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émanant des établissements d’enseignement et de
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Abstract

We consider the stochastic optimal control problem of nonlinear mean-field systems

in discrete time. We reformulate the problem into a deterministic control problem with

marginal distribution as controlled state variable, and prove that dynamic programming

principle holds in its general form. We apply our method for solving explicitly the

mean-variance portfolio selection and the multivariate linear-quadratic McKean-Vlasov

control problem.

MSC Classification: 60K35, 49L20
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1 Introduction

The problem studied in this paper concerns the optimal control of nonlinear stochastic

dynamical systems in discrete time of McKean-Vlasov type. Such topic is related to the

modeling of collective behaviors for a large number of players with mutual interactions,

which has led to the theory of mean-field games (MFGs), introduced in [11] and [10].

Since the emergence of MFG theory, the optimal control of mean-field dynamical sys-

tems has attracted a lot of interest in the literature, mostly in continuous time. It has

been first studied in [1] by functional analysis method with a value function expressed in

terms of the Nisio semigroup of operators. More recently, several papers have adopted

the stochastic maximum principle for characterizing solutions to the controlled McKean-

Vlasov systems in terms of adjoint backward stochastic differential equations (BSDEs), see

[2], [6], [7]. We also refer to the paper [16] which focused on the linear-quadratic (LQ)

case where the BSDE from the maximum principle leads to a Riccati equation system. It
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is mentioned in these papers that due to the non-markovian nature of the McKean-Vlasov

systems, dynamic programming (also called Bellman optimality) principle does not hold

and the problem is time inconsistent in general. Indeed, the standard Markov property of

the state process, say X, is ruled out, however, as noticed in [3], this can be restored by

working with the marginal distribution of X. The dynamic programming has then been

applied independently in [4] and [12] for a specific control problem where the objective

function depends upon statistics of X like its mean value, with a mean-field interaction on

the drift of the diffusion dynamics of X, and in particular by assuming the existence at all

times of a density function for the marginal distribution of X.

The purpose of this paper is to provide a detailed analysis of the dynamic programming

method for the optimal control of nonlinear mean-field systems in discrete time, where

the coefficients may depend both upon the marginal distributions of the state and of the

control. The case of continuous time McKean-Vlasov equations requires more technicalities

and mathematical tools, and will be addressed in [14]. The discrete time framework has been

also considered in [9] for LQ problem, and arises naturally in situations where signal values

are available only at certain times. On the other hand, it can also be viewed as the discrete

time version or approximation of the optimal control of continuous time McKean-Vlasov

stochastic differential equations. Our methodology is the following. By using closed-loop

(also called feedback) controls, we first convert the stochastic optimal control problem into a

deterministic control problem involving only the marginal distribution of the state process.

We then derive the deterministic evolution of the controlled marginal distribution, and

prove in its general form the dynamic programming principle (DPP). This gives sufficient

conditions for optimality in terms of calculus of variations in the space of feedback control

functions. Classical DPP for stochastic control problem without mean-field interaction

falls within our approach. We finally apply our method for solving explicitly the mean-

variance portfolio selection problem and the multivariate LQ mean-field control problem,

and retrieve in particular the results obtained in [9] by four different approaches.

The outline of the paper is as follows. The next section formulates the McKean-Vlasov

control problem in discrete time. In Section 3, we develop the dynamic programming

method in this framework. Section 4 is devoted to applications of the DPP with explicit

solutions in the LQ case including the mean-variance problem.

2 McKean-Vlasov control problem

We consider a general class of optimal control of mean-field type in discrete time. We are

given two measurable spaces (E,B(E)) and (A,B(A)) representing respectively the state

space, and the control space. We denote by P(E) and P(A) the set of probability measures

on (E,B(E)) and (A,B(A)). On a probability space (Ω,F ,P), we consider a controlled

stochastic dynamics of McKean-Vlasov type:

Xα
k+1 = Fk+1(X

α
k ,PXα

k
, αk,Pαk

, εk+1), k ∈ N, Xα
0 = ξ, (2.1)

for some measurable functions Fk defined from E×P(E)×A×P(A)×R
d into E, where (εk)k

is a sequence of i.i.d. random variables, independent of the initial random value ξ, and we
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denote by F = (Fk)k the filtration with Fk the σ-algebra generated by {ξ, ε1, . . . , εk}. Here,
(Xα

k )k is the state process valued in E controlled by the F-adapted process (αk)k valued in

A, and we adopted the usual notation in the sequel of the paper: given a random variable Y

on (Ω,F ,P), P
Y
denotes its probability distribution under P. Thus, the dynamics of (Xα

k )

depends at any time k of its marginal distribution, but also of the marginal distribution

of the control, which represents an additional mean-field feature with respect to classical

McKean Vlasov equations, and also considered recently in [9] and [16].

Let us now precise the assumptions on the McKean-Vlasov equation. We shall assume

that (E, |.|) is a normed space (most often R
d), (A, |.|) is also a normed space (typically a

subset of Rm), and we denote by P
2
(E) the space of square integrable probability measures

over E , i.e. µ ∈ P(E) s.t. ‖µ‖2
2
:=

∫

E
|x|2µ(dx) < ∞, and similarly for P

2
(A). For

any (x, µ, a, λ) ∈ E × P(E) ×A× P(A), and k ∈ N, we denote by Pk+1(x, µ, a, λ, dx
′) the

probability distribution of the E-valued random variable Fk+1(x, µ, a, λ, εk+1) on (Ω,F ,P),

and we assume

(H1) For any k ∈ N, there exists some positive constant Ck,F s.t. for all (x, a, µ, λ) ∈
E ×A× P(E) × P(A):

∫

E

|x′|2Pk+1(x, µ, a, λ, dx
′) = E

[

∣

∣Fk+1(x, µ, a, λ, εk+1)
∣

∣

2
]

≤ Ck,F (1 + |x|2 + |a|2 + ‖µ‖2
2
+ ‖λ‖2

2
).

Assuming that the initial random value ξ is square integrable, and considering admissible

controls α which are square integrable, i.e. E|αk|2 < ∞, for any k, it is then clear under

(H1) that E|Xα
k |2 < ∞, i.e. P

Xα
k
∈ P

2
(E), and there exists some positive constant Ck s.t.

