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Multisymplectic formulation of vielbein gravity

I. De Donder-Weyl formulation, Hamiltonian (n — 1)-forms

Dimitri VEYI!

Abstract. We consider the De Donder-Weyl (DW) Hamiltonian formulation of the Pala-
tini action of vielbein gravity formulated in terms of the solder form and spin connection,
which are treated as independent variables. The basic geometrical constructions neces-
sary for the DW Hamiltonian theory of vielbein gravity are presented. We reproduce the
DW Hamilton equations in the multisymplectic and pre-multisymplectic formulations.
We also give basic examples of Hamiltonian (n — 1)-forms and related Poisson brackets.

1 Introduction

The canonical Hamiltonian theory of the Palatini action of vierbein (tetrad) gravity has been
studied by Deser and Isham [I5] and Heanneaux et al. [52]. In the canonical formulation,
space and time are treated asymmetrically and the canonical variables are defined on spacelike
hypersurfaces. Therefore, the dynamics implies a global spacelike foliation of the space-time
manifold. The canonical commutation relations are defined on the equal time hypersurfaces.
Accordingly, the Dirac canonical quantization is related to the instantaneous Hamiltonian
formalism, which adds an additional structure of global hyperbolicity on the relativistic
space-time. In this paper, we consider the De Donder-Weyl (DW) Hamiltonian formulation
of vielbein gravity in the broader context of Multisymplectic Geometry (MG). The finite
dimensional DW theory is a covariant Hamiltonian-like formulation for field theory, where
the space and time coordinates are treated symmetrically. Hence, MG may give a profound
geometrical road to field quantization (see e.g. [47, [60]). The DW Hamiltonian formulation
of vielbein gravity based on the first order Palatini action is already found in some papers.
A constraints analysis of the Ashtekar theory based on the multisymplectic formalism is
found in the paper by Esposito et al. [23]. For a glimpse of the DW formulation of vierbein
gravity, see also Rovelli [94, ©5]. The work of Bruno, Cianci, and Vignolo [5, 6] gives a
more detailed development at the crossroad of the natural bundles theory and the jet bundle
formalism. Finally, the papers of Kanatchikov [57, 58| focus on the problem of constraints
and precanonical quantization [61] of vielbein gravity in the DW formulation.

In this paper, we first outline in section [Il the basic ingredients needed for the subsequent
study such as the MG, Palatini formulation and the configuration space of vielbein gravity.
Then, in section 2l we present the DW Hamiltonian formulation of the first order Palatini
action of vielbein gravity. More precisely, in section 2.1l we describe the Legendre correspon-
dence in the DW setting. We define the constraint hypersurface C C My, in section 2.3
In section [2.4] we give the expression of the DW Hamiltonian density related to the Palatini
action i.e. HP=t = *HPW where ¢ is the canonical inclusion ¢ : C — Mpw. In section
we calculate its exterior derivative dHP* := *dH®W. Then, in section 2.6 we present a
brief comment on the primary constraints set and the extended DW Hamiltonian. Finally,
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2 Multisymplectic formulation of vielbein gravity

in section 2.7] we derive the DW Hamilton equations in three and four dimensional cases.
In section B we discuss the pre-multisymplectic formulation of vielbein gravity, i.e. we work
on the level set Co := (H"™)71(0) C Mpw. Thus, the pre-multisymplectic formulation of
dreibein and vierbein gravity is presented in sections [B.1] and [3.2] respectively. In section [
we focus on the notion of Hamiltonian (n — 1)-forms. In particular, we explore its relation to
homotopy Lie algebra and to the graded Poisson bracket in sections [4.1] and [L.2] respectively.
We also present some simple examples of Hamiltonian (n — 1)-forms in sections [£.3] and 4.4
Finally, in section we give succinct comments on canonically conjugate forms for vielbein
gravity.

1.1 Multisymplectic geometry

Let us recall that MG is a generalization of symplectic geometry to field theory. It allows
us to construct a general framework for the calculus of variations with several independent
variables. The origins of MG are connected with the names of Carathéodory [10], Weyl [108]
on one hand and De Donder |19, 20] on the other. We make this distinction since the moti-
vations involved were different. Carathéodory and Weyl were interested in the generalization
of the Hamilton-Jacobi equation to the case of several independent variables and the line of
development stemming from their work is concerned with the solutions of variational prob-
lems given by an action functional. On the other hand, Cartan [12] recognized the crucial
importance of developing an invariant language not dependent on local coordinates. De Don-
der carried this development further by exploring, in the context of field theory, the relation
between Hamilton equations and the theory of integral invariants. The DW system of Hamil-
tonian equations, as noted in [19] [47], has been discovered already by Volterra [105], [106] at
the end of the ninetieth century. Hence, the Hamilton-Volterra system of equations is today
termed the DW Hamilton equations with the reference to the work by De Donder [19] 20]
and Weyl [108]. As was first noted by Lepage [78, [79, 80|, the DW theory is a special case of
a more general theory. The geometrical constructions permitting a fully general treatment
were provided by Dedecker [16, 17, [18]. Note also that the line of research focusing on the
related Lepagean equivalents was developed in particular by Krupka [70, [71], [72], Krupkova
and Smetanova |73, [74], [75]. Finally, we refer to the review paper by Kastrup [62], the book
by Rund [96], Gotay [40, 42], and Olver [85] [86] for more details about the Lepagean equiva-
lents. The Legendre correspondence, i.e. the generalization of the Legendre transform in the
context of the Lepage-Dedecker theory, the description of observables and the construction
of the Poisson brackets are the cornerstones of the covariant Hamiltonian formalism for field
theories. For example, in the context of the Lepage-Dedecker theory, the papers by Hélein
and Kouneiher [50} 51| develop an insightful classification of observable forms in terms of
algebraic observable forms and observable forms.

A fruitful step in the development of MG and its relation to classical field theories was taken
in the seventies of the past century. In particular, the Polish school formulated important
ideas and developed the «multisymplecticy, or «multiphase-space», formalism in the work of
Tulezyjew [100] 101, Kijowski [63] 64], Kijowski and Tulczyjew [67], Kijowski and Szczyrba
[65], 66], and Gawedski [34]. We find the notion of an observable form already in their work.
A formulation of the notion of a dynamical observable used in |50, [51] already emerges in the
work of Kijowski [63]. Parallel to this development, the paper by Goldschmidt and Sternberg
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[43], gave a formulation of the DW Hamilton equations in terms of the Poincaré-Cartan form
and the underlying jet bundles geometry, and a related approach was also developed by the
Spanish school: Garcia [31, 32] and Garcia and Pérez-Rendun [33].

In this paper, we use the multisymplectic formulation based on the DW «multimomentum
phase space». Let us consider a theory with a covariant configuration space given by a fiber
bundle (), X, ), where 7 : Y— &’ is the bundle projection. Let us denote by {x*}1<,<, local
coordinates on X the base space. The dimension of the space-time manifold is dim(X’) = n.
We denote also by {y'}1<i<k local coordinates on ),, where Y, := 7~ !(z) is the fiber over
a point of the space-time manifold. The dimension of the fiber is dim(),) = k. Local
coordinates on the total space ) are denoted by (z*,y’). We denote APT*Y the vector
subbundle of A™T*) whose fiber at y € ) consists of all ¢ € AZT *) such that for any
vertical vector fields ¢V, x¥ € VY ie. ATT*Y = {p € AiT*Y / ¢V ax¥ ¢ = 0}. We
also denote AJT™) the space of horizontal n-forms on ). Thus, we denote by Mpy =
Mow(Y) := A"T*Y the DW multimomentum phase space. The bundle A?T*) — Y carries
a canonical structure ° = 3 + pt'dy* A 8, and leads to the multisymplectic structure:
w™ = dx A B+ dpl' Ady' A B, with B = dz* A ... A dz" a volume n-form on X and
By =0, 1B is a (n—1)-form.

To conclude this overview we mention examples of more recent papers in the field. We
refer to Binz, Sniatycki and Fischer [4], Giinther [44], De Le6n, Carifiena, Crampin, Ibort
[9, [11], Forger, Paufler and Romer [28] 29, [30], Gotay et al. |39, 40} 41, 42], Hélein [46, 47],
Hélein and Kouneiher [49] 50, 51|, Kanatchikov [53, 54, 55, 56], and Sardanashvily et al.
[36, 37, 138, 97]. Most of the literature on the subject focuses on the contact structure and
jet bundles formalism. For a general presentation of multisymplectic, k-symplectic and k-
cosymplectic geometries, we refer to the review paper by Roman-Roy [92] and the book by De
Leon, Salgado and Vilarino [21]. The multiplicity of formalisms is illustrated by the polysemy
of the term «polysymplecticy, first introduced by Giinther [44]. Thus, Giinther’s polysym-
plectic (or k-symplectic, see [21]) formalism is different from the polysymplectic approaches
developed later by Kanatchikov [53] and Sardanashvily et al. [37], respectively. In the former,
the polysymplectic formulation is based on the polymomentum phase space i.e. the quotient
bundle ME¥(Y) = A?T*Y/AT*Y. The polysymplectic structure on MEY()) is described
as an equivalence class of canonical forms while the main object is w" := dpf' A dy’ A B,,
the vertical part of the multisymplectic form w®". In the latter approach, the polymomen-
tum phase space is defined as M™¥(Y) = mTX @ V*(Y) @ 7*A"T*X and the canonical
polysymplectic form is given by w™ = dp/' Ady’ A B® 9,,.

1.1.1 Poincaré-Cartan n-form, multisymplectic (n + 1)-form

In this section, we introduce the multimomentum phase space in MG, i.e. the bundle M :=
A™T*Y of n-forms over the configuration space ). This is a generalization of the phase
space, i.e. of the cotangent bundle introduced in symplectic geometry. We will follow the
terminology found in [47, 49| 501 [51].

Definition 1.1.1. A multisymplectic manifold (./\/l,w) is a manifold M together with w, a
closed and non degenerate differential (n + 1)-form on M.

In field theory we are led to think of solutions of variational problems as n-dimensional
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submanifolds I' embedded in the multimomentum phase space. We introduce the notion of
a Hamiltonian n-curve, see [50, [51]:

Definition 1.1.2. Let H : M — R be a smooth Hamiltonian function (such that dH # 0).
A Hamiltonian n-curve is a n-dimensional oriented submanifold I' C M such that

VmeT, X e AT, T, X Jw,, = (=1)"dH,,. (1)

A Hamiltonian n-curve is parametrized by a map = — (g(x),p(x)) from the space-time
manifold X to the multimomentum phase space M. Actually, in definition [[LT.2, the gener-
alized Hamilton equations are written in geometric form as X Jw,, = (—1)"dH,,.

The Poincaré-Cartan n-form 6 on A"T*) is defined as

Vgel, VpeNTiY,  Ogp(Xi---, Xn) = p(IL(Xy), - IL(Xa)), (2)

where Il : M = A"T*Y LN Y is the bundle projection on the configuration bundle and
II, :=dIl : TA"T*Y LN TY. Note that the dimension of a fiber at ¢ € Y is dim (A”T;y) =
(n+ k)!/(n!k!), whereas the dimension of the total space of the fiber bundle is dim (A"T*)) =
n+k+ (n+k)/(nlk!).

