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émanant des établissements d’enseignement et de
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Optimal sampled-data control, and generalizations on time

scales

Löıc Bourdin∗ Emmanuel Trélat†

Abstract

In this paper, we derive a version of the Pontryagin maximum principle for general finite-
dimensional nonlinear optimal sampled-data control problems. Our framework is actually
much more general, and we treat optimal control problems for which the state variable evolves
on a given time scale (arbitrary non-empty closed subset of R), and the control variable evolves
on a smaller time scale. Sampled-data systems are then a particular case. Our proof is based on
the construction of appropriate needle-like variations and on the Ekeland variational principle.

Keywords: optimal control; sampled-data; Pontryagin maximum principle; time scale.

AMS Classification: 49J15; 93C57; 34N99; 39A12.

1 Introduction

Optimal control theory is concerned with the analysis of controlled dynamical systems, where one
aims at steering such a system from a given configuration to some desired target by minimizing
some criterion. The Pontryagin maximum principle (in short, PMP), established at the end of the
50’s for general finite-dimensional nonlinear continuous-time dynamics (see [46], and see [30] for
the history of this discovery), is certainly the milestone of the classical optimal control theory. It
provides a first-order necessary condition for optimality, by asserting that any optimal trajectory
must be the projection of an extremal. The PMP then reduces the search of optimal trajectories
to a boundary value problem posed on extremals. Optimal control theory, and in particular the
PMP, has an immense field of applications in various domains, and it is not our aim here to list
them.

We speak of a purely continuous-time optimal control problem, when both the state q and the
control u evolve continuously in time, and the control system under consideration has the form

q̇(t) = f(t, q(t), u(t)), for a.e. t ∈ R+,

where q(t) ∈ Rn and u(t) ∈ Ω ⊂ Rm. Such models assume that the control is permanent, that
is, the value of u(t) can be chosen at each time t ∈ R+. We refer the reader to textbooks on
continuous optimal control theory such as [4, 13, 14, 18, 20, 21, 33, 42, 43, 46, 47, 49, 50] for many
examples of theoretical or practical applications.

∗Université de Limoges, Institut de recherche XLIM, Département de Mathématiques et d’Informatique. UMR
CNRS 7252. Limoges, France (loic.bourdin@unilim.fr).
†Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut

Universitaire de France, F-75005, Paris, France (emmanuel.trelat@upmc.fr).
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We speak of a purely discrete-time optimal control problem, when both the state q and the
control u evolve in a discrete way in time, and the control system under consideration has the form

qk+1 − qk = f(k, qk, uk), k ∈ N,

where qk ∈ Rn and uk ∈ Ω ⊂ Rm. As in the continuous case, such models assume that the
control is permanent, that is, the value of uk can be chosen at each time k ∈ N. A version of the
PMP for such discrete-time control systems has been established in [32, 39, 41] under appropriate
convexity assumptions. The considerable development of the discrete-time control theory was
in particular motivated by the need of considering digital systems or discrete approximations in
numerical simulations of differential control systems (see the textbooks [12, 24, 45, 49]). It can
be noted that some early works devoted to the discrete-time PMP (like [27]) are mathematically
incorrect. Some counterexamples were provided in [12] (see also [45]), showing that, as is now well
known, the exact analogous of the continuous-time PMP does not hold at the discrete level. More
precisely, the maximization condition of the continuous-time PMP cannot be expected to hold in
general in the discrete-time case. Nevertheless, a weaker condition can be derived, in terms of
nonpositive gradient condition (see [12, Theorem 42.1]).

We speak of an optimal sampled-data control problem, when the state q evolves continuously
in time, whereas the control u evolves in a discrete way in time. This hybrid situation is often
considered in practice for problems in which the evolution of the state is very quick (and thus
can be considered continuous) with respect to that of the control. We often speak, in that case,
of digital control. This refers to a situation where, due for instance to hardware limitations or to
technical difficulties, the value u(t) of the control can be chosen only at times t = kT , where T > 0
is fixed and k ∈ N. This means that, once the value u(kT ) is fixed, u(t) remains constant over the
time interval [kT, (k + 1)T ). Hence the trajectory q evolves according to

q̇(t) = f(t, q(t), u(kT )), for a.e. t ∈ [kT, (k + 1)T ), k ∈ N.

In other words, this sample-and-hold procedure consists of “freezing” the value of u at each con-
trolling time t = kT on the corresponding sampling time interval [kT, (k+ 1)T ), where T is called
the sampling period. In this situation, the control of the system is clearly nonpermanent.

To the best of our knowledge, the classical optimal control theory does not treat general nonlin-
ear optimal sampled-data control problems, but concerns either purely continuous-time, or purely
discrete-time optimal control problems. It is one of our objectives to derive, in this paper, a PMP
which can be applied to general nonlinear optimal sampled-data control problems.

Actually, we will be able to establish a PMP in the much more general framework of time
scales, which unifies and extends continuous-time and discrete-time issues. But, before coming to
that point, we feel that it is of interest to enunciate a PMP in the particular case of sampled-data
systems and where the set Ω of pointwise constraints on the controls is convex.

PMP for optimal sampled-data control problems and Ω convex. Let n, m and j be
nonzero integers. Let T > 0 be an arbitrary sampling period. In what follows, for any real number
t, we denote by E(t) the integer part of t, defined as the unique integer such that E(t) ≤ t < E(t)+1.
Note that k = E(t/T ) whenever kT ≤ t < (k + 1)T . We consider the general nonlinear optimal
sampled-data control problem

(OSDCP)
R+

NT


min

∫ tf

0

f0(τ, q(τ), u(k(τ)T )) dτ, with k(τ) = E(τ/T ),

q̇(t) = f(t, q(t), u(k(t)T )), with k(t) = E(t/T ),

u(kT ) ∈ Ω,

g(q(0), q(tf )) ∈ S.
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Here, f : R×Rn ×Rm → Rn and f0 : R×Rn ×Rm → R are continuous, and of class C1 in (q, u),
g : Rn×Rn → Rj is of class C1, and Ω (resp., S) is a non-empty closed convex subset of Rm (resp.,
of Rj). The final time tf ≥ 0 can be fixed or not.

Note that, under appropriate (usual) compactness and convexity assumptions, the optimal

control problem (OSDCP)
R+

NT has at least one solution (see Theorem 2 in Section 2.2).
Recall that g is said to be submersive at a point (q1, q2) ∈ Rn × Rn if the differential of g at

this point is surjective. We define the Hamiltonian H : R× Rn × Rn × R× Rm → R, as usual, by
H(t, q, p, p0, u) = 〈p, f(t, q, u)〉Rn + p0f0(t, q, u).

Theorem 1 (Pontryagin maximum principle for (OSDCP)
R+

NT ). If a trajectory q∗, defined on

[0, t∗f ] and associated with a sampled-data control u∗, is an optimal solution of (OSDCP)
R+

NT , then

there exists a nontrivial couple (p, p0), where p : [0, t∗f ]→ Rn is an absolutely continuous mapping

(called adjoint vector) and p0 ≤ 0, such that the following conditions hold:

• Extremal equations:

q̇∗(t) =
∂H

∂p
(t, q∗(t), p(t), p0, u∗(k(t)T )), ṗ(t) = −∂H

∂q
(t, q∗(t), p(t), p0, u∗(k(t)T )),

for almost every t ∈ [0, t∗f ), with k(t) = E(t/T ).

• Maximization condition:
For every controlling time kT ∈ [0, t∗f ) such that (k + 1)T ≤ t∗f , we have〈∫ (k+1)T

kT

∂H

∂u
(τ, q∗(τ), p(τ), p0, u∗(kT )) dτ , y − u∗(kT )

〉
Rm
≤ 0, (1)

for every y ∈ Ω. In the case where kT ∈ [0, t∗f ) with (k + 1)T > t∗f , the above maximization
condition is still valid provided (k + 1)T is replaced with t∗f .

• Transversality conditions on the adjoint vector:
If g is submersive at (q∗(0), q∗(t∗f )), then the nontrivial couple (p, p0) can be selected to satisfy

p(0) = −
(
∂g

∂q1
(q∗(0), q∗(t∗f ))

)>
ψ, p(t∗f ) =

(
∂g

∂q2
(q∗(0), q∗(t∗f ))

)>
ψ,

where −ψ belongs to the orthogonal of S at the point g(q∗(0), q∗(t∗f )) ∈ S.

• Transversality condition on the final time:

If the final time is left free in the optimal control problem (OSDCP)
R+

NT , if t∗f > 0 and if f

and f0 are of class C1 with respect to t in a neighborhood of t∗f , then the nontrivial couple

(p, p0) can be moreover selected to satisfy

H(t∗f , q
∗(t∗f ), p(t∗f ), p0, u∗(k∗fT )) = 0,

where k∗f = E(t∗f/T ) whenever t∗f /∈ NT , and k∗f = E(t∗f/T )− 1 whenever t∗f ∈ NT .

Note that the only difference with the usual statement of the PMP for purely continuous-
time optimal control problems is in the maximization condition. Here, for sampled-data control
systems, the usual pointwise maximization condition of the Hamiltonian is replaced with the in-
equality (1). This is not a surprise, because already in the purely discrete case, as mentioned
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earlier, the pointwise maximization condition fails to be true in general, and must be replaced with
a weaker condition.

The condition (1), which is satisfied for every y ∈ Ω, gives a necessary condition allowing to
compute u∗(kT ) in general, and this, for all controlling times kT ∈ [0, t∗f ). We will provide in
Section 3.1 a simple optimal consumption problem with sampled-data control, and show how these
computations can be done in a simple way.

Note that the optimal sampled-data control problem (OSDCP)
R+

NT can of course be seen as
a finite-dimensional optimization problem where the unknowns are u∗(kT ), with k ∈ N such
that kT ∈ [0, t∗f ). The same remark holds, by the way, for purely discrete-time optimal control
problems. One could then apply classical Lagrange multiplier (or KKT) rules to such optimization
problems with constraints (numerically, this leads to direct methods). The Pontryagin maximum
principle is a far-reaching version of the Lagrange multiplier rule, yielding more precise information
and reducing the initial optimal control problem to a shooting problem (see, e.g., [51] for such a
discussion).

Extension to the time scale framework. In this paper, we actually establish a version of
Theorem 1 in a much more general framework, allowing for example to study sampled-data control
systems where the control can be permanent on a first time interval, then sampled on a finite set,
then permanent again, etc. More precisely, Theorem 1 can be extended to a general framework
in which the set of controlling times is not NT but some arbitrary non-empty closed subset of R
(i.e., a time scale), and also the state may evolve on another time scale. We will state a PMP for
such general systems in Section 2.3 (see Theorem 3). Since such systems, where we have two time
scales (one for the state and one for the control), can be viewed as a generalization of sampled-data
control systems, we will refer to them as sampled-data control systems on time scales.

Let us first recall and motivate the notion of time scale. The time scale theory was introduced
in [34] in order to unify discrete and continuous analysis. By definition, a time scale T is an
arbitrary non-empty closed subset of R, and a dynamical system is said to be posed on the time
scale T whenever the time variable evolves along this set T. The time scale theory aims at closing
the gap between continuous and discrete cases, and allows one to treat general processes involving
both continuous-time and discrete-time variables. The purely continuous-time case corresponds to
T = R+ and the purely discrete-time case corresponds to T = N. But a time scale can be much
more general (see, e.g., [29, 44] for a study of a seasonally breeding population whose generations
do not overlap, and see [6] for applications to economics), and can even be a Cantor set. Many
notions of standard calculus have been extended to the time scale framework, and we refer the
reader to [1, 2, 10, 11] for details on that theory.

The theory of the calculus of variations on time scales, initiated in [8], has been well studied
in the existing literature (see, e.g., [7, 9, 17, 28, 35, 38]). In [36, 37], the authors establish a
weak version of the PMP (with a nonpositive gradient condition) for control systems defined on
general time scales. In [16], we derived a strong version of the PMP, in a very general time scale
setting, encompassing both the purely continuous-time PMP (with a maximization condition) and
the purely discrete-time PMP (with a nonpositive gradient condition).

All these works are concerned with control systems defined on general time scales with per-
manent control. The main objective of the present paper is to handle control systems defined on
general time scales with nonpermanent control, that we refer to as sampled-data control systems
on time scales, and for which we assume that the state and the control are allowed to evolve on
different time scales (the time scale of the control being a subset of the time scale of the state).
This framework is the natural extension of the classical sampled-data setting, and allows to treat
simultaneously many sampling-data control situations.

Our main result is a PMP for general finite-dimensional nonlinear optimal sampled-data control
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problems on time scales. Note that our result will be derived without any convexity assumption
on the set Ω of pointwise constraints on the controls. Our proof is based on the construction
of appropriate needle-like variations and on the Ekeland variational principle. In the case of a
permanent control, our statement encompasses the time scale version of the PMP obtained in [16],
and a fortiori it also encompasses the classical continuous and discrete versions of the PMP.

Organization of the paper. In Section 2, after having recalled several basic facts in time scale
calculus, we define a general nonlinear optimal sampled-data control problem defined on time
scales, and we state a Pontryagin maximum principle (Theorem 3) for such problems. Section 3
is devoted to some applications of Theorem 3 and further comments. Section 4 is devoted to the
proof of Theorem 3.

2 Main result

Let T be a time scale, that is, an arbitrary non-empty closed subset of R. Without loss of generality,
we assume that T is bounded below, denoting by a = minT, and unbounded above.1 Throughout
the paper, T will be the time scale on which the state of the control system evolves.

We start the section by recalling some useful notations and basic results of time scale calculus,
in particular the notion of Lebesgue ∆-measure and of absolutely continuous function within the
time scale setting. The reader already acquainted with time scale calculus may jump directly to
Section 2.2.

2.1 Preliminaries on time scale calculus

The forward jump operator σ : T → T is defined by σ(t) = inf{s ∈ T | s > t} for every t ∈ T. A
point t ∈ T is said to be right-scattered whenever σ(t) > t. A point t ∈ T is said to be right-dense
whenever σ(t) = t. We denote by RS the set of all right-scattered points of T, and by RD the set
of all right-dense points of T. Note that RS is at most countable (see [23, Lemma 3.1]) and that
RD is the complement of RS in T. The graininess function µ : T→ R+ is defined by µ(t) = σ(t)− t
for every t ∈ T.

For every subset A of R, we denote by AT = A ∩ T. An interval of T is defined by IT where I
is an interval of R. For every b ∈ T\{a} and every s ∈ [a, b)T ∩ RD, we set

Vs,b = {β ≥ 0 | s+ β ∈ [s, b]T}. (2)

Note that 0 is not isolated in Vs,b.

∆-differentiability. Let n ∈ N∗. The notations ‖·‖Rn and 〈·, ·〉Rn respectively stand for the usual
Euclidean norm and scalar product of Rn. A function q : T→ Rn is said to be ∆-differentiable at
t ∈ T if the limit

q∆(t) = lim
s→t
s∈T

qσ(t)− q(s)
σ(t)− s

exists in Rn, where qσ = q ◦ σ. Recall that, if t ∈ RD, then q is ∆-differentiable at t if and only if

the limit of q(t)−q(s)
t−s as s→ t, s ∈ T, exists; in that case it is equal to q∆(t). If t ∈ RS and if q is

continuous at t, then q is ∆-differentiable at t, and q∆(t) = qσ(t)−q(t)
µ(t) (see [10]).

1In this paper we only work on a bounded subinterval of type [a, b] ∩ T with a, b ∈ T. It is not restrictive to
assume that a = minT and that T is unbounded above. On the other hand, these two assumptions widely simplify
the notations introduced in Section 2.1 (otherwise we would have, in all further statements, to distinguish between
points of T\{maxT} and maxT).
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If q, q′ : T → Rn are both ∆-differentiable at t ∈ T, then the scalar product 〈q, q′〉Rn is
∆-differentiable at t and

〈q, q′〉∆Rn(t) = 〈q∆(t), q′σ(t)〉Rn + 〈q(t), q′∆(t)〉Rn = 〈q∆(t), q′(t)〉Rn + 〈qσ(t), q′∆(t)〉Rn . (3)

These equalities are usually called Leibniz formulas (see [10, Theorem 1.20]).

Lebesgue ∆-measure and Lebesgue ∆-integrability. Let µ∆ be the Lebesgue ∆-measure
on T defined in terms of Carathéodory extension in [11, Chapter 5]. We also refer the reader to
[3, 5, 23, 31] for more details on the µ∆-measure theory. For all (c, d) ∈ T2 such that c ≤ d, one
has µ∆([c, d)T) = d− c. Recall that A ⊂ T is a µ∆-measurable set of T if and only if A is an usual
µL-measurable set of R, where µL denotes the usual Lebesgue measure (see [23, Proposition 3.1]).
Moreover, if A ⊂ T, then

µ∆(A) = µL(A) +
∑

r∈A∩RS

µ(r).

Let A ⊂ T. A property is said to hold ∆-almost everywhere (in short, ∆-a.e.) on A if it holds
for every t ∈ A\A′, where A′ ⊂ A is some µ∆-measurable subset of T satisfying µ∆(A′) = 0. In
particular, since µ∆({r}) = µ(r) > 0 for every r ∈ RS, we conclude that, if a property holds ∆-a.e.
on A, then it holds for every r ∈ A ∩ RS.

Similarly, if A ⊂ T is such that µ∆(A) = 0, then A ⊂ RD.
Let n ∈ N∗ and let A ⊂ T be a µ∆-measurable subset of T. Consider a function q defined

∆-a.e. on A with values in Rn. Let Ã = A∪ (r, σ(r))r∈A∩RS, and let q̃ be the extension of q defined
µL-a.e. on Ã by q̃(t) = q(t) whenever t ∈ A, and by q̃(t) = q(r) whenever t ∈ (r, σ(r)), for every
r ∈ A ∩ RS. Recall that q is µ∆-measurable on A if and only if q̃ is µL-measurable on Ã (see [23,
Proposition 4.1]).