E|Xα
k |2 ≤ Ck

(

1 + E|ξ|2 +
k−1
∑

j=0

E|αj |2
)

. (2.2)

The cost functional associated to the system (2.1) over a finite horizon n ∈ N \ {0} is:

J(α) := E

[

n−1
∑

k=0

fk(X
α
k ,PXα

k
, αk,Pαk

) + g(Xα
n ,PXα

n
)
]

, (2.3)

for any square integrable F-adapted processes α valued in A, where the running cost func-

tions fk, k = 0, . . . , n− 1, are measurable real-valued functions on E×P
2
(E)×A×P

2
(A),

and the terminal cost function g is a real-valued measurable function on E × P
2
(E). We

shall assume

(H2) There exist some positive constant Cg and for any k = 0, . . . , n − 1, some positive

constant Ck,f s.t. for all (x, a, µ, λ) ∈ E ×A× P
2
(E)× P

2
(A):

∣

∣fk(x, µ, a, λ)
∣

∣ ≤ Ck,f(1 + |x|2 + |a|2 + ‖µ‖2
2
+ ‖λ‖2

2
),

∣

∣g(x, µ)
∣

∣ ≤ Cg(1 + |x|2 + ‖µ‖2
2
).

Under (H1)-(H2), the cost functional J(α) is well-defined and finite for any admissible

control, and the objective is to minimize over all admissible controls the cost functional,
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i.e. by solving

V0 := inf
α

J(α), (2.4)

and when V0 > −∞, find an optimal control α∗ i.e. achieving the minimum in (2.4) if it

exists.

Problem (2.1)-(2.4) arises in the study of collective behaviors of a large number of players

(particles) resulting from mean-field interactions: typically, the controlled dynamics of a

system of N symmetric particles are given by

Xi,αi

k+1 = Fk+1(X
i,αi

k ,
1

N

N
∑

j=1

δ
X

j,αi

k

, αi
k,

1

N

N
∑

j=1

δ
α
j
k

, εik+1), i = 1, . . . , N,

(here δx is the Dirac measure at x) and by assuming that a center decides of the general

same policy αi = α for all players with same running and terminal gain functions, the

propagation of chaos argument from McKean-Vlasov theory (see [15]) states that when the

number of players N goes to infinity, the problem of each agent is asymptotically reduced

to the problem of a single agent with controlled dynamics (2.1) and objective (2.4). We

refer to [8] for a detailed discussion about optimal control of McKean-Vlasov equations and

connection with equilibrium of large populations of individuals with mean-field interactions.

3 Dynamic programming

In this section, we make the standing assumptions (H1)-(H2), and our purpose is to

show that dynamic programming principle holds for problem (2.4), which we would like to

combine with some Markov property of the controlled state process. However, notice that

the McKean-Vlasov type dependence on the dynamics of the state process rules out the

standard Markov property of the controlled process (Xα
k ). Actually, this Markov property

can be restored by considering its probability law (P
Xα

k
)k. To be more precise and for the

sake of definiteness, we shall restrict ourselves to controls α = (αk)k given in closed-loop

(or feedback) form:

αk = α̃k(X
α
k ), k = 0, . . . , n − 1, (3.1)

for some deterministic measurable functions α̃k of the state. Notice that the feedback

control may also depend on the (deterministic) marginal distribution, and it will be indeed

the case for the optimal one, but to alleviate notation, we omit this dependence which is

implicit through the deterministic function α̃k. We denote by AE the set of measurable

functions on E valued in A, which satisfy a linear growth condition, and by A the set of

admissible controls α in closed loop form (3.1) with α̃k in AE , k ∈ N. We shall often identify

α ∈ A with the sequence (α̃k)k in AE via (3.1). Notice that any α ∈ A satisfies the square

integrability condition, i.e. E|αk|2 < ∞, for all k. Indeed from the linear growth condition

on α̃k in AE , we have E|αk|2 ≤ Cα(1 + E|Xα
k |2) for some constant Cα (depending on α),

which gives the square integrability condition by (2.2).
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Next, we show that the initial stochastic control problem can be reduced to a determi-

nistic control problem. Indeed, the key point is to observe by definition of P
Xα

k
and noting

that Pαk
is the image by α̃k of P

Xα
k
for a feedback control α ∈ A, that the gain functional

in (2.3) can be rewritten as:

J(α) =

n−1
∑

k=0

f̂k(PXα
k
, α̃k) + ĝ(P

Xα
n
), (3.2)

where f̂k, k = 0, . . . , n− 1, are defined on P
2
(E)×AE , ĝ is defined on P

2
(E) by:

f̂k(µ, α̃) :=

∫

E

fk(x, µ, α̃(x), α̃ ⋆ µ)µ(dx), ĝ(µ) :=

∫

E

g(x, µ)µ(dx), (3.3)

and α̃ ⋆ µ ∈ P
2
(A) denotes the image by α̃ ∈ AE of the measure µ ∈ P

2
(E):

(

α̃ ⋆ µ
)

(B) = µ
(

α̃−1(B)
)

, ∀B ∈ B(A).

Hence, the original problem (2.4) is transformed into a deterministic control problem

involving the infinite dimensional marginal distribution process. Let us then define the

dynamic version for problem (2.4):

V α
k := inf

β∈Ak(α)

n−1
∑

j=k

f̂j(P
X

β
j

, β̃j) + ĝ(P
X

β
n

), k = 0, . . . , n, (3.4)

for α ∈ A, where Ak(α) = {β ∈ A : βj = αj, j = 0, . . . , k − 1}, with the convention that

A0(α) = A, so that V0 = infα∈A J(α) is equal to V α
0 . It is clear that V α

k < ∞, and we shall

assume that

V α
k > −∞, k = 0, . . . , n, α ∈ A. (3.5)

Remark 3.1 The finiteness condition (3.5) can be checked a priori directly from the

assumptions on the model. For example, when fk, g, hence f̂k, g, k = 0, . . . , n − 1, are

lower-bounded functions, condition (3.5) clearly holds. Another example is the case when

fk(x, µ, a, λ), k = 0, . . . , n − 1, and g are lower bounded by a quadratic function in x, µ,

and λ, so that by the linear growth condition on α̃,

f̂k(µ, α̃) + ĝ(x, µ) ≥ −Ck

(

1 + ‖µ‖
2

)

, ∀µ ∈ P
2
(E), α̃ ∈ AE ,

and we are able to derive moment estimates on Xα
k , uniformly in α:

∥

∥P
Xα

k

∥

∥

2

2
= E[|Xα

k |2] ≤
Ck, which arises typically when A is bounded from (2.2). Then, it is clear that (3.5) holds

true. Otherwise, this finiteness condition can be checked a posteriori from a verification

theorem, see Theorem 3.2. 2

The dynamic programming principle (DPP) for the deterministic control problem (3.4)

takes the following formulation:
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Lemma 3.1 (Dynamic Programming Principle)

Under (3.5), we have







V α
n = ĝ(P

Xα
n
)

V α
k = inf

β∈Ak(α)
f̂k(P

X
β
k

, β̃k) + V β
k+1, k = 0, . . . , n− 1. (3.6)

Proof. In the context of deterministic control problem, the proof of the DPP is standard

and does not require any measurable selection arguments. For sake of completeness and

since it is quite elementary, we give it. Denote by Jk(α) the cost functional at time k, i.e.

