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Abstract

In this paper, we consider rods whose thickness vary linearly between ¢ and ¢2. Our aim is to study the

asymptotic behavior of these rods in the framework of the linear elasticity. We use a decomposition method
of the displacement fields of the form u = U, + @, where U, stands for the translation-rotations of the
cross-sections and @ is related to their deformations. We establish a priori estimates. Passing to the limit in
a fixed domain gives the problems satisfied by the bending, the stretching and the torsion limit fields which
are ordinary differential equations depending on weights.

Keywords: Linear elasticity, Rods
2000 MSC: 74B05, T4K10

1. Introduction

In this paper we are interested in analyzing the asymptotic behavior of a thin rod with different order
of thickness in the framework of the linear elasticity. We consider a straight rod of fixed length where the
cross-sections are bounded Lipschitz domains with small diameter of order varying between € and €2. To be
more precise, the order of the thickness of the rod is given by ep.(-) where p.(-) is a linear function depending
on the cross-section of the rod such that it is 1 at the bottom and € at the top of the rod. We investigate
how the variable thickness of the rod affects to the a priori estimates and the limit problems.

Since the diameter of the rod tends to zero, this work belongs to the field of elliptic problems posed on
thin domains. Many fields of science involve the study of thin domains, for example in solid mechanics (thin
rods, plates, shells), fluid dynamics (lubrication, meteorology problems, ocean dynamics), physiology (blood
circulation), etc. There are many papers dedicated to the study of the thin structures from the point of view
of the elasticity, see e.g. [22] 21] for models of rods and [3] 4] for plates and shells.

Our work is based on the decomposition of a displacement of the rod according to [19]. Every displacement
of the rod is the sum of an elementary displacement, it characterizes the translation and the rotation of the
cross-sections, and a warping which is the residual displacement related to the deformation of the cross-
section. This decomposition of the rod was introduced in [I5] and [I6] and it allows to obtain the Korn
inequality as well as the asymptotic behavior of the strain tensor of a sequence of displacements in a simple
and effective way.

The notion of the elementary displacement together with the unfolding method (see [8, []) has led to
a new method in elasticity which has been successfully applied to many problems, see e.g [B] 6 [7] and
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[13), 14], 15, 16, 17, I8, 19]. References and other applications of the unfolding operator technique can be
found in [10} [T, 12, 1.

Our paper is organized as follows. In Section 2 we describe the geometry of the rod, introduce the
decomposition of a displacement field of the rod and we give some estimates of the decomposition fields in
terms of the strain energy (Theorem [2.3). The proof of the Theorem is based on the approximation
of the displacement of the rod by a rigid body displacement. Of course, the estimates may depend on the
function pe(+).

Section 3 is dedicated to get a priori estimates for the different fields assuming that the rod is clamped
at the bottom. These estimates have an essential importance in our study to pass to the limit. Moreover,
we introduce the rescaling operator Il which allows to work in a fixed domain. One particular feature of
this transformation is that the ratio of the dilation of the fixed rod depends on the third variable, it is given
by the function epc(-). Then a special care is dedicated to the estimate of the derivatives with respect to the
third variable.

In Section 4 we give the limit of the displacements and we show a few relations between some of them.
Since some of the a priori estimates established depend on the variable thickness p.(-) we introduce some
weighted Sobolev spaces which allow to obtain the limit fields in a natural way. In Section 5 we pose the
problem of elasticity and we specify the assumptions on the applied forces. We show that the choice of the
applied forces is reasonable to get the suitable estimate of the total elastic energy, so that the convergence
results of the previous sections can be used. In Section 6 we derive the equations satisfied by the limit fields
and we prove the strong convergence of the energy. Moreover, we deduce some strong convergences of the
fields of the displacement’s decomposition. Finally, in Section 7 we summarize the main results.

2. Decomposition of the displacement of a straight rod with different order of thickness

Let w be a bounded domain in R? with Lipschitzian boundary, diameter equal to R and star-shaped
with respect to a disc of radius R;. We choose the origin O of coordinates at the center of gravity of w and
we choose as coordinates axes (O;e;) and (O;es) the principal axes of inertia of w. Notice that, with this
reference frame we have

/.’El d.’EldiEz:/ZL'g d$1d$2:/$1$2d$1d$2:0. (21)

The cross-section we 4, of the rod is obtained by transforming w with a dilatation of center O and ratio

epe(x3), where

x €
pe(mg)zl—f‘?(l—z), x3 € [0, L].

We assume 0 < € < L/2 and 0 < R; < 1/2 without loss of generality.
Definition 2.1. The straight rod is defined as follows:
Q. = {z = (v1,72,23) €R? | 23 € (0, L), (21, 72) € We s},

where we z, = {(ml,xg) cR? | ( i T2 )) € w} = epe(T3)w.

epe(3)” epe(zs



Figure 1: Straight rod Q.

Notice that the center line of the straight rod is the coordinate axis (O;es). Moreover, the thickness of

the thin rod depends on x3, it is given by the function ep.(x3) = € — %6(1 — %) Observe that the diameter
of the lower boundary is order € while the diameter of the upper boundary is order €2/L. (See Figure )
Now, we define an elementary displacement associated to a displacement of the rod.

Definition 2.2. The elementary displacement U,, associated to u € L*(Q2;R3), is given by:
Ue<{E) = U(l‘g) + R(.’Eg) A (117191 + .1‘282), T € Q,

where for a.e. x5 € (0,L)

U(zs) = W /wmg u(xz1, T2, 3) dr1dee,
Rals) = 1y 12)1)6(9:3)%4 /w [(z1€1 + w2€2) A u(wy, 22, 23)] - €3 daidas, (2.2)
Ra(zs) = m /wmg [(xlel + x9€9) A U(ZIIl,.'L'Q,ZEg)] ey dridrs, |
I, = / 22 drydes, for a € {1,2}.

The first component U of U, is the displacement of the center line. The second component R represents
the rotation of the cross-section. Under the action of an elementary displacement the cross-section we 4, is
translated by U(z3) and it is rotated around the vector R(x3) with an angle | R(z3)||2, where || - ||2 is the
Euclidean norm in R3. Observe that, the torsion of the rod is given by the displacement R3(z3)es A (x1e; +
l’zeg).

Any displacement u of the rod can be decomposed as

u= U, + a. (2.3)



The displacement @ is the warping.

Next theorem gives estimates of the components of the elementary displacement U, and of the warping
@ in terms of €, p. and of the strain energy of the displacement u. Notice that if u belongs to H'(£2.) the
functions & and R belong to H((0, L); R3).

Theorem 2.3. Let u € H'(Q;R3) and u = U, + u the decomposition given by —. Then the
following estimates hold:

: < Cel[(Vu)sllizz(.)9s

¢
L2((0,L);R3) ~ €
C
5

|5
Pe 1L2(Qe;R3

(B )

R
P dns

[Vl 2. r3)e < Cl(Vu)sllizz e

[(Vu)sllizz. 9,

L2((07L);]R3) S : (VU)SH[LZ(QF)]97

The constants are independent of € and L.

Proof. To prove the above estimates we are going to introduce a partition of the rod 2. in several small
portions where every of these small rods are star-shaped with respect to suitable balls which verify that the
ratio between their radius and the diameters of the portions remains uniformly bounded. Then we use the
approximation of the displacement u by a rigid body displacement in each portion, (see Theorem 2.3 in [19]).

Step 1. Construction of the partition.
We start by considering the first portion of the rod
Q) = {z = (21,2,23) €R® | 23 € (0,€), (1, 72) € Wy }-

First, notice that Q¥ has a diameter less than (R + 1)e and all the cross-sections of QY are star-shaped
with respect to a disc of radius Ryepc(€). Therefore, by a simple geometrical argument, it is easy to check
that this portion is star-shaped with respect to a ball of radius Repe(e).

We consider now a partition of the interval [0,L] defined as
0=0<sl=e<s?=sltep(sl) < < sl =5t pep (V) < L <sMNetl = sNe ep (D).
Hence, the points of the partition {s*} are the elements of an arithmetico-geometric sequence

1— pe(e)k L
k_pi(e) —  lim s" = < = = > L.