Let n ∈ N∗ and let A ⊂ T be a µ∆-measurable subset of T. The functional space L∞T (A,Rn)
is the set of all functions q defined ∆-a.e. on A, with values in Rn, that are µ∆-measurable on A
and bounded ∆-almost everywhere. Endowed with the norm ‖q‖L∞T (A,Rn) = sup essτ∈A ‖q(τ)‖Rn ,

it is a Banach space (see [3, Theorem 2.5]). The functional space L1
T(A,Rn) is the set of all

functions q defined ∆-a.e. on A, with values in Rn, that are µ∆-measurable on A and such that∫
A
‖q(τ)‖Rn ∆τ < +∞. Endowed with the norm ‖q‖L1

T(A,Rn) =
∫
A
‖q(τ)‖Rn ∆τ , it is a Banach

space (see [3, Theorem 2.5]). We recall here that if q ∈ L1
T(A,Rn) then∫

A

q(τ) ∆τ =

∫
Ã

q̃(τ) dτ =

∫
A

q(τ) dτ +
∑

r∈A∩RS

µ(r)q(r),

see [23, Theorems 5.1 and 5.2]. Note that if A is bounded then L∞T (A,Rn) ⊂ L1
T(A,Rn).

Absolutely continuous functions. Let n ∈ N∗ and let (c, d) ∈ T2 such that c < d. Let
C([c, d]T,Rn) denote the space of continuous functions defined on [c, d]T with values in Rn. Endowed
with its usual uniform norm ‖ · ‖∞, it is a Banach space. Let AC([c, d]T,Rn) denote the subspace
of absolutely continuous functions.

Let t0 ∈ [c, d]T and q : [c, d]T → Rn. It is easily derived from [22, Theorem 4.1] that q ∈
AC([c, d]T,Rn) if and only if q is ∆-differentiable ∆-a.e. on [c, d)T and satisfies q∆ ∈ L1

T([c, d)T,Rn),
and for every t ∈ [c, d]T one has q(t) = q(t0) +

∫
[t0,t)T

q∆(τ) ∆τ whenever t ≥ t0, and q(t) =

q(t0)−
∫

[t,t0)T
q∆(τ) ∆τ whenever t ≤ t0.

Assume that q ∈ L1
T([c, d)T,Rn), and let Q be the function defined on [c, d]T by Q(t) =∫

[t0,t)T
q(τ) ∆τ whenever t ≥ t0, and by Q(t) = −

∫
[t,t0)T

q(τ) ∆τ whenever t ≤ t0. Then Q ∈
AC([c, d]T) and Q∆ = q ∆-a.e. on [c, d)T.
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Note that, if q ∈ AC([c, d]T,Rn) is such that q∆ = 0 ∆-a.e. on [c, d)T, then q is constant on
[c, d]T, and that, if q, q′ ∈ AC([c, d]T,Rn), then 〈q, q′〉Rn ∈ AC([c, d]T,R) and the Leibniz formula (3)
is available ∆-a.e. on [c, d)T.

For every q ∈ L1
T([c, d)T,Rn), we denote by L[c,d)T(q) the set of points t ∈ [c, d)T that are

∆-Lebesgue points of q. It holds µ∆(L[c,d)T(q)) = µ∆([c, d)T) = d− c, and

lim
β→0

β∈Vs,d

1

β

∫
[s,s+β)T

q(τ) ∆τ = q(s),

for every s ∈ L[c,d)T(q) ∩ RD, where Vs,d is defined by (2).

2.2 Optimal sampled-data control problems on time scales

Let T1 be another time scale. Throughout the paper, T1 will be the time scale on which the control
evolves. We assume that T1 ⊂ T.2

Similarly to T, we assume that minT1 = a and that T1 is unbounded above. As in the previous
paragraph, we introduce the notations σ1, RS1, RD1, Vs,b1 , ∆1, etc., associated with the time scale
T1. Since T1 ⊂ T, note that RS ⊂ RS1 and RD1 ⊂ RD. We define the map

Φ : T −→ T1

t 7−→ Φ(t) = sup {s ∈ T1 | s ≤ t}.

For every t ∈ T1, we have Φ(t) = t. For every t ∈ T\T1, we have Φ(t) ∈ RS1 and Φ(t) < t <
σ1(Φ(t)). Note that, if t ∈ T is such that Φ(t) ∈ RD1, then t ∈ T1.

In what follows, given a function u : T1 → R, we denote by uΦ the composition u ◦Φ : T→ R.
Of course, when dealing with functions having multiple components, this composition is applied
to each component. Let us mention, at this step, that if u ∈ L∞T1

(T1,R) then uΦ ∈ L∞T (T,R) (see
Proposition 1 and more properties in Section 4.1.1).

Let n, m and j be nonzero integers. We consider the general nonlinear optimal sampled-data
control problem on time scales

(OSDCP)
T
T1



min

∫
[a,b)T

f0(τ, q(τ), uΦ(τ)) ∆τ,

q∆(t) = f(t, q(t), uΦ(t)),

u ∈ L∞T1
(T1,Ω),

g(q(a), q(b)) ∈ S.

(4)

Here, the trajectory of the system is q : T → Rn, the mappings f : T × Rn × Rm → Rn and
f0 : T × Rn × Rm → R are continuous, of class C1 in (q, u), the mapping g : Rn × Rn → Rj is of
class C1, Ω is a non-empty closed subset of Rm, and S is a non-empty closed convex subset of Rj .
The final time b ∈ T can be fixed or not.

Remark 1. We recall that, given u ∈ L∞T1
(T1,Rm), we say that q is a solution of (4) on IT if:

1. IT is an interval of T satisfying a ∈ IT and IT\{a} 6= ∅;
2Indeed, it is not natural to consider controlling times t ∈ T1 at which the dynamics does not evolve, that is, at

which t /∈ T. The value of the control at such times t ∈ T1\T would not influence the dynamics, or, maybe, only on
[t∗,+∞[T where t∗ = inf{s ∈ T | s ≥ t}. In this last case, note that t∗ ∈ T and we can replace T1 by (T1 ∪{t∗})\{t}
without loss of generality.
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2. For every c ∈ IT\{a}, q ∈ AC([a, c]T,Rn) and (4) holds for ∆-a.e. t ∈ [a, c)T.

Existence and uniqueness of solutions (Cauchy-Lipschitz theorem on time scales) have been estab-
lished in [15], and useful results are recalled in Section 4.1.2.

Remark 2. The time scale T1 stands for the set of controlling times of the control system (4).
If T = T1, then the control is permanent. The case T = T1 = R+ corresponds to the classical
continuous case, whereas T = T1 = N coincides with the classical discrete case. If T1  T, the
control is nonpermanent and sampled. In that case, the sampling times are given by t ∈ RS1 such
that σ(t) < σ1(t) and the corresponding sampling time intervals are given by [t, σ1(t))T. The clas-

sical optimal sampled-data control problem (OSDCP)
R+

NT investigated in Theorem 1 corresponds
to T = R+ and T1 = NT , with T > 0.

Remark 3. Let us consider two optimal control problems (OSDCP)
T
T1

and (OSDCP)
T
T2

, posed
on the same general time scale T for the trajectories, but with two different sets of controlling times
T1 and T2, and let us assume that T2 ⊂ T1. We denote by Φ1 and Φ2 the corresponding mappings
from T to T1 and T2 respectively. If u1 ∈ L∞T1

(T1,Ω) is an optimal control for (OSDCP)
T
T1

and

if there exists u2 ∈ L∞T2
(T2,Ω) such that uΦ2

2 (t) = uΦ1
1 (t) for ∆-a.e. t ∈ T, it is clear that u2 is an

optimal control for (OSDCP)
T
T2

. We refer to Section 3.1 for examples.

Remark 4. The framework of (OSDCP)
T
T1

encompasses optimal parameter problems. Indeed,
let us consider the parametrized dynamical system

q∆(t) = f(t, q(t), λ), ∆-a.e. t ∈ T, (5)

with λ ∈ Ω. Then, considering T1 = {a} ∪ [b,+∞[T, (4) coincides with (5) where u(a) plays the
role of λ. In this situation, Theorem 3 (stated in Section 2.3) provides necessary conditions for
optimal parameters λ. We refer to Section 3.1 for examples.

Remark 5. A possible extension is to study dynamical systems on time scales with several
sampled-data controls but with different sets of controlling times:

q∆(t) = f(t, q(t), uΦ1
1 (t), uΦ2

2 (t)), ∆-a.e. t ∈ T,

where T1 and T2 are general time scales contained in T, and Φ1 and Φ2 are the corresponding
mappings from T to T1 and T2. Our main result (Theorem 3) can be easily extended to this
framework. Actually, this multiscale version will be useful in order to derive the transversality
condition on the final time (see Remark 30).

Remark 6. Another possible extension is to study dynamical systems on time scales with sampled-
data control where the state q and the constraint function f are also sampled:

q∆(t) = f(Φ1(t), qΦ2(t), uΦ3(t)), ∆-a.e. t ∈ T,

where T1, T2 and T3 are general time scales contained in T, and Φ1, Φ2 and Φ3 are the correspond-
ing mappings from T to T1, T2 and T3 respectively. In particular, the setting of [16] corresponds
to the above framework with T = R+ and T1 = T2 = T3 a general time scale.

Although this is not the main objective of our paper, we provide hereafter a result stating
the existence of optimal solutions for (OSDCP)

T
T1

, under some appropriate compactness and
convexity assumptions. Actually, if the existence of solutions is stated, the necessary conditions
provided in Theorem 3, allowing to compute explicitly optimal sampled-data controls, may prove
the uniqueness of the optimal solution. We refer to Section 3.1 for examples.

LetM stand for the set of trajectories q, associated with b ∈ T and with a sampled-data control
u ∈ L∞T1

(T1,Ω), satisfying (4) ∆-a.e. on [a, b)T and g(q(a), q(b)) ∈ S. We define the set of extended

velocities W(t, q) = {(f(t, q, u), f0(t, q, u))> | u ∈ Ω} for every (t, q) ∈ T× Rn.
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Theorem 2. If Ω is compact, M is non-empty, ‖q‖∞ + b ≤ M for every q ∈ M and for some

M ≥ 0, and if W(t, q) is convex for every (t, q) ∈ T × Rn, then (OSDCP)
T
T1

has at least one
optimal solution.

The proof of Theorem 2 is done in Section 4.4. Note that, in this theorem, it suffices to assume
that g is continuous. Besides, the assumption on the boundedness of trajectories can be weakened,
by assuming, for instance, that the extended dynamics have a sublinear growth at infinity (see,
e.g., [25]; many other easy and standard extensions are possible).

2.3 Pontryagin maximum principle for (OSDCP)TT1

2.3.1 Preliminaries on convexity and stable Ω-dense directions

The orthogonal of the closed convex set S at a point x ∈ S is defined by

OS[x] = {x′ ∈ Rj | ∀x′′ ∈ S, 〈x′, x′′ − x〉Rj ≤ 0}.

It is a closed convex cone containing 0.
We denote by dS the distance function to S defined by dS(x) = infx′∈S ‖x − x′‖Rj , for every

x ∈ Rj . Recall that, for every x ∈ Rj , there exists a unique element PS(x) ∈ S (projection of x onto
S) such that dS(x) = ‖x−PS(x)‖Rj . It is characterized by the property 〈x−PS(x), x′−PS(x)〉Rj ≤ 0
for every x′ ∈ S. In particular, x−PS(x) ∈ OS[PS(x)]. The function PS is 1-Lipschitz continuous.
We recall the following obvious lemmas.

Lemma 1. Let (xk)k∈N be a sequence of points of Rj and (ζk)k∈N be a sequence of nonnegative
real numbers such that xk → x ∈ S and ζk(xk −PS(xk))→ x′ ∈ Rj as k → +∞. Then x′ ∈ OS[x].

Lemma 2. The function d2
S : x 7→ dS(x)2 is differentiable on Rj, with dd2

S(x)(x′) = 2〈x −
PS(x), x′〉Rj .

Hereafter we recall the notion of stable Ω-dense directions and we state an obvious lemma. We
refer to [16, Section 2.2] for more details.

Definition 1. Let v ∈ Ω. A direction y ∈ Ω is said to be a stable Ω-dense direction from v if there
exists ε > 0 such that 0 is not isolated in {α ∈ [0, 1], v′+α(y−v′) ∈ Ω} for every v′ ∈ BRm(v, ε)∩Ω.
The set of all stable Ω-dense directions from v is denoted by DΩ

stab(v).

Lemma 3. If Ω is convex, then DΩ
stab(v) = Ω for every v ∈ Ω.

2.3.2 Main result

Recall that g is said to be submersive at a point (q1, q2) ∈ Rn × Rn if the differential of g at this

point is surjective. We define the Hamiltonian H : T × Rn × Rn × R × Rm → R of (OSDCP)
T
T1

by H(t, q, p, p0, u) = 〈p, f(t, q, u)〉Rn + p0f0(t, q, u).

Theorem 3 (Pontryagin maximum principle for (OSDCP)
T
T1

). If a trajectory q∗, defined on
[a, b∗]T and associated with a sampled-data control u∗ ∈ L∞T1

(T1,Ω), is an optimal solution of

(OSDCP)
T
T1

, then there exists a nontrivial couple (p, p0), where p ∈ AC([a, b∗]T,Rn) (called adjoint

vector) and p0 ≤ 0, such that the following conditions hold:

• Extremal equations:

q∗∆(t) =
∂H

∂p
(t, q∗(t), pσ(t), p0, u∗Φ(t)), p∆(t) = −∂H

∂q
(t, q∗(t), pσ(t), p0, u∗Φ(t)), (6)

for ∆-a.e. t ∈ [a, b∗)T.
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• Maximization condition:

– For ∆1-a.e. s ∈ [a, b∗)T1
∩ RD1, we have

u∗(s) ∈ arg max
z∈Ω

H(s, q∗(s), p(s), p0, z).

– For every r ∈ [a, b∗)T1 ∩ RS1 such that σ1(r) ≤ b∗, we have〈∫
[r,σ1(r))T

∂H

∂u
(τ, q∗(τ), pσ(τ), p0, u∗(r)) ∆τ , y − u∗(r)

〉
Rm
≤ 0, (7)

for every y ∈ DΩ
stab(u∗(r)). In the case where r ∈ [a, b∗)T1 ∩ RS1 with σ1(r) > b∗, the

above maximization condition is still valid provided σ1(r) is replaced with b∗.

• Transversality conditions on the adjoint vector:
If g is submersive at (q∗(a), q∗(b∗)), then the nontrivial couple (p, p0) can be selected to satisfy

p(a) = −
(
∂g

∂q1
(q∗(a), q∗(b∗))

)>
ψ, p(b∗) =

(
∂g

∂q2
(q∗(a), q∗(b∗))

)>
ψ, (8)

where −ψ ∈ OS[g(q∗(a), q∗(b∗))].

• Transversality condition on the final time:
If the final time is left free in the optimal control problem (OSDCP)

T
T1

, if b∗ belongs to the

interior of T (for the topology of R), and if f and f0 are of class C1 with respect to t in a
neighborhood of b∗, then the nontrivial couple (p, p0) can be moreover selected such that the
Hamiltonian function t 7→ H(t, q∗(t), p(t), p0, u∗Φ(t)) coincides almost everywhere, in some
neighborhood of b∗, with a continuous function vanishing at t = b∗.

In particular, if u∗Φ(t) has a left-limit at t = b∗ (denoted by u∗Φ(b∗−)), then the transversality
condition can be written as

H(b∗, q∗(b∗), p(b∗), p0, u∗Φ(b∗−)) = 0.

Theorem 3 is proved in Section 4. Several remarks are in order.

Remark 7. As is well known, the nontrivial couple (p, p0) of Theorem 3, which is a Lagrange
multiplier, is defined up to a multiplicative scalar. Defining as usual an extremal as a quadruple
(q, p, p0, u) solution of the extremal equations (6), an extremal is said to be normal whenever
p0 6= 0 and abnormal whenever p0 = 0. In the normal case p0 6= 0, it is usual to normalize the
Lagrange multiplier so that p0 = −1.

Remark 8. Theorem 3 encompasses the time scale version of the PMP derived in [16] when
the control is permanent, that is, when T1 = T. Indeed, in that case, for every r ∈ [a, b∗)T ∩ RS,
r ∈ [a, b∗)T1

∩RS1 and σ1(r) = σ(r) ≤ b∗. Then the condition (7) can be written as the nonpositive
gradient condition 〈

∂H

∂u
(r, q∗(r), p(σ(r)), p0, u∗(r)) , y − u∗(r)

〉
Rm
≤ 0,

for every y ∈ DΩ
stab(u∗(r)). Moreover, in the case of a free final time, under the assumptions made

in the fourth item of Theorem 3, b∗ also belongs to the interior of T1 = T, and then in that case
we recover the classical condition

max
z∈Ω

H(b∗, q∗(b∗), p(b∗), p0, z) = 0.
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A fortiori, Theorem 3 encompasses both the classical continuous-time and discrete-time versions
of the PMP, that is respectively, when T = T1 = R+ and T = T1 = N.

Remark 9. If the final time is free, under the assumptions made in the fourth item of Theorem 3,
and if moreover b∗ /∈ T1 (or if b∗ is a left-scattered point of T1), u∗Φ is constant on [ρ1(b∗), b∗)T
where ρ1(b∗) = max{s ∈ T1 | s < b∗} < b∗ (and thus, in particular, u∗Φ(t) has a left-limit at
t = b∗), and therefore H(b∗, q∗(b∗), p(b∗), p0, u∗(ρ1(b∗))) = 0. This is similar to the situation of
Theorem 1.

Remark 10. Let us describe some typical situations of terminal conditions g(q(a), q(b)) ∈ S in

(OSDCP)
T
T1

, and of the corresponding transversality conditions on the adjoint vector.