Jk(α) :=
n−1
∑

j=k

f̂k(PXα
k
, α̃k) + ĝ(P

Xα
n
), k = 0, . . . , n,

so that V α
k = infβ∈Ak(α) Jk(β) , and by Wα

k the r.h.s. of (3.6). Then,

Wα
k = inf

β∈Ak(α)

[

f̂k(P
X

β
k

, β̃k) + inf
γ∈Ak+1(β)

Jk+1(γ)
]

= inf
β∈Ak(α)

inf
γ∈Ak+1(β)

[

f̂k(P
X

β
k

, β̃k) + Jk+1(γ)
]

= inf
β∈Ak(α)

inf
γ∈Ak+1(β)

[

f̂k(P
X

γ
k

, γ̃k) + Jk+1(γ)
]

= inf
γ∈{Ak+1(β):β∈Ak(α)}

Jk(γ),

where we used in the third equality the fact that Xβ
k = Xγ

k , βk = γk for γ ∈ Ak+1(β).

Finally, we notice that {Ak+1(β) : β ∈ Ak(α)} = Ak(α). Indeed, the inclusion ⊂ is clear

while for the converse inclusion, it suffices to observe that any γ in Ak(α) satisfies obviously

γ ∈ Ak+1(γ). This proves the required equality: Wα
k = V α

k . 2

Let us now show how one can simplify the DPP by exploiting the flow property of

(P
Xα

k
)k for any admissible control α in feedback form ∈ A. Actually, we can derive the

evolution of the controlled deterministic process (P
Xα

k
)k.

Lemma 3.2 For any admissible control in closed-loop form α ∈ A, we have

P
Xα

k+1

= Φk+1

(

P
Xα

k
, α̃k

)

, k ∈ N, P
Xα

0

= Pξ (3.7)

where Φk+1 is the measurable function defined from P
2
(E)×AE into P

2
(E) by:

Φk+1(µ, α̃)(dx
′) =

∫

E

µ(dx)Pk+1(x, µ, α̃(x), α̃ ⋆ µ, dx′). (3.8)

Proof. Fix α ∈ A. Recall from the definition of the transition probability Pk+1(x, µ, a, λ, dx
′)

associated to (2.1) that

P
[

Xα
k+1 ∈ dx′

∣

∣Fk

]

= Pk+1(X
α
k ,PXα

k
, αk,Pαk

, dx′), k ∈ N. (3.9)
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For any bounded measurable function ϕ on E, we have by the law of iterated conditional

expectation and (3.9):

E

[

ϕ(Xα
k+1)

]

= E

[

E
[

ϕ(Xα
k+1)

∣

∣Fk

]

]

= E

[

∫

E

ϕ(x′)Pk+1(X
α
k ,PXα

k
, αk,Pαk

, dx′)
]

= E

[

∫

E×E

ϕ(x′)Pk+1(x,PXα
k
, α̃k(x), α̃k ⋆ PXα

k
, dx′)P

Xα
k
(dx)

]

where we used in the last equality the fact that αk = α̃k(X
α
k ) is in closed loop form, the

definition of P
Xα

k
, and noting that Pαk

= α̃k ⋆ P
Xα

k
. This shows the required inductive

relation for P
Xα

k
. 2

Remark 3.2 Relation (3.7) is the Fokker-Planck equation in discrete time for the marginal

distribution of the controlled process (Xα
k ). In absence of control and McKean-Vlasov type

dependence, i.e. Pk+1(x, dx
′) does not depend on (µ, a, λ), we retrieve the standard Fokker-

Planck equation with a linear function Φk+1(µ) = µPk+1. In our McKean-Vlasov control

context, the function Φk+1(µ, α̃) is nonlinear in µ. 2

By exploiting the inductive relation (3.7) on the controlled process (P
Xα

k
)k, the calcula-

tion of the value processes V α
k can be reduced to the recursive computation of deterministic

functions (called value functions) on P(E).

Theorem 3.1 (Dynamic programming and value functions)

Under (3.5), we have for any α ∈ A, V α
k = vk(PXα

k
), k = 0, . . . , n, where (vk)k is the

sequence of value functions defined recursively on P
2
(E) by:







vn(µ) = ĝ(µ)

vk(µ) = inf
α̃∈AE

[

f̂k(µ, α̃) + vk+1

(

Φk+1(µ, α̃)
)

]

(3.10)

for k = 0, . . . , n− 1, µ ∈ P
2
(E).

Proof. First observe that for any β ∈ Ak(α), X
β
k = Xα

k , k = 0, . . . , n. Let us prove the

result by backward induction. For k = n, the result clearly holds since V α
n = ĝ(P

Xα
n
).

Suppose now that at time k + 1, V α
k+1 = vk+1(PXα

k+1

) for some deterministic function vk+1

and any α ∈ A. Then, from the DPP (3.6) and Lemma 3.2, we get

V α
k = inf

β∈Ak(α)
f̂k(PXα

k
, β̃k) + vk+1(P

X
β
k+1

)

= inf
β∈Ak(α)

wk(PXα
k
, β̃k) (3.11)

where

wk(µ, α̃) := f̂k(µ, α̃) + vk+1

(

Φk+1

(

µ, α̃
))

.

