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Clock Synchronization and Distributed Estimation

in Highly Dynamic Networks:

An Information Theoretic Approach

Ofer Feinerman∗ Amos Korman †

Abstract

We consider the External Clock Synchronization problem in dynamic sensor networks. Initially, sensors

obtain inaccurate estimations of an external time reference and subsequently collaborate in order to synchro-

nize their internal clocks with the external time. For simplicity, we adopt the drift-free assumption, where

internal clocks are assumed to tick at the same pace. Hence, the problem is reduced to an estimation problem,

in which the sensors need to estimate the initial external time. This work is further relevant to the problem of

collective approximation of environmental values by biological groups.

Unlike most works on clock synchronization that assume static networks, this paper focuses on an extreme

case of highly dynamic networks. Specifically, we assume a non-adaptive scheduler adversary that dictates in

advance an arbitrary, yet independent, meeting pattern. Such meeting patterns fit, for example, with short-time

scenarios in highly dynamic settings, where each sensor interacts with only few other arbitrary sensors.

We propose an extremely simple clock synchronization algorithm that is based on weighted averages, and

prove that its performance on any given independent meeting pattern is highly competitive with that of the

best possible algorithm, which operates without any resource or computational restrictions, and knows the

meeting pattern in advance. In particular, when all distributions involved are Gaussian, the performances of

our scheme coincide with the optimal performances. Our proofs rely on an extensive use of the concept of

Fisher information. We use the Cramér-Rao bound and our definition of a Fisher Channel Capacity to quan-

tify information flows and to obtain lower bounds on collective performance. This opens the door for further

rigorous quantifications of information flows within collaborative sensors.
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1 Introduction

1.1 Background and Motivation

Representing and communicating information is a main interest of theoretical distributed computing [35]. How-

ever, such studies often seem disjoint from what may be the largest body of work regarding coding and com-

munication: Information theory [8, 39]. Perhaps the main reason for this stems from the fact that theoretical

distributed computing studies are traditionally concerned with noiseless models of communication, in which the

content of a message that passes from one node to another is not distorted. This reliability in transmission relies

on an implicit assumption that error-corrections is guaranteed by a lower level protocol that is responsible for

implementing communication. Indeed, when bandwidth is sufficiently large, one can encode a message with a

large number of error-correcting bits in a way that makes communication noise practically a non-issue.

In some distributed scenarios, however, distortion in communication is unavoidable. One example concerns

the classical problem of clock synchronization, which has attracted a lot of attention from both theoreticians in

distributed computing [2,26,29,34,41], as well as practitioner engineers [7,11,12,14,18,37,40], see [28,38,44,46]

for comprehensive surveys. In this problem, processors need to synchronize their internal clocks (either among

themselves only or with respect to a global time reference) relying on relative time measurements between clocks.

Due to unavoidable unknown delays in communication, such measurements are inherently noisy. Furthermore,

since the source of the noise is the delays, error-correction does not seem to be of any use for reducing the noise.

The situation becomes even more complex when processors are mobile, preventing them from reducing errors by

averaging repeated measurements to the same processors, and from contacting reliable processors. Indeed, the

clock synchronization problem is particularly challenging in the context of wireless sensor networks and ad hoc

networks which are typically formed by autonomous, and often mobile, sensors without central control.

Distributed computing models which include noisy communication call for a rigorous comprehensive study

that employs information theoretical tools. Indeed, a recent trend in the engineering community is to view the

clock synchronization problem from a signal processing point of view, and adopt tools from information theory

(e.g., the Cramér-Rao bound) to bound the affect/impact of inherent noise [6, 7, 18, 25], see [46] for a survey.

However, this perspective has hardly received any attention by theoreticians in distributed computing that mostly

focused on worst case message delays [2, 4, 26, 29], which do not seem to be suitable for information theoretic

considerations. In fact, very few works on clock synchronisation consider a system with random delays and

analyse it following a rigorous theoretical distributed algorithmic type of analysis. An exception to that is the

work of Lenzen el al. [27], but also that work does not involve information theory. In this current paper, we

study the clock synchronization problem through the purely theoretical distributed algorithmic perspective while

adopting the signal processing and information theoretic point of view. In particular, we adopt tools from Fisher

Information theory [42, 47].

We consider the external version of the problem [9, 12, 14, 32, 34, 44] in which processors (referred to as sen-

sors hereafter) collaborate in order to synchronize their clocks with an external global clock. Informally, sensors

initially obtain inaccurate estimates1 of a global (external) time τ∗ ∈ R reference, and subsequently collaborate

to align their internal clocks to be as close as possible to the external clock. To this end, sensors communicate

through uni-directional pairwise interactions that include inherently noisy measurements of the relative devia-

tion between their internal clocks and, possibly, some complementary information. To focus on the problems

occurred by the initial inaccurate estimations of τ∗ and the noise in the communication we restrict our attention

to drift-free settings [2,29], in which all clocks tick at the same rate. This setting essentially reduces the problem

1Traditional protocols like NTP [31] and TEMPO [17] use an external standard like GPS (Global Positioning System) or UTC (Uni-

versal Time) to synchronize networks. However, the use of of such systems poses a high demand for energy which is usually undesired

in sensor networks. Hence, works in sensor networks typically assume that one source processor obtains an accurate estimate of the

global time reference and essentially governs the synchronization of the rest of the sensors [34]. Here, we generalize this framework by

assuming that each processor may initially have a different estimate quality of the global time reference, and our goal is to investigate

what can be achieved given the qualities of initial estimations.
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to the problem of estimating τ∗. See, e.g., [16, 43, 45] for works on estimation in the engineering community.

With very few exceptions that effectively deal with dynamic settings [10, 23], almost all works on clock

synchronization (and estimation) considered static networks. Indeed, the construction of efficient clock synchro-

nization algorithms for dynamic networks is considered as a very important and challenging task2 [38, 44]. This

paper addresses this challenge by considering highly dynamic networks in which sensors have little or no control

on who they interact with. Specifically, we assume a non-adaptive scheduler adversary that dictates in advance a

meeting-pattern for the sensors. However, the adversary we assume is not unlimited. Specifically, for simplicity,

in this initial work we restrict the adversary to provide independent-meeting patterns only, in which it is guaran-

teed that whenever a sensor views another sensor, their transitive histories are disjoint3. Although they are not

very good representatives of communication in static networks, independent meeting patterns fit well with highly

stochastic communication patterns during short-time scales, in which each sensor observes only few other arbi-

trary sensors (see more discussion in Section 2.1). Given such an adversarial meeting-pattern, we are concerned

with minimizing the deviation of each internal clock from the global time.

As our objective is to model small and simple sensors, we are interested in algorithms that employ elementary

internal computations and economic use of communication. We use competitive analysis to evaluate the perfor-

mances of algorithms, comparing them to the best possible algorithm that knows the whole meeting pattern in

advance and operates under the most liberal version of the model that allows for unrestricted resources in terms

of memory and communication capacities, and individual computational ability.