Strictly speaking, the object defined by (2)) is the most general Lepagean equivalent of
the Poincaré-Cartan form. Nevertheless, we term it the «Poincaré-Cartan» form, according
to the terminology found in [50} 5I]. Let (¢*)1<u<n+r be the local coordinates on Y, i.e.
¢* = (z",y"). Let the family (dg"s A ... A dgtn)i<u <..p, <nsk be a basis of A"T*Y. We
denote by py, ..., the local coordinates of the Poincaré-Cartan form on A"T, 7Y in the basis

dg*t A ... A dgt». In particular, we. denote 3 := pi.,, pi' = DL(u=)i(pt1)-ns Pt =
P (= 1)in (1 +1) (2 — Do (o 1) oms -+ Finally, we use also the notations f,,..,,, := 0, A--- A

Op, 4 B, and B, = dy™ Ao Ady A (8,“ NN Oy, 6) In local coordinates, the
Poincaré-Cartan n-form 6 is written as

0 = Z Puyop, dg A - A dghn,

1<py < <p <ntk

n
_ SO g
- %5 + p’i1~~~ij 1 pg e

J=1 1 << g ig <<

(3)

The multisymplectic (n + 1)-form w := df (called also the «pataplectic form» in [49]) is
the exterior derivative of the Poincaré-Cartan form. Traditionaly the term «multisymplectic
form» refers to Kijowski’s multisymplectic form [63] [64] i.e. in the DW formulation only.
Nonetheless, we will follow the terminology introduced in [50} [51]. In local coordinates, the
multisymplectic (n + 1)-form w := df is written as

1<p; < <p <ntk
n

= deABEY. S Y A A

J=1 pr <o <py iy <<y
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1.1.2 Bundle of field derivatives

We now describe the Lagrangian side of the formulation of a variational problem on fields
¢ : X — ). The Lagrangian density L(q,v) = L(z*,y",v},) = L(z*,y", 0,y") is defined on the
bundle P of field derivatives. We associate to ¢ the bundle p*T)Y ® T*X over X. A point
(z,v) € PTY @T*X is given by v = >, . D 1< via%i ® da*. On the bundle P? :=
©*TY @ T*X, which is included in the bundle P = {(z,y,v)/(z,y) € Y, v € T,Y Q Ty X'},
the local coordinates are (x#, 3, ’UL) Note that the dimension of the fiber is dim (P, ) = nk,
whereas the dimension the bundle is dim (P) = n+k+nk. They can be equivalently thought
of as the local coordinates on the first order jet bundle J'()). We refer to Saunders [98] for
an introduction to the jet bundle formalism, and to Carifiena et al. [II], and Gotay et al.
[39] for the use of it in the multisymplectic context.

Using the variational principle we obtain for the action S[¢] = [, L(z, ¢(z),dp(z))8 the
related Euler-Lagrange

ozt

We denote by AUTY the normalized space of decomposable n-vector fields on Y: for any
21,00y 2, € TV, AVTY = {(¢,2) € N"TY/z = z1 A ... A\ z, and B(z1,...,2,) = 1}. We
construct a diffeomorphism between A"T) and P. More precisely, for any (z*,y’) € Y the

fiber AYT(, )Y is identified with P, using the diffeomorphism 37, >, vy, azi @ dzt — 2 =

21 A . A 2, where for any 1 <o <n, 2o = 5% + > ok vfwiyi, see [49].

1.1.3 DW Multimomentum manifold

The DW multimomentum manifold My, is a submanifold of M := A"T*). For any
(q,p) € A"T*Y we restrict ourselves to the case where the interior product ¢V 1 xV 1p =0
is identically vanishing, where ¢V, xY € V) are any two vertical vector fields. Let us recall
that a vector field is vertical if any £ € T,) such that 7, (§) := dn(§) = 0, where 7 is the
bundle projection on the space-time manifold ) — X. Then, by definition

Mow = ANIT*Y = {(q,p) e A"T*Y / V¢V, x e VY, ¢YAxYap=0}. (6)

Let ¢, : Mpw <= M be the canonical inclusion. Note that 6°" := 130 € T'(Mpw, A" T*(Mopw))
where 6 € I'(M, A"T*(M)). Since d(:26) = 7df = t}w, we obtain w™ = d6°" = jw. We
denote by 6° := 0|y, the restriction of § to My, Working on My, is equivalent to
setting pﬁl_:'_;’; 7 =0 for all j > 1 in the expression of § given in (3. In local coordinates, the
Poincaré-Cartan n-form is written as 6° = 33+ pl'dy’ A S,. Then, following the terminology
used by e.g. Kijowski [63] 64], Cantrijn, Ibort and Leon [9], and Hélein [47], we introduce

also the multisymplectic (n + 1)-form

W =dse AB+ Y ) dpt Ady A B, (7)
nw 7
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1.1.4 Hamilton equation in DW formulation

The DW Hamiltonian function H(z*,y",p}) = pfv;, — L(z#,y',v},) is defined by intro-
ducing the Legendre transform (2#,y',v;,) — (2¥, 3, p}’), with the multimomenta p} :=
OL/ov} (z#,y', v,). If the Legendre transform is non singular, i.e. det(0L/dv;,0v]) # 0, the
Euler-Lagrange equations () are equivalent to the DW Hamilton equations:

oH

25 om T = St P @t @) )

= ——(gM H x
al’“(x) api;(x ,@(fﬂ),p, (Zlf)), p orh

Following [49], we introduce the Legendre correspondence in the context of the most general
Lepagean theory by the function W : A"TY x A"T*Y — R, (q,v,p) — (p,v) — L(q,v), where

(0) = (p,2) = (D2l Am) = Y Py A (9)
By < <hy,

We have denoted by z# the coordinates of the vector fields z, = ), <p<nik #0/o¢t € T,Y,
which are used to construct the decomposable n-vector field z = 2y A --- Az, € AITY €
ATTY =2 P, see section [[.LT.2l The Legendre correspondence is satisfied if and only if, for any

(q,v,w) € ATY x R, and for any (q,p) € A"T*Y, we have

(o)~ Lig)=w  ad D (g0,p) =0, (10)

When the Legendre hypothesis is satisfied, c.f. [49, 50, 51], we denote (g,v,w) < (q,p).
To obtain the DW Hamilton equations, we restrict ourselves to the manifold My, with
a Hamiltonian function H : My, = A?T*Y C A"T*Y — R. Only when the Legendre
correspondence is non degenerate we have a unique correspondence (q,v)<*(q,p), i.e. for
any (q,p) € Mpw there exists a unique element (¢,v) € TY @ T*X such that (p,v)<(q,p).
The DW Hamilton equations (or the generalized Hamilton equations, as termed in [49, 50])
are to be thought of as necessary and sufficient conditions on the map = — (¢(x),p(x)) :=
(x#, @' (), 3¢(x), pt (x)) such that there exist fields x — () for which:

e The Legendre condition is satisfied for any x € X, (z, ¢(x), dp(z))>(q(z), p(z)).

e The fields z — () are solutions of the Euler-Lagrange equations (), which are related
to the Lagrangian density L(x,p(x),de(x)).

Note that we can always write H(q,p) = H(z",y", 3, pl') = 3¢+ H(z",y", p!') = s+ H(q,p)
and then work on the level set H~'(0). The variable 3 = p;...,, is seen as the canonical variable
conjugate to the volume form 3, see [50, B1]. If we fix H(q,p) = 0, then » = —H(q,p). In
this case, the pre-multisymplectic (n + 1)-form w® := w®|y—¢ is

w® =dp! ANd2' A B, —dH A B, (11)

the exterior derivative of the Poincaré-Cartan n-form 6°¢ := pi'dz" A 8, — Hf3, see Gotay
[40, [4T], [42], the analogue of the Poincaré-Cartan form of mechanics in the multisymplectic
context.
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We denote by C, the level set H(0) = {(¢q,p) € M = A?T*3/H(q,p) = 0}. The triple
(Co == H7Y0),wlc,, Blc,) is a n-phase space, where B¢, is a nowhere vanishing volume n-
form, and w|c, is a closed (n + 1)-form, see Kijowski and Szczyrba [63] 64 65] [66] and Hélein
[47]. We consider the n-dimensional submanifold I' C Mo, i.e. the Hamiltonian n-curve
defined by T' = {(z#,9",p) / y' = ¢'(x) , pf = OL/Ov} (z#, ¢*(x), D' (x))}. Then, on the
level set C, C Mpw, the DW system is written in geometric form as

YmeT, VX € AT, X Jw®=0 and 3X € A"T,,[', X 1B, #0. (12)

We refer to section [Blfor more details on the pre-multisymplectic scenario, where we reproduce
the DW Hamilton system of equations, which in turn is equivalent to the Einstein system.

1.2 First order Palatini formulation of vielbein gravity

Dynamics of General Relativity (GR) is described by the Einstein’s equations. They are
obtained from the Einstein-Hilbert action functional

Selgy] = 1 /X Lenlg,]B = r /X RV g5, (13)

where x := (167G)~!. The Einstein-Hilbert Lagrangian density is Lgy, g,,]. The functional
(I3) depends on the metric g, and its first and second derivatives. In this approach the metric
is the dynamical variable and it satisfies the Euler-Lagrange equations. The fundamental
objects: the Levi-Civita connection I'?, and the curvature tensor R’,,,, are expressed via
the metric ant its derivatives. In such a framework, GR is described as a metric theory.
The variational principle is applied to the functional Seylg,,,|. Variations with respect to the
metric g,,, lead to the vacuum Einstein field equations

G = Ry — (1/2)g,, R =0. (14)

Classical GR can be also formulated in terms of the wvierbein e’

o or vielbein in the n-
dimensional case, and the spin connection wi‘] , see section [[.3] for details. The passage
from GR seen as a metric theory to the first order Palatini action of vielbein gravity is built,
as emphasized in [93], in two steps. The first step is the Palatini first order theory. We

consider the metric g and the connection I' as independent variables. We write

SoumenlesT] = 5 /X V=gg" R[5, (15)

and we perform the variations of I' and g independently. The variations with respect to the
connection coefficients set the connection I' to be the Levi-Civita affine connection, while
variations with respect to the metric yield the Einstein vacuum equations (I4]). The second
step concerns the use of the vierbein (tetrad) field. The Einstein-Palatini first order theory
is given by the action

Shatatin [€, W] = g /EIJKLFJI Nel N FEE (16)

which uses of two independent dynamical fields: the co-frame field e!, or the solder form, and
the spin connection w!’. We refer to appendix [Al for details on the action functional (I8]).
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Using this formulation the Einstein’s equations (I4)) are equivalent to the Euler-Lagrange
system of equations
dpe! =del +wiyne! = 0,

ersxe’ ANFRE =0, 17)

see [3, 45]. We call the action functional Sp,mle,w] given in (I6) the first order Palatini
action of vielbein gravity.

1.3 Vielbein gravity: dynamical fields

As emphasized in many papers, e.g. [25 45, [68, [69], the concept of orthonormal moving
frame, or vielbein, is distinct from the concept of the solder form. A moving frame e,(z), or
repére mobile of Cartan [13], [14], is thought of as a section e,(z) : X — L(X) of the linear
frame bundle L(X). In the same way, an orthonormal moving frame e;(z) is a section of
the Lorentz frame bundle Lgo(1,3)(X). We denote a local frame as {e!™} defined on an open
subset Uy C X', where the index («) is related to a choice of trivialization. If the space-time
manifold is parallelizable, the local nature of the moving frame extends to a well-defined
global object. The vielbein field is written as e; = €/ (x)0, and is related to the metric by
the formula g,, = e/ ,e;h;;. Note that the dual object is e’ = e/ (z)dz#. In the next section,
the solder form is given as a global section of the bundle V ® T*X over X, see the right side
of figure [Il The solder form is canonically represented by a family of local frames {eff‘)} on
the space-time manifold and is termed alternatively the vielbein field or co-frame field. In
the subsequent section, we offer some basic remarks about the interplay between the concept
of vielbein, i.e a section of the orthonormal frame bundle, as opposed to the one of solder
form, or «forme de soudurey [22], and the related description of the co-frame field as a bundle
isomorphism.

