
A new failure mechanism in thin film by collaborative

fracture and delamination: Interacting duos of cracks
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Abstract

When a thin film moderately adherent to a substrate is subjected to residual
stress, the cooperation between fracture and delamination leads to unusual frac-
ture patterns such as spirals, alleys of crescents and various types of strips, all
characterized by a robust characteristic length scale. We focus on the propaga-
tion of a duo of cracks : two fractures in the film connected by a delamination
front and progressively detaching a strip. We show experimentally that the sys-
tem selects an equilibrium width on the order of 25 times the thickness of the
coating and independent of both fracture and adhesion energies. We investigate
numerically the selection of the width and the condition for propagation by con-
sidering Griffith’s criterion and the principle of local symmetry. In addition, we
propose a simplified model based on the criterion of maximum of energy release
rate, which provides insights of the physical mechanisms leading to these regular
patterns, and predicts the effect of material properties on the selected with of
the detaching strip.

Keywords: Delamination, Fracture, Patterns, Energy methods submitted to
J. Mech. Phys. Solids

1. Introduction

Thin film coatings are commonly used in engineering applications as a way
to enhance the surface properties of a substrate. However, residual stresses
generally build up in the layer during deposition or use, which may result into
buckle-driven delamination when stresses are compressive or fracture in the
opposite case of tensile stresses (see the classical review from Hutchinson and
Suo [1]). In this paper we focus on this later situation, which has been widely
explored due to the dramatic consequences of such a failure. In the case of a
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strong adhesion of the thin film, the condition for the propagation of channel
cracks is well documented and we summarize the main results in section 3.1.
When the propagation of cracks is possible (i.e. beyond a critical tensile load),
cracks usually appear sequentially: a new crack follows a straight trajectory,
until it deflects and connects perpendicularly to an earlier crack as a consequence
of the tensorial nature of the strain (fig.1a). If the substrate is rigid, the length
scale of interaction between cracks is on the order of the thickness of the layer.
Indeed, the substrate tends to limit the relaxation of the residual strain induced
by fracture [2, 3, 4]. The resulting hierarchical fracture patterns appears in
old paintings [5], drying mud [6] or sol-gel coatings [7]. In addition to channel
cracks, delamination is also observed for high tensile stresses. The interplay
between channel cracks, delamination and substrate fracture has motivated a
large number of studies [8, 9, 10], to provide the operational conditions for
thin film stability [11, 12, 13]. However, delamination requires free edges to
propagate. As a consequence, this mode of failure is usually observed between
previously formed channel cracks and eventually leads to the detachment of
pieces of the coating [14, 15].

The nucleation of successive channel cracks is nevertheless not the sole sce-
nario for the failure in coatings under tensile stresses. Indeed, a different mode
has been recently evidenced in systems involved in new applications such as
stretchable electronics [16], biomaterials [17] or fuel cells [18], which display a
weak adhesion of a thin film on a substrate. Intriguing fracture patterns have
been reported in such systems such as regular alleys of oscillating crescents
(fig. 1b), spiraling paths (fig. 1c), parallel cracks (fig. 1d), or more disorganized
patterns (fig. 1e) [19, 20, 21, 22, 23].

As a mean feature, these patterns display a well defined characteristic length
scale, which is best evidenced in the wavelength of the crescent alleys (fig. 1b)
or the pitch of the Archimedean spirals (fig. 1c). This lengthscale is typically 25
times the thickness of the coating for most experimental systems. In a recent
paper presenting live observations of crack propagation, we showed that these
striking patterns result from the simultaneous propagation of a delamination
front in collaboration with fracture across the layer [24]. This new collaborative
fracture mode surprisingly develops in conditions where standard channel cracks
are not expected to propagate. We provided a simplified physical model based
on energy estimates that selects a length scale for the patterns proportional to
the thickness of the film. This model also reproduces the diversity of observed
patterns. However, a quantitative prediction of the crack propagation as a func-
tion of the material properties of the coating and the substrate is still missing.
We focus here on the case of a symmetric pair of cracks propagating simultane-
ously with a delamination front and leading to a strip of a well defined width
(fig. 1f and 3a). Indeed, this simpler geometry allows for a quantitative model-
ing and a direct comparison with experiments. Studying this configuration thus
constitutes a first step towards a generalization to more complex modes such as
spirals or crescent alleys.

In section 2, we characterize experimentally symmetric pairs of cracks and
show how the selected width depends on the different physical parameters. We
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Figure 1: Cracks in thin films. The standard propagation of isolated cracks in a thin drying
layer of corn starch leads to a hierarchical network where new cracks branch perpendicularly to
older ones (a, hf = 2.7 mm, scalebar 1 cm). However, surprising regular patterns are observed
in thin silicate (“Spin-On-Glass”) layer when the adhesion of the coating is moderate (scalebar
100 µm): long oscillating alleys (b, hf = 1.2 µm, Γ0

i = 0.45 N/m), Archimedean spirals (c,
hf = 1.1 µm, Γ0

i = 0.3 N/m) or parallel cracks (d, h = 1.45 µm, Γ0
i = 0.3 N/m) follow

an initial arch or line, at a fixed distance. Denser defects lead to more complex patterns,
nevertheless the band structure remains robust (e, f).
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address in section 3 the selection of this width by studying numerically the stress
intensity factors at the crack tips, from which the direction of propagation of the
cracks can be predicted. We also determine the conditions of propagation using
a steady-state argument. In section 4, we propose a complementary approach
based on maximum energy release rate [25], which provides insights into the
physical mechanisms that select the width of the band. In section 5, we exam-
ine the robustness of the selection of the width and determine its dependence
with material properties (Poisson ratio, Young modulus of the layer and of the
substrate) using three-dimensional finite element computations and simple an-
alytical arguments based on energy. We finally quantitatively compare those
predictions with experimental data.

2. Experimental evidence of a new mode of crack propagation

“Spin-On-Glass” silicate coatings (SOG) are commonly used as protective
coatings or to adjust the dielectric properties of materials [21]. Depositing such
films relies on a simple process where a sol-gel suspension is spin-coated on a
substrate and then cured in a oven. Nevertheless, the sol-gel condensation re-
action produces residual tensile strains (on the order of 1%), which may induce
fracture [26]. When adhesion with the substrate is large, such stresses indeed
induces the propagation of isolated channel cracks, leading to the usual hier-
archical pattern of glaze cracks in ceramics (fig. 1a). However, if the adhesion
of the layer on the substrate is moderate, unusual crack patterns can also ap-
pear as illustrated in fig. 1. Although similar patterns have been reported with
other materials, we selected SOG coatings as a model system for controlled
experiments.

