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SUMMARY 

Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The 

parasites migrate from the dermis to the liver, where they invade hepatocytes through a 

moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites 

need to traverse cells during progression through host tissues, a process requiring parasite 

perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient 

vacuoles that precede PV formation. Sporozoites initially invade cells inside transient 

vacuoles by an active MJ-independent process that does not require vacuole membrane 

remodeling or release of parasite secretory organelles typically involved in invasion. 

Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host 

lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane 

composition, precluding lysosome fusion. The malaria parasite has thus evolved different 

strategies to evade host cell defense and establish an intracellular niche for replication. 
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INTRODUCTION 

Malaria begins when Plasmodium sporozoites are deposited in the host skin by a 

female Anopheles mosquito. They rapidly travel to the liver and invade hepatocytes, where 

they differentiate into exo-erythrocytic forms (EEFs) and pathogenic merozoites inside a 

membrane-bound compartment, the parasitophorous vacuole (PV). Sporozoite progression 

through the host tissues following transmission by the mosquito relies on active gliding 

motility and the capacity of the parasite to migrate through cells (Ménard et al., 2013). During 

cell traversal (CT), sporozoites breach the host cell membrane and glide through the 

traversed cell cytoplasm (Mota et al., 2001). Reverse genetics studies have identified several 

parasite factors involved in sporozoite CT (Bhanot et al., 2005; Ishino et al., 2004, 2005; 

Kariu et al., 2006; Moreira et al., 2008; Talman et al., 2011). Among these factors, the 

Perforin-Like Protein 1 (PLP1, also called SPECT2), belongs to an evolutionary conserved 

family of pore-forming proteins characterized by the presence of a membrane attack 

complex/perforin (MACPF) domain (Kaiser et al., 2004). Recombinant forms of P. falciparum 

PLP1 protein or its MACPF domain were shown to have membrane lytic activity (Garg et al., 

2013). It has been proposed that PLP1-mediated perforation of the host cell plasma 

membrane facilitates parasite entry into the traversed cell (Ishino et al., 2005), but the 

mechanisms of membrane rupturing during sporozoite CT have not been elucidated. 

The use of CT-deficient mutant P. berghei parasites, combined with intravital imaging 

approaches, established that CT allows migration of the parasites to the liver parenchyma 

following inoculation by the mosquito. In particular, plp1-knockout P. berghei sporozoites 

have reduced infectivity to rodents, associated with a lack of sporozoite CT activity in vitro 

and impaired parasite progression through the dermis and the liver sinusoidal barrier in vivo 

(Amino et al., 2008; Ishino et al., 2005; Tavares et al., 2013). CT was initially proposed to 

activate the parasite for productive invasion (Mota et al., 2002), notably based on the 

observation that sporozoites traverse several hepatocytes before establishing a PV, both in 

vitro and in vivo (Frevert et al., 2005; Mota et al., 2001). Nevertheless, CT-deficient 

sporozoites can productively invade hepatocytes in vitro as efficiently as WT parasites 
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(Amino et al., 2008; Ishino et al., 2004, 2005). In one study, plp1-deficient P. berghei 

sporozoites were reported to infect cells more rapidly than normal sporozoites, leading to the 

conclusion that CT retards rather than activates productive invasion (Amino et al., 2008). 

However, the kinetics of CT and productive invasion during the course of infection have not 

been studied in detail in any of these studies. 

Here we investigated the temporal and molecular mechanisms of CT and productive 

invasion during sporozoite infection. We found that CT precedes productive invasion, and 

that during CT Plasmodium sporozoites actively invade cells inside transient vacuoles, which 

are distinct from PVs. Plp1-knockout sporozoites fail to egress from transient vacuoles and 

are eliminated after fusion with the host cell lysosomes. Furthermore, treating cells with a 

selective inhibitor of lysosomal acidification abrogates sporozoite CT, reproducing the plp1-

knockout phenotype. Our data reveal that Plasmodium sporozoites can actively invade cells 

inside two different vacuoles, and either use PLP1 and pH sensing to egress from transient 

non-replicative vacuoles, or remodel the PV membrane to escape degradation by the host 

cell lysosomal machinery. 
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RESULTS 

Sporozoite host cell traversal precedes productive invasion 

To analyze the kinetics of sporozoite CT and host cell infection, we took advantage of 

a GFP-expressing P. yoelii strain (Manzoni et al., 2014) and a robust experimental setup 

consisting of two related hepatocytic cell lines, HepG2/CD81 and parental HepG2 cells 

(Silvie et al., 2006a). HepG2/CD81 cells express the host entry factor CD81 and support P. 

yoelii CT and productive invasion, whereas the parental HepG2 cells lack CD81 and support 

P. yoelii CT but not productive invasion (Risco-Castillo et al., 2014; Silvie et al., 2003, 

2006a). 

CT activity was monitored by flow cytometry using an established wound-repair assay 

based on uptake of a fluorescent dextran tracer by traversed cells (Mota et al., 2001) (Figure 

1A). CT activity was maximal during the first hour of sporozoite incubation with cells, as 

shown by the rapid increase of dextran-positive cell numbers (Figure 1B), and was similar in 

HepG2 and HepG2/CD81 cells, as expected (Silvie et al., 2003, 2006a). The sporozoite 

invasion rate, defined as the percentage of GFP-positive cells, remained low in HepG2 cells 

throughout the assay, consistent with the transient intracellular localization of sporozoites 

during CT (Figure 1C). The percentage of GFP-positive HepG2/CD81 cells was also initially 

low and identical to that in HepG2 cells, and showed a marked increase only after a delay, 

which varied from 30 to 90 minutes depending on the experiments (Figure 1C). 

