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émanant des établissements d’enseignement et de
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ABSTRACT

Context. In protoplanetary disks, the inner boundary between the turbulent and laminar regions could be a promising site for planet
formation, thanks to the trapping of solids at the boundary itself or in vortices generated by the Rossby wave instability. At the in-
terface, the disk thermodynamics and the turbulent dynamics are entwined because of the importance of turbulent dissipation and
thermal ionization. Numerical models of the boundary, however, have neglected the thermodynamics, and thus miss a part of the
physics.
Aims. The aim of this paper is to numerically investigate the interplay between thermodynamics and dynamics in the inner regions of
protoplanetary disks by properly accounting for turbulent heating and the dependence of the resistivity on the local temperature.
Methods. Using the Godunov code RAMSES, we performed a series of 3D global numerical simulations of protoplanetary disks in
the cylindrical limit, including turbulent heating and a simple prescription for radiative cooling.
Results. We find that waves excited by the turbulence significantly heat the dead zone, and we subsequently provide a simple the-
oretical framework for estimating the wave heating and consequent temperature profile. In addition, our simulations reveal that the
dead-zone inner edge can propagate outward into the dead zone, before stalling at a critical radius that can be estimated from a mean-
field model. The engine driving the propagation is in fact density wave heating close to the interface. A pressure maximum appears at
the interface in all simulations, and we note the emergence of the Rossby wave instability in simulations with extended azimuth.
Conclusions. Our simulations illustrate the complex interplay between thermodynamics and turbulent dynamics in the inner regions
of protoplanetary disks. They also reveal how important activity at the dead-zone interface can be for the dead-zone thermodynamic
structure.
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1. Introduction

Current models of protoplanetary (PP) disks are predicated on
the idea that significant regions of the disk are too poorly ion-
ized to sustain magneto-rotational-instability (MRI) turbulence.
These PP disks are thought to comprise a turbulent body of
plasma (the “active zone”) enveloping a region of cold quies-
cent gas, in which accretion is actually absent (the “dead zone”)
(Gammie 1996; Armitage 2011). These models posit a critical
inner radius (∼1 au) within which the disk is fully turbulent and
beyond which the disk exhibits turbulence only in its surface lay-
ers, for a range of radii (1−10 au) (but see Bai & Stone 2013, for
a complication of this picture).

The inner boundary between the MRI-active and dead re-
gions is crucial for several key processes. Because there is a
mismatch in accretion across the boundary, a pressure maximum
will naturally form at this location, which (a) may halt the in-
ward spiral of centimetre to metre-sized planetesimals (Kretke
et al. 2009); and (b) may excite a large-scale vortex instabil-
ity (“Rossby wave instability”) (Lovelace et al. 1999) that may
promote dust accumulation, hence planet formation (Barge &
Sommeria 1995; Lyra et al. 2009; Meheut et al. 2012). On the

� Appendices are available in electronic form at
http://www.aanda.org

other hand, the interface will influence the radial profiles of
the dead zone’s thermodynamic variables – temperature and en-
tropy, most of all. Not only will it affect the global disk struc-
ture and key disk features (such as the ice line), but the interface
will also control the preconditions for dead-zone instabilities that
feed on the disk’s small adverse entropy gradient, such as the
subcritical baroclinic instability and double-diffusive instability
(Lesur & Papaloizou 2010; Latter et al. 2010).

Most studies of the interface have been limited to isother-
mality. This is a problematic assumption because of the perva-
sive interpenetration of dynamics and thermodynamics in this
region, especially at the midplane. Temperature depends on the
turbulence via the dissipation of its kinetic and magnetic fluc-
tuations, but the MRI turbulence, in turn, depends on the tem-
perature through the ionization fraction, which is determined by
thermal ionization (Pneuman & Mitchell 1965; Umebayashi &
Nakano 1988). Because of this feedback loop, the temperature
is not an additional piece of physics that we add to simply com-
plete the picture; it is instead at the heart of how the interface
and its surrounding region work. One immediate consequence
of this feedback is that much of the midplane gas inward of 1 au
is bistable: if the gas at a certain radius begins as cold and poorly
ionized, it will remain so; conversely, if it begins hot and turbu-
lent, it can sustain this state via its own waste heat (Latter &
Balbus 2012). Thus two stable states are available at any given
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radius in the bistable region. This complicates the question of
where the actual location of the dead zone boundary lies. It also
raises the possibility that the boundary is not static, and may not
even be well defined. Similar models have also been explored in
the context of FU Ori outbursts Zhu et al. (2010, 2009a,b).

In this paper we simulate these dynamics directly with a set
of numerical experiments of MRI turbulence in PP disks. We
concentrate on the inner radii of these disks (∼0.1−1 au) so that
our simulation domain straddles both the bistable region and the
inner dead-zone boundary. Our aim is to understand the inter-
actions between real MRI turbulence and thermodynamics, and
thus test and extend previous exploratory work that modelled
the former via a crude diffusive process (Latter & Balbus 2012).
Our 3D magnetohydrodynamics (MHD) simulations employ the
Godunov code RAMSES (Teyssier 2002; Fromang et al. 2006),
in which the thermal energy equation has been accounted for
and magnetic diffusivity appears as a function of temperature
(according to an approximation of Saha’s law). We focus on the
optically thick disk midplane, and thus omit non-thermal sources
of ionization. This also permits us to model the disk in the cylin-
drical approximation.

This initial numerical study is the first in a series, and thus
lays out our numerical tools, tests, and code-checks. We also
verify previous published results for fully turbulent disks and
disks with static dead zones (Dzyurkevich et al. 2010; Lyra &
Mac Low 2012). We explore the global radial profiles of ther-
modynamic variables in such disks, and the nature of the turbu-
lent temperature fluctuations, including a first estimate for the
magnitude of the turbulent thermal flux. We find that the dead
zone can be effectively heated by density waves generated at the
dead zone boundary, and we estimate the resulting wave damp-
ing and heating. Our simulations indicate that the dead zone may
be significantly hotter than most global structure models indicate
because of this effect. Another interesting result concerns the dy-
namics of the dead zone interface itself. We verify that the inter-
face is not static and can migrate from smaller to larger radii.
All such simulated MRI “fronts” ultimately stall at a fixed ra-
dius set by the thermodynamic and radiative profiles of the disk,
in agreement with Latter & Balbus (2012). These fronts move
more quickly than predicted because they propagate not via the
slower MRI turbulent motions but by the faster density waves.
Finally, we discuss instability near the dead zone boundary.

The structure of the paper is as follows. In Sect. 2 we de-
scribe the setup we used for the MHD simulations and give our
prescriptions for the radiative cooling and thermal ionization.
We test our implementation of thermodynamical processes in
models of fully turbulent disks in Sect. 3. There we also quan-
tify the turbulent temperature fluctuations and the turbulent heat
flux. Section 4 presents results of resistive MHD simulations
with dead zones. Here we look at the cases of a static and dy-
namic dead zone separately. Rossby wave and other instabilities
are briefly discussed in Sect. 5; we subsequently summarize our
results and draw conclusions in Sect. 6.

2. Setup

We present in this paper a set of numerical simulations per-
formed using a version of the code RAMSES (Teyssier 2002;
Fromang et al. 2006) which solves the MHD equations on a
3D cylindrical and uniform grid. Since we are interested in
the inner-edge behaviour at the mid-plane, we discount verti-
cal stratification and work under the cylindrical approximation
(Armitage 1998; Hawley 2001; Steinacker & Papaloizou 2002).
In the rest of this section we present the governing equations,

prescriptions, main parameters, and initial and boundary condi-
tions. In order to keep the discussion as general as possible, all
variables and equations in this section are dimensionless.