Sg =€ =
1— pe(e) k—o0 1-— ,DE(E) 1— —

It makes sense to define N, as the largest integer such that s™< < L.
The (k + 1)-portion of the rod is defined as

Qi“ ={zecR®|x3¢ (sf,sf —i—epe(sf)), (21,22) € We sy, 0<k<N,—2,
and
QN = {2 e R3 |3 € (sNﬁ_l,L), (1, 22) € We gy }-

Therefore, we obtain
N.—1

Q. :Int{ U W}

k=0



Figure 2: Partition of straight rod Q.

Step 2. Rigid body approximation of u in the portions.

Since QF (0 < k < N, — 2) is obtained by transforming 20 by a dilation of ratio p.(s*) we can conclude
that QF (0 < k < N, — 2) is star-shaped with respect to a ball of radius Rjep(s¥*!) and its diameter is
less than (R + 1)ep.(s¥). Moreover, the last portion QN<~! is star-shaped with respect to a ball of radius

Riep (sNe*1) and its diameter is less than 2(R + 1)ep.(sNe71).

€

From Theorem 2.3 in [19] there exists a rigid body displacement ry (0 < k < N, — 1) such that
lu =2z < CR+ 120552 [ (Va)s [y 5
IV (u = 1) IFp2 o mey0 < C(R+1)?[[(Va)s]lFzzonye-

The constants depend only on the reference cross-section w and on the ratio between the diameter of the
portion and the radius of the ball inside (see Theorem 2.3 in [19])

k k
(R+1)e€:(fe):R+1 ps(sek) _R+1 1 SéR+1,0§k§Ne—2. 26)
Riepe(sc™) Ry (sF) — €pe(se) (1 _ 5) Ry pe(e) =3 Ry
Pe(Se 7 7

1
Observe that for the last portion the ratio is less than 4R];_ .

1

Step 3. First estimate in (2.4]).
Recall that the rigid body displacements rj are of the form

rp(z) = Ag + Br A (x1€1 + 20€2 + (23 — sf)eg), x = (x1,22,23) € Qf and Ay, By, € R3.
Now, we are going to prove (0 < k < N, — 2)E|
”u — A — Br A (ZII3 - 567k)e3”12((55)354-1);]1@3) < C'l(vu)5||[2L2(Q§)]9’ (27)

1If k = N. — 1 we have to replace slfrl by L.



9 C

2
raetstthym) S oyl (Vs @ (2:8)

e

IR — By

The constants do not depend on k and e.

The proof is similar for both inequalities, we will show only the first one. Taking the mean value of u —ry
over the cross-sections of the portion Q¥ and by the definition of the elementary displacement and (2.1) we
have

k+1

”u —Ap — B A (173 - Se’k)eg||i2((s’§,sl:+1);]R3) = /k |Z/{(:E3) — A — Bp A (1‘3 - 5€7k)e3|2 dzs

Skl
c 1 / 2
= _— w(x1, xo,x3) — ri (21, xo, x3)| dridrs| das
/ o [ wosas) < raGarr )
S,:+l 1

: /sg |</J|/>e($3)2€2/w u(z) — ry ()] do

.
1 2

_ u(x) —ri(x)|” d.

S ), ) i)

Then using (2.5); and taking into account (2.6) we obtain the expected estimate

C(R+ 120 (sh)?

2 2
|wl|e2pe(shT1)2 (Vu)sl| [L2(am)p = Cll(Vu)sll [L2(QF)]9)

||Z/I — A — B A (1‘3 — 857k)e3||i2((s§,sf+1);R3) <

where the constant does not depend on € and k.
Consequently, from (2.7) and (2.8)), taking into account the definition of the elementary displacement

and a:i dridrs = 64p6($3)4la we have
We,xg

[Ue = rillLacary < U — A — B A (23 — ser)esl2ar)y + [[(R — Bi) A (w1€1 + 22€2)|[ 220k
sk+1

< [ oo Ulas) - Ak = B s = sepdeal® doa + Cpu(6HAIR = Bullday oo

)
< CEp(sE)? (V) s|IFrz -
Thus, we can replace ri by U, in (2.5)1

o= Uelaopan < Cepls I (Tu)sliaapye-

k
Moreover, since 1 < pe(sc) < 2 for x3 € (sF, 1) we get
pe(xi%)
u—Ue 2 2 2
H pe llL2(akR3) < OClVislizz@pe-

Adding all these inequalities lead to the first estimate involving the warping

=l < ce||(Vu)s]? 2

Step 4. Second estimate in ([2.4]).



First of all, we compute the derivative of U with respect to x3. Since the diameter of the cross-section
depends on x3 we rewrite U performing a change of variables

1
U(zs) = V‘eg/ u(pe(73)81, pe(w3)82, T3) ds1dsz,

where w. = ew. The derivative is given by

du 1 ou ou ou
d—x?)(xg,) = e /w [8 pe(z3)s1 + Dig —pl(x3)sy + E } dsidsy, for a.e x3 € (0,L).

Undoing the change of variables we get

w1 du_ ples) | Ou_ pllzs) O
T%(xg) = m /U;E ) {melm —+ 871‘2pr ( ) —+ 67];3:| dxldxg, fOI‘ a.e g € (O,L)

From ([2.5) we have

2 .
i L2(QFR3) < C“(VU)S”[LZ(QI:)]% 1 € {1’2,3}

Moreover, from (2.8) we may replace By by R

< CI(VW)sfzamye, @€ {1,2,3}

Ae,
H ox; ‘Il z2(ar;Rr3)

Adding all these inequalities we obtain

CH(V’U,)SH[LQ Q)] 1€ {172,3} (210)

H or; "Nz Rr?)

Taking into account (2.1)) we have for a.e. z3 € (0, L)

du _ ; @ x) — X e |x pé(‘r-?’)
ds (xg) R($3) Nes = |w|€2p€($3)2 /‘1:75,123 [<8x1( ) R( 3) A 1) 1p€($3)

+ (%(x) — R(z3) A eQ)g;2 Z'Eizg n (%

() — R(xz3) A 63>:| dzqdzs.

Using ([2.10) leads to (0 < k < N, — 2)f]
2 C ) C

S e IV + ———(Vu)s||?
H dxj ’ L2(s’g,sf+1) — pE(S]:Jrl)Q H( )SH[L2(QI§)]9 €2p6(8§+1)2 H( )SH[LZ(Q];)]Q
C 2
< W”(VU)S”[L2(Q’:)]9'

p(6<k+)1)<2f°f$ € (s*, s51) we obtain

pe(se
Joc(G; R nes)]

21f k = N. — 1 we have to replace sk+1 by L.

Hence, since 1 <

2 C
<z
L2(sk sk+1) €

”(VU)S”[QL%QF)]?" (2.11)




Adding all these inequalities we get the desired estimate

au 2 C
b (2 e

dl’g

2
L2((0,L);R?) < ZI1VWsliizz e (2.12)
Step 5. Third estimate in (2.4)).

First of all, we introduce the function:

1

V(zs) = 764& (23)"

/ [(.13161 +$2€2) /\u(xhl‘g,.ﬂfg)] dxidzs.

€,x3

To calculate the derivative with respect to x3 we perform a change of variables which allows us to write the
function V' as follows:

1
V(z3) = W/w (pe(x3)sie1 + pe(ws)saea) A u(pe(xs)st, pe(xs)se, x3)] dsidss
1
= m /OJE(Slel + s2€2) A u(pe(x3)s1, pe(23)s2, x3)] dsidss.

Then deriving with respect to 3 gives (for a.e. x3 € (0, L))

elpe(ws)?

1 ou ou ou
+m /w [(8161 + s9€2) A (aixlpe(xg)sl + Dg —pL(23)s2 + 8—3)} dsydss

- | sse1 + sae0) Ao, pulaz)sa, ) s

Undoing the change of variables we have (for a.e. z3 € (0, L))
av _ —2pc(xs3)
s ) = )

1 Ou pe(xs3) u pe(w3) Ou
Jr64p6(303)4 /w [(Ilel +z262) A (83@1 pe(x )x SR 0%y pe(x )1:2 + 6353)} di1drs.

p / [(z1€1 + zoe2) A u(x1, 2o, 23)] dridas
Z3 We,T3

€,z3

In view of (2.1) we can write (for a.e. 23 € (0, L))

v, o
dixg)(xg) = W/w . |:(.Z‘161 + xgeg) A\ (u(m) — U(J}?,) — R(xg) A (xlel + 1‘262)):| dxidxs
+M/ {(ac e1 + xge2) A [x (&(x)—R(x )/\e)—i—x (8u( ) —R(x3)Ne ))}da: dx
(@) Lo, 1€1 + T2 \ oz, 3 1 2\ 5y 3 2 1dx2
1 ou
+ W /we)m?’ (3?161 + 3’5262) AN (({971'3(1’) — R(J?g) A\ 63) dridxs.
Using (2.9) and (2.11)) leads to (0 < k < N, — 2)E|
C u— Upg )2 2
< 7%
H dxs 1 L2((sk,sFH1)R3) — 52p6(3§+1)2 H Pe L2(QFk;R3) 62 k+1 Z H dxs RA ’ L2(QF;R3)
C C

< —— |(Vu)s|? + ———|(Vu)s||?
< el Vsl + o e (VW) s o

€

3If k = N. — 1 we have to replace skJrl by L.



