
Sparsity-based localization of spatially coherent

distributed sources
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PERFORMANCE ANALYSIS OF MUSIC IN THE PRESENCE OF MODELING ERRORS
DUE TO THE SPATIAL DISTRIBUTIONS OF SOURCES

Wenmeng XIONG José PICHERAL Sylvie MARCOS

Lss,CNRS,Paris-sud,CentraleSupelec,91192 GIF-sur-Yvette,France
firstname.lastname@l2s.centralesupelec.fr

ABSTRACT

In this paper, the direction of arrival (DOA) localization of spa-
tially distributed sources impinging on a sensor array is consid-
ered. The performance of the well known MUSIC estimator is
studied in the presence of model errors due to angular dispersion
of sources. Taking into account the coherently distributed source
model proposed in [1], we establish closed-form expressions of the
DOA estimation error and mean square error (MSE) due to both
the model errors and the effects of a finite number of snapshots.
The analytical results are validated by numerical simulations and
allow to analyze the performance of MUSIC for coherently dis-
tributed sources.

Index Terms— array signal processing, distributed sources,
model error, performance, MUSIC

1. INTRODUCTION

The effects of model errors on DOA estimation has been widely
studied in the literature with the sources assumed to be far-field
point transmitters or reflectors [2]. In many applications, for in-
stance, aero-acoustic sources imaging [3], ocean waves parameter
estimation [4], bio-medical source localization [5] or also mobile
communication [6], the physical sources can no longer be con-
sidered as point sources and a spatially distributed model of the
sources could be more appropriate.

The models for spatially distributed sources have been classi-
fied into two types, namely incoherently distributed (ID) sources
and coherently distributed (CD) sources. On one hand, for ID
sources, signals coming from different points of the same dis-
tributed source can be considered uncorrelated [7] [8]. On the
other hand, in the scenario of CD sources, the received signal com-
ponents are delayed and scaled replicas from different points of the
same one [9] [10].

In the literature, different techniques propose to estimate the
nominal DOA of distributed sources but they generally require
that the shape of the dispersion is known which may not be true
in practice. Even if it is the case, a mismatch on the angular spread
dispersion between the real signals and the models will bring esti-
mation errors on the DOA estimates.

In previous works, the model errors have been considered, in
the case of punctual sources, as uncertainties on the array elements
positions or patterns, or inter-element coupling, and are described
as random variables [11] [12] [13] [14]. For ID sources, the per-
formance analyses have been investigated in the presence of the
model error as a mismatch between the angular dispersion of the
actual sources and the MUSIC estimator in [15], and the ultimate

asymptotic performance, that is to say, the lower bound of the es-
timation covariance has been investigated in [16]. We here focus
on the CD sources model proposed in [1], which is well adapted to
the applications such as the aero-acoustic sources imaging [3]. The
MUSIC estimator has been extended for a model with an angular
dispersion, and the model error refers to a mismatch between the
angular dispersion of the actual sources and that of the extended-
MUSIC estimator in our scenario.

In this paper, we first propose a new approach to obtain an ac-
curate approximated analytical expression of the DOA estimation
error and MSE. Then, the finite sample effects due to the estima-
tion of the received data covariance matrix will be investigated. Fi-
nally, assuming that the shape of the angular distribution is known,
an analytical expression of the DOA estimation error as a polyno-
mial function of the angular spread dispersion error is proposed.
This expression allows to see explicitly the influence of the model
error on the DOA estimation performance, and could be useful in a
future work to optimize the antenna parameters in order to reduce
the DOA estimation error due to the angular spread of the sources.

The organization of this paper is as follows. The signal model
and 1D-DSPE are given in section 2. In section 3, the sensitivity
of the estimator is theoretically analyzed. Numerical simulations
are presented in section 4 to validate the analytical expressions of
the previous section. Finally, conclusions are given is section 5.