1.3.1 Co-frame field: the solder form

In the first order Palatini formulation of vielbein gravity, space-time is represented by an
n-dimensional oriented manifold X which is not equipped with a metric a priori. The metric
is obtained via the pullback along the co-frame field, or solder form e : TX — V. Then, we
work in terms of the bundle isomorphism e : TX — )V between the not necessarily trivial
tangent bundle TX — X and the vector bundle V — X, see figure [I}H1]. The isomorphism
e is equivalently seen as a section of the vector bundle V ® T*X — X such that for any
xr € X, e, is an isomorphism, see figure [I}[2]. Note that V), is the internal space. The notion
of solder form was introduced by Ehresmann in [22], see also [68], 69]. As emphasized in
[3, 109], the name co-frame is related to the case the manifold is parallelizable, the tangent
bundle is trivial, and the bundle isomorphism e : TX — V = X x R"® is equivalent to a
choice of trivialization. In this context, the solder form is identified locally, on any tangent
space T, X, with the co-frame e, : T,X — R'3.

1.3.2 The co-frame field: covariant exterior derivative

In this section, we consider the solder form e € Q'(X,V) = I'(V) ® Q(X) previously in-
troduced in section [[3.1l Let ¢; be a frame on the vector space V, := R"3, the Minkowski
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Figure 1. [1] The solder form the co-frame field as a bundle isomorphism. [2] Equivalently the
co-frame field is pictured as a global section of T*X ® V — X’. Note that V does not need to be
trivial.

space. Let e be a moving co-frame, locally defined on Q'(X) (on an open subset U,y C X).
Locally, for x € Uy, we write e = eﬁe“ Qe = eIeﬁe“ = ¢sel, i.e. e is decomposed with
respect to the basis e¢; ® e* without any reference to space-time indices. We use the covariant
derivative D : T(V) — QYX,V) = T(V) @ QY(X). Let o be a section of the vector bundle
VY — X so that Do is a section 1-form, Do € I'(V) ® Q"(X) = Q"(X,V). By means of the
covariant exterior derivative defined for any A = (1/n!)A], e A---Aetm ®@e; € Q'(X,V)
by

d,: Q" (X, V) — QH(xL,Y),

A dh (18)
We obtain the expression of d,e € T'(V) @ Q*(X), i.e.
_ I Iy I I I
dye = dﬁ(ele“) A€ +ere det = (Dep)e, A et +epde, A et +ere, det, (19)

= wyese’e, Ne' +e0,el e Ne’ +eeldet,
where we have used in (I9) the formula De; = wVJIe s€e¥ as well as dei = 0Ve/€e“. We refer to
the section [[.3.4] for details on the connection wﬁ‘] . For a non integrable moving co-frame we

obtain de# = —1/2¢k e A e”. Hence, in this case dye = e;(d €] +w) el — 1/2e)ct Je” A et
For an integrable moving co-frame e* = dz#, we have de* = 0, and we obtain
doe = (d,e, + wiel,)dz” Ada" € T(V) ® Q'(X). (20)

Now we write the object d,e decomposed with respect to a basis of T'(V) ® Q?(X), i.e.
e; ® e A e”. Hence dye is written as dy,e = (1/2) (dwe)fw e; ® e N e”. The covariant
exterior derivative d, and the gauge covariant derivative D are related by d,e = e;Del,
where De! = de’ +wj Ae’. Since w!; = w!;dz* and de’ = d(e/dz*) = de], A dz#* we obtain
De! = (O,el + w,ﬂjei)dx“ Adx”.

1.3.3 The Lorentz spin connection

Let (P, X, 7, SO(1,3)) be a principal fiber bundle with a gauge group SO(1,3). We denote
by g the so(1,3)-Lie algebra. Equivalently, P is thought to be the total space of the h-
orthonormal frame bundle over the space-time manifold. Here, h is the Minkowski metric. We
consider an Ehresmann connection on P i.e. a smooth distribution of horizontal subspaces,
see [22], along with an equivariance property. In a given trivialization we obtain from the
connection 1-form w € Q'(P, ) on P the local connection form a 1-form w € Q'(X,n) on
X. Note that the local connection form or gauge potential is the pull back of the connection
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form w by a section ¢® : U, € X — P - and denoted as w = (W) (w) € T*X @ n.
The local connection form is only described in the local trivialization ¢(® and therefore is
a notion that depends on the choice of trivialization. In the context of vierbein gravity, the
Lorentz spin connection is written as w = w,dz* = bjw/ dz# = w!,dz* @ b;, where (b, - - -, bg)
is a basis of . Note that in the formulation of dreibein gravity, the basis of the so(1,2)-
Lie algebra is denoted (bgl’z), EE ,bgm)). We induce a connection on associated bundles
P x,V via a representation p of the SO(1,3) group, see [68, [69]. The image p(w) of the
gauge potential w via the representation p gives the matrix connection p(w) = p(bjw;,dz*) =
whp(b;)dat = Wl (p(b;))da". We denote p(b;) := A; = (A;)}, where 0 < I,J < 3 are

n
Lorentz Lie algebra indices. Working in a given representation, we simply denote the matrix
elements by wj = w! ;da# with w!; = Wi (A;)}. Alternatively, in section the Lorentz

spin connection is constructed on the vector bundle V.

1.3.4 Lorentz spin connection: curvature and covariant exterior derivative

The curvature F¥ € Q*(P,n) of the connection w € QY(P,u) is written as F¥ = dyw =
dw + (1/2)|w,w], where for any A = (1/n!)}\il,,,une“1 A---Nelr @b e Q" (P, g),

dw : Qn('])’g) — Qn+1(73?g)? (21>
A duA,

is the covariant exterior derivative relative to w. The pullback by a section ¢(® gives the
local expression of the connection form w = (¢(®)*(w) € T*X ® g and the curvature 2-form
F@ e Q2(P,n), i.e F¥ = (0@)*F¥ € O2(X,n). The Lie algebra-valued 2-form on space-time
Fe, = F,, is written as F = (1/2)F; b; ® dz* Adz”. The curvature 2-form on the associated
bundle is p(F) € Q*(X,End(V)). In that case F' = (1/2)F,dz" A da”, where F,, = F}, A;.
We denote F.,; = F.,(A;)5. The curvature of the spin connection w/’ is written as [3, 93]

1J 1J 1J 1J 1J I KJ I KJ
Fow] = 20w, + wp,w, ] = 0w, — 0w,” +w,xw,” —w,gw, . (22)
Note that the covariant exterior derivative d,w = b;Dw?, or equivalently d,w = A;;Dw!”’, is
given by means of the object

Dw' = dw!’ + whk AwE + wl AwtE = dw! +wk A —wi AWK (23)
written in components (Dw)i‘i = 20wy + 2wy qwi” — 2wy, fwh . The variation 6 F,y;) of the

curvature of the Lorentz spin connection is expressed via the covariant exterior derivative
5F;f,;] = 2D[H5w£}‘], see e.g. |3, 93].

1.3.5 The pullbacks g =e¢*h and V =¢e*D

If we have a metric h on V, then we obtain a metric on X by pullback g = e*h, where
Ve € XV, ¢ € T,X: (e*h).(§,() = g.(ex(£),e.(¢)). In this case, the vector space V is
equipped with a connection D, so that we obtain the connection V = e*D on T'X described
as follows: V€, 0 € I'(X) =TX, Veo = e*(Dee(0)), where D : I'(X) x I'(X, V) — I'(X, V) :
(X,0) = Dxo. The set of 1-forms wy defined on an open subset U,y C X by wi = wi da*
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gives, for any £ € %(L{(a) 5 w! ur = = wi(€). Then D¢s = De(oler) = ds’(€)er + wi(€)aley.
We have (D,0)! = 9,0! +wu ;07. Now, using the solder form we obtain a connection on T'X'.
Pulling back the connection on V via Veo = e*(D¢e(0)), we get the covariant derivative’s
components:

(Vi) = 0,8" + (€] 86 "‘elqueJ)gp (24)

However, we have also (Vuﬁ)”' = 08" + 178" .Therefore,. I, = eZ@uef, + e?w[l]eg a‘nd we
reproduce the well known relation between the spin connection coefficients and the Christoffel

symbol I'? : d,e] + el qu —I'? el = 0. We summarize the two pull-backs of interest:

b on T Bl () en(0)) = (Wl 0)

Veo = e (Dee(o
V=eDonTX : (Declo)) DonV,

which are related to the metric and to the spin connection, respectively. The bundle isomor-
phism gives a correspondence between objects on the tangent bundle T'X and the internal
bundle V. The curvature of the connection D is the 2-form F1/ = dw!’ + wl A w7 written
in components as F i‘] = W[u Pl w[u P } . The bundle isomorphism e maps the curvature of

D to that of V with the relation Rf? = Fl/efe5. Finally, we recall the expressions of the
Ricci tensor R,” = Fl/efeY and the “scalar curvature R = Rt = e§ei F.

1.4 Configuration space

In section [[L4.1] we first briefly present two fully covariant formulations i.e. that does not rely
on any choice of trivialization of some principal bundle. Then, in section [L4.2] we present
the less sophisticated configuration space that we will use in sections P-4l The latter being
dependent of a given trivialization of the principal bundle (P, X', 7, SO(1, 3)).

1.4.1 Fully covariant configuration space

We mention two formalisms to take into account the viewpoint of the geometry of the principal
bundle (P, X, m, SO(1,3)). The first is related to the Gauge Natural Bundle approach, see
Nijenhuis [83], Eck [24], Kolar, Michor and Slovak [69], Fatibene and Francaviglia [25]. We
construct the gauge natural bundle P, := (P xx L(X)) x GL(n) associated to the SO(1, 3)-
principal bundle P, see [25 81]. We denote by Voie . := P, the covariant configuration
space of the purely-frame gravitational theory. In the frame-affine framework, i.e. based
on the Palatini action of vielbein gravity, the covariant configuration space is Vg . = =
P, x Vp, where Vp is the space of connection of the principal SO(1, 3)-bundle. This fruitful
approach has been used in the context of gravity and Einstein-Cartan gravity by Fatibene
and Francaviglia |25} 26], and Matteucci [81]. Afterward, the gauge natural approach blends
with the multisymplectic viewpoint in the papers by Bruno, Cianci and Vignolo [5, [6]. We
refer also to [7, 8] for the similar treatment of the Yang-Mills fields. In this framework,
the gauge symmetry is obtained via some reduction of the geometry of connections on the

principal bundle.
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Another fully covariant multisymplectic formulation for the Yang-Mills fields is given by
Hélein [48]. We give a brief idea of the corresponding multimomentum phase space for vielbein
gravity, following this line of thought. Let p := iso(1, 3) = s0(1,3) x R be the Poincaré Lie
algebra. We consider a p-valued connection 1-formn € Q(P, p) defined on the principal fiber
bundle (P, X, 7, SO(1,3)) which satisfies some normalization and equivariance conditions.
The covariant configuration space is Y := pQT*P — P. The multimomentum phase space
is Mgy = AT"T*(p @ T*P), the DW multisymplectic manifold fibered over p @ T*P. We refer
to [48] for more details on the dimension m = n + r, where n = dim(X’), and r = dim(p).

1.4.2 Trivialization dependent covariant configuration space

Any connection D on the internal bundle V can be written as D = D° + w, where w €
QY(X,End(V)) is the matrix connection and D° : ['(X) @ T'(V) — T'(V) is the standard flat
connection. Note that Do = (o)) = (((0®)")e; is trivialization dependent. We restrict
ourselves, as suggested in [50], to this local approach which depends on a particular choice of
trivialization of the principal bundle (P, X, w, SO(1,3)). The covariant configuration space
is the bundle Y :=is0(1,3) ® T*X over X. Albeit non fully covariant from the viewpoint of
the geometry of gauge fields, we nevertheless use this approach in sections 2] - [l

2 DW formulation of vielbein gravity

In this section we describe the DW Hamiltonian formulation of the first order Palatini action
of vielbein gravity. First, let us begin with the notations and the geometrical background
related to the covariant configuration space used in the paper.