C
= WH(VU)SH?LZ(QE)]W

etpe(se
Thus, since 1 < pz(lfi)l) < 2 for 3 € (s¥,s51) and adding all these inequalities we have
PelSe
dv |2 C
2 2
‘pEdT:g, oy = alVWsliza@ope:
Iy
Since (I1 + L) R =V + 7 L(V-e)e; + = I, 2 (V - e3)ey we get the required estimate
2
dR C
2 2
s N1 [N [ s (2.13)

Step 6. Fourth estimate.
Observe that

0 ou

%(u —-U,) = 9o —RANe, forac{l, 2}

0 ou ou OR

9, V) = 5 T e o, (Fre1 T w2e2)
ou ou OR
87%_72//\934'73/\93—87‘%3— Tx:}/\(ﬂjlel +l’292)

From these expressions and taking into account (2.10)), and - we can conclude
IVallfe g, maye < C||(VU)S||[2L2(Q€)]9»
which ends the proof. O

3. Estimates for the clamped rod at the bottom.

From now on, we will assume that the rod . is clamped at the bottom, I'c g = we o x {0}. Then the
space of admissible displacements of the rod is

H%E,O(QG;RB‘) ={uec H(Q;R* |u=0o0nT.o}.
Observe that the elementary displacement U, associated to any u € H% 0(Qe; R3) is equal to zero in the
fixed part of the rod, U(0) = R(0) = 0.

au
Using estimates (2.4)) and the boundary condition we deduce estimates on R, e and U.
T3

Lemma 3.1. Assuming the rod clamped at the bottom, then we have

CL
HpeRHLz«O,L);m < S I(Vwsllizz@oe-

CL
o o, < G MVl forae 1,2,
dits C
i) < = 3.1
loe ool ooy < E NSz (3.1)

2
5 (VU)3||[L2(Q€)]9, fOT [ S {]., 2},

CL
sl r2(0,2) < ?H(VU)SH[L?(QG)]%

The constants are independent of € and L.



Proof. We begin with the proof of the first estimate in (3.1]). Since R(0) = 0 by integration by parts we have

L L
| 20anRaas) T (o) ey = = [ 320 oa) R¥as) dis + pHDIRA D).
0 Z3 0

! 6) ! 0<e< ;) and 0 < p(L)R*(L)

Then taking into account the facts that Y < —pi(zs) = I (1- 7 I

we get

L ) dR
/ p2(x3)R*(w3) drg < */ p? 563)73(903)(1 3(553)65553
0

Hence, by the Cauchy’s inequality it follows that:

9 dR ‘
Pe7— dzs

C Rz3) 2 (23) des < IR
pe(x3) (x3)d7x3(‘r3) T3 > pr HL2 ((0,L);R3) L2((0,1):R3)

Finally, the above inequalities together with the third estimate in (2.4) allow us to obtain the required

estimate JdR
prRHm (0,L);R3) § 3 ede L2((0,1); R3) ”(VU)SH[L2(Q e (3.2)
The constant is independent of € and L.
The second estimate follows from (2.4))s and (3.2)):
au CL
<|lp. (Z£_rA )’ (RAes)| 2o ms < 2o 0. (3.3
o o < o G = RA) | WP RAD 20019 < S5 (sl (33)
. . . . dUs
From the second estimate in ([2.4)) we obtain a better estimate for ||p. —‘
dxs lL2(0,1)
= [l (55— Rnes)- ’ <2 3.4
Joe ety = o (o = R0 3) €3] < NI t00 34
Finally, the estimates for U follows by a similar computation to R. We first prove
<2L‘ i for i =1,2,3
HU ||L2 0,L) P dg:3 12(0,1) or 1
O

then due to (3.1))o- .3 we get (3.1] 4
In view of the definition of the elementary displacement ([2.2)) we can write explicitly the components of

the displacement, the gradient and the symmetric gradient of the displacement
Ul (l‘) =U (l‘3) — $2R3($3) + Uy (JZ),
’LLQ(.%') = Us(x3) + $1R3(1‘3) + ’1]2(.’[7), (3.5)
(l’) = Z/[g(l’g) — $1R2((E3) + 1’2721 (1’3) + ’L_Lg(ZL')

Remark 3.2. Notice that, due to the definition of U, R and (2.1)) we know that the warping satisfies

/ u; dridxe = / (.’tl’l_l,Q — ZL’Q’ELl) dridzo = / Touz dridrs =0, 1€ {1,2,3}, o€ {1 2} ( )

e,x3

€,x3 €,x3

10



% o0u, dly dR3 o0ty

on P dm, dws des | 0
Ol 0o dUo dR3 Olia
_ Oty 9ty dy . dRs Oty 3.7
Vu R3 83?1 6332 da)‘3 i d.fl)‘g 83)3 ( )
ous o3 dlUs dRs dRq ous
Ret e ™ N on, Gy Tdws T drs T Ous
ou; 1 /0w 0o 1 /dit; dRs Ous oty
8$1 2 <a’l}2 aCE1> 2 (d.Zg 2 dl‘g 2+ al'l + 8:03)
Oto 1 /dis dRs3 ous Ol
_ hat) Z( == —_— — + —= 3.8
(VU)S * 83:2 2 (d.’L‘g to diUg + Rl + (91]32 + 8953) ( )
dis dRs dR1  Ous
* * - _

T —— +x9— + —
dl‘g ! dl‘3 2 d$3 8.1‘3

The previous Lemma [3.1] allows us to established the Korn’s inequality for any displacement u €
H O(Qg;R:g).

Lemma 3.3. Assuming the rod clamped at the bottom boundary, then we have

L
V22, r3)0 < C=[[(Vu)sllizz.)e
€

Ue, 12
). g, < CENTslgz@ops Jorae {1.2) (39)
u3

— <CL

‘ pellLz(Qe) — 1(Vu)slize e,

The constant does not depend on € and L.

Proof. Recall that any displacement u € H% . Qe R3) can be written as u = U, + @i. Then we get

||Vu||[L2(QE;R3)]9 < ||VUCH[L2(Q€;]R3)]9 + ||vﬂ||[L2(QE;]R3)]9.

Using (3.7), (2.4) and (3.1) one has the following estimate:
o

d{E3

IV Uelliz @y < Hepf L2(0.LE) lepcR A (ex +e2)| a0, 1y,m0)

CL
< —Il
€

CL
R = (Va)slizzop + =~ I(VW)sliizz@ape + Cl(Va)sllizz o

+Hﬁ/\( e + e)’
dis Tr1€e1 T r2€e2

CL
< — IVusllzoe-

Recall that || Va2 rs)e < Cl[(Vu)s|li2(q.10- Consequently, we obtain the first estimate in (3.9).
In view of (3.5) and taking into account estimates (2.4) and (3.1) we obtain

Uq xS—aR(i Ug
- < lletda | === 15
’ oo llz2(gms) < Neellizon T[] ) Tl 5 N
CL?
< TH(VU)SH[LQ(QG)]Q + CL||(Vu)slliz2 (. + Cell(Vu)sliz2 (.0

CL?
< TH(VU)SH[LQ(Qe)]Q, for o =1,2.

11



I1R2’ H@Rl‘

L2(Q0) Pe

< lleths)| 20,0y + |

L2(Q;R3) L2(Q H L2(Q.)