1.2 Our contribution

Lower bounds on optimal performance. We first consider algorithm Opt, the best possible algorithm op-

erating on the given independent meeting pattern. We note that specifying Opt seems challenging, especially

since we do not assume a prior distribution on the starting global time, and hence the use of Bayesian statistics

seems difficult. Fortunately, for our purposes, we are merely interested in lower bounding the performances on

that algorithm. We achieved that by relating the smallest possible variance of a sensor at a given time to the

largest possible Fisher Information (FI) of the sensor at that time. This measure quantifies the sensor’s current

knowledge regarding the relative deviation between its local time and the global time. We provide a recursive

formula to calculate Ja, the FI at sensor a, for any sensor a. Specifically, initially, the FI at a sensor is the Fisher

information in the distribution family governing its initial deviation from the global time (see Section 2.4 for the

formal definitions). When sensor a observes sensor b, the FI at a after this observation (denoted by J ′
a) satisfies:

J ′
a ≤ Ja +

1
1
Jb

+ 1
JN

, (1)

where JN is the Fisher Information in the noise distribution related to the observation. To obtain this formula we

prove a generalized version of the Fisher information inequality [42, 47]. Relying on the Cramér-Rao bound [8],

this formula is then used to bound the corresponding variance under algorithm Opt. Specifically, the variance of

the internal clock of sensor a is at least 1/Ja.

Equation 1 provides immediate bounds on the convergence time. Specifically, the inequality sets a bound of JN

for the increase in the FI per interaction. In analogy to Channel Capacity as defined by Shannon [8] we term this

upper bound as the Fisher Channel Capacity. Given small ǫ > 0, we define the convergence time T (ǫ) as the

minimal number of observations required by the typical sensor until its variance drops below ǫ2 (see Section 2.4

for the formal definition). Let J0 denote the median initial Fisher Information of sensors. Based on the Fisher

Channel Capacity we prove the following.

2For example, dynamic meeting patterns prevent the use of classical external clock synchronization algorithms (e.g., [31,34]) that are

based on one or few source sensors that obtain accurate estimation of the global time and govern the synchronization of other sensors.
3Another informal way to view such patterns is that they guarantee that, given the global time, whenever a sensor views another sensor,

their local clocks are independent; see Section 2.1 for a formal definition.
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Theorem 1.1. Assume that J0 ≪ 1/ǫ2 for some small ǫ > 0, then T (ǫ) ≥ ( 1
ǫ2 − J0)/JN ≈ 1/ǫ2JN .

A highly competitive elementary algorithm. We propose a simple clock synchronization algorithm and prove that

its performance on any given independent meeting pattern is highly competitive with that of the optimal one. That

is, estimations of global time at each sensor remain unbiased throughout the execution and the variance at any

given time is ∆0-competitive with the best possible variance, where ∆0 is initial Fisher-tightness (see definition

in Section 2.4. In contrast to the optimal algorithm that may be based on transmitting complex functions in each

interaction, and on performing complex internal computations, our simple algorithm is based on far more basic

rules. First, transmission is restricted to a single accuracy parameter. Second, using the noisy measurement of

deviation from the observed sensor, and the accuracy of that sensor, the observing sensor updates its internal

clock and accuracy parameter by careful, yet elementary, weighted-averaging procedures.

Our weighted-average algorithm is designed to maximize the flow of Fisher information in interactions. This

is proved by showing that the accuracy parameter is, at all times, both representative of the reciprocal of the

sensor’s variance and close to the Fisher Information upper bound. In short, we proved the following.

Theorem 1.2. There exists a simple weighted-average based clock synchronization algorithm which is ∆0-

competitive (at any sensor and at any time).

Two important corollaries of Theorem 1.2 follow directly from the definition of the initial Fisher-tightness

∆0.

Corollary 1.3. If the number of distributions involved is a constant (independent of the number of sensors), then

our algorithm is O(1)-competitive (at any sensor and at any time).

Corollary 1.4. If all distributions involved are Gaussians, then the performances of our algorithm (in terms of

the variances) coincide with the optimal one, for each sensor and at any time.

We note that our algorithm does not require the use of sensor identities and can thus be also employed in

anonymous networks [1, 13], yielding the same performances.

2 Preliminaries

2.1 The Model

We consider a collection of n sensors that collaborate in order to synchronize their internal clocks with an external

global clock reference. We consider a set F of sufficiently smooth (see definition in Section 2.4), probability

density distributions (pdf ) centered at zero. One specific distribution among the pdfs in F is the noise distribution,

referred to as N(η). Each sensor a is associated with a distribution Φa(x) ∈ F which governs the initialization

deviation of its internal clock from the global time as described in the next paragraph. Depending on the specific

model, we assume that sensor a knows various properties of Φa. In the most restricted version we consider,

sensor a knows only the variance of Φa and in the most liberal version, a knows the full description of Φa.

Execution is initiated when the global time is some τ∗ ∈ R, chosen by an adversary.

Two important cases are (1) when F contains a constant number of distributions (independent of the number

of sensors) and (2) when all distributions in F are Gaussian. Both cases serve as reasonable assumptions for

realistic scenarios. For the former case we shall show asymptotically optimal performances and for the latter

case we will show strict optimal (non-asymptotical) performance.

Local clocks. Each sensor a is initialized with a local clock ℓa(0) ∈ R, randomly chosen according to Φa(x −
τ∗), independently of all other sensors. That is, as Φa(x) is centred around zero, the initial local time ℓa(0) is

distributed around τ∗, and this distribution is governed by Φa. We stress that sensor a does not know the value
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τ∗ and from its own local perspective the execution started at time ℓa(0). Sensors rely on both social interactions

and further environmental cues4 to improve their estimates of the global time. In between such events sensors

are free to perform “shift” operations to adjust their local clocks. To focus on the problems occurred by the

initial inaccurate estimations of τ∗ and the noise in the communication we restrict our attention to drift-free

settings [2, 29], in which all clocks tick at the same rate, consistent with the global time.

Opinions. The drift-free assumption reduces the external clock-synchronization problem to the problem of

estimating τ∗. Indeed, recall that local clocks are initialized to different values but progress at the same rate.

Because sensor a can keep the precise time since the beginning of the execution, its deviation from the global

time can be corrected had it known the difference between, ℓa(0), the initial local clock of a, and τ∗, the global

time when the execution started. Hence, one can view the goal of sensor a as estimating τ∗. That is, without

loss of generality, we may assume that all shifts performed by sensor a throughout the execution are shifts of its

initial position ℓa(0) aiming to align it to be as close as possible to τ∗. Taking this perspective, we associate with

each sensor an opinion variable xa, initialized to xa(0) := ℓa(0), and the goal of a is to have its opinion be as

close as possible to τ∗. We view the opinion xa as an estimator of τ∗, and note that initially, due to the properties

of Φa, this estimator is unbiased, i.e., mean(xa(0) − τ∗) = 0. It is required that at any point in the execution, the

opinion xa remains an unbiased estimator of τ∗, and the goal of a is to minimize its Mean Square Error (MSE).

Due to this simple relation between internal clocks and opinions, in the remaining of this paper, we shall

adopt the latter perspective and concern ourselves only with optimizing the opinions of sensors as estimators for

τ∗, without discussing further the internal clocks.