2.1. Equations

Since we are interested in the interplay between dynamical and
thermodynamical effects at the dead zone inner edge, we solve
the MHD equations, with (molecular) Ohmic diffusion, along-
side an energy equation. We neglect the kinematic viscosity, that
is much smaller than Ohmic diffusion, because of its minor role
in the MRI dynamics. However dissipation of kinetic energy is
fully captured by the numerical grid. We adopt a cylindrical co-
ordinate system (R, φ, Z) centred on the central star:

∂ρ

∂t
+ ∇·(ρu) = 0 (1)

∂ρu

∂t
+ ∇·(ρuu − BB) + ∇P = −ρ∇Φ (2)

∂E
∂t
+ ∇·

[
(E + P)u − B(B·u) + Fη

]
= −ρu · ∇Φ − L (3)

∂B
∂t
− ∇×(u × B) = −∇×(η∇×B) (4)

where ρ is the density, u is the velocity, B is the magnetic field,
and P is the pressure. Φ is the gravitational potential. In the
cylindrical approximation, it is given by Φ = −GM�/R where
G is the gravitational constant and M� is the stellar mass. In
RAMSES, E is the total energy, i.e. the sum of kinetic, magnetic
and internal energy eth (but it does not include the gravitational
energy). Since we use a perfect gas equation of state to close
the former set of equations, the latter is related to the pressure
through the relation eth = P/(γ − 1) in which γ = 1.4. The mag-
netic diffusivity is denoted by η. As we only consider thermal
ionization, η will depend on temperature T ; its functional form
we discuss in the following section. Associated with that resistiv-
ity is a resistive flux Fη that appears in the divergence of Eq. (3).
Its expression is given by Eq. (23) of Balbus & Hawley (1998).
TheL symbol denotes radiative losses and it will be described in
Sect. 2.3. Dissipative and radiative cooling terms are computed
using an explicit scheme. This method is valid if the radiative
cooling time scale is much longer than the typical dynamical
time (see Sect. 2.4). Finally, we have added a source term in the
continuity equation that maintains the initial radial density pro-
file ρ0 (Nelson & Gressel 2010; Baruteau et al. 2011). It is such
that

∂ρ

∂t
= −ρ − ρ0

τρ
· (5)

The restoring time scale τρ is set to 10 local orbits and prevents
the long term depletion of mass caused by the turbulent transport
through the inner radius.

2.2. Magnetic diffusion

In this paper, we conduct both ideal (η = 0) and non-ideal (η �
0) simulations. In the latter case, we treat the disk as partially
ionized. In such a situation, the magnetic diffusivity is known
to be a function of the temperature T and ionization fraction xe
(Blaes & Balbus 1994):

η ∝ x−1
e T 1/2. (6)
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The ionisation fraction can be evaluated by considering the ion-
ization sources of the gas. In the inner parts of PP disks, the mid-
plane electron fraction largely results from thermal ionization
(neglecting radioisotopes that are not sufficient by themselves
to instigate MRI). Non thermal contributions due to ionization
by cosmic (Sano et al. 2000), UVs (Perez-Becker & Chiang
2011) and X-rays (Igea & Glassgold 1999) are negligible be-
cause of the large optical thickness of the disk at these radii.
In fact, the ionization is controlled by the low ionization poten-
tial (Ei ∼ 1−5 eV) alkali metals, like sodium and potassium,
the abundance of which is of order 10−7 smaller than hydrogen
(Pneuman & Mitchell 1965; Umebayashi & Nakano 1988). Then
xe can be evaluated using the Saha equation. When incorporated
into Eq. (6), one obtains the following relation between the re-
sistivity and the temperature:

η ∝ T−
1
4 exp (T�/T ), (7)

with T� a constant. Because of the exponential, η varies very
rapidly with T , and, in the context of MRI activation, can be
thought of as a “switch” around a threshold TMRI. In actual pro-
toplanetary disks, it is well known that that temperature is around
103 K (Balbus & Hawley 2000; Balbus 2011). Taking this into
account, and for the sake of simplicity, we use in our simulations
the approximation:

η(T ) =

{
η0 if T < TMRI

0 otherwise,
(8)

where TMRI is the activation temperature for the onset of MRI.
Note that by taking a step function form for η we must neglect
its derivative in Eq. (4).

2.3. Radiative cooling and turbulent heating

As we are working within a cylindrical model of a disk, with-
out explicit surface layers, we model radiative losses using the
following cooling function:

L = ρσ
(
T 4 − T 4

min

)
. (9)

This expression combines a crude description of radiative cool-
ing of the disk (−ρσT 4) as well as irradiation by the central star
(+ρσT 4

min), in which σ should be thought of as a measure of
the disk opacity (see also Sect. 2.4). In the absence of any other
heating or cooling sources, T should tend toward Tmin, the equi-
librium temperature of a passively irradiated disk. In principle,
Tmin is a function of position and surface density, but we take
it to be uniform for simplicity. In practice, we found it has lit-
tle influence on our results. Turbulence or waves ensure that the
simulated temperature is always significantly larger than Tmin.
The parameter σ determines the quantity of thermal energy the
gas is able to hold. For computational simplicity and to ease the
physical interpretation of our results, we take σ to be uniform.
In reality, σ should vary significantly across the dust sublima-
tion threshold (∼1500 K) (Bell & Lin 1994), but an MRI front
will always be much cooler (∼1000 K). As a consequence, the
strong variation of σ will not play an important role in the dy-
namics. Finally, we omit the radiative diffusion of heat in the
planar direction, again for simplicity though in real disks it is an
important (but complicated) ingredient.

Our prescription for magnetic diffusion, Eq. (8), takes care of
the dissipation of magnetic energy when T < TMRI. However, if
the disk is sufficiently hot the dissipation of magnetic energy (as
with the kinetic energy) is not explicitly calculated. In this case

energy is dissipated on the grid; our use of a total energy equa-
tion ensures that this energy is not lost but instead fully trans-
ferred to thermal energy. It should be noted that though this is
perfectly adequate on long length and time scales, the detailed
flow structure on the dissipation scale will deviate significantly
from reality.

2.4. Initial conditions and main parameters

Our 3D simulations are undertaken on a uniformly spaced grid
in cylindrical coordinates (R, φ, Z). The grid ranges over R ∈
[R0, 8 R0], φ ∈ [0, π/4] and Z ∈ [−0.3 R0, 0.3 R0]. Here the key
length scale R0 serves as the inner radius of our disk domain and
could be associated with a value between 0.2−0.4 au in physical
units. Each run has a resolution [320, 80, 80], which has been
shown in these conditions to be sufficient for MHD turbulence
to be sustained over long time scales (Baruteau et al. 2011). For
completeness, we present a rapid resolution study in Appendix D
that further strengthens our results.

Throughout this paper, we denote by X0 the value of the
quantity X at the inner edge of the domain, i.e. at R = R0. Units
are chosen such that:

GM� = R0 = Ω0 = ρ0 = T0 = 1,

where Ω stands for the gas angular velocity at radius R. Thus
all times are measured in inner orbits, so a frequency of unity
correspond to a period of one inner orbit. We will refer to the
local orbital time at R using the variable τorb.

The initial magnetic field is a purely toroidal field whose pro-
file is built to exhibit no net flux and whose maximum strength
corresponds to β = 25:

Bφ =

√
2P
β

sin

(
2π

Zmax − Zmin
Z

)
· (10)

The simulations start with a disk initially in approximate ra-
dial force balance (we neglect the small radial component of
the Lorentz force in deriving that initial state). Random veloc-
ities are added to help trigger the MRI. Density and temperature
profiles are initialized with radial power laws:

ρ = ρ0

(
R
R0

)p

; T = T0

(
R
R0

)q

, (11)

where p and q are free parameters. Pressure and temperature are
related by the ideal gas equation of state:

P = P0

(
ρ

ρ0

) (
T
T0

)
, (12)

where P0 depends on the model and is specified below. We
choose p = −1.5, which sets the initial radial profile for the den-
sity. During the simulation, it is expected to evolve on the long
secular time scale associated with the large-scale accretion flow
(except possibly when smaller scale feature like pressure bump
appear, see Sect. 4). Quite differently, the temperature profile
evolves on the shorter thermal time scale (which is itself longer
than the dynamical time scale τorb). It is set by the relaxation
time to thermal equilibrium1.

1 One consequence is that the ratio H/R which measures the relative
importance of thermal and rotational kinetic energy, is no longer an
input parameter, as in locally isothermal simulations, but rather the out-
come of a simulation.
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As shown by Shakura & Sunyaev (1973), turbulent heating
in an accretion disk is related to the Rφ component of the turbu-
lent stress tensor TRφ:

Q+ = −TRφ
∂Ω

∂ ln R
∼ 1.5ΩTRφ. (13)

For MHD turbulence TRφ amounts to (Balbus & Papaloizou
1999):

TRφ = 〈−BRBφ + ρvRδvφ〉. (14)

The 〈.〉 notation stands for an azimuthal, vertical and time aver-
age, δvφ is the flow’s azimuthal deviation from Keplerian rota-
tion. The last scaling in Eq. (13) assumes such deviations are
small, i.e. the disk is near Keplerian rotation. Balancing that
heating rate by the cooling function L ∼ ρσT 4 gives a relation
for the disk temperature (here we neglect Tmin in the cooling
function):

σρT 4 	 1.5ΩTRφ. (15)

Using the standard α prescription for illustrative purposes, we
write TRφ = α〈P〉which defines the Shakura-Sunyaevα parame-
ter, a constant in the classical α disk theory (Shakura & Sunyaev
1973). Since Ω ∝ R−1.5, Eq. (15) suggests that T ∝ R−0.5 in
equilibrium for uniform σ values. We thus used q = −0.5 in our
initialization of T .