Detection of GFP-positive cells by FACS allows to quantify sporozoite invasion, but 

does not discriminate between sporozoite CT and productive invasion inside a PV. To 

distinguish productive from non-productive invasion events, cell cultures inoculated with 

sporozoites were dissociated by trypsin treatment at different time points, re-plated and 

cultured for an additional 24-36 hours, before quantification of productive invasion events 

based on the number of developing EEFs (Figure 1A). This assay revealed that early 

invasion events were non-productive in HepG2/CD81 cells, whereas late invasion events 

coincided with parasite development into EEFs (Figure 1D). Collectively, these data 
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establish that early invasion events correspond to sporozoite CT activity, and are followed by 

a second phase of CD81-dependent productive invasion. 

 

Sporozoites form transient vacuoles during cell traversal 

Surprisingly, more than 50% of invaded (GFP-positive) HepG2 cells were dextran-

negative at early time points, suggestive of parasite entry without membrane damage, 

whereas later during the course of infection most invaded cells were dextran-positive (Figure 

2A). Furthermore, transmission electron microscopy (TEM) images of P. yoelii-infected 

HepG2 cells revealed the presence of a membrane around some sporozoites (Figure 2B-C). 

Because P. yoelii can traverse but not productively invade HepG2 cells, these results 

suggest that CT events may involve the formation of transient vacuoles. To test this 

hypothesis, we imaged PyGFP sporozoites incubated with HepG2 cells expressing a 

fluorescent marker of the plasma membrane, N20-mCherry, consisting of mCherry fused to 

the N-terminal region of neuromodulin (Zuber et al., 1989). Shortly after adding sporozoites 

to HepG2/N20-mCherry cells, intracellular GFP parasites could be observed enclosed in 

N20-mCherry-labeled vacuoles (Figure 2D), which were also stained with filipin, a 

cholesterol-binding agent that selectively labels the host cell but not the sporozoite 

membrane (Bano et al., 2007). A large proportion (40-50%) of intracellular sporozoites were 

contained inside filipin and N20-mCherry-labeled vacuoles at early time points (Figure 2E), 

corroborating the FACS results. In addition, we could image by spinning disk confocal 

microscopy sporozoite egress from N20-mCherry-labeled vacuoles (Figure 2F and Movie 

S1 and S2). These data provide direct evidence that Plasmodium sporozoites can traverse 

cells by forming transient vacuoles (TVs). 

 

PLP1-deficient sporozoites do not egress from transient vacuoles 

 We then hypothesized that PLP1, which is required for CT (Ishino et al., 2005), may 

play a role in egress from TVs. We generated GFP-expressing plp1-deficient parasites in P. 

yoelii using the recent ‘Gene Out Marker Out’ strategy (Manzoni et al., 2014) (Figure S1A 
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and S1B). PyΔplp1 mutants showed no defect during blood stage replication, transmission to 

mosquitoes and sporozoite production (Figure S1C-E). PyΔplp1 sporozoites were motile and 

developed into EEFs in vitro as efficiently as control parasites, but were poorly infective to 

mice in vivo, especially when administered through mosquito bites, the natural transmission 

route (Figure S2A-E). This loss of infectivity was associated with a complete abrogation of 

CT activity (Figure S2F-H). 

Surprisingly, in our in vitro invasion assays, the percentage of GFP-positive cells was 

much higher with PyΔplp1 sporozoites than with PyGFP, in both HepG2 and HepG2/CD81 

cells (Figure 3A-B, curves). However, like PyGFP, PyΔplp1 sporozoites did not develop into 

EEFs inside HepG2 cells, showing that in the absence of CD81 all invasion events were non-

productive (Figure 3A, histograms). In HepG2/CD81 cells, PyΔplp1 formed similar numbers 

of EEFs as PyGFP (Figure 3B, histograms), despite higher invasion rates, indicating that 

invasion events were for a large part non-productive. EEF development coincided with late 

invasion events, as observed with PyGFP. 

Importantly, all PyΔplp1 sporozoites inside HepG2 were contained inside a vacuole, 

as evidenced by TEM (Figure 3C) and fluorescent labeling by filipin and N20-mCherry 

(Figure 3D and 3E). No egress of PyΔplp1 sporozoites was observed in live cell imaging 

experiments (Figure 3F and Movie S3). Similar results were obtained with P. berghei 

sporozoites in Hepa1-6 cells (Figure S3). 

Taken together, these data indicate that PLP1 is required for sporozoite egress from 

non-replicative TVs but not for entry into cells. Our results also show that abrogation of CT 

does not accelerate commitment to productive invasion, and that PyΔplp1 form both TVs and 

PVs in HepG2/CD81 cells.  

 

TVs are formed without rhoptry secretion or remodeling of the vacuole membrane 

Our data show that sporozoites can invade cells inside two types of vacuoles, non-

replicative TVs or replicative PVs. We further characterized the mechanism of formation of 

TVs, using the PyΔplp1 mutant, where abrogation of sporozoite egress results in the 
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accumulation of TVs inside cells. PyΔplp1 sporozoite invasion of HepG2 and HepG2/CD81 

cells was prevented by exposure to cytochalasin D or anti-CSP antibodies, which both inhibit 

sporozoite motility, (Figure 4A). This demonstrates that formation of TVs, like PVs, is an 

active process driven by the parasite motility, and not the result of passive uptake by the host 

cells. 

