevertheless be easily adapted to the
cases where N = 1 and N = 2, providing similar results, by using the fact that Hg(Q2) C L>(Q)
when N = 1 and that H{ (2) C LP(Q) for every p < +00 when N = 2, and by replacing assumption

N
q>5madein(2.6)whenN23byq:1WhenN:1andbyq>1WhenN:2,andthe

assumption made in (2.8) that f € LN/2(Q) by f € L'(Q) when N = 1 and by f € L™(Q) with
m > 1 when N =2 (and also replacing the norm || f|| /2 by the corresponding norm).
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In assumption (2.6) and (2.8) we have assumed that ag # 0 and that f # 0. Indeed the case
where ag = 0 has been treated by V. Ferone and F. Murat in [13], and in the case where f = 0,
then u = 0 is a solution of (2.1) and the results of the present paper become trivial. O

3 An equivalence result

The main results of this Section are Theorems 3.5 and 3.8. In contrast, Remarks 3.1, 3.2 and 3.4
and Lemma 3.3 can be considered as technical results.

Indeed, as said above, the proof of Theorem 2.1 is based on the equivalence result of Theorem
3.5 that we state and prove in this Section. This equivalence Theorem in particular implies that
Theorem 3.8, which we state at the end of this Section, is equivalent to Theorem 2.1. Theorem
3.8 will be proved in Sections 4 and 5.

This Section also includes Remark 3.9 in which we try to explain where the two smallness
conditions (2.14) and (2.15) come from, as well as Remark 3.10 where we explain why we have
chosen to state Theorem 3.8 for § = dg.

In this Section (as well as in the whole of the present paper) we always assume that

5> 0. (3.1)

Let us first proceed with a formal computation.

If u is a solution of

—div (A(z)Du) = H(z,u, Du) + f(z) + ag(x)u in £,

(3.2)
u=0 on 09,
and if we formally define the function ws by
1
ws =5 (e‘s‘"l - 1) sign(u), (3.3)
where the function sign is defined by (2.5), we have, at least formally,
Sl _ 1 . .
U =1t Slusl, Ju] = 5 log(1+ usl),  sign(u) = signws),
Dws = 1" lDu,  A(z)Dws = e*1"l A(z) Du, (3.4)

—div (A(z) Dws) = —6e’l*l A(z) DuDusign(u) — el (div (A(z) Du)),
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and therefore wy is, at least formally, a solution of

—div (A(z) Dws) =

= —0e’I"l A(z) DuDusign(u) + eI H (2, u, Du) + e1*! f(z) + 1l ag(x) u =

= —Ks(x,ws, Dws) sign(ws) + (3.5)

+(1 + dlws|) f(z) + ao(z) ws + ao(w) gs (ws) sign(ws) in €,

ws =0 on 09,

whenever the functions K5 : 2 x R x RV — R and g5 : R — R are defined by the formulas

Kg(x,t,() =
=0 A@)cC— (1 + G H (z, S log(1 + 8lt]) sign(t), —— ) sign(t) 3.6
T 1t Y T 5108 S T g M) (3.6)
ae.r€Q, VteR, V(RN
and 1
gs(t) = —|t| + 5(1 + 8|t log(1 + 6|t]), Vt€ER, (3.7)
which is equivalent to
1
t+gs(t) sign(t) = (1 + 3[¢]) 5 log(1 + dlt]) sign(t), ¥t € R. (3.8)

Conversely, if w; is a solution of (3.5), and if we formally define the function u by

1
u= s log(1 + d|ws|) sign(ws), (3.9)

the same formal computation easily shows that u is a solution of (3.2).
The main goal of this Section is to transform this formal equivalence into a mathematical result,

namely Theorem 3.5. We begin with three remarks on the functions Ks and gs, namely Remarks
3.1, 3.2 and 3.4.

10
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Remark 3.1 Observe that, because of the inequality (2.4) on the function H, and because of the
coercivity (2.3) of the matrix A, one has

Co+6

(co+6)A(x)CC > WA(I)CC =
=LA@+ (1 3 = A >
S (o> =
Z K5(x7ta C) Z
(3.10)
) ~ B
> m/l(x)(g -1+ 5\t|)WA($)§C =
_ (-1 s
= m!‘l(x)@( > —[0 — vy A(z)CC,
ae.rcQ, VteR, VCeRN, V§>0.
When § > «, this computation in particular implies that
(co 4+ 0)A(x)C¢ > Ks(z,t,() >0 ae.xz€Q, VteR, V(RN if §>n. (3.11)
O

Remark 3.2 In this technical Remark we prove that the functions Ks(z,w, Dw) and
Ks(x,w, Dw)sign(w) are correctly defined and are measurable functions when w € H'(f2), and

we prove their continuity with respect to the almost everywhere convergence of w and Dw (see
Lemma 3.3).

Note that the function Ks(z,t,() defined by (3.6) and the function Kj(x,t,()sign(t) are not
Carathéodory functions, because their definitions involve the function sign(t), which it is not a
Carathéodory function since is not continuous at ¢ = 0. This lack of continuity in ¢ = 0 is
however the only obstruction for the functions K;(x,t, () and Kj(z,t, () sign(t) to be Carathéodory
functions, and

for every w € H' (),
the functions Kj(z, w, Dw) and Kj(z,w, Dw)sign(w) are well defined (3.12)

and are measurable functions,

11
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as it immediately results from the two formulas

Ks(z,t,¢) =

1) 1 . .
= S AGIGC — (181 Hir, § og(1 + 6 sign(), 155 sign(t) =
= T A@eCH

1
 Xgeeor (0) (0 8t) i, og(1 + 81, 1550) = xgemor ()0
1 ¢

— Xqe>03(t) (1 +6[t]) H(, 3 log(1 + 4[t]), m%

aec.xecQ VtcR, V(ecRY,

Ks(x,t, () sign(t) =

¢

= sign(t) A@X(—ﬂ+5Mﬂﬂ%%k%ﬂ+5Mﬁ¥MW11§m):

_ 6
1+ 0[]

= — Xqe<o0}(t) A(2)CC + X1=03 (1) 0 + X >0y (1) A(x)¢C+

1+ oft] 1+ 0ft]

= X<y () (L B1t]) Ha, — 1og(1 + 81}, 7=552) = Xgemop () H(w,0,0) +

_¢
1+ 4

¢

1
"1+ 4|t

— Xgesoy (1) (1 31) H(, 5 log(1 + 1), 1),

ae.rz€Q, VteR, V(eRVN.

Moreover, in view of (3.10) one has

Ks(z,w, Dw) € L*(Q), Ks(z,w, Dw)sign(w) € L'(), Ywe HY(Q), V6> 0.

One also has the following convergence result.
Lemma 3.3 Consider a sequence w, such that
wy, € HY(Q), we HY(Q), w, »w ae. in Q Dw,— Dw ae in Q.

Then
{Kg(m,wn7Dwn)—>K5(x,w,Dw) a.e. in

Ks(x,wy,, Dw,) sign(w,) = Ks(x,w, Dw)sign(w) a.e. in €.

