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Abstract. Statistical models are essential to get a better understanding
of the role of disorder in brittle disordered solids. Fiber bundle models
play a special role as a paradigm, with a very good balance of simplicity
and non-trivial effects. We introduce here a variant of the fiber bundle
model where the load is transferred among the fibers through a very
compliant membrane. This Soft Membrane fiber bundle mode reduces
to the classical Local Load Sharing fiber bundle model in 1D. Highlight-
ing the continuum limit of the model allows to compute an equivalent
toughness for the fiber bundle and hence discuss nucleation of a critical
defect. The computation of the toughness allows for drawing a simple
connection with crack front propagation (depinning) models.

1 Introduction

It is needless to emphasize the importance of brittle fracture for safety and reliability
issues. In fact, the condition for crack propagation is well understood since Griffith
pioneering work[1]. Critical energy release rates or equivalently stress intensity factors
are known to be material characteristics defining the onset of crack propagation for
an existing crack. However, a resisting issue concerns crack initiation. Indeed, for a
long period, the common view was that cracks would initiate from preexisting defects.
Brittleness was invoked to consider that as soon as initiated a crack would propagate
in an unstable fashion down to complete failure. Thus, amazingly, solid mechanics for
the most part disappeared from strength predictions. Because the initiation defect
was local, the failure load remained a statistical issue, with probability distribution
which simply resulted from that of the defect distribution after an elementary elastic
computation (together with some assumptions for the defect geometry). This was
formalized within “weakest links” type of approaches, that can be traced back to
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the pioneering work of Weibull.[2] These approaches had also the merit of shedding
some light on salient features unexpected in the mechanics of homogeneous materials,
such as the occurrence of systematic size effects. A recent review on this topic and
extensions thereof can be found in Ref. [3].

Alternative approaches based on a purely deterministic picture was proposed by
Francfort and Marigo[4], as an extension of Griffith’s theory. This theory, although
appealing, raises subtle mathematical issues — which may in fine resume to physical
questions — related to how small scales may or may not disappear at the continuum
limit for such singular problems. Another direction of attack consists of introducing a
more complicated picture for the crack tip, through a “fracture process zone” whereby,
at microscopic scales, a displacement discontinuity can still allow for the transmission
of stress. Such models following the initial work of Barenblatt [5] illustrate the fact
that initiation and propagation can be incorporated in the same picture if in addition
to toughness, a critical stress is also considered. This is yet another way to stress that
some microscopic length scale will survive in this macroscopic picture. Leguillon [6]
for instance proposes such a dual criterion for accounting for crack initiation in the
spirit of these fracture process zone models. Although this latter class of theories
emphasizes the importance of small scales, materials are always treated as if they
were homogeneous.

Thus, from a continuum mechanics point of view, the choice is left between ap-
proaches that either emphasize the geometry of defects (without mechanical mani-
festation other than linear elasticity) or focus on fine details of local variations of
mechanical free energy (not to say damage) but ignores material variability.

It is therefore interesting to consider discrete models (where no ambiguity is left
about microscopic limits) and where disorder is explicitly considered. On the one
hand, such models may be considered as too simplistic for portraying any specific
materials, however, on the other hand, they may shed some light on statistical size
effects that may be expected. This is very important as scaling is not neutral. If
interpolation based on Weibull distribution is fair when the same sizes and level of
probabilities as determined in identification, it becomes very fragile when extrapola-
tion is needed.

Hans Herrmann[7–9] has been one of the pioneers in this matter with first papers
on electrical analog, “fuse networks”, to brittle material published in 1985. However,
a direct numerical simulation reveals to be a difficult pathway to reaching definitive
conclusions, as results are prone to slow corrections to scaling, and become expensive
in computational power as one moves to two or three dimensions. [10] Nevertheless,
those simulations could demonstrate quite clearly that the weakest link approach
could not be applied at the smallest scales. Therefore, it was already clear from
the start that neither approach based on prior defect statistics only nor on a more
sophisticated interaction model but within a homogeneous medium description were
applicable, and hence the merit of the statistical laws and the attached corresponding
size effects could be questioned.

To progress along these lines, fiber bundle models [11,12] play a key role. Indeed
despite their simple definition, and their introduction about 90 years ago, an ex-
haustive characterization of their behavior has only been achieved in some particular
cases[13–15].