< CL[[(Vu)sllizz(.95
which ends the proof. O
3.1. Rescaling of the rod
In this paragraph we define an operator which changes the scale. It allows us to transform the rod €.

into a domain independent of e.
Set QO = w x (0, L), the reference beam. We rescale Q. using the following operator:

(ITep) (X1, X2, x3) = P(epe(w3) X1, epe(x3) X2, x3), for ae. (X1, Xz, 23) € Q,

defined for any function ¢ measurable on 2.
Observe that, if ¢ € L2(£2,) then (II.¢) € L?(2) and we have

1
||H€¢||L2(Q) = g’ ol (3.10)
Therefore, taking into account this above relation, we get the estimate for the rescaled warping Il.u
HH ’LLHL2 Q;R3) = E el L2 (0. &2 < C”(VU)S”[L%QF)P' (3.11)
In order to obtain the estimates for the derivatives of the warping observe that for any ¢ € H'(Q.)
11
3éX¢) = epeﬂe(aa%), fora=1,2,
old) _ 0¢ ; 99 9
p. X111, XoII, I, 3.12
81’3 ! (5‘x1) +6p6 2 (3 ) + (33:3) ( )
1
We recall that ||p/6||Loo(07L) <1 then from (2.4) and ( we get
’ L(E) H axa L) C”(W)Sﬂ[mmen% for = 1,2, (3.13)
| e | 7 (5 e * [ ) * £l
Pe Oxs llL2(rs) — Ox1 IlL2(Q R?) Oxa Il L2(0R3) L2(QR3)
< ?”(VU)SH[L?(SL)]Q- (3.14)

In the same way, all the estimates in the previous sections over ). can be easily transposed over (2.

4. Asymptotic behavior of a sequence of displacements
Now we consider a sequence of admissible displacements {u€}., where u¢ € H%E‘O(Qe; R3), satisfying
1(Vu)slliz2@op < C€,

the constant does not depend on e.

We are interested to describe the behaviour of the sequence {u¢}, as ¢ — 0. In the following proposition
we introduce the weak limits of the fields of the displacement’s decomposition in the rod. We denote by

plzs)=1-— %, x3 € [0, L], the strong limit in L*°(0, L) of p.. Observe that
0<p(t) <p(t) fortelo,L] (4.1)

First of all, we introduce certain weighted Lebesgue and Sobolev spaces defined in the interval (0, L).

12



Li’“ (0,L), k € N, consists of locally summable functions ¢ : (0, L) — R equipped with the following
norm:

L
”‘PHLik(O,L) = </o [PF () p(t)]? dt>1/2.

Obseve that, there exists a linear homeomorphism of L?(0, L) onto L2, (0, L)
_ v 2
T(¢)—p77 for ¢p € L=(0, L).

Then L?)’“ (0,L) = {ga € L (0,L) | p*p e L0, L)} endowed with the norm above is a Banach space.

Remark 4.1. Observe that if {®.}. is a sequence of functions belonging to L*()) and satisfying
v

pE®, — U weakly in L*(Q) then . — & = — weakly in Lik (Q). Conversely, if {®.}e is a sequence of
p

functions such that p*®. is uniformly bounded in L*(Q) and satisfies ®. — ® weakly in L, (Q) then
€ p
pE®. — p*® weakly in L*(Q). Here k belongs to N.

We define the space H}(0, L) as follows:
H)0,) = {p € H},o(0,1) | p¢ € L2(0, L), € L3(0, L) and 5(0) = 0},

endowed with the following norm:

L 1/2
Ity = ([ e @nPae) "
We use this norm since as in the proof of Lemma [3.I] we can easily obtain
lellz2(0,0) < 2LIIp¢ || L2(0,1), for ¢ € H)(0, L). (4.2)
Since p~*, k € N, is locally integrable we can conclude that H; (0, L) is a Banach space, see [20].

Analogously, H;Q (0, L) and Hﬁz (0, L) are the Banach spaces which contain the functions ¢ : (0, L) — R
such that

H(0,L) = {90 € H..(0,L) | p*¢’ € L*(0,L), pp € L*(0, L) and ¢(0) = 0},

HZ(0,1) = {p € HZ.(0,1) | o0 € L2(0, L), p’ € L(0, L), € L*(0, L) and 5(0) = 0}.

We define their norms to be

L
H@HH;Q 0,0) = (/o [P? ()¢ (1)) dt)l/z.

L 1/2
lelion = (| W@ ora)”

We can easily prove that

2L
lleellz2(0,0) < ?||<P||H12(0,L) for any ¢ € H;2(07L),
’ (4.3)

2L
lo@lL20,) < ?H%HH,?Q(O,L) for any ¢ € H%(0, L),
. 417 2
then (4.2)) yields |¢l[z2(0,z) < TH@HH;(O’L) for any ¢ € H2,(0,L).

13



Similarly we define some weighted spaces in the fixed domain 2
12(@) = {6 € 1.(2) | po € L2 },

1 — 1 % 2 67917 %
HP(Q) - {d) € Hloc(Q) |pax3 €L (Q) an aXla 3X2’

¢eL2(Q)}.

They are Banach spaces endowed with their respective norms

Iollze = ( [ o) dxidXadss)

9310 = (/Q {(p(%if * (%)2 + (%)2 + 0%} XmdXdeIS)l/Q.

Proposition 4.2. Let {u‘} be a sequence of displacements such that u® € Hf. (Qc;R?) and

(V) sz .y < Ce?, (4.4)
where the constant C is independent of €. Then for a subsequence, still denoted by {e},

o there exist U € [Hy(0,L)]*, R € [H;Q (0,L)]* and Z € L2((0, L);R®) such that,

U, — U, weakly in H;(O, L), fora=1,2, (4.5)
1

—Us — Us weakly in H)(0,L), (4.6)
RS — R weakly in [H)>(0,L)]*, (4.7)
L rdue € N : 2 .3

E(d.’bg -R /\e3> Z weakly in L,((0, L); R?), (4.8)
R(0) =0, Ua(0) =0, Us(0)=0. (4.9)

o there exist u € L*((0,L); H' (w;R?)), u € [HY(Q)]? and K € H} (% R?) such that
1

6—21_15(126) — 4 weakly in L*((0,L); H' (w; R?)) (4.10)
I (ug,) — uq weakly in H; (), (4.11)
1 )
EHG(ug,) — ug weakly in H; (Q), (4.12)
1 € €\ _ . 1 .3
EHE(u —U) —= K weakly in H,(;R”). (4.13)

Moreover, we have the following relations between the limit fields:
au
ke R, % _
d:L‘3 dl‘g
up (X1, Xo,x3) = Ui (x3), for a. e. (X1,Xo,23) € Q,

uz(X1, Xo, x3) = Ua(x3), for a. e. (X1,X2,23) €,

—Ri, (4.14)

dau di
uz (X1, Xo,x3) = Us(x3) — P(»TS)XlE;(fB) - P($3)X2dfxz(l’3), for a. e. (X1, Xo,23) € Q. (4.15)

K1(Xy, Xa,23) = —p(23)XoaR3(x3) for ae. (X1, Xz, 23) € Q.
’CQ(Xl,XQ,xg,) = p(.fg)Xle(a?g) fOT a.e. (Xl,XQ,.Z‘g) e .

du dit.
IC3(X1,X2,LE3) = —p(lg)XlE;(l'g) - p(xg)ng—xj(xg) fOT’ a.e. (Xl,XQ,irg) € 0.
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Proof. First we get the weak limits, up to a subsequence still denoted by ¢, of the different fields. Then we

derive a few relations between some of them.

Step 1. The convergences.
Taking into account (4.1)-(4.2)) and (3.1))2-(3.1)s we have

Ul 1o, <C, Usllmio,r) < Ce, for o =1,2.
Then we obtain the following convergences:
U — U, weakly in H;(O,L), for a =1,2.
1U§ — Uz weakly in le (0,L).
€

According to (4.1) we get

fori=1,2,3.

L2(0,L)

H HH OL)— Pe dx3

Due to estimates (2.4)5 and (4.3)) we obtain

R — R weakly in [ 2(0, L)]>.

Again due to (4.1)) we have

au
<|lpe (&£ —r A ‘ .
H dl‘g 3‘ L2((0,L);R3) - Hp (d$3 63) L2((0,L);R3)

In view of estimate (2.4)2 we get

e

o RN eg) — Z weakly in L2((0, L);R?).

1
Thanks to the estimates (3.11]) and (3.13) the sequence 6—21_[E (a€) is bounded in L*((0, L); H'(w; R?)). Then

we obtain )

6—21_16(116) — @ weakly in L*((0, L); H' (w; R?)).
From property (3.10]) of the rescaling operator and the estimate (3.9)2 we have

1

€
Uo

Pe

HHEu6 = -
€

L
CVHLQ(Q) C?H(VU)S”[LQ(QE)]Q’ fOT o = 1, 2.