We have shown before that productive host cell invasion is associated with discharge 

of the sporozoite rhoptries, resulting in depletion of the rhoptry proteins RON2 and RON4 

(Risco-Castillo et al., 2014). Interestingly, PyΔplp1 sporozoite rhoptries, when visible, 

appeared intact on TEM images of invaded HepG2 cells (Figure 3C), suggesting entry 

without rhoptry secretion. To corroborate this finding, we genetically engineered a PyΔplp1 

parasite line expressing a mCherry-tagged version of RON4, and examined by fluorescence 

microscopy RON4-mCherry expression during sporozoite host cell invasion, using filipin 

staining to label intracellular vacuoles (Figure 4B). In HepG2 cells, where all the vacuoles 

correspond to TVs only, sporozoites still expressed apical RON4-mCherry, at all time points 

examined, in both PyΔplp1/RON4::mCherry and PyGFP/RON4::mCherry parasites (Figure 

4B and 4C). In HepG2/CD81 cells, sporozoites inside vacuoles also expressed RON4-

mCherry at early time points (30 min), when vacuoles correspond to TVs. Depletion of 

RON4-mCherry was observed at later time points, indicative of rhoptry discharge during 

productive invasion and formation of the PVs (Figure 4B and 4C). RON4 depletion was seen 

in a smaller proportion of the PyΔplp1/RON4::mCherry as compared to 

PyGFP/RON4::mCherry parasites, consistent with the fact that PLP1-deficient sporozoites 

predominantly form non-productive vacuoles. Altogether, these data confirm that formation of 

TVs, unlike PVs, occurs without rhoptry discharge. 

We next examined the presence of host proteins on the membrane of TVs versus 

PVs. We found that N20-mCherry and Basigin, an abundant transmembrane protein, were 

both included in the membrane of PyΔplp1 vacuoles inside HepG2 cells, which correspond to 

TVs (Figure 4D-F). Interestingly, a vast majority (>85%) of these vacuoles were also labeled 

with phalloidin, which binds to F-actin (Figure 4E and 4F). Similar results were obtained with 
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PyGFP sporozoites in HepG2 cells (Figure S4). This suggests that sporozoites include 

cortical cytoskeleton components during formation of TVs. In sharp contrast, all three 

markers were efficiently excluded from PVs in HepG2/CD81 cells (Figure 4F-G and Figure 

S4). These results indicate that host membrane proteins are excluded from the PV 

membrane (PVM) during productive invasion, whereas TVs are formed without remodeling of 

the vacuole membrane. 

 

PyΔplp1 non-replicative vacuoles are eliminated by host cell lysosomes 

PyΔplp1 sporozoites were retained inside vacuoles in HepG2 cells but failed to 

develop into EEFs, and were eliminated within 12 hours of infection (Figure 5A). In 

HepG2/CD81 cells, the number of infected cells also decreased over time but 20 to 50% of 

the parasites persisted and developed into EEFs (Figure 5A). We hypothesized that the host 

cell lysosomal machinery may be responsible for the elimination of PyΔplp1 non-replicative 

vacuoles. To test this hypothesis, we used the acidic organelle probe Lysotracker-red and 

antibodies against the lysosomal associated membrane protein 1 (LAMP1). About 80% of 

intracellular PyΔplp1 parasites were labeled by Lysotracker-red in HepG2 cells, whereas in 

HepG2/CD81 both Lysotracker-positive and Lysotracker-negative parasites could be found 

(Figure 5B and 5D). Similarly, LAMP1 staining was observed on most PyΔplp1 vacuoles 

inside HepG2 cells, and on a fraction of the parasites inside HepG2/CD81 cells (Figure 5C 

and 5D). Similar results were obtained with P. berghei in Hepa1-6 cells (Figure S3F). 

To further explore whether a similar phenomenon occurs in vivo, we examined liver 

cryosections from BALB/c mice injected with PyGFP or PyΔplp1 sporozoites. PyΔplp1 

parasites detected in the liver parenchyma lacked the PVM marker UIS4 but were labeled by 

anti-LAMP1 antibodies (Figure 5E and Figure S5A-B), corroborating results obtained in cell 

cultures (Figure 5D and Figure S5C-D). Conversely, only a minority of PyGFP parasites was 

LAMP1-positive in the liver, showing that a large proportion of WT parasites do not fuse with 

lysosomes in infected hepatocytes in vivo. 
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We also documented the degradation of non-replicative PyΔplp1 vacuoles by TEM 

analysis of infected HepG2 cells, which revealed accumulation of granular material inside the 

vacuole, suggestive of secondary lysosomes (Figure S5E). 

Treatment of cells with chloroquine (CQ), to inhibit lysosome acidification, enhanced 

PyΔplp1 sporozoite persistence in HepG2 cells (Figure 5F), but these sporozoites still failed 

to develop into EEFs (data not shown). Collectively, our results reveal that invaded PyΔplp1 

parasites are efficiently recognized and eliminated by the host cell lysosomes in HepG2 cells, 

whereas in HepG2/CD81 cells some parasites successfully form a PV, via CD81, avoid 

lysosomal degradation and develop into EEFs. Accordingly, PyGFP and PyΔplp1 EEFs 

developing inside HepG2/CD81 cells were not labeled by Lysotracker-red (Figure S5F). 