Now, for any β ∈ Ak(α), and since β̃k is valued in AE , we clearly have: wk(µ, βk) ≥
inf α̃∈AE wk(µ, α̃), and so infβ∈Ak(α) wk(µ, β̃k) ≥ inf α̃∈AE wk(µ, α̃). Conversely, for any α̃ ∈

7



AE , the control β defined by βj = αj , j ≤ k − 1, and β̃j = α̃ for j ≥ k, lies in Ak(α),

so: wk(µ, α̃) ≥ infβ∈Ak(α) wk(µ, β̃k), and thus infβ∈Ak(α) wk(µ, β̃k) = inf α̃∈AE wk(µ, α̃). We

conclude from (3.11) that: V α
k = vk(PXα

k
) with vk(µ) = inf

α̃∈AE
wk(µ, α̃), i.e. given by (3.10).

2

Remark 3.3 Problem (2.4) includes the case where the cost functional in (2.3) is a non-

linear function of the expected value of the state process, i.e. the running cost functions

and the terminal gain function are in the form: fk(X
α
k ,PXα

k
, αk) = f̄k(X

α
k ,E[X

α
k ], αk), k =

0, . . . , n − 1, g(Xα
n ,PXα

n
) = ḡ(Xα

n ,E[X
α
n ]), which arise for example in mean-variance pro-

blem (see Section 4). It is claimed in [5] and [16] that Bellman optimality principle does

not hold, and therefore the problem is time-inconsistent. This is true when one takes into

account only the state process Xα (that is its realization), since it is not Markovian, but

as shown in this section, dynamic programming principle holds whenever we consider the

marginal distribution as state variable. This gives more information and the price to paid

is the infinite-dimensional feature of the marginal distribution state variable. 2

We complete the above Bellman’s optimality principle with a verification theorem, which

gives a sufficient condition for finding an optimal control.

Theorem 3.2 (Verification theorem)

(i) Suppose we can find a sequence of real-valued functions wk, k = 0, . . . , n, defined on

P
2
(E) and satisfying the dynamic programming relation:







wn(µ) = ĝ(µ)

wk(µ) = inf
α̃∈AE

[

f̂k(µ, α̃) + wk+1

(

Φk+1(µ, α̃)
)

]

(3.12)

for k = 0, . . . , n − 1, µ ∈ P
2
(E). Then V α

k = wk(PXα
k
), for all k = 0, . . . , n, α ∈ A, and

thus wk = vk.

(ii) Moreover, suppose that at any time k and µ ∈ P(E), the infimum in (3.12) for wk(µ) is

attained, by some α̃∗
k(., µ) in AE. Then, by defining by induction the control α∗ in feedback

form by α∗
k = α̃∗

k(X
α∗

k ,P
Xα∗

k

), k = 0, . . . , n− 1, we have

V0 = J(α∗),

which means that α∗ ∈ A is an optimal control.

Proof. (i) Fix some α ∈ A, and arbitrary β ∈ A associated to a feedback sequence (β̃k)k
in AE . Then, from the dynamic programming relation (3.12) for wk, and recalling the

evolution (3.7) of the controlled marginal distribution P
X

β
k

, we have

wk(P
X

β
k

) ≤ f̂k(P
X

β
k

, β̃k) + vk+1(P
X

β
k+1

), k = 0, . . . , n− 1.

By induction and since wn = ĝ, this gives

wk(P
X

β
k

) ≤
n−1
∑

j=k

f̂j(P
X

β
j

, β̃j) + ĝ(P
X

β
n

).
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By noting that P
Xα

k
= P

X
β
k

, when β ∈ Ak(α), and since β is arbitrary, this proves that

wk(PXα
k
) ≤ V α

k . In particular, V α
k > −∞, i.e. relation (3.5) holds, and then by Theorem

3.1, V α
k is characterized by the sequence of value functions (vk)k defined by the DP (3.10).

This DP obviously defines by backward induction a unique sequence of functions on P
2
(E),

hence wk = vk, k = 0, . . . , n, and therefore V α
k = wk(PXα

k
).

(ii) By definition of α̃∗
k which attains the infimum in (3.12), we have

wk

(

P
Xα∗

k

)

= f̂k(P
Xα∗

k

, α̃∗
k(.,PXα∗

k

)) + wk+1

(

P
Xα∗

k+1

)

, k = 0, . . . , n− 1.

By induction this implies that

V0 = w0(Pξ) =

n−1
∑

k=0

f̂k
(

P
Xα∗

k

, α̃∗
k(.,PXα∗

k

)
)

+ ĝ(P
Xα∗

n

) = J(α∗),

which shows that α∗ is an optimal control. 2

The above verification theorem, which consists in solving the dynamic programming

relation (3.12), is useful to check a posteriori the finiteness condition (3.5), and can be

applied in practice fo find explicit solutions to some McKean-Vlasov control problems, as

investigated in the next section.

4 Applications

4.1 Special cases

We consider some particular cases, and provide the special forms of the DPP.

4.1.1 No mean-field interaction

We first consider the standard control case where there is no mean-field interaction in the

dynamics of the state process, i.e. Fk+1(x, a, εk+1), hence Pk+1(x, a, dx
′) do not depend on

µ, λ, as well as in the cost functions fk(x, a) and g(x). For simplicity, we assume that A is

a bounded set, which ensures the finiteness condition (3.5). In this case, we can see that

the value functions vk are in the form

vk(µ) =

∫

E

ṽk(x)µ(dx), k = 0, . . . , n, (4.1)

where the functions ṽk defined on E satisfy the classical dynamic programming principle:

{

ṽn(x) = g(x)

ṽk(x) = inf
a∈A

[

fk(x, a) + E
[

ṽk+1(X
α
k+1)

∣

∣Xα
k = x, αk = a

]

]

,
(4.2)

for k = 0, . . . , n− 1. Let us check this result by backward induction. This holds true for k

= n since vn(µ) = ĝ(µ) =
∫

E
g(x)µ(dx). Suppose that (4.1) holds true at time k+1. Then,
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from the DPP (3.10), (3.8) and Fubini’s theorem, we have

vk(µ) = inf
α̃∈AE

[

∫

E

fk(x, α̃(x))µ(dx) +

∫

E

ṽk+1(x
′)Φk+1(µ, α̃)(dx

′)
]

= inf
α̃∈AE

[

∫

E

[

fk(x, α̃(x)) +

∫

E

ṽk+1(x
′)Pk+1(x, α̃(x), dx

′)
]

µ(dx)
]

= inf
α̃∈AE

∫

E

w̃k(x, α̃(x))µ(dx)

where we set w̃k(x, a) = fk(x, a) +
∫

E
ṽk+1(x

′)Pk+1(x, a, dx
′). Now, we observe that

inf
α̃∈AE

∫

E

w̃k(x, α̃(x))µ(dx) =

∫

E

inf
a∈A

w̃k(x, a)µ(dx). (4.3)

Indeed, since for any α̃ ∈ AE , the value α̃(x) is valued in A for any x ∈ E, it is clear that

the inequality ≥ in (4.3) holds true. Conversely, for any ε > 0, and x ∈ E, one can find

α̃ε(x) in A such that

w̃k(x, α̃
ε(x)) ≤ inf

a∈A
w̃k(x, a) + ε.