We can use a similar reasoning to derive an estimate for the
thermal time-scale. Using the turbulent heating rate derived by
Balbus & Papaloizou (1999) and the definition of α, the mean
internal energy evolution equation can be approximated by

∂eth

∂t
∼ 〈P〉

(γ − 1)τheat
= 1.5Ωα〈P〉 − L, (16)

which yields immediately

τ−1
heat ∼ 1.5Ω(γ − 1)α. (17)

For α = 0.01, the heating time scale is thus about 25 local orbits.
The cooling time-scale τcool is more difficult to estimate, but near
equilibrium should be comparable to τheat.

In order to obtain a constraint on the parameter σ we use
the relations c2

s = γP/ρ ≈ H2Ω2, where cs is the sound speed
and H is the disk scale height. At R = R0 approximate thermal
equilibrium, Eq. (15), can be used to express σ as a function of
disk parameters:

σ ≈ 3
2

αR2
0Ω

3
0

γ T 4
0

(
H0

R0

)2

· (18)

Now setting α ∼ 10−2 (and moving to numerical units) ensures
that σ only depends on the ratio H0/R0 = c0/(R0Ω0). We inves-
tigate two cases: a “hot” disk with H0/R0 = 0.1 which yields
σ = 1.1 × 10−4, and a “cold” disk with H0/R0 = 0.05 and thus
σ = 2.7 × 10−5. The two parameter choices for σ will be re-
ferred to as the σhot and σcold cases in the following. Using the
relation between pressure and sound speed respectively yields
P0 = 7.1 × 10−3 and P0 = 1.8 × 10−3 for the two models. The
surface density profile in the simulations is given by a power
law:

Σ = ρ0H0

(
R
R0

)p+q/2+3/2

· (19)

In resistive simulations, the parameters Tmin, TMRI and η0 (when
applicable) need to be specified for the runs to be completely

defined. We used Tmin = 0.05 T0, which means that the temper-
ature in the hot turbulent innermost disk radius is 20 times that
of a cold passive irradiated disk. As discussed in Sect. 2.3, Tmin
is so small that it has little effect on our results. The values of
TMRI and η0 vary from model to model and will be discussed in
the appropriate sections.

In order to assess how realistic our disk model is, we con-
vert some of its key variables to physical units. This can be done
as follows. We consider a protoplanetary disk orbiting around a
half solar mass star, with surface density Σ ∼ 103 g cm−2 and
temperature T ∼ 1500 K at 0.1 au. (Given the radial profile
we choose for the surface density, this would correspond to a
disk mass of about seven times the minimum mass solar nebu-
lar within 100 au of the central star.) For this set of parameters,
we can use Eq. (18) to calculate σ = 1 × 10−9 in cgs units for
model σcold, using α ∼ 10−2. In the simulations, the vertically
integrated cooling rate is thus given by the cooling rate per unit
surface:

Q− = ΣσT 4 = 5.3 × 106 erg cm−2 s−1. (20)

This value can be compared to the cooling rate of a typical α
disk with the same parameters (Chambers 2009):

QPP
− =

8
3
σb

τ
T 4, (21)

where σb is the Stefan-Boltzman constant and τ = κ0Σ/2 in
which κ0 = 1 cm2 g−1 stands for the opacity. Using these fig-
ures, we obtain QPP− = 1.5 × 106 erg cm−2 s−1, i.e. a value that
is close (given the level of approximation involved) to that used
in the simulations2 (see Eq. (20)). We caution that this accept-
able agreement should not be mistaken as a proof that we are
correctly modelling all aspects of the disk’s radiative physics.
The cooling function we use is too simple to give anything more
than an idealized thermodynamical model. It only demonstrates
the consistency between the thermal time scale we introduce in
the simulations and the expected cooling time scale in proto-
planetary disks.

2.5. Buffers and boundaries

Boundary conditions are periodic in Z and φ while special care
has been paid to the radial boundaries. Here vR, vz, Bφ, Bz are set
to zero, BR is computed to enforce magnetic flux conservation, vφ
is set to the Keplerian value, and finally temperature and density
are fixed to their initial values.

As is common in simulations of this kind, we create two
buffer zones adjacent to the inner and outer boundaries in which
the velocities are damped toward their boundary values in or-
der to avoid sharp discontinuities. The buffer zones extend from
R = 1 to R = 1.5 for the inner buffer and from R = 7.5 to R = 8
for the outer one. For the same reason, a large resistivity is used
in those buffer zones in order to prevent the magnetic field from
accumulating next to the boundary. As a result of this entire pro-
cedure, turbulent activity decreases as one approaches the buffer
zones. This would occasionally mean the complete absence of
turbulence in the region close to the inner edge because of inade-
quate resolution. To avoid that problem, the cooling parameterσ
gradually increases with radius in the region R0 < R < 2R0. In
Appendix A, we give for completeness the functional form of σ

2 With our choice of parameters, we have Q− ∼ R−2.5 and QPP
− ∼ R−1.5.

This means that the agreement between Q− and QPP
− improves with ra-

dius. At small radial distances, dust sublimates and our model breaks
down (see Sect. 6).
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we used. These parts of the domain that corresponds to the inner
and outer buffers are hatched on all plots of this paper.

3. MHD simulations of fully turbulent PP disks

We start by describing the results we obtained in the “ideal”
MHD limit: η = 0 throughout the disk. As a consequence, there
is no dead zone and the disk becomes fully turbulent as a re-
sult of the MRI. The purpose of this section is (a) to describe
the thermal structure of the quasi-steady state that is obtained;
(b) to check the predictions of simple alpha models; and (c) to
examine the small-scale and short-time thermodynamic fluctua-
tions of the gas, especially with respect to their role in turbulent
heat diffusion. Once these issues are understood we can turn with
confidence to the more complex models that exhibit dead-zones.

3.1. Long-time temperature profiles

We discuss here the results of the two simulations that corre-
spond to σhot and σcold. We evolve the simulations not only for a
long enough time for the turbulence transport properties to reach
a quasi-steady state but also for the thermodynamic properties
to have also relaxed. Thus the simulations are evolved for a time
much longer than the thermal time of the gas, τheat ≈ 25 local or-
bits. Here, we average over nearly 1000 inner orbits (about 2τheat
at the outermost radius R = 7).

In Fig. 1 we present the computed radial temperature profiles
and the radial profiles of α for the two simulations. Note that α
is clearly not constant in space. In both models, α is of order
a few times 10−2 and decreases outward. We caution here that
this number and radial profiles are to be taken with care. The
α value is well known to be affected by numerical convergence
(Beckwith et al. 2011; Sorathia et al. 2012) as well as physical
convergence issues (Fromang et al. 2007; Lesur & Longaretti
2007; Simon & Hawley 2009). This may also influence the tem-
perature because it depends on the turbulent activity.

The disk temperature T rapidly departs from the initialized
power law given by Eq. (11). In both plots the averaged simu-
lated temperature decreases faster than R−0.5. This is partly a re-
sult of α decreasing with radius, and a consequent reduced heat-
ing with radius. The disk aspect ratios are close to the targeted
values: H/R ∼ 0.15 and 0.08 in model σhot and σcold respec-
tively, slightly increasing with radius in both cases.

One of our goals is to check the implementation of the
thermodynamics, and to ensure that we have reached thermal
equilibrium. To accomplish this we compare the simulation tem-
perature profiles with theoretical temperature profiles computed
according to the results of Balbus & Papaloizou (1999). The the-
oretical temperature profile can be deduced from thermal equi-
librium, Eq. (15), in which we now include the full expression
for the cooling function (i.e. including Tmin):

T =

(
T 4

min +
3
2
αΩ〈P〉
σ〈ρ〉

)1/4

· (22)

Using the simulated α profiles as inputs, we could then calculate
radial profiles for T . In fact, we used linear fits of α (shown as a
dashed line) in Eq. (22), for simplicity. The theoretical curves are
compared with the simulation results in Fig. 1. The overall good
agreement validates our implementation of the source term in the
energy equation and also demonstrates that we accurately cap-
ture the turbulent heating. It is also a numerical confirmation that
turbulent energy is locally dissipated into heat in MRI-driven tur-
bulence and that our simulations have been run sufficiently long

Fig. 1. Temperature profiles 〈T 〉 averaged over 900 inner orbits (red
curves). Black plain lines show their corresponding theoretical pro-
files. Black dashed lines show their corresponding initial profiles. Top
panel: σcold case. Bottom panel: σhot case. The subframes inserted
in the upper right of each panel show the alpha profiles obtained in
both cases (red lines). The dashed lines show the analytic profiles
used to compute the theoretical temperature profile (see text), given by
α = 6.3 × 10−2−7.1 × 10−3R/R0 and α = 4.6 × 10−2−5.7 × 10−3R/R0

respectively.

to achieve thermal equilibrium. During the steady state phase of
the simulations, the mass loss at the radial boundaries is very
small: the restoring rate is ρ̇ ∼ 5 × 10−4ρ0Ω0 on average on the
domain.