• If the initial and final points are fixed in (OSDCP)
T
T1

, that is, if we impose q(a) = qa
and q(b) = qb, then j = 2n, g(q1, q2) = (q1, q2) and S = {qa} × {qb}. In that case, the
transversality conditions on the adjoint vector give no additional information.

• If the initial point is fixed, that is, if we impose q(a) = qa, and if the final point is left free

in (OSDCP)
T
T1

, then j = n, g(q1, q2) = q1 and S = {qa}. In that case, the transversality

conditions on the adjoint vector imply that p(b∗) = 0. Moreover, we have p0 6= 03 and we
can normalize the Lagrange multiplier so that p0 = −1 (see Remark 7).

• If the initial point is fixed, that is, if we impose q(a) = qa, and if the final point is subject to the

constraint G(q(b)) ∈ (R+)k in (OSDCP)
T
T1

, where G = (G1, . . . , Gk) : Rn → Rk is of class

C1 and is submersive at any point q2 ∈ G−1((R+)k), then j = n + k, g(q1, q2) = (q1, G(q2))
and S = {qa} × (R+)k. The transversality conditions on the adjoint vector imply that

p(b∗) =

k∑
i=1

λi∂q2G
i(q∗(b∗)),

with λi ≥ 0, i = 1, . . . , k.

• If the periodic condition q(a) = q(b) is imposed in (OSDCP)
T
T1

, then j = n, g(q1, q2) = q1−q2

and S = {0}. In that case, the transversality conditions on the adjoint vector yield that
p(a) = p(b∗).

We stress that, in all examples above, the function g is indeed a submersion.

Remark 11. In the case where g is not submersive at (q∗(a), q∗(b∗)), to obtain transversality
conditions on the adjoint vector, Theorem 3 can be reformulated as follows:

If a trajectory q∗, defined on [a, b∗]T and associated with a sampled-data control u∗ ∈
L∞T1

(T1,Ω), is an optimal solution of (OSDCP)
T
T1

, then there exists a nontrivial couple

(ψ, p0) ∈ Rj × R, with −ψ ∈ OS[g(q∗(a), q∗(b∗))] and p0 ≤ 0, and there exists p ∈
AC([a, b∗]T,Rn) such that the extremal equations, the maximization conditions and the
transversality conditions are satisfied.

However, with this formulation, the couple (p, p0) may be trivial4 and, as a consequence, the result
may not provide any information. We refer to Sections 4.3.3 and 4.3.4 for more details.

3Indeed, if p0 = 0, then the adjoint vector p is trivial from the extremal equation and from the final condition
p(b∗) = 0. This leads to a contradiction since the couple (p, p0) has to be nontrivial.

4Indeed, if p0 = 0 and ψ belongs to the kernel of (∂q2g(q
∗(a), q∗(b∗)))>, then the couple (p, p0) is trivial. This

situation leads to a contradiction if g is submersive at (q∗(a), q∗(b∗)).
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Remark 12. In this paper, the closedness of Ω is used in a crucial way in our proof of the PMP.
Indeed, the closure of Ω allows us to define the Ekeland functional on a complete metric space (see
Section 4.3.2). However, if the initial point is fixed, that is, if we impose q(a) = qa, and if the

final point is left free in (OSDCP)
T
T1

, then Theorem 3 can be proved with a simple calculus of
variations, without using the Ekeland variational principle. In this particular case, the closedness
assumption can be removed.

Remark 13. If the cost functional to be minimized in (OSDCP)
T
T1

is
∫

[a,b)T
f0(τ, q(τ), uΦ(τ)) ∆τ+

`(b, q(a), q(b)), where ` : T×Rn ×Rn → R is continuous, of class C1 in (q1, q2), then the transver-
sality conditions on the adjoint vector become

p(a) = − (∂q1g(q∗(a), q∗(b∗)))
>
ψ − p0∂q1`(b

∗, q∗(a), q∗(b∗)),

and p(b∗) = (∂q2g(q∗(a), q∗(b∗)))
>
ψ + p0∂q2`(b

∗, q∗(a), q∗(b∗)).

Moreover, in the fourth item of Theorem 3, if ` is of class C1 in a neighborhood of b∗, the transver-
sality condition on the final time must be replaced by:

The nontrivial couple (p, p0) can be selected such that the Hamiltonian function t 7→
H(t, q∗(t), p(t), p0, u∗Φ(t)) coincides almost everywhere, in some neighborhood of b∗,
with a continuous function that is equal to −p0∂b`(b

∗, q∗(a), q∗(b∗)) at t = b∗.

To prove this claim, it suffices to modify accordingly the Ekeland functional in the proof of Theo-
rem 3 (see Section 4.3.2).

3 Applications and further comments

In this section, we first give, in Section 3.1, a very simple example of an optimal control problem
on time scales with sampled-data control, that we treat in details and on which all computations
are explicit. The interest is that this example provides as well a simple situation where it is evident
that some of the properties that are valid in the classical continous-time PMP do not hold anymore
in the time-scale context. We gather these remarks in Section 3.2.

3.1 A model for optimal consumption with sampled-data control

Throughout this subsection, T and T1 are two time scales, unbounded above, satisfying T1 ⊂ T,
minT = minT1 = 0 and 12 ∈ T. In the sequel, we study the following one-dimensional dynamical
system with sampled-data control on time scales:

q∆(t) = uΦ(t)q(t), ∆-a.e. t ∈ [0, 12)T, (9)

with the initial condition q(0) = 1, and subject to the constraint u(t) ∈ [0, 1] for ∆1-a.e. t ∈
[0, 12)T1

. Since the final time b = 12 is fixed, we can assume that 12 ∈ T1 without loss of
generality.

The above model is a classical model for the evolution of a controlled output of a factory during
the time interval [0, 12]T (corresponding to the twelve months of a year). Precisely, q(t) ∈ R stands
for the output at time t ∈ T and u(t) ∈ [0, 1] stands for the fraction of the output reinvested
at each controlling time t ∈ T1. We assume that this fraction is sampled at each sampling time
t ∈ T1 such that t ∈ RS1 and σ(t) < σ1(t), on the corresponding sampling interval [t, σ1(t))T. In
the sequel, our goal is to maximize the total consumption

C(u) =

∫
[0,12)T

(1− uΦ(τ))q(τ) ∆τ. (10)
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In other words, our aim is to maximize the quantity of the output that we do not reinvest.

Remark 14. In the continuous case and with a permanent control (that is, with T = T1 = R+),
the above optimal control problem is a very well-known application of the classical Pontryagin
maximum principle. We refer for example to [48, Exercice 2.3.3. p.82] or [40, p.92]. In this section,
our aim is to solve this optimal control problem in cases where the control is nonpermanent and
sampled. We first treat some examples in the continuous-time setting T = R+ and then in the
discrete-time setting T = N.

The above optimal sampled-data control problem corresponds to (OSDCP)
T
T1

with n = m =
j = 1, a = 0, b = 12 (fixed final time), Ω = [0, 1] (convex), g(q1, q2) = q1 and S = {1} (fixed initial
value q(0) = 1 and free final value q(12)), f(t, q, u) = uq and f0(t, q, u) = (u − 1)q (our aim is to
minimize −C(u)).

Since f and f0 are affine in u and since Ω is compact, Theorem 2 asserts that (OSDCP)
T
T1

admits an optimal solution q∗, defined on [0, 12]T and associated with a sampled-data control
u∗ ∈ L∞T1

(T1, [0, 1]). We now apply Theorem 3 in order to compute explicitly the values of u∗ at
each controlling time t ∈ [0, 12)T1 . The nontrivial couple (p, p0) satisfies p0 = −1 and p(12) = 0
(see Remark 10). The adjoint vector p ∈ AC([0, 12]T,R) is a solution of

p∆(t) = −u∗Φ(t)pσ(t) + u∗Φ(t)− 1, ∆-a.e. t ∈ [0, 12)T. (11)

Moreover, one has the following maximization conditions:

1. for ∆1-a.e. s ∈ [0, 12)T1
∩ RD1,

u∗(s) ∈ arg max
z∈[0,1]

(z(p(s)− 1) + 1)q∗(s). (12)

2. for every r ∈ [0, 12)T1
∩ RS1,∫

[r,σ1(r))T

q∗(τ)(pσ(τ)− 1)(y − u∗(r)) ∆τ ≤ 0, (13)

for every y ∈ DΩ
stab(u∗(r)) = Ω = [0, 1] (since Ω is convex, see Lemma 3).

Since q∗ is a solution of (9) and satisfies q∗(0) = 1, one can easily see that q∗ is monotonically
increasing on [0, 12]T and then q∗ has positive values. From (11) and since p(12) = 0, one can
easily obtain that p is monotonically decreasing on [0, 12]T and then p has nonnegative values.

3.1.1 Continuous-time setting T = R+

Case T1 = R+ (permanent control). Since q∗ has positive values, one can conclude from (11)
and (12) that:

u∗(t) =

{
1 for a.e. t such that p(t)− 1 > 0,
0 for a.e. t such that p(t)− 1 < 0,

ṗ(t) =

{
−p(t) for a.e. t such that u∗(t) = 1,
−1 for a.e. t such that u∗(t) = 0.

Since p(12) = 0, one can easily prove that the optimal (permanent) control u is unique and given
by u∗(t) = 1 for a.e. t ∈ [0, 11) and u∗(t) = 0 for a.e. t ∈ [11, 12). The associated optimal
consumption is C(u∗) = e11 ' 59874.142. We refer to [48, Exercice 2.3.3. p.82] or [40, p.92] for
more details.
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Case T1 discrete (sampled-data control). Solving the differential equations (9) and (11)
leads to q∗(t) = q∗(σ1(r))eu

∗(r)(t−σ1(r)) and

pσ(t) = p(t) =

{
p(σ1(r))e−u

∗(r)(t−σ1(r)) + u∗(r)−1
u∗(r) (1− e−u∗(r)(t−σ1(r))) if u∗(r) 6= 0,

p(σ1(r)) + σ1(r)− t if u∗(r) = 0,

for every r ∈ [0, 12)T1
and every t ∈ [r, σ1(r)]. Then, (13) can be written as q∗(σ1(r))(y −

u∗(r))Γr(u
∗(r)) ≤ 0, where Γr : [0, 1]→ R is the continuous function given by:

Γr(x) =


1

x2

[
e−µ1(r)x −

(
1 + µ1(r)x(x(1− p(σ1(r)))− 1)

)]
if x 6= 0,

µ1(r)

(
p(σ1(r)) +

µ1(r)

2
− 1

)
if x = 0.

Since (13) holds true for every y ∈ [0, 1] and since q∗ has positive values, the following properties
are satisfied for every r ∈ [0, 12)T1 :

• if Γr has negative values on (0, 1], then u∗(r) = 0;

• if Γr has positive values on [0, 1), then u∗(r) = 1;

• if Γr(0) > 0 and Γr(1) < 0, then u∗(r) ∈ (0, 1) is a solution of the nonlinear equation
Γr(x) = 0.

Note that Γr depends only on µ1(r) and p(σ1(r)). As a consequence, the knowledge of the value
p(12) = 0 and the above properties allow to compute u∗(r0) where r0 is the element of [0, 12)T1

such that σ1(r0) = 12 (and µ1(r0) = 12 − r0). Then, the knowledge of u∗(r0) allows to compute
p(r0) from (11). Then, the knowledge of p(r0) and the above properties allow to compute u∗(r1)
where r1 is the element of [0, 12)T1 such that σ1(r1) = r0 (and µ1(r1) = r0 − r1), etc. Actually,
this recursive procedure allows to compute u∗(r) for every r ∈ [0, 12)T1 . Numerically, we obtain
the following results:

T1 = N u∗(t) =

{
1 if t ∈ {0, 1, . . . , 10}
0 if t = 11

C(u∗) = e11 ' 59874.142

T1 = 2N u∗(t) =

{
1 if t ∈ {0, 2, 4, 6, 8}
0 if t = 10

C(u∗) = 2e10 ' 44052.932

T1 = 3N u∗(t) =

{
1 if t ∈ {0, 3, 6}
0.4536 if t = 9

C(u∗) ' 28299.767

T1 = 4N u∗(t) =

{
1 if t ∈ {0, 4}
0.6392 if t = 8

C(u∗) ' 20013.885

T1 = 9N u∗(t) =

{
1 if t = 0
0.4536 if t = 9

C(u∗) ' 28299.767

T1 = 12N u∗(0) ' 0.9083 C(u∗) ' 5467.24

T1 = 12N ∪ {10, 11.5} u∗(t) =

 1 if t = 0
0.9072 if t = 10
0 if t = 11.5

C(u∗) ' 49476.604

Remark 15. In this example, Theorem 2 states the existence of an optimal solution. In all cases
above studied, the Pontryagin maximum principle proves that the optimal solution is moreover
unique.

Remark 16. The case T1 = N can be easily deduced from the permanent case T1 = R+ (see
Remark 3). Similarly, the case T1 = 9N can be deduced from the case T1 = 3N.
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Remark 17. The case T1 = 12N corresponds to an optimal parameter problem (see Remark 4).

Remark 18. For the needs of Section 3.2, let us give some details on the case T1 = 2N. In
that case, q∗(t) = et on [0, 10] and q∗(t) = e10 on [10, 12]. Moreover, p(t) = 2e10−t on [0, 10] and
p(t) = 12 − t on [10, 12]. Hence, for every t ∈ [10, 11), arg maxz∈ΩH(t, q∗(t), p(t), p0, z) = {1}.
The Hamiltonian t 7→ H(t, q∗(t), p(t), p0, u∗Φ(t)) is equal to t 7→ 2e10 a.e. on [0, 10) and is equal to
t 7→ e10 a.e. on [10, 12). Finally, the maximized Hamiltonian t 7→ maxz∈ΩH(t, q∗(t), pσ(t), p0, z) is
equal to t 7→ 2e10 on [0, 10), to t 7→ (12− t)e10 on [10, 11) and to t 7→ e10 on [11, 12).

Case T1 hybrid (sampled-data control). In this paragraph, we study the hybrid case T1 =
[0, 6] ∪ {10} ∪ [11.5,+∞). Similarly to the permanent case T1 = R+, one can easily conclude
from (12) that:

u∗(t) =

{
1 for a.e. t ∈ [0, 6) ∪ [11.5, 12) such that p(t)− 1 > 0,
0 for a.e. t ∈ [0, 6) ∪ [11.5, 12) such that p(t)− 1 < 0.

Since p(12) = 0, one can easily prove that u∗(t) = 0 for a.e. t ∈ [11.5, 12), and then p(11.5) = 0.5.
From the knowledge of p(11.5) = 0.5 and using similar arguments than in the previous paragraph,
one can compute u∗(10) ' 0.9072. From (11), it gives p(10) ' 2.2462. From the knowledge
of p(10) ' 2.2462, one can compute u∗(6) = 1. From (11), it gives p(6) ' 122.6402. Since
p is monotonically decreasing, we conclude that p(t) − 1 > 0 for every t ∈ [0, 6). We finally
conclude that the optimal sampled-data control u∗ is unique and is given by u∗(t) = 1 for a.e.
t ∈ [0, 6), u∗(6) = 1, u∗(10) ' 0.9072 and u∗(t) = 0 for a.e. t ∈ [11.5, 12). The associated optimal
consumption is C(u∗) ' 49476.604.

Remark 19. The discrete case T1 = 12N ∪ {10, 11.5} can now be seen as a consequence of the
hybrid case T1 = [0, 6] ∪ {10} ∪ [11.5,+∞) (see Remark 3).

3.1.2 Discrete-time setting T = N

In the discrete-time setting T = N, similarly to the continuous-time one, we can prove that (13)
can be written as q∗(r)(y − u∗(r))Λr(u∗(r)) ≤ 0, where Λr : [0, 1] → R is the continuous function
given by:

Λr(x) =


1

x2

[
1− (1 + x)µ1(r)−1

(
1 + µ1(r)x(x(1− p(σ1(r)))− 1) + x

)]
if x 6= 0,

µ1(r)

(
p(σ1(r)) +

µ1(r)− 3

2

)
if x = 0.

The same recursive procedure (than in the previous section) allows to compute u∗(r) for every
r ∈ [0, 12)T1

. Numerically, we obtain the following results:

T1 = 2N u∗(t) =

{
1 if t ∈ {0, 2, 4, 6, 8}
0 if t = 10

C(u∗) = 211 = 2048

T1 = 3N u∗(t) =

{
1 if t ∈ {0, 3, 6}
0 if t = 9

C(u∗) = 3 · 29 = 1536

T1 = 4N u∗(t) =

{
1 if t ∈ {0, 4}
0.2886 if t = 8

C(u∗) ' 1108.882

T1 = 6N u∗(t) =

{
1 if t = 0
0.5725 if t = 6

C(u∗) ' 674.787

T1 = 12N u∗(0) ' 0.8145 C(u∗) ' 159.647
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Remark 20. In the permanent discrete case T = T1 = N, the optimal control is not unique.
Indeed, every control u∗ satisfying u∗(t) = 1 for every t ∈ {0, 1, . . . , 9}, u∗(10) ∈ [0, 1] and u∗(11) =
0 is optimal. Let us give some details on the proof and let us note that the PMP does not provide
any constraint on the value u∗(10) in that case.

With r = 11 and p(12) = 0, Λr has negative values on (0, 1] (constantly equal to −1), then
u∗(11) = 0 from (13). From (11), we compute p(11) = 1. With r = 10 and p(11) = 1, Λr is
constantly equal to 0 and then (13) does not provide any constraint on the value u∗(10). Actually,
it does not matter since p(10) can still be computed from (11) (p(10) = 2) and the recursive
procedure can be pursued. We obtain u∗(t) = 1 for every t ∈ {0, 1, . . . , 9}. From (10), we have

C(u∗) = (1− u∗(10))q∗(10) + q∗(11) = (1− u∗(10)) · 210 + (1 + u∗(10))q∗(10) = 2 · 210 = 211.