L2(Qe) —

Moreover, taking into account the derivation rule (3.12) and the estimates (3.9); we have

3(H5u€) C €
B8 =Bt o1
e R TR (H*( G ) * 5
Oxs 2@ — pe O3 L2(Q) Oz llL2(0.) Oxa llL2(0,) L2(9.)

= :2||(VU6)$||[L2(Q‘)]97 fora =1,2.

Therefore, from (4.16)), (4.17) and (4.18) we get

I (ug,) — uq weakly in H;(Q), fora =1,2.
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In the same way, from (3.9))1, (3.9)3 and (3.12) we obtain

c L
||HEU3HL2(Q) S Cz”(vu)SH[L?(QF)]‘% (4.19)
O(TT.u5) ¢ )
HW‘ ey < NVWsliza@ope, for /=1,2, (4.20)
O(Teu§) C
Hme‘ L2(Q) < :H(VU)SH[LQ(QJ]Q' (4.21)
Hence, we get
1

—TI.(u§) — uz weakly in H;(Q)
€
From the definition of the elementary displacement we have
u(z) —U(x3) = R(x3) A (T1€1 + T2€2) + U ().

Hence, in view of (3.1)1, (3.11), the property (3.10]) of the rescaling operator and the assumption (4.4) we

obtain the following estimate:

. 1
—u )HLZ(Q;RS) = 2

‘Re(l‘:;) A (-Z'lel + l‘geg) ‘
Pe

Now using the rule of the derivation (3.12]) and (3.10) we have for @ = 1,2

1 . Ly o
EHﬂf(“ + EHHGUHLZ(Q;R?’) <C. (4.22)

L2(Qc,R?)

1191 (u — U 1)9(u — U 1 1) du
1) OLe(u® — U*) _ Lot —u) < YR () A e 1) 9u <c
€ 0Xa L2(QR3) € 0T L2(Q R3) — € L2(Q.R3) €l 0zy llL2( R3)
1) OIL (uf —U* C [~ || O(uf —U* 10 — U
Do e = T 5 ) * 2l ™
€ T3 L2(Q;R3) €\~ 0z, L2(Q.;R3) € Oxs L2(Q.;R3)
<C+ l ‘E A ( e + xoe )‘ l % <
- e2ll dxs T161 T 262 L2(QR3) €2l OxsllLz(Qors) —

Consequently, from the two above estimates and (4.22) we get the last weak convergence

1
—I(u® —U) — K weakly in H;(Q;RB).
€

Step 2. Relations between the limit fields.
Now we are going to establish the relations between the weak limits. First consider (2.4])s which implies

au¢
( —RA eg,) — 0 strongly in L2((0, L); R?),
dwg P
as € tends to 0. Then (4.5) and (4.7) give
dih ity
— =R — =—-R. 4.23
dl‘g > d1‘3 ! ( )

It follows that U, € Hgg (0,L), for a« =1,2.
Now, from (3.5 we can write

(Heui)(Xl,Xg,x;;) = Z/If(x3) — EpeXzRg(ﬁg) + (Heﬂi)(Xl,Xg,ﬁg), for a.e. (Xl,X27.’E3) c Q. (424)

16



In view of (4.5), (4.7), and by passing to the limit in we obtain
ur (X1, Xo,23) = Ui (x3), for ae. (X1, Xo,23) € Q.
Repeating the above arguments for (II.u$) we conclude that
us (X1, Xo, x3) = Us(x3), for ae. (X1, Xo,x3) € Q.

Notice that u, does not depend on the variables (X7, X5), for « = 1, 2.
From (3.5) we have for a.e. (X1, X2,23) €

1 1 1
—(Meus) (X1, Xa,23) = “Us(23) — peX1R3(23) + peXaRi(w3) + —(Iletis) (X1, Xz, 23).

Now, using (4.6, (4.7), (4.10) and (4.12) we pass to the limit in the equality above and we get
U,3(X1,X2, 333) = U3(J33) — leRQ(Z‘g,) + pXQRl(JJg) for a.e. (X1, X2,$3) S Q. (425)
Observe that, due to (4.23)), (4.25) can be written as
au au.
uz (X1, Xo,x3) = Us(x3) — led—x;(ajg,) - ngd—xi(ajg,), for a.e. (X1, Xs,23) € Q. (4.26)

Now we turn to the identification of IC;. In view of we have
%He(ui —UF) = —pXaR5(x3) + %(Heﬂi)(Xl,XQ,lL'g), for a.e. (X1, Xo,x3) € Q. (4.27)

From (4.7), (4.10), by passing to the limit in we obtain

K1(X1, Xa,23) = —p(x3)X2R3(x3) for a.e. (X1, Xa,23) € Q.
Proceeding as above for %He(ug —Us) we get

Ko (X1, X2, 23) = p(x3) X1 R3(x3) for a.e. (X1, Xa,23) € Q.
Finally we obtain the expression for 3. From we have

UL (0~ U5) = ~p XaR3(rs) + poXaRS () + () (X, X, ).
Convergences , , allow to pass to the limit and we get
K3(X1, Xa,23) = —pX1Ra(x3) + pXaR1(x3) for a. e. (X1, Xa,23) € .

Equivalently, from (4.23) we have

du di.
K3(X1,Xa,23) = —le—l(x;g) — pX2—2(x3) for a.e. (X1, X, 23) € Q. O
diﬁg diﬁg

Remark 4.3. It is worth to note that the limit displacement fields is a kind of Bernoulli-Navier displacement.

Also observe that the limit warping @ verifies the following conditions:

/ u; dX1dXo = /(Xl’(_LQ — X2’L_L1)dX1dX2 = / XouszdX1dXy = 0, i€ {1,2,3}, [OAS {1,2} (428)
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To conclude this section, we give the asymptotic behavior of the gradient and the symmetric gradient.
We define the field a3 € L?((0, L); H'(w)) by setting

’Z~L3(X1,X2,£L'3) = ﬂg(Xl,XQ,LL'g) + p(l’g)Zl((ﬂg)Xl + p(l‘g)ZQ(ng)XQ for a.e. (Xl,XQ,ZL'g) €.

Lemma 4.4. In view of (4.5)-(4.13) we obtain

1
I, (Vu®) = Z weakly in [Lz(Q)]g, “IL((Vu©)s) = T weakly in [Lf,(Q)}g, (4.29)
€
where
ou 1/ 0u; Oug 1 9 ng Ous
0 _RS RZ 6X1 7<8X2 8X1> 5( X2 8X1)
8’(]2 2 dR3 8123
Z = R 0 -R T= -—= X il
3 v * X, 2( Yz aXQ)
Ry Ra 0 . . p% _ X, dR2 +p2X, dR4
dzs dzs dzs

Proof. Step 1. Determination of the matrix Z.
In view of (3.7) to obtain the Z;;’s we only need to take into account the following convergences:

e From (3.11)), (3.13), (3.14), (4.1) and (4.4) we get

1. . .
Mg =0 weakly in H} (), for j =1,2,3. (4.30)
Hence
o5 - |
H (—) — 0 weakly in L5(Q), for j =1,2,3. (4.31)
8x3 2

e Since U€ and R€ are independent of ;1 and x5 we have

due dUe
IL(RS) = RS, IL(1aRS) = epcXaRS, for a = 1,2, He(d—xa) =T
Then in view of (4.5), (4.6), (4.7) and (4.14) we obtain
I (R€) = R weakly in [Lf,(Q)P,
IT (24 R€) — 0 strongly in [Li(Q)F’, for a = 1,2,

au, dU,, . .
He(d]}?,) - v (—1)*"*R3_q weakly in L2(Q), for o =1,2,

1L, (du3) — 0 strongly in L? 5(9).
dxs

Step 2. Determination of the matrix 7.