By a measurable selection theorem, the map x 7→ α̃ε(x) can be chosen measurable, and

since A is bounded, the function α̃ε lies in AE . It follows that

inf
α̃∈AE

∫

E

w̃k(x, α̃(x))µ(dx) ≤
∫

E

w̃k(x, α̃
ε(x))µ(dx) ≤

∫

E

inf
a∈A

w̃k(x, a)µ(dx) + ε,

which shows (4.3) since ε is arbitrary. Therefore, we have vk(µ) =
∫

E
ṽk(x)µ(dx) with

ṽk(x) = inf
a∈A

w̃k(x, a)

= inf
a∈A

[

fk(x, a) +

∫

E

ṽk+1(x
′)Pk+1(x, a, dx

′)
]

,

which is the relation (4.2) at time k from the definition of the transition probability Pk+1.

4.1.2 First order interactions

We consider the case of first order interactions, i.e. the dependence of the model coefficients

upon the probability measures is linear in the sense that for any (x, µ, a) ∈ E×P
2
(E)×A,

α̃ ∈ AE ,

Pk+1(x, µ, a, α̃ ⋆ µ, dx′) =

∫

E

P̃k+1(x, y, a, α̃(y), dx
′)µ(dy),

fk(x, µ, a, α̃ ⋆ µ) =

∫

E

f̃k(x, y, a, α̃(y))µ(dy), g(x, µ) =

∫

E

g̃(x, y)µ(dy),

for some transition probability kernels P̃k+1 from E×E×A×A into E, measurable functions

f̃k defined on E × E × A× A, k = 0, . . . , n − 1, and g̃ defined on E × E. In this case, the

value functions vk are in the reduced form

vk(µ) =

∫

E2n−k+1
ṽk(x2n−k+1)µ(dx2n−k+1), k = 0, . . . , n,
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where we denote by xp the p-tuple (x1, . . . , xp) ∈ Ep, by µ(dxp) the product measure

µ(dx1)⊗ . . .⊗ µ(dxp), and the functions ṽk are defined recursively on E2n−k+1

by


















ṽn(x, y) = g̃(x, y)

ṽk(x2n−k ,y2n−k) = inf
α̃∈AE

[

f̃k(x1, y1, α̃(x1), α̃(y1))

+

∫

E2n−k
ṽk+1(x

′
2n−k)P̃k+1(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k),dx′

2n−k)
]

,

where we set

P̃k+1(xp,yp, α̃(xp), α̃(yp),dx
′
p)

= P̃k+1(x1, y1, α̃(x1), α̃(y1), dx
′
1)⊗ . . .⊗ P̃k+1(xp, yp, α̃(xp), α̃(yp), dx

′
p).

This result is easily checked by induction from the DPP (3.10), and it is left to the reader.

4.2 Linear-quadratic McKean-Vlasov control problem

We consider a general multivariate linear McKean-Vlasov dynamics in E = R
d with control

valued in A = R
m:

Xα
k+1 =

(

BkX
α
k + B̄kE[X

α
k ] + Ckαk + C̄kE[αk]

)

(4.4)

+
(

DkX
α
k + D̄kE[X

α
k ] +Hkαk + H̄kE[αk])εk+1, k = 0, . . . , n− 1,

starting from Xα
0 = ξ, where Bk, B̄k, Dk, D̄k are constant matrices in R

d×d, Ck, C̄k, Hk,

H̄k are constant matrices in R
d×m, and (εk) is a sequence of i.i.d. random variables with

distribution N (0, 1), independent of ξ. The quadratic cost functional to be minimized is

given by

J(α) = E

[

n−1
∑

k=0

[

(Xα
k )

⊺QkX
α
k +

(

E[Xα
k ]
)

⊺

Q̄kE[X
α
k ] + L⊺

kX
α
k + L̄⊺

kE[X
α
k ]

+ α⊺

kRkαk +
(

E[αk]
)

⊺

R̄kE[αk]
]

+
(

Xα
n

)

⊺

QXα
n +

(

E[Xα
n ]
)

⊺

Q̄E[Xα
n ] + L⊺Xα

n + L̄⊺
E[Xα

k ]
]

, (4.5)

for some constants matrices Qk, Q̄k, Q, Q̄, in R
d×d, Rk, R̄k in R

m×m, and vectors Lk, L̄k,

L, L̄ ∈ R
d, k = 0, . . . , n− 1. Here x⊺ denotes the transpose of a matrix/vector x. Since the

cost functions are real-valued, we may assume w.l.o.g. that all these matrices Qk, Q̄k, Q,

Q̄, Rk and R̄k are symmetric. This model is in the form (2.1) and associated to a transition

probability satisfying:

Pk+1(x, µ, a, λ, dx
′) ; N

(

Mk(x, µ, a, λ); Σk(x, µ, a, λ)Σk(x, µ, a, λ)
⊺

)

(4.6)

Mk(x, µ, a, λ) = Bkx+ B̄kµ̄+ Cka+ C̄kλ̄

Σk(x, µ, a, λ) = Dkx+ D̄kµ̄+Hka+ H̄kλ̄

where we set for any µ ∈ P2(R
d) (resp. P

2
(Rm)) symmetric matrix Λ ∈ R

d×d (resp. in

R
m×m):

µ̄ :=

∫

xµ(dx), µ̄
2
(Λ) :=

∫

x⊺Λxµ(dx), Var(µ)(Λ) := µ̄
2
(Λ)− µ̄⊺Λµ̄,
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and in the form (2.3), hence (3.2) for feedback controls, with

f̂k(µ, α̃) = Var(µ)(Qk) + µ̄⊺(Qk + Q̄k)µ̄+ (Lk + L̄k)
⊺µ̄

+ Var(α̃ ⋆ µ)(Rk) + α̃ ⋆ µ
⊺

(Rk + R̄k)α̃ ⋆ µ

ĝ(µ) = Var(µ)(Q) + µ̄⊺(Q+ Q̄)µ̄ + (L+ L̄)⊺µ̄.