3.2. Turbulent fluctuations of temperature

We now focus on the local and short time evolution of T , by
investigating the fluctuations of density and temperature once
the mean profile has reached a quasi steady state. We define the
temperature fluctuations by δT = T (R, φ, Z, t)−T(R, t), where an
overline indicates an azimuthal and vertical average. The magni-
tude of the fluctuations are plotted in Fig. 2. In the σcold case, the
fluctuations range between 4 and 8% while they vary between 3
and 5% in the σhot case. The smaller temperature fluctuations in
the latter case possibly reflect the weaker turbulent transport in
the latter case, while also its greater heat capacity. The tendency
of the relative temperature fluctuations to decrease with radius is
due to α decreasing outward.

These temperature fluctuations can be due to different kinds
of events that act, simultaneously or not, to suddenly heat or
cool the gas. Such events can, for example, be associated with
adiabatic compression or magnetic reconnection. To disentangle
these different possibilities, we note that turbulent compressions,
being primarily adiabatic, satisfy the following relationship
between δT and the density fluctuations δρ:

δT

T
= (γ − 1)

δρ

ρ
· (23)
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Fig. 2. Temperature standard deviation profiles averaged over 900 inner
orbits. The plain line show the result from the σhot case and the dashed
curve show the result from the σcold run.

Fig. 3. Blue dots map the scaling relation between temperature and den-
sity fluctuations δT and δρ in the σhot simulation. 900 events are ran-
domly selected in the whole domain (except buffer zones) among 900
inner orbits. The red line shows the linear function (slope = γ − 1))
corresponding to the adiabatic scaling.

In Fig. 3 we plot the distribution of a series of fluctuation events
randomly selected during the σhot model in the (δρ/ρ, δT/T )
plane. The dot opacity is a function of the event’s radius: darker
points stand for outer parts of the disk. The events are scattered
around the adiabatic slope (represented with a red line), but dis-
play a large dispersion that decreases as radius increases. The
difference between the disk cooling time and its orbital period
is so large that the correlation should be much better if all the
heating/cooling events were due to adiabatic compression. This
implies that temperature fluctuations are mainly the result of iso-
lated heating events such as magnetic reconnection. This sugges-
tion is supported by the larger dispersion at short distance from
the star, where turbulent activity is largest. However, a detailed
study of the heating mechanisms induced by MRI turbulence is
beyond the scope of this paper. Indeed, the low resolution and the
uncontrolled dissipation at small scales – important for magnetic
reconnection – both render any detailed analysis of the problem
difficult. Future local simulations at high resolution and with ex-
plicit dissipation will be performed to investigate that question
further.

As shown in Balbus (2004), MHD turbulence may also in-
duce thermal energy transport through correlations between the
temperature fluctuations δT and velocity fluctuations δu. For ex-
ample, the radial flux of thermal energy is given by Eq. (5) of
Balbus (2004):

Fturb =
ρc2

0

γ − 1
δTδvR. (24)

Fig. 4. Thermal diffusivity’s radial profile averaged over 900 inner or-
bits. Dashed lines show the mean thermal diffusivity for two homo-
geneous αT (αT = 0.02 and αT = 0.004). The grey area delimit one
standard deviation around the mean thermal diffusivity.

By analogy with molecular thermal diffusivity, we quantify the
turbulent efficiency to diffuse heat using a parameter κT :

〈Fturb〉 = −
κT 〈ρ〉c2

0

γ(γ − 1)
∂〈T 〉
∂R
· (25)

To make connection with standard α disk models, we introduce
the parameter αT which is a dimensionless measure of κT :

αT =
κT

〈cs〉〈H〉 , (26)

as well as the turbulent Prandtl number PR = α/αT that com-
pares turbulent thermal and angular momentum transports. We
measure the turbulent thermal diffusivity in the σhot model and
plot in Fig. 4 its radial profile and statistical deviation. For com-
parison, we also plot two radial profiles of κT that would result
from constant αT , chosen such that they bracket the statistical de-
viations of the simulations results. They respectively correspond
to PR ∼ 0.8 and PR ∼ 3.5 (assuming a constant α = 0.02). The
large deviation around the mean value prevents any definitive
and accurate measurement of PR, but our data suggest that PR
is around unity. This is relatively close to PR = 0.3 that Pierens
et al. (2012) used to investigate, with a diffusive model, how the
turbulent diffusivity impacts on planet migration.

Turbulent diffusion must be compared to the radiative dif-
fusion of temperature. In the optically thick approximation, the
radiative diffusivity is ∝T 3. One can establish, using Eq. (15),
that the dimensionless measure of radiative diffusivity αrad, de-
fined similarly to αT (see Eqs. (25) and (26)), is equal to a few α.
The turbulent transport of energy is then comparable to radiative
transport in PP disks (see also Appendix A in Latter & Balbus
2012). Nevertheless, radiative transport is neglected in our sim-
ulations. As indicated by the discussion above, this shortcoming
should be rectified in future. Note that radiative MHD simula-
tions are challenging and Flock et al. (2013) performed the first
global radiative MHD simulations of protoplanetary disks only
very recently. Previous studies had been confined to the shearing
box approximation (Hirose et al. 2006; Flaig et al. 2010; Hirose
& Turner 2011) because of the inherent numerical difficulties of
radiative simulations.

4. MHD simulations of PP disks with a dead zone

We now turn to the non-ideal MHD models in which the disk is
composed of an inner turbulent region and a dead zone at larger
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J. Faure et al.: Dead zone inner edge dynamics

Fig. 5. z = 0 planar maps of radial magnetic fields fluctuation (on the left) and density fluctuations (right plot) from the σhot simulation at
t = 900 + τcool(R = 7R0).

radii. To make contact with previous work (Dzyurkevich et al.
2010; Lyra & Mac Low 2012), we first consider the case of a
resistivity that is only a function of position. Such a simplifi-
cation is helpful to understand the complex thermodynamics of
the dead zone before moving to the more realistic case in which
the resistivity is self-consistently calculated as a function of the
temperature using Eq. (8).

4.1. The case of a static interface

At t = 900, model σhot has reached thermal equilibrium. We
then set η = 0 for R < 3.5, and η = 10−3 for R ≥ 3.5, and
restart the simulation. The higher value of η corresponds to a
magnetic Reynolds number Rm ∼ csH/η ∼ 10. It is sufficient
to stabilize the MRI, and as expected, the flow becomes laminar
outward of R = 3.5 in a few orbits. The structure of the flow
after 460 inner orbits (which roughly amounts to one cooling
time at R = 7) is shown in Fig. 5. The left panel shows a snapshot
of the radial magnetic field. The turbulent active region displays
large fluctuations which can easily be identified. The interface
between the active and the dead zone, defined as the location
where the Maxwell stress (or, equivalently, the magnetic field
fluctuations) drops to zero, stands at R = 3.5 until the end of this
static non-ideal simulation.

As soon as the turbulence vanishes, the sharp gradient of az-
imuthal stress at the interface drives a strong radial outflow. As
identified by Dzyurkevich et al. (2010) and Lyra & Mac Low
(2012), we observe the formation of a pressure and a density
maximum near the active/dead interface. In Fig. 6, we present
the mean pressure perturbation we obtained in that simulation.
The growth time scale of that structure is so short that the source
term in the continuity equation (see Sect. 2.1) has no qualita-
tive impact because it acts on the longer time scale τρ. This
feature persists even after we freeze the temperature and use
a locally isothermal equation of state as shown by the black
solid line. We conclude that pressure maxima are robust features
that form at the dead zone inner edge independently of the disk
thermodynamics.

We next turn to the temperature’s radial profile. Because we
expect the dead zone to be laminar, we might assume the tem-
perature to drop to a value near Tmin = 0.05 (see Sect. 2.3).
However, the time averaged temperature radial profile plotted in
Fig. 7 shows this is far from being the case. The temperature
in the bulk of the dead zone levels off at T ∼ 0.3, significantly
above Tmin. This increased temperature cannot be attributed to

Fig. 6. Pressure profile averaged over 200 orbits after t = 900+τcool(R =
7) in σHot case. The black solid line show the pressure profile 200 inner
orbits after freezing the temperature in the domain. The black dashed
line plots the radial temperature profile in the ideal case (i.e. without a
dead zone).