From (3.12)) we have
ouc 1 9o(I.ac)
H ( ) - for a = 1,2.
Oz, e2p. 0X, or
Then in view of (3.8)) and using convergence (4.10) we obtain
1/ Oty 8115
Tog = f( ) fora,f=1,2.
s =3\ax, Tax, ) res
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Applying the rescaling operator to (3.8) we get

P . _ lyrpdid; ¢ dRs  p 1 0(lus) p (0uj
GHS((VU)5)13—2[ (de_R2>_pp€X2dx3 pe €2 0Xy +6H€(8$3):|'

Convergences (4.7), (4.8), (4.10) and (4.31) allow us to pass to the limit and we obtain
ng 87._L3 > . 1 (7 X dR3 8ﬂ3 )

dxg + 8X1 2 dl‘g + 8X1

1
T:f(Zf
13 2/31 B

Similar calculations which are not repeated here allows us to get

dR3+%) _7(pX dR3+%>.
d$3 8X2 2 dxj 8X2
To identify T53 observe that from (3.8) we have

1
Tz = 3 (,032 + X,

P . _ pdus dR5 dR{ _p (81‘@)
GHE((VUJ )8)33 o € d$3 P Xl d +p €X2 dﬂ?g + 6H€ 61'3 '

Convergences (4.6, (4.7), (4.10) and (4.31) allow us to pass to the limit and we obtain

dUs 5y ARy E ARy
Ts3 = p—b — p°X X
33 pdl‘?, Ydas dx 2 das dx 3

According to (4.14), T33 can be expressed as

s . U . dUs
Tys = po28 _ 2x _ xR
37 Py Y da2 prae dz3

(4.32)

5. Position of the elastic problem

We consider the standard linear isotropic equations of elasticity in €).. The displacement field in €. is
denoted by
ut: Q. — R3.

The linearized deformation field in €2, is defined by

1 0uf  Oug
ij V=3 ’ ’7.:17273'
i () 2(81:1- 3:cj) bJ

The Cauchy stress tensor in € is linked to y(u€) through the standard Hooke’s law

Zm )513 + 2uy35(u), 4,5 =1,2,3,
where A and p denotes the Lame’s coefficients of the elastic material and d;; = 0 if ¢ # j and d;; = 1 if i = j.
The equation of equilibrium in €. is

2 Aot
O'
—Z o, ffinQ., i=1,23, (5.1)

where f€: Q. — R3 denotes the applied force.
We assume that the rod is clamped at the bottom, I'c o = we g % {0}
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u®=0onTI.,

and at the boundary 9Q\I'. ¢ it is free
ove =0 on 0Q\I. o,

where v, denotes the exterior unit normal to €.

Taking into account that the space of admissible displacements of the rod is
H%eﬁo(QE;R‘g) = {u € H'(Q;R?) |u°=0o0on T},
the variational formulation of (5.1)) is
u € Hy_ (2 R?),
3 3
/ Z o5vij(v) dz :/ fovl dr, Yve H%E,O(Qe;RB).
Qe j=1 Qe j=1

For any v € H%E o (e R?), the total elastic energy is denoted by

3 ) 3
E(v) :/Q {)\(;’ykk(v)) +2u Z (’yij(v))ﬂ dzx.

e i,j=1

Observe that there exists a constant which depends only on A and p such that for any w € H'(Q;R3)
we have
Cll(Vw)sllpziop < Ew). (5.3)

Taking v = u* in (5.2]) leads to the usual energy relation

3
E(uf) = /Q > fius da (5.4)

€ q=1

5.1. Assumption on the forces
In view of the energy relation (5.4) and the estimates of the previous sections we assume throughout the

paper
Ff(z) = € ff(x3) — 2g5(x3), for z € Q

Fs(x) =  f5(x3) + 2195(x3), for x € Q. (5.5)
F5(x) = efs(x3) + 2195 (x3) + w2g5(x3) for x € Q.
where f€, g¢ € L?((0, L); R?) and they satisfy
2 re 3 €
|02 f HLZ((O,L);R3) +||plg HLz((o,L);RS) <C (5.6)

the constant does not depend on e. Moreover we assume the following weak convergences:

{ f¢— [ strongly in L2((0, L); R%),

. . 3 (5.7)
g — g strongly in L7s((0,L); R?).

As a consequence, from (5.4]) and the relations (3.6 we get an estimate of the total elastic energy
L
£w) = [ [ wa)ulpnas U (o) + & 15(a) ol )t ) + ef () oo ) o
0
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L
+ [ a5 + Il € R ) + g3(a) ()] €' R(a) o) (1)) e R )y

Due to (3.1)1, (3-1)4, (3-1)5 and (5.3)-(5.6) we have
g(ue) < CE2(||P3f€||Lz((O,L);R3) + HPEQEHL%(O,L);RS.)) ”(VUE)SH[LZ(QJ]Q < ngg(ue)l/z'

That leads to
c‘)(ue)l/2 < Ceé.
Hence
H(VUG)SH[LZ)(QE)]Q < Ce.

Remark 5.1. Observe that the assumptions on the applied forces were assumed in order to obtain the
appropriate estimate on the energy naturally.

6. The limit problems

In this section we obtain the equations satisﬁed by the limit fields &, R and @. To do this, we assume
that the forces are given by (5.5)) and satisfy (5.6} . First, we apply the rescaling operator Il. to the
original variational formula‘mon of the problem (j5.2)

/pe Z I (0§,)Te(7i; (v)) dX1d Xadws = /pEZH (FO)(v;) dX1dXodxs, Vo € Hp (Q:R?). (6.1)

We will pass to the limit in (6.1) as € tends to zero. In order to accomplish this we need specific choices of
the test function v. We begin studying the behavior of the limit of the residual displacement u€.

6.1. Equations for u

Let ¢ be in H'(w,R3) and ¢ be in C*°[0,L] such that ¢(0) = 0, we define the test function v¢ €
Hi, ,(QsR?) by

ve(z1,x2,23) = ego(:vg)d)(jpl :C: ), (z1,22,23) € Q. (6.2)
Then we have
o L 0p1 (1 T2
m) = ) (8 o).
e 1 01 O T
Yi2(v") = 2p5¢(x3) {8X2 + 8X1] (ep6 epe)
1 0p1 « 0 ! 1 0 1 X
a0 = 5 - (o) g 1%  plan) SR T2 4 e + plan) 5] (4, 22)
_p(xs)p, 91 (11 T2 €, @ T 1 O3 (w1 3
o 202 [al 0X, (epe’ epi)ma} + 2% (x?’)(m(epe’ epe) + 2p€ (s )aX1 (epe’ epé)’
o 1L P2 (1 T2
122(v) = E@(xg)@(EPE’ epe)

723(u€)=—@(x32)p2[ 2 8@(961,2):6} Sz >¢2(7 ﬂ)+ 1 oz )(%3(961,2)’

2/’5 —1 aXa €EPec €Pe €EPe  €EPe 2p€ 8X2 €Pe €Pec
e_m[aw(ﬂ 2) ‘9¢3(ﬂ xz> ] ( mz)
v33(v°) = 2 78X1 ep.’ ep. T +8X2 ep.’ e To| + €' (23) 03 o’ e
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Hence, using the properties of the rescaling operator we get the following strong convergences in L?(£2):

10
L (ns69)) = 3ola0)
9
Pl (2s(0)) Ho( e
pellc(v33(v¢)) = 0. (6.3)
Moreover, pIle(v11(v9)), pelle(y12(ve)) and p Il (v22(v¢)) are independent of €, since
P (o (0)) (X, X2, ) = ) (X, X2),
1 d¢1 D

P (1120 (X1, KXo, ) = i) 5 + 522 (X, Xa),
Pelle(v22(v)) (X1, X2, 73) = (x )8,(;;2 (X17X2> (6.4)

Now, we take v¢ as test function in (6.1]), we have

1
Zne(’Ue)(Xl,Xg,Z‘z;) = (p(]}3)¢)(X1,X2), for (Xl,XQ,J?g,) e Q0.

Then we pass to the limit. As far as the right hand side of (6.1) is concerned, taking into account the

assumptions (5.5)-(5.6)) and (5.7) we have

I.(Ff) = €2 ff(x3) — pe€Xags(x3) — 0 strongly in L;2)2 (Q),

. (F5) = €2 f5(w3) + peeX1g5(w3) — 0 strongly in L§2 (Q),

I (FY) = efs(x3) + pee X101 (x3) + peeXag5(x3) — 0 strongly in Lig Q).
Hence, dividing by € the right hand side of (6.1)) and passing to the limit gives

1
/ —p2 Y I (FOIL(vf) dX1dXodas — 0. (6.5)
0 ]

On the other hand, using the convergences (6.3)), (6.4) and (4.29)) we obtain the convergence of the left
hand side (divided by €) when € goes to 0

/ A Z T (05, )T, (755 (v)) dX 1 d X ada

i,7=1

3’&1 0p1 Oty O Ot O0¢q 0uy O¢o
- / A” axl ox, T ox, aXQ) + A‘P(aX2 ox, T ox, aXQ)}dXd%