We look for candidate wk, k = 0, . . . , n, of values functions satisfying the dynamic

programming principle (3.10), in the quadratic form:

wk(µ) = Var(µ)(Λk) + µ̄⊺Γkµ̄+ ρ⊺

kµ̄+ χk, (4.7)

for some constant symmetric matrices Λk and Γk in R
d×d, vector ρk ∈ R

d and real χk to

be determined below. We proceed by backward induction. For k = n, we see that wk = ĝ

(= vk) iff

Λn = Q, Γn = Q+ Q̄, ρn = L+ L̄, χn = 0. (4.8)

Now, suppose that the form (4.7) holds true at time k+1, and observe from (3.8) and (4.6)

that for any µ ∈ P2(R
d), α̃ ∈ AE , Λ ∈ R

d×d, we have by Fubini’s theorem:

Φk+1(µ, α̃) =

∫

Rd

E
[

Y (x, µ, α̃)
]

µ(dx)

Φk+1(µ, α̃)
2
(Λ) =

∫

Rd

E
[

Y (x, µ, α̃)⊺ΛY (x, µ, α̃)
]

µ(dx),

where Y (x, µ, α̃) ; N
(

Mk(x, µ, α̃(x), α̃ ⋆ µ); Σk(x, µ, α̃(x), α̃ ⋆ µ)Σk(x, µ, α̃(x), α̃ ⋆ µ)⊺
)

.

Therefore,

Φk+1(µ, α̃) = (Bk + B̄k)µ̄+ (Ck + C̄k)α̃ ⋆ µ,

and after some tedious but straightforward calculation:

Var(Φk+1(µ, α̃))(Λ) = Φk+1(µ, α̃)
2
(Λ)− Φk+1(µ, α̃)

⊺

ΛΦk+1(µ, α̃)

=

∫

Rd

[

Σk(x, µ, α̃(x), α̃ ⋆ µ)⊺ΛΣ(x, µ, α̃(x), α̃ ⋆ µ)

+ Mk(x, µ, α̃(x), α̃ ⋆ µ)⊺ΛM(x, µ, α̃(x), α̃ ⋆ µ)
]

µ(dx)

−
(

(Bk + B̄k)µ̄ + (Ck + C̄k)α̃ ⋆ µ
)

⊺

Λ
(

(Bk + B̄k)µ̄+ (Ck + C̄k)α̃ ⋆ µ
)

= Var(µ)(B⊺

kΛBk +D⊺

kΛDk) + µ̄⊺(Dk + D̄k)
⊺Λ(Dk + D̄k)µ̄

+ Var(α̃ ∗ µ)(H⊺

kΛHk + C⊺

kΛCk)

+ α̃ ⋆ µ
⊺

(Hk + H̄k)
⊺Λ(Hk + H̄k)α̃ ⋆ µ

+ 2

∫

Rd

(x− µ̄)⊺(D⊺

kΛHk +B⊺

kΛCk)α̃(x)µ(dx)

+ 2µ̄⊺(Dk + D̄k)
⊺Λ(Hk + H̄k)α̃ ⋆ µ.
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Then, wk satisfies the DPP (3.10) iff

wk(µ) = inf
α̃∈AE

[

f̂k(µ, α̃) + Var(Φk+1(µ, α̃))(Λk+1) + Φk+1(µ, α̃)
⊺

Γk+1Φk+1(µ, α̃)
]

(4.9)

= Var(µ)(Qk +B⊺

kΛk+1Bk +D⊺

kΛk+1Dk) + inf
α̃∈AE

Gµ
k+1(α̃)

+ µ̄⊺
(

Qk + Q̄k + (Dk + D̄k)
⊺Λk+1(Dk + D̄k) + (Bk + B̄k)

⊺Γk+1(Bk + B̄k)
)

µ̄

+
(

Lk + L̄k + (Bk + B̄k)
⊺ρk+1

)

⊺

µ̄+ χk+1, (4.10)

where we define the function Gµ
k+1 : L2(µ;A) 7→ R by

Gµ
k+1(α̃) = Var(α̃ ⋆ µ)(Vk) + α̃ ⋆ µ

⊺

Wkα̃ ⋆ µ + 2

∫

Rd

(x− µ̄)⊺Skα̃(x)µ(dx)

+ 2µ̄⊺Tkα̃ ⋆ µ + ρ⊺

k+1(Ck + C̄k)α̃ ⋆ µ, (4.11)

and we set Vk = Vk(Λk+1), Wk = Wk(Λk+1,Γk+1), Sk = Sk(Λk+1), Tk = Tk(Λk+1,Γk+1),

with


















Vk(Λk+1) = Rk +H⊺

kΛk+1Hk + C⊺

kΛk+1Ck;

Wk(Λk+1,Γk+1) = Rk + R̄k + (Ck + C̄k)
⊺Γk+1(Ck + C̄k) + (Hk + H̄k)

⊺Λk+1(Hk + H̄k)

Sk(Λk+1) = D⊺

kΛk+1Hk +B⊺

kΛk+1Ck;

Tk(Λk+1,Γk+1) = (Dk + D̄k)
⊺Λk+1(Hk + H̄k) + (Bk + B̄k))

⊺Γk+1(Ck + C̄k).

(4.12)

Here, L2(µ;A) ⊃ AE is the Hilbert space of measurable functions on E = R
d valued in A

= R
m and square integrable w.r.t. µ ∈ P

2
(E).

We now search for the infimum of the function Gµ
k+1, and shall make the following as-

sumptions on the symmetric matrices of the quadratic cost functional and on the coefficients

of the state dynamics:

(c0)

{

Q ≥ 0, Q+ Q̄ ≥ 0, Qk ≥ 0, Qk + Q̄k ≥ 0,

Rk ≥ 0, Rk + R̄k ≥ 0, k = 0, . . . , n− 1,

and for all k = 0, . . . , n− 1 (with the convention that Qn = Q, Q̄n = Q̄)

(c1) Rk > 0, or [rank(Ck) = d, Qk+1 > 0], or [rank(Hk) = d, Qk+1 > 0],

(c2) Rk + R̄k > 0, or [rank(Ck + C̄k) = d, Qk+1 + Q̄k+1 > 0], or [rank(Hk + H̄k) = d,

Qk+1 > 0].