 

PLP1-mediated sporozoite egress depends on lysosomal acidification 

In T. gondii, low pH promotes membrane binding and cytolytic activity of PLP1 (Roiko 

et al., 2014). We hypothesized that Plasmodium PLP1 activity might also be regulated by the 

pH, and that acidification of the vacuole upon fusion with lysosomes would activate PLP1 

and parasite egress from TVs. To test this hypothesis, we incubated PyGFP sporozoites with 

host cells pre-treated with bafilomycin A1, a selective inhibitor of vacuolar-type H+-ATPases 

that blocks lysosomal acidification (Yoshimori et al., 1991). Remarkably, pre-treatment of 

cells with bafilomycin A1 suppressed sporozoite CT (Figure 6A-B). Concomitantly, we 

observed an increase in the number of PyGFP-invaded cells, in both HepG2/CD81 cells and 

HepG2 cells (Figure 6A-B, red bars). These results are reminiscent of the behavior of 

PyΔplp1 sporozoites (Figure 3 A-B). Similar numbers of EEFs were observed in bafilomycin 

A1-treated cells as in control cells (Figure 6C). However, in addition to EEFs, a population of 

non-developing sporozoites was observed in bafilomycin A1 treated cells (Figure 6D). These 

persisting intracellular sporozoites were found in both HepG2 and HepG2/CD81, and likely 

correspond to parasites that did not egress from non-replicative TVs yet avoided degradation 

owing to inhibition of lysosome function, as observed with PyΔplp1 mutant parasites in CQ-

treated cells. 
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Collectively, our data support a model where Plasmodium sporozoites, during CT, 

actively invade cells inside transient non-replicative vacuoles, independently of host entry 

factors and without forming a moving junction (Figure 7). Sporozoites use pH sensing and 

PLP1 to egress from these non-replicative vacuoles and avoid degradation by the host cell 

lysosomal machinery. Subsequently, parasites enter a MJ-dependent PV that supports 

parasite liver stage development. 
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DISCUSSION 

Malaria sporozoites can invade cells either transiently during CT, or by establishing a 

resident PV where they further develop into EEFs. Here we show that transmigrating 

sporozoites do not necessarily breach the host cell membrane at the time of invasion, as 

currently believed, but enter cells inside transient vacuoles, from which they subsequently 

egress using PLP1 and pH sensing. Our FACS and microscopy data demonstrate that a 

large proportion of early CT events occur after the formation of TVs, whereas late traversal 

events are associated with membrane rupture before complete sealing of a primary vacuole. 

This might be due to variations in parasite motility over time or reflect the timing of secretion 

and/or activation of PLP1. 

Apicomplexan zoites productively invade host cells through a MJ, a structure 

composed in part by RON proteins secreted from the parasite rhoptries (Besteiro et al., 

2011). The MJ anchors the invading parasite to the host cell, and serves as a molecular 

sieve that selectively excludes host proteins from the membrane of the nascent vacuole, 

resulting in protection from the host cell lysosomes (Mordue et al., 1999). Although the 

nature of the Plasmodium sporozoite MJ remains elusive, our data show that productive 

invasion is associated with depletion of sporozoite RON proteins and exclusion of several 

host proteins from the PVM. In contrast, we observed no sign of depletion of RON4 from 

sporozoites during formation of TVs. Although we cannot formally exclude partial rhoptry 

secretion during non-productive invasion, these results, combined with the TEM images, 

strongly suggest that rhoptries are not discharged during entry inside TVs. In addition, we 

provide evidence that host membrane proteins as well as cortical F-actin are incorporated in 

the membrane of TVs. This suggests that molecular partitioning occurs during productive 

invasion only, supposedly at the moving junction, but not during TV formation. Collectively, 

our data illustrate that TVs are formed without rhoptry secretion or remodeling of the vacuole 

membrane, two characteristic features of MJ-dependent productive invasion. From these 

data we conclude that formation of TVs results from active MJ-independent sporozoite 

invasion, which is different from the classical mechanism of PV formation in Apicomplexa. 
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Analysis of the invasion kinetics of PyGFP and PyΔplp1 sporozoites indicates that 

most non-productive events occur earlier than productive host cell entry. This observation 

suggests that vigorous sporozoite motility allows parasite internalization inside TVs, whereas 

productive invasion inside the PV is only possible after activation of the parasite. It has been 

proposed that CT activates sporozoites for commitment to productive invasion (Mota et al., 

2002). However, CT-deficient P. berghei (Ishino et al., 2004, 2005) and P. yoelii (this study) 

sporozoites infect hepatocytes with normal efficiency in vitro, showing that prior contact with 

the host cell cytoplasm is not required for parasite activation. Another study reported that CT 

retards productive invasion, based on the observation that PbΔplp1 sporozoites invade cells 

more rapidly than normal parasites (Amino et al., 2008). We also observed that PyΔplp1 and 

PbΔplp1 sporozoites invade cells more rapidly than control parasites, yet our data clearly 

show that these early events are non-productive. Productive invasion occurs after a 

significant delay in both WT and CT-deficient parasites, indicating that CT itself has no 

impact on parasite activation. The delayed onset of productive invasion that we observed in 

vitro is consistent with the physiological need for the parasite to migrate from the injection 

site in the skin to its replication site in the liver in vivo. In this regard, it has been shown that 

P. yoelii sporozoites leave the inoculation site in the skin up to one hour or more after 

intradermal injection (Yamauchi et al., 2007). 

PLP1-deficient sporozoites, similarly to WT parasites, invade cells by forming TVs but 

fail to egress and are retained inside non-replicative vacuoles that fuse with lysosomes, 

resulting in a dramatic reduction of infectivity in vivo. Not surprisingly, they remain capable of 

forming EEFs in vitro, as observed before with CT-deficient P. berghei lines (Bhanot et al., 

2005; Ishino et al., 2004, 2005; Kariu et al., 2006; Moreira et al., 2008; Talman et al., 2011). 