Ohmic heating, since the magnetic energy is extremely small
outward of R = 3.5 (at R = 4, the magnetic energy has dropped
by a factor of 102 compared to R = 3.5, while at R = 5 it has been
reduced by about 103). In contrast, there are significant hydrody-
namic fluctuations in the dead zone, as shown on the right panel
of Fig. 5. For example, density fluctuations typically amount to
δρ/ρ of the order of a few percent at R = 5. The spiral shape of
the perturbation indicate that these perturbations could be den-
sity waves propagating in the dead zone, likely excited at the
dead/active interface. Such a mechanism would be similar to the
excitation of sound waves by the active surface layers observed
in vertically stratified shearing boxes simulations (Fleming &
Stone 2003; Oishi & Mac Low 2009) and also the waves seen
in global simulations such as ours (Lyra & Mac Low 2012) but
performed using a locally isothermal equation of state. However,
as opposed to Lyra & Mac Low (2012), the Reynolds stress as-
sociated with this waves is smaller in the dead zone than in the
active zone, and amounts to α ∼ 10−4. Such a difference is likely
due to the smaller azimuthal extent we use here, as it prevents
the appearance of a vortex (see Sect. 5.1 and Lyra & Mac Low
2012).
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Fig. 7. The radial profile of temperature (solid red line) averaged over
200 orbits after t = 900 + τcool(R = 7R0). The red dashed line describes
the temperature profile from the ideal case and the wave-equilibrium
profile is shown by the plain black line. The black dashed lines show
the threshold value TMRI used in Sect. 4.3 and (5/4)TMRI. The grey area
shows the deviation of temperature at 3 sigmas. The vertical line shows
the active/dead zone interface.

4.2. Wave dissipation in the dead-zone

It is tempting to use Eq. (22) to estimate the temperature that
would result if the wave fluctuations were locally dissipated into
heat (as is the case in the active zone). However, we obtain T ∼
0.1 which significantly underestimates the actual temperature.
This is probably because the density waves we observe in the
dead zone do not dissipate locally. We now explore an alternative
model that describes their effect on the thermodynamic structure
of the dead zone.

We assume that waves propagate adiabatically before dissi-
pating in the form of weak shocks in the dead zone; this assump-
tion is consistent with measured Mach numbers (∼0.1) in the
bulk of our simulated dead zone. A simple model for the weak
shocks, neglecting dispersion, yields a wave heating rate Q+w:

Q+w =
γ(γ + 1)

12
〈P〉

(
δρ

ρ

)3

f , (27)

where f stands for the wave frequency (Ulmschneider 1970;
Charignon & Chièze 2013). The derivation of that expression
is presented in Appendix B. Balancing that heating by the lo-
cal cooling rate 〈ρ〉σT 4 yields an estimate of the temperature’s
radial profile.

σT 4 =
γ + 1

12

(H
R

)2

(RΩ)2

(
δρ

ρ

)3

f , (28)

where the relation between the pressure and the disk scale height
has been used. This expression provides an estimate of the dead-
zone temperature. If one assumes that the waves are excited
around the dead-zone interface, the frequency should be of order
the inverse of the correlation time τc of the turbulent fluctuations
at that location. Such a short period for the waves, much shorter
than the disk cooling time, is consistent with the hypothesis that
these waves behave adiabatically. Local simulations of Fromang
& Papaloizou (2006) suggest τc/Torb ∼ 0.15. Given the units of
the simulations, this means that we should use f ∼ 1. Taking
δρ/ρ ∼ 0.1 and H/R ∼ 0.1, this gives T ∼ 0.25, at R = 5, which
agrees relatively well with the measured value. The agreement

Fig. 8. Turbulent thermal flux profile averaged over 200 inner orbits af-
ter t = 900 + τcool(R = 7) from the σhot run. The central dotted region
locates the percolation region behind active/dead zone interface.

certainly supports the assumption that waves are generated at
the interface.

In order to make the comparison more precise, we plot in
Fig. 7 the radial profile of the temperature, computed using
Eq. (28)3. The agreement with the temperature we measure in
the simulation is more than acceptable in the bulk of the dead
zone. There are however significant deviations at R ≥ 7, i.e. next
to the outer boundary. Associated with these deviations, we also
measured large, but non wave-like values of the quantity δρ/ρ at
that location (see Fig. 5).

In order to confirm that the outer-buffer zone is responsible
for these artefacts, we ran an additional simulation with identical
parameters but with a much wider radial extent. The outer-radial
boundary is located at R = 22, and thus the outer-buffer zone
extends from R = 21.5 to R = 22. The additional simulation
shows that indeed the suspicious temperature bump moves to
the outer boundary again. The temperature in the bulk of the
dead zone, on the other hand, remains unchanged and is in good
agreement with the modelσhot. Further details of this calculation
are given in Appendix C.

In Appendix C we show that the density wave theory can
also account for the density fluctuations as a function of radius.
As waves propagate, their amplitudes decrease, not least because
their energy content is converted into heat. Overall, the good
match we have obtained between the wave properties’ radial pro-
files (both for the temperature and density fluctuations) and the
analytical prediction strongly favour our interpretation that den-
sity waves are emitted at the active/dead zone interface and rule
out any numerical artefacts that might be associated with the do-
main outer boundary.

The effect of the waves can be viewed as a flux of thermal
energy carried outward. Such a thermal flux can be quantified
using Eq. (24) and its radial profile in model σhot is shown in
Fig. 8. It is positive and decreasing in the dead zone which con-
firms that thermal energy is transported from the active zone and
deposited at larger radii. While it is rapidly decreasing with R,
the important point of Fig. 8 is that it remains important in a per-
colation region outward of the dead zone inner edge (located at
R = 3.5). Most of the wave energy that escapes the active region
is transmitted to the dead zone over a percolation length, the size
of the percolation region. We define the percolation region as the
region inside the dead zone where the thermal transport amounts

3 We used the azimuthally and temporally averaged simulation data for
H/R and δρ/ρ when computing the temperature using Eq. (28).
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Fig. 9. Maps of radial magnetic field at different time t = 1600 + t′. t′ is given in inner orbital time.

Fig. 10. Space-time diagrams showing the turbulent activity evolution in the MHD simulation (left panel) and in the mean field model (right panel).
In the case of the MHD simulation, α is averaged over Z and φ. In the case of the mean field model, the different white lines mark the front position
for the additional models described in Sect. 4.3. The solid line represents the case of remnant heating in the dead zone, the dashed line no remnant
heating, and the dotted line the case of constant thermal diffusivity over the whole domain. Note the different vertical scales of the two panels (see
discussion in the text for its origin).

to more that half its value in the active zone. As shown by Fig. 8,
the percolation length l ∼ 0.5 in model σhot, which translates to
about one scale height at that location.

Though the heat flux is greatest within about H of the dead
zone interface, the action of the density waves throughout our
simulated dead zone keeps temperatures significantly higher
than what would be the case in radiative equilibrium. This would
indicate that much of the dead zone in real disks would be hotter
than predicted by global structure models that omit this heat-
ing source. In particular, this should have important implications
for the location of the ice line, amongst other important disk
features.

4.3. The case of a dynamic interface

We now move to the main motivation of this paper. At t = 1600
we restart modelσhot but close the feedback loop between turbu-
lence and temperature. The resistivity η is now given by Eq. (8)
with η0 = 10−3. We set the temperature threshold to the value
TMRI = 0.4, i.e. slightly above the typical temperature in the
dead zone (which is about 0.25 as discussed above). This set-up
ensures that at least half of the radial domain is “bistable”, i.e.
gas at the same radius can support either one of two quasi-steady
stable states, a laminar cold state, and a turbulent hot state.

As seen in Fig. 7, the temperature exceeds TMRI in the region
3.5 ≤ R ≤ 4.5 at restart. Thus, we would naively expect the in-
terface to move to R ∼ 4.5. As shown by snapshots of the radial
magnetic field fluctuations in the (R, φ) plane at three different
times in Fig. 9, indeed the front moves outwards. In doing so,

it retains its coherence. However, as shown by the third panel of
Fig. 9, the turbulent front does not stop at R ∼ 4.5 but moves out-
ward all the way to R ∼ 5.5–6. This is confirmed by the left panel
of Fig. 10, in which a space-time diagram of α indicates that the
front reaches its stagnation radius in a few hundred orbital peri-
ods4. The following questions arise: can we predict the stalling
radius? And can we understand this typical time scale? What can
it tell us about the physical mechanism of front propagation?

