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émanant des établissements d’enseignement et de
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Stabilization and controllability of first-order integro-differential hyperbolic

equations

Jean-Michel Corona,1, Long Hub,a,2, Guillaume Olivea,3

aSorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 4 place Jussieu, 75252 Paris cedex 05, France.
bSchool of Mathematics, Shandong University, Jinan, Shandong 250100, China.

Abstract

In the present article we study the stabilization of first-order linear integro-differential hyperbolic equations. For

such equations we prove that the stabilization in finite time is equivalent to the exact controllability property. The

proof relies on a Fredholm transformation that maps the original system into a finite-time stable target system. The

controllability assumption is used to prove the invertibility of such a transformation. Finally, using the method of

moments, we show in a particular case that the controllability is reduced to the criterion of Fattorini.

Keywords: Integro-differential equation, Stabilization, Controllability, Backstepping, Fredholm integral.

1. Introduction and main results

The purpose of this article is the study of the stabilization and controllability properties of the equation



ut(t, x) − ux(t, x) =

∫ L

0

g(x, y)u(t, y) dy, t ∈ (0, T ), x ∈ (0, L),

u(t, L) = U(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, L).

(1.1)

In (1.1), T > 0 is the time of control, L > 0 the length of the domain. u0 is the initial data and u(t, ·) : [0, L] −→ C is

the state at time t ∈ [0, T ], g : (0, L) × (0, L) −→ C is a given function in L2((0, L) × (0, L)) and, finally, U(t) ∈ C is

the boundary control at time t ∈ (0, T ).

The stabilization and controllability of (1.1) started in [1]. The authors proved that the equation



ut(t, x) − ux(t, x) =

∫ x

0

g(x, y)u(t, y) dy+ f (x)u(t, 0), t ∈ (0, T ), x ∈ (0, L),

u(t, L) = U(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, L),

with g and f continuous, is always stabilizable in finite time (see also [2] for the same equation with the nonlocal

boundary condition u(t, L) =
∫ L

0
u(t, y)γ(y) dy + U(t) with γ continuous). The proof uses the backstepping approach
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introduced and developed by M. Krstic and his co-workers (see, in particular, the pioneer articles [3, 4, 5] and the

reference book [6]). This approach consists in mapping (1.1) into the following finite-time stable target system



wt(t, x) − wx(t, x) = 0, t ∈ (0, T ), x ∈ (0, L),

w(t, L) = 0, t ∈ (0, T ),

w(0, x) = w0(x), x ∈ (0, L),

by means of the Volterra transformation of the second kind

u(t, x) = w(t, x) −
∫ x

0

k(x, y)w(t, y)dy, (1.2)

where the kernel k has to satisfy some PDE in the triangle 0 ≤ y ≤ x ≤ L with appropriate boundary conditions, the

so-called kernel equation. Let us emphasize that the strength of this method is that the Volterra transformation (1.2)

is always invertible (see e.g. [7, Chapter 2, THEOREM 6]). Now, if the integral term is not anymore of Volterra type,

that is if g in (1.1) does not satisfy

g(x, y) = 0, x ≤ y, (1.3)

then, the Volterra transformation (1.2) can no longer be used (there is no solution to the kernel equation which is

supported in the triangle 0 ≤ y ≤ x ≤ L in this case, see the equation (2.16) below). In [8], the authors suggested to

replace the Volterra transformation (1.2) by the more general Fredholm transformation

u(t, x) = w(t, x) −
∫ L

0

k(x, y)w(t, y)dy, (1.4)

where k ∈ L2((0, L) × (0, L)) is a new kernel. However, the problem is now that, unlike the Volterra transformation

(1.2), the Fredholm transformation (1.4) is not always invertible. In [8], the authors proved that, if g is small enough,

then the transformation (1.4) is indeed invertible, see [8, Theorem 9]. They also gave some sufficient conditions in

the case g(x, y) = g(y), see [8, Theorem 1.11]. Our main result states that we can find a particular kernel k such that

the corresponding Fredholm transformation (1.4) is invertible, if we assume that (1.1) is exactly controllable at time

L. Finally, let us point out that Fredholm transformations have also been used to prove the exponential stabilization

for a Korteweg-de Vries equation in [9] and for a Kuramoto-Sivashinsky equation in [10]. In these papers also, the

existence of the kernel and the invertibility of the associated transformation were established under a controllability

assumption. However, our proof is of a completely different spirit than the one given in these articles.

1.1. Well-posedness

Multiplying formally (1.1) by the complex conjugate of a smooth function φ and integrating by parts, we are lead

to the following definition of solution:

Definition 1.1. Let u0 ∈ L2(0, L) and U ∈ L2(0, T ). We say that a function u is a (weak) solution to (1.1) if u ∈
C0([0, T ]; L2(0, L)) and

∫ τ

0

∫ L

0

u(t, x)

(
−φt(t, x) + φx(t, x) −

∫ L

0

g(y, x)φ(t, y) dy

)
dxdt

+

∫ L

0

u(τ, x)φ(τ, x) dx −
∫ L

0

u0(x)φ(0, x) dx −
∫ τ

0

U(t)φ(t, L) dt = 0, (1.5)

for every φ ∈ C1([0, τ] × [0, L]) such that φ(·, 0) = 0, and every τ ∈ [0, T ].

Let us recall that (1.1) can equivalently be rewritten in the abstract form



d

dt
u = Au + BU, t ∈ (0, T ),

u(0) = u0,

(1.6)
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where we can identify the operators A and B through their adjoints by taking formally the scalar product of (1.6) with

a smooth function φ and then comparing with (1.5). The operator A : D(A) ⊂ L2(0, L) −→ L2(0, L) is thus given by

Au = ux +

∫ L

0

g(·, y)u(y) dy, (1.7)

with

D(A) =
{
u ∈ H1(0, L)

∣∣∣ u(L) = 0
}
.

Clearly, A is densely defined, and its adjoint A∗ : D(A∗) ⊂ L2(0, L) −→ L2(0, L) is

A∗z = −zx +

∫ L

0

g(y, ·)z(y) dy, (1.8)

with

D(A∗) =
{
z ∈ H1(0, L)

∣∣∣ z(0) = 0
}
.

Using the Lumer-Philips’ theorem (see e.g. [11, Chapter 1, Corollary 4.4]), we can prove that A generates a C0-group

(S (t))t∈R.

In particular, A∗ is closed and its domain D(A∗) is then a Hilbert space, equipped with the scalar product associated

with the graph norm ‖z‖D(A∗) = (‖z‖2
L2 + ‖A∗z‖2L2 )1/2, z ∈ D(A∗). Observe that

‖·‖D(A∗) and ‖·‖H1(0,L) are equivalent norms on D(A∗). (1.9)

On the other hand, the operator B ∈ L(C,D(A∗)′) is

〈BU, z〉D(A∗)′ ,D(A∗) = Uz(L). (1.10)

Note that B is well defined since BU is continuous on H1(0, L) (by the trace theorem H1(0, L) →֒ C0([0, L])) and since

we have (1.9). Its adjoint B∗ ∈ L(D(A∗),C) is

B∗z = z(L). (1.11)

One can prove that B satisfies the following so-called admissibility condition4:

∃C > 0,

∫ T

0

|B∗S (T − t)∗z|2 dt ≤ C ‖z‖2
L2(0,L)

, ∀z ∈ D(A∗). (1.12)

Note that B∗S (T − ·)∗z makes sense in (1.12) since S (T − ·)∗z ∈ D(A∗) for z ∈ D(A∗), while it does not in general if z

is only in L2(0, L). Thus, (1.12) allows us to continuously extend in a unique way the map z 7−→ B∗S (T − ·)∗z to the

whole space L2(0, L) and give in particular a sense to B∗S (T − ·)∗z for z ∈ L2(0, L). We shall keep the same notation

to denote this extension.

