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ANALYSIS OF IMAGES IN TRAVERSE TOPOGRAPHS

Yves Epelboin and Alain Soyer

Laboratoire Minéralogie~Cristallographie,associé CNRS,
UniversgitésPierre et Marie Curie et Paris VII
4 Place Jussieu, tour 16, 75230 PARIS CEDEX 05, France

Among the vatious X-ray topographic methods traverse topogra-~
phy is certainly the most widely used. In one single experiment it
is possible to study a great volume of crystal and it is much
easier to perform and to interprete than section topography. However
in most ca.as it is not possible to obtain quantitative results.This
method is mainly used to visualize defects. Sometimes, for planar
defects or dislocations, the fault vector may be determined by

- searching for extinction conditioms.

Authier1 attempted to explein the traverse contrast as the
integration, during the scanning of the crystal, of the direct ima-
ge of the defect. Interpretation of the images based on this theory
have been very helpful but cannot give a complete gquantitative un-
derstanding (see T1I-6 in this volume).When a full characterization
is needed the only means is to make section topographs. Unfortunate-
ly the images are difficult to analyze and the method is irrelevant
for thin wafers. Besides, a small part of the crystal only may be
studied in one experiment, loosing onme of the big advantages of
traverse topography.

Since in most cases no analytical solutions exist, numerical
methods must be used. A first test has been done by Epelboin?. It
shows that the precision of the numerical algorithm is a crucial
factor and the time of computation was too long. Petrashen et al3
suggested using the reciprocity theorem (Kato®).

The introduction of fast specialized computers and the deve-
lopment of new algorithms to inteprate the Takagi-Taupin (TT)
equations now permits the simulation of traverse topographs. In
this paper we will discuss the basic principles needed to compute




such simulations. We will then give a brief highlight of a

program which has been written to simulate the image of a disloca-
tion. In the last part, we shall give some examples and show how
this program may help in understanding the contrast of dislocations
and stacking fault.

PRINCIPLES OF THE CALCULATION

Theoretical considerations

A traverse topograph may be calculated simulating the real
experiment i.e. moving a point socurce along the entrance surface
and adding the intensities of all calculations. To compute the
intensity at a given point P along the exit surface (Fig. 1),
it is necessary to scan the source from B to A, thus

Th (P) = [ TIh(g)ds (1)
BA

where £ is the position of each incident spherical wave along the
entrance surface.

Since most of the contrast originates from the igteraction of
the defects with the wavefields propagating near the s direction,
.. . . s o .
the precislon of the numerical algorithm in these areas is very
critical. Epelboinz' has shown that a constant step algorithm (CSA)
"~ is not precise enough to compute equations() It is necessary to use
a varying step algorithm (VSA)

§ A B

-t

Sh So

Fig. 1




Varying step algorithm

The basic principles for numerical integration of 77T equations
have been explained elsewhere (Epelboin and Authier, TI-6 in this
volume). The calculation is performed along a set of characteristic
lines parallel to the S and Sy directions.

The amplitudes of the waves at point A depend on the amplitu-
des of the waves at points B and C (Fig. 2).

Petrashen and al.3 have suggested using the reciprocity
theorem to speed up the calculation of equations(1).

In fact, the difference with a direct integration, as
previous explained, is not significant. Moreover, the application
of the reciprocity theorem to numerical integration seems to be ra—
ther delicate,so we have rejected Petrashen's method. Detailed
explanations will be given elsewhere?.

Let us call p and q the elementary steps of lategration
AC and AB. The basic principles of VSA are the following :

l.- p and q are very small near the edges of the Borrmann
fan to follow the fast oscillations of the waves.

2.— In order to save computation time, the steps of integration are
increased in the middle of the Borrmann fan where the amplitudes
of the waves vary slowly.

3.— In the direction eof the direct image when a great intensity
is scattered, the density of nodes, in the network of integration,
is increased.

Fig. 3 is a schematic drawing of VSA as explained in details
in (5).

It has been shown that the accuracy of the integration of
TT equations i1s drastically improved, using such an algorithm. It
also permits much faster calculations,




A SIMULATION PROGRAM : ADELE

The computation of each image is vexry long. Using an IBM
370/168 computer, the calculation of the intensity for one single
section topograph in one incident plane needs about 2 s for a
silicon wafer 400um thick, 220 reflection. Let suppose that a
resolution of 1.6um 1s satisfactory and that the image is 320um
large ; it means that each line of the image is simulated in 600 s
about. To speed up the computation we usually compute each third
line in the image, the two missing ones being computed by linear
interpolation. If the dimensions of the image are 320x320um2
the complete image is simulated in 11 hours about. It is thus worth-
while to try to decrease this enormous time as much as possible.
This may be achieved by the programming itself and alsc by the
means of an array-~processor.

Minimizing the number of elementary calculations

To compute an image ¢of width ab {(Fig. 4),the polnt source is
scanned from O to O'. It is obvious that near the edges of the
image a small part only of the nodes in the network of integration
contributes to the calculation. For instance, when the point source
is at 0, it 1s sufficient to integrate the equations along Oa only.
The computation may be restricted to the nodes contained in 00'ab
only. Since the integration is performed along characteristic lines
parallel to s , starting from the refracted direction, it is easy
to introduce Such limitations.




Automatic restart of the computation

In most computing centers it is not possible to continuously
run a program for hours. It is thus wnecessary to include an automa-
tic restart. This is done in the following manner.

A first program reads the initial data and creates save files
which contains all data needed for the integration. A second
program does the integration itself. After each integration, corres—
ponding to one plane of incidence, the results and intermediary
data are written in the save files. When the program starts it
reads the save files and understands wether it is a new calculation
or a previous one. In this case it starts at the point where it
had been previously interrupted.