Stalling radius: we use the mean field model proposed by Latter
& Balbus (2012) to interpret our results. The front-stalling radius
can be calculated from the requirement that the integrated cool-
ing and heating across the interface balance each other:∫ TA

TDZ

(Q+ − L) dT = 0 (29)

in which TDZ and TA stand for the temperature in the dead zone
and in the active zone respectively. While the cooling part of the
integral is well defined, the heating part Q+ is more uncertain.
It is probably a mixture of turbulent heating (with an effective
α parameter that varies across the front) and wave heating such
as described in Sect. 4.1. For simplicity, we adopt the most naive

4 To check that Eq. (8) is an acceptable simplification of the actual
exponential dependence of η with temperature, we ran an additional
simulation, with the same parameters as for the σhot but using Eq. (7)
for η. We find no difference with our fiducial model: the front propa-
gates equally fast and stops at R 	 5.3, i.e. almost the same radius as
for the σhot case.
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Fig. 11. α profiles averaged over 100 orbits after the fronts have reached their final position (α values are listed on the left axis). Left panel: σhot

simulation which TMRI = 0.46. Middle and right panels: σcold simulation which TMRI = 0.1 and TMRI = 0.13 respectively. The black plain lines
remind the temperature profiles from ideal cases. Black dashed lines show the threshold value TMRI and 5/4TMRI. The temperature values are listed
on the right axis.

approach possible and assume that Q+ is a constant within the
front (equal to 1.5ΩTRφ) as long as the temperature T is larger
than TMRI, and vanishes otherwise. In that situation, we obtain,
similarly to Latter & Balbus (2012) that the stalling radius Rc is
determined by the implicit relation:

TA(Rc) =
5
4

TMRI. (30)

In Fig. 7, we draw two horizontal lines that correspond to T =
TMRI and T = (5/4)TMRI. The condition given by Eq. (30) is
satisfied for R ∼ 5.25 which is very close to the critical radius
actually reached in simulations (see Figs. 9 and the left panel of
Fig. 10).

In order to investigate the robustness of this result, we have
carried a further series of numerical experiments. First, we have
repeated model σhot using a value of TMRI = 0.46 (instead of
TMRI = 0.4). According to Fig. 7, we expect the interface now
to propagate over a smaller distance. As shown by the left hand
side panel of Fig. 11, this is indeed the case: the front stalls at
R ∼ 5 which is precisely the position where T = (5/4)TMRI.

We also computed two analogues of those models with σcold.
This was done as follows: after the σcold ideal MHD simulations
has reached a quasi thermal equilibrium (t = 900), we intro-
duced a static dead zone from R = 3.5 to the outer boundary of
the domain and we restarted this simulation. We waited for ther-
mal equilibrium to close the feedback loop at t = 1600. We used
TMRI = 0.1. A front propagates until the critical radius R ∼ 6.5.
It is as fast as the front of the σhot case. We show in the middle
panel of Fig. 11 that, in accordance with the previous result, the
front stops close to the critical radius predicted by Eq. (30). We
repeated the same experiment using TMRI = 0.13 and show on
the right panel of Fig. 11 that the front stalling radius is again
accounted for by the same equation.

To summarize, the front stops close to the predicted value
in every simulations we performed. This shows that the equi-
librium position of a dead zone inner edge can be predicted as
a function of the disk’s radiative properties and thermal struc-
ture. It is robust, and in particular does not depend on the details
of the turbulent saturation in our simulations (such as the radial
α profile).

Front speed and propagation: the previous result is based on
dynamical systems arguments. A front is static at a given radial
location if the attraction of the active turbulent state balances
the attraction of the quiescent state. However, the argument does
not help us identify the front propagation speed. In order to un-
derstand its dynamics, we ran a set of mean field simulations
akin to the “slaved model” in Latter & Balbus (2012) but us-
ing parameters chosen to be as close as possible to model σhot.

We solve the partial differential equation for the temperature (we
have dropped the overbar here for clarity):

∂T
∂t
= 1.5ΩTRφ − γ(γ − 1)σ

c2
0

(T 4 − T 4
min) +

κT

R
∂

∂R

(
R
∂T
∂R

)
· (31)

To solve that equation, we have used the heating term measured
during the ideal MHD simulation σhot (see Sect. 3). The ther-
mal transport of energy is modeled by a simple diffusive law
that is supposed to account for turbulent transport. As discussed
in Sect. 4.1, the dead zone is heated by waves excited at the
dead/active interface. It is thus highly uncertain (and one of
the purpose of this comparison) whether a diffusive model ad-
equately describes heat transport of this fashion. The value for
κT is chosen so heat diffusion gives the same mean flux of ther-
mal energy as measured in our simulation (shown in Fig. 8). We
have simplified the radial profile in that plot and have assumed
that the thermal flux vanishes outward of the percolation region
but is uniform in the active zone and in the percolation region:

κ =

{
κ0 if R < Rf(t) + Lp

0 otherwise.
(32)

The front location R f (t) is evaluated at each time step. It is the
smallest radius where T < TMRI. As in the MHD simulation, we
used TMRI = 0.4 and Tmin = 0.05. When Lp = 0, we have found
the dead zone inner edge is static regardless of the value of κ0. As
expected, the front displacement requires the active and the dead
zone to be thermally connected. We have thus used a percolation
length Lp = 0.5 and a value of κ0 = 2.5×10−4 in the active part of
the disk which matches the thermal flux at the outer edge of the
percolation region (see Fig. 8). The simulation is initialized with
the same physical configuration as the MHD simulation: a dead
zone extends from R = 3.5 to R = 8 and is in thermal equilib-
rium. As shown on the right panel of Fig. 10, we find that a front
propagates outward. The critical radius Rc 	 5.5−6 is in agree-
ment with the results of the simulation and with the argument
based on energy conservation detailed above. However, there is
clearly a difference in the typical time scale of the propagation:
the front observed in the MHD simulation propagates five time
faster than the front obtained in the mean field simulation.

In order to check the sensitivity of this results to some of the
uncertain aspects of the mean field model, we have run three ad-
ditional mean field simulations similar to that described above.
In these additional models, we change one parameter while
keeping all others fixed. In the first model, we have changed the
minimum value of the temperature Tmin = 0.3 (this is a crude
way to model the effect of the dead zone heating at long dis-
tances from the interface). In the second model, we have used
κ0 = 5 × 10−4. In the last model, we have used Lp = +∞,
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Fig. 12. Vortensity ((V −Vinit)/Vinit) map in the disk (R, φ) plane. The left panel shows the midplane vortensity in the σhot simulation with the small
azimuthal extend. The right panel shows the midplane vortensity in the σhot simulation which has φ ∈ [0, π/2].

thereby extending turbulent heat transport to the entire radial ex-
tent of the simulation. The results are shown on the right panel
of Fig. 10: in all cases, the front propagates outward slower than
observed in the MHD simulation.

A slow front velocity is thus a generic feature of the diffusive
approximation to heat transport. But conversely, it reveals that
the fast fronts mediated by real MRI turbulence are controlled
by non-diffusive heat transport. This in turn strongly suggests
that the front moves forward via the action of fast non-local den-
sity wave heating, and not via the slow local turbulent motions
of the MRI near the interface, as originally proposed by Latter &
Balbus (2012). The transport via density waves occurs at a veloc-
ity of order cs. Thus, it takes a time Δtwaves ∼ H/cs 	 τorb/2π for
thermal energy to be transported through the percolation length
Lp ∼ H. This is shorter than the typical diffusion time over the
same distance Δtdiff = H2/κ > 100/2πτorb at R = 3.5, for the
values of κ used in Eq. (31).

5. Instability and structure formation

Other issues that can be explored through our simulations are in-
stability and structure formation at the dead/active zone interface
and throughout the dead-zone. The extremum in pressure at the
interface is likely to give rise to a vortex (or Rossby wave) in-
stability (Lovelace et al. 1999; Varnière & Tagger 2006; Meheut
et al. 2012). On the other hand, the interface will control both the
midplane temperature and density structure throughout the dead
zone; it hence determines the magnitude of the squared radial
Brunt-Väisälä frequency 〈NR〉. The size and sign of this impor-
tant disk property is key to the emergence of the subcritical baro-
clinic instability and resistive double-diffusive instability in the
dead zone (Lesur & Papaloizou 2010; Latter et al. 2010; Klahr
& Bodenheimer 2003; Petersen et al. 2007b,a). In this final sec-
tion we briefly discuss these instabilities, leaving their detailed
numerical analysis for a future paper.