Finally, we recall that, since A generates a C0-semigroup and B is admissible, for every u0 ∈ L2(0, L) and every

U ∈ L2(0, T ), there exists a unique solution u ∈ C0([0, T ]; L2(0, L)) to (1.1). Moreover, there exists C > 0 (which does

not depend on u0 nor U) such that

‖u‖C0([0,T ];L2 (0,L)) ≤ C
(∥∥∥u0

∥∥∥
L2(0,L)

+ ‖U‖L2(0,T )

)
.

See e.g. [12, Theorem 2.37] and [12, Section 2.3.3.1].

4The proof is analogous to the one of Lemma C.2 in Appendix C.
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1.2. Controllability and stabilization

Let us now recall the definitions of the properties we are interested in.

Definition 1.2. We say that (1.1) is exactly controllable at time T if, for every u0, u1 ∈ L2(0, L), there exists U ∈
L2(0, T ) such that the corresponding solution u to (1.1) satisfies

u(T ) = u1.

If the above property holds for u1
= 0, we say that (1.1) is null-controllable at time T .

Remark 1. Since A generates a group, (1.1) is exactly controllable at time T if, and only if, (1.1) is null-controllable

at time T (see e.g. [12, Theorem 2.41]).

Definition 1.3. We say that (1.1) is stabilizable in finite time T if there exists a bounded linear map Γ : L2(0, L) −→ C

such that, for every u0 ∈ L2(0, L), the solution u ∈ C0([0,+∞); L2(0, L)) to



ut(t, x) − ux(t, x) =

∫ L

0

g(x, y)u(t, y) dy, t ∈ (0,+∞), x ∈ (0, L),

u(t, L) = Γu(t), t ∈ (0,+∞),

u(0, x) = u0(x), x ∈ (0, L),

(1.13)

satisfies

u(t) = 0, ∀t ≥ T. (1.14)

Note that (1.13) is well-posed. Indeed, by the Riesz representation theorem, there exists γ ∈ L2(0, L) such that

Γu =

∫ L

0

u(y)γ(y) dy, (1.15)

and (1.13) with (1.15) is well-posed (see e.g. [2, Theorem 2.1]).

Remark 2. Let us recall here some links between stabilization and controllability. Clearly, stabilization in finite

time T implies null-controllability at time T . It is also well-known that in finite dimension (that is when A and B are

matrices) controllability is equivalent to exponential stabilization at any decay rate, see e.g. [13, PART I, Theorem

2.9]. Finally, for bounded operators B (which is not the case here though), null-controllability at some time implies

exponential stabilization, see e.g. [13, PART IV, Theorem 3.3]. We refer to [14] and the references therein for recent

results on the exponential stabilization of one-dimensional systems generated by C0-groups (including then (1.1)) and

to [15] for the exponential stabilization of systems generated by analytic C0-semigroups.

1.3. Main results

Let us introduce the triangles

T− = {(x, y) ∈ (0, L) × (0, L) | x > y} , T+ = {(x, y) ∈ (0, L) × (0, L) | x < y} .

For the stabilization, we will always assume that

g ∈ H1(T−) ∩ H1(T+). (1.16)

This means that we allow integral terms whose kernel has a discontinuity along the diagonal of the square (0, L)×(0, L):

∫ x

0

g1(x, y)u(t, y) dy +

∫ L

x

g2(x, y)u(t, y) dy,

with g1, g2 ∈ H1((0, L) × (0, L)). We gathered in Appendix A some properties of the functions of H1(T−) ∩ H1(T+).

Our main result is then the following:
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Theorem 1.1. Assume that (1.16) holds. Then, (1.1) is stabilizable in finite time L if, and only if, (1.1) is exactly

controllable at time L.

(note that the necessary part is clear from Remark 2 and Remark 1).

Thus, we see that we have to study the controllability of (1.1) at the optimal time of control T = L (we recall that,

in the case g = 0, (1.1) is exactly controllable at time T if, and only if, T ≥ L). We will show that this property is

characterized by the criterion of Fattorini in the particular case

g(x, y) = g(x), g ∈ L2(0, L). (1.17)

Indeed, the second result of this paper is

Theorem 1.2. Assume that (1.17) holds. Then, (1.1) is exactly controllable at time L if, and only if,

ker(λ − A∗) ∩ ker B∗ = {0} , ∀λ ∈ C. (1.18)

Actually, we conjecture that Theorem 1.2 remains true without assuming (1.17).

Remark 3. In fact, (1.18) is a general necessary condition for the approximate controllability. Let us recall that

we say that (1.1) is approximately controllable at time T if, for every ǫ > 0, for every u0, u1 ∈ L2(0, L), there exists

U ∈ L2(0, T ) such that the corresponding solution u to (1.1) satisfies

∥∥∥u(T ) − u1
∥∥∥

L2(0,L)
≤ ǫ.

Clearly, it is a weaker property than exact controllability. Let us also recall that this property is equivalent to the

following dual one (see e.g. [12, Theorem 2.43]):

∀z ∈ L2(0, L),
(
B∗S (t)∗z = 0 for a.e. t ∈ (0, T )

)
=⇒ z = 0. (1.19)

Thus, we see that (1.18) is nothing but the property (1.19) only for z ∈ ker(λ−A∗) since S (t)∗z = eλtz for z ∈ ker(λ−A∗).
This condition (1.18) is misleadingly known as the Hautus test [16] in finite dimension, despite it has been introduced

earlier by H.O. Fattorini in [17] and in a much larger setting. Finally, let us mention that it has also been proved in

[15] that (1.18) characterizes the exponential stabilization of parabolic systems.

Remark 4. We will exhibit functions g such that (1.18) does not hold for an arbitrary large number of λ, see Remark

7 below. On the other hand, we can check that (1.18) is satisfied for any g ∈ L2((0, L) × (0, L)) satisfying one of the

following conditions:

i) A∗ has no eigenvalue (as it is the case when g = 0).

ii) g is small enough: ‖g‖L2 <
√

2
L

.

iii) g is of Volterra type (that is it satisfies (1.3)).

The point ii) follows from the invertibility of transformations Id − G for ‖G‖L(L2) < 1. The point iii) follows from the

invertibility of Volterra operators.

Let us notice that we can also consider equations of the more general form



ũt(t, x) − ũx(t, x) =

∫ L

0

g̃(x, y)̃u(t, y) dy + f (x)̃u(t, 0) + d(x)̃u(t, x), t ∈ (0, T ), x ∈ (0, L),

ũ(t, L) =

∫ L

0

ũ(t, y)γ(y) dy + Ũ(t), t ∈ (0, T ),

ũ(0, x) = ũ0(x), x ∈ (0, L),

where f , d, γ : (0, L) −→ C and g̃ : (0, L) × (0, L) −→ C are regular enough. Performing a transformation of Volterra

type, it can actually be reduced to an equation like (1.1). See [2, Theorem 3.2] for more details.
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Let us conclude the introduction by pointing out that Theorem 1.1 still holds if we consider states and controls

taking their values into R instead of C provided that

g(x, y) ∈ R for a.e. (x, y) ∈ (0, L) × (0, L). (1.20)

This follows from the fact that, if (1.20) holds and if the control system (1.1), with real valued states and controls, is

exactly controllable at time L, then the functions k and U constructed in the proof of Proposition 2.4 below are real

valued functions. Concerning Theorem 1.2, it also still holds for real valued states and controls if g is real valued (but,

of course, we still have to consider in (1.18) complex valued functions and complex λ).

2. Finite-time stabilization

2.1. Presentation of the method

Let us write A = A0 +G where the unbounded linear operator A0 : D(A0) ⊂ L2(0, L) −→ L2(0, L) is defined by

A0u = ux, D(A0) = D(A),

and the bounded linear operator G : L2(0, L) −→ L2(0, L) is defined by

Gu =

∫ L

0

g(·, y)u(y) dy.

Note that the adjoint A∗
0

: D(A∗
0
) ⊂ L2(0, L) −→ L2(0, L) of A0 is the operator

A∗0z = −zx, D(A∗0) =
{
z ∈ H1(0, L)

∣∣∣ z(0) = 0
}
.