Conditions (c0)-(c1)-(c2) is slightly weaker than the condition in [9] (see their Theorem

3.1), where the condition (c0) is strengthened to Rk > 0 and Rk + R̄k > 0 for all k =

0, . . . , n − 1, for ensuring the existence of an optimal control. We relax this positivity

condition with the conditions (c1)-(c2) in order to include the case of mean-variance

problem (see the example at the end of this section). Actually, as we shall see in Remark

4.1, these conditions will guarantee that for Λk, Γk to be determined below, the function

Gµ
k+1 is convex and coercive on L2(µ;A) for any k = 0, . . . , n − 1. For the moment, we
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derive after some straightforward calculation the Gateaux derivative of Gµ
k+1 at α̃ in the

direction β ∈ L2(µ;A), which is given by:

DGµ
k+1(α̃;β) := lim

ε→0

Gµ
k+1(α̃+ εβ)−Gµ

k+1(α̃)

ε
=

∫

Rd

gk+1(x, α̃)β(x)µ(dx)

with

gk+1(x, α̃) = 2α̃(x)⊺Vk + 2α̃ ⋆ µ
⊺
(

Wk − Vk

)

+ 2(x− µ)⊺Sk + 2µ̄⊺Tk + ρ⊺

k+1(Ck + C̄k).

We shall check later in Remark 4.1 that Vk and Wk are positive symmetric matrices, hence

invertible. We thus see that DGµ
k+1(α̃; .) vanishes for α̃ = α̃∗

k(., µ) s.t. gk+1(x, α̃
∗
k(., µ)) =

0 for all x ∈ R
d, which gives:

α̃∗
k(x, µ) = −V −1

k S⊺

k(x− µ̄) − W−1
k T ⊺

k µ̄ − 1

2
W−1

k (Ck + C̄k)
⊺ρk+1 (4.13)

and then after some straightforward caculation:

Gµ
k+1(α̃

∗
k(., µ)) = −Var(µ)

(

SkV
−1
k S⊺

k

)

− µ̄⊺
(

TkW
−1
k T ⊺

k

)

µ̄ − µ̄⊺TkW
−1
k (Ck + C̄k)

⊺ρk+1

− 1

4
ρ⊺

k+1(Ck + C̄k)W
−1
k (Ck + C̄k)

⊺ρk+1.

Assuming for the moment that α̃∗
k(., µ) attains the infimum of Gµ

k+1 (this is a consequence

of the convexity and coercivity of Gµ
k+1 shown in Remark 4.1), and plugging the above

expression in (4.9), we see that wk is like the function µ 7→ Gµ
k+1(α̃

∗
k(., µ)), a linear com-

bination of terms in Var(µ)(.), µ̄⊺(.)µ̄, and by identification with the form (4.7), we obtain

an inductive relation for Λk, Γk, ρk, χk:



























Λk = Qk +B⊺

kΛk+1Bk +D⊺

kΛk+1Dk − Sk(Λk+1)V
−1
k (Λk+1)S

⊺

k(Λk+1)

Γk = (Qk + Q̄k) + (Bk + B̄k)
⊺Γk+1(Bk + B̄k) + (Dk + D̄k)

⊺Λk+1(Dk + D̄k)

− Tk(Λk+1,Γk+1)W
−1
k (Λk+1,Γk+1)T

⊺

k (Λk+1,Γk+1)

ρk = Lk + L̄k +
[

(Bk + B̄k)− (Ck + C̄k)W
−1
k (Λk+1,Γk+1)T

⊺

k (Λk+1,Γk+1)
]

ρk+1

χk = χk+1 − 1
4ρ

⊺

k+1(Ck + C̄k)W
−1
k (Λk+1,Γk+1)(Ck + C̄k)

⊺ρk+1.

(4.14)

for all k = 0, . . . , n−1, starting from the terminal condition (4.8). The relations for (Λk,Γk)

in (4.14) are two algebraic Riccati difference equations, while the equations for ρk and χk

are linear equations once (Λk,Γk) are determined. This system (4.14) is the same as the

one obtained in [9]. In the particular mean-variance problem considered at the end of this

section, we can obtain explicit closed-form expressions for the solutions (Λk,Γk, ρk, χk) to

this Riccati system. However, in general, there are no closed-form formulae, and these

quantities are simply computed by induction.

In the following remark, we check the issues that have left open up to now.

Remark 4.1 Let conditions (c0)-(c1)-(c2) hold. We prove by backward induction that

for all k = 1, . . . , n, the matrices Vk−1 = Vk−1(Λk), Wk−1 = Wk−1(Λk,Γk) are symmetric

positive, hence invertible, with (Λk,Γk) given by (4.14), together with the nonnegativity of
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the symmetric matrices Λk, Γk, which will immediately gives the convexity and coercivity

of the function Gµ
k in (4.11) for µ ∈ P

2
(Rd).

At time k = n, we have Λn = Q ≥ 0, Γn = Q+ Q̄ ≥ 0, and thus from (4.12), the d× d

matrices Vn−1 = Vn−1(Λn), Wn−1 = Wn−1(Λn,Γn) are symmetric positive under (c0)-(c1)-

(c2): indeed, for example if Rn−1 = 0, then the rank condition on Cn−1 or Hn−1 together

with the positivity of Λn = Q in (c1) will ensure that Vn−1 is positive. Now, suppose that

the assertion is true at time k + 1, i.e. Vk, Wk are symmetric positive, and Λk+1, Γk+1 are

symmetric nonnegative. Then, it is clear from (4.14) that Λk and Γk are symmetric, and

noting that they can be rewritten from the expression of Vk,Wk, Sk, Tk in (4.12) as







































Λk = Qk + SkV
−1
k Rk

(

SkV
−1
k

)

⊺

+
(

Bk − Ck(SkV
−1
k )⊺

]

⊺

Λk+1

[

Bk − Ck(SkV
−1
k )⊺

)

+
(

Dk −Hk(SkV
−1
k )⊺

)

⊺

Λk+1

(

Dk −Hk(SkV
−1
k )⊺

)

Γk = Qk + Q̄k + TkW
−1
k (Rk + R̄k)

(

TkW
−1
k

)

⊺

+
(

Bk + B̄k − (Ck + C̄k)(TkW
−1
k )⊺

)

⊺

Γk+1

(

Bk + B̄k − (Ck + C̄k)(TkW
−1
k )⊺

)