2.1 Geometrical setting and notations

Two independent dynamical fields are e € VR T*X and w € s0(1,3) @ T*X =g T*X. The
former is the solder form (or co-frame field), locally seen as a R(3)-valued 1-form, whereas the
latter is the Lorentzian spin connection, a g-valued 1-form. Let ) = p®T*X be the bundle of
p :=is0(1, 3)-valued 1-forms over the space-time manifold X', i.e. the covariant configuration
space. A point in Y = p@T*X is denoted as (7, e,,w, ), where z € X, e, € Y := RM¥QTrX
and w, € V¥ := g ® TrX. Let us consider the maps e : X — V¢ = R1¥) @ T*X and

ye — R13 @ T*X V¢ =s0(1,3) @ T*X Y =iso(1,3) @ T*X
e< lwﬁc w lﬂ% (e,w) lﬂx
¥ [1] M 2] e 3]

Figure 2. [1] The fiber bundle ¢ := R'3®@T*X over X. [2] The fiber bundle ¥ := s0(1,3) @ T*X
over X. [3] The covariant configuration space is the fiber bundle Y := p @ T*X = is0(1,3) @ T*X
over the space-time manifold X.
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w:X =YY =g T*X written as

X — Y =R gTX, ad X7 VW =pT"X,
o= (2, e(x) = (z, e, (x)da” @e), o= (z,w() = (r,w,(2)d2" @ Agy).

These maps are equivalently thought of as sections of Y° and V¥ (see figure 2[1] and 2H[2],
respectively). We introduce also the map (e,w) : X — ), that is written as

X = V=pRT"X,

r = (r,e(r),w(r)) = (z, ei(x)dz“ ®er,w U( )dzt @ Ary). (25)

Any choice as (e(x),w(x)) is equivalent to the data of an n- dlmensional submanifold of the
fiber bundle ) and is equivalently thought of as a section o@ Y cx - Y, where
oz o(x) = (x,e(x),w(x)), see figure 2[3]. Finally, the set of local coordinates in the
I wld).

covariant configuration bundle ) is equivalently denoted as (z*, €, w

2.2 The bundle P =T)Y ®y 1T*X

For any point € X the differential (de), : T,X +— T{;.,)V° is seen as an element of
TiX @ T(ge,)(T*X ® V) canonically identified with T)X ® T;X ® V. Analogously, (dw),
T X = T(p0,)V* is seen as an element of T3 X ® T, ., (T*X @ g) canonically identified with
T*X @TrX ®g. Let us consider the bundles P¢ := e*TY* @ T*X and P¥ := w*TY* @ T*X
over the space-time manifold X'. These bundles enable us to describe the differentials de and
dw of the map e and w as sections of the bundles P¢ and P“, respectively. In particular, the
points (z,v°) € P and (z,v*¥) € P are described by

ve = ZZviydz“Q@dx”@eb ZZU”d@"“@dx” ® Ay, (26)

wy I wv I<J

1 1J

where v, = 0, el and v!) = 9,w!’, respectively. Local coordinates on P¢ and P* are

denoted by (:17“ , fw) and (x*, vii), respectively. Using the map (25]), we introduce the bundle
Plew) := (e,w)*TY @ T*X over X. Note that P&« C P := TY ®y T*X. This bundle is the
bundle over Y :=p ® T*X, such that the fiber over (z,e,,w;) is Tz e, w) (PR T*X) @ THX.

In terms of local coordinates:

P ={(z" ¢ wI vl Ty ) (at el w)ey (uv’ W)GT(Mzwzy@T*X} (27)

o puvo Y py 7T
Subsequently, the covariant exterior derivatives d e and d,w are described as sections of the
bundle P. Recall that

doe = (1/2)(d, e) dat A da” @ ep = (1/2) (Ol + wul e)) dat Ada” @ep,

dww = (1/2)( ) dz* A dx” ®A[J— (1/2) ( “w —|-quij wui{wKI) ®A[J.
We now consider the fiber bundle of n-vector fields AZTY over Y. For any (z,e,,w,) €
Y the fiber ATT(;c, 0P @ T*X) = AT (3., 0,)Y can be identified with P, w,) via the
diffeomorphism:

T(x n wﬁ)(b@ T*X) X T*X — ALLT(x7ew7wx)<p®T*X),
ZZ d,, 6 w42t @ dz” ®€1,ZZ d,, w ” det @de” @ Ary) = z=21 AL A 2y,

wy I<J
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Whereforanylgagn,zfxzﬁxa‘i‘ Z Z aﬁa Za
1<B8<n 1<B<n
Ly = ok vl o
zé‘é = 0awé‘] + wa%ng‘] — woj(wBKI.

Now we consider the first order Palatini density Leaaimi€, w] = kvol(e)efe TEL L w], equiv-
alently written as Lp,unle, w]8 = (k/4)ersx e’ el e, iFng[ w]f (see appendix E] for details).
We now set the constant x := 1/2, so that

Legainile, w] = (1/8)61JKL6“””‘7616J (8prL 8Uwp + wawML - wawML),
= (1/2)e(efe] —616J) (O, +wygw,™), (29)
E}”e'ﬂ(@uw + quwKJ)
where we used the identity E[” V] = ee!,”e'f]} = (1/4)ersxel ele?, see appendix B The
Lagrangian density Lle,w] : 73 — ]R is thought of as a functlon defined on the bundle P, .e.

the bundle over Y with the fiber over a point (z,e,,w,) € Y given by Ty e, w,)Y @y T X.
Then, the set of local coordinates (¢#, el w!’ vl ,vl7) on P is equivalently described, using
the definitions ([28), by the set (z*, e}, w.”, 2!, z17) on ALTY. Alternatively, we can use the
set of coordinates on the first jet bundle J'()), see for example [5, [6, 23]. We summarize

these constructions in figure [3H[1].

P(e,w)(—> 7) ~Y A;”Ty ~ Jl (y)

(e,w,de,dw

Mpw = ATy

HP
7t (e,,26:p%p" ( H

Figure 3. [1] The fiber bundles P¢*) = (e,w)*TY @y T*X and P := TY @y T*X, on which the
Lagrangian density is defined. The latter is identified with the bundle of decomposable n-vector
fields AZT(Y) on the covariant configuration space Y = p @ T*X. [2] The DW multimomentum
bundle Mpy := ATT*Y as a fiber bundle over ).

(de,dw)

2]

2.3 DW multisymplectic manifold and Legendre correspondence

Now we describe the DW multisymplectic manifold for the Palatini action of vielbein gravity.
The multimomentum phase space is constructed on the covariant configuration space ) :=
p ® T*X, see the construction in figure BH2]. We present the notations used for the DW
submanifold Mp, C M = A"T*(pRT*X), as introduced in section [[LT.3 The DW manifold

1S

Mow ={(z,¢,w,p)/z € X, e € R(1,3) @ Ty X0 € s @ TIX,p € AT (p@ T X))}, (30)
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In the DW formulation we consider all the components of the Poincaré-Cartan form, see
@), equal to zero except pi_n = 3, P1_ (1)) w41)om = Pr7 s AN Lo 1) (@l ) 1), m =
pr; . Thus, we restrict ourselves to n-forms p € A"T’ (*m o wz)y such that a@ﬂ A O 1 p, 8%13 A

0,10 1 p, and 86‘{ A 0,10 1 p are identically vanishing. Equivalently, the DW multisymplectic
manifold is specified as

Mow = {(z,e,w, > +p§“yde£ A By +p}ujydw£‘] AB)/(z,e,w) €Y, 5, p7" 0]y € R}.

We consider the following Poincaré-Cartan 98}"7‘;) n-form, for any (q,p) € Mpyw := ATT*Y

Oty = 7B + 07" dey, A By + p75 dw,” A By (31)

Now, we describe the Legendre correspondence for the DW formulation of the first order
Palatini Lagrangian Lp,..e, w] = E}f’f} (Opwl’ + wlyw’ ), where we denote E}’}U] = E}p ej],

see appendix[B.Al The Legendre correspondence (g, v) <> (g, p) for the formulation of vielbein
gravity is given by

P ATpRTX)=TY Ry T X & Moy = A"T*(p @ T*X) = APT*Y,

(g, 0) ~ (a# el w2, 217) = (q,p) = (2", el w5, 07" p]"). (32)

In particular, the construction of the Legendre correspondence involves the relation
dlp.v) _ 9L(g,v)
ov ov

between (¢, v) and (¢, p), where we denote (p,v) := 6(,(Z) and Z € ATTY. We consider a

decomposable multivector field Z2 = Z, AZ3 AN Z3N 24 € AﬁTy, where for any 1 < u < 4:
9 ;9 1 0

(¢, v)(q,p) = (33)

Z, = Eren + Z“”8—e£ + Z‘“’W’ -
— 8;2“ + (Ouel, +w,le)) Del + (Ol + wytew, ™ — wygw, 1) 85,{*’
Let us note that the multivector field Z is written as
oy O ) 2o )
° - u1<~z~<u4 i gt het Oghs . u1<~z~<u4 Z:f‘l . Z}f4 oa Y O

Now, for any (q,p) € AYT*Y and Z € ATTY, we make the straightforward calculation
(p,v) = BV(Z2)=xp(2) —|—p§””de£ AB(Z) +p?j”dw£‘] A BL(Z),

€

12 wyV 35
= %+p1u Zl{u +p15 ZI'L{ ( )

Let us compute the two parts involved in the Legendre correspondence. We calculate the
partial derivatives with respect to the field derivatives d e, and d,w/’

a<p? ,U> WV aL alatini [67 w] a v v
W = pr7 W = W (66!;6(](8[”&],{]‘] + W[I,LLKW,{}(J)) — E}“e},
a(p, 'U> eV aL alatini [6, W] a v
0(8,,6{) = Pr 5(8M6£) = a(aﬂel{) (eelILeJ(ﬁ[ﬂwi]J _'_W[IHleﬁJ)) =0.
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Therefore, the Legendre correspondence yields
Py = —Ele) = —(Dermre™efer,  ppt =0, (36)

for the multimomenta related to wﬁ‘] and efL, respectively. Then, the Legendre correspondence
yvields p7s" + p74” = 0 and p*” = 0. It is an example of the set of Dirac primary constraints
in the DW multisymplectic formalism. Therefore, we shall be restricted to the submanifold
C C My, for taking into account the primary constraints:

C C Mow = {(z,6,w,p) € Mow | P2 = —Ele’) po =0}, (37)

The Legendre transformation is degenerate since we cannot express arbitrary field derivative
via multimomenta. Let us note that the multimomenta p}4” := p}4”(z,e) are functions of
the vierbein.

2.4 DW Hamiltonian of the Palatini action

Now we present the DW Hamiltonian function of the Palatini action of vielbein gravity. The
Legendre correspondence is generated by the function WP%(q,v,p) := (p,v) — L(q,v), i.e.

W q 0p) = =t p 2+ 0 El Eyf? (O’ + wricy ™).

— BVt (Oyw) + wlgwi?).
Let us work on C C Mpy. We introduce the Hamiltonian function H : Mpw — R defined

by H = (p,v(q,p)) — L(q,p,v(q,p)), where v(q,p) is such that (¢, v(q,p)) <> (¢,p). For any
V€ Tz e, wn)Y @ TrX the equation (33) has a solution p € My, if and only if p € C with

C={(z,e,w, B — ee[luez]dwﬁ‘] ABy) [ (ze,w) €Y =pRT*X, » € R}.

The use of the constraint (36]), i.e. py*” = 0 and p;4” = —ee[I“ ez], leads to the expression of the
Hamiltonian function restricted to the hypersurface of constraints C. Thus, H""=" (g, p) :=
*HP"(q, p) is written as

Palatini _ wpv IJ I, KJ J, . KI wpv IJ I KJ
H (¢.p) = =+ (Ow,” +wgw,"” —w,gw,™") =" (Bw,,” + wrw, ),
_ wuv o J KT __ w vl J, KI
= X —Pry WikW, B = x—eereiw W, .