+/Q{u<p(au1 + auQ)(ad)l + 8¢2) +2¢(p Wy _ oy LU —,oQde%?)(aq61 + 3¢2)}dXda;3

8X2 8X1 8X2 3X1 dac d(L'3 d;v3 8X1 8X2
agbg @ 6’(1,3 6¢3 2 @ 8U3
+/Q {Wa)g( p*Xa drs axl) TIOX, (p X T axg)}dXd“ (6.6)

where ¢ be in H!(w,R?) and ¢ be in C*°[0, L] such that ¢(0) = 0. Due to the convergence ([6.5]), the above
limit is equal to zero. Since ¢ is arbitrary, we can localized with respect to x3; that gives

00Uy 8(}51 Ots 8¢2 Olo 8¢)1 o0uq 8¢2
/w {o+ 2“)<3X1 axX: T ax, axz) + A(aX2 X, T ox, axg)}XmdXQ

+/{u(8ﬂ1 N 81’&2)(&/51 N 8¢2)+)\( dus gde U p2X2C§IL§)(8¢1 N 3¢2)}dX1dX2

3X2 8X1 8X2 8X1 dmg d 3 8X1 6X2
8¢3 2 dR3 6123 8¢3 2 ng 611,3 o
+/ {hox (-G + o5 ) Figx (PX g + g5 ) fdXidxe =0 (6.7)
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6.1.1. Determination of ug
First, we choose ¢1 = ¢ = 0. In view of we have

O¢s (o dR3  Oug b3 ( 5., dR3  Ous B .
/w{aXl( p Xz das + 8X1) + e (P X1 s +—aX2)}dX1dX2 =0, a.e. in[0,L].

Then the field a3 € L*((0,L); H'(w)) satisfies

2%/{_X2%+X1%}dx. (6.8)

/ VxisVxosdX = —p e e

Now, we introduce the function x as the unique solution of the following torsion problem:

xe '), [ xax—o

6.9)
o . o (
VxVxtdX = — {—X— X—}dX, Vb € H' (w),
/w xXVxi /w 28X1+ 13X, (0] (w)
Taking y as test function in gives
HVXH[QLz»(w)]*z < Il + IQ.
By contradiction, we easily prove [[Vx||?2,2 < 1 + I>. We set
K=I+1I+ {fxa—x+xa—x}dxczx =1, + I — | Vx| >0 (6.10)
=11 2 5 28X1 18X2 1 2 =11 2 X (L2 (w))? . .

The above constant which depends on the geometry of the reference cross section w, is the St Venant torsional
stiffness.

Since @3 verifies and also / u3(X1, Xo,23)dX1dXe =0 for a.e. 23 in (0, L), we get

. dR
t3(X1, Xo,23) = X(X17X2)p2(.’173)%;(.’173) for a.e.(X1, Xo,23) € Q

which in turn gives

B Ix \p* dR3 B dx \ p* dR3
T13 a (_ X2 + 8X1) 2 d:l?g ’ T23 h (Xl + an) 2 d’ll’g ' <611)

6.1.2. Determination of 6y, o = 1,2
Now taking ¢3 = 0 in (6.7)) yields

ouy O0¢q Oty 0o Oty 01 ouy 0o
/w {o+ 2”)<0X1 X, X, axz) + A(a)@ X, " ox; axz)}dX

b [ (e ) (e + o) pax
- —/w {)\(p% — X, Ci;ugl — X, Ciz/é?) (g;éll + g;i)}dX a.e. in (0,L) (6.12)

for any ¢, € H'(w)(a = 1,2). Then the variational problem (6.12)) corresponds to a classical 2d elastic
problem for (@1, @s). Taking into account the relations (4.28)), the above variational problem admits a unique
solution. Then we obtain

8&1 dUQ, 2 d2U1 9 d22/12 }

T&(XlaXQv ) = 7V{pd7x3 —pP Xl

dx3 e dz3

(6.13)
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Oty s 5 AU, dUs
X1, X — —p*X —p° X 6.14
ax, K Xe) = V{pdxg P g2 2 da? } (6.14)

ouq 0o . .
(87)(2 — 87)(1) (Xl,XQ, ) =0 a.e. in Q (615)
A . . . .
where v = ———— is the Poisson coeflicient of the material.
20+ )
As a consequence we get
dUs 5o d?Uy oo d*Us

T2 =0 Ty =Ty = — —2 —p°X —p° X 6.16
12 ) 11 22 { dx Al d2 2 dz2 } ( )

6.2. Equations for Uy,Us and Rs

Now we consider the functions ¢1,p2 and ¢3 in C°[0, L] such that ¢1(0) = ©}(0) = ¢2(0) = ©4(0) =
3(0) = 0. We construct a test field ¢° € Hf_ (Q;R?) as follows:

#1(z) = p1(x3) — z2903(73),
P5(z) = pa2(x3) + T1903(73),
¢5(x) = —$1<P'1( 3) — Tah(3).

Then we get

Y11(9°) = 0, 722(¢°) = 0, 712(¢°) = 0,

1
13(¢°) = *595290%(953)’

1

Y23(¢°) = §I1<Pé($3)v

Y33(¢°) = —w19Y (x3) — 22005 (23).

Applying the rescaling operator Il to the previous expressions gives

I (y11(¢°)) = (722(¢€)) =TI (712(¢°)) =0,

713(¢°) EPEX2<P3(I3)

«(ns(¢9)) =
1. (723 ) GPEXISDS( 3),
(v33(¢)) =

I (y33(9 —€PeX1<P1( 3) — GPeX2<P/2/($3)-

In order to obtain the limit problem as € tends to 0, we consider v = ¢¢ in (6.1]), it leads to

/pe ZH o) (7ij(6)) dX1dXodzs = /pSZH (FOI(¢%) dX1dXodas. (6.17)

1,7=1

We divide the above equality by €2. Then using the convergence (4.29) and the definition of the test function
we can pass to the limit in the left-hand side to obtain

lim e l;ln o )e (735 (6°)) dX1dXodas
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= U/ p2 [ — thpé(ajg)Tlg + Xlwé(xg)ng,} dX1dXodxs
Q

+ [ 7]~ ZXQ% " )( Ot 2 (58— o D - D) 0 (G + 08 ) axitads,

Moreover, taking into account | and ( - the above limit is equal to

dR b P
403 M ’ X 1 X
/Qp dxs [ 2 2<p3(x3)< Xa X, ) + X1¢3(333)(X1 + TXQ)} dX,1dXodx3
dis d? ul d? Us
2 _ /! _ " . 2
+/Q” (= X1l (wa) = Xah (23)) (p—dx3 X X )| dx1dXodas, (6.18)

A+2
where E = w is the Young’s modulus of the elastic material.

1
On the other hand, in view of the assumptions (5.5, (5.7) and the definition of the test field we obtain
the following limit for the right-hand side:

lim L ZH ) dX1dXydzs

= / 02{f1<p1 + P’ X3 9305 + faz + p° X7 93003 — p° X710} — 02X2292<P/2} dX1dXads. (6.19)
Q
Hence, by (6.18) and (6.19) the limit equation of (6.17) is given by

dR 9 oy
403 [ / X I
/QP dzs [ 2X2803(333)( X + 78X1) + X1<P3(x3)<X1 + BXQ)} dX,dXsdxs

dts d? u1 d2Us

2 _ /" _ " _ 2 2

—l—/Qp [E( X1 (5) XQQDQ(SCS))( P~ P X E X, 02 )}XmdXdeg

_ 2 2 2 2 2 2 2 / 2 2 /

= / p {f1<m + 0" X59303 + fa2 + p  Xig3ps — p"Xig10] — p ngz%} dXydXadws, (6.20)
Q

for any @3 € C°°[0, L] such that ¢3(0) = 0 and for ¢, 02 € C[0, L] such that ¢1(0) = ¢1(0) = ¢2(0) =
©5(0) = 0. We simplify ((6.20))

K dR d*u d*U
= / : pr== @ydrs + ETy / p* 21 ¢y dxs + EI, / Pt @l dxs
(0,

2 dx T3 (0,L) dl’3 (0, L) dacg
=(I + -72)/ plgspsdas + |w|/ p*{ frp1 + fopa fdas — Z I, / ' gasph ds. (6.21)
0,L a=1 0,

First we choose 1 = @9 = 0 in (6.21). Taking into account the boundary condition R3(0) = 0, the
function R3 is the unique solution of
Kup d 4dR3) 4
————(p—) =L+ :
2 dx;;( dxs (B + L2)p"gs

R3(0) =0

(6.22)

where K is given by (6.10)).
In (6.21) we take @3 = 0. Since 1 and @9 are arbitrary in C°°[0, L] such that ¢1(0) = ¢} (0) = ¢2(0) =

©5(0) = 0, that gives the bending problems satisfied by U; and Uy

d? ( LU,

El,
@ d\P da2

¢ ) = wl6fa+ Lo (o'90).