Using an array-processor

An array-processor is a dedicated machine attached to a host
computer. Thus one executes a program and on request asks the
array-processor to perform specialized calculatioms. The host may
wait till they are finished and continues its work. The array-—
processor may be started either by use of a specialized FORTRAN
mathematical library or writting programs in its assembler language.
It can be attached to a small computer and runs at speeds compara-
ble to giant computers. This speed is achieved with a special hard-
ware designed for scientifie calculations.

For our purpose, the simulation program, ADELE, was first
written in FORTRAN. Then the integration subroutines were rewritten
in APAL, assembler language for FPS array-processors (Floating
Point Systems Co.). All the integration is performed in the array-
processor and the host writes the results in a file. Our tests have
shown that, for a given image, a line is computed in 6 hours, using
a small machine (Bull MINT6/53, comparable to a DEC 11/70} with
the FORTRAN version, in 40 minutes using an IBM 370/168, in 4 minutes
using a CRAY 1 and in only 13 minutes using a FPS AP100 array-
processor.

The use of the array-processor permits to compute the images
on a local small machine. It must be enphasized that, since most
calculations are performed in the array-processor, the load for the
host computer is negligible. It waits for results from the array-
processor most of the time. The program can run day and night
without influencing on the performances of the host computer as
long as the AP100 is not needed by an other user. As explained,
it is possible te stop on request and restart automatically.




STUDY OF THE CONTRAST OF DISLOCATIONS

Fig. 5 is the traverse topograph of a straight dislocation
in silicon (220 reflection MoKa).

Fig. 6 shows the corresponding simulation. The agreement is
quite satisfactory. Fringes appear in the left part of the image
which are not visible in the experiment because the resolution
. of the simulation (0.8um) is much better tham in the real expe-
riment and because there i1s no noise in the background. The out-
put device is a raster picture system PERICOLOR 2000. The main
features are the same although the real dislocation is slightly
curved. Netice a strong white contrast where the dislocation
intersects the exit surface of the crystal. '

Fig. 7 shows the simulatioe of -the same dislocation except
that_the Biirgers vector which has been reversed from 1/2{1011 to
1/2[101).The white contrast, near the exit surface vanishes and
we may conclude that the topograph (Fig. 5) corresponds to the
simulation in Fig. 6. This is 1n agreement with the simulation of
section topographs. :

Fig. 6




Fig. 8 shows the images of rather straight dislocations in
a silicon wafer (333 reflection MoKa) (courtesy M. Lefeld-Sosnowska).
The angle between the surfaces of the crystal and the defect is
rather small ; this explains why the contrast is poor : a black
line for the direct image and a faint dynamical image which permits
to distinguish the entrance surface from the exit surface. Fig. 9
is the corresponding simulation. We have also simulated the image
with opposite Birgers vector but no difference could be found. This
is not surprising since there is very little information in this
image.

Fig. 10 shows dislocations in KDP. These dislocations make
an angle of 30 d:grees about with the entrance surface of the
crystal. The sense of their Biirgers vector has been found by surface
effectsband by simulations of section topographs. Their Burgers
vector is [00l] which is also the normaleto the surface. Simula-
tions of Figs 11 and 12 permit us to distinguish easily both cases :
a first black fringe near the entrance surface corresponds to
b = [001]. An additional black direct image appears in the simula-
tion. It might be because of incorrect elastic stiffnesses values
or to a relaxation-in the core of the dislocations.
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Fig. 10 Fig. 11 Fig. 12

These few examples show that quantitative measurements may
be done using traverse topographs when the images contain enough
information. The failure in Fig. 8 is due only to the lack of
details in this image. Obviously this black line can just give an
idea of the orientation of the defect.

It would be necessary to use an other reflection, where the
image contains more information to be able to quantitatively
characterize this defect.

CONTRAST OF PLANAR DEFECTS

Authier7 has studied the contrast of stacking faults using a
decomposition of the incident spherical wave in its plane wave com—
ponents.The results are satisfactory but it is a first order appro-
Ximation because he had to use the stationary phase method to inte-
grate the propagation equations. Recently Patel8, studying the
contrast of stacking faults in silicon (Fig.13), found a disagree-
ment between traverse topographs and the predictions made by Authier
when the intersection of the fault with the surfaces 1s parallel to
the incident plane.Capelle et al.? also notices, in section topo-
graphs, that a direct integration of TT equations using CSA matched
better their experiments than Authier's theory especially along the
direct image. This is not surprising because of the approximations.
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Fig. 14

The traverse topographs is much easier to simulate for planar
defects than for dislocations. All the information .is contained in
one section topograph and the traverse is obtained by summing the
intensities along lines parallel to the intersection of the fault
with the exit surface. We have written a VSA program to simulate
section topographs, EMPV, then we have computed a profile of inten-
sity through the image of a stacking fault as shown in Fig. 13
(CuKa 111 reflection). Fig. 14 is the computed intensity aleng a
vertical line in the middle of the image. The agreement is good :
a strong black fringe appears at both ends of the profile when
Authier's theory predicted a white fringe near either the entrance
or the exit surface (depending on the sign of the phase shift).
The contrast in the middle is weaker and this also was not found
in the previous theory.

CONCLUSION

The accuracy of VSA permits now to simulate traverse topo-
graphs. This can be applied to any kind of defect whenever a model
for the deformation exists. Information such as the orientation and
length of the Burgers vector of dislocations or the phase shift




of stacking fault can now be measured comparing the real and the
simulated lmages. Simulations can be used in experimental work to M
quantitatively characterize defects. This is possible using either

giant modern computers or array-processors linked to a small ma-

chine.

It should be especially useful when section topography
cannot be used as, for instance, for thin crystals.

We are very indebted to F. Morris whose participation has
b~ren absolutely necessary when using the array-processor.
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