+
(

Dk + D̄k − (Hk + H̄k)(TkW
−1
k )⊺

)

⊺

Γk+1

(

Dk + D̄k − (Hk + H̄k)(TkW
−1
k )⊺

)

,

it is also clear that they are nonnegative under (c0). Finally from the expression (4.12) at

time k−1, we see that Vk−1 = Vk−1(Λk) and Wk−1 = Wk−1(Λk,Γk) are symmetric positive

under (c0)-(c1)-(c2), which shows the required assertion. 2

In view of the above derivation and Remark 4.1, it follows that the functions wk, k

= 0, . . . , n, given in the quadratic form (4.7) with (Λk,Γk, ρk, χk) as in (4.14), satisfy by

construction the DPP (3.10), and by the verification theorem, this implies that the value

functions are given by vk = wk, while the optimal control is given in feedback form from

(4.13) by:

α∗
k = α̃k(X

∗
k ,PX∗

k

) = −V −1
k S⊺

k

(

X∗
k − E[X∗

k ]
)

− W−1
k T ⊺

kE[X
∗
k ], (4.15)

where X∗
k = Xα∗

k is the optimal wealth process with the feedback control α∗. We retrieve

the expression obtained in [9] (see e.g. their Theorem 3.1). We can push further our

calculations to get an explicit form of the optimal control expressed only in terms of the

state process (and not on its mean). Indeed, from the linear dynamics (4.4), we have

E[X∗
k+1] = (Bk + B̄k)E[X

∗
k ] + (Ck + C̄k)E[α

∗
k]

= (Bk + B̄k)E[X
∗
k ]− (Ck + C̄k)

(

W ⊺

k

)−1
T ⊺

kE[X
∗
k ] = NkE[X

∗
k ],

with Nk = Bk + B̄k − (Ck + C̄k)W
−1
k Tk, for k = 0, . . . , n− 1, and so by induction:

E[X∗
k ] = Nk−1 . . . N0E[ξ].

Plugging into (4.15), this gives the explicit form of the optimal control as

α∗
k = −V −1

k S⊺

kX
∗
k +

(

V −1
k S⊺

k −W−1
k T ⊺

k

)

Nk−1 . . . N0E[ξ], k = 0, . . . , n− 1. (4.16)

We observe that the optimal control at any time k does not only depend on the current

state X∗
k but also on its the initial state ξ (via its mean).
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Example: Mean-variance portfolio selection

The mean-variance discrete-time problem consists in minimizing the cost functional:

J(α) =
γ

2
Var(Xα

n )− E[Xα
n ]

= E
[γ

2

(

Xα
n

)2 −Xα
n

]

− γ

2

(

E[Xα
n ]
)2

,

for some γ > 0, with a dynamics for the wealth process (Xα
k ) valued in E = R controlled

by the amount αk valued in A = R invested in the stock at time k (we assume zero interest

rate):

Xα
k+1 = Xα

k + αk(b∆+ σ
√
∆εk+1), k = 0, . . . , n− 1, Xα

0 = x0. (4.17)

Here x0 ∈ R is the initial capital, b, σ > 0 are some constants, representing respectively

the rate of return and volatility of the stock, ∆ > 0 is a parameter, e.g. ∆ = T/n, arising

when considering a time discretization of a continuous-time model over [0, T ], and (εk) is

a sequence of i.i.d. random variables with distribution N (0, 1). This univariate model fits

into the LQ framework (4.4)-(4.5) with d = m = 1, and

Bk = 1, B̄k = 0, Ck = b∆, C̄k = 0, Dk = D̄k = 0, Hk = σ
√
∆, H̄k = 0,

Qk = Q̄k = Lk = L̄k = Rk = R̄k = 0, Q =
γ

2
, Q̄ = −γ

2
, L = 0, L̄ = −1.

Conditions (c0)-(c1)-(c2) are clearly satisfied, and the Riccati system (4.14) for (Λk,Γk, ρk, χk)

∈ R+ × R+ × R× R is written in this case as:



























Λk = Λk+1
σ2

σ2+b2∆

Γk =
σ2Λk+1

σ2Λk+1+b2∆Γk+1
Γk+1

ρk =
σ2Λk+1

b2∆Γk+1+σ2Λk+1
ρk+1

χk = χk+1 − 1
4

b2∆ρ2
k+1

σ2Λk+1+b2∆Γk+1
,

together with the terminal condition Λn = γ
2 , Γn = 0, ρn = −1, χn = 0. This leads by

induction to the explicit form for (Λk,Γk, ρk, χk):



















Λk = γ
2

(

σ2

σ2+b2∆

)n−k

,

Γk = 0, ρk = −1

χk = − 1
2γ

((

σ2+b2∆
σ2

)n−k

− 1
)

.

(4.18)

The value functions are then explicitly given by

vk(µ) =
γ

2

( σ2

σ2 + b2∆

)n−k

Var(µ) − µ̄− 1

2γ

((σ2 + b2∆

σ2

)n−k

− 1
)

,

for all k = 0, . . . , n, µ ∈ P
2
(R). Moreover, the optimal control is given in feedback form

from (4.15) by:

α∗
k = α̃k(X

∗
k ,PX∗

k

) = − b

σ2 + b2∆

(

X∗
k − E[X∗

k ]
)

+
b

σ2γ

(σ2 + b2∆

σ2

)n−k−1
,
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where X∗
k = Xα∗

k is the optimal wealth process with the feedback control α∗. It is then

explicitly written from (4.16) by

α∗
k = − b

σ2 + b2∆

[

X∗
k − x0 −

1

γ

(

1 +
b2

σ2
∆
)n]

. (4.19)

We then observe that the optimal control at any time k does not only depend on the

current wealth X∗
k but also on the initial wealth x0. This expression (4.19) of the optimal

control is the discrete time analog of the continuous time optimal control obtained in [13]

or [2]. Actually, if we view (4.17) as a time discretization (with a time step ∆ = T/n)

of a continuous time Black-Scholes model for the stock price over [0, T ], with a controlled

wealth dynamics

dXα
t = αt(bdt+ σdWt), Xα

0 = x0,

then by sending n to infinity (hence ∆ to zero) into (4.19), we retrieve the closed-form

expression of the optimal control in [13] or [2]:

α∗
t = − b

σ2

[

Xα∗

t − x0 −
1

γ
exp

( b2

σ2
T
)

]

.
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