We first perform some formal computations to explain the ideas of our method. We recall that the strategy is to

map the initial equation 

d

dt
u = (A + BΓ)u, t ∈ (0,+∞),

u(0) = u0,

(2.1)

into the finite-time stable target equation



d

dt
w = A0w, t ∈ (0,+∞),

w(0) = w0,

(2.2)

for some operator Γ and by means of a transformation P (independent of the time t):

u = Pw.

If u = Pw where w solves (2.2), then

d

dt
u =

d

dt
(Pw) = P

(
d

dt
w

)
= PA0w, (2.3)

and

(A + BΓ)u = (AP + BΓP)w. (2.4)

As a result, u solves (2.1) if the right-hand sides of (2.3) and (2.4) are equals, that is, if P and Γ satisfy

PA0 = AP + BΓP.

Taking the adjoints, this is equivalent to

A∗0P∗ = P∗A∗ + P∗Γ∗B∗. (2.5)
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By (2.5), we mean that
{

P∗ (D(A∗)) ⊂ D(A∗0) = D(A∗),

A∗0P∗z = P∗A∗z + P∗Γ∗B∗z, ∀z ∈ D(A∗).

(2.6)

(2.7)

The following proposition gives the rigorous statement of what we have just discussed (the proof is given in

Appendix B).

Proposition 2.1. Assume that there exist a bounded linear operator P : L2(0, L) −→ L2(0, L) and a bounded linear

form Γ : L2(0, L) −→ C such that:

i) (2.6)-(2.7) hold.

ii) P is invertible.

Then, for every u0 ∈ L2(0, L), if w ∈ C0([0, T ]; L2(0, L)) denotes the solution to (2.2) with w0
= P−1u0, then u = Pw is

the solution to (1.13) and it satisfies (1.14).

Let us now ”split” the equation (2.7). We recall that D(A∗) is a Hilbert space and B∗ is continuous for the norm

of D(A∗) (see the introduction). Thus, its kernel ker B∗ is closed for this norm and we can write the orthogonal

decomposition

D(A∗) = ker B∗ ⊕ (ker B∗)⊥ ,

where V⊥ denotes the orthogonal of a subspace V in D(A∗). Noting that B∗ is a bijection from (ker B∗)⊥ to C (with

inverse denoted by (B∗)−1), we see that (2.7) holds if, and only if,

A∗0P∗z − P∗A∗z = 0, ∀z ∈ ker B∗, (2.8)

and

P∗Γ∗ =
(
A∗0P∗ − P∗A∗

)
(B∗)−1. (2.9)

It follows from this observation that it is enough to establish the existence of P such that (2.8) hold and P is

invertible. The map Γ will then be defined as the adjoint of the linear map Ψ : C −→ L2(0, L) defined by

Ψ =

(
(P∗)−1A∗0P∗ − A∗

)
(B∗)−1. (2.10)

Note that P∗ : D(A∗) −→ D(A∗) is continuous by the closed graph theorem, so that Ψ defined by (2.10) is bounded.

Let us summarize the discussion:

Proposition 2.2. Let P : L2(0, L) −→ L2(0, L) be a bounded linear operator such that (2.6) holds and P is invertible.

Then, there exists a bounded linear form Γ : L2(0, L) −→ C such that (2.7) holds if, and only if, P∗ satisfies (2.8).

A discussion on other expressions of Γ than (2.10) is given in Section 2.4 below.

2.2. Construction of the transformation

In this section, we are going to construct a map P such that (2.6) and (2.8) hold. We look for P in the form

P = Id − K, (2.11)

where K : L2(0, L) −→ L2(0, L) is an integral operator defined by

Kz(x) =

∫ L

0

k(x, y)z(y) dy,

with k ∈ L2((0, L) × (0, L)). Clearly, its adjoint is

K∗z(x) =

∫ L

0

k∗(x, y)z(y) dy,

7



where we set

k∗(x, y) = k(y, x).

Let us recall that K, as well as K∗, is compact on L2(0, L).

For the expression (2.11), (2.6) now read as

K∗ (D(A∗)) ⊂ D(A∗), (2.12)

and (2.8) becomes

−A∗0K∗z + K∗A∗0z + K∗G∗z −G∗z = 0, ∀z ∈ ker B∗. (2.13)

Let us now translate these properties in terms of the kernel k∗.

Proposition 2.3. Assume that

k∗ ∈ H1(T−) ∩ H1(T+), (2.14)

and let k∗
+
∈ L2(∂T+) be the trace on T+ of the restriction of k∗ to T+. Then,

i) (2.12) holds if, and only if,

k∗
+
(0, y) = 0, y ∈ (0, L). (2.15)

ii) (2.13) holds if, and only if,

k∗x(x, y) + k∗y(x, y) +

∫ L

0

g(y, σ)k∗(x, σ)dσ − g(y, x) = 0, x, y ∈ (0, L). (2.16)

Observe that if k∗ ∈ H1(T−) ∩ H1(T+), then k∗x, k
∗
y ∈ L2((0, L) × (0, L)) and (2.16) is understood as an equality for

almost every (x, y) ∈ (0, L) × (0, L).

Proof. Let us first prove the equivalence between (2.12) and (2.15). Since k∗ ∈ H1(T−) ∩ H1(T+), we have K∗z ∈
H1(0, L) for every z ∈ L2(0, L) with (see Proposition A.2 ii))

K∗z(0) =

∫ L

0

k∗
+
(0, y)z(y) dy.

Thus, (2.12) holds if, and only if, K∗z(0) = 0 for every z ∈ D(A∗), which gives (2.15) by density of D(A∗) in L2(0, L).

Let us now establish the equivalence between (2.13) and (2.16). Let us compute each terms in the left-hand side

of (2.13) for any z ∈ D(A∗). For the first term we have (see Proposition A.2 ii))

−A∗
0
K∗z(x) = ∂x

(∫ L

0

k∗(·, y)z(y) dy

)
(x)

=

(
k∗−(x, x) − k∗

+
(x, x)

)
z(x) +

∫ L

0

k∗x(x, y)z(y) dy,

where k∗− ∈ L2(∂T−) (resp. k∗
+
∈ L2(∂T+)) denotes the trace on T− (resp. T+) of the restriction of k∗ to T− (resp. T+).

On the other hand, integrating by parts the second term and using z(0) = 0 (since z ∈ D(A∗)), we have (see Proposition

A.2 i))

K∗A∗
0
z(x) = −

∫ L

0

k∗(x, y)z′(y) dy

=

∫ L

0

k∗y(x, y)z(y) dy −
(
k∗−(x, x) − k∗

+
(x, x)

)
z(x) − k∗

+
(x, L)z(L).

Finally, the remaining term gives

K∗G∗z(x) −G∗z(x) =

∫ L

0

k∗(x, y)

(∫ L

0

g(σ, y)z(σ) dσ

)
dy −

∫ L

0

g(y, x)z(y) dy

=

∫ L

0

(∫ L

0

k∗(x, σ)g(y, σ) dσ − g(y, x)

)
z(y) dy.
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As a result, summing all the previous equalities, we have

− A∗0K∗z(x) + K∗A∗0z(x) + K∗G∗z(x) −G∗z(x) =
∫ L

0

(
k∗x(x, y) + k∗y(x, y) +

∫ L

0

k∗(x, σ)g(y, σ) dσ − g(y, x)

)
z(y) dy − k∗

+
(x, L)z(L), (2.17)

for every z ∈ D(A∗). In particular, we obtain that (2.13) is equivalent to

∫ L

0

(
k∗x(x, y) + k∗y(x, y) +

∫ L

0

k∗(x, σ)g(y, σ) dσ − g(y, x)

)
z(y) dy = 0,

for every z ∈ ker B∗ = H1
0
(0, L). Since H1

0
(0, L) is dense in L2(0, L), this is equivalent to the equation (2.16).

Remark 5. In the first step of the proof we have in fact establish that (2.15) is equivalent to

K∗
(
L2(0, L)

)
⊂ D(A∗). (2.18)

We see that the operator K∗ has a regularizing effect (under assumption (2.14)).