It should be noted that in vitro only a small proportion (less than 10%) of the PyΔplp1 

sporozoites invade cells and get trapped inside TVs during the early stages of infection. Most 

parasites remain extracellular and can eventually commit to the second phase of productive 

invasion upon activation, explaining why EEF numbers are not reduced in vitro with the 

Δplp1 mutants. Alternatively, we cannot exclude that some sporozoites may also form a 
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junction post-invasion, from within a primary non-replicative vacuole, to form a secondary 

replicative PV (Figure 7). In such a scenario, the MJ may serve primarily for molecular 

partitioning, to modify the vacuole membrane and avoid its recognition by the host cell 

lysosomes. Along this line, a recent study showed that T. gondii tachyzoites internalized 

inside macrophages by phagocytosis can then actively invade from within the phagosomal 

compartment to form a PV (Zhao et al., 2014). 

We uncovered here a role for PLP1 in sporozoite egress from TVs during CT, 

revealing that parasite egress and cell traversal are intricate mechanisms. Many pathogens 

use pore-forming proteins to disrupt host membranes during infection, including for escaping 

from vacuolar compartments. For example, Listeria monocytogenes uses the pore-forming 

toxin Listeriolysin O (LLO) to egress from phagolysosomes and reach the infected cell 

cytosol to replicate (Hamon et al., 2012). Several apicomplexan PLPs are implicated in 

parasite egress events. Plasmodium PLP2 was recently shown to play a role in 

permeabilizing the erythrocyte membrane during egress of P. falciparum and P. berghei 

gametocytes (Deligianni et al., 2013; Wirth et al., 2014). PLP1 was reported to play a role in 

egress of P. falciparum merozoites from infected erythrocytes (Garg et al., 2013). 

Intriguingly, previous proteomic studies in P. falciparum have detected PLP1 at the 

sporozoite stage only (PlasmoDB.org), and PLP1-deficient P. berghei and P. yoelii parasites 

show no defect during erythrocytic growth, ruling out any important role of PLP1 during the 

blood stages, at least in rodent malaria parasites. In T. gondii, TgPLP1 mediates the rapid 

egress of tachyzoites from the host cell after parasite replication, and is involved in the 

permeabilization of both the PVM and the host cell membrane (Kafsack et al., 2009). 

Sporozoites must switch off their CT machinery once they have invaded a cell by 

forming a PV, to avoid the rupture of the PVM. This may be achieved through control of 

PLP1 secretion from the micronemes and/or through regulation of the protein activity. Here 

we show that treating cells with bafilomycin A1, an inhibitor of lysosomal acidification, 

suppresses sporozoite egress from TVs and cell traversal. This reveals that the parasite 

uses pH sensing to activate PLP1-dependent egress and avoid degradation by the host cell 



 15 

lysosomal machinery. Proteins with MACPF domains are typically secreted as monomers, 

bind to their target membrane, oligomerize, then undergo a conformational change that leads 

to the formation of a pore (Dunstone and Tweten, 2012). Various pore-forming proteins are 

regulated by the pH, including Listeria LLO and Toxoplasma PLP1 (Roiko et al., 2014; 

Schuerch et al., 2005). Although the mechanism underlying Plasmodium PLP1 regulation by 

pH remains to be defined, our data support a model where Plasmodium sporozoites use pH 

sensing to detect the fusion of the vacuole with the lysosomes, activate PLP1 and egress 

from the vacuole. During productive invasion, modification of the PVM by molecular 

partitioning at the moving junction precludes its fusion with the host cell lysosomes, 

preventing activation of PLP1 and egress from the PV. Alternatively, remodeling of the PVM 

during parasite entry may alter the binding properties of PLP1 and render the PVM refractory 

to PLP1 lytic activity. 

In conclusion, this study provides insights into temporal and molecular mechanisms of 

cell traversal versus productive invasion during the early stages of malaria. Our data reveal 

that Plasmodium sporozoites actively invade cells inside two types of vacuoles, and use two 

different strategies, egress from the vacuole or remodeling of the vacuole membrane, to 

escape degradation by the host cell lysosomes. These findings illustrate how the malaria 

parasite evades the host cell defense mechanisms to ensure its safe migration from the skin 

to the liver and the establishment of a suitable intracellular niche for replication. 

 

  



 16 

EXPERIMENTAL PROCEDURES 

Experimental animals and ethics statement 

Female Swiss and BALB/c mice (6–8 weeks old, from Janvier) were used for parasite 

infections. All animal work was conducted in strict accordance with the Directive 2010/63/EU 

of the European Parliament and Council ‘On the protection of animals used for scientific 

purposes’. The protocol was approved by the Charles Darwin Ethics Committee of the 

University Pierre et Marie Curie, Paris, France (permit number Ce5/2012/001). 

 

Parasites and cell lines 

We used reference P. yoelii 17XNL (clone 1.1) and P. berghei ANKA (clone 15cy1) 

parasites. Control GFP-expressing PyGFP and PbGFP parasite lines (Manzoni et al., 2014) 

were obtained after integration of a GFP expression cassette at the dispensable P230p 

locus. Anopheles stephensi mosquitoes were fed on P. yoelii or P. berghei-infected mice 

using standard methods (Ramakrishnan et al., 2013), and kept at 24°C and 21°C, 

respectively. P. yoelii and P. berghei sporozoites were collected from the salivary glands of 

infected mosquitoes 14-18 or 21-28 days post-feeding, respectively. Hepatoma cell lines 

were cultured at 37°C under 5% CO2 in DMEM supplemented with 10% fetal calf serum and 

antibiotics (Life Technologies), as described (Silvie et al., 2007). Stable expression of 

mCherry fused to the N-terminal 20 amino acids of neuromodulin (N20-mCherry) was 

achieved by cell transduction with a lentiviral vector (Vectalys), following the manufacturer’s 

instructions. 