These models consist of a collection of elastic brittle fibers with random strength
loaded in parallel. One very important feature of these models leading to different
scaling regimes is the way load is distributed amongst the unbroken fibers. In the
“Equal Load Sharing” (or ELS), [12] load is equally distributed over all surviving
fibers. This corresponds to clamping all fibers onto a rigid substrate onto which the
external load is applied. Because of this even distribution, the dimensionality of the
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substrate plays no role. This limit can thus be seen as a mean-field model which is
analytically tractable.

The opposite limit of Local Load Sharing, (or LLS), is based on a local redis-
tribution of the load carried by a fiber onto its unbroken neighboring fibers [15,16].
Here the breakdown scenario is very different from ELS, in the sense that after a first
diffuse damage regime, (where fibers breakage is spread over the entire system), a
localized region hosts a crack which — after its nucleation — grows without limits.
Macroscopically, this failure appears as brittle but after a significant number of fibers
have been broken. However, the LLS model suffers from some ambiguity on the way
the load is redistributed after fiber breakage. This ambiguity becomes even more pro-
nounced in two dimensions and more. In one dimension, some aspects of this model
are analytically tractable [15,17]. However, mostly, numerical methods must be used.

There are also other more realistic variants of the fiber bundle model. The Soft
Clamp Model [18–21] has the fibers attached to clamps that respond elastically. The
clamps are infinite half spaces and the force distribution among the fibers are due to
the elastic response of the clamps.

The transition between ELS and LLS has also been studied by varying contin-
uously the sharing rule trough a simple power law stress redistribution function
σ ∼ r−γ , where r is the distance from the broken fiber [22–24]. It was shown that
the stress-transfer function decay exponent dramatically impacts breaking processes,
ultimate strength and creep regime. In the limiting case of ELS, the breaking of fibers
is a completely random nucleation process while, for LLS, it becomes a nucleation
problem.

In the present study, we modify the Soft Clamp Model by replacing the infinite
half space clamps by thin elastic membranes. This corresponds to the LLS limit, that
is to say an infinite exponent for the stress-transfer function (γ → ∞) in [22–24]. We
note that both in the Soft Clamp model and the Membrane model, one of the clamps
can be replaced by an infinitely rigid one. For symmetry reasons, this model will have
the same behavior as were the two clamps equal.

Other physically realistic models or limits could have been considered. In particu-
lar, an elastic plate described through Love-Kirchhoff theory has naturally a bending
stiffness. Indeed, there is no objection to considering such a model, (and it has al-
ready been considered for instance in [25]) however, in 1D where the plate reduced
to an elastic beam, it does not coincide with the LLS model precisely because of the
flexural effect and continuity of the rotation. This introduced a dampened oscillatory
behavior close to a crack. Because our aim is here to introduce a natural extension
of LLS model in 2D that suffers no ambiguity in its definition, we will stick to the
definition of the Soft Membrane limit.

Let us also mention a related model, namely that of shear delamination of a
thin film from a rigid substrate as introduced by Zaiser et al.[26–28]. A modeling
proposed in [26] shows that the in-plane displacement obeys an anisotropic Laplace
equation, that can be somehow compared to the Poisson equation ruling the out-
of-plane displacement for the membrane under distributed load. The source term
that is present in the Poisson equation is the result of the external loading and
the balance equation leading to damage and crack propagation. A similar effect is
naturally present in other modelings [18,19,25,29]. Since it controls the instability
of crack propagation which is the hallmark of the LLS model, it is the analogy with
models that have no distributed loadings that should be considered carefully.

In the present study, we show that it is possible to define and compute a toughness
allowing for understanding the post-peak behavior, i.e. after the maximum load has
been reached. Moreover, this limit is also shown to match that of a crack front pinning
model. The simplicity of the model finally allows us to study its behavior in the
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continuum limit via a perturbative approach, drawing promising path from nucleation
to crack propagation in brittle heterogeneous materials.
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Fig. 1. Load sharing rules in a fiber bundle between clamps that are elastic membranes.
The lower membrane is infinitely stiff, whereas the upper membrane responds elastically.
A macroscopic load F is applied to the system through a homogeneous pressure onto the
membrane and is shared between unbroken fibers subjected to local forces f . a) When the
upper membrane is stiff, the model behaves as the ELS model. b) In one dimension, a very
soft upper membrane (or rather, string) will cause the model to behave as the LLS model.
c) In two dimensions, a very soft upper membrane will transfer an additional load only to
fibers adjacent to already broken ones.