12
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Quasilinear problems with a noncoercive zeroth order term

Proof On the first hand, we have the following almost everywhere convergences

1)
— % A(z)Dw,Dw, — —>—— A(z)DwDw ae. i Q,
T olwn] (z) Dw, Dw _>1+6|w| (z)DwDw a.e. in
1 Dw,
1 H(z,—=log(l _—
(1 + 6|wn|)H (z, 5 og( +5‘wn|)71_’_5|wn|)_>
1
—>(1+6|w|)H(m,—310g(1+(5|w\)7#) e. in Q,
+ 0] (3.18)
H(z,0, Dw,) — H(x,0, Dw) a.e. in Q,
1 Dw,,

1 H(x, - log(1 —_—
(1-+ lunl) (o, You(1 + O, 1) =
S (L4 S H (S log(1 + dluf), —22 n 0

w])H (z, < log w T3 o) a.e. in .

On the other hand, for almost every z fixed in the set {y € Q : w(y) > 0}, the assertion
wp,(z) — w(x) implies, since w(z) > 0, that one has wy,(z) > 0 for n sufficiently large (depending
on ), and therefore that, for some n > n*(x), one has

X{wn <0} (Wn (7)) =0 = X{w<oy(w(z)) for n>n*(z),
X{wn=0}(wn(2)) = 0 = X{w=0}(w(z)) for n>n*(z), (3.19)
X{w, >0} (Wn(2)) =1 = X{w>op(w(z)) for n>n*(z).
These convergences and (3.18) imply that
Ks(z,wy, Dw,) = Ks(x,w, Dw) ae. in {yecQ:w(y) >0},
Ks(x,wp, Dwy,) sign(w,) — Ks(z,w, Dw)sign(w) a.e. in {y € Q:w(y) >0}
The same proof gives the similar result in the set {y € Q : w(y) < 0}.

The proof in the set {y € @ : w(y) = 0} is a little bit more delicate. Let us first observe that
for w € HY(Q) one has
Dw=0 ae. in {yeQ:w(y) =0} (3.20)

and since inequality (2.4) on the function H implies that
H(z,5,00=0 ae.2€Q, VseR, s#0, (3.21)
and therefore by continuity in s that
H(x,0,0) =0 ae. z€. (3.22)
Then, on the first hand, theses results and formulas (3.13) and (3.14) imply that

Ks(z,w, Dw) = Ks(z,w, Dw)sign(w) =0 ae. in {yeQ:w(y) =0} (3.23)

13
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On the other hand, in view of (3.20) and (3.22), the four functions which appear in the four limits
in (3.18) vanish almost everywhere in the set {y € Q : w(y) = 0}. Even if we do not know anything
about the pointwise limits of the functions X {u,, <o} (wWn (%)), X{w,=0} (Wn(2)) and X {u, >0} (Wn(x))
in the set {y € Q : w(y) = 0}, this fact and formulas (3.13) and (3.14) prove that

Ks(z,wp, Dw,) = 0 ae. in {yeN:w(y) =0},

(3.24)
Ks(z,wy, Dwy,) sign(w,) — 0 a.e. in {ye€Q:w(y) =0}
From (3.23) and (3.24) we deduce that
Ks(z,wy, Dwy,) = Ks(xz,w, Dw) ae. in {y € Q:w(y) =0}
(3.25)

Ks(x,w,, Dw,)sign(w,) — Ks(z,w, Dw)sign(w) a.e. in {y € Q:w(y) =0}
This completes the proof of (3.17). O

Remark 3.4 Observe that the function gs(s)sign(s) is a Carathéodory function since in view of
(6.4) this function is continuous at s = 0. This allows one to define gs(w) sign(w) as a measurable
function for every w € H* (). O

The main result of this Section is the following equivalence Theorem.

Theorem 3.5 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true, and let 6 > 0 be
fized. Let the functions K5 and gs be defined by (3.6) and (3.7).
If u is any solution of (2.1) which satisfies

(2l — 1) € HE(), (3.26)
then the function ws defined by (3.3), namely by

ws = % (e‘”“l — 1) sign(u),

satisfies
ws € H(Q),

—div (A(z)Dws) + Ks(x, ws, Dws) sign(ws) = (3.27)
= (1+ Slus]) (z) + ao(z) ws + ao(w) gs(uws) sign(ws) in D(S).

Conversely, if ws is any solution of (3.27), then the function u defined by (3.9), namely by

1
u = 5 log(1 + d|ws|) sign(ws),

is a solution of (2.1) which satisfies (3.26).

14
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Remark 3.6 Every term of the equation in (3.27) has a meaning in the sense of distributions:
indeed the first term of the left-hand side of the equation in (3.27) belongs to H~1(£2); on the other
hand, the four other terms of the equation are measurable functions (see Remarks 3.2 and 3.4);
the second term of the left-hand side of the equation in (3.27) belongs to L(Q) in view of (3.10),
while the three terms of the right-hand side of the equation in (3.27) can be proved to belong to
(L*(R2)) (see e.g. the proof of (3.40) in Remark 3.9 and the proof of (4.8) in the proof of Lemma
42). O

Remark 3.7 Observe that the equivalence Theorem 3.5 holds true without assuming the two
smallness conditions (2.14) and (2.15); moreover one could even have removed in (2.3) the assump-
tion that the matrix A is coercive, and still obtain the same equivalence result.

Note however that Theorem 3.5 is an equivalence result which does not proves neither the
existence of a solution of (2.1) nor the existence of a solution of (3.27), but which assumes as an
hypothesis either the existence of a solution of (2.1) which also satisfies (3.26), or the existence of
a solution of (3.27). O

Proof of Theorem 3.5 Define the function f by

f(x) = f(z) + ao(z) u(z), (3.28)
In view of (3.3) and of the definition (3.7) of gs(s), one has (see (3.8) and (3.4))
(14 blws]) f(x) + ao(z) ws + ao(x) gs(ws) sign(ws) =

1
5

= (1 + 6lws)) (f(z) + ao(z) u(z)) = (1 + dlws|) f(x).

= (14 Sfuws) (F(x) + ao(x) 5 log(1 + Sluws]) sign(w;)) = (3.29)

Then Theorem 3.5 becomes an immediate application of Proposition 1.8 of [13]|, once one
observes that

feLN? Q) (3.30)

such is the case in the setting of Theorem 3.5: indeed f = f + apu, where f belongs to LN/2(Q)
by assumption (2.8), and where agu also belongs to L™/2(Q), since ag is assumed to belong to
L1(Q), ¢ > & (see assumption (2.6)), while u belongs to L () for every r < +o0, since by (3.26)
(el — 1) is assumed to belong to HJ(Q), hence in particular to L'(£2), which implies that e’l*l
belongs to L(€). Theorem 3.5 is therefore proved. O

From the equivalence Theorem 3.5 one immediately deduces, setting

w = %(eénlu\ — 1) sign(u) (3.31)
0
and equivalently
1
U= log(1 + do|w]) sign(w), (3.32)
0

that Theorem 2.1 is equivalent to the following Theorem.