2.2.1. Existence of the kernel

Viewing x as the time parameter in (2.15)-(2.16), it is clear that these equations have at least one solution k∗ ∈
C0([0, L]; L2(0, L)), if we add any artificial L2 boundary condition at (x, 0). In this section, we fix a particular boundary

condition such that k∗ satisfies, in addition, the final condition

k∗(L, y) = 0, y ∈ (0, L). (2.19)

This property will be used to establish the invertibility of the Fredholm transformation associated with this k∗, see

Section 2.3 below.

Proposition 2.4. Assume that (1.1) is exactly controllable at time L. Then, there exists U ∈ L2(0, L) such that the

solution k∗ ∈ C0([0, L]; L2(0, L)) to



k∗x(x, y) + k∗y(x, y) +

∫ L

0

g(y, σ)k∗(x, σ)dσ − g(y, x) = 0, x, y ∈ (0, L),

k∗(x, L) = U(x), x ∈ (0, L),

k∗(L, y) = 0, y ∈ (0, L),

(2.20)

satisfies

k∗(0, y) = 0, y ∈ (0, L). (2.21)

Proof. Since x plays the role of the time, let us introduce

k̃(t, y) = k∗(L − t, y).

Thus, we want to prove that there exists Ũ ∈ L2(0, L) such that the corresponding solution k̃ ∈ C0([0, L]; L2(0, L)) to



k̃t(t, y) − k̃y(t, y) =

∫ L

0

g(y, σ)̃k(t, σ)dσ − g(y, L − t), t, y ∈ (0, L),

k̃(t, L) = Ũ(t), t ∈ (0, L),

k̃(0, y) = 0, y ∈ (0, L),

(2.22)

satisfies

k̃(L, y) = 0, y ∈ (0, L). (2.23)
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This is a control problem, which has a solution by assumption. Indeed, let p ∈ C0([0, L]; L2(0, L)) be the free solution

to the nonhomogeneous equation



pt(t, y) − py(t, y) =

∫ L

0

g(y, σ)p(t, σ)dσ − g(y, L − t), t, y ∈ (0, L),

p(t, L) = 0, t ∈ (0, L),

p(0, y) = 0, y ∈ (0, L),

and let q ∈ C0([0, L]; L2(0, L)) be the controlled solution going from 0 to −p(L, ·):


qt(t, y) − qy(t, y) =

∫ L

0

g(y, σ)q(t, σ)dσ, t, y ∈ (0, L),

q(t, L) = Ũ(t), t ∈ (0, L),

q(0, y) = 0, q(L, y) = −p(L, y), y ∈ (0, L).

Then, the function k̃ ∈ C0([0, L]; L2(0, L)) defined by

k̃ = p + q,

satisfies (2.22)-(2.23).

2.2.2. Regularity of the kernel

The next step is to establish the regularity (2.14) for k∗ provided by Proposition 2.4.

Proposition 2.5. Let U ∈ L2(0, L) and let k∗ ∈ C0([0, L]; L2(0, L)) be the corresponding solution to (2.20). If k∗

satisfies (2.21) and (1.16) holds, then

U ∈ H1(0, L), k∗ ∈ H1(T−) ∩ H1(T+).

The proof of Proposition 2.5 relies on the following lemma:

Lemma 2.1. Let f ∈ L2((0, L) × (0, L)), V ∈ L2(0, L) and v0 ∈ L2(0, L).

i) The unique solution v ∈ C0([0, L]; L2(0, L)) to



vx(x, y) + vy(x, y) = f (x, y), x, y ∈ (0, L),

v(x, L) = V(x), x ∈ (0, L),

v(L, y) = v0(y), y ∈ (0, L),

(2.24)

is given by

v(x, y) =



V(L + x − y) −
∫ L+x−y

x

f (s, s + y − x) ds, if (x, y) ∈ T+,

v0(L + y − x) −
∫ L

x

f (s, s + y − x) ds, if (x, y) ∈ T−.

ii) If V ∈ H1(0, L) (resp. v0 ∈ H1(0, L)) and fy ∈ L2(T+) (resp. fy ∈ L2(T−)), then v ∈ H1(T+) (resp. v ∈ H1(T−)).

iii) If fy ∈ L2(T+) and v(0, ·) ∈ H1(0, L), then V ∈ H1(0, L).

Proof. Let us apply Lemma 2.1 with V = U ∈ L2(0, L), v0
= 0 and

f (x, y) = f1(x, y) + f2(x, y),

f1(x, y) = −
∫ L

0

g(y, σ)k∗(x, σ)dσ, f2(x, y) = g(y, x).
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Since k∗, g ∈ L2((0, L) × (0, L)), we have f1, f2 ∈ L2((0, L) × (0, L)). By uniqueness, the corresponding solution v to

(2.24) is equal to k∗. Since g ∈ H1(T−) ∩ H1(T+) by assumption (1.16), we have ( f2)y ∈ L2(T+) and ( f2)y ∈ L2(T−)

by definition. On the other hand, for a.e. x ∈ (0, L), the map f1(x) : y 7−→ f1(x, y) belongs to H1(0, L) with derivative

(see Proposition A.2 ii))

f1(x)′(y) = −
∫ L

0

gx(y, σ)k∗(x, σ) dσ −
(
g−(y, y) − g+(y, y)

)
k∗(x, y).

This shows that ( f1)y ∈ L2(T−) and ( f1)y ∈ L2(T+) (see Proposition A.1). Finally, since k∗ satisfies k∗(0, y) = 0

for a.e. y ∈ (0, L), by Lemma 2.1 iii) we have U ∈ H1(0, L). Then, it follows from Lemma 2.1 ii) that k∗ ∈
H1(T−) ∩ H1(T+).

2.3. Invertibility of the transformation

To conclude the whole proof of Theorem 1.1, it only remains to establish the invertibility of the transformation

Id − K∗ with k∗ provided by Proposition 2.4. Let us start with a general lemma on the injectivity of maps P∗ for P

satisfying (2.6)-(2.8).

Lemma 2.2. Let P : L2(0, L) −→ L2(0, L) be a bounded linear operator such that (2.6)-(2.8) hold. Then, we have

ker P∗ = {0} ,

if, and only if, the following four conditions hold:

i) ker P∗ ⊂ D(A∗).

ii) ker P∗ ⊂ ker B∗.

iii) dim ker P∗ < +∞.

iv) ker(λ − A∗) ∩ ker B∗ = {0} for every λ ∈ C.

Proof. Let us denote

N = ker P∗.

Assume first that i), ii), iii) and iv) hold. We want to prove that N = {0}. We argue by contradiction: assume that

N , {0}. Let us prove that N is stable by A∗. By i) we have N ⊂ D(A∗). Let then z ∈ N and let us show that A∗z ∈ N.

Since N ⊂ ker B∗ by ii), we can apply (2.8) to z and obtain

P∗A∗z = A∗0P∗z.

Since z ∈ ker P∗ by definition, this gives

P∗A∗z = 0,

and shows that A∗z ∈ ker P∗ = N. Consequently, the restriction A∗|N of A∗ to N is a linear operator from N to N. Since

N is finite dimensional by iii) and N , {0}, A∗|N has at least one eigenvalue λ ∈ C. Let ξ ∈ N be a corresponding

eigenfunction. Thus,

ξ ∈ ker(λ − A∗) ∩ ker B∗,

but

ξ , 0,

which is a contradiction with iv). As a result, we must have N = {0}.
Conversely, assume now that ker P∗ = {0}. It is clear that i), ii) and iii) hold. Let λ ∈ C and z ∈ ker(λ−A∗)∩ker B∗.

We want to prove that z = 0. By (2.8), we have

A∗0P∗z = λP∗z,

that is

(λ − A∗0)P∗z = 0.

Since λ − A∗
0

(with domain D(A∗
0
)) is injective and so is P∗ by assumption, this gives z = 0.
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Proposition 2.6. Assume that (1.1) is exactly controllable at time L and that (1.16) holds. Then, the map Id − K∗,
with k∗ provided by Proposition 2.4, is invertible.

Proof. Since K∗ is a compact operator, by Fredholm alternative it is equivalent to prove that Id − K∗ is injective. In

addition, the Fredholm alternative also gives

dim ker(Id − K∗) < +∞.