The Hamiltonian function H"" (¢, p) : C — R is equivalently written as H™""(q, p) = » +
HP=ni(q. p), where H™*™(e, w) := *H®"(q,p) is the DW Hamiltonian [57, 58| evaluated on
the constraint hypersurface C. In section 3] we explore the n-phase space approach, we fix s =
ee‘;eﬁwﬁ;Kwi}a. Note that we can always choose s(z) such that H(z,e(x),w(x), s(z), p(z))

is constant, see [50, 51].

2.5 Exterior derivative of the DW Hamiltonian

In this section we derive the exterior derivative of the DW Hamiltonian function for the
formulation of dreibein and vierbein gravity. First, let us consider the case of dreibein
gravity. We denote the exterior derivative by dH53*. We have

v

dHE= " (g, p) = dse — E}“e;]d (winKI) —d <E}“e;]) win,f{I. (38)
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When the dimension of the space-time manifold is n = 3, we have the algebraic relation

—EVFe] = —eelte’] = —(1/2)eé"?er ke . Then the second term in (B8) takes the form
—E¥ed (wigwi?) = —(1/2)6“””61JK6K (w udeKI + d(wMha g )wi )
= —erpeed qudw = —ergre” peKwVdeMI

where we have used the algebraic relation

e“””eUKefLwoJdeﬁ/lK = _1/2EHPUELJK€£W0—LIC1W;]K = 1/2€“VPELJ[6£(W,,LKC1M{LJ. (39)
This relation is used also to decompose the interior product X¢ _ wP*" in the basis 1-forms
dw/’. Also, since d(eefe;) = d(ersare" e’ = erare™ el | the third term in (B8) is written
as (1/2)6[]]\/16”'/)‘ wigwide}!. Now, we obtain the expression for the 1-form dH53*™ (g, p),
namely

dHE™ (¢, p) = dse + (1/2)€IJM€“V)\W;{KWKId6A (1/2)€“VPGLJ16§WVLde;ILJ‘ (40)

When n = 4, E}’}V} = (1/4)6UKL6£<656‘“’W therefore d(EW]) = (1/2)ersxre™* el del.
Thus, we have

AHP = 50 — d(E[“ )( quKI) E[“ez]d( quKI)
= dsx— (1/2)6[‘][(16‘u po 6K(,U;{MLUM d€ (41)
+(1/2)61JKL6“””UeKeLwJ dw)!
Using the algebraic relation

vpo I.J K ML _ vpo I_.J N KL
P €1JKLE,E,Wo dep = —elP €INKL€,C Wo dep ) (42)

see [0 [6], the last term in ([AI) is equivalently written as

L J MI 1 J K ML __ o I_J
€IJKL€,up 6 dw = _€IJKL€MP 6 dwp = P E[NKLeuewa dep
= —e"r? EIJKNeKeLWO—Nde = —ere E[JKL@KeNCUO- Ndw

Therefore, the exterior derivative of the DW Hamiltonian function related to the Palatini
action of vierbein gravity is given by

d%f;lati"i(q,p) =dx— (1/2)6[‘][(16‘u P7e w;{MwMIde + (1/2)€[JKL€“V[)06K6NWU Ndw (43)

2.6 Primary constraints and the extended Hamiltonian

The set of primary constraints that weakly vanish on the constramt hypersurface, following
the terminology of Dirac, are p}*” &~ 0 and p}4" ~ —ee[l e;. An extension of the traditional
method developed by Dirac in the DW formulation involves the construction of an extended
Hamiltonian,

HE = ee[l”eJ]wuiw,,KI + AL A A (P + ee[l"e?).
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The extended DW Hamiltonian is H® = H™=" + X[ pi*” + N7 (p75" + eele J) Here, A,
and )\fji are Lagrange multipliers. We postulate, since there is no reason to assume they are
valid a priori, the DW Hamilton equations

a 1J Ext apwﬂy aHExt
i (2) = %(l‘, e,w, %, D), Z e (1) =~ (@ ew, ),
aei OHE apeu’/ B IHE
orv (ZIZ’) = aprV ([L’ €, w,x p) Z oV (ZIZ’) - 06,5 (:L',e,w,%,p),

In the context of the polysymplectic formalism [53], the extended DW Hamiltonian function

is written as H™ = HP +)\W R (p‘})jy +e e[l“ e J) Then, the system of DW Hamilton
equation is given as

oula) = ML Oaw) = —OHF ) wewn)
e (x) = A\ op/ (x) = —(0H™*/0e,)(7,e,w,p).

For a detailed analysis of constraints within the polysymplectic approach to the DW Hamil-
tonian formalism, we refer to [57, 58]. Note that our conventions here differ from those of
Kanatchikov: the polymomenta have opposite sign.

2.7 DW Hamilton equations on (C,w"")

The canonical DW multisymplectic (n + 1)-form w® = d6°" previously introduced in (7) is
written as w®" d%/\ﬂ—l—dpw“u/\dwi‘]/\ﬁ,,. Let us introduce the (n+1)-form w™= ™ := *w®",
where ¢ : C < My is the canonical inclusion. In local coordinates,

WP — 5 A 5 d <eeluez]) AN dCU[LJ A 51/- (46)

Using (46) we can now describe the Einstein equations in the DW Hamilton formulation,
where the DW Hamilton equations in geometric form are written as

X wPaIatini — (—1)ndHPalatini. (47>

Let =°W € T'(Mpw, T Mpw) be a vector field on Mp,, and X°V € I'(Mpw, A"T Mpy) be a
n-vector field on Mp,,. Then, we construct on the constraint hypersurface C the vector field
=¢ .=, =" € I'(C, TC) and the n-vector field X¢ := ,=°" € I'(C, A"TC), respectively. We
have denoted by 7 the canonical projection w : Mp, — C such that m o = Idc.

Note that, because of the primary constraints, there is no reason a prior: that the set of
DW Hamilton equations is in a one-to-one correspondence with the Euler-Lagrange system
of equations. Nevertheless, working on C — My, the DW Hamilton equations in geometric
form (A7) reproduces the Einstein system. The DW Hamilton equations X¢ _i (r*w®V) =
(—=1)"d(¢*HPV) are presented for dreibein and vierbein gravity in section 271 and 27.2]
respectively.
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2.7.1 DW Hamilton equations of dreibein gravity

First, we consider the DW Hamilton equations for the Palatini action of dreibein gravity.
Let X¢ = X¢ A XS A XS € A3TC be a decomposable 3-vector field, where for any 1 < v < 3,

0 0 0 0

XC¢ — 1 9 9 4y A
o = g T Ouger T g T g, “8)
First, we re-express w™"™ as follows:

W = A A B~ d(BYe)) Adwh! AB, = dse A B — (1/2)ersme™ el Adw! A B,

The left hand side of ([#T) is given by the interior product X¢ _j wPt" Then,

XC JwP = —(1/2)ersre™* ((dwl’ A B,)(X)del — (del A B,)(X)dw!?),
—(1/2)ergne(( deﬁ/\ dw” A B ) (X )dz”)
= dx — (dxe A B,)(X)da” — (1/2)6UL6’W“(de A dw” A ﬁpy)( yda”,
1/2)6UL6”"“(dwU/\BV)( )dek + (1/2)61JL6“”°‘(d6 A B (X )dw/i‘].

Finally, the expression becomes

XC€ JwPh = dse — T ,da’ — (1/2)61JL6’WO‘ (@”@L @”@L L) da?,

—(1/2)€[JL€MVa®IJd + (1/2)€[JL€MVOC®L dw” <49>
which is equal to the right hand side of ([4T])
dH " (g, p) = dse + (1/2)eryme wil gwi ' dey + (1/2)e" Pep il w,* wdw!”. (50)
The equality between ([49) and (B0) leads to the DW Hamilton system of equations
EIJLE/,LVQ(@IJ_'_W% KI) — 07
E[JLEWJQ g@L + €, Wr K) = 0, (51)
—EIJLE‘LWQ (@zljp@ﬁa @gi@fa) = Tp.

The system (B1) is the DW Hamilton equations associated to the first order Palatini action
of dreibein gravity and is written as

EIJKFJK = O, EIJde6K = O, (52)

with the additional equation T, = 0,5¢ = —er e (@ii@ga @f)i@fa)

2.7.2 DW Hamilton equations of vierbein gravity

Now, we are interested in the DW Hamilton equations for the Palatini action of vierbein
gravity. We consider the 5-form

WP = dae A B — d(eel ) A dw!” A B, = dse A B — (1/2)ersre™ el del Adw!” A B,. (53)
Let us consider a multivector field X¢ = X¢AXSAXSAXS € AYTC, where for any 1 < v < 4,

0 0 0 0
c _ 1 9 1y 9
X”_axV+®”“0I+®”“0 I—i—T 0%

(54)
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Then

XC Jw™ = X (dseAB) — (1/2)ersxre™es X 1 (del Adw) A B,),
B(X)dse — (dse A ) (X)da,

(1/2)6[JKL€‘LWPU K( dwé‘] N ﬁy ) (deﬁ N By)(X>dw£J)’
—(1/2)er sk e K( de; A dw” A @V)( )da?).

Since, (dwl? A 6,)(X) = OFF, (dek A B,)(X) = O, and (dek Adwl! A By,)(X) = (O1]0%, -

v

©5707,), the left hand side of ([@T) is written as
X JwP i = dse—T ,da’ —(1/2)er k16" e (el del—ol v’ + (065 —@ﬁi@fg)dx)‘).

The DW Hamilton equations (@7) are obtained by equalizing the interior product X¢ _j wPa'tni
with the expression of dH[3*" (¢, p) found in (#3). We obtain

vpo K IJ vpo K J MI
—EIJKLEM P @ = —EIJKLEM P e CUMMCU
vpo K L vpo K N L
ergrLe” ©,, = ekre” €p €y Wo N (55)

—T)\ — (1/2)€[JKLEMVPJ K(@IJ@ -6 M@'eU) = 0.
Therefore, we obtain the DW Hamilton system of equations

EIJKLE‘LWPU 5((9[] + quwMJ) = O,
EIJKLE‘LWPU K(@L + waeN) = O, (56)
0

—T)\ — (1/2)6[JKLEWJPU K(@fJ@ @ u@fo) -

We reproduce the results obtained by Bruno, Cianci and Vignolo [5], 6]. The equations of
motion (BO) are equivalent to the Einstein’s equations (7)) written as

EIJKLEJ N FKL = 0, EIJKLEI A dw6J = O, (57)

with the additional equation 0,5 := —(1/2)er e K(@”@L @f\i@fa).

3 n-phase space formulation of vielbein gravity

In this section we concentrate on the study of the pre-multisymplectic space defined by the
constraint HP* (g, p) = sc—eele"] (wigwlT) = 0. This formulation is related to the n-phase
space framework introduced by Kijowski and Szczyrba [63] [64], 65, [66] and further developed

by Hélein [47]. Let us begin with some definitions, see [47]:

Definition 3.0.1. A n-multimomentum phase space (or simply an n-phase space) is a triple
(M,w, ), where M is a smooth manifold, w is a closed (n+1)-form and (3 is an everywhere
non-vanishing n-form.