Rounds. For simplicity of presentation, we assume that the execution proceeds in discrete steps, or rounds.

We stress however that the rounds represent the order in which communication events occur (as determined by

the meeting-pattern, see below), and do not necessarily correspond to the actual time. Given an algorithm A,

the opinion maintained by the algorithm at round t (where t is a non-negative integer) at sensor a is denoted by

xa(t, A). As mentioned, the algorithm aims to keep this value as close as possible to τ∗. When A is clear form

the context, we may omit writing it and use the term xa(t) instead.

In each round t ≥ 1, each sensor may first choose to shift (or not) its opinion, and then, if specified in the

meeting pattern, it observes another specified sensor, thus obtaining some information. To summarize, in each

round, a sensor executes the following consecutive actions: (1) Perform internal computation; (2) Perform an

opinion-shift: xa(t) = xa(t − 1) + ∆(x); and (3) Observe (or not) another sensor. For simplicity, all these three

operations are assumed to occur instantaneously, that is, in zero time.

Mobility and adversarial independent meeting patterns. In cases where sensors are embedded in a Euclidian

space, distances between positioning of sensors may impact the possible interactions. To account for physical

mobility, and be as general as possible, we assume that an oblivious adversary controls the meeting pattern. That

is, the adversary decides (before the execution starts), for each round, which sensor observes which other sensor.

A model that includes an unlimited adversary that controls the meeting pattern is in some sense too general5.

In this preliminary work on the subject, we restrict the adversary to provide only independent meeting patterns, in

which the set of sensors in the transitive history of each observing sensor is disjoint from the one of the observed

sensor. As indicated by this work, the case of independent meeting patterns is already complex. We leave it to

future work to handle dependent meeting patterns.

4In order for the model to include environmental cues, one or more of the sensors can be taken to represent the global clock. The

initial times of these sensors are chosen according to highly concentrated distributions, Φa, around τ
∗ and remain fixed thereafter.

5For example, in our model we assume that sensors are anonymous but we compare such algorithm to the best possible algorithm

that knows the identities of sensors and the whole meeting pattern in advance. In such case, an arbitrary interaction pattern can match all

sensors such that interactions occur only within pairs. As the sensors are anonymous, they cannot distinguish this case from other, more

uniform, meeting patterns and hence, cannot be expected to act as efficiently as algorithms with identified sensors. Some limitations on

the adversarial interaction network are therefore required.
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Formally, given a pattern of meetings P, sensor a and round t, we first define the set of relevant sensors

of a at time t, denoted by Ra(t, P). At time zero, we define Ra(0, P) := {a}, and at round t, Ra(t, P) :=
Ra(t − 1, P) ∪ R(b, t − 1, P) if a observes b at time t − 1 (otherwise Ra(t, P) := Ra(t − 1, P)). A meeting

pattern P is called independent if whenever some sensor a observes a sensor b at some time t, then Ra(t−1, P)∩
R(b, t−1, P) = ∅ . Note that an independent meeting pattern guarantees that given τ∗, the internal clocks of two

interacting sensors are independent. However, given τ∗ and the internal clock of a, the internal clock of b and the

relative time measurement between them are dependent (this point is explained in further details in Section 3).

Note that independent-meeting patterns are not very good representatives of communication in static net-

works6. On the other hand, independent meeting patterns fit well with highly stochastic short-time scales com-

munication patterns, in which each sensor observes only few other arbitrary sensors. In this sense, such patterns

can be considered as representing an extreme case of dynamic systems.

Because sensors have no control of when their next interaction will occur, or if it will occur at all, we require

that estimates at each sensor be as accurate as possible at any point in time. This requirement is stronger than the

liveness property that is typically required from distributed algorithms [24].

Convergence time. Consider a meeting pattern P. Given small ǫ > 0, the convergence time T (ǫ) of an

algorithm A is defined as the minimal number of observations made by the typical sensor until its variance is less

than ǫ2. More formally, let ρ denote the first round when we have more than half of the population satisfying

var(Xa(t, A)) < ǫ2. For each sensor a, let R(a) denote the number of observations made by a until time ρ. The

convergence time T (ǫ) is defined as the median of R(a) over all sensors a. Note that T (ǫ) is a lower bound on ρ,

since ρ ≥ R(a) for every sensor a.

Communication. We assume that sensors are anonymous and hence, in particular, they do not know who they

observe. Conversely, for the sake of lower bounds, we allow a much more liberal setting, in which sensors have

unique identifiers and know who they interact with.

When a sensor a observes another sensor b at some round t, the information transferred in this interaction

contains a passive component and, possibly, a complementary active one. The passive component is a noisy

relative deviation measurement between their opinions:

d̃ab(t) = xb(t) − xa(t) + η,

where the additive noise term, η, is chosen from the noise probability distribution N(η) ∈ F whose variance is

known to the sensors. (Note that this measurement is equivalent to the relative deviation measurement between

the sensors’ current local times because all clocks tick at the same pace.)

2.2 Elementary algorithms

Our reference for evaluating performances is algorithm Opt which operates under the most liberal version of our

model, which carries no restrictions on memory, communication capacities or internal computational power, and

provides the best possible estimators at any sensor and at any time (we further assume that sensors acting under

Opt know the meeting pattern in advance). In general, algorithm Opt may use complex calculations over very

wasteful memories that include detailed distribution density functions, and possibly, accumulated measurements.

Our main goal is to identify an algorithm whose performance is highly competitive with that of Opt but wherein

communication and memory are economically used, and the local computations simple. Indeed, when it comes

6Indeed, in such patterns a sensor will not contact the same sensor twice, which contradicts many natural communication schemes

in static networks. We note, however, that in some cases, a sequence of multiple consecutive observations between sensors can be

compressed into a single observation of higher accuracy thus reducing the dependencies between observations, and possibly converting a

dependent meeting pattern into an independent one. For example, if sensors have unique identities and sensor a observes sensor b several

times is a row, and it is guaranteed that sensor b did not change its state during these observations, then these observations can be treated

by a as a single, more accurate, observation of b.
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to applications to tiny and limited processors, simplicity and economic use of communication are crucial restric-

tions.

An algorithm is called elementary if the internal state of each sensor a is some real7 number ya ∈ R, and,

more importantly, the internal computations that a sensor can perform consist of a constant number of basic

arithmetic operations, namely: addition, subtraction, multiplication, and division.

2.3 Competitive analysis

Fix a finite family F of smooth pdf ’s centered at zero (see the definition for smoothness in the next paragraph),

and fix an assignment of a distribution Φa ∈ F to each sensor a. For an algorithm A and an independent

meeting pattern P, let Xa(t, A, P) denote the random variable indicating the opinion of sensor a at round t.
Let mean(Xa(t, A, P)) and var(Xa(t, A, P)) denote, respectively, the mean and variance of Xa(t, A, P), where

these are taken over all possible random initial opinions, communication errors, and possibly, coins flipped by

the algorithm. Note that the unbiased assumption requires that mean(Xa(t, A, P)) = τ∗. An algorithm A is

called λ-competitive, if for any independent pattern of meetings P, any sensor a, and at any time t, we have:

var(Xa(t, A, P)) ≤ λ · var(Xa(t, Opt, P)).