2 Soft Membrane Fiber Bundle in One Dimension

The fiber bundle initially consists of N fibers distributed homogeneously over a linear
domain of size L = N , at positions labeled by integer x coordinates. To reduce
the importance of edge effects, periodic boundary conditions are implemented. Each
fiber is assumed to be elastic-brittle. Initially, all fibers are present. Then, through
the application of load, fibers will be broken one at a time. A sequence index, t, is
introduced which simply counts the number of broken fibers. For simplicity, t will be
referred to as “time”. Let us emphasize that the model itself does not depend on the
physical time. In the elastic regime, a macroscopic load F is applied in the system,
and is shared between unbroken fibers as illustrated in Fig. 1. A fiber at position x
is subjected to a local force f(x, t). If the fiber is broken, then f(x, t) = 0. If not,
because of elasticity, f(x, t) is proportional to the external load, f(x, t) = Fϕ(x, t),
where ϕ(x, t) characterizes the load redistribution on the fiber, and that depends on
the distribution of broken fibers and hence on t. Each fiber is characterized by its
strength, fc(x), independent of time. At each instant, the macroscopic breaking load
is the value of F such that one and only one fiber reaches its threshold, f(x, t) = fc(x),
hence

Fc(t) = min
x

fc(x)

ϕ(x, t)
, (1)
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which corresponds to an extremal dynamics.
The load sharing rule is what allows us to define ϕ(x, t). For instance, ELS means

that all surviving fiber support the same force as shown in Fig. 1a. Overall balance
requires that

∑

ϕ(x, t) = 1, and hence ϕ(x, t) = 1/(N − t) if the fiber is unbroken,
and 0 else.

The membrane model is equivalent to the LLS rule in 1D when the membrane
(string) is very soft. We now discuss the LLS rule in some detail. As above mentioned
that balance imposes

∑

ϕ(x, t) = 1. In 1D, it is rather straightforward to arrive at
the fact that for any interval of m consecutive fibers broken, an additional force of
m/2N is transfered to the two surviving fibers nearest neighbor to the end of this
interval. This comes in addition to the 1/N force that it always present. Note that a
fiber may be neighbor of two intervals of ml and mr failed bonds respectively for left
and right, and hence its load partition coefficient will be

ϕ(x, t) =
2 +ml +mr

2N
(2)

The Soft Membrane model is now considered. In this case, the deflection u(x) of
this string under the applied loading has to be solved. If we consider that the fibers
are much stiffer than the string, if the fiber is present at position x, then u(x) = 0.
Otherwise,

Lap[u](x) = −1 (3)

where Lap is the discrete laplacian Lap[u](x) = u(x+1)− 2u(x)+u(x− 1). The load
transferred by a membrane to its boundary writes fT = −∇u ·n where n is an outer
unit vector, normal to the membrane boundary (see Fig. 1). In 1D, this means that
a fiber located at x receives an additional transfer fT (x) = [u(x+1)−u(x)] + [u(x−
1) − u(x)] where we separated the contributions of the left and right neighbors. In
this case, the load applied to a surviving fiber x (which is such that u(x) = 0) is

ϕ(x, t) = (1/N)

(

1 +
∑

y n.n.x

u(y)

)

(4)

where a summation over nearest neighbors (n.n.) of x is involved. The occurrence
of the second order differential operator Lap comes from a conservation (balance)
equation so that the total load applied onto the system is finally transferred to the
unbroken fibers. The deflection u(x) of a membrane of extremities xi and xf writes
u(x) = (x− xi)(xf − x)/2 and the load transfers fT (xi) = fT (xf ) = (xf − xi − 1)/2.
For a fiber surrounded by two intervals of ml and mr bonds, one thus recovers the
very same load partition coefficient than in the 1D LLS fiber model given above (Eq.
(2).

Figure 2a shows the classical 1D model load versus time t. We considered here a
uniform distribution of fiber strength in [0; 1]. The critical load is reached at t = t∗ =
1256.Thus, the weakest link assumption is indeed far from being applicable. Figure 2b
shows the redistribution function at the peak force. We see that the largest fiber load
ϕ comes from an interval of 10 consecutive broken fibers.

3 Soft Membrane Fiber Bundle in Two and More Dimensions

The generalization of the 1D soft membrane model to two dimensions (2D) is straight
forward. The system is a L×L square, so that the number of fibers is N = L2. A fiber
location is designated either by a 2D vector x or by its integer coordinates (x, y). The
question is now to define the redistribution function.
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Fig. 2. (a) Load versus time in 1D (N = 10000 and periodic boundary conditions). The
critical time is the one where the maximum force is reached, t∗ = 1256. (b) Local force
distribution ϕ(x, t∗) at the critical load.