2. SIGNAL MODEL AND 1D ESTIMATOR FOR
DISTRIBUTED SOURCES

Let us consider q spatially CD far-field sources impinging on an
array of M sensors. The q sources and the M signals received at
the array at moment t are denoted by s(t) = [s1(t), . . . , sq(t)]

T

and y(t) = [y1(t), . . . , yM (t)]T , respectively, with:

y(t) = C(θ)s(t) + n(t), (1)

where n(t) ∈ CM×1 represents the complex Gaussian distributed
additive noise, C(θ) = [ch1(θ1), . . . , chq (θq)] ∈ CM×q is the
array steering matrix composed of q steering vectors chi(θ) that
can be written as proposed in [1] by:

chi(θ) =

∫ π
2

−π
2

a(θ + φ)hi(φ)dφ, (2)

where i = 1 . . . q, and a(θ) is the steering vector for a point source
which arrives from the DOA θ. In the most general case, the steer-
ing vector a(θ) is also a function of the array geometry, the sensor
gains, the form of the wavefront, and other possible parameters
which are supposed to be known. The function h(φ) is introduced



to describe the angular spread distribution (for instance, Uniform
and Gaussian distributions) and it can be parameterized by an an-
gular dispersion ∆ which is omitted in the notation. The source
signals and the additive noise are considered to be centered Gaus-
sian independent random variables. Assuming that signals and
noises are uncorrelated and the sources are uncorrelated with each
other, the correlation matrix is given by:

Ry = E[yyH ] = CRsCH + σ2
b I, (3)

where E[.] is the expectation operator, Rs and σ2
b are the source

covariance matrix and the noise variance, respectively.
The DSPE method proposed in [1] is a 2D MUSIC-like esti-

mator allowing to jointly estimate the two parameters θ and ∆ by
maximizing the criterion 1

‖cH
h

(θ,∆)Vb‖2
, where Vb is the matrix of

theM−q eigenvectors associated to the smallest eigenvalue of Ry
and which spans the noise subspace. However, the form of h(φ)
may not be known in practice. In the following, we will consider
that the shape of h(φ) and ∆ are imperfectly known and that the
only parameter to estimate is θ. We will then investigate the effect
of an imperfect knowledge of h(φ) and ∆, it is to say of ch(φ), on
the 1D-DSPE algorithm therefore denoted by:

θ̂i = arg max
θ

1

‖cHh (θ)Vb‖2
(4)

3. PERFORMANCE ANALYSIS

3.1. General case

The data covariance matrix Ry0 = E[y0yH0 ] is estimated from N

snapshots {y0(tn)}n=1,...,N by R̂y0 ≈ 1
N

∑N
n=1 y0(tn)yH0 (tn).

It follows that the DOA estimator of θi is :

θ̂i = arg max
θ

1

‖cHh (θ)V̂b0‖2
, (5)

where V̂b0 is associated to the eigendecomposition of:

R̂y0 = V̂s0Λ̂s0V̂
H

s0 + V̂b0Λ̂b0V̂
H

b0, (6)

and ch(θ) is given by (2) but with a form of the angular spread
distribution h(φ) which may be different from the true distribu-
tion of the actual sources h0i(φ). Note that the parameters related

to the true values are indexed by 0 to distinguish them from pa-
rameters used by the estimator. The theoretical covariance ma-
trix of the signal related to the actual steering matrix Ch0(θ) is
thus defined as Ry0 = Vs0Λs0VHs0 + σ2

bVb0VHb0, and we write
Ry0 = Ryh + ∆Ryh, where Ryh would correspond to the co-
variance matrix of the signal related to a steering vector ch(θ) and
where Ryh = VshΛshVHsh + σ2

bVbhVHbh.
We introduce the error on the steering vector model ∆c =

ch(θi)− ch0i(θi). We also note ∆Vbh = Vb0−Vbh where ∆Vbh
is an error on the noise eigenmatrix due to the model mismatch
between ch and ch0. Let us also introduce the error due to the
finite number of snapshots N on the estimation of the data co-
variance matrix ∆Ry0 = R̂y0 − Ry0 and the error on the noise
corresponding eigenmatrix ∆Vb0 = V̂b0 − Vb0. The error due
to the finite number of snapshots on the noise subspace projector
is ∆Πb0 = V̂b0V̂