15
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Theorem 3.8 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that the two smallness conditions (2.14) and (2.15) hold true.

Then there exist a constant 6o with dg > v, and a constant Zs,, which are defined in Lemma 6.2
(see (6.16), (6.17) and (6.18)), such that there exists at least one solution w of

—div(A(z)Dw) + Ks,(x, w, Dw) sign(w) = (3.33)

= (1+ dolw]) f(x) + ao(z) w + ap(x) gs, (w) sign(w) in  D'(Q),

which satisfies

1wl 2 2) < Zo,- (3.34)

The rest of this paper will therefore be devoted to the proof of Theorem 3.8. This will be done
in two steps: first, in Section 4 we will prove the existence of a solution satisfying (3.34) for a
problem which approximates (3.33), see Theorem 4.1; second, in Section 5, we will pass to the
limit in this approximate problem and prove that for a subsequence the limit satisfies (3.33) and
(3.34).

Remark 3.9 In this Remark we assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
We also assume that the two smallness conditions (2.14) and (2.15) hold true, and we try to explain
how these two conditions come from an “a priori estimate” that one can obtain on the solutions of
(3.27).

If w; is any solution of (3.27), using Tj(ws) € HE(Q)NL>® (L) as test function, where T), : R — R
is the usual truncation at height k defined by

—k if s < —k,
Tk(s) = s it —k<s<+k, (3.35)
+k if +k<s,

one has
/A(m)Dw5DTk(w§)+/ (2, ws, Dws)|Th(ws)] =
Q Q

:/Qf(:c)Tk(w(;)—i—/Q§f(x)|w5|Tk(w5)+/Qao(x)w(;Tk(w(s)—&- (3.36)

+ [ ao(w) gs(uws) [Tu(ws)].
Q
From now on we assume in this Remark that § satisfies
v <4 <6, (3.37)

where 01 is defined by (6.11) (note that one has vy < d1, see (6.12)).

Since 6 > « by (3.37), we deduce from (3.11) that Ks(z, s,¢) > 0, and therefore that the second
term of the left-hand side of (3.36) is nonnegative. We then use in the first term of the left-hand
side of (3.36) the fact that the matrix A is coercive (see (2.3)), in the first term of the right-hand

16



Quasilinear problems with a noncoercive zeroth order term

side of (3.36) the fact that f € LN/2(Q) (see (2.8)), which implies that f € H~'(£2), in the second
and in the third terms of the right-hand side of (3.36) Holder’s inequality with

1 1 1

§+27+2711

)

and finally in the fourth term of the right-hand side of (3.36) the second statement of (6.19),
namely

0<gs(t) <Gt|"*?, VteR, t#0, V5, 0<d<d, (3.38)
(note that here we use § < d;, see (3.37)) and Hoélder’s inequality with
1 1+46 1
z — =1
2% + 2*

(which results from the definition (2.11) of €). This allows us to obtain an estimate on T} (ws), in
wich we pass to the limit in k to get

0
ol Dws|3 < [1fllzr-2 () [ Dwsll2 + 8l fllwv2llws|13. + laollnyzllwsl3e + Gllaollqllwsl3E",

(3.39)
if ws #0,

(note that in view of (3.38), inequality (3.39) is actually a strict inequality). Using Sobolev’s
inequality (2.9) and dividing by || Dwsl|2 this implies that (even in the case where ws = 0)

| Dwsllz < [ fla-1(0) + 0CKNf sz + Cillaollnyz + GO aollql| Dwsllz . (3.40)

In view of the definition (6.13) of the function ®s (see also Figure 2), we have proved that if
ws is any solution of (3.27), one has

Os5(||Dwsll2) >0 if <6< (3.41)
But by the definition of dy, one has
Os(X) >0, VX >0, V4§ 0<d<dy,

and therefore inequality (3.41) does not imply anything on || Dws||2 when 6 satisfies dg < ¢ < 6.
In contrast, when § < dp, the strict inequality (3.41) implies that

either ||Dwsll2 < Yy  or ||[Dwsll2 >Y;  if &< do, (3.42)

where Y5~ < Y5Jr are the two distinct zeros of the function ®5 (see Remarks 6.3 and 6.5 and
Figure 2), while when ¢ = Jy, the strict inequality (3.41) implies that

either ||Dws,|l2 < Zs, or ||Dws,ll2 > Zs, if 0 = do. (3.43)

Inequalities (3.42) and (3.43) are not a priori estimates, since they do not imply any bound on
| Dws||2. Nevertheless these inequalities exclude the closed interval [Y; , Y;"] or the point Z, for
| Dws||2, and they give the hope to prove the existence of a fixed point in the set |[Dwsl|l2 < Yy,
when 0 < dp, or in the set || Dws,|l2 < Zs,, when 6 = dy.

17
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These inequalities also explain where the two smallness conditions (2.14) and (2.15) come from.
Indeed (see Remark 6.3), these two smallness conditions imply that the value dy of ¢ for which
®;s has a double zero satisfies g > ~y, which is the case where, as said just above, some hope is
allowed. O

Remark 3.10 In the present paper, we have chosen to prove the existence of a function w which
is a solution of (3.33) (or in other terms of a function w = ws, which is a solution of (3.27) with
6 = do) which satisfies ||| g1(q) < Zs, (see (3.34)). When vy < do, i.e. when the inequality (2.15)
is a strict inequality, we could as well have chosen to prove that for any fixed § with v < 4 < dy,
there exists a function @s which is a solution of (3.27) which satisfies [|10s|| g1 (o) < Yy , where Y~
is the smallest zero of the function ®5 (see Remark 6.5 and Figure 2): indeed the proofs made in
Sections 4 and 5 continue to work in this framework and allow one to prove this result.
In this framework, if we define, for any fixed d with v < § < &g, the function s by

1
1
(compare with the definition (3.32) of u, where d = dy), the existence of a solution ws of (3.27

which satisfies [|@s]| g1 (o) < Y; proves (see the equivalence Theorem 3.5) that is defined by (3.44
is a solution of (2.1) which satisfies

Us = 1og(1 + 5|’UAJ5D sign(ﬁ}(s) (3.44)

)
)

e Das|lp = || Dibs |2 < Yy

But the function u which is defined by (3.32) from the function w given by Theorem 3.8 satisfies
(2.1) (by the equivalence Theorem 3.5 with § = dp) and (see (3.4) again)

le®* Dully = || Dwl|z < Zs,.