Finally, if u∗(11) = 0 and u∗(t) = 1 for every t ∈ {0, 1, . . . , 9}, the value of u∗(10) ∈ [0, 1] does not
influence C(u∗). This concludes the proof and the remark.

Remark 21. The case T1 = 2N can be seen as a consequence of the permanent case T1 = N (see
Remarks 3 and 20).

Remark 22. The case T1 = 12N corresponds to an optimal parameter problem (see Remark 4).

3.2 Non-extension of several classical properties

In this section, we recall some basic properties that occur in classical optimal control theory in
the continuous-time setting and with a permament control, that is, with T = T1 = R+. Our
aim is to discuss their extension (or their failure) to the general time scale setting and to the
nonpermament control case. We will provide several counterexamples in the discrete-time setting
with a permanent control (T = T1 = N) and in the continuous-time setting with a nonpermanent
control (T1  T = R+). In the following paragraphs, except the last one, the final time b ∈ T can
be fixed or not.

Pointwise maximization condition of the Hamiltonian. In the case T = T1 = R+,
it is well known that an optimal (permanent) control u∗ satisfies the maximization condition
u∗(t) ∈ arg maxz∈ΩH(t, q∗(t), p(t), p0, z) for a.e. t ∈ [0, b∗). We refer to [16, Example 7] for a
counterexample showing the failure of this maximization condition in the case T = T1 = N. We
refer to Remark 18 for a counterexample in the case T1  T = R+.

Continuity of the Hamiltonian. In the case T = T1 = R+, it is well known that the Hamilto-
nian function t 7→ H(t, q∗(t), p(t), p0, u∗(t)) coincides almost everywhere on [0, b∗] with the contin-
uous function t 7→ maxz∈ΩH(t, q∗(t), p(t), p0, z). Remark 18 provides a counterexample showing
the failure of this regularity property in the case T1  T = R+.

Remark 23. Nevertheless, in the case of a free final time, under the assumptions of the fourth
item of Theorem 3, the Hamiltonian function t 7→ H(t, q∗(t), p(t), p0, u∗Φ(t)) coincides almost
everywhere, in some neighborhood of b∗, with a continuous function.

The autonomous case. In the case T = T1 = R+, if the Hamiltonian H is autonomous (that
is, does not depend on t), it is well known that the function t 7→ H(q∗(t), p(t), p0, u∗(t)) is almost
everywhere constant on [0, b∗], this constant being equal to the maximized Hamiltonian. We refer
to [16, Example 8] for a counterexample showing the failure of this constantness property in the
case T = T1 = N, and we refer to Remark 18 for a counterexample in the case T1  T = R+ (and
there, even the maximized autonomous Hamiltonian is not constant).
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Saturated constraint set Ω for Hamiltonian affine in u. In this paragraph, we assume that
Ω is convex. In the case T = T1 = R+, if the Hamiltonian is affine in u, that is, if it can be written
as

H(t, q, p, p0, u) = 〈H1(t, q, p, p0), u〉Rm +H2(t, q, p, p0),

one can easily prove that H1(t, q∗(t), p(t), p0) ∈ OΩ[u∗(t)] for almost every t ∈ [0, b∗). It follows
that an optimal (permament) control u∗ must take its values at the boundary of Ω (saturation of
the constraints) for almost every t ∈ [0, b∗) such that H1(t, q∗(t), p(t), p0) 6= 0Rm .

Remark 24. This classical property can be extended to the case T = T1 = N. Indeed, in that
case, the nonpositive gradient condition is given by〈

∂H

∂u
(t, q∗(t), p(t+ 1), p0, u∗(t)), y − u∗(t)

〉
Rm

= 〈H1(t, q∗(t), p(t+ 1), p0), y − u∗(t)〉Rm ≤ 0,

for every y ∈ Ω, that is, H1(t, q∗(t), p(t+ 1), p0) ∈ OΩ[u∗(t)].

Remark 25. Remark 20 provides an interesting example in the case T = T1 = N. Indeed, in that
case, the control defined by u∗(t) = 0 for every t ∈ {0, . . . , 9}, u∗(10) = 1/2 and u∗(11) = 1 is an
optimal (permanent) control. However, it does not saturate the constraint set Ω at t = 10. It is
not a surprise since, in that case, H1(t, q∗(t), p(t+ 1), p0) = 0 at t = 10.

Note that, in the case T1 = 4N, Section 3.1.2 provides a counterexample showing the failure
of this classical property in the case T1  T = N. Similarly, Section 3.1.1 in the case T1 = 3N
provides a counterexample in the case T1  T = R+.

Remark 26. Figure 1 represents the values of the optimal sampled-data control u∗ of Section 3.1.1,
in the case T1 = 12N ∪ {λ}, where λ is a parameter evolving in (0, 12). In that case, u∗(0)
(resp., u∗(λ)) saturates the constraint set Ω = [0, 1] approximately for λ ∈ (0, 11.9245) (resp., for
λ ∈ (9.9866, 12)).

Figure 1: Optimal sampled-data control u∗.

Vanishing of the maximized Hamiltonian at the final time. In this paragraph, we assume
that the final time is left free. In the case T = T1 = R+, under the assumptions of the fourth item
of Theorem 3, it is well known that the maximized Hamiltonian vanishes at t = b∗ (see Remark 8).
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In Theorem 3, we have established that this property is still valid in the time scale setting under
some appropriate conditions, the main one being that b∗ must belong to the interior of T. In the
discrete case T = N, the interior of T is empty and then the latter assumption is never satisfied.
The Hamiltonian at the final time may then not vanish, and we refer to [16, Example 8] for a
counterexample with T = T1 = N.

4 Proofs

The section is structured as follows. Subsections 4.1, 4.2 and 4.3 are devoted to the proof of
Theorem 3. In Subsection 4.1, we recall some known Cauchy-Lipschitz results on time scales and
we establish some preliminary results on the relations between u and uΦ. In Subsection 4.2, we
introduce appropriate needle-like variations of the control. Finally, in Subsection 4.3, we apply the
Ekeland variational principle to an adequate functional in an appropriate complete metric space,
and then we prove the PMP. In Subsection 4.4 (that the reader can read independently of the rest
of Section 4), we detail the proof of Theorem 2.

4.1 Preliminaries

4.1.1 Relations between u and uΦ

We start with a lemma whose arguments of proof will be used several times.

Lemma 4. Let m ∈ N∗ and let c < d be two elements of T with c ∈ T1. Let u, v : [c, d)T1
→ Rm

be two functions. Then, u = v ∆1-a.e. on [c, d)T1
if and only if uΦ = vΦ ∆-a.e. on [c, d)T.

Proof. Without loss of generality, we can assume that v is constant equal to 0Rm . Let us define
A = {t ∈ [c, d)T1 |u(t) 6= 0Rm} and B = {t ∈ [c, d)T |uΦ(t) 6= 0Rm}. Since Φ(t) = t for every
t ∈ T1, the inclusion A ⊂ B holds. Firstly, let us assume that µ∆1(A) = 0. Hence, A ⊂ RD1

and µ∆1
(A) = µL(A) = 0. Since A ⊂ RD1 ⊂ RD, we deduce that µ∆(A) = µL(A) = 0. On the

other hand, for every t ∈ B, Φ(t) ∈ A ⊂ RD1, then t ∈ T1 and t = Φ(t) ∈ A. We conclude that
A = B and µ∆(B) = 0. Secondly, let us assume that µ∆(B) = 0 and µ∆1

(A) > 0. Since A ⊂ B,
we deduce that µ∆(A) = 0, A ⊂ RD and µ∆(A) = µL(A) = 0. Since µL(A) = 0 and µ∆1(A) > 0,
we conclude that there exists t0 ∈ RS1 ∩ A ⊂ RS1 ∩ RD. Consequently, uΦ is constant (different
of 0Rm) on [t0,min(σ1(t0), d))T. As a consequence, µ∆(B) ≥ min(σ1(t0), d)− t0 > 0. This raises a
contradiction.

Proposition 1. Let m ∈ N∗ and let c < d be two elements of T with c ∈ T1.

1. For every u ∈ L1
T1

([c, d)T1
,Rm), we have uΦ ∈ L1

T([c, d)T,Rm) and

‖uΦ‖L1
T([c,d)T,Rm) ≤ ‖u‖L1

T1
([c,d)T1 ,Rm). (14)

2. For every u ∈ L∞T1
([c, d)T1 ,Rm), we have uΦ ∈ L∞T ([c, d)T,Rm) and

‖uΦ‖L∞T ([c,d)T,Rm) = ‖u‖L∞T1 ([c,d)T1 ,Rm).

Proof. Let u ∈ L1
T1

([c, d)T1
,Rm). We first treat the µ∆-measurability of uΦ. From Lemma 4, we

can consider that u is defined everywhere on [c, d)T1
and is µ∆1

-measurable on [c, d)T1
. Let us

prove that uΦ is µ∆-measurable on [c, d)T. We introduce d′ = inf{s ∈ T1 | s ≥ d} ∈ T1. Note that
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d′ ≥ d, with equality if and only if d ∈ T1. From [23], u is µ∆1
-measurable on [c, d)T1

if and only
if the extension ũ defined on [c, d′) by

ũ(t) =

{
u(t) if t ∈ T1,
u(r) if t ∈ (r, σ1(r)), where r ∈ RS1,

is µL-measurable on [c, d′). By hypothesis, ũ is µL-measurable on [c, d′) and consequently, the
restriction ũ|[c,d) is µL-measurable on [c, d). Still from [23], uΦ is µ∆-measurable on [c, d)T if and

only if the extension ũΦ defined on [c, d) by

ũΦ(t) =

{
uΦ(t) if t ∈ T,
uΦ(r) if t ∈ (r, σ(r)), where r ∈ RS,

is µL-measurable on [c, d). Hence, it is sufficient to see that ũΦ = ũ|[c,d) . This is true since, for any
t ∈ [c, d), we have:

• either t ∈ T1, and then t ∈ T and thus ũΦ(t) = uΦ(t) = u(Φ(t)) = u(t) = ũ(t).

• either t ∈ T\T1, and then t ∈ (Φ(t), σ1(Φ(t))) where Φ(t) ∈ RS1 and thus ũΦ(t) = uΦ(t) =
u(Φ(t)) = ũ(t).

• either t /∈ T, and then t ∈ (r, σ(r)) where r ∈ RS and then t ∈ (Φ(r), σ1(Φ(r))) where

Φ(r) ∈ RS1 and thus ũΦ(t) = uΦ(r) = u(Φ(r)) = ũ(t).

This establishes the µ∆-measurability of uΦ on [c, d)T.
Considering ‖u‖Rm instead of u, we can consider that m = 1 and u ∈ L1

T1
([c, d)T1

,R+).
From [23], we have∫

[c,d)T

uΦ(τ) ∆τ =

∫
[c,d)

ũΦ(τ) dτ =

∫
[c,d)

ũ|[c,d)(τ) dτ

=

∫
[c,d′)

ũ(τ) dτ −
∫

[d,d′)

ũ(τ) dτ =

∫
[c,d)T1

u(τ) ∆1τ − (d′ − d)u(Φ(d)).

Noting that (d′ − d)u(Φ(d)) ≥ 0 concludes the proof of the first point.
Let us prove the second point. Let u ∈ L∞T1

([c, d)T1 ,Rm). The µ∆-measurability of uΦ is already
proved since L∞T1

([c, d)T1 ,Rm) ⊂ L1
T1

([c, d)T1 ,Rm). Let M ≥ 0 be a constant. With the same
arguments as in the proof of Lemma 4, we can prove that ‖u(t)‖Rm ≤M for ∆1-a.e. t ∈ [c, d)T1

if
and only if ‖uΦ(t)‖Rm ≤ M for ∆-a.e. t ∈ [c, d)T. As a consequence, we get uΦ ∈ L∞T ([c, d)T,Rm)
and ‖uΦ‖L∞T ([c,d)T,Rm) = ‖u‖L∞T1 ([c,d)T1 ,Rm).

Remark 27. From the proof above, we see that the inequality (14) is an equality if and only if
d ∈ T1 or u(Φ(d)) = 0. Then, considering T = N, T1 = 2N, m = 1, c = 0, d = 1 and u the constant
function equal to 1 provides a counterexample. Indeed, in that case, we have u ∈ L1

T1
([c, d)T1

,Rm)

and uΦ ∈ L1
T([c, d)T,Rm) with ‖uΦ‖L1

T([c,d)T,Rm) = 1 < 2 = ‖u‖L1
T1

([c,d)T1 ,Rm).

4.1.2 Recalls on ∆-Cauchy-Lipschitz results

According to [15, Theorem 1], for every control u ∈ L∞T1
(T1,Rm) and every initial condition qa ∈ Rn,

there exists a unique maximal solution of (4) such that q(a) = qa, denoted by q(·, u, qa), and
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defined on a maximal interval, denoted by IT(u, qa). The word maximal means that q(·, u, qa) is
an extension of any other solution. Moreover, we recall that (see [15, Lemma 1])

∀t ∈ IT(u, qa), q(t, u, qa) = qa +

∫
[a,t)T

f(τ, q(τ, u, qa), uΦ(τ)) ∆τ.

Finally, either IT(u, qa) = T, that is, q(·, u, qa) is a global solution of (4), or IT(u, qa) = [a, c)T
where c is a left-dense point of T, and in that case, q(·, u, qa) is unbounded on IT(u, qa) (see [15,
Theorem 2]).

Definition 2. For a given b ∈ T, a couple (u, qa) ∈ L∞T1
(T1,Rm)× Rn is said to be admissible on

[a, b]T whenever b ∈ IT(u, qa).

For a given b ∈ T, we denote by UQb the set of all admissible couples (u, qa) on [a, b]T. It is
endowed with the norm ‖(u, qa)‖UQb = ‖u‖L1

T1
([a,b)T1 ,Rm) + ‖qa‖Rn .

4.2 Needle-like variations of the control, and variation of the initial
condition

Throughout this section, we consider b ∈ T and (u, qa) ∈ UQb. We are going, in particular, to
define appropriate needle-like variations. As in [16], we have to distinguish between right-dense
and right-scattered times, along the time scale T1. We will also define appropriate variation of the
initial condition.

In the sequel, the notation ‖ · ‖ stands for the usual induced norm of matrices in Rn,n, Rn,m
and Rm,m.

4.2.1 General variation of (u, qa)

In the first lemma below, we prove that UQb is open. Actually we prove a stronger result, by
showing that UQb contains a neighborhood of any of its point in L1

T1
×Rn topology, which will be

useful in order to define needle-like variations.

Lemma 5. Let R > ‖u‖L∞T1 ([a,b)T1 ,Rm). There exist νR > 0 and ηR > 0 such that the set

ER(u, qa) =
(

BL∞T1
([a,b)T1 ,Rm)(0, R) ∩ BL1

T1
([a,b)T1 ,Rm)(u, νR)

)
× BRn(qa, ηR)

is contained in UQb.

Before proving this lemma, let us recall a time scale version of Gronwall’s Lemma (see [10,
Chapter 6.1]). The generalized exponential function is defined by eL(t, c) = exp(

∫
[c,t)T

ξµ(τ)(L) ∆τ),

for every L ≥ 0, every c ∈ T and every t ∈ [c,+∞)T, where ξµ(τ)(L) = log(1+Lµ(τ))/µ(τ) whenever
µ(τ) > 0, and ξµ(τ)(L) = L whenever µ(τ) = 0 (see [10, Chapter 2.2]). Note that, for every L ≥ 0
and every c ∈ T, the function eL(·, c) is positive and increasing on [c,+∞)T.

Lemma 6 ([10]). Let c < d be two elements of T, let L1 and L2 be two nonnegative real numbers,
and let q ∈ C([c, d]T,R) satisfying 0 ≤ q(t) ≤ L1 + L2

∫
[c,t)T

q(τ) ∆τ, for every t ∈ [c, d]T. Then

0 ≤ q(t) ≤ L1eL2(t, c), for every t ∈ [c, d]T.