H

b0 − Vb0VHb0, with Πb0 = Vb0VHb0. According
to [2], the relation of ∆Πb0 and ∆Rb0 is:

∆Πb0 = −Πb0∆Ry0Q−Q∆Ry0Πb0, (7)

where Q = Vs0(Λs0 − σ2
b I)−1Vs0, I is a q × q identity matrix.

According to (5), the DOA estimation θ̂i satisfies that the first
order derivative of the denominator of (5) equals zero which yields:

2Re{ċHh (θ̂i)V̂b0V̂
H

b0ch(θ̂i)} = 0, (8)

where ċh(θ̂i) = ∂c(θ)
∂θ
|θ̂i . Assuming that, θ̂i is not far from θi, we

introduce the second order Taylor series approximations of ch(θ)

and ċh(θ) in (8), and exploiting (7) to substitute V̂b0V̂b0 yields:

A(θi)∆θ
2
i +B(θi)∆θi + C(θi) = 0, (9)

where the terms of order greater than 2 in ∆θi have been ne-
glected, and the scalar A,B,C are defined with B = B1 + B2

and C = C1 + C2:

A(θi) =Re
{

1

2
ċh(θi)

HVb0VHb0c̈h(θi)

+ c̈h(θi)
HVb0VHb0ċh(θi) +

1

2

...c h(θi)
HVb0VHb0ch(θi)

}
,

B1(θi) =Re
{

ċh(θi)
HVb0VHb0ċh(θi) + c̈h(θi)

HVb0VHb0ch(θi)
}
,

E[∆θ2
i ] =

B1(θi)
2 − 2A(θi)C1(θi)−B1(θi)

√
B1(θi)2 − 4A(θi)C1(θi)

2A(θi)2

+
σ2
b

N

[(
1

4A(θi)2
− B1(θi)

4A(θi)2
√
B1(θi)2 − 4A(θi)C1(θi)

)
ϕ(θi) +

χ(θi)

2A(θi)
√
B1(θi)2 − 4A(θi)C1(θi)

]
, (11)

where:

ϕ(θi) =Re
{

4ċ(θi)
HVb0VHb0ċ(θi) ċ(θi)

HQRy0Qċ(θi) + 4c̈(θi)
HVb0VHb0ċ(θi)c(θi)QRy0Qc(θi)

+ c̈(θi)
HVb0VHb0c̈(θi)c(θi)QRy0Qc(θi)

}
,

χ(θi) =Re
{

2ċ(θi)
HVb0VHb0ċ(θi)ċ(θi)QRy0Qc(θi) + c̈(θi)

HVb0VHb0ċ(θi)c(θi)QRy0Qc(θi)
}
.

(12)



B2(θi) =Re
{

2ċh(θi)
HVb0VHb0∆Ry0Qċh(θi)

+c̈h(θi)
HVb0VHb0∆Ry0Qch(θi)

}
,

C1(θi) =Re
{

ċh(θi)
HVb0VHb0ch(θi)

}
,

C2(θi) =Re
{

ċh(θi)
HVb0VHb0∆Ry0Qch(θi)

}
.

The expression of ∆θi can be obtained by solving the 2nd

order equation (9), and taking into account the convexity of the
criterion to select the right root, so that:

∆θi =
−B(θi) +

√
B(θi)2 − 4A(θi)C(θi)

2A(θi)
. (10)

In addition, according to the formulas in [14], the MSE can be
expressed by (11), as shown at the bottom of the previous page,
exploiting the fact that B2(θi) and C2(θi) are random terms re-
lated to ∆Ry0, whileA(θi), B1(θi), C1(θi) are deterministic, and
using E[∆Ry0] = 0.