When § < §p, we therefore have

e Dully < e Dully < Zs,, it 6 <8,

and therefore e?l*l — 1 € H}(Q). By the equivalence Theorem 3.5, the function ws defined from u
by

Ws = %(e‘”“| — 1) sign(u) (3.45)

is a solution of (3.27). Moreover, since Dw;s = €°*| Du and since Zs, < Y;" for § < dg (see (6.25)),
one has in particular

HDE5”2 < Y;L, if §<dg,
which implies by (3.42) that ws satisfies

[ Dwsllz < Yy (3.46)

Therefore the result of Theorem 3.8 (which is concerned with the case § = dp) provides us with
a function w, and then with a function u defined by (3.32), and finally with a function ws defined
by (3.45) which is a solution of (3.27) and which satisfies (3.46). This function ws is a solution ws
of (3.27) which satisfies ||@s || g3 () < Y5 . Therefore the result of Theorem 3.8 (where § = do) also
provides us for every § with v < § < §y with a proof of the result stated in the second paragraph
of the present Remark. O

18
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4 Existence of a solution for an approximate problem

In this Section we introduce an approximation (see (4.1)) of problem (3.33). Under the two small-
ness conditions (2.14) and (2.15), we prove by applying Schauder’s fixed point theorem that this
approximate problem has at least one solution which satisfies the estimate (3.34).

Let o9 be defined by (6.16), (6.17) and (6.18). For any k > 0, we consider the approximate
problem of finding a solution wy, of (compare with (3.33))

Wy € H& (Q),
—div (A(x)Dwk) + T, (K50 (z, wg, Dwk)) sign,, (w) = (4.1)
= (14 dolwg|) f(x) + ao(z) wi + ao(z) gs, (wi) sign(wy) in D'(Q),

where T}, is the usual truncation at height & defined by (3.35) and where sign, : R — R is the
approximation of the function sign which is defined by

ks, it |s| < %
signg (s) = (4.2)
sign(s), if |s| > %
Theorem 4.1 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover

the two smallness conditions that (2.14) and (2.15) hold true. Let o be defined in Lemma 6.2 (see
(6.16) and (6.17)), and let k > 0 be fized.
Then there exists at least one solution of (4.1) such that

lwrll 2 @) < Zoo (4.3)
where Zs, is defined in Lemma 6.2 (see (6.16), (6.17) and (6.18)).

The proof of Theorem 4.1 consists in applying Schauder’s fixed point theorem. First we prove
the two following lemmas.

Lemma 4.2 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Let k > 0 be fized.
Then, for any w € HE(SY), there exists a unique solution W of the following semilinear problem

W € H}(Q),
—div(A(x) DW) 4+ Ty, (K5, (x, w, Dw)) sign, (W) = (4.4)

= (14 dolw]) f(z) + ao(2) w + ao(x) g5, (w) sign(w) in D'().

Moreover W satisfies
Al[DW 2 < [I£llz-1() + 8oCR N fll /2l Dwllz + CXllaoll w2l Dwll2 + GO lao g Dwllz*?, (4.5)
= (£2) (Y N/2 2 NII®O]IN/2 2 N Ollq 2 :

where Cy and G are the constants given by (2.9) and (6.14).
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Proof Problem (4.4) is of the form

)
W e HHQ
{ R (4.6)
—div (A(z)DW) + b(z) sign, (W) = F(z) in D'(Q),

()

where b(z) and F(z) are given. Since b(z) = Ty (K5, (z, w, Dw)) belongs to L>°(2) and is non-
negative in view of (3.11) and of dy > « (see (6.16)), since the function sign; is continuous and
nondecreasing, and since F belong to H~1(€2) (see e.g. the computation which allows one to obtain
(4.8) below), this problem has a unique solution.

Since W € H{(S2), the use of W as a test function in (4.4) is licit. Since Ty (Ks(z,t,()) is
nonnegative, this gives

/A(x)DWDde§
. (4.7)
< /Q (1+ Golw]) f(x) Wiz + /

ap(z) wWdz + / ao(z) gs, (w) sign(w) Wdz.
Q Q

As in the computation made in Remark 3.9 to obtain the inequality (3.39), we use in (4.7) the

1 1
coercivity (2.3) of the matrix A, Holder’s inequality with + + o + o = 1, inequality (6.20)
7
1 146 1 . .
on gs,, — + 5 + o = 1 (which results from the definition (2.11) of #), and finally Sobolev’s
q
inequality (2.9). We obtain

al DWIE < ([ fllzr-2@ IDW 12 + Soll fll vz llwllz+ [Wll2+ + llaoll vz llwll« W [l2- +

+G [laollg[lwll W2 <

(4.8)
< flla—@ DWW l2 + S0 CX N fll vyl Dwll2 [ DW |2 + C llao || 2l Dwl|2[| DW |2+

+ GO laolly | Dwlly I DW 2,

which immediately implies (4.5). O

Lemma 4.3 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Let k > 0 be fized.
Let w, be a sequence such that

wy, —w in Hy(Q) weakly and a.e. in Q. (4.9)
Define W,, as the unique solution of (4.4) for w = wy,, i.e.
W, € Hy(Q),
—div(A(z)DW,,) + T (Ks, (z, Wy, Dwy,)) sign, (W,,) = (4.10)

= (14 dolwn]) f(z) + ao(x) wy, + ao(z) gs, (wy) sign(w,) in D' ().
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Assume moreover that for a subsequence, still denoted by m, and for some W* € HL(Q), W,
satisfies
W, = W* in Hj(Q) weakly and a.e. in Q. (4.11)

Then for the same subsequence one has
W, — W* in Hg(Q) strongly. (4.12)

Proof Since W,, — W* € H} (), the use of (W,, — W*) as test function in (4.10) is licit. This gives

/ A2)D(Wy, — WHD(W, — W) di =
Q
_ 7/ A(x)DW*D(W,, — W*)de +
Q
_ /Q Ty (K, (0, wns Dwy)) signy, (W) (Wi — W*) da + (4.13)

+/Q(1+50|wn|)f(x) (W — W*) dz +/Q ao(2) wn (Wy, — W*) dz +

—|—/Q ao(x) gs, (wy,) sign(wy,) (W, — W*) dzx.

We claim that every term of the right-hand of (4.13) tends to zero as n tends to infinity.

For the first term, we just use the fact that W,, — W* tends to zero in H}(Q2) weakly.

For the second term, we use the fact Ty (Ks,(x, wn,, Dwy,))sign, (W,,) is bounded in L™ (Q),
since k is fixed, while W,, — W* tends to zero in L'() strongly.