The membrane deflection, u(x), obeys

{

u(x) = 0
Lap[u](x) = −1

if fiber at x is

{

intact
broken

(5)

where Lap[u] is again a finite difference laplacian operator

Lap[u] =
∑

y n.n.x

(u(y)− u(x)) (6)

The redistribution function on a surviving fiber in x is simply

ϕ(x, t) = (1/N)

(

1 +
∑

y n.n.x

u(y)

)

(7)

i.e., precisely the same expression as in the 1D model.
Figures 3, 4 and 5 illustrate the load versus time, the displacement and local force

per fiber at the critical state, and the failure time map at a late stage. It is apparent
that, as expected, a critical defect is nucleated and finally grows with no possible
arrest. This growth takes the form of a circular crack as seen in Fig. 4. Let us stress
again that the fraction of broken fibers at the peak stress is a rather large proportion,
t∗/N ≈ 23%. Again the weakest link approach is inapplicable. Simultaneously, when
considering the overall macroscopic force versus time, Fig. 3a, there are no fore-signs
of nucleation of the critical defect.

This observation can be rationalized, in the spirit of homogenization, by consid-
ering a uniform equivalent threshold, feq

c . Considering a circular cluster of broken
bonds, the load supported by the broken fibers πR2F is distributed over the edge,
leading to a force per fiber of R(t)F/2 and hence Fc(t) = 2feq

c /R(t). The radius is
related to time as πR(t)2 = t− t0. Thus

Fc(t) =
2
√
πfeq

c√
t− t0

(8)

Figure 3b shows that this analysis holds after nucleation of the critical defect, as
1/Fc(t)

2 has indeed a lower envelope obeying an affine law. The straight line fit
allows to define an effective threshold equal to feq

c ≈ 0.34.
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Fig. 3. (a) Load versus time for the Soft Membrane fiber bundle model in 2D. (b) Post-
critical analysis of critical load versus time. The red line belongs to the circular crack analysis.
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Fig. 4. Membrane displacement u(x) in the 2D Soft Membrane fiber bundle at the critical
load (left), and at a later stage (right). The center of the critical defect can be guessed from
the late stage. The periodic boundary conditions are also visible.
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Fig. 5. Local redistribution function ϕ(x, t∗) at the critical load.

4 Measurement of Toughness

Having understood the late scenario of a crack propagation, one may study it directly:
a specific crack pattern already present in the initial state can be designed. For in-
stance, half of the domain (say 0 ≤ y < L/2) consists of broken fibers in the initial
state. The problem is thus initially similar to the 1D case. The membrane deflexion
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field is
u(x, y) = (1/2)y(L/2− y) (9)

and hence the force acting along the edges is the total load (1/2)L2F divided by
the front length (on both edges) 2L or FL/4. It can also be computed as Lap[u]. In
our case, for L = 200, the force acting on the front edge is 50 times higher than in
the bulk. Thus most (but not all) of the activity is taking place at the front. Note,
however, that as the front propagates as a whole, the overload at the front increases,
and hence the diffuse damage regime is only taking place in an initial transient regime,
which vanishes as L → ∞.

Periodic boundary conditions being implemented, one may stop one of the two
fronts (y = L in our case) by inserting a line of fibers with very high strength. Figure 6
shows the displacement field and force acting on the fibers after some progression
starting from the previous initial conditions. It is observed that a slightly roughened
front progress from y = L/2 onward. Figure 7 shows the map of the time at which
the fibers were broken. One can easily observe indeed the above mentioned front
propagation, together with some “dust” which corresponds to the early damage of
bonds being broken ahead of the front (in the present case, all bonds having a strength
less than 2/L ∼ 0.01 are broken in a first stage). Note that the dynamics of the
preexisting crack does not proceed by avalanches since we perform extremal dynamic
simulations, i.e. each “time” step only one fiber is broken.
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Fig. 6. Displacement u(x, y) (left) and local force f(x, y) (right) after some progression.