Proof of Lemma 5. By continuity of q(·, u, qa) on [a, b]T, the set

KR = {(t, x, v) ∈ [a, b]T × Rn × BRm(0, R) | ‖x− q(t, u, qa)‖Rn ≤ 1}
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is a compact subset of T × Rn × Rm. Therefore ‖∂f/∂q‖ and ‖∂f/∂u‖ are bounded on KR by
some LR ≥ 0 and then, from convexity and from the mean value inequality, it holds:

‖f(t, x2, v2)− f(t, x1, v1)‖Rn ≤ LR(‖x2 − x1‖Rn + ‖v2 − v1‖Rm), (15)

for all (t, x1, v1), (t, x2, v2) ∈ KR. Let νR > 0 and 0 < ηR < 1 such that (ηR + νRLR)eLR(b, a) < 1.
Let (u′, q′a) ∈ ER(u, qa). Our aim is to prove that b ∈ IT(u′, q′a). By contradiction, assume that

the set
A = {t ∈ IT(u′, q′a) ∩ [a, b]T | ‖q(t, u′, q′a)− q(t, u, qa)‖Rn > 1}

is not empty and let t0 = inf A. Since T is closed, t0 ∈ IT(u′, q′a)∩ [a, b]T and [a, t0]T ⊂ IT(u′, q′a)∩
[a, b]T. If t0 is a minimum then ‖q(t0, u′, q′a) − q(t0, u, qa)‖Rn > 1. If t0 is not a minimum then
t0 ∈ RD and by continuity we have ‖q(t0, u′, q′a) − q(t0, u, qa)‖Rn ≥ 1. Moreover one has t0 > a
since ‖q(a, u′, q′a)− q(a, u, qa)‖Rn = ‖q′a − qa‖Rn ≤ ηR < 1. Hence ‖q(τ, u′, q′a)− q(τ, u, qa)‖Rn ≤ 1
for every τ ∈ [a, t0)T. Therefore (τ, q(τ, u′, q′a), u′Φ(τ)) and (τ, q(τ, u, qa), uΦ(τ)) are elements of
KR for ∆-a.e. τ ∈ [a, t0)T. Since one has

q(t, u′, q′a)− q(t, u, qa) = q′a − qa +

∫
[a,t)T

(
f(τ, q(τ, u′, q′a), u′Φ(τ))− f(τ, q(τ, u, qa), uΦ(τ))

)
∆τ,

for every t ∈ IT(u′, q′a) ∩ [a, b]T, it follows from (15) that, for every t ∈ [a, t0]T,

‖q(t, u′, q′a)− q(t, u, qa)‖Rn ≤ ‖q′a − qa‖Rn + LR

∫
[a,t)T

‖u′Φ(τ)− uΦ(τ)‖Rm ∆τ

+ LR

∫
[a,t)T

‖q(τ, u′, q′a)− q(τ, u, qa)‖Rn ∆τ,

which implies from Lemma 6 that, for every t ∈ [a, t0]T,

‖q(t, u′, q′a)− q(t, u, qa)‖Rn ≤ (‖q′a − qa‖Rn + LR‖u′Φ − uΦ‖L1
T([a,b)T,Rm))eLR(b, a),

which finally implies from Proposition 1 that, for every t ∈ [a, t0]T,

‖q(t, u′, q′a)− q(t, u, qa)‖Rn ≤ (‖q′a − qa‖Rn + LR‖u′ − u‖L1
T1

([a,b)T1 ,Rm))eLR(b, a)

≤ (ηR + νRLR)eLR(b, a) < 1.

This raises a contradiction at t = t0. Therefore A is empty and thus q(·, u′, q′a) is bounded on
IT(u′, q′a) ∩ [a, b]T. It follows from [15, Theorem 2] that b ∈ IT(u′, q′a), that is, (u′, q′a) ∈ UQb.

Remark 28. Let R > ‖u‖L∞T1 ([a,b)T1 ,Rm) and (u′, q′a) ∈ ER(u, qa). With the notations of the above

proof, since [a, b]T ⊂ IT(u′, q′a) and A is empty, we infer that ‖q(t, u′, q′a) − q(t, u, qa)‖Rn ≤ 1, for
every t ∈ [a, b]T. Therefore (τ, q(τ, u′, q′a), u′Φ(τ)) ∈ KR for every (u′, q′a) ∈ ER(u, qa) and for ∆-a.e.
τ ∈ [a, b)T.

Lemma 7. Let R > ‖u‖L∞T1 ([a,b)T1 ,Rm). The mapping

FR(u, qa) : (ER(u, qa), ‖ · ‖UQb) −→ (C([a, b]T,Rn), ‖ · ‖∞)
(u′, q′a) 7−→ q(·, u′, q′a)

is Lipschitzian. In particular, for every (u′, q′a) ∈ ER(u, qa), q(·, u′, q′a) converges uniformly to
q(·, u, qa) on [a, b]T when u′ tends to u in L1

T1
([a, b)T1 ,Rm) and q′a tends to qa in Rn.
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Proof. Let (u′, q′a) and (u′′, q′′a) be two elements of ER(u, qa) ⊂ UQb. It follows from Remark 28
that (τ, q(τ, u′′, q′′a), u′′Φ(τ)) and (τ, q(τ, u′, q′a), u′Φ(τ)) are elements of KR for ∆-a.e. τ ∈ [a, b)T.
Following the same arguments as in the previous proof, it follows from (15), from Lemma 6 and
from Proposition 1 that, for every t ∈ [a, b]T,

‖q(t, u′′, q′′a)− q(t, u′, q′a)‖Rn ≤ (‖q′′a − q′a‖Rn + LR‖u′′ − u′‖L1
T1

([a,b)T1 ,Rm))eLR(b, a).

The lemma follows.

4.2.2 Needle-like variation of u at a point r ∈ RS1

Let r ∈ [a, b)T1
∩ RS1 and let y ∈ Rm. We define the needle-like variation Π = (r, y) of u at r by

uΠ(t, α) =

{
u(r) + α(y − u(r)) if t = r,
u(t) if t 6= r,

for ∆1-a.e. t ∈ [a, b)T1
and for every α ∈ [0, 1]. In the sequel, let us denote by σ∗1(r) = min(σ1(r), b).

Lemma 8. There exists 0 < α0 ≤ 1 such that (uΠ(·, α), qa) ∈ UQb for every α ∈ [0, α0].

Proof. Let R = max(‖u‖L∞T1 ([a,b)T1 ,Rm), ‖u(r)‖Rm+‖y‖Rm)+1 > ‖u‖L∞T1 ([a,b)T1 ,Rm). We use the nota-

tionsKR, LR, νR and ηR, defined in Lemma 5 and in its proof. One has ‖uΠ(·, α)‖L∞T1 ([a,b)T1 ,Rm) ≤ R
for every α ∈ [0, 1], and

‖uΠ(·, α)− u‖L1
T1

([a,b)T1 ,Rm) = µ1(r)‖uΠ(r, α)− u(r)‖Rm = αµ1(r)‖y − u(r)‖Rm .

Hence, there exists 0 < α0 ≤ 1 such that ‖uΠ(·, α) − u‖L1
T1

([a,b)T1 ,Rm) ≤ νR for every α ∈ [0, α0],

and hence (uΠ(·, α), qa) ∈ ER(u, qa). The claim follows then from Lemma 5.

Lemma 9. The mapping

FΠ(u, qa) : ([0, α0], | · |) −→ (C([a, b]T,Rn), ‖ · ‖∞)
α 7−→ q(·, uΠ(·, α), qa)

is Lipschitzian. In particular, for every α ∈ [0, α0], q(·, uΠ(·, α), qa) converges uniformly to
q(·, u, qa) on [a, b]T as α tends to 0.

Proof. We use the notations of the proof of Lemma 8. It follows from Lemma 7 that there exists
C ≥ 0 (the Lipschitz constant of FR(u, qa)) such that

‖q(·, uΠ(·, α2), qa)− q(·, uΠ(·, α1), qa)‖∞ ≤ C‖(uΠ(·, α2), qa)− (uΠ(·, α1), qa)‖UQb
= C|α2 − α1|µ1(r)‖y − u(r)‖Rm ,

for all α1 and α2 in [0, α0]. The lemma follows.

We define the so-called first variation vector hΠ(·, u, qa) associated with the needle-like variation
Π = (r, y) as the unique solution on [r, σ∗1(r)]T of the linear ∆-Cauchy problem

h∆(t) =
∂f

∂q
(t, q(t, u, qa), u(r))h(t) +

∂f

∂u
(t, q(t, u, qa), u(r)) (y − u(r)), h(r) = 0. (16)

The existence and uniqueness of hΠ(·, u, qa) are ensured by [15, Theorem 3].
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Proposition 2. The mapping

FΠ(u, qa) : ([0, α0], | · |) −→ (C([r, σ∗1(r)]T,Rn), ‖ · ‖∞)
α 7−→ q(·, uΠ(·, α), qa)

is differentiable at 0, and one has DFΠ(u, qa)(0) = hΠ(·, u, qa).

Proof. We use the notations of the proof of Lemma 8. Recall that (τ, q(τ, uΠ(·, α), qa), uΦ
Π(τ, α)) ∈

KR for ∆-a.e. τ ∈ [a, b)T and for every α ∈ [0, α0] (see Remark 28). For every α ∈ (0, α0] and
every t ∈ [r, σ∗1(r)]T, we define

εΠ(t, α) =
q(t, uΠ(·, α), qa)− q(t, u, qa)

α
− hΠ(t, u, qa).

It suffices to prove that εΠ(·, α) converges uniformly to 0 on [r, σ∗1(r)]T as α tends to 0. For every
α ∈ (0, α0], since the function εΠ(·, α) vanishes at t = r and is absolutely continuous on [r, σ∗1(r)]T,
εΠ(t, α) =

∫
[r,t)T

ε∆
Π(τ, α) ∆τ for every t ∈ [r, σ∗1(r)]T, where

ε∆
Π(τ, α) =

f(τ, q(τ, uΠ(·, α), qa), u(r) + α(y − u(r)))− f(τ, q(τ, u, qa), u(r))

α

− ∂f

∂q
(τ, q(τ, u, qa), u(r))hΠ(τ, u, qa)− ∂f

∂u
(τ, q(τ, u, qa), u(r)) (y − u(r)),

for ∆-a.e. τ ∈ [r, σ∗1(r))T. Using the Taylor formula with integral remainder, we get

ε∆
Π(τ, α) =

∫ 1

0

∂f

∂q
(?θατ ) dθ εΠ(τ, α)

+

(∫ 1

0

∂f

∂q
(?θατ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), u(r))

)
hΠ(τ, u, qa)

+

(∫ 1

0

∂f

∂u
(?θατ ) dθ − ∂f

∂u
(τ, q(τ, u, qa), u(r))

)
(y − u(r)),

where

?θατ = (τ, q(τ, u, qa) + θ(q(τ, uΠ(·, α), qa)− q(τ, u, qa)), u(r) + θα(y − u(r))) ∈ KR.

It follows that ‖ε∆
Π(τ, α)‖Rn ≤ χΠ(τ, α) + LR‖εΠ(τ, α)‖Rn , where

χΠ(τ, α) =

∥∥∥∥(∫ 1

0

∂f

∂q
(?θατ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), u(r))

)
hΠ(τ, u, qa)

∥∥∥∥
Rn

+

∥∥∥∥(∫ 1

0

∂f

∂u
(?θατ ) dθ − ∂f

∂u
(τ, q(τ, u, qa), u(r))

)
(y − u(r))

∥∥∥∥
Rn
.

Therefore, one has

‖εΠ(t, α)‖Rn ≤
∫

[r,σ∗1 (r))T

χΠ(τ, α) ∆τ + LR

∫
[r,t)T

‖εΠ(τ, α)‖Rn ∆τ,

for every t ∈ [r, σ∗1(r)]T. From Lemma 6, ‖εΠ(t, α)‖Rn ≤ ΥΠ(α)eLR(σ∗1(r), r), for every t ∈
[r, σ∗1(r)]T, where ΥΠ(α) =

∫
[r,σ∗1 (r))T

χΠ(τ, α) ∆τ .

To conclude, it remains to prove that ΥΠ(α) converges to 0 as α tends to 0. Since q(τ, uΠ(·, α), qa)
converges uniformly to q(τ, u, qa) on [r, σ∗1(r)]T as α tends to 0 (see Lemma 9) and since ∂f/∂q
and ∂f/∂u are uniformly continuous on KR, the conclusion follows.
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Then, we define the so-called second variation vector wΠ(·, u, qa) associated with the needle-like
variation Π = (r, y) as the unique solution on [σ∗1(r), b]T of the linear ∆-Cauchy problem

w∆(t) =
∂f

∂q
(t, q(t, u, qa), uΦ(t))w(t), w(σ∗1(r)) = hΠ(σ∗1(r), u, qa). (17)

The existence and uniqueness of wΠ(·, u, qa) are ensured by [15, Theorem 3].

Proposition 3. The mapping

FΠ(u, qa) : ([0, α0], | · |) −→ (C([σ∗1(r), b]T,Rn), ‖ · ‖∞)
α 7−→ q(·, uΠ(·, α), qa)

is differentiable at 0, and one has DFΠ(u, qa)(0) = wΠ(·, u, qa).

Proof. We use the notations of the proof of Lemma 8. From Proposition 2, the case σ∗1(r) = b is
already proved. As a consequence, we only focus here on the case σ∗1(r) = σ1(r) < b.

Recall that (τ, q(τ, uΠ(·, α), qa), uΦ
Π(τ, α)) ∈ KR for ∆-a.e. τ ∈ [a, b)T and for every α ∈ [0, α0]

(see Remark 28). For every α ∈ (0, α0] and every t ∈ [σ1(r), b]T, we define

εΠ(t, α) =
q(t, uΠ(·, α), qa)− q(t, u, qa)

α
− wΠ(t, u, qa).

It suffices to prove that εΠ(·, α) converges uniformly to 0 on [σ1(r), b]T as α tends to 0. For every
α ∈ (0, α0], since the function εΠ(·, α) is absolutely continuous on [σ1(r), b]T, we have εΠ(t, α) =
εΠ(σ1(r), α) +

∫
[σ1(r),t)T

ε∆
Π(τ, α) ∆τ for every t ∈ [σ1(r), b]T, where

ε∆
Π(τ, α) =

f(τ, q(τ, uΠ(·, α), qa), uΦ(τ))− f(τ, q(τ, u, qa), uΦ(τ))

α

− ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))wΠ(τ, u, qa),

for ∆-a.e. τ ∈ [σ1(r), b)T. Using the Taylor formula with integral remainder, we get

ε∆
Π(τ, α) =

∫ 1

0

∂f

∂q
(?θατ ) dθ εΠ(τ, α)

+

(∫ 1

0

∂f

∂q
(?θατ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wΠ(τ, u, qa),

where:
?θατ = (τ, q(τ, u, qa) + θ(q(τ, uΠ(·, α), qa)− q(τ, u, qa)), uΦ(τ)) ∈ KR.

It follows that ‖ε∆
Π(τ, α)‖Rn ≤ χΠ(τ, α) + LR‖εΠ(τ, α)‖Rn , where

χΠ(τ, α) =

∥∥∥∥(∫ 1

0

∂f

∂q
(?θατ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wΠ(τ, u, qa)

∥∥∥∥
Rn
.

Therefore, one has

‖εΠ(t, α)‖Rn ≤ ‖εΠ(σ1(r), α)‖Rn +

∫
[σ1(r),b)T

χΠ(τ, α) ∆τ + LR

∫
[σ1(r),t)T

‖εΠ(τ, α)‖Rn ∆τ,

for every t ∈ [σ1(r), b]T. It follows from Lemma 6 that ‖εΠ(t, α)‖Rn ≤ ΥΠ(α)eLR(b, σ1(r)), for
every t ∈ [σ1(r), b]T, where ΥΠ(α) = ‖εΠ(σ1(r), α)‖Rn +

∫
[σ1(r),b)T

χΠ(τ, α) ∆τ .
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To conclude, it remains to prove that ΥΠ(α) converges to 0 as α tends to 0. First, from
Proposition 2, it is easy to see that ‖εΠ(σ1(r), α)‖Rn converges to 0 as α tends to 0. Second, since
q(τ, uΠ(·, α), qa) converges uniformly to q(τ, u, qa) on [σ1(r), b]T as α tends to 0 (see Lemma 9) and
since ∂f/∂q is uniformly continuous on KR, we infer that

∫
[σ1(r),b)T

χΠ(τ, α) ∆τ converges to 0 as

α tends to 0. The conclusion follows.

Lemma 10. Let R > ‖u‖L∞T1 ([a,b)T1 ,Rm) and let (uk, qa,k)k∈N be a sequence of elements of ER(u, qa).

If uk converges to u ∆1-a.e. on [a, b)T1
and qa,k converges to qa in Rn as k tends to +∞, then

hΠ(·, uk, qa,k) converges uniformly to hΠ(·, u, qa) on [r, σ∗1(r)]T as k tends to +∞.

Proof. We use the notations KR, LR, νR and ηR, defined in Lemma 5 and in its proof.
Let us consider the absolutely continuous function defined by εk(·) = hΠ(·, uk, qa,k)−hΠ(·, u, qa)

on [r, σ∗1(r)]T. Let us prove that εk converges uniformly to 0 on [r, σ∗1(r)]T as k tends to +∞. Since
εk(r) = 0, one has

εk(t) =

∫
[r,t)T

∂f

∂q
(τ, q(τ, uk, qa,k), uk(r)) εk(τ) ∆τ

+

∫
[r,t)T

(
∂f

∂q
(τ, q(τ, uk, qa,k), uk(r))− ∂f

∂q
(τ, q(τ, u, qa), u(r))

)
hΠ(τ, u, qa) ∆τ

+

∫
[r,t)T

(
∂f

∂u
(τ, q(τ, uk, qa,k), uk(r))− ∂f

∂u
(τ, q(τ, u, qa), u(r))

)
(y − u(r)) ∆τ

+

∫
[r,t)T

∂f

∂u
(τ, q(τ, uk, qa,k), uk(r)) (u(r)− uk(r)) ∆τ

for every t ∈ [r, σ∗1(r)]T and every k ∈ N. Since (uk, qa,k) ∈ ER(u, qa) for every k ∈ N, it follows
from Remark 28 that (τ, q(τ, uk, qa,k), uΦ

k (τ)) ∈ KR for ∆-a.e. τ ∈ [a, b)T. Hence it follows from
Lemma 6 that ‖εk(t)‖Rn ≤ ΥkeLR(b, r), for every t ∈ [r, σ∗1(r)]T, where Υk is given by

Υk = LRµ1(r)‖u(r)− uk(r)‖Rm

+

∫
[r,σ∗1 (r))T

∥∥∥∥∂f∂q (τ, q(τ, uk, qa,k), uk(r))− ∂f

∂q
(τ, q(τ, u, qa), u(r))

∥∥∥∥ ‖hΠ(τ, u, qa)‖Rn ∆τ

+

∫
[r,σ∗1 (r))T

∥∥∥∥∂f∂u (τ, q(τ, uk, qa,k), uk(r))− ∂f

∂u
(τ, q(τ, u, qa), u(r))

∥∥∥∥ ‖y − u(r)‖Rm ∆τ.