Definition 3.0.2. A pre-multisymplectic manifold is a pair (./\/l,w), where M is a smooth
manifold M and w is a closed (n+ 1)-form on M.
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In the DW n-phase space formulation we express the dynamical structure on the level set
of H i.e. by means of the constraint H = 0. We can canonically construct a n-phase space
(Co,wlc,, B =2 Jwlc,), where C, := H(0) := {(q,p) € M/ H(q,p) = 0} and = is a vector
field such that dH(Z) = 1. The dynamical equations in the pre-multisymplectic formulation,
already presented in geometrical form (I2), are equivalently written as

V= € C®(M, T, M), EJw)|,=0 and  Blp £0, (58)

see [46], 47]. We denote by C, the hypersuface of constraints contained in the level set C,,
i.e. we have the inclusion of spaces C, C C, — Mpy. Using the primary constraints, the
hypersurface of constraints is now

Co:={(r,e,w,p) € Mpw | = ee[I“eZ](w;{waI), pry = —E[I“e;], p" =0} (59)

Now we give the pre-multisymplectic formulation of dreibein and vierbein gravity. Note that
we introduce the canonical inclusion ¢, : Co— My, and the projection w, : Mpy — C,. Then,
we consider n-vector fields X% € I'(C,, A"C,) obtained by the push-forward X% = (m,), X°V.

3.1 Pre-Multisymplectic formulation of dreibein gravity

In this section, we consider the first order Palatini functional of dreibein gravity Spapem|€, w] =
[ erse’ AN FTE where F/X = dw’® + w’/ Aw™ is the curvature 2-form.

3.1.1 Canonical forms

Since e = el dz* and w’* = w/*dz*, we obtain the following expression for the Poincaré-
Cartan 3-form, identified with the Palatini action 3-form itself i.e. e el A F7X:

0° = €rye”’ (efbdij A By + 6fprJLw£Kﬁ). (60)

We demonstrate (60]) by direct calculation 8° = E[JKelidx“/\dw;.]K/\de+€]JK€/€WPJLW£Kd$uA
dz? A dz?. The Poincaré-Cartan 3-form is written as 6° = 67 + 03, where

07 = eUKefprJwade“ ANdz” ANdz?, 6] = EIJKeidx“ A dw?® A da?. (61)
We re-express the terms 67 and 63 using the following lemma.
Lemma 3.1. The terms 0] and 85 are given by

o __ wpo I J LK
0] = erjke €,Wp" [ Wy B,

2
0, = —eIJKe“p”eideKAﬁa. (62)

Proof. The formula for 62 is straightforward. Since 8, = dz? Ada®, By = —da! Adz?, and
Bs = da' A da® we find e;ygee dw!™ A B, = —epyreldat A dwl® A da” = —63. Now we
focus on the first term 6°. Using 3 = dz* A da?® A da® = (1/3!)eqp,dz™ A dz? A dz?, we have

o I, J  LKpg _ o I . J LK
EIJKEHP euwp Lwo ﬁ = EIJKEM) euwp Lwo ﬁ,
= (1/3!)eIJKe”p"eamefprJwade“ Adz? A dz?.
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Using the formula 7,5, = 3!5&“5553} = (3!/3) (555[6’)53] — 5@5[5“5»‘;} + 525[6“&3]), see ap-
pendix [B] we obtain

ppo I, J LK _ I,.J LK 3.1 p o
€ryk€’e,w,” pwy b = €1TKE,W)" [ Wy dzt A dx? A dax?.

Note that ¢"*73 = (1/3)e"”” enp5,dz™ A dz” A dz? = da* A da? A dz°. Using lemma B11 the
Poincaré-Cartan 3-form (60) is written as 6° = ey e (eidw;’K A B, + eiprwaKﬁ). We
are now interested in the exterior derivative df°. The exterior derivative is decomposed in
two terms d6° = df; + db;, where

de; = eIJKe”p"prLwLKde A B+ erggee (dwp LwLK + prdeLK) A B, (63)
do; = ergre” de /\deK/\ﬁp
Note that the exterior derivative df; is given as
d¢; = d(EIJKEMpO—J#prLwLKﬁ) = ergxed(e prLwLK) A B, (64)
= erew, LwLKde AP+ erggee I(dwp LwLK + w, deLK) AB.
where we have used d(e/w,” wk¥) = d(el)prLwLK + el d(w,” Jwi + efw,” d(wkr).
Using (63]), the multisymplectic 4-form w® = d#° = d#; + db; is now written as
w° = e et de A dw‘]K A B, + eUKe”p"(prLwLK)de A B, (65)
—eLJKe”p"(e We )dw‘]K A B.
3.1.2 DW Hamilton equations
In the pre-multisymplectic formulation, we work on the level set C, := H~1(0). The sub-

manifold of interest is the constraint hypersurface C, C C,. The DW Hamilton equations are
written in geometric form as X% _jw®|r = 0. We evaluate the interior product of the vector
field X% with the terms df° and df?, respectively. First, we find the term

XC dg; = XC (eUKe“poprLwLKde A B — ep e’ elprIdwC‘,]K A ﬁ),
= eIJKe“p”prLwLK(ﬁ(X)de (de A By)(X)dz?), (66)
—EIJKEM)U (eﬁwp Lﬁ( )deK (deK /\ﬁ)\)( )dSL’A),
where we have used G(X) = 1. Then, we find the other term

)(cO Jd@j = )(cO _ (E[JKEMdeqZ/\deK/\ﬁp),
= erre ((dwl® A B,) (X )de (de A B,)(X)dw]"), (67)
+err e’ (de N deK N ﬁ)\p)( )dl’ )

Now, using the equations (67)) and (66]),

X% Jw® = E[JKEMPO—<(@ZOI.{ + w,” L wi) dei — (@éu + eﬁwpIL)dij) + T,\dx’\),
with Ty = efw,’, O —w,” w65, + (e5ke!, — @ﬁ(@f\u). Then, the DW Hamilton
equations in the pre-multisymplectic formulation (i.e. X Jw°|r = 0) are given by

EIJKEM)U (@JK + Wy L(A)LK) = 0,
€1y e’’’ (@I + €“WpIL) = 0, (68)
ergre™ Ty = 0,
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Remarks: (1) Note that if the first two conditions in (68)) are satisfied, then the last one is
automatically verified.

ergre? YTy = EIJITTEWZ@L%ILJC;);{— EIJKE!;:UC})PJLWULLZ{Gi + (@ﬁ{@;u - 9559§u),
= —0,,05 +0,,0),+ (@Aa Opu — O @Au) = 0.
(2) The system ([68) reproduces the Einstein’s equations and is equivalently written as the
following two equations: e;;xF”% and €;;5d,e! = 0.

Proof Note that ¢”7#3,, = dz” A da’, where 3, # 0. We straightforwardly obtain

eIJKFJi = €K (a[pw;‘éK + c;[;Lzug]K)dxp Adz? = eUKe“p”[g@gf ;L(w;)]LwaK)ﬁm
errrdee™ = €k (0@60} + w[pLeU])dzp A dx® = erge’t’ (@M, +w, Le“)ﬂa.

3.2 Pre-multisymplectic formulation of vierbein gravity

In this section we are interested in the pre-multisymplectic formulation of vierbein gravity.
Here we will reproduce some results found in Bruno et al. [, [6] and Rovelli [94], 95].

Let us consider the action functional Spa.mle,w] = (1/2) [ersxre’ A el A FEL where
FEL = dwBE 4 &y A wME,

3.2.1 Canonical forms

Since ! := e} dz* and w*" := W da#, we obtain the following expression for the Poincaré-
Cartan 4-form 6° = (1/2) (EIJKLe””pUeﬁeidwa A Bo + ergr e elelw,  ywit5). By di-

i P
rect calculation

0° = (1/2)€[JKL6de1’M Aejda’ A (d(whihda?) + w,™, de? A wlFda?),
= (1/2)61JKLeieidz“ Ada” A dwEE A daf, (69)
+(1/2)6UKLeieiwpKMwyLda7“ Adz” Adx” A da?.

The Poincaré-Cartan form is written as 6° = 67 + 63, where

0; = (1/2emkrele)dat Adz” Adw® Ada?,

0; = (1/2errrelejw,™ ywitdat Adz? Adaf A da”. (70)

Since "7 5, = (11(4 — 1)!/3!) 5&”5g5§]dza Ada? A da?, we obtain ¢## 3, = da* A dz” A da?.
Then, dz* A da” A dwf" A da” = e¥P7dw’" A B,. Hence,

eIJKLeieida:“ Ada” Adw?® Ada” = (1/2)6UKL6”"”"eieidw£{L A B, =6;. (71)

Note that the volume form 8 = dz' Adz?Adz® Adx? is equivalently written 8 = (1/4!)eqp,sdxA
dz? A daz” A dz?, then the second term in (6J) is written as

voo I J . K  MLp _ 1.J,, K , ML _ o
erir e e e,w, W, = (1/2)erskre,e,w,” yw,' “dat Ada” Ada? Ada? = 63

where we have used the formula (II3)) for the expression €***7€,z+s.
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Let us compute the pre-multisymplectic 5-form w® = d6°:

w® = errre’? i(de A dwa A By + wUMwMLde A 6)
(1/2)€IJKL€WW€I€J IQMLd( wiv) A B+ (1/2)€IJKL€WW€I€JwaKMd(W£4L) A B,
= errnee i(de A dwp A By +wUMwMLde /\ﬁ)
+ersrret?? ele‘]wa deé\“ AB.
Using the algebraic relation e*7¢; el e;w,"™ ydw)™ =
pre-multisymplectic 5-form is written as

—e“”pJEINKLeﬁeinNdefL, the

w’ = errLee Ide AdwEL A B, + €rsrc e elwoKMwédeei A B,
vpo o KL
—ehvP eINKLeHveU de A ﬁ

(72)

3.2.2 DW Hamilton equations

In the pre-multisymplectic setting we work with the constraint H = 0. The dynamics is
expressed on the level set C, := H'(0) and the DW Hamilton equations are written as

XC = 0. (73)

We now evaluate, for vierbein gravity, the interior product of the multivector field X% €
A*TC,, with the three terms in ([72). We choose a 4-vector X% = X A X§o A X$° A XE°,
where for any 1 < o < 4, the vector field X, € X'(C,) is

0 0 0
XCO _ @I @IJ_.
T Gae T Dengel T Do
The left side of ([73]) is written as
XCO Jw® = —etre EINKLelero deKL/\ﬁ—EIJKLEuVPU I(de /\ﬁo)( )

—ernkLee ;LerUNJ((ﬁ)(X)dwKL (dWKL A Ba)(X)dz ),
+errre e ((de A dc}qu A Bro)(X)da? ) )
= eryxre”el ((@KL + We MW,])V[L)dﬁ’u (efLQZJVWUJN + @fw)d%[)“ + TAdI)\)a

where Ty = e} w,” (O —w, " yw)tey, + (0% Le), — @ﬁff@iy). In the pre-multisymplectic

setting we ﬁnd the DW Hamilton equations for the Palatini action

voo I (KL K ML
ersxre”’ €M(@Jp +Wo MW, ) = 0,
vpo [ J N J
ersxre””’ €M(@Jy+€y Wo N) = 0, (74)
vV po
GIL]KLEMP T)\ = 0.

Analogously to the dreibein case, see the end of the section 3.1.2] we obtain the Einstein’s
system of equations in term of differential forms. We have, see also (57)), €;yxre! Ad,e? =0
and erygrel Ael A FEL =0, together with the equation €7y e?" Yy = 0.
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4 Hamiltonian (n — 1)-forms and brackets

4.1 Hamiltonian (n — 1)-forms, homotopy Lie algebra

We begin this section with the definition of Hamiltonian (n — 1)-forms and their related
Hamiltonian vector fields, c.f. Carinena, Crampin and Ibort [11], Kanatchikov [53] [54] [55],
Forger et al. [28] 29] 30], Hélein and Kouneiher [49] 50, [51].

Definition 4.1.1. Let (M, w) be a multisymplectic manifold. An (n — 1)-form ¢ is called a
Hamiltonian (n — 1)-form if and only if there exists =, € X(M) such that Z, Jw + dp = 0.