2.1. Experimental setup

Thin films were produced by spin-coating a commercial solution of organosili-
cate sol-gel (SOG spin-on-glass, Accuglass T-12B, Honeywell) on a silicon wafer.
The rotation speed was set from 500 to 1200 rpm for 15 to 25 seconds. The liq-
uid layer was placed in an oven at 200◦C for 2 hours. The solvent then quickly
evaporated and the sol-gel condensation reaction progressively transformed a
gel into a glassy micrometric silicate film. The obtained silicate coating was
characterized by different parameters, that we have quantified precisely, namely
the thickness hf , Young modulus Ef and the Poisson coefficient νf of the film,
the residual strain σ0, the adhesion energy Γi and the fracture energy Γc.
The thickness hf was measured by AFM (fig. 2a) or SEM imaging of gently
scratched specimens (fig. 2b). The Young modulus Ef = 4 ± 1 GPa was es-
timated by standard nanoindentation (MTS XP from Agilent). The Poisson
coefficient was inferred from the measurement of the relative variation of the
film thickness εzz = 2

νf
1−νf εxx induced by the delamination of a strip of the film.

This variation on the order of 6 nm for a film of hf = 1µm was measured by
AFM imaging, corresponding to νf = 0.25 (fig. 2a).
The tensile stress was obtained by monitoring the slight deflection from the
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slight deflection induced on the supporting wafer (we used a wafer of thick-
ness hs = 100µm for these measurements). This measurement confirmed that
residual stresses are isotropic in the film. The curvature of the wafer κ is in-

deed related to the residual stress through Stoney’s law, σ0 =
Esh

2
sκ

6hf (1−νs) , where

Es = 169 GPa, νs = 0.36 are respectively the Young modulus and the Poisson
coefficient of the silicon wafer [27]. We typically obtained κ ∼ 0.15 m−1 for
hf = 1µm, leading to a residual stress σ0 = 55 MPa for the different samples.
Such stress corresponds to a residual strain ε0 = σ0/Ef on the order of 1%.
As a way to control the adhesion of the coating layer, the wafer could be
previously coated with a first thin layer of SOG, methyltriethoxyorthosilicate,
tetraethylorthosilicate, glycidoxypropyltrimethoxysilanetetraethoxysilane or 1H,1H,2H,2H
perfluorodecyltrichlorosilane. The adhesion energy Γi was inferred by monitor-
ing the shape of a delamination front around a fixed straight crack of length L
as proposed by Jensen et al. [28] (fig. 2c). The aspect ratio of the front Y/L
is indeed predicted to rely on the ratio of the residual stress σ0 with a critical
stress σc, on the Poisson ratio of the film and on a parameter accounting for
mode 3 contribution at the tips of the straight crack. However, the effect of
this last parameter is quite moderate and the numerical data from Jensen et al.
computed for νf = 1/3 and different contributions of mode 3 can be fitted by
the simple relation σ0/σc = 1 + 0.47(±0.05)Y/L. Measuring the critical strain
for delamination from the shape of the front thus provides an estimate of the ad-

hesion energy through the relation σc =
(

2EfΓi

(1−ν2
f )hf

)1/2

[28]. As it is observed in

any adhesive system, the adhesion energy increases with the speed of propaga-
tion of the delamination front (fig. 2d). This is not due to kinetic energy effects
(typical velocities range from 1 to 100 µm/s) but to time dependent dissipation
(e.g. diffusion of reactive molecules facilitating fracture propagation [29]). We
refer to as Γ0

i the limit of this energy estimated for a motionless front. By
changing the preliminary coating on the silicon wafer, we were able to vary Γ0

i

between 0.3 and 1.3 N/m.
A standard plasma cleaning of the sample finally promotes a strong adhesion
and thus prevents delamination. In this condition, channel cracks are observed
above a critical thickness hc, as expected in thin films under tension (see sec-
tion 3.1). For a residual stress σ0 = 55 MPa, a critical thickness hc = 1.8µm
lead to a fracture energy, Γ0

c = 1.5 ± 0.2 N/m according to equation (3). Frac-
ture energy was also found to increase with the speed of propagation of the
crack (fig. 2d). This dependence is compatible with observations in other sim-
ilar systems where it has been interpreted as effect of water diffusion through
the fracture tip [29].

2.2. Duos of cracks: experimental observations

Although a large variety of patterns can be observed for different triggering
conditions [24], we focus in this paper on the paradigm case of duos of cracks
that propagate simultaneously. Such pairs were for instance observed to grow
perpendicularly along scratches produced with a sharp blade. Optical interfer-
ences visible as the pair of cracks advances, indicate that the film delaminates
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Figure 2: (a) AFM imaging of crescents alleys reveals a slight increase of the thickness of the
silicate layer as residual strain is relaxed by the crack. (b) Field Emission Gun-SEM images
of the crack path. (c) Evolution of a delamination front around a fixed straight channel crack.
(d) The delamination energy Γi estimated from the shape of the front (diamonds) increases
with the velocity. The delamination energy Γi is normalized by the value of the delamination
at zero velocity Γ0

i (coded in colors). Similarly, the fracture energy Γc measured in isolated
cracks (black dots) increases with the crack velocity.
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Figure 3: (a) Propagation of duos of cracks in a thin film of spin-on-glass, deposited on a
silicon wafer (hf = 1.4µm, Γ0

i = 0.55 N/m). In this particular example, the cracks initially
linked by a narrow delamination front, start to diverge but quickly converge towards a steady
width W2. The pictures are taken with a constant time lap of 2 s. (b) Opposite case where
the initial width is larger than W2, leading to the same optimal width. (c) Relaxation of
a duo of cracks towards the optimal width in a film presenting a gradient in thickness. In
the left part of the image, the thickness is larger than the critical thickness hc required for
the propagation of an isolated channel crack. Two isolated cracks propagated independently
and stopped as they reached the region below hc. A slow delamination front then propagates
between both cracks and the collaborative propagation starts, leading to a rapid relaxation
towards W2. (d) Variation of W2 as a function of the film thickness hf for different values of
the adhesion energy Γ0

i .

simultaneously (fig. 3a). Although the initial width of the delaminated band is
set by the initial conditions, it systematically converges toward a steady value
W2, which is found constant for a sample of uniform thickness. In this steady
regime, the delamination front connecting both cracks propagates at a constant
speed ranging from 1 to 100µm/s.

We measured the variation of the stationary width of the strips W2 as a
function of hf for different adhesion energies Γ0

i . As illustrated in fig. 3d, W2

increases linearly with the thickness over one decade. We observe that the duos
of cracks converge rapidly towards W2 (fig. 3b and c), which is in the order
of 25 times the film thickness. This prefactor which probes the interaction
distance between the cracks is strikingly large in comparison with isolated cracks
where the interaction length is on the order of hf . Moreover, this optimal
width is surprisingly robust and does not depend on the actual value of the
adhesion energy Γ0

i . In the remaining of this article, we wish to explain these
two remarkable experimental facts, through two different approaches.