Since Id − K∗ satisfies (2.12)-(2.13), by Lemma 2.2 it is then equivalent to establish that

ker(Id − K∗) ⊂ D(A∗), ker(Id − K∗) ⊂ ker B∗.

The first inclusion follows from Remark 5 and the second inclusion follows from the fact that

B∗K∗z = 0, ∀z ∈ L2(0, L),

which is equivalent to the condition (2.19).

2.4. Feedback control law

The proof of Theorem 1.1 is by now complete but we want to give a more explicit formula for Γ. We recall that

its adjoint Γ∗ is given by (see (2.10))

Γ
∗
= (P∗)−1

(
A∗0P∗ − P∗A∗

)
(B∗)−1.

Actually, we already computed A∗
0
P∗z − P∗A∗z for any z ∈ D(A∗) in (2.17) and we obtained that

A∗0P∗z − P∗A∗z = −k∗
+
(·, L)z(L).

Thus,

P∗Γ∗a = −k∗
+
(·, L)a, a ∈ C.

Computing the adjoints, we obtain

Γu = −
∫ L

0

k−(L, x)P−1u(x) dx, u ∈ L2(0, L).

It is interesting to see that the open loop control U provided by Proposition 2.4 defines the closed loop control Γ (since

k−(L, x) = U(x) for a.e. x ∈ (0, L)).

Let us now recall that P is of the form P = Id−K and that the inverse of such an operator is also of the form Id−H

(with H = −(Id − K)−1K). Moreover, since K is an integral operator so is H, with kernel h(·, y) = −(Id − K)−1k(·, y).

We can check that h inherits the regularity of k and satisfies a similar equation:


hx(x, y) + hy(x, y) −

∫ L

0

g(σ, y)h(x, σ)dσ + g(x, y) = 0, x, y ∈ (0, L),

h(x, 0) = 0, h(x, L) = 0, x ∈ (0, L).

Finally, a simple computation shows that Γ is given by

Γu =

∫ L

0

h−(L, y)u(y) dy,

where h− ∈ L2(∂T−) denotes the trace on T− of the restriction of h to T−.
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3. Controllability

The aim of this section is to study the controllability properties of (1.1) at the optimal time T = L to provide easily

checkable conditions to apply Theorem 1.1. Let us first mention that the controllability of one-dimensional systems

generated by C0-groups has already been investigated in a series of papers [18] and [19]. However, all these papers

do not really focus on the optimal time of controllability, which is crucial to apply our stabilization theorem. Let us

also point out that the method developped in [20] seems ineffective because of the integral term
∫ L

x
g(x, y)u(t, y) dy in

(1.1). Finally, let us mention the result [21, Theorem 2.6] for the distributed controllability of compactly perturbated

systems (the case of the optimal time can not be treated though).

In order to have a good spectral theory, we consider system (1.1) with periodic boundary conditions:



ũt(t, x) − ũx(t, x) =

∫ L

0

g(x, y)̃u(t, y) dy, t ∈ (0, T ), x ∈ (0, L),

ũ(t, L) − ũ(t, 0) = Ũ(t), t ∈ (0, T ),

ũ(0, x) = ũ0(x), x ∈ (0, L),

(3.1)

where ũ0 ∈ L2(0, L) and Ũ ∈ L2(0, T ). In the abstract form, (3.1) reads



d

dt
ũ = Ãũ + B̃Ũ, t ∈ (0, T ),

ũ(0) = ũ0,

where Ã is the operator A (see (1.7)) but now with domain

D(Ã) =
{
ũ ∈ H1(0, L)

∣∣∣ ũ(L) = ũ(0)
}
,

and B̃ is the operator B (see (1.10)) but now considered as an operator ofL(C,D(Ã∗)′). The adjoints of these operators

also remain unchanged (see (1.8) and (1.11)), except for their domain:

D(Ã∗) = D(Ã), B̃∗ ∈ L(D(Ã∗),C).

Once again, we can check that Ã generates a C0-group (S̃ (t))t∈R and B̃ is admissible. Thus, (3.1) is well-posed, that

is, for every ũ0 ∈ L2(0, L) and every Ũ ∈ L2(0, T ), there exists a unique solution ũ ∈ C0([0, T ]; L2(0, L)) to (3.1) and,

in addition, there exists C > 0 (which does not depend on ũ0 nor Ũ) such that

‖̃u‖C0([0,T ];L2 (0,L)) ≤ C
(∥∥∥̃u0

∥∥∥
L2(0,L)

+

∥∥∥Ũ
∥∥∥

L2(0,T )

)
. (3.2)

The following proposition shows that it is indeed equivalent to consider (3.1) or (1.1) from a controllability point

of view.

Proposition 3.1. (1.1) is exactly controllable at time T if, and only if, (3.1) is exactly controllable at time T .

Roughly speaking, to prove Proposition 3.1, it suffices to take ũ0
= u0 and U(t) = ũ(t, 0) + Ũ(t). We postpone the

rigorous proof to Appendix C.

In addition, note that

ker(λ − A∗) ∩ ker B∗ = ker(λ − Ã∗) ∩ ker B̃∗,

for every λ ∈ C. As a result, (1.18) is equivalent to

ker(λ − Ã∗) ∩ ker B̃∗ = {0} , ∀λ ∈ C. (3.3)
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3.1. Bases and problem of moments in Hilbert spaces

Let us recall here some basic facts about bases and the problem of moments in Hilbert spaces. We follow the

excellent textbook [22]. Let H be a complex Hilbert space. We say that { fk}k∈Z is a basis in H if, for every f ∈ H there

exists a unique sequence of scalar {αk}k∈Z such that f =
∑

k∈Z αk fk. We say that { fk}k∈Z is a Riesz basis in H if it is the

image of an orthonormal basis of H through an isomorphism. We can prove that { fk}k∈Z is a Riesz basis if, and only if,

{ fk}k∈Z is complete in H and there exist m, M > 0 such that, for every N ∈ N, for every scalars α−N , . . . , αN , we have

m

N∑

k=−N

|αk |2 ≤

∥∥∥∥∥∥∥

N∑

k=−N

αk fk

∥∥∥∥∥∥∥

2

H

≤ M

N∑

k=−N

|αk |2 . (3.4)

See e.g. [22, Chapter 1, Theorem 9].

A useful criterion to prove that a sequence is a Riesz basis is the theorem of Bari (see e.g. [22, Chapter 1, Theorem

15]). It states that { fk}k∈Z is a Riesz basis of H if { fk}k∈Z is ω-independent, that is, for every sequence of scalars {ck}k∈Z,

∑

k∈Z
ck fk = 0 =⇒ (ck = 0, ∀k ∈ Z) , (3.5)

and if { fk}k∈Z is quadratically close to some orthonormal basis {ek}k∈Z of H, that is

∑

k∈Z
‖ fk − ek‖2H < +∞.

On the other hand, we say that { fk}k∈Z is a Bessel sequence in H if, for every f ∈ H, we have

∑

k∈Z

∣∣∣〈 f , fk〉H
∣∣∣2 < +∞.

We can prove that { fk}k∈Z is a Bessel sequence in H if, and only if, { fk}k∈Z satisfies the second inequality in (3.4). See

e.g. [22, Chapter 2, Theorem 3].

Finally, we say that { fk}k∈Z is a Riesz-Fischer sequence in H if, for every sequence of scalars {ck}k∈Z that belongs

to ℓ2(Z), there exists (at least) a solution f ∈ H to the problem of moments

ck = 〈 f , fk〉H , ∀k ∈ Z.

We can prove that { fk}k∈Z is a Riesz-Fischer sequence in H if, and only if, { fk}k∈Z satisfies the first inequality in (3.4).

See e.g. [22, Chapter 2, Theorem 3].

Observe then that, a Riesz basis is nothing but a complete Bessel and Riesz-Fischer sequence. We refer to [22,

Chapter 4] for more details on the problem of moments.