2.4 Fisher information and the Cramér-Rao bound

The Fisher information is a standard way of evaluating the amount of information that a set of random measure-

ments holds about an unknown parameter τ of the distribution from which these measurements were taken. We

provide here some definitions for this notion; for more information the reader may refer to [8, 47].

A single variable probability distribution function (pdf ) Φ is called smooth if it satisfies the following con-

ditions, as stated by Stam [42]: (1) Φ(x) > 0 for any x ∈ R, (2) the derivative Φ′ exists, and (3) the integral
∫ 1

Φ(y) (Φ′(y))2dy exists, i.e., Φ′(y) → 0 rapidly enough for |y| → ∞. Note that, in particular, these conditions

hold for natural distributions such as the Gaussian distribution. Recall that we consider a finite set F of smooth

one variable pdfs, one of them being the noise distribution N(η), and all of which are centered at zero.

For a smooth pdf Φ, let Jτ
Φ :=

∫ 1
Φ(y) (Φ′(y))2dy denote the Fisher information in the parameterized family

{(Φ(x, τ)}τ∈R = {(Φ(x − τ)}τ∈R with respect to τ . In particular, let JN = Jτ
N denote the Fisher information

in the parameterized family {N(η − τ)}τ∈R. More generally, consider a multi-variable pdf family {(Φ(z1 −
τ, z2 . . . zk))}τ∈R where τ is a translation parameter. The Fisher information in this family with respect to τ is

defined as:

Jτ
Φ =

∫

1

Φ(z1 − τ, z2 . . . zk)

[

dΦ(z1 − τ, z2 . . . zk)

dτ

]2

dz1, dz2 . . . dzk (if the integral exists)

As previously noted [47], since τ is a translation parameter, Fisher information is both unique (there is no freedom

in choosing the parametrization) and independent of τ .

The Fisher information derives its importance by association with the Cramér-Rao inequality [8]. This in-

equality lower bounds the variance of the best possible estimator of τ∗ by the reciprocal of the Fisher information

that corresponds to the random variables on which this estimator is based.

Theorem 2.1. [The Cramér-Rao inequality] Let X̂ be any unbiased estimator of τ∗ ∈ R which is based on a

multi-variable sample z̄ = (z1, z2 . . . zk) taken from Φ(z1 − τ∗, z2 . . . zk). Then var(X̂) ≥ 1/Jτ
Φ.

Initial Fisher-tightness : To define the initial Fisher-tightness parameter ∆0, we first define the Fisher-tightness

of a single variable smooth distribution Φ centered at zero, as ∆(Φ) = var(Φ) ·Jτ
Φ . Note that, by the Cramér-Rao

bound, ∆(Φ) ≥ 1 for any such distribution Φ. Moreover, equality holds if Φ is Gaussian [8]. Recall that F is

7We assume real numbers for simplicity. It seems reasonable to assume that when sufficiently accurate approximation is stored instead

of the real numbers similar results could be obtained.
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the finite collection of the smooth distributions containing the distributions Φa governing the initial opinions of

sensors. The initial Fisher-tightness ∆0 is the maximum of the Fisher-tightness over all distributions in F and

the noise distribution. Specifically, let ∆0 = max{∆(Φ) | Φ ∈ F}. Two important observations are:

• If F contains a constant number of distributions then ∆0 is a constant.

• If the distributions in F are all Gaussians then ∆0 = 1.

3 Technical difficulties

It is known for a single sensor, one can associate weights to samples so that a weighted-average procedure

can fuse them optimally [30]. The proof therein relies on the assumption that all probability distributions are

Gaussians whose functional forms, indeed, depend on their second moments only. Our setting is more complex,

since it includes arbitrary differentiable pdf ’s and multiple distributed sensors whose relative opinions constantly

change.

The extension to multiple mobile sensors adds another dimension to the problem. One difficulty lies in the

fact that the partial knowledge held by each sensor is relative (e.g., an estimation of the deviation between the

sensor’s opinion and τ∗) and hence may require the sensors to carefully fuse perspectives other than their own.

This difficulty is enhanced, as the sensors constantly shift their opinions. Indeed, for elementary algorithms,

where memory is restricted to a single parameter, storing the sum of previous shifts in the memory of a sensor

is possible, but could drastically limit the degrees of freedom for encoding other information. On the other hand,

without encoding previous shifts, it is not clear how sensor a should treat information it had received from b.

In addition, compression of memory and communication appears to be detrimental. Indeed, maintaining

and communicating highly detailed memories can, in some cases, significantly improve a sensor’s assessment

of the target value. However, maintaining a high degree of detail requires storing an arbitrary number of pdf
moments which may grow with every interaction. Hence, it is not clear how to compress the information into

few meaningful parameters while avoiding the accumulation of errors and runaway behavior.

Several technical difficulties arise when attempting to bound the performances of different algorithms. In nat-

ural type of algorithms, sensors’ memories can be regarded as maintaining pdfs that summarize their knowledge

regarding their deviation from the target value τ∗. One of the analysis difficulties corresponds to the fact that the

pdf held by a sensor at round t depends on many previous deviation measurements in a non-trivial way, and hence

the variance of a realization of the pdf does not necessarily correspond to the variance of the sensors’ opinion,

when taking into account all possible realizations of all measurements. Hence, one must regard each pdf as a

multi-variable distribution. A second problem has to do with dependencies. The independent meeting pattern

guarantees that the memory pdf ’s of two interacting sensors are independent, yet, given the pdf of the observing

sensor, the pdf of the observed sensor and the deviation measurement become dependent. Such dependencies

make it difficult to track the evolution of a sensor’s accuracy of estimation over time. Indeed, to tackle this issue,

we had to extend the Fisher information inequality [36, 42, 47] to a multi-variable dependent convolution case.

4 Lower bounds on the variance of Opt

In this section we provide lower bounds on the performances of algorithm Opt over a fixed independent pattern

of meetings P. Note that we are interested in bounding the performances of Opt and not in specifying its

instructions. Identifying the details of Opt may still be of interest, but it is beyond the scope of this paper.

For simplicity of presentation, we assume that the rules of Opt are deterministic. We note, however, that our

results can easily be extended to the case that Opt is probabilistic. For simplicity of notations, since this section

deals only with algorithm Opt acting over P, we use variables, such as the opinion Xa(t) and the memory Ya(t)
of sensor a, without parametrizing them by neither Opt nor by P.
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Under algorithm Opt, we assume that each sensor holds initially not only the variance of Φa, but the precise

functional form of the distribution Φa (recall, Φa is centered at zero). In addition, we assume that sensors have

unique identifiers and that each sensor knows the whole pattern P in advance. Moreover, we assume that each

sensor a knows for each other sensor b, the pdf Φb governing b’s initial opinion. All this information is stored in

one designated part of the memory of a.