3. Prediction of crack propagation through stress intensity factors

In a first approach, we study the stress field around the crack tips, using the
standard tools of linear elastic fracture mechanics and finite elements numerical
calculations. In this section (as well as in section 4), we restrict the analysis
to the case of a single layer on a infinitely rigid substrate. A quantitative
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comparison with experiments including a sublayer is presented in section 5.
Before describing duos of cracks, we start the following section by reformulating
standard results on isolated cracks [1].

3.1. Standard isolated cracks

Consider the classical case of a single and straight quasi-static fracture propa-
gating in a thin isotropic homogeneous coating perfectly adhering to an infinitely
rigid substrate. We note that in view of the deposition technique (condensa-
tion of a layer) the films in our experiments have in-plane isotropic mechanical
properties, and undergo isotropic residual stresses, as confirmed by direct mea-
surements described in section 2.1. The questions that we wish to address are:
what are (i) the direction of propagation and (ii) the conditions for propagation?

The calculation of the stress field close to a crack tip in the film is a complex
three-dimensional problem. However, the configuration is mirror symmetric
with respect to the straight crack trajectory, so that the stress field must also be
symmetric (the loading is in pure opening mode I) all along the fracture front.
According to the principle of local symmetry, the direction of propagation is
therefore in the plane of the initial trajectory : (i) an initially straight crack
path remains straight. Note that this symmetry argument does not state on the
stability of such an existing straight trajectory : a perturbation to this solution
may be amplified during propagation. The symmetry of the system can be
broken through a bifurcation. Indeed oscillating crack path are for instance
observed in plates subjected to a thermal gradient [30, 31] or during the cutting
of a thin sheet with a blunt tool [32, 33, 34], two situation where the system is
mirror symmetric with respect to a straight path. In the case of interest here,
we assume straight paths to be stable, in the standard sense of stability analysis,
since they are experimentally observed.

In addition to the shape of the path, we can determine the condition for
propagation through Griffith’s criterion. The energy release rate of an isolated
crack (fig. 4a) is obtained from a simple plane strain analysis instead of the
resolution of the three-dimensional problem in the vicinity of the crack tip.
Indeed, the difference in energy between a section far ahead and far behind the
crack tip leads to the following energy release rate G:

Ghf = 2γ(νf )ehf (1)

where e = hfσ
2
0(1 − νf )/Ef is the elastic energy density in the film per unit

area, and 2γ is a numerical prefactor which depends on the Poisson ratio νf of
the film. We have noted hf the film thickness, Ef its Young modulus and σ0

the residual stresses in the film. Numerical tabulations for γ can be extracted
from [35], where the effect of a finite rigidity of the substrate is also considered
through the Dundur parameters [1]. In the case of an elastic coating under
residual stress deposited on a rigid substrate, γ is of order 1 (we used γ = 0.64
in our measurement of fracture energy in section 2), but can be much larger for
compliant substrates. We will consider such effects in section 5.2.
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Figure 4: (a) Elastic energy distribution around an isolated channel crack in a thin layer
under residual stress σ0. The energy density is normalized by its value in absence of fracture
e/hf = σ2

0(1−νf )/Ef . Elastic energy is released in a small area around the crack edges, with
typical lateral size ` ∼ hf in the direction y perpendicular to the crack. (b) Collaborative
mode of propagation of a duo of cracks separated by a delamination front. In addition to
the lateral strain release along crack path, the strip defined by three free edges is almost
completely free of elastic energy in this propagation mode.

Following Griffith criterion, isolated channel cracks propagate quasi-statically
(ii) in thin films if the energy release rate reaches the fracture energy Γc.

2γe = Γc (2)

This condition is usually presented in the following form: for a given residual
strain σ0, the film is stable with respect to fracture (i.e. a nucleated crack will
not propagate) if the film thickness hf is smaller than a critical value hc:

hc =
ΓcEf

2γσ2
0(1− νf )

(3)

In our experiments such isolated cracks are observed in sufficiently thick coatings
when large adhesion prevents delamination. As described in section 2.1, we used
measurement of the critical thickness hc to estimate the work of fracture Γc.

These results are well established [1, 2, 3, 4, 35], and recent studies focus
on the interaction between several isolated cracks. A simplified model based on
linear foundation connecting the layer to the substrate has for instance been
proposed [36] and later rigorously derived and used to study the sequence from
fracture to debonding [37, 38].

3.2. Predicting the width separating duos of cracks

We now focus on the case of duos of cracks, which is not described by the
classical situation presented before. We nevertheless follow the same line of
arguments for this new collaborative mode: we first study the stress field around
the cracks to determine the path and then use Griffith criterion to predict the
condition for propagation.

Consider a duo of cracks propagating with a steady widthW2 as illustrated in
fig. 3a. The thin film initially adheres to a rigid substrate and two straight cracks
propagate through the film, with the resulting strip simultaneously delaminating
from the substrate. In contrast with the case of isolated cracks, the mechanical
conditions on each side of the cracks tips are very different. Indeed, the film
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remains attached to the substrate in one side and free in the other side. As
consequence there is no a priori reason to expect a pure mode-I loading and
therefore a straight propagation of the cracks. However, fracture may experience
pure opening loading even in configurations where there is no symmetry, for
instance in the spalling and cracking processes of brittle plates [1, 39] or in the
case of the interaction of curved channel cracks [36].

Finite-element simulations of a straight delaminated strip were performed
within the limit of three-dimensional linear elasticity with the Abaqus software
from Dassault Systèmes. The mesh size used for these simulations was one tenth
of the film thickness. For the sake of simplicity, we first consider the case of
a layer directly deposited on an infinitely rigid substrate (fig. 4b). The effect
of the finite Young modulus of the substrate or that of a sublayer will be later
described in section 5 for a quantitative comparison with experimental data.
The system is therefore composed of an isotropic thin film (thickness hf , Young
modulus Ef , Poisson ratio νf ) in which two rectilinear cuts are performed,
delimiting a rectangular strip with a width W (fig. 4b). The layer is attached
to the infinitely rigid substrate except in the area below the strip. We use
the symmetry of the problem to simulate only half of the strip. The isotropic
biaxial residual stresses are imposed in the numerics as the result of a thermal
contraction of the coating.

We use two simplifying assumptions on the geometry of the fracture front,
which are guided by experimental observations. A first assumption is that the
debonding front is straight as observed experimentally (see images on fig. 3a).
A second simplification concerns the shape of the channel crack in the thickness
of the coating. Post-mortem SEM imaging suggests that the fracture plane is
nearly perpendicular to the film surface (fig. 2b). Although a precise monitoring
of the crack front is lacking, we will assume that the fracture front in the film
is straight and perpendicular to the film surface.