We denote by Q27-1(M) the set of all Hamiltonian (n — 1)-forms. For any ¢, p € Q- 1(M),
let us define the bracket

{o,p} =E, NEp, Jw =2, 1dp=—E, J1dep, (75)

where {p,p} € Q"-1(M). For any form n € Q*(M) and any decomposable multivector field
Ei=ZA-ANE, €X' (M), wehave = 1n = (E;A---AZ,) dn:=Z=, 4 --- 1= Jn. This
definition is the natural analogue of the Poisson bracket in classical mechanics. The bracket
defined in . 1.T] satisfies the antisymmetry property: {cp,p} + {p,cp} = 0, but the Jacobi

condition is only satisfied modulo an exact term, see [49, 90]. For any ¢,p,n € P2~ (M)

{Hp.n}. o} + {{n e}, p} + {{e.p} 0} =d(E, NE, A By Jw). (76)

Using the Cartan formula, i.e. Lzw = d(Z Jw)+Z 1 dw = 0, we define a locally Hamiltonian
vector field of (M, w) to be a vector field = € I'(M, T M), such that Lzw = 0 (since dw = 0).
We are looking for vector fields = € I'(M,TM), such that d(E Jw) = 0. We denote by
X...(M) the set of locally Hamiltonian vector fields of the multisymplectic manifold (M,w),

1.e.

1
%Ham

(M) ={E€ (M, TM) / dE Jw) =0} = {E€ (M, TM) / Law=0}. (77

Although antisymmetric, the bracket (7)) nevertheless fails to respect the Jacobi property
which is necessary to obtain a strict Lie algebraic structure. Thus, (Q’,};ﬂl (M), {-, }) is not a
Lie algebra. The fact that this bracket satisfies the Jacobi identity only up to an exact form
was already noted by Goldschmidt and Sternberg in [43]. This co-cycle obstruction reveals
the connection with homotopy Lie algebra, see 76l [77]. We refer to the paper by Baez and al.
[1, 2], where the Lie 2-algebra is used to describe the dynamics of the classical bosonic string.
More generally, the relation between MG and L.-algebra is found in Rogers [90], [91], Richter
[88, 89], and Vitagliano [104], where a L.,-algebra is a chain complex equipped with an
antisymmetric bracket operation that satisfies the Jacobi identity up to coherent homotopy

[T, [91].

4.2 Hamiltonian forms, graded Poisson bracket

In Kanatchikov’s approach [53} 54, 55, 56] the polysymplectic form w¥ = dp!' Ady" A B, is used
to construct the graded Poisson bracket on forms of arbitrary degrees. Let ¢ € Qf...(M),
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p € Q. (M)andn € (M) (where 0 < p,q,r <n—1) be Hamiltonian forms, as defined
in [53], of degrees deg(p) := p, deg(p) := ¢, and deg(n) := r, respectively. The graded Poisson
bracket on Hamiltonian (p — 1)-forms of arbitrary degrees is

{0.p} = (-1)""Ep I, 1w’ = (-1)""E, 1 dp, (78)

where dY is the vertical exterior derivative and the respective Hamiltonian multivector fields
related to ¢ and p are E, € X,,F' (M), =2, € Xi..i(M). The graded Poisson bracket (78 is

graded antisymmetric, i.e.

{(29;1)} = _(_1)(n—p—1)(n—q—1) {lq)agé}a (79>

and satisfies the graded Jacobi identity

(D)%% {p{p,n}} + (~1)%% {p{n,o}} + (~1) ™% {n{@.p}} = 0, (80)

where we have denoted by d, := n — deg(p) — 1, d, := n —deg(n) — 1, and d, := n —
deg(p) — 1. Note that deg(n) denote the degree of the Hamiltonian form 5. The Poisson
bracket of Hamiltonian forms is obtained using the Schouten-Nijenhuis bracket [,] of the
related Hamiltonian multivector fields —d{¢p, p} = [Z,, =, Jw". The Schouten-Nijenhuis

bracket, see [83, 84, 99], i.e. a bilinear map [,] : X}, (M) x X, (M) — X (M), that
obeys the graded antisymmetric property and the graded Leibniz rule
== - _ (deg(21)-1)(deg(E2)-D)[= =
sl =D P N 1
ELEAE] = [ELE)AE 4 (—1)98E= =2z, ANEL B,
as well as the graded Jacobi identity
0 = (D™=, [E 5] + (- D)"P[Es [ Bl + (D)2 [55, 2l (82)

where d; := deg(Z;) — 1 and deg(Z;) denote the degrees of the respective multivector fields.
On vector fields, the Schouten-Nijenhuis bracket reduces to the standard Lie bracket. How-

ever, the exterior product of two Hamiltonian forms é A ,g is not Hamiltonian in general.
Kanatchikov introduces the co-exterior product e of horizontal forms ¢ e p = x~(xp A xp),
see [55]. The space of Hamiltonian forms is closed with respect to the co-exterior product.
Thus, Aney = {Q..(ME¥), {,}, e} is a Gerstenhaber algebra [35]. As an illustration of the
use of the higher dimensional algebraic structures in field theory we refer to the example
of the classical string. The DW Hamiltonian formulation of Nambu-Goto string, using the
polysymplectic formalism and the Poisson-Gerstenhaber algebra [50], is given by Kanatchikov
in [53], [54].

In section 3] and .4 we will consider Hamiltonian (n — 1)-forms ¢ = ¢*8, € Qi H(M).
In that case, the graded Poisson structure reduces to a Poisson structure. For any ¢,p €
Q"‘l(./\/lg‘\’,{,y) the bracket is defined as {p,p} == —E, 1=, Jw" = (-1)""Z, 1 d"p, where
Ep, Zp € X}, (M). The Poisson bracket has the antisymmetry property {¢p, p} +{p,p} =0
and it satisfies the Jacobi identity {¢{p,n}} + {p{n,¢}} + {n{e,p}} = 0.
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4.3 Hamiltonian (n — 1)-forms

In this section we consider Hamiltonian (n — 1)-forms and their related Hamiltonian vec-
tor fields on the DW manifold Mpy,. We will work with the multisymplectic manifold
(Mpw,w™) = (Mpw, tiw) and with the pair (C, *QP%W), respectively.

First, we use the results of Hélein and Kouneiher [51], see, in particular, section 5.2, page
771. We consider the general formula which describes the Hamiltonian vector fields and their
related Hamiltonian (n—1)-forms. In the terminology by Hélein and Kouneiher those objects
are termed «algebraic observable (n — 1)-forms» and «infinitesimal symplectomorphismsy,
respectively (see [51]). This formulation corresponds to the algebraic structure described in
section [4.11

Let = € I'( Mpw, T Mpyw) be an arbitrary vector field on My, written as

_ 0 u 0 1y 0 0 ey O w0
==X YT —+Y) —5+1, ===
oxv _'_6)\ Oe M _'_eﬂ Ow IJ + O + 1 8p§u’/ + 1J 8])(;5'/7 (83>

such that d(= 4 Q") = 0. Note that X”,Gﬁ‘\/[,ei‘],T,T?‘V and Y74" are smooth functions
on Mpyw. The set of all infinitesimal symplectomorphisms, i.e. locally Hamiltonian vector

fields, of (Mpw, 2°V) is described by vector fields = = Z(Q) + Z(P), where

N R R B . v S o
=2(Q) = T8% + 71, 8p§“a + 71, 8p£})jm with 8@0” D R 0,
D o 0 G a@ﬂfcmy 90!, ) 0
=P) = X5 el T O o SRR it vy T

0X" ox* 00k 0X" 0
€p0 Cli K v o o .
+ (e (6 (G~ G ~ () ) = A5
0X" ox* 0OKL 0X" 0
WpO ¢l K ¢L _sv _ g _
(pKL5 (61 6J |:( 8$0) 50( 825)‘ )] (awl{J )) %(&uﬁ‘])) 8p4})51/7

and X¥, 03,017, T, T and 17" are smooth functions on ). We hope to present elsewhere
[102] a detailed analysis of all algebraic observable (n — 1)-forms, i.e. of all Hamiltonian
(n — 1)-forms as defined in section 4.1} in the DW formulation of vielbein gravity.

We now restrict ourselves to simple examples of Hamiltonian (n—1)- forms in Q’,}aml(/\/low)

Let us consider the (n — 1)-forms Q. , = Qix ®er, Quy = Qif,]u; ® Ary, PYY =Py @ A,
and PS¢ = P$ < @ ¢!, where

Que = X'@eks  Pec = Gt d,
QUJ7’¢} = (SL’) IJﬁl/a Pw,ap = 90u< ) 15 v

(84)

If we evaluate those different (n — 1)-forms on the hypersurface of constraints C defined in
section 2.3] we obtain

L*Q“”/’ - (.CL’) IBI/ - eX

*Q“”/J - (SL’) IJﬁl/ - wwa

*P67C — 0

= "Puy = —(1/D)pu(x)erskre™ e el .

Q&X}C

(85)

Qw,d;
Pe7< C
Pyl
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The exterior derivative of (n — 1)-forms Q. , Qu 4, Pec, and P, ,, are given by

dQe,X = I[?l/ ( )5+X ( )de /I\Jﬁl”

dQuy = oY1y ()8 + Py ()dw A By,

dP,. — <f<> i A B, + 10, (2B, (86)
dP., = ¢/(2)dpys" A B, + 075 00l (2)8.

The Hamiltonian (n — 1)-form Q. is equivalently written as Q. = (1/2)¢Y" (z)w!” A B,
where ¢ () is a real function such that " = —#. Then, Q. = (1/2)¢" (x)w!’dz? A
B = (1/2)p () (wl! B, — wl’B,) = ¥ (x)w!’B,. The exterior derivative of the (n — 1)-

forms is

AQuy = dl(w)w W B0) = wi 0,00 (@)da” A B, + o1 (z)dwl? A B, &7)
= W, 97 () B + U1y ( )dw.” A B,

whereas the exterior derivative of the (n — 1)-form P, , is written as

dP"Jvﬂp = d(@u ( )pLIUJV V) = ( )dpwu” /\ﬁl/ +pw#1j ij(x) /\ﬁl/a (88)
= ¢, (x)dpy" A B, +p““”(9u% (z)B.

Using the constraints ([37), the exterior derivatives of the Hamiltonian (n — 1)-forms of type

Qw,w}c and Pwvgp}c are now written as

AQuale = W a1 ()8 + Uiy (@)dw,” A B, = dQuy,
dpw @}C = (1/4)6[JKL€‘LWPU f)( Udgpf;’(m) A ,BV — (1/2)¢£J($)€[JKL€“Vp06§d€£ N ,BV.

Lemma 4.1. The Hamiltonian vector fields related to the Hamiltonian (n — 1)-forms Q. ,,
Qu.p; Pec, and Py, ,, which are denoted as Z(Q. ), 2(Qu.p), Z(Pec), and Z(Py, ), are given

by
_ o 0 , 0 - 0 eul/ 0
E(Qcy) = —eﬁ x7) o X7 W’ E(Pe¢) = iﬁ - ( VCI) 9’
- 0 ) _ ) o 0
:(Qwvw) = _W;I/,J (aV IJ) ¢IJ0 wuua ‘:‘(Pw,@) = SOM W — D1y (a @iJ) O’

Proof. Let us compute the contractions on the multisymplectic manifold (Mpy,w®"),
where the vector field Z(P,, ) on My, is given as in lemma E.Il By the straightforward
calculation,

E(Py,) Jw™ = (gpu(z)ﬁ/&ui‘] — (0,,<pu(z)p°;5”)8/0%) (d% A B+ dpds” A dwé‘] A ﬁ,,),

= _(auspu(x)pl})jy)ﬁ - ‘Pu(z) ww NB, = P. P
E(Quyp) Jw™ = (( ”8 LU0 )0 + oYM (e )0/8]9““”) (d% A B+ dprs” A dw” A 5,,) ,

= ( O (2)) B — M (2)dw,” A B, = —dQu

Analogously, a straightforward calculation yields the Hamiltonian vector fields on the con-
straints hypersurface C defined in section 23l More precisely, working on (C, *Q°") we
obtain:
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Lemma 4.2. The Hamiltonian vector fields related to the Hamiltonian (n— 1)-forms Qe,x}(y
Pe,g}c, Qu,p|es and Pw,gj‘c are given by

C}

— . 0 , 0

:(Qevx)‘c - _6;5(3VX’1L)8—%+X? W,

_ 0

E(Ped), = Gl )aef’

89)

- oo (1 9 (
=Quulle = —(Wﬁ‘lw)a—%—(gw (x)€”KL€uupa€’}<) DeL

- 0 1 vai 0P 9,

2Pl = ol g+ (qemore GEeler) 7

We present the explicit calculation for the (n — 1)-forms Q,,, and P, ,. The interior
product E(Pwﬁp} o) Jw i yields

—_

:(PLW}C) AW = (0, ()0 0wl + ((1/4)ersope™ 0, puel el )0/ 0) |
_ (d% VAN 5 (1/2)€[JKLEWJPU Kde VAN deJ VAN ﬁy)
= (1/2)ersxre"™" pu(x)el del /\@/ (1/4)€1JKL€WM o CeDpu(T)B.