 

Targeted PLP1 gene deletion in P. yoelii and P. berghei 

PyΔplp1 and PbΔplp1 mutant parasites were generated using a ‘Gene Out Marker Out’ 

strategy (Manzoni et al., 2014). P. yoelii 17XNL and P. berghei ANKA WT parasites were 

transfected with pyplp1 and pbplp1 targeting constructs, respectively, using standard 

transfection methods (Janse et al., 2006). GFP-expressing parasite mutants were isolated by 

flow cytometry after positive and negative selection rounds, as described (Manzoni et al., 
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2014). Correct construct integration was confirmed by analytical PCR using specific primer 

combinations. For mCherry tagging of P. yoelii RON4, drug-selectable marker-free PyΔplp1 

parasites were transfected with a PyRON4 targeting vector, as described (Risco-Castillo et 

al., 2014), and recombinant parasites were isolated by flow cytometry. Details on construct 

design and parasite transfections are provided as Supplemental Experimental Procedures. 

 

Sporozoite cell traversal and invasion assays 

Sporozoite CT and invasion were monitored by flow cytometry (Prudêncio et al., 2008). 

Briefly, hepatoma cells (5 x 104 per well in collagen-coated 96-well plates) were incubated 

with GFP-expressing sporozoites (5 x 103 to 3 x 104 per well) in the presence of 0.5 mg/ml 

rhodamine-conjugated dextran (Life technologies). At different time points, cell cultures were 

washed, trypsinized and analyzed on a Guava EasyCyte 6/2L bench cytometer equipped 

with 488 and 532 nm lasers (Millipore), for detection of GFP-positive and dextran-positive 

cells. For inhibition of lysosome acidification, cells were treated with 1 μM bafilomycin A1 or 

100 μM chloroquine (Sigma) for 2 or 12 hours, respectively, or with the solvent alone 

(DMSO) as a control. Cultures were washed before addition of sporozoites. In some 

experiments, invasion assays were performed in the presence of 10 μg/ml NYS1 anti-CSP 

antibody (Charoenvit et al., 1987), 25 μg/ml MT81 anti-CD81 antibody (Silvie et al., 2006b) or 

1 μg/ml cytochalasin D (Sigma). To study the kinetics of productive invasion events, 

sporozoite-infected cell cultures were trypsinized at different time points, replated in 96-well 

plates and further cultured for 24-36 hours. Cells were then fixed with 4% PFA and the 

number of EEFs was determined by fluorescence microscopy. 

 

Fluorescence microscopy 

For imaging experiments, cells were plated in Ibidi 96-well μ-plates (Biovalley), and imaged 

on a Zeiss Axio Observer.Z1 inverted fluorescence microscope equipped with LD Plan-

Neofluar 40X/0.6 Corr Ph2 M27 and Plan-Apochromat 63X/1.40 Oil DIC M27 objectives. 

Images acquired using the Zen 2012 software (Zeiss) were processed with ImageJ or 
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Photoshop CS6 software (Adobe) for adjustment of contrast. To assess liver stage 

development, HepG2/CD81 cells were infected with P. yoelii WT, PyGFP or PyΔplp1 

sporozoites and cultured for 6 to 36 hours before fixation with 4% PFA. Cells were then 

permeabilized with Triton X-100, and the parasites were stained using antibodies specific for 

Plasmodium HSP70 (Tsuji et al., 1994) and UIS4 (Sicgen). Nuclei were stained with Hoechst 

33342 (Life Technologies). For visualization of cell membranes, infected cultures were fixed 

with 4% PFA and labeled with filipin (Sigma), phalloidin-TRITC (Sigma), and/or anti-basigin 

antibodies (8A6, Abcam). For quantitative analysis, at least 40 parasites were examined per 

condition. For lysosome visualization, hepatoma cells infected with GFP-expressing 

sporozoites were incubated with 60 nM Lysotracker Red DND-99 (Life Technologies) for 30 

min before fluorescence microscopy imaging. LAMP1 immunostaining was performed on 

fixed cells, using monoclonal antibodies specific for human (H4A3, Abcam) or mouse (1D4B, 

Abcam) LAMP1. For immunostaining of mouse liver sections, BALB/c mice were injected in 

the tail vein with 1 x 106 PyGFP or PyΔplp1 sporozoites, and euthanized three hours later. 

The liver was removed, immediately frozen in liquid nitrogen and cut into 7 μm cryosections. 

Liver sections were fixed in 4% paraformaldehyde, permeabilized in 1% Triton X100 and 

analyzed by immunofluorescence using antibodies against mouse LAMP1 (1D4B, Abcam) 

and parasite CSP (Charoenvit et al., 1987). 

 

Spinning disk confocal microscopy 

HepG2 cells expressing the N20-mCherry membrane marker were plated in Ibidi 8-well μ-

slides (Biovalley). After addition of PyGFP or PyΔplp1 sporozoites, cultures were placed onto 

a spinning disk microscope system in a controlled chamber at 37°C under 5% CO2. We used 

a CSU22 spinning-disk confocal system (Yokogawa) mounted on a DMI 6000 inverted 

microscope (Leica), equipped with a Plan-Apochromat 100X/1.40 Oil objective and a cooled 

EMCCD camera QuantEM 512SC (Photometrics), and driven by Metamorph 7 software 

(Molecular Devices). Images were recorded every 5 seconds during 15 min, and processed 

with ImageJ for adjustment of contrast. 
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Transmission Electron Microscopy 

HepG2 cell cultures were incubated with PyΔplp1 sporozoites for 45 min or 5 hours before 

fixation with 2.5% glutaraldehyde in 0.15 M cacodylate buffer. Samples were then treated 

with 1% osmium tetroxide, dehydrated in a series of ethanol concentrations, and embedded 

in EPON resin mixture. Ultrathin sections (50 to 60 nm) were observed with a Jeol 1200EXII 

(Tokio, Japon) transmission electron microscope. Images were recorded with a Quemesa 11 

Mpixel camera and the iTEM software (Olympus Soft Imaging Solutions, Munster, Germany). 