Stress intensity factors were computed for both cracks across the thickness
of the film for different widths W of the strip. The averaged values of the
stress intensity factors over hf are respectively quoted as 〈kI〉 , 〈kII〉 , 〈kIII〉. In
the framework of linear elasticity, all these stress intensity factors are linear
functions of the loading and can be adimentionalized by Ef ε

√
hf , where ε is

the imposed strain. According to the principle of local symmetry, the crack
propagates without changing direction if the stress intensity factor in mode II
vanishes. In fig. 5, we plot the ratio of shear to opening mode 〈kII〉 / 〈kI〉 as
a function of the strip width W . The averaged shear mode 〈kII〉 vanishes for
a single value of the width W2 = 15.1hf for a Poisson ratio νf = 0.25 (see
section 5.1 for other values of νf ). As a consequence, only strips with a width
W = W2 may thus propagate steadily along a straight path. Moreover, the
change of the sign of 〈kII〉 indicates that W2 corresponds to a stable width.
For a strip width larger than W2, the crack tips indeed undergo a shear loading
which would induce a kink of the fracture inward, leading to a decrease of
W as the cracks propagate. The symmetric situation with a width W < W2

would conversely lead to an increase of W . This is an indication that the
solution with constant width W = W2 is stable. In any case, the width is
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Figure 5: Numerically computed stress intensity factors at the crack tips for a delaminated
strip with width W in a film subjected to residual bi-axial stress. The ratio 〈kII〉 / 〈kI〉 is
plotted as a function of the normalized width W/hf , where hf is the thickness of the coating
(stress intensity factors are averaged in the thickness of the film). Since the sign of the
ratio is related to the direction of propagation of the crack, parallel cracks are expected for
W ∼ 15.1hf . Inset : Profiles of kI , kII and kIII along the crack front z/hf for the selected
width W2 ∼ 15.1hf . z/hf = 0 corresponds to the lower surface of the film in contact with
the substrate and z/hf = 1 to the upper surface.

thus expected to converge towards W2. The selection of a given width in this
problem is, in this sense, comparable to substrate spalling [39], and to more
complex geometrical propagation of interacting straight and curved crack [36],
which have been similarly explained by a vanishing value of kII for a single
distance.

In the inset of figure 5, we present the profiles of stress intensity factors as
a function of the position z/h across the film thickness, for the optimal width
W = W2. These profiles indicate that the opening mode (kI) is dominant and
roughly constant. Interestingly kII varies monotonically and only vanishes on
average. We also note that kIII is small but finite (in average it corresponds to
5% of kI). This finite but small value is an indication that the geometry selected
(straight front perpendicular to the film) is only a reasonable approximation.
Since the energy release rate is not constant along the front, some parts will
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propagate faster than other, and the fracture front should indeed not remain
straight. The actual front should slightly tilt sideways (opposite sign of kII on
top and bottom faces of the film, and finite kIII) [40]. A complete numerical
study of this problem would require to find the actual shape of the front in the
steady state regime (the one for which kII = kIII = 0 all along the front, with
a constant kI). Such a delicate study would be beyond the scope of the present
work.

3.3. Energetic condition for the propagation of duos: Griffith’s criterion.

In the previous section, we found a steady width W2, which is solely dictated
by linear elasticity and thus independent of the loading. We now use a steady
state argument to determine the conditions for propagation. This argument is
only relevant for the particular width W = W2, since other widths would lead
to unsteady diverging or converging strips.

Under steady state conditions, the energy released during propagation is the
difference between energies far ahead and far behind the fracture front (fig. 4b).
This energy released includes a contribution of the still adhering film, which is
identical to the classical case of isolated channel cracks (fig. 4a). In addition, the
elastic energy of the debonded strip is completely released, since the boundaries
of the strip are free (fig. 4b). The energy released per unit advance of the front
is now given by:

2γehf + eW2

Wide strips are thus more favorable from an energy release point of view. How-
ever the energy cost for propagation is also higher, as it now involves two frac-
tures across hf and a debonding front along W2. Propagation is thus energeti-
cally possible if

(2γhf +W2)e = 2Γchf + ΓiW2,

where Γi and Γc are respectively the debonding and fracture energies of the
film. This relation defines a new condition for propagation of duos of cracks,
different from the threshold for isolated cracks (eq. 2). In the case of weak
adhesion Γi ≤ e, this condition may be satisfied for sufficiently large widths,
even when eq. 2 does not hold. In other terms, duos of cracks may propagate
in conditions where isolated cracks cannot.

3.4. Selection of the propagation velocity

Our experimental estimations of the quasi-static debonding and fracture
energies show that both Γi(v) and Γc(v) increase with the front velocity (fig. 2d),
as it is generally observed in any mode of fracture. If we take into account
velocity dependence, the condition of propagation therefore becomes:(

2γ +
W2

hf

)
e ≥ 2Γ0

c + Γ0
i

W2

hf
, (4)

where Γ0
i and Γ0

c respectively correspond to the minimal values of Γi and Γc,
valid for vanishing velocities. Once this relation is satisfied, we expect the excess
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of residual energy to be dissipated by the fracture and delamination velocity-
dependent processes (e.g. viscous dissipation, diffusion of reacting molecules
[29]). The resulting quasi-static propagation velocity v is thus set by:(

2γ +
W2

hf

)
e = 2Γc(v) + Γi(v)

W2

hf
.

The above condition will be compared quantitatively with experimental data
in section 5, where the effect of the finite rigidity of the substrate is studied in
details. In the following section we propose an alternative approach based on
physical arguments to predict the selection of the width.

4. A physical model for the selection of the width

Within the assumption that cracks and delamination fronts are all straight,
direct computation of stress intensity factors showed that only strips with a
well defined width W2 experience no shear mode, and propagate steadily. This
result is certainly not intuitive since the boundary conditions around each crack
are asymmetric conditions. It is thus difficult to interpret why the shear mode
vanishes for a unique width W2. We now present an alternative point of view,
where the direction of propagation is deduced from a study of the energy release
rate.

Indeed, the “maximum energy release rate criterion” is also commonly used
to predict the direction of fracture propagation in a homogeneous, isotropic
material. According to this criterion, fracture propagates in the direction that
maximizes the energy release rate for a fixed loading [41]. In the case of a
smooth crack path (regular in space and in time), in an homogeneous isotropic
material, this criterion has been proved to be equivalent to the principle of
local symmetry used in the previous section [25, 41]. Both criteria nevertheless
slightly differ if the path presents a kink [1, 42]. However, we are here interested
in the conditions for a steady propagation, which corresponds to the first case.

4.1. Elastic energy for a straight strip with width W

Similarly to the previous section, we consider a film under bi-axial tensile
stress covering an infinitely rigid substrate. We will use the initial energy of
this film as a reference E0 and we propose to estimate the elastic energy of
the system E(W,L) as a long strip of length L and width W (L � W � hf )
delaminates from the substrate (fig. 4b). As suggested by the experiments, the
delamination front is assumed to be straight. We use the coordinates x, y in
the plane of the coating, y being oriented along the delamination front. The
previous finite elements calculations provide the stress field distribution on the
film displayed in fig. 6. The observation of the stress field shows that residual
stresses are decreased in two independent regions: the delaminated strip and
a pair of narrow bands of the adhering film along the fracture path. We thus
split the difference in elastic energy, E0 − E(W,L) = Estrip(W,L) + Ecut(L), into
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the contributions of these respective regions. The term Ecut(L) is similar to the
case of classical isolated cracks and does not depend on the width of the strip.