To prove Theorem 1.2, the idea is to write the controllability problem as a problem of moments. To achieve this

goal, and to prove that the resulting problem of moments indeed has a solution, we first need to establish some spectral

properties of our operator Ã∗.

3.2. Spectral properties of Ã∗

From now on, we assume that g depends only on its first variable x:

g(x, y) = g(x), g ∈ L2(0, L). (3.6)

The first proposition gives the basic spectral properties of Ã∗.

Proposition 3.2. Assume that (3.6) holds. Then,
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i) For every λ ∈ C, we have

ker(λ − Ã∗) =


ae−λx

+ bwλ(x)

∣∣∣∣∣∣∣∣
(a, b) ∈ C2, H(λ)


a

b

 = 0


,

where we have introduced the matrix

H(λ) =



1 − e−λL −wλ(L)∫ L

0

g(x)e−λx dx

∫ L

0

g(x)wλ(x) dx − 1


,

and the function

wλ(x) =

∫ x

0

e−λ(x−σ) dσ =



1 − e−λx

λ
if λ , 0,

x if λ = 0.

ii) We have

σ(Ã∗) =

{
λk =

2ikπ

L

∣∣∣∣∣ k ∈ Z, k , 0

}
∪

{
λ0 =

∫ L

0

g(x) dx

}
.

Proof. Let us prove i). Let λ ∈ C. Let z ∈ ker(λ − Ã∗), that is,



z ∈ H1(0, L), z(L) = z(0),

λz(x) + z′(x) −
∫ L

0

g(σ)z(σ) dσ = 0, x ∈ (0, L).
(3.7)

Solving the ODE in (3.7) yields

z(x) = e−λxz(0) + wλ(x)I, (3.8)

with

I =

∫ L

0

g(σ)z(σ) dσ.

From the boundary condition z(L) = z(0) we obtain the relation

(
1 − e−λL

)
z(0) − wλ(L)I = 0.

To obtain a second relation, we mutiply (3.8) by g and integrate over (0, L), so that

(∫ L

0

g(x)e−λx dx

)
z(0) +

(∫ L

0

g(x)wλ(x) dx − 1

)
I = 0.

Conversely, let

z(x) = ae−λx
+ bwλ(x),

where (a, b) ∈ C2 is such that

H(λ)


a

b

 = 0. (3.9)

Clearly, z ∈ H1(0, L). From the first equation of (3.9) and wλ(0) = 0, we have z(L) = z(0). From the second equation

of (3.9), z solves the ODE in (3.7).

15



Let us now turn out to the proof of ii). The map

ker H(λ) −→ ker(λ − Ã∗)
a

b

 7−→ ae−λx
+ bwλ(x),

is an isomorphism (the injectivity can be seen using wλ(0) = 0). As a result,

dim ker(λ − Ã∗) = dim ker H(λ), ∀λ ∈ C.

In particular,

λ ∈ σ(Ã∗)⇐⇒ det H(λ) = 0.

Let us now compute more precisely det H(λ). Observe that

1 − e−λx − λwλ(x) = 0, ∀λ ∈ C,∀x ∈ [0, L].

Thus, adding λ times the second column of the matrix H(λ) to its first column, we obtain

det H(λ) = det



0 −wλ(L)
∫ L

0

g(x) dx − λ
∫ L

0

g(x)wλ(x) dx − 1


,

so that

det H(λ) = wλ(L)

(∫ L

0

g(x) dx − λ
)
.

Finally, from the very definition of wλ, we can check that

wλ(L) = 0⇐⇒ λ ∈
{

2ikπ

L

∣∣∣∣∣ k ∈ Z, k , 0

}
.

Remark 6. In view of the controllability, we shall always assume that

λ0 , λk, ∀k , 0. (3.10)

Indeed, if (3.10) does not hold, then λ0 is an eigenvalue of geometric multiplicity at least two and (3.1) is then

impossible to control since the control operator is one-dimensional. This follows from the general inequality

dim ker(λ − Ã∗) ≤ dim Im B̃∗, ∀λ ∈ C,

which is a consequence of (3.3) (and we recall that (3.3) is a necessary condition to the controllability, see Remark

3). Note that (3.10) holds in particular if g is a real-valued function.

Under assumption (3.10) it is not difficult to see that the eigenspaces of Ã∗ can be rewritten as

ker(λk − Ã∗) = Span {φk} ,

where

φ0(x) = 1, φk(x) = e−λk x
+

1

λk − λ0

∫ L

0

g(x)e−λk x dx. (3.11)

Let us now write the property (3.3) more explicitely for the case (3.6) (the proof is straightforward thanks to

(3.11)).
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Proposition 3.3. Assume that (3.6) and (3.10) hold. Then, (3.3) is equivalent to

1 +
1

λk − λ0

∫ L

0

g(x)e−λk x dx , 0, ∀k , 0. (3.12)

Remark 7. Actually, (3.12) has to be checked only for a finite number of k. Indeed, (3.12) always holds for k large

enough since

1

λk − λ0

∫ L

0

g(x)e−λk x dx −−−−−→
k→±∞

0. (3.13)

On the other hand, there exist functions g such that (3.12) fails for an arbitrary large number of k. Indeed, observe

that for real-valued function g, the equality

1 +
1

λk − λ0

∫ L

0

g(x)e−λk x dx = 0,

is equivalent to (taking real and imaginary parts)



∫ L

0

g(x) cos

(
2kπ

L
x

)
dx =

∫ L

0

g(x) dx,

∫ L

0

g(x) sin

(
2kπ

L
x

)
dx =

2kπ

L
.

For instance, for any a0 ∈ R and any N ≥ 1, the function

g(x) = a0 +
2

L

N∑

k=1

a0 cos

(
2kπ

L
x

)
+

2

L

N∑

k=1

2kπ

L
sin

(
2kπ

L
x

)
,

satisfies these equalities for k = 1, . . . ,N.

The next and last proposition provides all the additional spectral properties required to apply the method of mo-

ments.

Proposition 3.4. Assume that (3.6) and (3.10) hold. Then,

i) The eigenfunctions {φk}k∈Z of Ã∗ form a Riesz basis in L2(0, L).

ii) If (3.12) holds, then infk∈Z
∣∣∣B̃∗φk

∣∣∣ > 0.

iii) The set of exponentials {e−λkt}k∈Z is a Riesz basis in L2(0, L).

Proof. i) We will use the theorem of Bari previously mentioned. Clearly, { 1√
L
φk}k∈Z is quadratically close to the

orthonormal basis { 1√
L

e
−2ikπ

L
x}k∈Z. To prove that { 1√

L
φk}k∈Z is ω-independent, it suffices to take the inner product

of the series in (3.5) with each e
−2ikπ

L
x.

ii) From (3.13) we have B̃∗φk −−−−−→
k→±∞

1 and by assumption B̃∗φk , 0 for every k ∈ Z.

iii) Again, it suffices to notice that { 1√
L

e−λkt}k∈Z is ω-independent and quadratically close to { 1√
L

e
2ikπ

L
t}k∈Z.
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3.3. Proof of Theorem 1.2

Let us first recall the following fondamental relation between the solution to (3.1) and its adjoint state:

〈̃u(T ), z〉L2 −
〈
ũ0, S̃ (T )∗z

〉
L2
=

∫ T

0

Ũ(t)B̃∗S̃ (T − t)∗z dt, ∀z ∈ L2(0, L). (3.14)

We have now everything we need to apply the method of moments and prove Theorem 1.2.

Proof. We are going to write the null-controllability problem as a problem of moments. From (3.14) we see that

ũ(L) = 0 if, and only if,

−
〈
ũ0, S̃ (L)∗z

〉
L2
=

∫ L

0

Ũ(t)B̃∗S̃ (L − t)∗z dt, ∀z ∈ L2(0, L).

Since {φk}k∈Z is a basis, it is equivalent to

−
〈
ũ0, S̃ (L)∗φk

〉
L2
=

∫ L

0

Ũ(t)B̃∗S̃ (L − t)∗φk dt, ∀k ∈ Z.