 

Statistical analysis 

Statistical significance was assessed by non-parametric analysis using the Mann-Whitney U, 

Kruskal–Wallis and log rank (Mantel-Cox) tests. Multiple comparisons were performed by 

two-way ANOVA followed by Bonferroni post-test. All statistical tests were computed with 

GraphPad Prism 5 (GraphPad Software). In vitro experiments were performed at least three 

times, with a minimum of three technical replicates per experiment. In vivo experiments in 

mice were only performed once or twice, as indicated, to minimize animal usage. 
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FIGURE LEGENDS 

Figure 1. Kinetics of P. yoelii cell traversal and cell invasion. A. Invasion/infection assay. 

Cell cultures were incubated for 10 to 180 min with GFP-expressing sporozoites in the 

presence of rhodamine-labeled dextran, trypsinized and either directly analyzed by FACS, to 

determine the percentage of traversed (dextran-positive) and invaded (GFP-positive) cells, or 

replated and further incubated for 24 to 48 h, to determine the number of EEF-infected cells 

by fluorescence microscopy (productive infection). B-C. HepG2 and HepG2/CD81 cells (5 x 

104) were incubated at 37°C with PyGFP sporozoites (3 x 104) in the presence of rhodamine-

conjugated dextran, and analyzed by FACS to determine the percentage of traversed 

(dextran-positive) cells (B) and invaded (GFP-positive) cells (C). Results are expressed as 

the mean percentage (+/- SD) of triplicate wells. Statistical significance was assessed using 

two-way ANOVA followed by Bonferroni test. *** p<0.001. D. HepG2/CD81 cell cultures were 

incubated with PyGFP sporozoites for 10 to 120 minutes, dissociated and replated and 

cultured for an additional 24 hours, to determine the number of EEFs by fluorescence 

microscopy. 

 

Figure 2. Sporozoites form transient vacuoles during cell traversal. A. HepG2 cells were 

incubated with PyGFP sporozoites in the presence of rhodamine-labeled dextran for 15 or 

120 minutes. Cells were then trypsinized and analyzed by FACS to determine the proportion 

of dextran-negative cells among infected (GFP-positive) cells. B-C. Electron micrographs of 

PyGFP sporozoites inside HepG2 cells, 1 hour post-infection. A vacuole membrane 

surrounds the parasite in B but not in C. The insets show at higher magnification the parasite 

plasma membrane (arrow) and the vacuole membrane (arrowheads). Rhoptries are indicated 

with asterisks. Bars, 2 μm. D. HepG2 cells expressing the fluorescent plasma membrane 

protein N20-mCherry (red) were incubated with PyGFP sporozoites (green) for 30 min, fixed 

and labeled with filipin (blue). Bars, 10 μm. E. HepG2/N20-mCherry cells were incubated with 

PyGFP sporozoites for 30 or 120 min before fixation and labeling with filipin, and the 

presence or absence of a vacuole was determined by fluorescence microscopy. F. Time-
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lapse confocal microscopy of a PyGFP sporozoite (green) in a HepG2/N20-mCherry cell 

(membranes labeled in red). Images were extracted from Movie S1. A constriction of the 

parasite is indicated with an arrowhead. Bars, 10 μm. See also Movies S1-2. 

 

Figure 3. PyΔplp1 sporozoites accumulate inside non-replicative vacuoles. A-B. HepG2 

(A) or HepG2/CD81 (B) cells (5 x 104) were incubated with PyGFP or PyΔplp1 sporozoites (3 

x 104) for 10 to 120 minutes, trypsinized, and either directly analyzed by FACS to quantify 

invaded (GFP-positive) cells (lines), or replated and cultured for an additional 24 hours 

before quantification of EEFs by fluorescence microscopy (bars). Shown are the mean 

values (± SD) of triplicate wells. Statistical significance was assessed using two-way ANOVA 

followed by Bonferroni test. ** p<0.01; *** p<0.001; ns, non significant. C. Electron 

micrographs of PyΔplp1 sporozoites in HepG2 cell. The insets show at higher magnification 

the parasite plasma membrane (arrow) and the vacuole membrane (arrowheads). The 

parasite rhoptries are indicated with asterisks. Bars, 1 μm. D. HepG2/N20-mCherry cells 

(red) were incubated with PyΔplp1 sporozoites (green) for 30 min, fixed and labeled with 

filipin (blue). Bars, 10 μm. E. HepG2/N20-mCherry cells were incubated with PyΔplp1 

sporozoites for 30 or 120 min before fixation and labeling with filipin, and the presence or 

absence of a vacuole was determined by fluorescence microscopy. F. Time-lapse confocal 

microscopy of a PyΔplp1 sporozoite (green) in a HepG2/N20-mCherry cell (membranes 

labeled in red). Images were extracted from Movie S3. Bars, 10 μm. See also Figures S1-3 

and Movies S3-7. 