Un(0) = fi“ (0) =0,

fora =1,2. (6.23)
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Recall that in order to obtain (6.22))-(6.23]), we have used the fact that p(L) = 0.

6.3. Equation for Us

In this step we derive the equation satisfied by Us. In order to get this, in (6.1)) we consider as test field
v(z1, w2, 73) = (0,0, p(x3)) in H(Q;R?) such that ¢ € C°°[0, L] with ¢(0) = 0. Due to the assumptions
(5.5), (5.7), the definition of the test field v and taking into account (2.1)) the limit of (6.1) devided by e
gives

o dU3

Ep d—apé dxs =/ p* f3p3 das.
(0,L) L3 L

)

Hence, since ¢ is any function in C°°[0, L] such that ¢(0) = 0 and p(L) = 0 we can conclude that U3 verifies
the following compression-traction equation for elastic rods:

— i(pz%j) =p’f,

dxs (6.24)
Us(0) = 0.

6.4. Convergence of the total elastic energy

In the above subsections all the limit problems admit a unique solution. As a consequence the whole

1 1
sequences {—256} U e, {72/{?5} and {R§}e converge weakly to their limit.
€ € € €
€

In this subsection we prove that the rescaled energy converges to the elastic limit energy as € tends

4
€
to zero and that some weak convergences are in fact strong convergences.

Lemma 6.1. Under the assumptions (5.5), (5.6) and (5.7) on the applied forces, we obtain the following

convergence for the total elastic energy

3
— / {/\TT(T)TT(T)—l— 3 QuTijTij}Xmngdx37 (6.25)
Q

i,7=1

lim 5(1: )
e—=0 €
where T is the limit of the symmetric gradient defined in (4.29)).

Proof. Taking v = u¢ in (5.2)), dividing by €*, then using the properties of I, and by standard weak lower-
semi-continuity, we obtain

3
o E(uf)
/Q {)\Tr(T)Tr(T)+i;12uTijTij}dX1dX2dx3<hr€ri>151f o (6.26)

We have

E(u) RS ] ] P2 ; ;
) :/9?2 Z e (o) e (g (u ))XmdX2dx3:/Q€2;l—Ie(Fi M (ug) dX 1dXodws.

ij=1

The last term in the above equality is equal to

2 3 2 3
P M (FOIL(uf) dX1dXadrs = / 15 )L ) X X — |2 X5 (g T ()
R — o) Q
3 2 2 3
p6 € € pE € € pE € €
+ [ FEXagh (s (uf) + / - £5(w3)ILe(u§) dX1dXodas + Y / £ Xag (ws)Te(uf) dX1d Xodas.
Q Q e ive)
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Then @.11), [@7), (#11), (*12), (#.15) and (5.7) lead to

) - 2 du,,
:/Q [;/ﬂfﬂti + az::l p*(XagsRs — Xigachg)} dX 1dXodxs3

lim sup
e—0

:|w| / p2f . Ud.Tg + (Il + IQ)/ p4ggR3d$3
(0,L) (0,L)

au du.
7[1 / p4g171 dmg — IQ / ,049272 d:l?g. (627)
(0,L) dzs (0,L) dxs

Besides, since T' is a symmetric matrix we know that it verifies the following algebraic identity

AT ( 2 =FT2, + ———————— (T + Tho + 20T53)?
r(T Jz:l wT; 33+(1+y)(1—21/)( 11+ Tz + 2vT33)
E 2 2 2 2
+ 20 +0) [(T11 — To2)” + 4(Th5 + 115 + T53)].

Then, in view of (2.1)), (4.32)), (6.11)), (6.16]) and we have

/ \Tr(T)Tr Z 2T Ty dX1dXodas = / (%) dX,dXsdzs
1,7=1 L3
B / dR2 12(0;72) )Xmngd:c3+ el / ng?’) day
B A &2U, Ku AR5\ 2
_E|w|/ﬂp2<d—xg> dx3+a§::1EIa /(O,L) p4( 52 ) day + - /(O,L) p4(d73) dzs. (6.28)

We recall that
2
dlUs N2 d?U, Ku dR3\ 2
E =) d EI, 4 ) daws + —= / H==)d
‘w‘/g\zp (d$3> x3+o;1 [07L)p ( dﬁﬁg ) 3+ 2 (07L)p (dl'g ) 3

2
ol [ rudn =YL |
a=1

di,,
ptga—— s drs + (I + 12)/ p'g3Rsdas.

(0.L) (0.L) (0,1)

Finally we obtain

€ 3
lim E(Z ) = /Q {)\TT(T)TT(T) + Z QMTijTij}XmdXQd:E:aa

e—0 € =1

,)=
which gives us the convergence of the rescaled energy to the total energy of the problems (6.23), (6.24]) and
(6.22) as € goes to zero. O

Now we can deduce the strong convergences of the fields of the displacement decomposition using the
strong convergence of the energy. In view of the weak convergence of the symmetric gradient (4.29)), the
strict convexity of the elastic energy implies that the convergence of the symmetric gradient is strong

—TI((Vu©)s) — T strongly in [Li(ﬂ)]g. (6.29)
As a consequence we get
P € p iy dRs5 dRy P dug
=11, Pe X H
€ ((Vu )8)33 € drs dxs tppeta dzs (83:3>
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dR dR
— T33 = p% — pQXl—2 + pQXQ—1 strongly in L*(Q). (6.30)
deg d933 dx3
Moreover, using / (15)dX1dXs = | X I (u5)dX1dXs = 0, for a € {1,2}, and taking into account
convergence we may deduce from that
dR¢ AR
p dd; s 2 p? =% strongly in L2(0, L), (a = 1,2), (6.31)

€ drs me’ p dxs dxs

as € tends to zero. Then, in view of the weak convergences and . 6.31]) implies that

%Ugf — Us strongly in H; (0,L), (6.32)

Ri, = R strongly in H;Z (0,L), fora=1,2. (6.33)
Moreover, from and we have

U, — U, strongly in H;(O, L), for a =1,2.
Hence, due to the decomposition and the previous strong convergences we deduce
I (ug,) — U, strongly in Hl(Q)7 for a =1, 2.

dih
,H (Ug) — Uz — pX1

dos ngilﬂ strongly in Hl(Q)

We also have 1
:2%45 (Heﬂe) — Yap(@) strongly in L*(Q), for o, B =1,2.

We recall that the warping functions satisfy (4.28)). Then from the 2d Korn inequality we derive

2 1 2
az::l H:?H P2 + a%::1

That leads to

100 (ag)  Oug
2 0X; 09X,

L2(Q)

2
o 5 35 [s) st

1

6—21_1E (ag,) = @a strongly in L*((0,L); H'(w)), for o =1,2.

7. Conclusion

In this last section we summarize the results obtained in the previous sections.

Theorem 7.1. Let u¢ be the solution of the elasticity problem (5.2). Under the assumptions (5.5)-(5.7) on
the applied forces, the sequence {u} satisfies the following convergences

I (u,) — U, strongly in Hl(Q), fora=1,2,

dih _ ngﬂ strongly in H (Q),

1
*H (U3) — U3 — led dzs

where Uy, is the solution of the bending problem (6.23) and Us is the weak solution of the stretching problem
(6.24). Moreover, we have

1
—II, (%j(us)) — Tj; strongly in Li(Q), fori,j=1,2,3.
€
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where

s o Uy, dPUs
T =Ty = —vT: T33 = p—— — —
11 22 V133, 33 deg P A1 dx% P A2 da:%’
Ox \ p? dR3 Ox \ p? dR3
T2 =0, Tis=(—-X — )=, Toa = (X A VE ,
12 13 ( 2+ axl) 2 dr; 23 ( 1+ 8X2> 2 drs

with x € H(w) is the solution of the torsion problem and R the weak solution of (6.22)).
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