For the last three terms we observe that, since w,, and W, respectively converge almost every-
where to w and to W* (see (4.9) and (4.11)), we have

(1 + dolwp]) flx) (W, —W*) =0 a.e. in
ap(z) w, (W, —W*) =0 a.e. in € (4.14)

ao(x) gs, (wy) sign(wy,) Wy, = W*) =0 a.e. in Q.
We will now prove that each of the three sequences which appear in (4.14) are equiintegrable.
Together with (4.14), this will imply that these sequences converge to zero in L'(2) strongly, and

this will prove that the three last terms of the right-hand side of (4.13) tend to zero as n tends to
infinity.
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In order to prove that the sequence (1 4 dg|wy|) f(z) (W,, — W*) is equiintegrable, we use

= 1. For any measurable set E,  C (), we have

Holder’s inequality with o + 5t o
2

/E (14 8lwn]) £ (2) (W — W] d <

2/N

2/N
s( / |f<x>|N/2da:) 11+ Solewal)lz- ||Wn—w*||2*Sc( / |f<x>|N/2dx) ,
E E

where ¢ denotes a constant which is independent of n.
Proving that the sequence ag(x) w, (W,, — W*) is equiintegrable is similar, since for any mea-
surable set E, E C §2, we have

/ |lao() wn (Wn — W*)|dx <
E

2/N
< ([ oo ae) " ot 19, = < o ([ a2 o)
" E

Finally, in order to prove that the sequence ag(z) gs, (wy,) sign(w,, ) (W, — W*) is equiintegrable,

1446
o +2—* = 1; for any

2/N

we use as in (4.8) inequality (6.20) and Holder’s inequality with — +
q

measurable set E, E C 2, we have

/ la0(2) gay (1) sign(w,) (W, — W*)| dz < / la0()| G |wn [0 (Wi — W*| dir <
E E

1/q 1/q
< ([ taotaras) Gl 1w~ e < [ faatoltrac)
E E

We have proved that the right-hand side of (4.13) tends to zero. Since the matrix A is coercive
(see (2.3)), this proves that W,, tends to W* in H}(Q) strongly. Lemma 4.3 is proved. O

Proof of Theorem 4.1 Recall that in this Theorem k > 0 is fixed.
Consider the ball B of H}(Q) defined by

B={we H}(Q): | Dwl|s < Zs,}, (4.15)

where Zs, is defined from d¢ by (6.18).
Consider also the mapping S : H}(Q) — HE () defined by

S(w) =W, (4.16)
where for every w € H}(Q), W is the unique solution of (4.4) (see Lemma 4.2) .

We will apply Schauder’s fixed point theorem in the Hilbert space HE () to the mapping S
and to the ball B.
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First step In this step we prove that S maps B into itself.
Indeed by Lemma 4.2, W = S(w) satisfies (4.5); therefore, when ||Dwlls < Zs,, one has, in
view of the definition (6.13) the function ®s and of the property (6.17) of Zs,,

al[DW]|; <

<Nl + SCK N fllnj2l Dwllz + Cllaoll vz | Dwlls + GO lag|lql| Dwl3 <
(4.17)
<Nl + SCK N Fliny2 Zsy + CRllaolny2Zs, + GOF P llaollq Z5,H0 =

= 0¢Z50 + (1)50 (Z50) = O¢Z50,

ie. ||[DW]|2 < Zs,, or in other terms W € B, which proves that S(B) C B.

Second step In this step we prove that S is continuous from H{ () strongly into H}(Q) strongly.
For this we consider a sequence such that

w, € B, w, —»w in HJ(Q) strongly, (4.18)

and we define W,, as W,, = S(wy,), i.e. as the solution of (4.10).
The functions w,, belong to B, and therefore the functions W,, belong to B in view of the first
step. We can therefore extract a subsequence, still denoted by n, such that for some W* € H{ (),

W, = W* in Hj(Q) weakly and a.. in Q. (4.19)
We can moreover assume that for a further subsequence, still denoted by n,
wy, ~w ae. in Q@ and Dw, =~ Dw ae. in Q. (4.20)

Since the assumptions of Lemma 4.3 are satisfied by the subsequences w,, and W,,, the subsequence
W,, converges to W* in H}(Q) strongly.

We now pass to the limit in equation (4.10) as n tends to infinity by using the fact that
signy (s) and gs,(s)sign(s) are Carathéodory functions, and the first result of (3.17) as far as
Tk (Ks, (2, wy, Dwy,)) is concerned (this point is the only point of the proof of Theorem 4.1 where
the assumption of strong Hg (£2) convergence in (4.18), or more exactly its consequence (4.20), is
used). This implies that W* is a solution of (4.4). Since the solution of (4.4) is unique, one has
wW* = S(w).

In view of the fact that W* is uniquely determined, we conclude that it was not necessary to
extract a subsequence in (4.19) and (4.20), and that the whole sequence W,, = S(w,,) converges in
H} () strongly to W* = S(w). This proves the continuity of the application S.

Third step In this step we prove that S(B) is precompact in H}(Q).

For this we consider a sequence w,, € B and we define W,, as W,, = S(w,,); in other terms W,
is the solution of (4.10). Since w,, and W,, belong to B, they are bounded in H{(£2), and we can
extract a subsequence, still denoted by n, such that

w, = w in Hj(Q) weakly and ae. in Q,
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W, =W* in H}(Q) weakly and a.. in Q.
Since w,, and W,, satisfies the assumptions of Lemma 4.3, we have
W, — W* in Hj(Q) strongly.

This proves that S(B) is precompact in H} () (note that in contrast with the second step, we
do not need here to prove that W* = S(w)).

End of the proof of Theorem 4.1 We have proved that the application S and the ball B
satisfy the assumptions of Schauder’s fixed point theorem. Therefore there exists at least one
wg, € B such that S(wy) = wy. This proves Theorem 4.1. O

5 Proof of Theorem 3.8

Theorem 4.1 asserts that for for every k > 0 fixed there exists at least a solution wy, of (4.1) which
satisfies (4.3). We can therefore extract a subsequence, still denoted by k, such that for some
w* € HY(Q)

w, —w* in  HJ(Q) weakly and ae. in (5.1)

where w* satisfies
w2 0) < Zso, (5.2)

ie. (3.34).

In this Section we will first prove that for this subsequence
wy, — w* in HY(Q) strongly, (5.3)
and then that w* is a solution of (3.33) (which satisfies (3.34)). This will prove Theorem 3.8.

To prove (5.3), we use a technique which traces back to [6] (see also [13]).
For n > 0, we define G,, : R — R as the remainder of the truncation at height n, namely

Gn(s) =s—Tn(s), VseR (5.4)
where T), is the truncation at height n defined by (3.35), or in other terms

s+n if s<-—n,
Gn(s) =< 0 it —n<s<n, (5.5)
s—n if s>n.

First we prove the two following Lemmas.

Lemma 5.1 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that the two smallness conditions (2.14) and (2.15) hold true. Let wy, be a solution of (4.1). Assume
finally that the subsequence wy, satisfies (5.1).