Since µ∆1
({r}) = µ1(r) > 0, uk(r) converges to u(r) as k tends to +∞. Moreover, from the

Lebesgue dominated convergence theorem, (uk, qa,k) converges to (u, qa) in (ER(u, qa), ‖ · ‖UQb)
and, from Lemma 7, q(·, uk, qa,k) converges uniformly to q(·, u, qa) on [a, b]T as k tends to +∞.
Since ∂f/∂q and ∂f/∂u are uniformly continuous on KR, we conclude that Υk converges to 0 as
k tends to +∞. The lemma follows.

Lemma 11. Let R > ‖u‖L∞T1 ([a,b)T1 ,Rm) and let (uk, qa,k)k∈N be a sequence of elements of ER(u, qa).

If uk converges to u ∆1-a.e. on [a, b)T1
and qa,k converges to qa in Rn as k tends to +∞, then

wΠ(·, uk, qa,k) converges uniformly to wΠ(·, u, qa) on [σ∗1(r), b]T as k tends to +∞.

Remark 29. With the same arguments of the proof of Lemma 4, the hypotheses of Lemma 11
give the convergences of uΦ

k to uΦ ∆-a.e. on [a, b)T and, from the Lebesgue dominated convergence
theorem, of (uk, qa,k) to (u, qa) in (ER(u, qa), ‖ · ‖UQb).

25



Proof of Lemma 11. We use the notations KR, LR, νR and ηR, defined in Lemma 5 and in its
proof. From Lemma 10, the case σ∗1(r) = b is already proved. As a consequence, we only focus
here on the case σ∗1(r) = σ1(r) < b.

Let us consider the absolutely continuous function defined by εk(·) = wΠ(·, uk, qa,k)−wΠ(·, u, qa)
on [σ1(r), b]T. Let us prove that εk converges uniformly to 0 on [σ1(r), b]T as k tends to +∞. One
has

εk(t) = εk(σ1(r)) +

∫
[σ1(r),t)T

∂f

∂q
(τ, q(τ, uk, qa,k), uΦ

k (τ)) εk(τ) ∆τ

+

∫
[σ1(r),t)T

(
∂f

∂q
(τ, q(τ, uk, qa,k), uΦ

k (τ))− ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wΠ(τ, u, qa) ∆τ,

for every t ∈ [σ1(r), b]T and every k ∈ N. Since (uk, qa,k) ∈ ER(u, qa) for every k ∈ N, it follows
from Remark 28 that (τ, q(τ, uk, qa,k), uΦ

k (τ)) ∈ KR for ∆-a.e. τ ∈ [σ1(r), b)T. Hence it follows
from Lemma 6 that

‖εk(t)‖Rn ≤ (εk(σ1(r)) + Υk)eLR(b, σ1(r)),

for every t ∈ [σ1(r), b]T, where Υk is given by

Υk =

∫
[σ1(r),b)T

∥∥∥∥∂f∂q (τ, q(τ, uk, qa,k), uΦ
k (τ))− ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

∥∥∥∥ ‖wΠ(τ, u, qa)‖Rn ∆τ.

Since (uk, qa,k) converges to (u, qa) in (ER(u, qa), ‖·‖UQb) and from Lemma 7, q(·, uk, qa,k) converges
uniformly to q(·, u, qa) on [a, b]T as k tends to +∞. Since ∂f/∂q is continuous and bounded
on KR and since uΦ

k converges to uΦ ∆-a.e. on [a, b)T, the Lebesgue dominated convergence
theorem concludes that Υk converges to 0 as k tends to +∞. Finally, from Lemma 10, one has
εk(σ1(r)) = wΠ(σ1(r), uk, qa,k)−wΠ(σ1(r), u, qa) = hΠ(σ1(r), uk, qa,k)− hΠ(σ1(r), u, qa) converges
to 0 as k tends to +∞. The lemma follows.

4.2.3 Needle-like variation of u at a point s ∈ RD1

Let s ∈ L[a,b)T(f(·, q(·, u, qa), uΦ)) ∩ RD1 and z ∈ Rm. Note that s ∈ T1 and then Φ(s) = s. We
define the needle-like variation q = (s, z) of u at s by

uq(t, β) =

{
z if t ∈ [s, s+ β)T1

,
u(t) if t /∈ [s, s+ β)T1

.

for ∆1-a.e. t ∈ [a, b)T1 and for every β ∈ Vs,b1 ⊂ Vs,b.

Lemma 12. There exists β0 > 0 such that (uq(·, β), qa) ∈ UQb for every β ∈ Vs,b1 ∩ [0, β0].

Proof. Let R = max(‖u‖L∞T1 ([a,b)T1 ,Rm), ‖z‖Rm) + 1 > ‖u‖L∞T1 ([a,b)T1 ,Rm). We use the notations KR,

LR, νR and ηR, defined in the proof of Lemma 5. For every β ∈ Vs,b1 , we have ‖uq(·, β)‖L∞T1 ([a,b)T1 ,Rm) ≤
R and

‖uq(·, β)− u‖L1
T1

([a,b)T1 ,Rm) =

∫
[s,s+β)T1

‖z − u(τ)‖Rm ∆1τ ≤ 2Rβ.

Hence, there exists β0 > 0 such that for every β ∈ Vs,b1 ∩ [0, β0], ‖uq(·, β)− u‖L1
T1

([a,b)T1 ,Rm) ≤ νR

and thus (uq(·, β), qa) ∈ ER(u, qa). The conclusion then follows from Lemma 5.

Lemma 13. The mapping

Fq(u, qa) : (Vs,b1 ∩ [0, β0], | · |) −→ (C([a, b]T,Rn), ‖ · ‖∞)
β 7−→ q(·, uq(·, β), qa)
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is Lipschitzian. In particular, for every β ∈ Vs,b1 ∩ [0, β0], q(·, uq(·, β), qa) converges uniformly to
q(·, u, qa) on [a, b]T as β tends to 0.

Proof. We use the notations of the proof of Lemma 12. From Lemma 7, there exists C ≥ 0
(Lipschitz constant of FR(u, qa)) such that

‖q(·, uq(·, β2), qa)− q(·, uq(·, β1), qa)‖∞ ≤ C‖(uq(·, β2), qa)− (uq(·, β1), qa)‖UQb
≤ 2CR|β2 − β1|,

for all β1 and β2 in Vs,b1 ∩ [0, β0]. The lemma follows.

According to [15, Theorem 3], we define the variation vector wq(·, u, qa) associated with the
needle-like variation q = (s, z) as the unique solution on [s, b]T of the linear ∆-Cauchy problem

w∆(t) =
∂f

∂q
(t, q(t, u, qa), uΦ(t))w(t), w(s) = f(s, q(s, u, qa), z)− f(s, q(s, u, qa), u(s)). (18)

Proposition 4. For every δ ∈ Vs,b\{0}, the mapping

Fq(u, qa) : (Vs,b1 ∩ [0, β0], | · |) −→ (C([s+ δ, b]T,Rn), ‖ · ‖∞)
β 7−→ q(·, uq(·, β), qa)

is differentiable at 0, and one has DFq(u, qa)(0) = wq(·, u, qa).

Proof. We use the notations of the proof of Lemma 12. Recall that (τ, q(τ, uq(·, β), qa), uΦ
q(τ, β))

and (τ, q(τ, uq(·, β), qa), z) belong to KR for every β ∈ Vs,b1 ∩ [0, β0] and for ∆-a.e. τ ∈ [a, b)T (see

Remark 28). For every β ∈ Vs,b1 ∩ (0, β0] and every t ∈ [s+ β, b]T, we define

εq(t, β) =
q(t, uq(·, β), qa)− q(t, u, qa)

β
− wq(t, u, qa).

It suffices to prove that εq(·, β) converges uniformly to 0 on [s+ β, b]T as β tends to 0. Note that,

for every δ ∈ Vs,b\{0}, it suffices to consider β ≤ δ. For every β ∈ Vs,b1 ∩ (0, β0], the function
εq(·, β) is absolutely continuous on [s + β, b]T and εq(t, β) = εq(s + β, β) +

∫
[s+β,t)T

ε∆
q(τ, β) ∆τ ,

for every t ∈ [s+ β, b]T, where

ε∆
q(τ, β) =

f(τ, q(τ, uq(·, β), qa), uΦ(τ))− f(τ, q(τ, u, qa), uΦ(τ))

β

− ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))wq(τ, u, qa),

for ∆-a.e. τ ∈ [s+ β, b)T. Using the Taylor formula with integral remainder, we get

ε∆
q(τ, β) =

∫ 1

0

∂f

∂q
(?θβτ ) dθ εq(τ, β)

+

(∫ 1

0

∂f

∂q
(?θβτ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wq(τ, u, qa),

where:
?θβτ = (τ, q(τ, u, qa) + θ(q(τ, uq(·, β), qa)− q(τ, u, qa)), uΦ(τ)) ∈ KR.

It follows that ‖ε∆
q(τ, β)‖Rn ≤ χq(τ, β) + LR‖εq(τ, β)‖Rn , where

χq(τ, β) =

∥∥∥∥(∫ 1

0

∂f

∂q
(?θβτ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wq(τ, u, qa)

∥∥∥∥
Rn
.
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Therefore, one has

‖εq(t, β)‖Rn ≤ ‖εq(s+ β, β)‖Rn +

∫
[s+β,b)T

χq(τ, β) ∆τ + LR

∫
[s+β,t)T

‖εq(τ, β)‖Rn ∆τ,

for every t ∈ [s+β, b]T, and it follows from Lemma 6 that ‖εq(t, β)‖Rn ≤ Υq(β)eLR(b, s), for every
t ∈ [s+ β, b]T, where Υq(β) = ‖εq(s+ β, β)‖Rn +

∫
[s+β,b)T

χq(τ, β) ∆τ .

To conclude, it remains to prove that Υq(β) converges to 0 as β tends to 0. Since q(·, uq(·, β), qa)
converges uniformly to q(·, u, qa) on [s + β, b]T as β tends to 0 (see Lemma 13) and since ∂f/∂q
is uniformly continuous on KR, we first infer that

∫
[s+β,b)T

χq(τ, β) ∆τ converges to 0 as β tends

to 0. Secondly, let us prove that ‖εq(s + β, β)‖Rn converges to 0 as β tends to 0. By continuity,
wq(s + β, u, qa) converges to wq(s, u, qa) as β to 0. Moreover, since q(·, uq(·, β), qa) converges
uniformly to q(·, u, qa) on [a, b]T as β tends to 0 and since f is uniformly continuous on KR, it
follows that f(·, q(·, uq(·, β), qa), z) converges uniformly to f(·, q(·, u, qa), z) on [a, b]T as β tends to
0. Therefore, it suffices to note that

1

β

∫
[s,s+β)T

(
f(τ, q(τ, u, qa), z)− f(τ, q(τ, u, qa), uΦ(τ))

)
∆τ

converges to wq(s, u, qa) = f(s, q(s, u, qa), z)− f(s, q(s, u, qa), u(s)) as β tends to 0 since s is a ∆-
Lebesgue point of f(·, q(·, u, qa), z) by continuity and of f(·, q(·, u, qa), uΦ(·)) by hypothesis. Then
‖εq(s+ β, β)‖Rn converges to 0 as β tends to 0, and hence Υq(β) converges to 0 as well.

Lemma 14. Let R > ‖u‖L∞T1 ([a,b)T1 ,Rm) and let (uk, qa,k)k∈N be a sequence of elements of ER(u, qa).

If uk converges to u ∆1-a.e. on [a, b)T1
, uk(s) converges to u(s) and qa,k converges to qa as k tends

to +∞, then wq(·, uk, qa,k) converges uniformly to wq(·, u, qa) on [s, b]T as k tends to +∞.

Proof. The proof is similar to the one of Lemma 11, replacing σ1(r) with s.

4.2.4 Variation of the initial condition qa

Let q′a ∈ Rn.

Lemma 15. There exists γ0 > 0 such that (u, qa + γq′a) ∈ UQb for every γ ∈ [0, γ0].

Proof. Let R = ‖u‖L∞T1 ([a,b)T1 ,Rm)+1 > ‖u‖L∞T1 ([a,b)T1 ,Rm). We use the notations KR, LR, νR and ηR,

defined in the proof of Lemma 5. There exists γ0 > 0 such that ‖qa + γq′a− qa‖Rn = γ‖q′a‖Rn ≤ ηR
for every γ ∈ [0, γ0], and hence (u, qa+γq′a) ∈ ER(u, qa). Then the claim follows from Lemma 5.

Lemma 16. The mapping

Fq′a(u, qa) : ([0, γ0], | · |) −→ (C([a, b]T,Rn), ‖ · ‖∞)
γ 7−→ q(·, u, qa + γq′a)

is Lipschitzian. In particular, for every γ ∈ [0, γ0], q(·, u, qa+γq′a) converges uniformly to q(·, u, qa)
on [a, b]T as γ tends to 0.

Proof. We use the notations of the proof of Lemma 15. From Lemma 7, there exists C ≥ 0
(Lipschitz constant of FR(u, qa)) such that

‖q(·, u, qa + γ2q
′
a)− q(·, u, qa + γ1q

′
a)‖∞ ≤ C‖(u, qa + γ2q

′
a)− (u, qa + γ1q

′
a)‖UQb

= C|γ2 − γ1|‖q′a‖Rn .

for all γ1 and γ2 in [0, γ0].
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According to [15, Theorem 3], we define the variation vector wq′a(·, u, qa) associated with the
perturbation q′a as the unique solution on [a, b]T of the linear ∆-Cauchy problem

w∆(t) =
∂f

∂q
(t, q(t, u, qa), uΦ(t))w(t), w(a) = q′a. (19)

Proposition 5. The mapping

Fq′a(u, qa) : ([0, γ0], | · |) −→ (C([a, b]T,Rn), ‖ · ‖∞)
γ 7−→ q(·, u, qa + γq′a)

is differentiable at 0, and one has DFq′a(u, qa)(0) = wq′a(·, u, qa).

Proof. We use the notations of the proof of Lemma 15. Note that, from Remark 28, (τ, q(τ, u, qa+
γq′a), uΦ(τ)) ∈ KR for every γ ∈ [0, γ0] and for ∆-a.e. τ ∈ [a, b)T. For every γ ∈ (0, γ0] and every
t ∈ [a, b]T, we define

εq′a(t, γ) =
q(t, u, qa + γq′a)− q(t, u, qa)

γ
− wq′a(t, u, qa).

It suffices to prove that εq′a(·, γ) converges uniformly to 0 on [a, b]T as γ tends to 0. For every
γ ∈ (0, γ0], since the function εq′a(·, γ) vanishes at t = a and is absolutely continuous on [a, b]T,
εq′a(t, γ) =

∫
[a,t)T

ε∆
q′a

(τ, γ) ∆τ , for every t ∈ [a, b]T, where

ε∆
q′a

(τ, γ) =
f(τ, q(τ, u, qa + γq′a), uΦ(τ))− f(τ, q(τ, u, qa), uΦ(τ))

γ

− ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ), τ)wq′a(τ, u, qa),

for ∆-a.e. τ ∈ [a, b)T. Using the Taylor formula with integral remainder, we get

ε∆
q′a

(τ, γ) =

∫ 1

0

∂f

∂q
(?θγτ ) dθ · εq′a(τ, γ)

+

(∫ 1

0

∂f

∂q
(?θγτ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wq′a(τ, u, qa),

where
?θγτ = (τ, q(τ, u, qa) + θ(q(τ, u, qa + γq′a)− q(τ, u, qa)), uΦ(τ)) ∈ KR.

It follows that ‖ε∆
q′a

(τ, γ)‖Rn ≤ χq′a(τ, γ) + LR‖εq′a(τ, γ)‖Rn , where

χq′a(τ, γ) =

∥∥∥∥(∫ 1

0

∂f

∂q
(?θγτ ) dθ − ∂f

∂q
(τ, q(τ, u, qa), uΦ(τ))

)
wq′a(τ, u, qa)

∥∥∥∥
Rn
.

Hence

‖εq′a(t, γ)‖Rn ≤
∫

[a,b)T

χq′a(τ, γ) ∆τ + LR

∫
[a,t)T

‖εq′a(τ, γ)‖Rn ∆τ,

for every t ∈ [a, b]T, and it follows from Lemma 6 that ‖εq′a(t, γ)‖Rn ≤ Υq′a
(γ)eLR(b, a), for every

t ∈ [a, b]T, where Υq′a
(γ) =

∫
[a,b)T

χq′a(τ, γ) ∆τ.

To conclude, it remains to prove that Υq′a
(γ) converges to 0 as γ tends to 0. Since q(·, u, qa+γq′a)

converges uniformly to q(·, u, qa) on [a, b]T as γ tends to 0 (see Lemma 16) and since ∂f/∂q is
uniformly continuous on KR, the conclusion follows.

Lemma 17. Let R > ‖u‖L∞T ([a,b)T,Rm) and let (uk, qa,k)k∈N be a sequence of elements of ER(u, qa).
If uk converges to u ∆1-a.e. on [a, b)T1 and qa,k converges to qa in Rn as k tends to +∞, then
wq′a(·, uk, qa,k) converges uniformly to wq′a(·, u, qa) on [a, b]T as k tends to +∞.

Proof. The proof is similar to the one of Lemma 11, replacing σ1(r) with a.
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4.3 Proof of Theorem 3

We are now in a position to prove the PMP. In the sequel, we consider q∗ an optimal trajectory,
associated with an optimal sampled-data control u∗ and with b∗ ∈ T, with b∗ = b if the final time
is fixed. We set q∗a = q∗(a).

4.3.1 The augmented system

As in [43, 46], we consider the augmented system in Rn+1

q̄∆(t) = f̄(t, q̄(t), uΦ(t)), (20)

with q̄ = (q, q0)> the augmented state with values in Rn × R, and f̄ : T × Rn+1 × Rm →
Rn+1, the augmented dynamics, defined by f̄(t, q̄, u) = (f(t, q, u), f0(t, q, u))>. Note that f̄
does not depend on q0. We will always impose as an initial condition q0(a) = 0, so that
q0(b) =

∫
[a,b)T

f0(τ, q(τ), uΦ(τ)) ∆τ . Hence, the additional coordinate q0 stands for the cost.