5.1. Rossby wave instability

The Rossby wave instability has been studied recently by Lyra
& Mac Low (2012) with MHD simulations that use a locally
isothermal equation of state and a static dead zone. Vortex for-
mation mediated by the Rossby wave instability was reported: a

pressure bump forms at the interface which then triggers the
formation of a vortex. It is natural to wonder how these re-
sults are modified when better account is made of the gas
thermodynamics.

In our simulations of a static dead zone (Sect. 4.1), we also
find that pressure maxima form. Even with a T dependent η,
the bumps survive as the interface travels to its stalling radius.
Moreover, the amplitude of the pressure bump is not modified
compared to those observed in simulations of static dead zones.
On account of the reduced azimuthal extend of our domains, no
large-scale vortices formed. (The reduced azimuth was chosen
so as to minimize the computational cost of our simulations.) In
order to observe the development of the Rossby wave instabil-
ity we performed one run identical to the σhot simulation except
we extended the azimuthal domain: φ = [0, π/2]. The η was a
given function of position as in Sect. 4.1, thus the dead/active
zone interface was fixed. The right panel of Fig. 12 shows a
late snapshot of this run, in which a vortex has appeared simi-
lar to those observed by Lyra & Mac Low (2012). It survives for
many dynamical time scales. Consistent with the results of Lyra
& Mac Low (2012), we measure α 	 0.01 in the dead zone. This
is two orders of magnitude larger than in the σhot model. The
dead zone is consequently much hotter in this simulation, which
means the vortex plays a crucial role in both accretion and the
thermal physics of the dead zone. Simulations are currently un-
derway to investigate the robustness of this results and the vor-
tex survival when we close the feedback loop (setting η = η(T )).
This will be the focus of a future publication.

5.2. Subcritical baroclinic and double-diffusive instabilities

Another potentially interesting feature of the interface is the
strong entropy gradient that might develop near the interface.
It could also impact on the stability of the flow on shorter scales,
giving rise potentially to the baroclinic instability (Lesur &
Papaloizou 2010; Raettig et al. 2013) or to the double-diffusive
instability (Latter et al. 2010). Both instabilities are sensitive to
the sign and magnitude of the entropy gradient, which is best
quantified by the Brunt-Väisälä frequency NR:

〈NR〉2 = − 1
γ〈ρ〉

∂〈P〉
∂R

∂

∂R
ln
〈P〉
〈ρ〉γ · (33)
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In general, we find that 〈NR〉2 takes positive values of or-
der 10−20% of the angular frequency squared. Negative val-
ues sometimes appear localized next to the interface. Positive
values rule out both the baroclinic instability and the double-
diffusive instability, and indeed, we see neither in the simula-
tions. However, we caution against any premature conclusions
about the prevalence of these instabilities in real disk. First, the
source term in the continuity equation might alter the density
radial profile and, consequently, the Brunt-Väisälä frequency in
the dead zone. Second, it is well known that these instabilities
are sensitive to microscopic heat diffusion. We do not include
such a process explicitly in our simulations. Instead, there is nu-
merical diffusion of heat by the grid, the nature of which may
be unphysical. Both reasons preclude definite conclusions at this
stage. Dedicated and controlled simulations are needed to assess
the existence and nonlinear development of these instabilities in
the dead zone.

6. Conclusion

In this paper, we have performed non-ideal MHD simulations re-
laxing the locally isothermal equation of state commonly used.
We have shown the active zone strongly influences the thermo-
dynamic structure of the dead zone via density waves gener-
ated at the interface. These waves transport thermal energy from
the interface deep into the dead zone, providing the dominant
heating source in its inner 20H. As a consequence, the temper-
ature never reaches the very low level set by irradiation. In the
outer regions of the dead-zone, however, temperatures will be set
by the starlight reprocessed by the disk’s upper layers (Chiang
& Goldreich 1997; D’Alessio et al. 1998). It is because the
wave generation and dissipation is located at the midplane that
waves should so strongly influence the thermodynamic struc-
ture of the dead zone. Note also that density waves generated
by the dead/active zone edge are stronger than those excited by
the warm turbulent upper layers of the disk as seen in stratified
shearing box (Fleming & Stone 2003).

Another result of this paper concerns the dynamical be-
haviour of the dead-zone inner edge. We find the active/dead
interface propagates over several H (i.e. a few tens of an au) in
a few hundreds orbits. All the simulated MRI fronts reached a
final position that matched the prediction made by a mean field
approach (Latter & Balbus 2012), which appeals to dynamical
systems arguments. As the gas here is bistable, it can fall into
either a dead or active state; the front stalls at the location where
the nonlinear attraction of the active and dead states are in bal-
ance. In contrast, the mean-field model fails to correctly predict
the velocity of the simulated fronts. We find that a diffusive de-
scription of the radial energy flux yields front speeds that are
too slow. In fact, the simulations show that fronts move rapidly
via the efficient transport of energy by density waves across the
interface. Fronts do not propagate via the action of the slower
MRI-turbulent motions.

In addition, we have used our simulations to probe the ther-
mal properties of turbulent PP disks. We have constrained the
turbulent Prandtl number of the flow to be of order unity. We
have also quantified the turbulent fluctuations of temperature:
they are typically of order a few percent of the local temperature.
However, their origin – adiabatic compression vs. reconnection –
is difficult to assess using global simulations. In-depth dedicated
non-isothermal shearing-box simulations will help to distinguish
the dominant cause of the temperature fluctuations. Finally, we
have made a first attempt to estimate the radial profile of the ra-
dial Brunt-Väisälä frequency NR in the dead zone. This quantity

is the key ingredient for the development of both the subcritical
baroclinic instability and the resistive double-diffusive instabil-
ity. We find that NR can take both positive and negative values
at different radii; but we caution that these preliminary results
require more testing with dedicated simulations.

Several improvements are possible and are the basis of fu-
ture work. As discussed in Sect. 5, one obvious extension is to
investigate the fate and properties of emergent vortices at the
dead-zone inner edge. This can be undertaken with computa-
tional domains of a wider azimuthal extent. Such simulations
may investigate the role of large-scale vortices, and the waves
they generate, on the thermodynamic structure of the dead-zone.
They can also observe any feedback of the thermodynamics on
vortex production and evolution. We also plan to investigate
other magnetic field configurations. For example, vertical mag-
netic fields might disturb the picture presented here because of
the vigorous channel modes that might develop in the marginal
gas at the dead-zone edge (Latter et al. 2010). Such an environ-
ment may militate against the development of pressure bumps
and/or vortices.

Our results, employing the cylindrical approximation, repre-
sents a thin region around the PP disk midplane. These results
must be extended so that the vertical structure of the disk is in-
corporated. An urgent question to be addressed is the location of
density wave dissipation in such global models. Waves can re-
fract in thermally stratified disks and deposit their energy at the
midplane or in the upper layers depending on the type of wave
and the stratification (Bate et al. 2002, and references therein).
In particular, Bate et al. demonstrate that large-scale axisymet-
ric (and low m) density waves (fe modes) propagate upwards, as
well as radially, until they reach the upper layers of the disk, at
which point they transform into surface gravity waves and prop-
agate along the disk surface. But this is only shown for vertically
polytropic disks in which the temperature decreases with z and
for waves with relatively low initial amplitudes. In PP-disk dead
zones we expect the opposite to be the case, and it is uncertain
how density waves behave in this different environment.

Finally, in this work we have increased the realism of one
aspect of the physical problem, the dynamics of the turbulence,
(via direct MHD simulations of the MRI), but have greatly
simplified the physics of radiative cooling. As a result, the
simulations presented here are still highly idealized and several
improvements should be the focus of future investigations. For
example, our approach completely neglects the fact that dust
sublimates when the temperature exceeds ∼1500 K. As a re-
sult, the opacity drops by up to four orders of magnitude with
potentially dramatic consequences for the disk energy budget
(leading to a increase of the cooling rate Q− of the same or-
der, as opposed to our assumption of a constant σ). The radial
temperature profile of our simulations indicates that the sublima-
tion radius should be located 3−5 disk scaleheights away from
the turbulent front. Given that the dominant dynamical process
we describe here is mediated by density waves characterized by
a fast time scale (compared to the turbulent and radiative time
scales), we do not expect the front dynamics to be completely
altered. Nevertheless, the relative proximity between the subli-
mation radius and the turbulent front is still likely to introduce
quantitative changes. Clearly, the thermodynamics of that re-
gion is more intricate than the simple idealized treatment we use
in this work. This further highlights the need, in future work,
for a more realistic treatment of radiative cooling (for example
using the flux limited diffusion approximation with appropriate
opacities, in combination with vertical stratification. Such simu-
lations will supersede our heuristic cooling law with its constant
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σ parameter. They are an enormous challenge, but will be essen-
tial to test the robustness of the basic results we present here.
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Appendix A: Opacity law in the buffer zones

Here, we give the functional form of σ we used to prevent the
temperature to drop at the inner edge of the simulation.