Then for this subsequence we have

limsup/ |DG,, (wy)|*dz — 0 as n — +oo. (5.6)
Q

k— 400
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Proof Since G,,(wi) € H (), the use of Gy, (wy) as test function in (4.1) is licit. This gives

/A(m)DkaGn(wk)dx—i—/ Ty (K, (x, wy, Dwy)) signg, (w) Gp(wy) de =
Q Q

(5.7)
= / ((1 + dolwi]) f(z) + ao(x) wi + ao(x) gs, (wi,) sign(wk)> Gp(wy) dx.
Q
Using the coercivity (2.3) of the matrix A, we have for the first term of (5.7)
/ A(2) Dw DGy (wy) d = / A(2) DGy (w) DGy (w) dz > @ / IDGo(wil2dz.  (5.8)
Q Q Q
On the other hand, since
signy (s) Gn(s) = [signg (s)| |Gn(s)] 20, Vs €R,
and since Ty (K5, (2, wi, Dwy)) > 0 in view of (3.11) and of 6y > v (see (6.16)), we have
/ T (K, (2, we, Dw)) signg (wi) G (wy) dz > 0. (5.9)
Q

Finally, we observe that, by a proof which is similar to the one that we used in the proof of Lemma
4.3, we have

((1 + Solw]) £(2) + ao(@) wi + ao(@) gs, (wr) Sign(wk)) G (wi) —
5 (14 dolw]) £(2) + o) w” + aoe) gs, (w) sign(w*) ) G (w?) (5.10)

in L'(Q) strongly,

since the functions in the left-hand side of (5.10) converge almost everywhere in Q and are equi-
integrable.
Together with (5.7), the three results (5.8), (5.9) and (5.10) imply that

lim sup a/ |DG,, (wy,|? dx <
k—+o00 Q

(5.11)
< [ (0 80hu™D 1o + anfa) w -+ o) g, 1) () G ()

But since |G, (w*)| < |w*| and since G, (w*) = 0 in the set {|w*| < n}, the right-hand side of
(5.11) is bounded from above by

/{ oy ((1++ Gl ) 1f ()] + ao(@) ™| + ao (@) |gs, (w)]) || da, (5.12)

which tends to zero when n tends to infinity because the integrand belongs to L!((2).
This prove (5.6). O
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Lemma 5.2 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover
that the two smallness conditions (2.14) and (2.15) hold true. Let wy, be a solution of (4.1). Assume
finally that the subsequence wy, satisfies (5.1).

Then for this subsequence we have for every n > 0 fixed

To(wy) — To(w*) in HJ(Q) strongly as k — + oo. (5.13)
Proof In this proof n is fixed. We define
2 = T (wg) — Ty (W), (5.14)
and we fix a C' function v : R — R such that
P(0) =0, '(s) —(co+do)[¢(s)] >1/2, Vs€R, (5.15)

where ¢ is the constant which appears in the left-hand side of assumption (2.4) on H; there exist
such functions 1: indeed an example is

Y(s) = sexp ((6025(’)252) .

First step Since 2z, € HE(Q) N L*°(), and since 1(0) = 0, the function 9 (z;) belongs to
HE(2) N L>®(Q2). The use of 1(z;) as test function in (4.1) is therefore licit. This gives

/QA(x)Dkazkw’(zk)dx—l—/QTk(K50(m,wk,Dwk))signk(wk)w(zk)dx =

(5.16)
= / ((1 + dolwg]) f(z) + ao(x) wi, + ao(x) gs, (wi) sign(u)k)) Y(zg) dx.
Q
Since
Dwy, = DT, (wy) + DG, (wy,) = Dz + DT, (w*) + DG, (wy,), (5.17)
the first term of the left-hand side of (5.16) reads as
/ A(x) Dwip Dz ' (2x) do = / A(x)Dzp Dz ' (2x) dx +
Q Q
(5.18)

—|—/ A(x)DT,,(w*) Dz ¢ (2x) dz —|—/ A(z) DG, (wy) Dz ¢ (21,) dz.
Q Q

On the other hand, splitting Q into Q@ = {|wg| > n} U {Jwx| < n}, the second term of the
left-hand side of (5.16) reads as

/Q Ti (K, (2, wg, Dwy,)) signg, (wg) ¥ (2x) de =

- /{ T i D) g () V() + (5.19)
WE | >N

+/{ . T (Ks, (2, wi, Dwy)) signy, (wg) ¥(zk) dz.
wi|<n
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For what concerns the first term of the right-hand of (5.19), we claim that
/ Ty (Ko (2, wr, Duk)) signy, (we) () dz > 0 (5.20)
{w|>n}

indeed in {|wg| > n}, the integrand is nonnegative since on the first hand Ty (K, (x, wg, Dwy)) > 0
in view of (3.11) and of §y > « (see (6.16)), and since on the other hand one has

signg (wi) Y(zx) >0 in {|wg| > n}; (5.21)

indeed since sign(s) and signg(s) have the same sign, it is equivalent either to prove (5.21) or to
prove that
sign(wg) ¥(2x) =2 0 in {|wg| > n}; (5.22)
but in {|wy| > n} one has 2z, = nsign(wy)— T, (w*), and therefore sign(z)) = sign(wy); this implies
that
sign(wy) v (2x) = sign(zk) P(zk) = [P(z)| i {|wg| > n},

which proves (5.22).

For what concerns the second term of the right-hand side of (5.19), we observe that, in view of
(3.11) and of dg > v (see( 6.16)), we have

Tk (K5 (2, wg, Dwy)) signy, (wi) ¥ (2x)| < [Ks, (2, wi, Dwy)|[¢(2x)| <

(5.23)
< (Co + 50)‘w(2k)‘ A(x)Dkawk.
Since in view of (5.17) one has
Dwy, = Dz, + DT, (w*) in {|wi| < n},
we obtain
/{ Tl o0 D)) s, ) (o) e 2
> —/ (co + 00)|¥(2x)| A(x) Dwy Dwy, da =
{lwk|<n}
=— /{ — (co + o) | (2x)| A(x)(Dzy, + DTy (w*))(Dzy, + DTy (w*)) da >
wi|<n
> / (co + 00)[(z1)| A(x)(Dzy + DT (w*))(D2yy + DTy (w*)) dar > (5.24)
Q

> _/ (co + 00) (2| A() Dz D, da +
Q

- / (co + do)lib(z)]
Q

(A(@) DT (w*) D2y + A@) D2y DT,(w?) + A(w) DT, (w*) DT, (w) ) da.
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From (5.16), (5.18), (5.19), (5.20) and (5.24) we deduce that

/QA(x)Dszzk (4 (2) — (co + 60) )] dor <
< —/ A(z) DT, (w*)Dzy, z//(zk)dx—/ A(x) DG, (wi) Dz ' (21) dx +
Q Q

+A@mwmw%n (5.25)

(A(;z:)DTn(w*)Dzk + A(2)D2, DT, (w*) + A(z)DT,, (w*)DTn(w*)) dz +

00+ Gofunl) @) + o) w + (o) g () sign(un)) ()

Second step We claim that each term of the right-hand side of (5.25) tends to zero as k tends
to infinity. Since ¢'(zx) — (co + 9) [¢(zx)| > 1/2 by (5.15), and since the matrix A is coercive (see
(2.3)), this will imply that

zx — 0 in Hi(Q) strongly,

or in other terms (see the definition (5.14) of z;) that
To(wy) — To(w*) in HJ(Q) strongly as k — +oo,

which is nothing but (5.13). Lemma 5.2 will therefore be proved whenever the claim will be proved.

In order to prove the claim let us recall that in view of (5.1) and of the definition (5.14) of zj
one has

2e =0 in HJ(Q) weakly, L>*(Q) weakly star and a.e. in Q as k— 4oo.