Denoting q̄∗a = (q∗a, 0)>, we have (u∗, q̄∗a) ∈ UQ̄b
∗

. We set q̄∗ = q̄(·, u∗, q̄∗a) = (q∗, q0∗)>.
Hence, q̄∗ is a solution of (20) on [a, b∗]T associated with the control u∗, satisfying q0∗(a) = 0
and g(q∗(a), q∗(b∗)) ∈ S and minimizing q0(b) over all possible trajectories q̄ solutions of (20) on
[a, b]T, where b ∈ T and associated with a control u ∈ L∞T1

([a, b)T1 ,Ω), satisfying q0(a) = 0 and
g(q(a), q(b)) ∈ S.

4.3.2 Application of the Ekeland variational principle

For the completeness, we recall a simplified (but sufficient) version of the Ekeland variational
principle.

Theorem 4 ([26]). Let (E, dE) be a complete metric space and let J : E → R+, λ 7→ J(λ) be a
continuous nonnegative mapping. Let ε > 0 and λ∗ ∈ E such that J(λ∗) ≤ ε. Then, there exists
λε ∈ E such that dE(λε, λ

∗) ≤
√
ε and, −

√
ε dE(λ, λε) ≤ J(λ)− J(λε), for every λ ∈ E.

Let R > ‖u∗‖L∞T1 ([a,b∗)T1 ,Rm). Recall that ER(u∗, q̄∗a) ⊂ UQ̄b
∗

(see Lemma 5). We set

EΩ,0
R (u∗, q̄∗a) = {(u, q̄a) ∈ ER(u∗, q̄∗a) | u ∈ L∞T1

([a, b∗)T1
,Ω), q̄a = (qa, 0)}.

Note that (u∗, q̄∗a) ∈ EΩ,0
R (u∗, q̄∗a). Since Ω is closed, it follows from the (partial) converse of

the Lebesgue dominated convergence theorem that (EΩ,0
R (u∗, q̄∗a), ‖ · ‖UQ̄b∗ ) is a closed subset of

L1
T1

([a, b∗)T1 ,Rm) × Rn+1 and then is a complete metric space. For every ε > 0, we define the

functional JRε : (EΩ,0
R (u∗, q̄∗a), ‖ · ‖UQ̄b∗ )→ R+ by

JRε (u, q̄a) =

(((
q0(b∗, u, q̄a)− q0∗(b∗) + ε

)+)2

+ d2
S (g (qa, q(b

∗, u, q̄a)))

)1/2

.

Since g and d2
S are continuous and so is FR(u∗, q̄∗a) (see Lemma 7), it follows that JRε is continuous

on (EΩ,0
R (u∗, q̄∗a), ‖ · ‖UQ̄b∗ ). Moreover, one has JRε (u∗, q̄∗a) = ε and, from optimality of q0∗(b∗),

JRε (u, q̄a) > 0 for every (u, q̄a) ∈ EΩ,0
R (u∗, q̄∗a). It follows from the Ekeland variational principle

that, for every ε > 0, there exists (uRε , q̄
R
a,ε) ∈ EΩ,0

R (u∗, q̄∗a) such that ‖(uRε , q̄Ra,ε)−(u∗, q̄∗a)‖UQ̄b∗ ≤
√
ε

and

−
√
ε ‖(u, q̄a)− (uRε , q̄

R
a,ε)‖UQ̄b∗ ≤ J

R
ε (u, q̄a)− JRε (uRε , q̄

R
a,ε), (21)
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for every (u, q̄a) ∈ EΩ,0
R (u∗, q̄∗a). In particular, uRε converges to u∗ in L1

T1
([a, b∗)T1

,Rm) and q̄Ra,ε
converges to q̄∗a as ε tends to 0. Besides, setting

ψ0R
ε =

−1

JRε (uRε , q̄
R
a,ε)

(
q0(b∗, uRε , q̄

R
a,ε)− q0∗(b∗) + ε

)+ ≤ 0 (22)

and

ψRε =
−1

JRε (uRε , q̄
R
a,ε)

(
g(qRa,ε, q(b

∗, uRε , q̄
R
a,ε))− PS

(
g(qRa,ε, q(b

∗, uRε , q̄
R
a,ε))

))
∈ Rj , (23)

note that |ψ0R
ε |2 + ‖ψRε ‖2Rj = 1 and −ψRε ∈ OS[PS(g(qRa,ε, q(b

∗, uRε , q̄
R
a,ε)))].

Using a compactness argument, the continuity of FR(u∗, q̄∗a) (see Lemma 7), the C1-regularity
of g and the (partial) converse of the Lebesgue dominated convergence theorem, we infer that
there exists a sequence (εk)k∈N of positive real numbers converging to 0 such that uRεk converges to
u∗ ∆1-a.e. on [a, b∗)T1

, q̄Ra,εk converges to q̄∗a, g(qRa,εk , q(b
∗, uRεk , q̄

R
a,εk

)) converges to g(q∗a, q
∗(b∗)) ∈

S, dg(qRa,εk , q(b
∗, uRεk , q̄

R
a,εk

)) converges to dg(q∗a, q
∗(b∗)), ψ0R

εk
converges to some ψ0R ≤ 0, and

ψRεk converges to some ψR ∈ Rj as k tends to +∞, with |ψ0R|2 + ‖ψR‖2Rj = 1 and −ψR ∈
OS[g(q∗a, q

∗(b∗))] (see Lemma 1).
In the next lemmas, we use the inequality (21) respectively with needle-like variations of uRεk at

right-scattered points of T1 and at right-dense points of T1, and then variations of q̄Ra,εk . Hence, we
infer some important inequalities by taking the limit in k. Note that these variations were defined
in Section 4.2 for any dynamics f , and that we apply them here to the augmented system (20),
associated with the augmented dynamics f̄ .

Lemma 18. For every r ∈ [a, b∗)T1
∩RS1 and every y ∈ DΩ

stab(u∗(r)), considering the needle-like
variation Π = (r, y) as defined in Section 4.2.2, one has

ψ0Rw0
Π(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψR, wΠ(b∗, u∗, q̄∗a)

〉
Rn
≤ 0, (24)

where the variation vector w̄Π = (wΠ, w
0
Π)> is defined by (17) (replacing f with f̄).

Proof. Since uRεk converges to u∗ ∆1-a.e. on [a, b∗)T1 , it follows that uRεk(r) converges to u∗(r) as
k tends to +∞, where ‖u∗(r)‖Rm < R. It follows that ‖uRεk(r)‖Rm < R and 0 is not isolated in
Ξ = {α ∈ [0, 1], uRεk(r) + α(y − uRεk(r)) ∈ Ω} for any sufficently large k, see Definition 1. Fixing
such a large k, one has uRεk,Π(·, α) ∈ L∞T1

([a, b∗)T1
,Ω) and

‖uRεk,Π(·, α)‖L∞T1 ([a,b∗)T1 ,Rm) ≤ max(‖uRεk‖L∞T1 ([a,b∗)T1 ,Rm), ‖uRεk,Π(r, α)‖Rm)

≤ max(R, ‖uRεk(r)‖Rm + α‖y − uRεk(r)‖Rm),

for every α ∈ Ξ. Moreover, one has

‖uRεk,Π(·, α)− u∗‖L1
T1

([a,b∗)T1 ,Rm) ≤ ‖uRεk,Π(·, α)− uRεk‖L1
T1

([a,b∗)T1 ,Rm) + ‖uRεk − u
∗‖L1

T1
([a,b∗)T1 ,Rm)

≤ αµ1(r)‖y − uRεk(r)‖Rm +
√
εk.

Therefore (uRεk,Π(·, α), q̄Ra,εk) ∈ EΩ,0
R (u∗, q̄∗a) for every α ∈ Ξ sufficiently small and every k sufficiently

large. It then follows from (21) that

−
√
εk ‖uRεk,Π(·, α)− uRεk‖L1

T1
([a,b∗)T1 ,Rm) ≤ JRεk(uRεk,Π(·, α), q̄Ra,εk)− JRεk(uRεk , q̄

R
a,εk

),

and thus

−
√
εk µ1(r)‖y − uRεk(r)‖Rm ≤

JRεk(uRεk,Π(·, α), q̄Ra,εk)2 − JRεk(uRεk , q̄
R
a,εk

)2

α(JRεk(uRεk,Π(·, α), q̄Ra,εk) + JRεk(uRεk , q̄
R
a,εk

))
.

31



Using Proposition 3, we infer that

lim
α→0

JRεk(uRεk,Π(·, α), q̄Ra,εk)2 − JRεk(uRεk , q̄
R
a,εk

)2

α

= 2
(
q0(b∗, uRεk , q̄

R
a,εk

)− q0∗(b∗) + εk
)+
w0

Π(b∗, uRεk , q̄
R
a,εk

)

+ 2
〈
g(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))− PS

(
g(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)
,

∂g

∂q2
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))wΠ(b∗, uRεk , q̄
R
a,εk

)
〉
Rj
.

Since JRεk(uRεk,Π(·, α), q̄Ra,εk) converges to JRεk(uRεk , q̄
R
a,εk

) as α tends to 0, using (22) and (23) it
follows that

−
√
εk µ1(r)‖y − uRεk(r)‖Rm ≤ −ψ0R

εk
w0

Π(b∗, uRεk , q̄
R
a,εk

)

−
〈( ∂g

∂q2
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)>
ψRεk , wΠ(b∗, uRεk , q̄

R
a,εk

)

〉
Rn
.

By letting k tend to +∞ and using Lemma 11, the lemma follows.

We define the sets

A =
{
t ∈ [a, b∗)T1

| uRεk(t) does not converge tou∗(t) when k tends to +∞
}
,

Ak =
{
t ∈ [a, b∗)T1 | t /∈ L[a,b∗)T(f̄(·, q̄(·, uRεk , q̄

R
a,k), uRΦ

εk
))
}
, k ∈ N.

Lemma 19. We have µ∆1

(
A ∪

⋃
k∈NAk

)
= 0.

Proof. Since µ∆1(A) = 0, it suffices to prove that µ∆1(Ak) = 0 for every k ∈ N. Let k ∈ N. We set

Bk =
{
t ∈ [a, b∗)T | t /∈ L[a,b∗)T(f̄(·, q̄(·, uRεk , q̄

R
a,k), uRΦ

εk
))
}
.

We know that µ∆(Bk) = 0. Hence, Bk ⊂ RD and consequently, µ∆(Bk) = µL(Bk) = 0. Since
Ak ⊂ Bk, µL(Ak) = 0. To conclude, it suffices to prove that µ∆1

(Ak) = µL(Ak). To see this, let
us prove that Ak ⊂ RD1. By contradiction, let us assume that there exists t ∈ Ak ∩ RS1. Since
t ∈ Ak ⊂ RD, we conclude that uRΦ

εk
is constant on [t,min(σ1(t), b∗))T, where (t,min(σ1(t), b∗))T 6=

∅. As a consequence, f̄(·, q̄(·, uRεk , q̄
R
a,k), uRΦ

εk
) is continuous on [t,min(σ1(t), b∗))T and consequently

t ∈ L[a,b∗)T(f̄(·, q̄(·, uRεk , q̄
R
a,k), uRΦ

εk
)). This leads to a contradiction.

We define the set of Lebesgue times t ∈ [a, b∗)T1
by

L R,1
[a,b∗)T

= [a, b∗)T1\

(
A ∪

⋃
k∈N

Ak

)
.

Note that µ∆1
(L R,1

[a,b∗)T
) = µ∆1

([a, b∗)T1
) and then µ∆1

(L R,1
[a,b∗)T

∩ RD1) = µ∆1
([a, b∗)T1

∩ RD1).

Lemma 20. For every s ∈ L R,1
[a,b∗)T

∩ RD1 and for every z ∈ Ω ∩ BRm(0, R), considering the

needle-like variation q = (s, z) as defined in Section 4.2.3, one has

ψ0Rw0
q(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψR, wq(b∗, u∗, q̄∗a)

〉
Rn
≤ 0, (25)

where the variation vector w̄q = (wq, w
0
q)> is defined by (18) (replacing f with f̄).
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Proof. For every k ∈ N and any β ∈ Vs,b
∗

1 , we recall that uRεk,q(·, β) ∈ L∞T1
([a, b∗)T1

,Ω) and

‖uRεk,q(·, β)‖L∞T1 ([a,b∗)T1 ,Rm) ≤ max(‖uRεk‖L∞T1 ([a,b∗)T1 ,Rm), ‖z‖Rm) ≤ R,

and

‖uRεk,q(·, β)− u∗‖L1
T1

([a,b∗)T1 ,Rm) ≤ ‖uRεk,q(·, β)− uRεk‖L1
T1

([a,b∗)T1 ,Rm) + ‖uRεk − u
∗‖L1

T1
([a,b∗)T1 ,Rm)

≤ 2Rβ +
√
εk.

Therefore (uRεk,q(·, β), q̄Ra,εk) ∈ EΩ,0
R (u∗, q̄∗a) for every β sufficiently small and every k sufficiently

large. It then follows from (21) that

−
√
εk ‖uRεk,q(·, β)− uRεk‖L1

T1
([a,b∗)T1 ,Rm) ≤ JRεk(uRεk,q(·, β), q̄Ra,εk)− JRεk(uRεk , q̄

R
a,εk

),

and thus

−2R
√
εk ≤

JRεk(uRεk,q(·, β), q̄Ra,εk)2 − JRεk(uRεk , q̄
R
a,εk

)2

β(JRεk(uRεk,q(·, β), q̄Ra,εk) + JRεk(uRεk , q̄
R
a,εk

))
.

Using Proposition 4, we infer that

lim
β→0

JRεk(uRεk,q(·, β), q̄Ra,εk)2 − JRεk(uRεk , q̄
R
a,εk

)2

β

= 2
(
q0(b∗, uRεk , q̄

R
a,εk

)− q0∗(b∗) + εk
)+
w0
q(b∗, uRεk , q̄

R
a,εk

)

+ 2
〈
g(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))− PS

(
g(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)
,

∂g

∂q2
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))wq(b∗, uRεk , q̄
R
a,εk

)
〉
Rj
.

Since JRεk(uRεk,q(·, β), q̄Ra,εk) converges to JRεk(uRεk , q̄
R
a,εk

) as β tends to 0, using (22) and (23) it follows
that

−2R
√
εk ≤ −ψ0R

εk
w0
q(b∗, uRεk , q̄

R
a,εk

)−
〈( ∂g

∂q2
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)>
ψRεk , wq(b∗, uRεk , q̄

R
a,εk

)

〉
Rn
.

By letting k tend to +∞, and using Lemma 14, the lemma follows.

Lemma 21. For every q̄a ∈ Rn × {0}, considering the variation of initial point as defined in
Section 4.2.4, one has

ψ0Rw0
q̄a(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψR, wq̄a(b∗, u∗, q̄∗a)

〉
Rn

≤ −
〈( ∂g

∂q1
(q∗a, q

∗(b∗))
)>
ψR, qa

〉
Rn
, (26)

where the variation vector w̄q̄a = (wq̄a , w
0
q̄a)> is defined by (19) (replacing f with f̄).

Proof. For every k ∈ N and every γ ≥ 0, one has

‖q̄Ra,εk + γq̄a − q̄∗a‖Rn+1 ≤ γ‖q̄a‖Rn+1 + ‖q̄Ra,εk − q̄
∗
a‖Rn+1 ≤ γ‖q̄a‖Rn+1 +

√
εk.

Therefore (uRεk , q̄
R
a,εk

+ γq̄a) ∈ EΩ,0
R (u∗, q̄∗a) for every γ sufficiently small and every k sufficiently

large. It then follows from (21) that

−
√
εk ‖q̄Ra,εk + γq̄a − q̄Ra,εk‖Rn+1 ≤ JRεk(uRεk , q̄

R
a,εk

+ γq̄a)− JRεk(uRεk , q̄
R
a,εk

),
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and thus

−
√
εk ‖q̄a‖Rn+1 ≤

JRεk(uRεk , q̄
R
a,εk

+ γq̄a)2 − JRεk(uRεk , q̄
R
a,εk

)2

γ(JRεk(uRεk , q̄
R
a,εk

+ γq̄a) + JRεk(uRεk , q̄
R
a,εk

))
.

Using Proposition 5, we infer that

lim
γ→0

JRεk(uRεk , q̄
R
a,εk

+ γq̄a)2 − JRεk(uRεk , q̄
R
a,εk

)2

γ

= 2
(
q0(b∗, uRεk , q̄

R
a,εk

)− q0∗(b∗) + εk
)+
w0
q̄a(b∗, uRεk , q̄

R
a,εk

)

+ 2
〈
g(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))− PS

(
g(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)
,

∂g

∂q1
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

)) qa +
∂g

∂q2
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))wq̄a(b∗, uRεk , q̄
R
a,εk

)
〉
Rj
.

Since JRεk(uRεk , q̄
R
a,εk

+γq̄a) converges to JRεk(uRεk , q̄
R
a,εk

) as γ tends to 0, using (22) and (23) it follows
that

−
√
εk ‖q̄a‖Rn+1 ≤ −ψ0R

εk
w0
q̄a(b∗, uRεk , q̄

R
a,εk

)−
〈( ∂g

∂q1
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)>
ψRεk , qa

〉
Rn

−
〈( ∂g

∂q2
(qRa,εk , q(b

∗, uRεk , q̄
R
a,εk

))
)>
ψRεk , wq̄a(b∗, uRεk , q̄

R
a,εk

)

〉
Rn
.

By letting k tend to +∞, and using Lemma 17, the lemma follows.