 

Figure 4. Sporozoites form TVs without rhoptry secretion or remodeling of the vacuole 

membrane. A. HepG2 and HepG2/CD81 were incubated for 2 hours with PyΔplp1 

sporozoites in the presence of anti-PyCSP antibody or cytochalasin D, and analyzed by 

FACS to determine the percentage of invaded cells, in comparison to control wells without 

inhibitors. B. Transgenic PyΔplp1/RON4::mCherry and PyGFP/RON4::mCherry sporozoites 

were incubated with HepG2 or HepG2/CD81 cells for 60 or 120 min before fixation and filipin 
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staining. Apical RON4-mCherry fluorescence is indicated with arrowheads. Bars, 10 μm. C. 

HepG2 and HepG2/CD81 cells were incubated with PyGFP/RON4::mCherry or 

PyΔplp1/RON4::mCherry sporozoites, labeled with filipin, and the proportion of RON4-

depleted sporozoites inside filipin-positive vacuoles was determined by fluorescence 

microscopy. D. HepG2/N20-mCherry and HepG2/CD81/N20-mCherry cells were incubated 

with PyΔplp1 or PyGFP sporozoites for 30 or 120 min, respectively, fixed, and labeled with 

filipin. Bars, 10 μm. E-F. HepG2 (E) and HepG2/CD81 (F) cells were incubated for 120 min 

with PyΔplp1 (E) or PyGFP (F) sporozoites, respectively, fixed, and labeled with filipin and 

either phalloidin-TRITC or anti-Basigin antibodies. Bars, 10 μm. G. Cell cultures processed 

as in D-F were examined by fluorescence microscopy to determine the proportion of labeled 

vacuoles among filipin-positive TVs (PyΔplp1 sporozoites in HepG2 cells) versus PVs 

(PyGFP sporozoites in HepG2/CD81 cells). See also Figure S4. 

 

Figure 5. Non-replicative PyΔplp1 vacuoles are eliminated by the host cell lysosomes. 

A. HepG2 or HepG2/CD81 cells (5 x 104) were incubated with PyΔplp1 sporozoites (3 x 104) 

for 1 to 12 h, and analyzed by FACS to determine the percentage of infected (GFP-positive) 

cells. B. HepG2 and HepG2/CD81 were incubated with GFP-expressing PyΔplp1 sporozoites 

(green) for 4 h, then labeled with Lysotracker-red and examined by fluorescence microscopy. 

Bars, 10 μm. C. HepG2 and HepG2/CD81 were incubated with GFP-expressing PyΔplp1 

sporozoites (green) for 5 h, then fixed and labeled with antibodies against LAMP1 (red) and 

Hoechst 33342 (blue). Bars, 10 μm. The insets show LAMP1-negative (i and ii) and LAMP1-

positive (iii and iv) parasites. D. HepG2/CD81 and HepG2 cells were incubated with PyΔplp1 

sporozoites for 4 h and labeled as in B and C. The proportion of Lysotracker- or LAMP1-

positive parasites was then determined by fluorescence microscopy. At least 100 infected 

cells were examined per condition. E. Liver sections from BALB/c mice infected with PyGFP 

or PyΔplp1 sporozoites were labeled with antibodies against CSP, UIS4 or LAMP1, and 

analysed by fluorescence microscopy to determine the proportion of parasites expressing 

UIS4 and LAMP1 among PyGFP (n = 52) and PyΔplp1 (n = 56) parasites. F. HepG2 cells 
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were treated with chloroquine (CQ) for 12 hours before addition of PyΔplp1 sporozoites. The 

percentage of infected (GFP-positive) cells in treated versus untreated cultures was 

determined by FACS at 4 and 20 hours post-infection. See also Figure S5. 

 

Figure 6. Blocking lysosomal acidification inhibits sporozoite egress from transient 

vacuoles. A-B. HepG2/CD81 (A) or HepG2 cells (B) (3 x 104) were pre-treated with 

bafilomycin A1 or solvent alone (control), then incubated with PyGFP sporozoites (1 x 104) in 

the presence of rhodamine-conjugated dextran, and analyzed by FACS to determine the 

percentage of traversed (dextran-positive) cells (lines) and invaded (GFP-positive) cells 

(bars). Results are expressed as the mean percentage (+/- SD) of triplicate wells. Statistical 

significance was assessed using two-way ANOVA followed by Bonferroni test (GFP-positive 

cells: non significant at 15 and 30 min, p<0.001 at 60, 90 and 120 min). C-D. HepG2/CD81 

or HepG2 cells treated like in A and B were incubated for 24 hours before analysis by FACS 

(C) and fluorescence microscopy (D), to determine the percentage of infected cells and the 

proportion of replicative forms (EEFs). 

 

Figure 7. A model of host cell invasion by malaria sporozoites. Plasmodium sporozoites 

invade cells actively inside two types of vacuoles. A. Sporozoites initially enter cells actively 

inside a transient vacuole (1), without forming a junction, and subsequently egress using 

PLP1 (2). PLP1-mediated membrane rupture may occur before complete sealing of the 

primary vacuole (3). PLP1 activity depends on lysosomal acidification, and results in parasite 

cell traversal and escape from lysosomal degradation. PLP1-deficient parasites cannot 

breach the vacuole membrane and are trapped inside non-replicative vacuoles, which are 

eliminated after fusion with the host cell lysosomes (4). B. Sporozoites eventually switch to 

productive invasion through a moving junction (5), a process that requires the host entry 

factor CD81 and results in the formation of the PV. Productive invasion is associated with 

remodeling of the vacuole membrane, precluding its fusion with lysosomes, and leads to 

parasite liver stage development inside the PV (6). We cannot exclude that some sporozoites 
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may enter cells through the non-productive invasion pathway and form a junction 

intracellularly (7), resulting in the remodeling of the initial non-replicative vacuole into a 

replicative PV. 
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