Since 1(0) = 0, this implies that 1(z;) tends to zero almost everywhere in  and in L*°(1)
weakly star as k tends to infinity, which in turn implies that

Dz (2) = DYp(z) = 0 in L2(Q)Y weakly as k — 4oo0.

This implies that the first term of the right-hand side of (5.25) tends to zero as k tends to infinity.

For the second term of the right-hand side of of (5.25) we observe that
A(x)DGp(wy) Dz, = A(x) DGy (wi) (DT, (wy) — DT, (w*)) = —A(x) DGy, (wy) DT, (w*),
and that by Lebesgue’s dominated convergence theorem
DT, (w*) ' (2) = DT, (w*)4'(0) in L*(Q)N strongly as k — +oo,

while DG,,(wy) tends to DG, (w*) weakly in L2(Q)V. Since A(z)DG,,(w*)DT,,(w*) = 0 almost
everywhere, the second term of the right-hand side of (5.25) tends to zero.
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For the third term of the right-hand side of (5.25), we observe that
(co + 60)|¥(2x)|A(2) DTy (w*) — 0 in L*(Q)N  strongly as k — +oo

by Lebesgue’s dominated convergence theorem, since ¥ (zy) is bounded in L>(Q2) and since 1(zy)
tends almost everywhere to zero because 1)(0) = 0. Since Dz is bounded in L#(2)Y, this implies
that the first part of this third term tends to zero. A similar proof holds true for the two others
parts of this third term.

Finally the fourth term of the right-hand side of (5.25) tends to zero by a proof which is similar
to the one that we used in the proof of Lemma 4.3, since the integrand converges almost everywhere
to zero and is equiintegrable.

The claim made at the beginning of the second step is proved. This completes the proof of
Lemma 5.2. g

End of the proof of Theorem 3.8

First step Since we have
wi — w* = Ty (wg) + Gp(wg) — T (w*) — Gp(w*),
and since by Lemma 5.2 (see (5.13)) we have
[Tn(wr) = Tn(w*) gy =0 as k— +oo forevery n >0 fixed,
while by Lemma 5.1 (see (5.6)) we have

limsup limsup |Gy (wk)| g3(0) =0,
n—+oo k—+oo

and while we have

lim sup [|Gp, (w*)]| 73 () = 0,

n—-+o0o

since w* € H}(Q), we conclude that
wy, — w* in Hy(Q) strongly as k — + oo, (5.26)
which is nothing but (5.3).

Second step Let us now pass to the limit in (4.1) as k tends to infinity. This is easy for the
first term of the left-hand side of (4.1) as well as for the three terms of the right-hand side of (4.1),
which pass to the limit in (L2'(Q))’ strongly by a proof which is similar to the one that we used in
the proof of Lemma 4.3.

It remains to pass to the limit in the second term of the left-hand side of (4.1), namely in

Ty, (K5, (2, w, Dwy,)) signy, (wy).
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We first observe that in view of (3.11) and of §y > v (see (6.16)), we have
T (K (2, e, D)) signy ()| < 1Ky wi, D) < (co +80) [ Allool Dugl? s, in €,

which implies that the functions T} (K, (@, wy, Dwy,)) sign, (wy) are equiintegrable since Dwy, con-
verges strongly to Dw* in L?(Q)N.

Extracting if necessary a subsequence, still denoted by k, such that

Dwy, — Dw* a.e. in €,
we claim that
Ty (Ks, (z, wi, Dwy)) signg (wy,) — K, (z, w*, Dw*) sign(w*) a.e. in Q. (5.27)
On the first hand we use the first part of (3.17), which asserts that
K5, (v, wg, Dwy) = Ks,(x,w*, Dw*) a.e. in €,

and the fact that for every s € R

Ti(sg) — s if k— +oo when s; — s,

to deduce that
T (Ks, (z, wi, Dwg)) = Ko, (z,w*, Dw*) ae. in Q. (5.28)

On the other hand we use the fact that
sign (wg) — sign(w*) a.e. in {y €N : w*(y) # 0},
which together with (5.28) proves the convergence (5.27) in the set {y € Q : w*(y) # 0}.

Finally, as far as the convergence in the set {y € Q : w*(y) = 0} is concerned, convergence
(5.28), the fact that (see (3.23))

Ks,(z,w*,Dw*) =0 a.e. in {ye€: w(y) =0},
and the fact that |sign;(s)| < 1 for every s € R together prove that
T (K5 (x, wg, Dwg)) signy, (wy,) — 0 = Ks, (z, w*, Dw*)sign(w*) ae. in {yeQ: w(y) =0}
This completes the proof of (5.27).

The equiintegrability and the almost everywhere convergence of T}, ( Ks, (z, wy, Dwy)) sign;, (wy)
then imply that

Ty (Ks, (%, wy,, Dwy)) sign (wy,) = Ks, (z, w*, Dw*) sign(w*) in L'(Q) strongly.

This proves that w* satisfies (3.33). Since w* also satisfies (3.34) (see (5.2)), Theorem 3.8 is
proved. U
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6 Appendix

In this Appendix, we give an estimate of the function g5 defined by (3.7) (see Lemma 6.1), and
the definitions of the constants dy and Zs, which appear in Theorem 2.1 (see Lemma 6.2).

6.1 An estimate for the function g;

Lemma 6.1 For ¢ >0, let gs : R — R be the function defined by (3.7), i.e. by

1
gs(t) = —|t| +g(1+5|t|)log(1+5|t|), vt € R. (6.1)
Then, for every \ and &, with
0<A<L, 0<d, <00, (6.2)
there exists a constant C'(X\) which depends only on A, with
21+)\
0<CN) < 1, — 6.3
<o <swft, 221, (63)
such that
0 <gst) <OCVT, VEER, V65, 0<6§<4,. (6.4)
Moreover
0 <gs(t) <OXCNTY, VEeR, t#£0, V5, 0<6<4,. (6.5)

Proof Let g : RT — R be the function defined by
g(t)=—74+ (14 7)log(l+71), VYr>0.
Since g(0) = 0 and ¢'(7) > 0, one has
g(t) >0, ¥r>0. (6.6)

On the other hand, since log(1 + 7) < 7 for 7 > 0, one has g(r) < 72 < 7172142 for 7 > 0,
and therefore for 0 < A < 1 and for every m > 0

g(r) <m A e 0 <1 <m. (6.7)

One has also

g(r) _ (L+7)log(l+7) _ (1+7)1“ log(l+7)  _,

T1+A T1+A T (1471)>7
and therefore

VYT >m > 0.

g(7) - 1+m\ ™ log(1+7)
T1+A m (1+7)>

log(1 + 7)
(147)*

But the function reaches its maximum for 7y defined by (1 + 70) = ¢/, hence

log(1+ 7)

1+7)* =

1
—, Vr>0.
)\67 T -
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This implies that for 0 < A < 1 and for every m > 0

14+

1 1

g(m) < (—|—m> — A v >m,
m e

which, with (6.6) and (6.7), implies that for 0 < A < 1 and for every m > 0

1 LA
0 < g(1) < sup {mlk, (er> } 1A v >0,
m Ae

or in other terms that for every A\, 0 < A < 1,
0<g(r) < CN) 7T vr >0,

for some constant C'(A), with (take m = 1)

21+)\
0<CWN) §sup{1, o },

which is nothing but (6.3).
Since

1
95(t) = 390011, ViR,
one deduces from (6.10) that gs satisfies
0 < gs(t) <ACV, VteR, V6>0,
0 <gs(t) <ACVT, VEeR, t#0, V§>0,

which proves (6.4) and (6.5) with a constant C'(\) which satisfies (6.3). O

6.2 Definition of J, and Zj,

(6.8)

(6.10)

The goal of this Subsection is to define the constants dp and Zs, which appear in Theorem 2.1.