Since φk are the eigenfunctions of Ã∗, we have S̃ (τ)∗φk = eλkτφk and, as a result,

−
〈
ũ0, φk

〉
L2
=

∫ L

0

e−λktŨ(t)B̃∗φk dt, ∀k ∈ Z.

Since B̃∗φk is a nonzero scalar, this is equivalent to

ck =

∫ L

0

e−λktŨ(t) dt, ∀k ∈ Z, (3.15)

where

ck = −
1

B̃∗φk

〈
ũ0, φk

〉
L2
. (3.16)

Now, (3.15)-(3.16) is a standard problem of moments, if the sequence {ck}k∈Z belongs to ℓ2(Z). Since δ = infk∈Z
∣∣∣B̃∗φk

∣∣∣ >
0 and {φk}k∈Z is a Riesz basis (in particular, a Bessel sequence), {ck}k∈Z indeed belongs to ℓ2(Z):

∑

k∈Z
|ck |2 ≤

1

δ2

∑

k∈Z

∣∣∣∣
〈
ũ0, φk

〉
L2

∣∣∣∣
2

< +∞.

Finally, since {e−λkt}k∈Z is a Riesz basis (in particular, a Riesz-Fischer sequence), the problem of moments (3.15)-(3.16)

has a solution Ũ ∈ L2(0, L) (see Section 3.1).

Remark 8. Since {e−λk t}k∈Z is a Riesz basis, the solution Ũ ∈ L2(0, L) to the problem of moments (3.15)-(3.16) is

actually unique. This shows that, at least in the case (1.17), the control U ∈ L2(0, L) given by Proposition 2.4

is unique (note the complete analogy with the case g = 0 for which the only null-control possible in the square

(0, L) × (0, L) is U = 0). As a result, there is also only one solution to the kernel equation (2.16) with boundary

conditions (2.15) and (2.19).

Appendix A. Functions of H
1(T−) ∩ H

1(T+)

This appendix gathers some properties of the functions of H1(T−) ∩ H1(T+). We start with a characterization of

the space H1(T+) (with an obvious analogous statement for H1(T−)). We recall that, by definition, f ∈ H1(T+) if

f ∈ L2(T+) and fx, fy ∈ L2(T+), where fy ∈ L2(T+) means that there exists F ∈ L2(T+) such that

∫∫

T+
f (x, y)φy(x, y) dxdy = −

∫∫

T+
F(x, y)φ(x, y) dxdy, ∀φ ∈ C∞c (T+).

Such a F is unique and it is also denoted by fy.
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Proposition A.1. Let f ∈ L2(T+). The two following properties are equivalent:

i) fy ∈ L2(T+).

ii) For a.e. x ∈ (0, L), the map

f (x) : y 7−→ f (x, y),

belongs to H1(x, L) and ∫∫

T+

∣∣∣ f (x)′(y)
∣∣∣2 dydx < +∞.

Moreover, f (x)′(y) = fy(x, y).

With the help of Proposition A.1 it is not difficult to establish the following.

Proposition A.2. Let f ∈ H1(T−) ∩ H1(T+) and let us denote by f− ∈ L2(∂T−) (resp. f+ ∈ L2(∂T+)) the trace on T−
(resp. T+) of the restriction of f to T− (resp. T+).

i) For every ϕ ∈ H1(0, L), for a.e. x ∈ (0, L), we have

∫ L

0

f (x, y)ϕ′(y) dy = −
∫ L

0

fy(x, y)ϕ(y) dy +
(

f−(x, x) − f+(x, x)
)
ϕ(x) − f−(x, 0)ϕ(0) + f+(x, L)ϕ(L).

ii) For every ϕ ∈ L2(0, L), the map

Φ : x 7→
∫ L

0

f (x, y)ϕ(y) dy,

is in H1(0, L) with derivative

Φ
′(x) =

(
f−(x, x) − f+(x, x)

)
ϕ(x) +

∫ L

0

fx(x, y)ϕ(y) dy,

and traces

Φ(0) =

∫ L

0

f+(0, y)ϕ(y) dy, Φ(L) =

∫ L

0

f−(L, y)ϕ(y) dy.

Appendix B. Proof of proposition 2.1

This appendix is devoted to the proof of Proposition 2.1.

Proof. Let u0 ∈ L2(0, L) be fixed. Set w0
= P−1u0 ∈ L2(0, L) and let w ∈ C0([0, T ]; L2(0, L)) be the corresponding

solution to (2.2). Let us recall that this means that w satisfies

∫ τ

0

∫ L

0

w(t, x)
(
− ψt(t, x) + ψx(t, x)

)
dxdt +

∫ L

0

w(τ, x)ψ(τ, x) dx −
∫ L

0

w0(x)ψ(0, x) dx = 0, (B.1)

for every ψ ∈ C1([0, τ] × [0, L]) such that ψ(·, 0) = 0, and every τ ∈ [0, T ]. Note that, by density, it is equivalent to

take test functions ψ in L2(0, τ; H1(0, L)) ∩C1([0, τ]; L2(0, L)). Let u be defined by

u(t) = Pw(t).

Since w ∈ C0([0, T ]; L2(0, L)), it is clear that

u ∈ C0([0, T ]; L2(0, L)).

Moreover, since w(T ) = 0, we also have

u(T ) = 0.
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Let us now establish that u is the solution to (1.13), that is it satisfies

∫ τ

0

∫ L

0

u(t, x)

(
−φt(t, x) + φx(t, x) −

∫ L

0

g(y, x)φ(t, y) dy

)
dxdt

+

∫ L

0

u(τ, x)φ(τ, x) dx −
∫ L

0

u0(x)φ(0, x) dx −
∫ τ

0

Γu(t)φ(t, L) dt = 0, (B.2)

for every φ ∈ C1([0, τ] × [0, L]) such that φ(·, 0) = 0, and every τ ∈ [0, T ]. Since u = Pw and u0
= Pw0 by definition,

we have

∫ τ

0

〈
u(t),− d

dt
φ(t) − A∗φ(t)

〉

L2

dt + 〈u(τ), φ(τ)〉L2 −
〈
u0, φ(0)

〉
L2

=

∫ τ

0

〈
w(t),− d

dt
P∗φ(t) − P∗A∗φ(t)

〉

L2

dt + 〈w(τ), P∗φ(τ)〉L2 −
〈
w0, P∗φ(0)

〉
L2
.

On the other hand, since φ ∈ L2(0, τ; D(A∗)), we can use the hypothesis (2.7) so that

−P∗A∗φ(t) = −A∗0P∗φ(t) + P∗Γ∗B∗φ(t).

It follows that

∫ τ

0

〈
u(t),− d

dt
φ(t) − A∗φ(t)

〉

L2

dt + 〈u(τ), φ(τ)〉L2 −
〈
u0, φ(0)

〉
L2

=

∫ τ

0

〈
w(t),− d

dt
P∗φ(t) − A∗0P∗φ(t)

〉

L2

dt + 〈w(τ), P∗φ(τ)〉L2 −
〈
w0, P∗φ(0)

〉
L2
+

∫ τ

0

〈w(t), P∗Γ∗B∗φ(t)〉L2 dt.

Taking the test function ψ = P∗φ in (B.1) (note that ψ ∈ L2(0, τ; H1(0, L)) and satisfies ψ(·, 0) = 0 since P∗ (D(A∗)) ⊂
D(A∗) by assumption), we see that the second line in the above equality is in fact equal to zero. Taking the adjoints in

the remaining term, we obtain (B.2).

Appendix C. Controllability of (3.1) and controllability of (1.1)

This appendix is devoted to the proof of Proposition 3.1. The proof will use the following two lemmas.

Lemma C.1. Assume that

ũ0 ∈ D(Ã), Ũ ∈ H1(0, T ), Ũ(0) = 0. (C.1)

Then, the solution ũ to (3.1) belongs to H1((0, T ) × (0, L)) and satisfies (3.1) almost everywhere.

Proof. It follows from (C.1) and the abstract result [23, Proposition 4.2.10] that

ũ ∈ C1([0, T ]; L2(0, L)).