Since Opt does not have any bandwidth constrains, we may assume, without loss of generality, that whenever

some sensor a observes another sensor b, it obtains the whole memory content of b. Since Opt is deterministic, its

previous opinion-shifts can be extracted from its interaction history, which is, without loss of generality, encoded

in its memory8. Hence, when sensor a observes sensor b at some round t, and receives b’s memory together with

the noisy measurement d̃ab(t) = xb(t) − xa(t) + η, sensor a may extract all previous opinion-shifts of both itself

and b, treating the measurement d̃ab(t) as a noisy measurement of the deviation between the initial opinions, i.e.,

d̃ab(0) = xb(0) − xa(0) + η. In other words, to understand the behavior of Opt at round t, one may assume that

sensors never shift their opinions until round t, when they use all memory they gathered to shift their opinion

in the best possible manner9. It follows that apart from the designated memory part that all sensors share, the

memory Ma(t) of sensor a at round t contains the initial opinion Xa(0) and a collection Ya(t − 1) := {d̃bc(0)}bc

of relative deviation measurements between initial opinions. That is, Ma(t) = (X0(t), Ya(t − 1)). This multi-

valued memory variable Ma(t) contains all the information available to a at round t. In turn, this information is

used by the sensor to obtain its opinion Xa(t) which is required to serve as an unbiased estimator of τ∗.

4.1 The Fisher Information of sensors

We now define the notion of the Fisher Information associated with a sensor a at round t. This definition will be

used to bound from below the variance of Xa(t) under algorithm Opt.

Consider the multi-valued memory variable Ma(t) = (X0(t), Ya(t−1)) of sensor a that at round t. Note that

Ya(t−1) is independent of τ∗. Indeed, once the adversary decides on the value τ∗, all sensors’ initial opinions are

chosen with respect to τ∗. Hence, since sensors’ memories contains only relative deviations between opinions,

the memories by themselves do not contain any information regarding τ∗. In contrast, given τ∗, the random

variables Ya(t − 1) and Xa(0) are, in general, dependent. Furthermore, in contrast to Ya(t − 1), the value of

Xa(0) depends on τ∗, as it is chosen according to Φa(x − τ∗). Hence, Ma(t) is distributed according to a

pdf family {(ma(t), τ)} parameterized by a translation parameter τ . Based on Ma(t), the sensor produces an

unbiased estimation Xa(t) of τ∗, that is, it should hold that: mean(Xa(t) − τ∗) = 0, where the mean is taken

with respect to the distribution of the random multi-variable Ma(t).

Definition: The Fisher Information (FI) of sensor a at round t, termed Ja(t), is the the Fisher information in the

parameterized family {(ma(t), τ)}τ∈R with respect to τ .

By the Cramér-Rao bound, the variance of any unbiased estimator used by the sensor a at round t is bounded

from below by the reciprocal of the FI of sensor a at that time. That is, we have:

Lemma 4.1. var(Xa(t)) ≥ 1/Ja(t).

4.2 An upper bound on the Fisher Information Ja(t)

Lemma 4.1 implies that lower bounds on the variance of the opinion of a sensor can be obtained by bounding

from above the corresponding FI. To this end, our next goal is to prove the following recursive inequality.

8In case Opt is probabilistic, previous shifts can be extracted from the memory plus the results of coin flips which may be encoded in

the memory of the sensor as well.
9This observation implies, in particular, that previous opinion-shifts of sensors do not affect subsequent estimators in a way that may

cause a conflict (a conflict may arise, e.g., when optimizing one sensor at one time necessarily makes estimators at another sensor, at a

later time, sub-optimal), hence algorithm Opt is well-defined.
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Theorem 4.2. The FI of sensor a under algorithm Opt satisfies: Ja(t + 1) ≤ Ja(t) + 1/( 1
Jb(t) + 1

JN
).

Proof. Consider the case that at round t, sensor a observes sensor b. After the interaction, the random multi-

variable Ya(t) is composed of: (1) the random variable D̃ab(0) := Xb(0) − Xa(0) + N , corresponding to the

noisy deviation measurement between the initial opinions of a and b, and (2) the relative deviation measurements

in both Ya(t − 1) and Yb(t − 1). We now aim at calculating the FI Ja(t + 1) available to sensor a at time

t + 1, with respect to the parameter τ . This is the FI with respect to τ , in the multi-variable Ma(t + 1) =
(Xa(0), Ya(t)) = (Xa(0), D̃ab(0), Ya(t − 1), Yb(t − 1)), where Xa(0) is distributed according to Φa(x − τ∗).

Taking X̃b(0) = Xa(0)+D̃ab(0) = Xb(0)+N , this latter FI becomes the same as the FI in the random variables:

(Xa(0), X̃b(0), Ya(t − 1), Yb(t − 1)). Since the meeting pattern is independent, then given the environment value

τ∗, the random multi-variable (Xa(0), Ya(t−1)) is independent of the random multi-variable (X̃b(0), Yb(t−1)).

By the additivity property of the Fisher information with respect to independent random multi-variables (see [42]),

the FI Ja(t + 1) therefore equals the FI Ja(t) (which is the FI in the random multi-variable (Xa(0), Ya(t − 1)))

plus the FI J̃b(t) in the random multi-variable (X̃b(0), Yb(t − 1)), both with respect to τ . That is, we have:

Ja(t + 1, A) = Ja(t) + J̃b(t). (2)

Let us now focus on the rightmost term in Equation 2 and calculate J̃b(t). Given that the target value is some τ ,

the distribution of (X̃b(0), Yb(t − 1)) can be described by the following convolution:

fX̃b(0),Yb(t−1)[(x̃b(0), yb(t − 1)) | τ ] =

∫

fXb(0),Yb(t−1)[x̃b(0) − η, yb(t − 1) | τ ] N(η) dη. (3)

Observe that the right hand side of Equation 3 is a convolution of the distribution of (Xb(0), Yb(t − 1)) with the

noise distribution N , where the convolution occurs with respect to the random variable Xb(0). Our goal now is

to bound the Fisher information in this convolution with respect to τ .

The Fisher information inequality [42, 47] bounds the Fisher Information of convolutions of single-variable

distributions. Essentially, the theorem says that if x, y and τ are real values, K(x−τ), R(x−τ) and Q(x−τ) are

parameterized families and K = R ⊗ Q, then J(K) ≤ 1/( 1
J(R) + 1

J(Q)). To apply this inequality to Equation 3,

we generalize it to distribution with multiple variables, where only one of them is convoluted. We rely on the fact

that the random variable Yb(t−1) does not depend on τ∗ (recall, it contains only relative deviation measurements).

This fact turns out to be sufficient to overcome the potential complication rising from the fact that given the envi-

ronmental value τ∗, the random variable Xb(0) and the random multi-variable Yb(t − 1) are no longer indepen-

dent. In Appendix A we prove Lemma A.1 which extends the Fisher information inequality to our multi-variable

(possibly dependent) convolution case, enabling to prove the inequality J̃b(t) ≤ 1/( 1
Jb(t) + 1

JN
). Together with

Equation 2, we obtain the required recursive inequality for the FI. This completes the proof of the theorem.