We have seen that far enough from the delamination front, the steady
state difference in elastic energy is given by eW + 2γehf per unit strip length
(eq. 4). Integrating this difference over the length of the strip would thus lead
to Ecut(L) = 2γehfL and Estrip(W,L) = eA, where A is the debonded area.
However, this expression neglects boundary effects close to the crack tip and to
the delamination front. Indeed, the elastic field along the edges of the cut is
not invariant along x (steady state elastic field) close to the fracture tip. The
steady state energy for the cut is only valid a few thickness away from the tip
and should be corrected into Ecut(L) = 2γehf (L+ ζhf ), where ζ is a numerical
factor. In a similar manner, the delamination front perturbs the complete relax-
ation of the residual strain in the strip. We computed numerically the energy
of the finite size system E(W,L) using the numerical scheme developed in sec-
tion 3.2. We plot in fig. 6a the elastic energy E0 − E(W,L)− eLW − 2γeLhf =
Estrip(W,L) − eA + 2γζeh2

f . The strip length L was kept constant (as well as
Ecut), and only the width W of the strip was varied. In other words, this graph
represents the evolution of eh2

fG(W ) = (Estrip(W,L)−eA) shifted by a constant
value. An essential feature of the additional term in energy release G(W ) is to
present a maximum. In the following section, we provide a physical interpreta-
tion of this non-monotonic variation as the result of two elastic perturbations
that take place close to the delamination front. We show in section 4.2 how this
property determines the crack path.

4.1.1. Strain along the width at the boundary: “a surface effect”

The boundary condition at the end of the strip in contact with the attached
film prevents the residual strain to be completely relaxed in the y direction
(fig. 6c). In a first approximation, the problem is thus similar to a planar strip
with three free edges but under a tensile strain εyy = ε0 along the last one.
Due to the laplacian nature of elastic equations for plane stress, the boundary
condition has an influence over a characteristic length on the order of W . As
a consequence, the region of the strip remaining under strain has an area pro-
portional to W 2, leading to an elastic energy αeW 2, where α is a numerical
prefactor depending only on the Poisson ratio of the film νf . We thus expect a
correction of our estimation of the released energy with a term −αeW 2. As a
first approximation, this correction should only depend on νf and be indepen-
dent of any other material parameter, even if the substrate is not considered as
infinitely rigid (see section 5).

We note however that this correction depends on the geometry of the de-
lamination front. In this article we assume that the front is straight, based on
optical observation (see for example figures 3a to c). This assumption remains
to be justified by a determination of the geometry of the delamination front
using interfacial fracture mechanics, a challenging question that goes beyond
the scope of this article.
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Figure 6: (a, b, c) Numerical computation of the stress fields. Stress component σxx : the
spontaneous tilting of the strip (side cut view of the strip a) releases stresses even ahead of the
debonding front (also seen on top view b). Stress component σyy : residual stress is released
in the strip except in the vicinity of the delamination front (top view c). (d) Difference in
elastic energy due to the delaminated strip E0−E(W,L)− eLW − 2γeLhf normalized by eh2f
as a function of stip width W/hf for a constant length L (see geometry on figure 4b). The
plot presents a minimum and can be fitted with a quadratic function −αW 2 + βhfW with
α ' 0.0254,β ' 0.368
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4.1.2. Tilting the strip: a line effect

In contrast with σyy stresses, σxx residual stresses are completely relaxed in
the strip. However more energy can be released in the remaining coating if the
strip is tilted (fig. 6a and b).

In experiments, this out-of-plane displacement is evidenced through the in-
terference fringes usually visible in the debonded area (fig. 3). It is also visible
in the finite element simulation presented on figure 6a where the strip remains
straight in the debonded zone. Additional effects such as gravity, electrostatic
forces, or surrounding airflow usually lead to a re-attachment of very long strips
after propagation has taken place, so that tilting is not evidenced in figure 2b.
In our simplified model of the delamination front, we do not consider these
potential additional bending forces.

Tilting the strip provides some localized shear across the thickness of the film
in the vicinity of the delamination front. This situation is very similar to the
boundary condition at the free edges of usual (isolated) channel cracks, where
the shear in the thickness relaxes stresses over a distance of order hf along the
crack path. This additional contribution leads to a correction of the estimation
of the released energy by a term βeWhf , where β is a numerical factor. As
a first approximation, we expect β to mainly depend on νf if the substrate is
infinitely rigid. We study in section 5.2 the effect of a substrate of finite stiffness.

4.1.3. Combining both effects

Implementing these two contributions in the strip leads to a correction of
the the estimation of the energy released:

G(W ) = (Estrip(W,L)− eA)/eh2
f = β(W/hf )− α(W/hf )2. (5)

which is in agreement with the numerical results (fig. 6d). Indeed, a quadratic
function fits fairly well the difference E − eWL and gives α ' 0.0254 and β '
0.368 for a thin film with a Poisson ratio νf = 0.25 deposited on a rigid substrate.
We discuss in section 5 the dependence of α and β with the Poisson ratios and
the finite stiffness of the substrate. The elastic field close to the delamination
front is therefore well captured by these two ingredients: a line effect favoring
large widths (linear term in W ) and a surface effect penalizing large widths
(quadratic in W ).

It might be intuitive to deduce from this result that the system selects an op-
timal width which maximizes G. However, such an optimization is not grounded
and would lead to a width W2 ' 7hf , which is half the prediction from stress in-
tensity factors. The role of G is nevertheless crucial in the selection of the width
as the fracture propagates. We discuss this selection in the following section.

4.2. Selection of the width

Starting from an initial long strip of width W and length L (L � W ), we
propose to determine in which direction the symmetric cracks should propagate.
To address this question, we compute the energy released by propagation as a
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function of the direction of propagation. Following the previous sections, the
elastic energy in this initial state is given by:

E = E0 − eA− eG(W )− 2γehf (L+ ζhf ).

We now consider the symmetric propagation of a pair of cracks forming an angle
θ with the axis of symmetry (fig. 7a). If both cracks advance by a distance ∆s,
the delamination front is also translated by a distance ∆x = ∆s sin θ. Although
the kinked configuration is more complex than the previous uniform strip, we
will assume that the expression for the elastic energy in the strip remains valid.
In other words, we assume E ′strip = eA′ + eG(W ′), where A′ is the new area of
the delaminated part, and W ′ the width of the front.