It is interesting to see that the MSE is composed of two terms,
one depends only on the model error, the other depends on the
model error but with a factor σ2/N . It can be expected that the
second term will be negligible when N increases.

3.2. First order approximation

In this subsection, we discuss the situation that the estimation error
∆θi is small enough, so that the second order terms in ∆θi can be
negligible with respect to the first order terms. Keeping only the
first order terms in (9), replacing Vb0 by Vbh + ∆Vbh, neglect-
ing the second order terms in ∆Vb0∆θi and ∆Vbh∆θi, and using
RyhVb0 = Vb0Λbh, the estimation error can be simplified as:

∆θi =
Re{ċHh (θi)VbhVHbh∆c}

ċHh (θi)VbhVHbhċh(θi)

+
Re{ċHh (θi)VbhVHbh∆Ry0Qch(θi)}

ċHh (θi)VbhVHbhċh(θi)
. (13)

The MSE can be given by:

E[∆θ2
i ] =

(
Re{ċHh (θi)VbhVHbh∆c}

ċHh (θi)VbhVHbhċh(θi)

)2

+
σ2
b

2N
· Re{ċ

H
h (θi)VbhVHbhċh(θi)cHh (θi)Ry0Qch(θi)}

(ċHh (θi)VbhVHbhċh(θi))2
. (14)

As already noted for (11), the second term decreases when N
increases, which is not the case for the first terms of (13) and (14).
Note that this simplification allows to express the first terms of
(13) and (14) as a function of the model error ∆c.

3.3. Estimation error as an explicit function of the model error

In this subsection, we assume that the covariance matrix is per-
fectly known and we only study the deterministic terms of (10) so
that B2 and C2 are null. We assume that in this case, the shape
of h related to the actual signals sources is known, where all the
sources have the same shape and the same angular spread disper-
sion ∆0. The model error is therefore caused by the error on ∆
or by the fact that the sources are assumed to be points when the
classical MUSIC estimator is used. Assuming again that ∆ is not

far from ∆0, and noting δ = ∆−∆0, we can introduce the second
order Taylor series approximations in δ:

ch(θi) ≈ ch0(θi) + δgh01(θi) +
1

2
δ2gh02(θi), (15)

where gh01(θi) = ∂ch0(θi)
∂∆

|∆0 , gh02(θi) = ∂2ch0(θi)

∂∆2 |∆0 . We
can pay attention that gh01 and gh02 reveals the sensibility of our
model to the variation of the angular dispersion of the actual signal.
The estimation error can be thus given by:

∆θi =
−(f4 + f5δ + f6δ

2) +
√
x+ yδ + zδ2 + wδ3 + kδ4

2(f1 + f2δ + f3δ2)
,

(16)
where fi(i = 1, . . . , 5) and x, . . . , k can be expressed in function
of Vb0, derivatives of g and c. Details can be found in [17].

Ignoring the second terms in ∆θi in (9) and extending Taylor
series in δ to third order terms for an accurate approximation, the
estimation error can be further expressed as a polynomial in δ:

∆θi = α(θi,∆0)δ + β(θi,∆0)δ2 + γ(θi,∆0)δ3, (17)

where α, β and γ are functions depending on the source signals
and sensor parameters (see [17] for details).

4. NUMERICAL SIMULATIONS

In this section, numerical examples are presented to illustrate the
validity of the analytical results of the estimation performances
established in section 3. In all simulations, a uniform linear array
composed of M = 10 sensors spaced by d = λ/2 is considered,
SNR = 10dB, and N = 1000 snapshots.