5 A highly-competitive elementary algorithm

We define an elementaryelementary algorithm, termed ALG, and prove that its performances are highly-competitive

with those of Opt. In this algorithm, each sensor a stores in its memory a single parameter ca ∈ R that represents

its accuracy regarding the quality of its current opinion with respect to τ∗. The initial accuracy of sensor a is set

to ca(0) = 1/var(Φa). When sensor a observes sensor b at some round t, it receives cb(t) and d̃ab(t), and acts as

follows. Sensor a first computes the value ĉb(t) = cb(t)/(1 + cb(t) · var(N)), a reduced accuracy parameter for

sensor b that takes measurement noise into account, and then proceeds as follows:
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Algorithm ALG

• Update opinion: xa(t + 1) = xa(t) + d̃ab(t)·ĉb(t)
ca(t)+ĉb(t) .

• Update accuracy : ca(t + 1) = ca(t) + ĉb(t).

Fix an independent meeting pattern. First, algorithm ALG is designed such that at all times, the opinion is

preserved as an unbiased estimator of τ∗ and the accuracy, ca(t), remains equal to the reciprocal of the current

variance of the opinion Xa(t, ALG). Indeed, the following lemma is proven in Appendix B.

Lemma 5.1. At any round t and for any sensor a, we have: (1) the opinion Xa(t, ALG) serves as an unbiased

estimator of τ∗, and (2) ca(t) = 1/var(Xa(t, ALG)).

We are now ready to analyze the competitiveness of algorithm ALG, by relating the variance of a sensor a
at round t to the corresponding FI, namely, Ja(t). Recall that Lemma 4.1 gives a lower bound on the variance

of algorithm Opt at a sensor a, which depends on the corresponding FI at the sensor. Specifically, we have:

var(Xa(t, Opt)) ≥ 1/Ja(t). Initially, the FI Ja(0) at a sensor a equals the Fisher information in the parameter-

ized family Φa(x − τ) with respect to τ , and hence is at most the initial accuracy ca(0) times ∆0. In Equation

A-3 (see Appendix C) we show that the gain in accuracy following an interaction is always at least as large the

corresponding upper bound on the gain in Fisher information as given in Theorem 4.2, divided by the initial

Fisher-tightness . That is: ca(t + 1) − ca(t) ≥
(

1/( 1
Jb(t) + 1

JN
)
)

/∆0. Informally, this property of ALG can be

interpreted as maximizing the Fisher information flow in each interaction up to an approximation factor of ∆0.

By induction (see proof in Appendix C), we obtain the following.

Lemma 5.2. At every round t, we have ca(t) ≥ Ja(t)/∆0.

Lemmas 4.1, 5.1 and 5.2 can now be combined to yield: var(Xa(t, ALG)) ≤ ∆0 · var(Xa(t, Opt)). This estab-

lishes Theorem 1.2.

Note that if |F | = O(1) (i.e., F contains a constant number of distributions, independent of the number

of sensors) then initial Fisher-tightness ∆0 is a constant, and hence Theorem 1.2 states that ALG is constant-

competitive at any sensor and at any time. We now aim to identify those cases where ALG performs even better.

One such case is when the distributions in F as well as the noise distribution N(η) are all Gaussians. In this

case ∆0 = 1 and Theorem 1.2 therefore states that the variance of ALG equals that of Opt, for any sensor at at

any time. Another case is when |F | is a constant, the noise is Gaussian, but both the population size n and the

round t go to infinity. In this case, analyzed in Appendix D, as time increases, the performances of ALG become

arbitrarily close to those of Opt.

6 The Fisher Channel Capacity and convergence times

For a fixed independent meeting pattern, the FI Ja(t) at a sensor a and round t was defined in Section 4.1 with

respect to algorithm Opt. We note that this definition applies to any algorithm A as long as it is sufficiently

smooth so that the corresponding Fisher informations are well-defined. This quantity Ja(t, A) would respect the

same recursive inequality as state in Theorem 4.2, that is, we have: Ja(t + 1, A) ≤ Ja(t, A) + 1
1

Jb(t,A)
+ 1

JN

. This

directly implies the following:

Ja(t + 1, A) − Ja(t, A) ≤ JN . (4)

The inequality above sets a bound of JN for the increase in FI per round. In analogy to Channel Capacity as

defined by Shannon [8] we term this upper bound as the Fisher Channel Capacity.

The restriction on information flow as given by the Fisher Channel Capacity can be translated into lower bounds

for convergence time of algorithm Opt (and hence also apply for any algorithm). Recall, ρ is the first round when
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we have more than half of the population satisfying var(Xa(t)) < ǫ2. By Lemma 4.1, a sensor, a, with variance

smaller than ǫ2 must have a large FI, specifically, Ja(ρ) ≥ 1/ǫ2. To get some intuition on the convergence time,

assume that the number of sensors is odd, and let J0 denote the median initial FI of sensors (this is the median of

the FI, JΦa , over all sensors a), and assume J0 ≪ 1/ǫ2. By definition, more than a half of the population have

initial Fisher information at most J0. By the Pigeon-hole principle, at least one sensor has an FI of, at most, J0 at

t = 0 and, at least, 1/ǫ2 at t = ρ. Theorem 1.1 follows by the fact that, by Equation 4, this sensor could increase

its FI by, at most, JN in each observation.

7 Conclusion

We provide a fresh approach to the study of clock synchronization, following a purely theoretic distributed al-

gorithmic type of study and employing techniques from information theory. We have focused on arbitrary, yet

independent, meeting patterns, and demanded the performances of each sensor to be as high as possible at any

point in the execution. We have established lower bounds on the performances of algorithm Opt, the best possi-

ble clock synchronization algorithm operating under the most liberal version of our model. We have identified

algorithm ALG, an extremely simple algorithm whose performances are highly-competitive with those of Opt.

Moreover, under Gaussian conditions, the accuracies of sensors under ALG precisely equal those of Opt.

Algorithm ALG is based on storing and communicating a single accuracy parameter that complements noisy

deviation measurements, and on internal computations and update rules that are based on weighted-average

operations. Our proofs rely on an extensive use of the concept of Fisher information. We use the Cramér-Rao

bound and our definition of a Fisher Channel Capacity to quantify information flows and to obtain lower bounds

on best possible performance. This opens the door for further rigorous quantifications of information flows within

collaborative sensors.

Our information theoretic approach allowed us to tackle the clock synchronization problem in dynamic net-

works. In this initial work, we focus on independent meeting patterns which can be considered as representing

short times scales in highly dynamic scenarios. As evident by this paper, studying independent meeting patterns

is already rather complex. Hence, we leave the study of dependant patterns to future work. Our hope is that

studying such extreme dynamic cases will help to provide tools and insights for future work dealing with other

dynamic scenarios.

This work is further relevant to the problem of collective approximation of environmental values by biological

groups [22].
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APPENDIX

A Extending the Fisher inequality

The Fisher information inequality [42] (see also [5, 36, 47]) applies for three one-variable distribution families

r(z), p1(x1), and p2(x2) parameterized by µ such that r is a convolution of p1 and p2, that is, r(z) =
∫

p1(z −
t) · p2(t)dt. The theorem gives an upper bound of the Fisher information Jµ

r of the family r(z − µ) (with respect

to µ) based on the Fisher information Jµ
p1

and Jµ
p2

of the families p1(x1 − µ), and p2(x2 − µ), respectively.