However, the elastic stress along the cut is altered by the kink and the ex-
pression of the energy release is more subtle than E ′cut = 2γehf (L′+ζhf ), where
L′ = L+ ∆s is the new crack path length. We computed numerically the stress
field in the vicinity of a kink of angle θ (fig. 7b). We consider the elastic energy
Esector(θ, l) in a disk of radius centered on the kinking point (inset of figure 7b).
As a rough approximation, this energy would be simply el2(π−θ)−γehf2l. How-
ever, the presence of the kink modifies significantly Esector(θ, l). We represent in
figure 7b the correction of the released energy Ekink = el2(π−θ)−Esector−2γehf l
as a function of θ. This correction is independent from the radius of the disk as
long as the condition l � hf is verified. We obtain a positive correction if the
kink angle is positive (more energy is released), which promotes the outward
propagation of the strip. As a first order approximation, this correction varies
linearly with sin θ, leading to the contribution of the kink Ekink = eδγh2

f sin θ,
with δ = 0.29. Note that Ekink is not exactly an odd function of θ that would
vanish in the case of isolated channel cracks as both the contributions of the
complementary sectors are added. Additional non-linear terms lead to a slight
decrease of the released energy if a kink is formed, which finally favors the se-
lection of straight paths in standard channel cracks.

If we add the different contributions, the energy obtained after the propaga-
tion of the cracks is given by E ′ = E0 − E ′strip − E ′cut − 2Ekink. We finally obtain
the elastic energy released during propagation by a distance ∆s in a direction
θ as the difference:

Er = E − E ′ = e[A′ −A] + e[G(W ′)− G(W )] + 2γeh∆s+ 2Ekink.

under the condition ∆s� γhf . We are however interested in the energy release
rate (E−E ′)/∆s as the propagation distance ∆s vanishes. Although Ekink cannot
be easily computed, its value is constant for ∆s� hf and vanishes for ∆s = 0
as the kink vanishes as well. As a first approximation, we assume that Ekink

reaches its asymptotic value as the crack propagates by a distance on the order
of a thickness hf . We thus estimate the derivative as Ekink/∆s ∼ δγehf sin θ,
when ∆s vanishes.
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Figure 7: (a) Starting from a straight strip (top) we consider the propagation of a fracture in
a direction θ < 0 by a distance ∆s. In the sketches, the color symbolizes qualitatively residual
elastic energy (as in figures 4 and 6). (b) Additional adimensionalized released energy due to
the kink Ekink(θ)/eh2f . (Inset) Zoom into a kink of angle θ in the crack path.

We finally deduce the energy released rate for the propagation of cracks in
the direction θ:

dEr
ds

= e
dA
ds
− edG(W )

dW

dW

ds
+ 2γehf + 2ehfδγ sin θ.

If we input in this last equation the geometrical relations dA = Wds cos θ and
dW = 2ds sin θ and the expression for G(W ) determined in eq.(5), we obtain:

dEr
ds

= e[W cos θ + 2γhf − 2(2αW − β′hf ) sin θ], (6)

with β′ = β + δγ. Following Griffith criterion, the cracks propagate simultane-
ously with the delamination front if this elastic energy release rate balances the
fracture energy of the two cracks 2Γchf plus the delamination energy ΓiW cos θ.
The condition for propagation is therefore:

e[W cos θ + 2γhf − 2(2αW − β′hf ) sin θ] = ΓiW cos θ + 2Γchf (7)

Note that we only need to determine the direction of propagation of the fracture
in the film, since the the interfacial delamination front is forced to follow the
weak interface. In this case, we use a general version of the criterion of maximum
energy release rate: the direction of propagation is the one that maximizes the
difference of elastic energy release rate with the dissipation rate [25, 41]. The
direction of propagation is thus set by ∂(dEr /ds− ΓiW cos θ − 2Γchf )/∂θ = 0,
which leads to:

eW sin θ + 2e(2αW − β′hf ) cos θ = ΓiW sin θ (8)
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If we combine equations (7) and (8), we finally obtain :

(e− Γi)W = 2(Γc − γe)hf cos θ (9)

sin θ = − e

Γc − γe
(2αW/hf − β′) (10)

This last relation shows that the propagation is straight (θ = 0) only for a given
distance width W = W2, where

W2 =
β′

2α
hf , (11)

This width is stable as the sign of θ compensates the deviation from W2. Indeed,
if W is larger than W2, the propagation angle is negative and both cracks move
inwards. Conversely, if W is smaller than W2, the propagation angle is positive
and the two fractures move outwards. Since both prefactors α and β′ are only
set by elasticity, independently of the fracture energy and the loading of the
film, the expected width should be robust, in agreement with our experimental
observations The parameter δ is difficult to compute exactly and we arbitrary
take β′ = 0.76, which corresponds to the width W2/hf ∼ 15 obtained in the
numerical study of the stress intensity factor. This value corresponds to δγ = 0.4
which is compatible with our order of magnitude estimate δγ ∼ 0.18.

4.3. Convergence length

In the previous section, we have shown that the selected width W2 was
stable, which leads to uniform strips. Indeed, if the initial width of the strip W
differs from W2, the eq. 10 predicts a convergence of W towards W2. Such a
rapid convergence towards the optimal width is a robust characteristic observed
in the experiments (fig. 3b and c). When the fracture is deviated by a defect in
the film, it effectively quickly goes back to the optimal width. We wish here to
estimate the characteristic length scale of this convergence.

We assume that the energy estimates in (5) are valid for strips with slowly
varying width, so that equations (10) and (9) are still valid. If we introduce
sin θ = 1

2dW/ds in Eq. (10), we obtain:

dW

ds
=

1

ξ
(W2 −W ), (12)

which leads to an exponential convergence from W to W2 over the characteristic
length ξ given by:

ξ =
Γc − γe

4eα
hf . (13)

As (Γc−γe)/2e is of the order of unity in our experiments, as well as the param-
eter β′, which leads to ξ ∼W2. Experimentally, we effectively observed typical
convergence lengths of the order of W2 (fig. 3b and c).

As a conclusion, although our analytical approach is approximate, it provides
a physical interpretation for the robust selection of a particular strip width W2.
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Three main physical ingredients indeed dictate the value of W2, the surface
and line effects due to the boundary layer at the attached end of the strip and
the effect of a curvature of the crack path. Moreover this analytical approach
predicts how W2 as a function of elastic properties of the film. In the next
section we will focus on the case of a substrate of finite stiffness and show how
the analytical approach is also relevant in this situation.

5. Influence of the Poisson coefficient and of the finite rigidity of the
substrate for a quantitative comparison with experiments.

In the previous sections, the substrate was assumed to be infinitely rigid.
However, thin sublayers were used in the experiments to modify adhesion prop-
erties. In order to compare quantitatively our experimental data with our theo-
retical predictions, we study in this section the influence of the substrate rigidity
and more generally of the material properties of the coating in the selection of
the optimal width. This quantitative study is important to determine the con-
ditions of stability of the coatings.

5.1. Influence of the Poisson ratio of the coating

In the case of an infinitely rigid substrate, the selected widthW2 was found to
be independent of the Young modulus of the coating. However W2 is a function
of the Poisson ratio and we investigate this dependence in the following section.