Figure 1 exhibits the estimation error or bias on θ for two Uni-
form distributed sources at θ1 = 21◦ and θ2 = 39◦, respectively,
with an angular dispersion ∆0 = 10◦. The model error due to
the dispersion parameter ∆ has been varied to study its effect on
the DOA’s estimation accuracy. As expected the bias is null when
the exact model parameter ∆ = ∆0 = 10◦ is used. We can ob-
serve that the estimation error is smaller when the parameter ∆
is smaller than ∆0, than when it is larger than ∆0. Focusing on
the validity of the expression derived in the previous section, we
can notice that for θ2, the DOA estimation error ∆θ2 obtained in
(10) and the one obtained in (13) both match the simulation results.
However, for θ1, which has an estimation error much bigger than
θ2 when the model error increases, the result obtained in (10) with
the second order approximation outperforms the one in (13) with
the first order approximation.

In Figure 2, the RMSE of θ evaluated with 100 Monte Carlo
simulations is plotted versus the snapshot number, with the model
parameter set to ∆ = 15◦. The MSE decreases as well as N in-
creases, and then converges to a non zero value whose expression
is given in (11). This reveals that when there are two perturba-
tions, the finite number of snapshots effect dominates in the case
of a small number of snapshots whereas the model error effect
dominates when the snapshots number is large. Again we can see
that as in Figure 1, the result with the second order approximation
outperforms the one with the first order approximation.

Figure 3 illustrates the approximation obtained in (16) and
(17), in order to express the estimation error as an explicit func-
tion of the model error, in the same previous scenario. We can ob-
serve that, in this case, (16) fits better the simulation results, while



Figure 1: DOA estimation error vs. angular dispersion model error
(2 sources with Uniform angular dispersion, ∆0 = 10◦, θ1 =
21◦, θ2 = 39◦)

Figure 2: RMSE of DOA estimation error of θ1 and θ2 vs. num-
ber of snapshots (N) (2 sources with Uniform angular dispersion,
∆0 = 10◦,∆ = 15◦, θ1 = 21◦, θ2 = 39◦)

Figure 3: DOA estimation error vs. angular dispersion model error
(2 sources with Uniform angular dispersion, ∆0 = 10◦, θ1 =
21◦, θ2 = 39◦)

the polynomial expression (17) fits the simulation results only for
small model errors.

(a) Theory with order 1 approxi-
mation in (10)

(b) Theory with order 2 approxi-
mation in (13)

(c) Simulation

Figure 4: Absolute value of estimation error |∆θ1| vs. source
angular separation |θ2 − θ1| and model angular dispersion ∆ (2
sources with Uniform angular dispersion, ∆0 = 10◦, 100 Monte-
Carlo simulations)

Figure 4 shows the results of the absolute value of the DOA
estimation error when the model error due to the dispersion pa-
rameter and the angle between the two sources both vary, with
θm = 1

2
(θ1 + θ2) = 30◦. The green stars mark the region where

the sources are not resolved, that is to say, the two sources are so
close that the criterion 1D-DSPE gives the false appearance that
there is only one source in the middle. These results allow to high-
light two behaviors of the estimators: firstly, the closer the sources
are, the more the model error impacts on the estimation accuracy;
secondly, when the model error is small enough, high resolution
is achieved. Taking into account that a distributed estimator with
∆ = 0◦ means the classical estimator MUSIC with a point source
model, and ∆ = 10◦ is the 1D-DSPE without model error, the ad-
vantage of a distributed estimator with respect to a classical MU-
SIC is highlighted. In addition to the fact that the theoretical results
correspond to the simulation results, we can observe that again the
result obtained in (10) works better than the result obtained in (13),
even in the case where there are resolution problems.

5. CONCLUSION

In this paper, we have investigated the effects of both the angu-
lar dispersion of the source and the finite number of snapshots on
the behavior of the DOA MUSIC-based estimator. New analytical
expressions of the DOA estimation error and MSE as a function
of these two perturbations have been given. Particularly, in the
special case when the theoretical covariance matrix is available,
expressions as an explicit function of the model error is proposed,
which gives an easier way to analyze the influence of a model error,
or to optimize the array configurations to reduce the DOA estima-
tion error. Simulations which are carried out are in adequacy with
the proposed theoretical results. The performance of MUSIC for
coherently distributed sources can thus be analyzed.
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