Specifically, the theorem states that: (α1 + α2)2Jµ
r ≤ α2

1Jµ
p1

+ α2
2Jµ

p2
, for any two real numbers α1 and α2. This

in particular implies that 1/Jµ
r ≥ 1/Jµ

p1
+ 1/Jµ

p2
.

The following lemma extends the Fisher information inequality to the case where the distributions p1 and r
are composed of multiple, not necessarily independent, variables, where the convolution with p2 takes place over

one of the variables of p1.

Lemma A.1. Let {p1(x1 − τ, x̄3)}τ∈R and {p2(x2 − τ)}τ∈R be two pdf families with a translation parameter τ
such that x1 and x2 are real variables, x̄3 is a vector of multiple real valued variables and Jτ

p1(x1−τ,x̄3) and

Jτ
p2(x2−τ) are the corresponding Fisher information with respect to τ . Let r(z − τ, x̄3) =

∫

p1(t − τ, x̄3) · p2(z −

t)dt be the convolution of p1 and p2. Then the Fisher information in the family {r(z − τ, x̄3)}τ∈R with respect

to τ satisfies:
1

Jτ
r(z−τ,x̄3)

≥
1

Jτ
p1(x1−τ,x̄3)

+
1

Jτ
p2(x2−τ)

.

Proof. We start by using the definition of r as a convolution over p2 and the first variable of p1:

r(z − τ, x̄3) =

∫

p1(t − τ, x̄3) · p2(z − t)dt.

We can insert the density function p(x̄3) to rewrite the right hand side as:

∫

p1(t − τ |x̄3) · p(x̄3) · p2(z − t)dt

= p(x̄3)

∫

p1(t − τ |x̄3) · p2(z − t)dt.

Implying that:

r(z − τ |x̄3) =

∫

p1(t − τ |x̄3) · p2(z − t)dt.

We now define the distributions R(z) = r(z − τ |x̄3) and P1(t) = p1(t − τ |x̄3) so that the previous equation

becomes:

R(z) =

∫

P1(t) · p2(z − t)dt,

for which we apply the original Lemma as first proved by Stam [42] to deduce that for any two real numbers α1

and α2, we have:

(α1 + α2)2Jµ
R(z−µ) ≤ α2

1 · Jµ
P1(x1−µ) + α2

2 · Jµ
p2(x2−µ).

Note that Jµ
P1(x1−µ) is well defined since, for a given x̄3, P1(x1 − µ) is proportional to p1(x1 − µ, x̄3) and the

Fisher information integral of p1(x1 − µ, x̄3) converges when integrating over all possible values of x̄3. This
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implies (see [36]) that the Fisher information in the convolution R(z − µ) is well defined and the equation above

holds. We now multiply both sides of the equation by p(x̄3) and integrate over x̄3, to obtain:

(α1 + α2)2
∫

Jµ
R(z−µ) p(x̄3) dx̄3 ≤ α2

1

∫

Jµ
P1(x1−µ) p(x̄3) dx̄3 + α2

2

∫

Jµ
p2(x2) p(x̄3) dx̄3. (A-1)

Plugging in the definitions for Fisher information and R(z), the integral on the left hand side becomes:

∫

Jµ
R(z−µ) p(x̄3)dx̄3 =

∫

Jµ
r(z−µ−τ |x̄3)p(x̄3)dx̄3

=

∫ ∫

1

r(z − µ − τ |x̄3)

(

dr(z − µ − τ, |x̄3)

dµ

)2

dz p(x̄3) dx̄3

=

∫ ∫

1

r(z − µ − τ |x̄3)p(x̄3)

(

d[r(z − µ − τ |x̄3)p(x̄3)]

dµ

)2

dz dx̄3

=

∫ ∫

1

r(z − µ − τ, x̄3)

(

dr(z − µ − τ, x̄3)

dµ

)2

dz dx̄3

=

∫ ∫

1

r(z − µ − τ, x̄3)

(

dr(z − µ − τ, x̄3)

dτ

)2

dz dx̄3

=

∫ ∫

1

r(z̃ − τ, x̄3)

(

dr(z̃ − τ, x̄3)

dτ

)2

dz̃ dx̄3

= Jτ
r(z−τ,x̄3),

where we used z̃ = z − µ and the fact that x̄3 is independent of τ .

Similarly, the integral over the first term on the right hand side of Equation A-1 gives Jτ
p1(x1−τ,x̄3). The last

term is:
∫

Jµ
p2(x2−µ)p(x̄3)dx̄3 = Jµ

p2(x2−µ)

∫

p(x̄3)dx̄3 = Jµ
p2(x2−µ) = Jτ

p2(x2−τ),

by normalization of the distribution x̄3.

Finally, Equation A-1 translates to:

(α1 + α2)2Jτ
r(z−τ,x̄3) ≤ α2

1 · Jτ
p1(x1−τ,x̄3) + α2

2 · Jτ
p2(x2−τ),

for any real α1 and α2. Setting α1 = Jτ
p2(x2−τ) and α2 = Jτ

p1(x1−τ,x̄3), we finally obtain:

1

Jτ
r(z−τ,x̄3)

≥
1

Jτ
p1(x1−τ,x̄3)

+
1

Jτ
p2(x2−τ)

,

as desired.

B Proof of Lemma 5.1

Fix an independent meeting pattern P and a pdf assignment, Φa ∈ F , for each sensor a. Let us now prove the

first part of the lemma, namely, that the opinion Xa(t) at any sensor a and round t serves as an unbiased estimator

ii



for τ∗. The claim holds at time zero, and assume by induction that it holds at round t. Now consider the case that

sensor a observes another sensor b at round t. The opinion of u after the interaction, becomes:

xa(t + 1) = xa(t) +
d̃ab(t) · ĉb(t)

ca(t) + ĉb(t)
=

xa(t)ca(t) + xb(t)ĉb(t)

ca(t) + ĉb(t)
+

η · ĉb(t)

ca(t) + ĉb(t)
. (A-2)

By induction, Xa(t) and Xb(t) are both unbiased estimators of τ∗. Recall now that the noise distribution N(η)
is centered around zero. Moreover, observe that at round t, the accuracy at each sensor a, namely ca(t), is

deterministically defined (given the fixed pattern of meetings, and the assignment of pdf ’s to the sensors). In

particular, at round t, the accuracy s ca(t), cb(t) as well as ĉb(t) are all fixed constants. Equation A-2 therefore

implies the following.

Claim B.1. At any round t and for any sensor a, the opinion xa(t) serves as an unbiased estimator of τ∗.