We first extend our numerical study of stress intensity factors developed in
section 3.2 for a coating with a Poisson coefficient νf between 0 and 0.5. We
plot in fig. 8a the corresponding ratio 〈kII〉 as a function of the adimensionalized
width W/hf . In the whole range of Poisson coefficient, kII vanishes for a given
width W2, which corresponds to a stable self-peeling strip. We find that W2

slightly increases with νf ranging from W2 = 10hf for νf = 0 to W2 = 25hf for
νf = 0.5 (fig. 8b).

Our physical model constitutes a useful tool to interpret this dependence of
W2 with νf . Indeed, following equation (11), we only need to determine the
evolution of the numerical factors α(νf ) and β′(νf ) with the Poisson coefficient.
The layer is initially subjected to equibiaxial residual stress σ0, which results
into a density of elastic energy per unit area e = hfσ

2
0(1 − νf )/Ef . If stresses

in one direction are relaxed (e.g. σyy = 0) while strains in the other direction
are maintained (e.g. εxx = ε0), the energy per unit surface becomes hfσ

2
0(1 −

νf )2/2Ef = e(1 − νf )/2. This simple results provides a prediction for the
variation of the coefficients (α, β, γ) with νf . Indeed, the delaminated strip
relaxes freely in x and y directions, excepted in the vicinity of the delamination
where strains in the y direction are not relaxed (fig. 6c). In this region the
remaining energy density (or in other words, the deficit in elastic energy released
relative to a free strip) is thus proportional to e(1 − νf )/2 , which leads to a
dependence of α with νf :

α = (1− νf )ᾱ, (14)
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Figure 8: (a) Numerical computation of the average shear loading 〈kII〉 / 〈kI〉 along fracture
front of a delaminating strip, normalized by opening mode, as a function of strip width
W , for different Poisson coefficient of the thin film (νf = 0, 0.125, 0.25, 0.375, 0.5). (b) The
corresponding equilibrium strip width W2 (for which kII = 0) slightly increases with νf ,
as captured by the the prediction of the physical model in black continuous line (W2/hf =
(1 + νf )β̄′/2(1− νf )ᾱ) with β̄′ = β̄+ 0.32. (c,d) Numerical computation of parameters α and
β for our physical model as a function of νf , compared to (black continuous line) prediction
α = (1 − νf )ᾱ. (c) Numerical computation of parameter β compares well with theoretical
prediction in black line β = (1 + νf )β̄ (D).
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where ᾱ is an universal constant independent of material properties. The same
situation occurs in the region of the bonded film in the vicinity of the debonding
front (stresses are partially relaxed in the x direction by shear, but not in the
y direction). The density of elastic energy released by tilting the strip is thus
proportional to the difference e− e(1− νf )/2, which now leads to a dependence
of β with νf in the form

β = (1 + νf )β̄, (15)

where β̄ is also a universal constant. The same argument applied in the region of
the kink finally leads to a similar result γ = (1+νf )γ̄, where γ̄ is again a universal
constant. If we combine both effects, we finally obtain for the coefficient β′:

β′ = (1 + νf )β̄′ (16)

Both coefficients α and β are determined by fitting the elastic energy of the
strip (Estrip(W,L) − eA)/eh2

f obtained through finite element simulations with

a quadratic function −α(W/hf )2 + β(W/hf ) + c. We plot in fig. 8c and 8d
the variation of α and β for different values of νf ranging from 0 to 0.5. This
evolution is in good agreement with eqs. (14) and (15), from which we extract
the constants ᾱ = 0.0349, β̄ = 0.306. Introducing eqs. (14) and (16) into
eq. (11), finally leads to the dependence of the selected width with the Poisson
coefficient:

W2

hf
=

(1 + νf )β̄′

2(1− νf )ᾱ
. (17)

This relation is in good agreement with the evolution of the width determined
directly from the computation of stress intensity factors. In this fit we have
corrected β̄′ = β̄ + 0.32 using the value previously determined in section 5.1
with δγ̄ = δγ/(1 + νf ). As a conclusion, although our physical approach is
approximate, it brings quantitative prediction of the influence of the Poisson
coefficient on the selected width. In this section the substrate was still consid-
ered as infinitely rigid. In the following section we study influence of the finite
rigidity of the substrate.

5.2. Influence of a sublayer and quantitative comparison with experiments

We now consider the effect of the finite stiffness of the substrate. In actual
experiments we used a sublayer of silicate in order to tune the adhesion prop-
erties of the coating. We define as hsc, Esc and νsc the thickness, the Young
modulus and the Poisson coefficient of the sublayer, respectively. Note that in
the limit of thick sublayer, the effect of the underlying substrate is screened, and
the problem is equivalent to a film deposited on an elastic substrate. We assume
that the presence of the sublayer does not change qualitatively the physics of the
selection of the width, but modifies the quantitative value of W2. In terms of
independent parameters, the width selected in the duos of crack (eq. 5) will now
depend on the ratio of Young moduli of the film and the sublayer, the Poisson
coefficients of the film and the sublayer and the ratio of the thickness of the
film and the sublayer. Dimensional analysis shows that this dependence can be
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rewritten into W2/hf = F(Esc/Ef , νf , νsc, hsc/hf ). In the following sections,
we first predict the selection of the width selection directly using the principle
of local symmetry on stress intensity factors determined numerically. We then
interpret these results with our physical model, before comparing quantitatively
these theoretical predictions with our experiments.

5.2.1. Influence of the rigidity and the thickness of a sublayer

We first conduct finite element calculations for fixed Poisson coefficients
νf = νsc = 0.25. We determine the equilibrium width from the estimation of
stress intensity factors and the principle of local symmetry. We present in fig. 9a
W2/hf as a function of the thickness ratio hsc/hf , for different ratios of Young
moduli Esc/Ef . Note that hsc = 0 corresponds to the calculation presented
in section 3.2 for a thin film directly coated on a rigid substrate, where we
found W2/hf = 15.1. The different curves thus start from this reference value.
Coating the substrate with a sublayer more rigid that the film almost does not
affect the selection of the width. Nevertheless, W2 increases significantly with
with hsc if the sublayer is less rigid than the film. More generally, increasing the
compliance of the sublayer results into wider strips. This variation eventually
reaches a plateau value for a typical thickness ratio that also increases as the
ratio Esc/Ef decreases.

5.2.2. Interpretation with the physical model

We emphasize that the phenomenological model described in section 4 pro-
vides physical understanding on the numerical calculation of stress intensity
factors. We indeed found that the steady width mainly results from a balance
between a surface and a line effect in the vicinity of the delamination front.
Both effects depend differently on the properties of the sublayer. We expect the
distribution of stresses in the delaminated strip to be independent of the elastic
properties of the foundation. This independence is confirmed in fig. 9b where
the calculated parameter α is shown to be almost independent of thicknesses
ratio hsc/hf and Young moduli ratio (Esc/Ef = 1 and 10).