We will prove the following result.

Lemma 6.2 Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Assume moreover

that the two smallness conditions (2.14) and (2.15) hold true.
Let 61 be the number defined by

o — CRllaol|ns2

(5 =
TGl

One has
01 > .

For§ >0, let &5 : RT — R (see Figure 2) be the function defined by

©5(X) = GO laollg X' — (a = CXllao ) njo = SCK I Fllny2) X + 1 10
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where 0 is defined by (2.11) (note that 0 < 6 < 1 in view of (2.12)) and where G is the constant
defined by

o = Cxllaollvsz "

G= <N> c(8), (6.14)
ClflIns

with Cn the best constant in the Sobolev’s inequality (2.9) and C(0) the constant which appears in

(6.4) (see also (6.3)).
Then, for 0 < § < 81, the function ®s5 has a unique minimizer Zs on RY, which is given by

Zs = o — C%laol|n/2 — 0CZ | flIny2
(1+60)GCRaollq

1/6
) , for 0<6<4;. (6.15)

Moreover, there exists a unique number dy such that
v < do < 1, (6.16)

and

O, (Zs,) = 0. (6.17)

This number is the number 6y which appear in Theorem 2.1, and Zs, is then defined from o
through formula (6.15), namely by

1/6
7 Cllaollnya = 00CX N fllny2
’ (1 +6)GORlally .

(6.18)

Remark 6.3 Let us explain the meaning of the results stated in Lemma 6.2.

As we will see in the proof of Lemma 6.2 (see also Figure 2), the function ®; is the restriction
to Rt of a function which looks like a convex parabola. This function attains its minimum at a
unique point Zs, and for § which satisfies § < d; with §; given by (6.11), one has Z5 > 0.

The smallness condition (2.14) is equivalent to the fact that ; > +y, and the smallness condition
(2.15) to the fact that the minimum @, (Z,) of ®, is nonpositive. For § = d;, the minimum ®s, (Z5, )
of @5, is equal to || f|| z-1(q), which is strictly positive. Therefore it can be proved that there exists
some g with v < §p < 01 (see (6.16)) such that the minimum ®s,(Zs,) of Ps, is equal to zero
(see (6.17)), or in other terms such that the function ®s, has a double zero in Zs,. Moreover,
when v < dg, for every 0 with v < § < 4o, the function @5 has two distinct zeros Yy and Y;r with
Y; < Y;" which satisfy 0 <Y, < Zs, <Y;" (see (6.25) in Remark 6.5). O

Remark 6.4 In the present paper we use Lemma 6.1 with A = 6 defined by (2.11) (note that
0 < 0 <1 in view of (2.12)) and with d, = §; defined by (6.11). Using the fact that G defined by
(6.14) is nothing but G' = 6{C(0), inequalities (6.4) and (6.5) imply that

0 < gs(t) <CO)T? =G|, VteR, V6 0<6 <4,

(6.19)
0 < gs(t) < 8LC(O)|t|'H0 = Gt|' T, VteR, t#0, V5, 0<3 <6
In particular for § = §p defined by (6.16) and (6.17) one has
0 < gs,(t) <GJt|"T?, VteR. (6.20)
|
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Ls

Ls

Figure 1: The graph of the straight line Ls

1£1l5-1(2)

0 YoN Yy By Zs 12, 0 Y ¥t X

‘I’A(erj

o.(Z,)

Figure 2: The graphs of the functions ®5(X) for 6 =, v < d < §p,0 = §p and § = &,

Proof of Lemma 6.2 For 6§ > 0, let Ls be the constant defined by (see Figure 1)
Ls = a— C¥llaollnsz = 6CK I flIn/2s (6.21)

where Cy is the best constant in the Sobolev’s inequality (2.9). Note that Ls is decreasing with
respect to 9.
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Since 07 is defined by (6.11), one has Ls, = 0. On the other hand, the first smallness condition
(2.14) is nothing but L, > 0. Since L; is decreasing in §, one has §; > v, i.e. (6.12).

Let us now study the family of functions ®s : RT — R defined by (6.13), i.e., in view of the
definition (6.21) of Ls, by

D5(X) = GO \|aol| X — Ls X + || fllu-1(0), VX >0, (6.22)

(see Figure 2).

Since ag # 0 (see (2.6)), each function ®;5 looks like the restriction to R* of a convex parabola.
When 0 < § < 41, one has Ls > 0, and this convex parabola has a unique minimizer Zs on R+
which is also the minimizer of the function ®5. A simple computation shows that Zs is given by

1/6 ) ) 1/6
_ Ls _ [ @=Chxllacllnsz = SCK I fllny2
Zs = 2+6 - 246 ’ (6.23)
(1 +0)GCV laollq (1 +0)GCN laollg

i.e (6.15), and that the minimum of ®5, namely ®s(Zs), is given by

0 L6(1+0)/9

(I) Z == —1 — —
o) =W = G ()G )

(6.24)
0 (a—Ckllaollnsz — 6CK I fllny2) O/
146 (1 +6)GCF laoll¢)1/® '

= [IF -1

When 0 < § < 4y, the function L is nonnegative, continuous and decreasing with respect
to d. Therefore Zs is continuous and decreasing with respect to §, while ®5(Zs) is continuous and
increasing with respect to 9.

When § = 671, one has Ls, = 0, the function @, attains its minimum in Zs, = 0, and ®s, (Z5,) =
= | fllz-1(0) > 0, while the second smallness condition (2.15) is nothing but ®,(Z,) < 0. Therefore
there exists a unique dp with v < dg < 07 such that ®s,(Zs,) = 0. This is the definition of §y given
by (6.16) and (6.17) in Lemma 6.2.

Lemma 6.2 is proved. O

Remark 6.5 The case where equality takes places in inequality (2.15) corresponds to the case
where dy = 7.

On the other hand, when (2.15) is a strict inequality, one has v < &g, and for § with v < ¢ < dy,
the function ®; has two distinct zeros Y and Y5Jr with 0 <Yy < Y5+. Since

®5(X) = GO laollg X+ — (@ — CRllaollnje — SCK I F ny2) X + 1 fll-1() =

= Po(X) + 0CK [/l v/2 X,
the family of functions ®5 is an increasing family of functions on R, and one has

0<Yy <Zs, <Ys if y<8<b. (6.25)
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