At this step, we have obtained in the previous lemmas the three inequalities (24), (25) and (26),
valuable for any R > ‖u∗‖L∞T1 ([a,b)T1 ,Rm). Recall that |ψ0R|2 + ‖ψR‖2Rj = 1 and that −ψR ∈
OS[g(q∗a, q

∗(b∗))]. Then, considering a sequence of real numbers R` converging to +∞ as ` tends
to +∞, we infer that there exist ψ0 ≤ 0 and ψ ∈ Rj such that ψ0R` converges to ψ0 and ψR`

converges to ψ as ` tends to +∞, and moreover |ψ0|2 + ‖ψ‖2Rj = 1 and −ψ ∈ OS[g(q∗a, q
∗(b∗))].

We set L 1
[a,b∗)T

=
⋂
`∈N L R`,1

[a,b∗)T
. Note that µ∆1(L 1

[a,b∗)T
) = µ∆1([a, b∗)T1) and consequently

µ∆1(L 1
[a,b∗)T

∩ RD1) = µ∆1([a, b∗)T1 ∩ RD1). Taking the limit in ` in (24), (25) and (26), we get
the following lemma.

Lemma 22. For every r ∈ [a, b∗)T1
∩ RS1, and every y ∈ DΩ

stab(u∗(r)), one has

ψ0w0
Π(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψ,wΠ(b∗, u∗, q̄∗a)

〉
Rn
≤ 0, (27)

where the variation vector w̄Π = (wΠ, w
0
Π)> associated with the needle-like variation Π = (r, y) of

u is defined by (17) (replacing f with f̄).
For every s ∈ L 1

[a,b∗)T
∩ RD1 and every z ∈ Ω, one has

ψ0w0
q(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψ,wq(b∗, u∗, q̄∗a)

〉
Rn
≤ 0, (28)

where the variation vector w̄q = (wq, w
0
q)> associated with the needle-like variation q = (s, z) of

u is defined by (18) (replacing f with f̄);
For every q̄a ∈ Rn × {0}, one has

ψ0w0
q̄a(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψ,wq̄a(b∗, u∗, q̄∗a)

〉
Rn

≤ −
〈( ∂g

∂q1
(q∗a, q

∗(b∗))
)>
ψ, qa

〉
Rn
, (29)
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where the variation vector w̄q̄a = (wq̄a , w
0
q̄a)> associated with the variation q̄a of the initial point

q̄∗a is defined by (19) (replacing f with f̄).

This result concludes the application of the Ekeland variational principle. The last step of the
proof consists of deriving the PMP from these inequalities.

4.3.3 Proof of Remark 11

In this subsection, we prove the formulation of the PMP mentioned in Remark 11. Note that we
do not prove, at this step, the transversality condition on the final time.

We define p̄ = (p, p0)> as the unique solution on [a, b∗]T of the backward shifted linear ∆-Cauchy
problem

p̄∆(t) = −
(
∂f̄

∂q̄
(t, q̄∗(t), u∗Φ(t))

)>
p̄σ(t), p̄(b∗) =

(( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψ,ψ0

)>
. (30)

The existence and uniqueness of p̄ are ensured by [15, Theorem 6]. Since f̄ does not depend on q0,
it is clear that p0 is constant with p0 = ψ0 ≤ 0.

Right-dense points. Let s ∈ L 1
[a,b∗)T

∩RD1 and z ∈ Ω. Since the function 〈p̄, w̄q(·, u∗, q̄∗a)〉Rn+1

is absolutely continuous and satisfies 〈p̄, w̄q(·, u∗, q̄∗a)〉∆Rn+1 = 0 ∆-a.e. on [s, b∗)T from the Leibniz
formula (3), this function is constant on [s, b∗]T. It thus follows from (28) that

〈p̄(s), w̄q(s, u∗, q̄∗a)〉Rn+1 = 〈p̄(b∗), w̄q(b∗, u∗, q̄∗a)〉Rn+1

= ψ0w0
q(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψ,wq(b∗, u∗, q̄∗a)

〉
Rn
≤ 0,

and since w̄q(s, u∗, q̄∗a) = f̄(s, q̄∗(s), z)− f̄(s, q̄∗(s), u∗(s)), we finally get

〈p̄(s), f̄(s, q̄∗(s), z)〉Rn+1 ≤ 〈p̄(s), f̄(s, q̄∗(s), u∗(s))〉Rn+1 .

Since this inequality holds for every z ∈ Ω, we have obtained the maximization condition

H(s, q∗(s), p(s), p0, u∗(s)) = max
z∈Ω

H(s, q∗(s), p(s), p0, z).

Right-scattered points. Let r ∈ [a, b∗)T1
∩RS1 and y ∈ DΩ

stab(u∗(r)). Since 〈p̄, w̄Π(·, u∗, q̄∗a)〉Rn+1

is absolutely continuous and satisfies 〈p̄, w̄Π(·, u∗, q̄∗a)〉∆Rn+1 = 0 ∆-a.e. on [σ∗1(r), b∗)T from the Leib-
niz formula (3), this function is constant on [σ∗1(r), b∗]T. It thus follows from (27) that

〈p̄(σ∗1(r)), w̄Π(σ∗1(r), u∗, q̄∗a)〉Rn+1 = 〈p̄(b∗), w̄Π(b∗, u∗, q̄∗a)〉Rn+1

= ψ0w0
Π(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q∗a, q
∗(b∗))

)>
ψ,wΠ(b∗, u∗, q̄∗a)

〉
Rn
≤ 0.

We recall that w̄Π(σ∗1(r), u∗, q̄∗a) = h̄Π(σ∗1(r), u∗, q̄∗a) where the variation vector h̄Π = (hΠ, h
0
Π)>

associated with the needle-like variation Π = (r, y) of u is defined by (16) (replacing f by f̄). Since
h̄Π(r, u∗, q̄∗a) = 0, it follows that∫

[r,σ∗1 (r))T

〈p̄, h̄Π(·, u∗, q̄∗a)〉∆Rn+1(τ) ∆τ = 〈p̄(σ∗1(r)), h̄Π(σ∗1(r), u∗, q̄∗a)〉Rn+1 ≤ 0.

Using the Leibniz formula (3) in the integrand and using (16) (replacing f by f̄) and (30), we
finally get 〈∫

[r,σ∗1 (r))T

∂H

∂u
(τ, q∗(τ), pσ(τ), p0, u∗(r)) ∆τ , y − u∗(r)

〉
Rm
≤ 0.
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Transversality conditions. The transversality condition on the adjoint vector p at the final
time b∗ has been obtained by definition (note that −ψ ∈ OS[g(q∗a, q

∗(b∗))] as mentioned previously).
Let us now establish the transversality condition on the adjoint vector p at the initial time a. Let
q̄a ∈ Rn×{0}. With the same arguments as before, we prove that the function 〈p̄, w̄q̄a(·, u∗, q̄∗a)〉Rn+1

is constant on [a, b∗]T. It thus follows from (29) that

〈p̄(a), w̄q̄a(a, u∗, q̄∗a)〉Rn+1 = 〈p̄(b∗), w̄q̄a(b∗, u∗, q̄∗a)〉Rn+1

= ψ0w0
q̄a(b∗, u∗, q̄∗a) +

〈( ∂g
∂q2

(q̄∗a, q̄
∗(b∗))

)>
ψ,wq̄a(b∗, u∗, q̄∗a)

〉
Rn

≤ −
〈( ∂g

∂q1
(q∗a, q

∗(b∗))
)>
ψ, qa

〉
Rn
,

and since w̄q̄a(a, u∗, q̄∗a) = q̄a = (qa, 0), we finally get〈
p(a) +

( ∂g
∂q1

(q∗a, q
∗(b∗))

)>
ψ, qa

〉
Rn
≤ 0.

Since this inequality holds for every q̄a ∈ Rn × {0}, the left-hand equality of (8) follows.

4.3.4 End of the proof

In this subsection, we conclude the proof of Theorem 3. Note that we prove the fourth item of
Theorem 3 in Remark 30 below. To conclude the proof of Theorem 3, we will use the result claimed
in Remark 11. Let us separate two cases.

Firstly, let us assume that g is submersive at (q∗a, q
∗(b∗)). In that case, we have just to prove that

the couple (p, p0) is not trivial. Let us assume that p is trivial. Then p(a) = p(b∗) = 0 and, from
the transversality conditions on the adjoint vector, ψ belongs to the kernels of (∂q1g(q∗a, q

∗(b∗)))>

and (∂q2g(q∗a, q
∗(b∗)))>. It follows that ψ belongs to the orthogonal of the image of the differential

of g at (q∗a, q
∗(b∗)). Since g is submersive at (q∗a, q

∗(b∗)), it implies that ψ = 0. Since the couple
(ψ, p0) is not trivial, we conclude that p0 6= 0 and then (p, p0) is not trivial. This concludes the
proof of Theorem 3 in this first case.

Secondly, let us assume that g is not necessarily submersive at (q∗a, q
∗(b∗)). In that case, one

has to note that if q∗ is an optimal solution of (OSDCP)
T
T1

associated with the function g and

with the closed convex S, then q∗ is also an optimal solution of (OSDCP)
T
T1

associated with the
function g̃ defined by g̃(q1, q2) = (q1, q2) (which is submersive at any point) and with the closed
convex S̃ = {q∗a}×{q∗(b∗)}. Then, we get back to the above first case, but with a different function
g and a different closed convex S that would impact only the third item of Theorem 3.

Remark 30. Throughout this remark, we assume that all asumptions of the fourth item of The-
orem 3 are satisfied. As mentioned in Remark 5, Theorem 3 can be easily extended (without the
fourth item, for now) to the framework of dynamical systems on time scales with several sampled-
data controls with different sets of controlling times. To prove the transversality condition on the
final time, we use the multiscale version (without the fourth item) of Theorem 3.

Let δ > 0 be such that [b∗ − δ, b∗ + δ] ⊂ T and such that (f, f0) is of class C1 on [b∗ − δ, b∗ +
δ] × Rn × Rm. Obviously, the trajectory q∗, associated with b∗ and u∗, is an optimal solution of
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the optimal sampled-data control problem, with free final time b ∈ (b∗ − δ, b∗ + δ), defined by

(O)[b∗−δ,b∗+δ]



min

∫ b

b∗−δ
f0(τ, q(τ), uΦ(τ)) dτ,

q̇(t) = f(t, q(t), uΦ(t)), for a.e. t ∈ [b∗ − δ, b),
u ∈ L∞T1

(T1,Ω),

(q(b∗ − δ), g(q∗(a), q(b))) ∈ {q∗(b∗ − δ)} × S.

We set ρ∗(s) = δ(s−1)+b∗, x∗(s) = q∗ ◦ρ∗(s) and w∗(s) = δ, for every s ∈ [0, 1]. With the change
of variable x = q ◦ ρ and with ρ̇ = w, it is clear that the augmented trajectory (ρ∗, x∗), associated
with the augmented control (w∗, u∗), is an optimal solution of the optimal sampled-data control
problem, with fixed final time s = 1, defined by

(O)[0,1]



min

∫ 1

0

w(τ)f0(ρ(τ), x(τ), uΦ◦ρ(τ)) dτ,

(ρ̇(t), ẋ(t)) = (w(t), w(t)f(ρ(t), x(t), uΦ◦ρ(t))), for a.e. t ∈ [0, 1),

(w, u) ∈ L∞([0, 1], [δ/2,+∞))× L∞T1
(T1,Ω),

(ρ(0), x(0)) = (b∗ − δ, q∗(b∗ − δ)),
(ρ(1), g(q∗(a), x(1))) ∈ [b∗ − δ, b∗ + δ]× S.

In this new optimal sampled-data control problem, the sampled-data controls w and u are defined
on different time scales. Its Hamiltonian H̃ is H̃(ρ, x, pρ, px, p

0, w, u) = pρw+ 〈px, wf(ρ, x, u)〉Rn +
p0wf0(ρ, x, u). Applying the multiscale version (without the fourth item) of Theorem 3, since w∗

takes its values in the interior of the constraint set [δ/2,+∞), it follows in particular that

∂H̃

∂w
(ρ∗(s), x∗(s), pρ(s), px(s), p0, w∗(s), u∗,Φ◦ρ

∗
(s)) = 0,

for almost every s ∈ [0, 1). Moreover, since ρ∗(1) = b∗ belongs to the interior of (b∗ − δ, b∗ + δ),
we can select (pρ, px) such that pρ(1) = 0 (usual transversality condition on the adjoint vector). It
follows that

〈px(s), f(ρ∗(s), x∗(s), u∗,Φ◦ρ
∗
(s)〉Rn + p0f0(ρ∗(s), x∗(s), u∗,Φ◦ρ

∗
(s)) = −pρ(s),

for almost every s ∈ [0, 1]. We have thus proved that the function t 7→ H(t, q∗(t), p(t), p0, u∗Φ(t))
coincides, almost everywhere on [b∗ − δ, b∗), with a continuous function vanishing at t = b∗.

Remark 31. Another method in order to prove the fourth item of Theorem 3 consists of consider-
ing variations of the final time b in a neighborhood of b∗ and to modify accordingly the functional
of Section 4.3.2 to which Ekeland’s variational principle is applied.

4.4 Proof of Theorem 2

The following proof can be read independently of the rest of Section 4. It is inspired from [50,
Chap. 6]. We only treat the case where the final time b ∈ T is fixed. The proof can be easily
adapted to the case of a free final time.

Let us consider a sequence (qk)k∈N ofM, associated with sampled-data controls uk ∈ L∞T1
(T1,Ω),

minimizing the cost considered in (OSDCP)
T
T1

. It follows from the assumptions that the sequence

(f(·, qk, uΦ
k ), f0(·, qk, uΦ

k ))k∈N is bounded in L2
T([a, b)T,Rn+1). Hence a subsequence (that we do not
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relabel) converges in the weak topology of L2
T([a, b)T,Rn+1) to a function (F, F 0). Moreover, a sub-

sequence of (qk(a))k∈N (that we do not relabel) converges in Rn and we denote the limit by x(a). We
define the absolutely continuous functions x(t) = x(a)+

∫
[a,t)T

F (τ)∆τ and x0(t) =
∫

[a,t)T
F 0(τ)∆τ .

In particular, note the pointwise convergence of (qk)k∈N to x on [a, b]T. Since g is continuous and
since S is closed, we have g(x(a), x(b)) ∈ S. Note that x0(b) is equal to the infimum of admis-
sible costs. To conclude the proof, we have to prove the existence of u ∈ L∞T1

(T1,Ω) such that

x(t) = x(a) +
∫

[a,t)T
f(τ, x(τ), uΦ(τ))∆τ and x0(t) =

∫
[a,t)T

f0(τ, x(τ), uΦ(τ))∆τ .

The sequence (f(·, x, uΦ
k ), f0(·, x, uΦ

k ))k∈N is bounded in L2
T([a, b)T,Rn+1). Hence, a subsequence

(that we do not relabel) converges in the weak topology of L2
T([a, b)T,Rn+1) to some (F̃ , F̃ 0). It

follows from the Lebesgue dominated convergence theorem and from the global Lipschitz continuity
of f in q on [a, b]T × BRn(0,M) × Ω that

∫
[a,b)T

ϕ(τ)F (τ)∆τ =
∫

[a,b)T
ϕ(τ)F̃ (τ)∆τ for every ϕ ∈

L2
T([a, b)T,R). Hence F = F̃ (and similarly F 0 = F̃ 0) ∆-a.e. on [a, b)T.

We define the set W of functions Θ ∈ L2
T([a, b)T,Rn+1) such that Θ(t) ∈ W(t, x(t)) for ∆-a.e.

t ∈ [a, b)T. It follows from the assumptions that W is a closed (convex) subset of L2
T([a, b)T,Rn+1)

with its usual topology, and thus with its weak topology as well (see [19]). We infer that (F, F 0) =
(F̃ , F̃ 0) ∈ W. Hence, for ∆-a.e. t ∈ [a, b)T, there exists v(t) ∈ Ω such that (F (t), F 0(t)) =
(f(t, x(t), v(t)), f0(t, x(t), v(t))). Note that v can be selected µ∆-measurable on [a, b)T.5

Since RS1 ∩ [a, b)T is at most countable, using a diagonal argument, there exists a subsequence
of (uk)k∈N (that we do not relabel) such that uk(r) converges to some ur ∈ Ω for every r ∈
RS1 ∩ [a, b)T. It follows from the Lebesgue dominated convergence theorem that x(t) = x(a) +∫

[a,t)T
f(τ, x(τ), uΦ(τ))∆τ and x0(t) =

∫
[a,t)T

f0(τ, x(τ), uΦ(τ))∆τ , where u is defined by u(t) = ur
if t = r ∈ RS1∩[a, b)T and u(t) = v(t) if t ∈ RD1∩[a, b)T. It is easy to prove that u ∈ L∞T1

([a, b)T1
,Ω)

(the µ∆1-measurability of u on [a, b)T1 is established as in the proof of Proposition 1). This
concludes the proof of Theorem 2.
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2005.

[51] E. Trélat. Optimal control and applications to aerospace: some results and challenges. J.
Optim. Theory Appl. 154(3):713–758, 2012.

41


	Introduction
	Main result
	Preliminaries on time scale calculus
	Optimal sampled-data control problems on time scales
	Pontryagin maximum principle for (OSDCP)TT1
	Preliminaries on convexity and stable -dense directions
	Main result


	Applications and further comments
	A model for optimal consumption with sampled-data control
	Continuous-time setting T= R+
	Discrete-time setting T= N

	Non-extension of several classical properties

	Proofs
	Preliminaries
	Relations between u and u
	Recalls on -Cauchy-Lipschitz results

	Needle-like variations of the control, and variation of the initial condition
	General variation of (u,qa)
	Needle-like variation of u at a point r RS1
	Needle-like variation of u at a point s RD1
	Variation of the initial condition qa

	Proof of Theorem 3
	The augmented system
	Application of the Ekeland variational principle
	Proof of Remark 11
	End of the proof

	Proof of Theorem 2