Conversely, we expect the coefficient β to strongly depend on the properties
of the elastic foundation. We indeed discussed in section 4.1.2 the similitude of
the line effect (resulting from the tilting of the strip) with the energy released
by the propagation of a standard isolated channel crack. In this last case, the
energy release is characterized by the parameter γ whose dependence on material
properties of the substrate has been thoroughly studied by Beuth [35]. We plot
in fig. 9c the variation of β with the ratio hsc/hf for to ratios of Young moduli,
which confirms this dependence : larger release is obtained on more compliant
substrate. A constant parameter α together with β increasing with substrate
compliance finally explains why the strip width W2/hf (predicted as β/2α) in
fig. 9a is larger on more compliant and on deeper sublayer.

5.2.3. Quantitative comparison with experiments

In our experiments the adhesion energy was tuned by depositing a sublayer
on the surface of the substrate (this sublayer was thin enough to remain stable
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Figure 9: (a) The optimal width (predicted through the numerical calculation of stress inten-
sity factors) as a function of the sublayer to layer thickness ratio hsc/hf , for different rigidity
ratio Esc/Ef . (b) and (c) Respective evolution of the coefficient α and β as a function of the
sublayer thickness for Esc/Ef = 10 and 1.

with respect to fracture). We performed experiments with different values of
hf to probe the linear relation between the width of the strip and its thickness
that was predicted theoretically (eq. 11). The experimental data are fairly well
described by a linear relation W2 = 25hf (fig. 3d). However, the thickness of
the sublayer was held close to a fixed value (hsc = 1 µm) and the ratio hsc/hf
(ranging from 0.15 to 2), was not constant for these experiments. Moreover,
the elastic properties of the layer and sublayer slightly differ for the different
coatings (Esc/Ef ranging from 0.5 to 10). As a consequence, we do not expect
the ratio W2/hf to be rigorously constant. We thus compare the experimental
data to theoretical predictions for two extreme cases (hsc = hf , 2Esc = Ef ) and
(hsc = 0.25hf , Esc = Ef ). These numerical predictions and in particular the
intermediate case (hsc = hf , Esc = Ef ) are consistent with the experimental
measurements (fig. 10a). We finally observe that the adhesion energy (repre-
sented in color scale) does not modify the width of the strip, as predicted in our
model.

5.3. Stability diagram

In the standard description of thin films two modes of failure were classically
presented. Straight isolated channel cracks can indeed propagate if the energy
release rate 2γe exceeds the fracture energy Γ0

c . They for instance lead to the
hierarchical pattern observed in old paintings. Delamination can also occur
when the energy release rate e exceeds the adhesion energy Γ0

i . However, de-
lamination requires free edges to initiate. In practice, this failure mode usually
follows the propagation of channel cracks [14, 15]. Both modes are described by
straight boundaries in a stability diagram displaying γe/Γ0

c v.s. e/Γ0
i (fig. 10b).

However, the new collaborative mode of failure we have described may also
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for different conditions) with our experimental data. (b) New stability condition of for a thin
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c , e/Γ
0
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per unit surface, Γ0
c and Γ0

i the fracture and adhesion energy, and γ a numerical prefactor that
depends on the mismatch of material properties between the substrate and the coating. The
x-axis corresponds to the comparison of the residual energy density to the interfacial energy,
whereas the y-axis compares residual elasticity to the material toughness. Isolated channel
cracks occur above the line (2γe/Γ0

c = 1), delamination is energetically possible on the right
of vertical line e/Γ0

i = 1, but only between free edges which require preliminary fractures.
The propagation of crack duos (for Ef = Esc, νf = 0.25 and hf = hsc) is possible above
the red curve. Open squares represent experimental observation of channel crack without
delamination, filled squares with delamination, filled circles correspond to the delaminated
strip studied here.
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propagate below the critical residual stress required for the propagation of iso-
lated channel cracks. This mode is experimentally observed in the case of mod-
erate adhesion and leads to the formation of patterns characterized by a robust
width [24]. We have described this width in the case of parallel strips and eq. 4
derived from Griffith’s energy balance provides a condition for the propagation
of such cracks. This new boundary corresponding to Ef = Esc, νf = 0.25 and
hf = hsc is plotted in fig. 10b as a red curve. In agreement with our experimen-
tal data, this boundary is significantly below the boundary for isolated channel
cracks as e becomes slightly larger than Γ0

i .
Several failure modes compete in the sector of the diagram where e > Γ0

i

and e > Γ0
c/2γ. Complex fracture patterns such as spiral and oscillatory paths

resulting from “follower cracks” can indeed be observed [24] in addition to the
duos described in the present study or to the more classical classical channel
cracks followed by delamination (Fig. 1). The selection between these different
mechanisms certainly relies on the propagation dynamics of fracture and delam-
ination and remains a challenging problem. We hope that this open question
will motivate further investigations.

6. Conclusion

Recent studies have put in evidence a novel mode of failure of thin films,
involving the collaboration between fracture and delamination [24]. This mode
leads to various patterns displaying a characteristic width curiously robust [19,
20, 21, 22, 23]. The present study focuses on a novel fracture pattern that is
crucial for the understanding of fracture propagation in the presence of delami-
nation: a pair of parallel cracks connected by a straight delamination front that
propagates simultaneously and leads to the detachment of strips with a steady
width.
We started by a quantitative description of our experimental observations con-
ducted with a model system based on a standard sol-gel coating process. We
then interpreted and predicted the stable width observed in the experiments
through two complementary approaches. We first used the principle of local
symmetry based on numerical computations of stress intensity factors. In addi-
tion to this numerical method, we developed a physical model involving analyt-
ical estimations of the elastic energy. Both approaches lead to a steady width,
which is only determined by the elastic properties of the film (and the mismatch
with the mechanical properties of the substrate). Strikingly, this width is inde-
pendent from fracture and delamination energies.
This robust strip width can be interpreted through the physical model as a bal-
ance between surface and line effects in the vicinity of the delamination front.
Indeed, boundary conditions limit the relaxation of the residual stress in the
strip while tilting the strip releases some additional elastic energy. This model
also provides an interesting prediction for the evolution of the strip width as a
function of Poisson ratio of the film, and as a function of substrate compliance
which are confirmed by numerical computation of stress intensity factors.
Although our study is limited to strip patterns, our approach could in principle
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be extended to more complex geometries such as spirals or alleys that are also
observed in experiments. However, computing stress intensity factors would be
more difficult since the direction of the delamination front would have to be
determined as well. Conversely, the physical model, although approximate, still
brings some insights [24]. This collaborative mode of failure is still far from being
comprehensively explored. In particular, a better description of the dynamics is
necessary to predict the selection of the failure mode. We nevertheless hope that
our different approaches will open further investigations into more complex con-
figurations. For instance, the phenomenon reported here could be captured by
a numerical implementation of a damage model for a simplified system [37, 38]
involving both fracture and delamination.
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