Claim B.1 established the first part of the lemma. Let us now turn to prove the second part. This part of the

lemma holds for time t = 0 by definition of ca(0). Assume by induction that for any sensor a at round t it holds

that ca(t) = 1/var(Xa(t)) and consider time t+1. We now consider an interaction between two sensors at round

t, in which sensor a observes sensor b. The variance of the new opinion of a is:

var(Xa(t + 1)) = var

(

xa(t) +
d̃abĉb(t)

ca(t) + ĉb(t)

)

= var

(

xa(t)ca(t) + ĉb(t)(xb(t) + η)

ca(t) + ĉb(t)

)

=
c2

a(t) · var(Xa(t)) + ĉ2
b(t) · var(Xb(t) + η)

(ca(t) + ĉb(t))2

=
c2

a(t) · var(Xa(t)) + ĉ2
b(t) · (var(Xb(t)) + var(N(η)))

(ca(t) + ĉb(t))2

=
c2

a(t) · 1/ca(t) + ĉ2
b(t) · (1/cb(t) + var(N(η)))

(ca(t) + ĉb(t))2
=

c2
a(t) · 1/ca(t) + ĉ2

b(t) · 1/ĉb(t)

(ca(t) + ĉb(t))2

=
ca(t) + ĉb(t)

(ca(t) + ĉb(t))2
=

1

(ca(t) + ĉb(t))
=

1

ca(t + 1)
,

which proves the induction step. This complete the proof of Lemma 5.1.

C Proof of Lemma 5.2

By Lemma 5.1 and the definition of ∆0, we have ca(0) ≥ Ja(0)/∆0, and hence Lemma 5.2 holds at time 0.

Assume by induction that the lemma holds at round t and consider an interaction at round t when sensor a
observes sensor b. Let cN = 1/var(N(η)). By definition of algorithm ALG, we have:

ca(t + 1) − ca(t) = ĉb(t) =
1

1/cb(t) + 1/cN
.

By the induction hypothesis applied on sensor b, we have:

1

1/cb(t) + 1/cN
≥

1
∆0

Jb(t) + 1/cN

=
1

∆0
·

1
1

Jb(t) + 1
∆0·cN

.

Again, by definition of ∆0, we have ∆0 ≥ JN /cN . Hence:

ca(t + 1) − ca(t) ≥
1

∆0
·

1
1

Jb(t) + 1
JN

. (A-3)
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This means that the gain in accuracy at sensor a following an observation of sensor b is up to a multiplicative

factor of ∆0 at least as large the corresponding gain in FI of the sensor (operating under Opt).

Finally, applying the induction hypothesis for sensor a at round t, we have ca(t) ≥ Ja(t)/∆0. Plugging this

in Equation A-3, we obtain:

ca(t + 1) ≥
1

∆0
·



Ja(t) +
1

1
Jb(t) + 1

JN



 ≥ Ja(t + 1)/∆0,

where the second inequality holds by Theorem 4.2. This completes the proof of the lemma.

D On the performances of ALG at large times

We now investigate the performances of algorithm ALG at large times, and show that as time increases, the

variance of ALG becomes arbitrarily close to zero, and moreover, the performances of ALG become closer and

closer to those of Opt.

The depth D(P) of a given independent meeting pattern P is defined as the largest round t for which some

sensor observes another sensor. For simplicity, we assume synchronous meeting patterns in which at each round

each sensor observes another sensor, but our results can be easily extended to the case where the number of total

interactions per sensor are all roughly the depth D(P). Note that for any population with n sensors, the depth of

an independent synchronous meeting pattern is at most log2 n. In particular, the depth is finite for populations of

a fixed size. Since our goal is to investigate the behavior of ALG at large times, whenever we consider a round t,
we only inspect populations and corresponding meeting patterns for which the depth is at least t.

In the remaining of this section we fix a family of distributions F and a noise distribution N(η). Given a

round t, let varsup(t) denote the supremum of var(Xa(t, ALG)), taken over (1) all possible populations An =
{a1, a2, · · · , an}, for n = 1, 2 · · · , (2) all assignments of distributions Φa ∈ F to the sensors in An, (3) all

meeting patterns (with depth at least t), and (4) all sensors ai ∈ An. Our next claim implies that as time

increases, the variance of ALG becomes arbitrarily close to zero.

Claim D.1. limt→∞ varsup(t) = 0.

Proof. For a round t, let Cinf(t) = 1/varsup(t). Note that varsup(0) is precisely the maximal variance over the

distributions in F . Hence, Cinf(0) is some positive constant (that depends on F only).

By the definition of Cinf(t) and by Lemma 5.1, it follows that Cinf(t) is the infimum of ca(t), the accuracy

of a sensor a at round t operating under algorithm ALG, taken over all possible populations, all assignments of

distributions Φa ∈ F to sensors, all meeting patterns, and all sensors a.

When sensor a observes sensor b at round t, the gain in accuracy for sensor a is:

1

1/cb(t) + vN
≥

1

2
· min{cb(t),

1

var(N(η))
}.

It follows that Cinf(t) increases in a single round by either at least a multiplicative factor of 3/2 or by at least an

additive constant factor of 1/2var(N(η)). This implies that limt→∞ Cinf(t) = ∞. The proof of the claim now

follows by the definition of Cinf(t).

Since algorithm Opt is superior over algorithm ALG, the same limit property of the variance applies to

algorithm Opt as well. We now claim that, in fact, if the noise N(η) is Gaussian, then the variances in ALG and

Opt go to zero at roughly the same speed.
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Given a round t, let κ(t) denote the supremum of the fraction var(Xa(t, ALG))/var(Xa(t, Opt)), taken over

all possible populations {An}∞
n=1, all assignments of distributions Φa ∈ F to sensors a in An, all meeting

patterns, and all sensors a ∈ An. Note that Theorem 1.2 implies that for any t, we have κ(t) ≤ ∆0.

Lemma D.2. If the noise N(η) is Gaussian then limt→∞ κ(t) = 1.

Proof. Since the noise is Gaussian we have var(N(η)) = 1/JN . Recall the definition of Cinf(t) from the proof

of Claim D.1. Note now that as Cinf(t) becomes larger and larger the gain in accuracy under algorithm ALG

becomes very close to JN . Indeed, when sensor a observes sensor b at round t, we have:

ca(t + 1) − ca(t) =
1

1/cb(t) + 1/JN
.

Specifically, consider now the case that cb(t) > x · JN , for some large x. Here, the increase in accuracy at a is

some quantity ∆J(t, ALG), satisfying

1

1 + 1/x
JN ≤ ∆J(t, ALG) ≤ JN .

The Cramér-Rao bound and Lemma 5.1 imply that Jb(t, Opt) ≥ cb(t), and hence, Jb(t, Opt) > x · JN . This,

together with Theorem 4.2, implies that at round t, the increase ∆J(t, Opt) in Fisher information of a under

algorithm Opt is some quantity satisfying

1

1 + 1/x
JN ≤ ∆J(t, Opt) ≤ JN .

Hence ∆J(t, ALG) and ∆J(t, Opt) are the same quantity up to a multiplicative factor of 1
1+1/x . Finally, since

limt→∞ Cinf(t) = ∞ (see the proof of Claim D.1), it follows that x goes to infinity as t goes to infinity. We thus

get limt→∞ κ(t) = 1, which establishes the proof of the lemma.
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