σ =

⎧⎪⎪⎨⎪⎪⎩σ0

(
1 − R

2R0

)−4
if R < 2R0

σ0 otherwise,
(A.1)

where σ0 stands for σhot or σcold depending on the model. The
value of σ is kept constant in the outer buffer.

Appendix B: Wave heating

The large-scale density waves witnessed in our simulations de-
velop weak-shock profiles, which are controlled by a com-
petition between nonlinear steepening and wave dispersion.
Keplerian shear may also play a role as it “winds up” the spi-
ral and decreases the radial wavelength; though by the time this
is important most of the wave energy has already dissipated.

A crude model that omits the strong dispersion inherent in
our large-scale density waves nevertheless can successfully ac-
count for the energy dissipation in the simulations. In such a
model the density wave profiles are dominated by steepening
and can thus be approximated by a sawtooth shape propagating
at the sound speed velocity cs (see Fig. B.1). The evolution of
the amplitude of such isentropic waves is given by Landau &
Lifshitz (1959). In the wave frame of reference, the gas velocity
at the shock crest evolves over time as the shock wave dissipates:

v(t) =
v0

1 + (γ+1)
2λ0
v0t
, (B.1)

where v0 is the excitation amplitude of the wave and λ0 its wave-
length, assumed to be conserved over the wave propagation. The
mean mechanical energy embodied in one wave period at time t
is given by an integral over radius:

Et =
ρ

λ0

∫ λ0/2

−λ0/2

(
R
λ/2
− 1

)2

v(t)2dR =
1

12
ρv(t)2 (B.2)

where λ is the wavelength at time t. We next compute the me-
chanical energy radial flux through a unit surface:

FR = Etcs =
ρv(t)2cs

12
=
γP0cs

12

(
δρ

ρ

)2

(B.3)

where δρ is the difference between the shocked and pre-shocked
density. To compute the last equality, we have used the fact that,
under the weak shock approximation, the wave evolution is isen-
tropic and thus δρ/ρ = v/cs (Landau & Lifshitz 1959). The wave
energy and its flux are related through the following conserva-
tion law:

∂Et

∂t
+

1
R
∂RFR

∂R
= 0, (B.4)

while the dissipation rate of the wave is expressed using the me-
chanical energy conversion into heat per unit time:

D =
∂Et

∂t
=

1
12
ρv
∂v

∂t
=
γ(γ + 1)

12
P0

(
δρ

ρ

)3

f (B.5)

where f = cs/λ0 is the wave frequency. We used the density fluc-
tuations in our simulations as the difference between the shocked
and pre-shocked density to estimate the local wave heating in
Eq. (27).

Fig. B.1. Velocity fluctuations profile: series of “teeth” modelling the
wave shocks.

In addition to that estimate, the thermal energy flux diver-
gence can be used, through Eq. (B.4), as a way to estimate the
radial variation of the wave amplitude:

1
R
∂RFR

∂R
=

1
R
∂

∂R

⎡⎢⎢⎢⎢⎢⎣γP0csR
12

(
δρ

ρ

)2⎤⎥⎥⎥⎥⎥⎦ (B.6)

=
γP0cs

12

⎡⎢⎢⎢⎢⎢⎣
(
δρ

ρ

)2 1
P0

∂P0

∂R
+

(
δρ

ρ

)2 1
cs

∂cs

∂R

+ 2

(
δρ

ρ

)
∂

∂R

(
δρ

ρ

)
+

1
R

(
δρ

ρ

2)]
·

This must equal the energy rate released as thermal heat given
by −D. Combining the last two expression thus provides an ex-
pression for the radial decay of the wave amplitude:

∂

∂R

(
δρ

ρ

)
=

(
δρ

2ρ

) (
1
R
− 1

P0

∂P0

∂R
− 1

P0

∂cs

∂R
− γ + 1

cs

δρ

ρ
f

)
. (B.7)

The first term is the geometrical term that described the wave di-
lution as it propagates cylindrically. The second and third terms
are specific to waves propagating in stratified media where mean
pressure and sound speed are not uniform. Finally, the last term
of the right hand side of this equation reflects the wave damping
by shocks. In our simulations, all four terms are of comparable
importance.

Appendix C: Model with an extended radial extent

In this section of the appendix we describe the results obtained
in the radially extended σhot run. We initiated MHD turbulence
in that model in the absence of any dissipative term until the
region between R = 1 and R = 3.5 has reached thermal equilib-
rium (t = 900). At that point, we set η0 = 10−3 for R ≥ 3.5. As
expected, a dead zone quickly appeared at those radii. Because
of the prohibitic computational coast of that simulation (there
are 960 cells in the radial direction!), we were not able to run
that model until thermal equilibrium is established at all radii.
Indeed, the cooling time becomes very long at large radius.
Instead, we followed the time evolution of the temperature at
nine locations in the dead zone. Due to the absence of turbulent
heating, we found that the temperature slowly decreases with
time. Assuming this decrease is due to a combination of cooling
(resulting from the cooling function) and wave heating, it can be
modelled using the following differential equation

∂T
∂t
= −γ(γ − 1)σhot

c2
0

T 4 + Q+w. (C.1)
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where the term Q+w accounts for the (unknown) wave heating. We
fitted the time evolution of the temperature during the duration
of the simulation (∼1000 orbits) in order to obtain a numerical
estimate of Q+w at those nine locations. An example of that fit
is provided in the insert of Fig. C.1. Using these value, we can
obtain an estimate for the equilibrium temperature in the dead
zone, as shown in Fig. C.1. The comparison with the estimate
of Eq. (28) provided by the black line is excellent everywhere in
the dead zone.

As a sanity check, we test here if the wave amplitude de-
creases as their energy content is converted into heat. We show
in Fig. C.2 the mean density fluctuation profile obtained in the
extended σhot simulation. It exhibits two maxima close to the
dead zone inner edge located at R(g,1) and R(g,2) and the ampli-
tude decay with radius. The reason why we see two such max-
ima is not clear but might be due to waves originated at the
dead/active interface as well as waves excited as the location
of the pressure maximum. In any case, we found that modelling
the amplitude of fluctuations as the signature of a combination
of two waves generated at R(g,i) gives acceptable results. We
use an explicit scheme to numerically integrate Eq. (B.7) from
the wave generation locations R(g,i). The two waves are excited
with the amplitude measured at R = R(g,i) with the frequency
1/ f = 0.15τcool(R(g,i)). We plot the solution thus obtained in
Fig. C.2. The good agreement between the analytical solution
and the profile gives a final confirmation that waves control the
dead zone thermodynamics.

Fig. C.1. Temperature profile 〈T 〉 averaged over 200 orbits after t =
900 + τcool(R = 7) obtained in the extended σhot case. The black line
show wave-equilibrium temperature profile. Red dots show the extrap-
olated temperature for 7 radii. The inserted frame show in red the tem-
perature evolution T after t = 900 at R = 9.8R0 in the extended σhot

simulation. On this subplot, the black plain line shows the accurate fit
and the black dashed lines show the two extreme fits used to determine
the measurement error.

Fig. C.2. Profile of density standard deviation 〈δρ〉 averaged over
200 inner orbits after t = 900 + τcool(R = 7) in the extended σhot case.
The black plain line shows the density fluctuation amplitude deducted
from the two waves model. The excitation locations used in the two
waves model are shown by blue dashed lines.

Appendix D: Simulation with a higher resolution

Here we present a brief test of the impact of spatial resolution on
our results. We have restarted the σhot run from the thermal equi-
librium of the ideal MHD case (t = 600) and the static dead zone
case (t = 900), with twice as many cells in each direction. The
resolution is (640, 160, 160). We show the averaged temperature
profile of both cases in Fig. D.1. Because of the large computa-
tional cost, each models are integrated for 200 orbits and time
averages are only performed over the last 100 orbits. The tem-
perature profiles of each case are very close to those obtained
with the fiducial runs. We conclude that resolution as little im-
pact on our results.

Fig. D.1. Profiles of temperature 〈T 〉 averaged over 100 inner orbits af-
ter t = 700 and t = 1000 in the highly resolved σhot case (plain lines).
The dashed lines remind the temperature profiles obtained with the low
resolution run. For both resolutions, the temperature in the ideal case is
shown by a red line and the temperature in the static dead zone case is
shown by a black line.
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