Figure 8 shows the load versus time. One observes again clearly the first initial
(diffuse) damage regime where fibers are not located at the front. The interesting
regime is the front progression stage. In the continuum, if the fiber strength feff

c

were uniform, one would expect a uniform progression y = y0 + t/L (where y0 = L/2
in our case), so that the force exerted at the front would be (y0 + t/L)F/2 and hence
the critical load would be

Fc(t) =
2feff

c

(y0 + t/L)
(10)

Hence one can define an (instantaneous) effective bond strength, feff
c , from the criti-

cal force through Fc(t)(y0+t/L)/2. This quantity is shown in Figure 8. The maximum
value of the latter strength appears as a well-defined quantity which is the macro-
scopic effective strength. The histogram shown in Fig. 8 is another way of revealing
the threshold. It allows us to estimate

feff
c ≈ 0.46 (11)
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Fig. 7. Map of failure time where the downwards front progression is easily observed.

as compared to the elementary (mean field) approximation of 〈fc〉 = 0.5 that ignores
the effect of load redistribution.
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Fig. 8. (a) Effective fiber strength feff
c , deduced from the critical load by a multiplication

of half the mean crack length. (b) histogram of the instantaneous critical load, where the
asymptotic toughness is the upper bound of this distribution.

It is noteworthy that this estimate is also slightly larger than the one estimated
from the random nucleation case. This may be due to the fact that a somewhat
larger amount of damage has been experienced in the plain 2D lattice at the onset
of nucleation. Estimating this damage at this point as roughly D = 0.23 (D is the
fraction of missing bonds), leads to an effective decrease of the effective strength
(when averaged over the front) down to (1−D)feff

c ≈ 0.34 very consistent with the
previous estimate. To be complete, one should also correct the above estimate by the
damage level of the front type geometry, but because of the large system size, the
damage is roughly D = 0.01, and does not affect our estimate.
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The result in Eq. (11) is far from trivial. We may do the same same analysis
in 1D where, in contrast, the result is trivial, 〈feff

c 〉 is the average of the threshold
distribution. This is so since the fibers break sequentially as a zipper is opened.

5 Continuum limit: Depinning Model of Crack Propagation

We now consider the case of a penny-shape crack in the continuum limit. Accounting
for the front roughness induced by the fiber strength disorder enables to rationalize
the propagation stage of the discrete model. Let us consider a (rough) penny-shaped
crack of equation

ρ = R(θ) = R0 [1 + εh(θ)] (12)

in polar coordinates, where ε sets the amplitude of the radius fluctuations. The mem-
brane deflection u(ρ, θ) obeys

∇2u = −1 if ρ < R(θ)
u = 0 if ρ = R(θ)

(13)

At zeroth order, for ρ ≤ R0, the solution for a circular crack of radius R0 writes

u0(ρ, θ) =
1

4

(

R2
0 − ρ2

)

=
1

4

(

R2
0 − zz

)

(14)

where we defined the complex variable z = ρeiθ and its conjugate z = ρe−iθ. Let
us now write u = u0 + εR2

0u1. Since ∇2u0 = −1 and u0(R0, θ) = 0, the first order
contribution to the membrane deflection u1(ρ, θ) obeys

∇2u1 = 0 if ρ < R(θ)
εR2u1(ρ, θ) = −u0(ρ, θ) if ρ = R(θ)

(15)

The boundary condition can be rewritten explicitly as

εR2u1 [R0 (1 + εh(θ))] = −u0 [R0 (1 + εh(θ))] (16)

so that, at first order

u1(R(θ), θ) =
1

2
h(θ) . (17)

In order to evaluate u1 inside the crack, ρ < R(θ), it is written as a Laurent series
(polynomial expansion in z):

u1(z, z) = α0 +

N/2
∑

n=1

αnz
n +

N/2
∑

n=1

αn zn (18)

In complex variables the Laplacian operator is ∆ = 4∂z∂z so that this expansion
immediately satisfies the equation ∆u1 = 0 (in other words, u1 being the real part
of an holomorphic function, it is harmonic). The restriction of this function on the
circle ρ = R0 can be identified with a Fourier series and gives an immediate solution
to the boundary condition, Eq. (17)

u1(R0, θ) = α0 +

N/2
∑

n=1

αn R0
neinθ +

N/2
∑

n=1

αn R0
ne−inθ

h(θ) = h0 +

N/2
∑

n=1

hn einθ +

N/2
∑

n=1

hn e−inθ

(19)
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The first order membrane deflection u1(ρ, θ) thus reads:

2u1(ρ, θ) = h0 +

N/2
∑

n=1

(

ρ

R0

)n

hn einθ +

N/2
∑

n=1

(

ρ

R0

)n

hn e−inθ (20)