On the other hand, by definition, we have

∫ T

0

∫ L

0

ũ(t, x)

(
−φt(t, x) + φx(t, x) −

∫ L

0

g(y, x)φ(t, y) dy

)
dxdt−

∫ L

0

ũ0(x)φ(0, x) dx−
∫ T

0

Ũ(t)φ(t, L) dt = 0, (C.2)

for every φ ∈ C1([0, T ] × [0, L]) such that φ(t, L) = φ(t, 0) and φ(T, x) = 0. In particular, for every φ ∈ C∞c ((0, T ) ×
(0, L)), this gives

−
∫ T

0

∫ L

0

ũ(t, x)φt(t, x) dxdt +

∫ T

0

∫ L

0

ũ(t, x)φx(t, x) dxdt −
∫ T

0

∫ L

0

ũ(t, x)

(∫ L

0

g(y, x)φ(t, y) dy

)
dxdt = 0. (C.3)
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On the other hand, since ũ ∈ C1([0, T ]; L2(0, L)), we have

∫ T

0

∫ L

0

ũ(t, x)φt(t, x) dxdt = −
∫ T

0

∫ L

0

ũt(t, x)φ(t, x) dxdt.

Coming back to (C.3) we then obtain

∫ T

0

∫ L

0

ũ(t, x)φx(t, x) dxdt =

∫ T

0

∫ L

0

(
−ũt(t, x) +

∫ L

0

ũ(t, y)g(x, y) dy

)
φ(t, x) dxdt.

Since the map

(t, x) 7−→ −ũt(t, x) +

∫ L

0

ũ(t, y)g(x, y) dy,

belongs to L2((0, T ) × (0, L)), this shows that ũx ∈ L2((0, T ) × (0, L)) with

−ũx(t, x) = −ũt(t, x) +

∫ L

0

ũ(t, y)g(x, y) dy, for a.e. t ∈ (0, T ), x ∈ (0, L). (C.4)

Now, multiplying (C.4) by φ ∈ C1([0, T ] × [0, L]) such that φ(t, L) = φ(t, 0) and φ(T, x) = 0, integrating by parts and

comparing with (C.2), we obtain

∫ L

0

ũ(0, x)φ(0, x) dx +

∫ T

0

ũ(t, L)φ(t, L) dt =

∫ L

0

ũ0(x)φ(0, x) dx +

∫ T

0

Ũ(t)φ(t, L) dt.

Taking φ(t, x) = φ1(t)φ2(x) with φ1 ∈ C∞([0, T ]) such that φ1(0) = 1 and φ1(T ) = 0, and φ2 ∈ C∞c (0, L), we obtain

∫ L

0

ũ(0, x)φ2(x) dx =

∫ L

0

ũ0(x)φ2(x) dx.

Since C∞c (0, L) is dense in L2(0, L), this gives

ũ(0, x) = ũ0(x), for a.e. x ∈ (0, L).

Similarly, we can prove that

ũ(t, L) = Ũ(t), for a.e. t ∈ (0, T ).

Lemma C.2. Let V = D(Ã) ×
{
Ũ ∈ H1(0, T )

∣∣∣ Ũ(0) = 0
}
. The map

V −→ L2(0, T )
(
ũ0, Ũ

)
7−→ ũ(·, 0),

(C.5)

where ũ is the solution to (3.1), has a unique continuous extension to L2(0, L) × L2(0, T ). We shall keep the notation

ũ(·, 0) to denote this extension.

Proof. In virtue of Lemma C.1, for
(
ũ0, Ũ

)
∈ V , the map (C.5) is well-defined and (3.1) is satisfied almost everywhere.

Multiplying (3.1) by (L − x)̃u, we obtain

∫ T

0

1

2

d

dt

(∫ L

0

(L − x) |̃u(t, x)|2 dx

)
dt −

∫ T

0

∫ L

0

(L − x)
1

2
∂x

(
|̃u(t, x)|2

)
dxdt

=

∫ T

0

∫ L

0

(∫ L

0

g(x, y)̃u(t, y) dy

)
(L − x)̃u(t, x) dtdx.
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Integrating by parts, this gives

1

2

∫ L

0

(L − x) |̃u(T, x)|2 dx − 1

2

∫ L

0

(L − x)
∣∣∣̃u0(x)

∣∣∣2 dx

+
1

2
L

∫ T

0

|̃u(t, 0)|2 dt − 1

2

∫ T

0

∫ L

0

|̃u(t, x)|2 dxdt =

∫ T

0

∫ L

0

(∫ L

0

g(x, y)̃u(t, y) dy

)
(L − x)̃u(t, x) dtdx.

Using the inequality ab ≤ 1
2
a2
+

1
2
b2 (for a, b ≥ 0) and the Cauchy-Schwarz’s inequality, we can estimate the term on

the right-hand side by ‖̃u‖2C0([0,T ];L2(0,L)). Using then (3.2), we obtain

∫ T

0

|̃u(t, 0)|2 dt ≤ C

(∥∥∥ũ0
∥∥∥2

L2(0,L)
+

∥∥∥Ũ
∥∥∥2

L2(0,T )

)
,

for some C > 0 (which does not depend on ũ0 nor Ũ). As a result, the linear map (C.5) is continous on L2(0, L) ×
L2(0, T ). Since V is dense in L2(0, L)×L2(0, T ), we can extend this map in a unique continuous way to this space.

We can now give the proof of Proposition 3.1:

Proof. Let ũ0 ∈ L2(0, L) and Ũ ∈ L2(0, T ). Let ũ ∈ C0([0, T ]; L2(0, L)) be the corresponding solution to (3.1). By

density of D(Ã) in L2(0, L) and of C∞c (0, T ) in L2(0, T ), there exist sequences

ũ0
n ∈ D(Ã), Ũn ∈ C∞c (0, T ),

such that

ũ0
n −−−−−→

n→+∞
ũ0 in L2(0, L), Ũn −−−−−→

n→+∞
Ũ in L2(0, T ). (C.6)

Let ũn ∈ C0([0, T ]; L2(0, L)) be the solution to



(̃un)t (t, x) − (̃un)x (t, x) =

∫ L

0

g(x, y)̃un(t, y) dy, t ∈ (0, T ) x ∈ (0, L),

ũn(t, L) − ũn(t, 0) = Ũn(t), t ∈ (0, T ),

ũn(0, x) = ũ0
n(x), x ∈ (0, L).

(C.7)

By (3.2) and (C.6), we have

ũn −−−−−→
n→+∞

ũ in C0([0, T ]; L2(0, L)).

On the other hand, by Lemma C.1, we know that

ũn ∈ H1((0, T ) × (0, L)),

and that (C.7) is satisfied almost everywhere. Let τ ∈ [0, T ] and φ ∈ C1([0, τ] × [0, L]) be such that φ(·, 0) = 0.

Multiplying (C.7) by φ and integrating by parts yields

∫ τ

0

∫ L

0

ũn(t, x)

(
−φt(t, x) + φx(t, x) −

∫ L

0

g(y, x)φ(t, y) dy

)
dxdt

+

∫ L

0

ũn(τ, x)φ(τ, x) dx −
∫ L

0

ũ0
n(x)φ(0, x) dx −

∫ τ

0

(
ũn(t, 0) + Ũn(t)

)
φ(t, L) dt = 0. (C.8)

By Lemma C.2 and (C.6), we know that

ũn(·, 0) −−−−−→
n→+∞

ũ(·, 0) in L2(0, τ).
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Thus, passing to the limit n→ +∞ in (C.8), we obtain

∫ τ

0

∫ L

0

ũ(t, x)

(
−φt(t, x) + φx(t, x) −

∫ L

0

g(y, x)φ(t, y) dy

)
dxdt

+

∫ L

0

ũ(τ, x)φ(τ, x) dx −
∫ L

0

ũ0(x)φ(0, x) dx −
∫ τ

0

(
ũ(t, 0) + Ũ(t)

)
φ(t, L) dt = 0.

This shows that ũ is the (unique) solution of (1.1) with u0
= ũ0 and U(t) = ũ(t, 0) + Ũ(t).
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