The force ϕ = −∇u · n induced at the boundary can now be computed at first order

n(θ) = eρ − εR0h
′(θ) eθ

∇u(θ) =
[

∂u0

∂ρ (R0) + εR0h(θ)
∂2u0

∂ρ2 (R0) + εR2
0
∂u1

∂ρ (R0, θ)
]

eρ

+
[

ε∂u0

∂ρ (R0)h
′(θ) + εR0

∂u1

∂θ (R0, θ)
]

eθ

ϕ [R0(1 + εh(θ))] = (R0/2) [1 + εh(θ)− εf1({h} , R0, θ)]

(21)

where eρ and eθ are the unit vectors in polar coordinates and

f1({h} , R0, θ) =

N/2
∑

n=−N/2

|n|hn einθ (22)

This result is reminiscent of the effect of a rough geometry on the stress intensity
factor of a mode I crack front as derived by Rice [30] in semi-infinite geometry, and
more recently by Legrand et al [31] for a plate geometry:

KI [x, z = h0 + εh(x)] = K0
I

[

1 + ε
1

K0
I

∂KI

∂z
h(x)− εf(x)

]

(23)

with

f(x) = A1

N/2
∑

n=−N/2

|n|hn einx (24)

where A1 = 1/2 in the semi infinite case and A1 = 2 in the plate case. It is to be
observed that the elastic interaction mediated by the membrane elasticity acts as a
non-local line tension, stabilizing the crack front shape. This effect is quite generic,
and was reported in the above references. It has also been derived by Zaiser et al [26]
for the shear delamination problem. It is also encountered in wetting problems[32].

This line tension is consistent with the observation of the almost perfect circular
shape of the crack observed in Fig. 4, or the straight front of Fig. 6. However, it is
to be noted that the energy release rate increases as the radius of the penny shape
crack grows. Thus the overall expansion of the crack is unstable (under a constant
applied pressure onto the membrane), but its shape tends to remain circular due to
the line tension effect. This can be read from the expression of the force redistribution
in Fourier space:

ϕn =
R0

2
[δn + ε(1− |n|)hn] (25)

The fact that ϕ±1 vanishes can be understood as the result of Galilean invariance as
the first order mode in Fourier space corresponds to a mere translation of the crack
which is expected not to have any effect on the crack driving force.

Crack propagation is thus controlled by the interplay between local strength disor-
der and long-range interface tension. One recognizes here the ingredient of a depinning
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problem, a paradigm that has been used to discuss various problems of front propa-
gation in physics[33] and has been successfully applied to crack propagation in recent
years[34–36,38–40].

It appears in particular in this framework that the crack front roughness exhibits
a scaling invariant character: when measured over a length scale ℓ the width w of the
front scales as w(ℓ) ∝ ℓξ with an exponent ξ ≈ 0.4[41]. Moreover the effective force
f(ℓ) needed to depin a front of lateral extension ℓ follows a universal distribution
of width δf(ℓ) ∝ ℓ−(1−ζ) and is bounded by a maximum value, the critical force
f∗[35–37]. The emergence of a critical threshold and of the associated size effects is
potentially of great interest in the context of the discrete fiber bundle model developed
in the present study. The critical value f∗ indeed sets an upper bound to the effective
homogenized fiber strength defined in Eq. (8). Moreover, the knowledge of the finite
size fluctuations of this effective strength for small defects should allow for the study
of the very early stages of crack propagation, say in the spirit of the approach used
in [36] for crack arrest.

6 Conclusion and Critical Perspective

We have formulated a soft membrane fiber bundle model that reduces to the Local
Load Sharing fiber bundle model in 1D.

Failure proceeds in two steps: There is a first regime of diffuse damage which
is followed by a second one corresponding to the nucleation and growth of a penny
shaped crack. The latter can be characterized in terms of a mean toughness (obtained
from a simple combination of the strength feff

c and a length scale given by the
fiber separation). This toughness can be measured by a direct crack propagation
experiment. This toughness is also altered by the mean damage state of the material
at the onset of brittle failure.

If much emphasis has been put on the damage regime and characterization of the
critical defect, it may be worth investigating the late failure regime with classical
tools. The above presented perturbation analysis exploiting the Poisson equation,
∇2u = −1, relates this problem to a depinning crack propagation model formulated
in the continuum with the same long range kernel relating the local energy release
rate to the crack front morphology. This may lead to a precise estimate of the effective
toughness, but its main virtue is to shed some light on the fluctuations. Indeed, this
analogy leads to the prediction that the toughness fluctuation decays as a non-trivial
power law of the front length. A challenge for the future is thus to derive a statistical
law for the onset of crack nucleation in this soft membrane fiber bundle.

AH thanks P.C. Hemmer and S. Pradhan for countless discussions on this topic.
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