Therefore, E(Pw7@)}c JwRnt = _dpw,so‘c' Now, we calculate E(Q%w)}c _wPei - Tet us
contract both sides of p;" = —(1/4)ernne*Pel eff with €75 e, ef.. We obtain
KL WpV p M _N p

_ IJKL vo
CurpoP1) Cr, = —(1/ )" e poer e eq e el

(1) (2)

where
(2) = —(1/4)ermmne’ " e e PeMeNeh = —(1/4)(21)(2)05 08 (2) (21658 eMeN e,
= 2y dy(egley ch — cpep k) = 20y 0N (O’ — e'OR),

= —((Okes — e ) — (Oke; — e505)) = —((deg — €7) — (e5 — 4ey)) = —6ey.

o

Then, we obtain

=—(1/31) - (1) = =(1/6)e" " e popys” el (90)
We directly verify this result by the straightforward calculation:
(/6 o el = (1/4)(1/6) 5 10 @ (068 )
= (1/24) [(K)Ezv)a[%?}L[(zv)(zv)éfaf(l}eoegeL;;K
= (1/6)[(e, ejef — ez e k) — (e, 6K—6 %)}
= (1/6)(6K 56@2 6K6L k) = 2(1/6L)( ~ e 5);
= 2(1/6)(de; —e7) =6 (1/6)eg
' - 0 ey \ 0 IJKL 9
Using (@0), we obtain PR = (apw“u)ﬁeg = (—(1/6)e €vpo€lc ) BeL’ so that
— o v 9
‘:‘(Qwﬂl}) (w/ij ax,, )a% (1/6)¢M ( ) IJKLeuupaeg{@- (91)
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Finally, we obtain the expression

E(Qw,d;)‘c PR — E(Qwﬂﬁ) _ (d% N 5 — (1/2)€[JKLEWJPU€§C16CL, A dw[;’ A 5,,),
= —w) (0]]) B—(1/2)erskre™ el dey (2(Qup))dw,” A 55

'

(3)

In the appendix [C, we explicitly prove that (3) = w%dwl TN B,.

Finally, we also consider the Hamiltonian (n — 1)- form Q... = 7/(x)X"3, and P,
#XBo — pry X*dw!? A Ba,. We will use them in section EZ2 to glve an example of an
homotopy Lie structure. Working on the constraint hypersurface C defined in section 2.3]

Q%‘C - —L*Q ()X“ﬁu— e

92
= P, —%Xo‘ﬁa—eeleJX“dw”/\ﬂw (92)

Pule
Lemma 4.3. The Hamiltonian vector field related to the Hamiltonian (n — 1)-form P,, is

E(P..) = X*(2)0, — (3¢ (0,X")) 0/ 03¢ + p7” ((0,X") — 62(0X*/0x*)) 0/ 0p7s”.
Proof. The interior product =Z(P,,) 2 w®" yields

=(P,,) aw®™ = ( P(2)0)0x" — 5 (9,X")0/03) 1 (dse A B+ dp}y” A dw” ABy),
P ((0,XP) — 02(0, X)) 0/Op2f (dp°;5” Adwl” A ﬁy) :
= —%(8 X*) B — Xt dse A B, +Xpdpw“'//\dw /\ﬁp,,,
+p757 ((0,X7) — 55(8AXA)) dw” A By.

Note that dP,, = X*ds A By + (0, X*)5 — Xedpys” A dw” A Bow — P15 dX A dw” A Baw-
The last term is equivalently written as — (p4”(9,X") — p“fj”(&,,X ) dw! A B, Where we
have used dz* A B,, = 0,8, — 0, 5,.

4.4 Brackets of Hamiltonian (n — 1)-forms, Lie and homotopy Lie
structures

In this section, we study bracket operations between Hamiltonian (n—1)-forms. In particular,
the exactness or the failure of the Jacobi property is clarified along with simple examples.
First, in section 41] we give an example of an exact Lie algebra A, := {a,,{, }}, where
a, is the set of Hamiltonian (n — 1)-forms {Q.,, Quy;Pec¢, Pu}. Then, in section 4.2
we present some aspects of an homotopy Lie algebra A, := {a,, {, }}, where q, is the set of
Hamiltonian (n — 1)-forms {Q., Qu.¢, Ps: Pe¢, Pu ). Finally, in section 4.3 we present a
third algebraic structure on the set of Hamiltonian (n —1)-forms a; := {C.;,C,s}. This one
reproduces some aspects of the formulation of vielbein gravity in polymomentum variables

57, 58]

4.4.1 Lie algebraic structure

We construct some bracket relations with the Hamiltonian (n 1)-forms introduced in section

B3 Let us consider the Hamiltonian (n—1)-forms Q. = ¢ (z)w,’ 8., Q.5 = V1 (x)w.’ by,
Puo =@, ()pry” By, and P = 3, (x)p;;" B, Note that ¢”( ), ¢”( ) ¥y (@), and w 5 (@)
are smooth functions on the space-time manifold X, where " (z) = —**(z) and 9" (z) =

~" ().
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Proposition 4.1. On the multisymplectic manifold, (Mpw,w®"), the brackets on the set of
Hamiltonian (n — 1)-forms Quy, Q,, 5, Pup, and Py € QN Moy) are given by

Ham

{Qua Quit = {Puipr Puz} =0, {Quu Pug} = —Ufj(@)p, (x)dy,.  (93)

Proof. The brackets are easily computed using lemma AT

{Quu: Quz} —Z(Quy) 1 E(Q,7) Jw™ =Z(Quy) 4 dQ, 7,

= E(QUJ7’¢}> _ (wiJ ( v [J) B + ¢;;de;€] /\ ﬁu) = 07
{Puy,Puz} = —ZE(Puy) - E(P z) Jw =Z=(Py,) JdP, 5,

= E(Puy) 2 (¢} (2 YA A B, +pw“”8u<ﬂi‘]($)5) =0,

{Quy Puyt = E(Q ( wﬂu/\ﬁv “'pWHVaV‘P;ILJ(z)ﬁ)a
= [5K5i5”50] () N(2)B, =~ (2)8, ()8,

Proposition 4.2. A, is a Lie algebra.

Proof. We consider the Hamiltonian (n — 1)-forms Qg 4., Qu.v, Qu.p, € Uit (Mpw) and

PwWU waz, Pw,go; Qﬁaml (MDW)- The brackets {{Qw#}l, Qw,wz}7 Qw’¢3}, {{Qw#}l, w,¢3}, Qw,wz}7

HQu,ws> Quiis }> Quis b5 {H{Pusgrs Pwgr 1 Py b {{Puwirs Puos > P, }, as well as the bracket
{{Pu,p.> Pup, }, Pup, } are identically vanishing. We also have

HQupsr Puph Quat = —E(Qup.) 2 H{Quy,s w<p}
= 2(Quu.) 2 (007 () (2) + ¥ ()00, () dy = 0.

Analogously, {{Puw.¢, Qu.} Quu } = {{Quy.: Quu. }, Pu} = 0. Finally, the last brackets

{{Pu: Quu}r Puw, b {H{Quys Puo, }y Pug, by and {{Py,, Pu o, }, Quy} are also identically
vanishing. The Jacobi property is satisfied exactly, i.e.

0 = {{Qw,wu Pw,ga}v Qw,wz} + {{Pwﬁov Qw,wz}v Qw,wl} + {{Qw,wzv Qw,wl}v Pw,so}v (94)
0 = {{Pw,%a Qw,w}a Pw,soz} + {{Qw,wa Pw,soz}a Pw,cpl} + {{Pw,soza Pw,cpl}a Qw,w}'

Note that [E(Qu), Z(Pu.p)] 167 = Z({Qug, Pu}) 16 = —d({Qu, Pus}). Tn this
case the Hamiltonian vector field is E({Qu.y, , Pup}) = (8077 (2) @l (x) + 015 (2) 0,0l (2)) /D32

4.4.2 Homotopy Lie Algebraic structure

In this section, we work with the set of Hamiltonian (n —1)-forms a, := {a,, P,.}. We present
the failure of the Jacobi identity, ¢.e. the homotopy type of the Lie algebraic structure. Here
we only focus on the brackets between the (n — 1)-forms P, Q,, 4, Pwy € Qi (Mopw).

Proposition 4.3. On the multisymplectic manifold (Mpw,w®"), the bracket operations be-
tween the Hamiltonian (n — 1)-forms P, € Qi H(Mow) and Quy, Puy € Qi (Mow) are
gen by
{P..Quut = X’(2) (w,” (0475(2)) B, — Wi (x)dw,” A By )
(P Pugt = X(x )(P%V u%( )8y — ( )dp““”/\ﬁpu),
+p15" (e X" ), () B, — pffﬁ”(axXA) ' ()8,
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Proof. By a straightforward calculation, using lemma [£1] and lemma [£.2] we obtain

{P..Quyt = E(P.) 1dQy = X*(2)9, 1 (w,‘ij( 17(x)) B+ iy (x)dw,” A B,)
= —Xp(:z)w/‘i‘]dgb’f; A B — XP ()Pl (x )dw” A B,

{P..P.,} = ZE(P.)1dPyy = X"(2)d, 4 (¢, (x)dp}s" A By + 075" 0. (x)8) ,
+pir (0o XB)—55(3AXA))8/3P““6 3 (i (2)dp7s" A BL)
= _Xp( )pongudSOIJ/\ﬁpu_Xp( ) ( )dpww/\ﬁpw
‘H% ( )(p%p(apr) pc;;u( P )) By
Then,

d({Px Quu}) = — (X(2)0,007(2) + ¥47(2)0,X* (2)) dw,” A B,
+ (XY(2) 0,075 () + 75 (2)9,X" (v ))dw”Aﬁu,

O X ()l A B, — O XA A Gy, D)
+w, 9,X" 3 — w”a L, X°3,

d{P%’ PW#P} = _Xp( )apsp,ujdpwuu /\ﬁ'/ +Xp( )al/(pu dPWMV A ﬁpa
+p°IJ5V(apo( )) Vgo,u, ﬁ? (pIJ a X ( )2 Vp%ﬂ@
+ (XP(2)0p0. () + 7 (2)0,X7(x)) dpys” A By, (96)

— (X0@)0yp, (@) + ¢, (2)0,X"(x)) d “’““Aﬁp,

H(0,X" ), (2)dp75” A By + (9,X")p75 Dip, ( )5,

—(9,X7) i, (x)dp75” A B, — (8,X")p75" 0 u% 7 (2)B.
We have used in (95) and (@6]) the definition 8, = 0, 40, 48 = 0, A 9, 4 and the
algebraic identity dz® A B,, = 0,8, — d;8,. The brackets obtained by cyclic permuta-
tions are given by {{P., Quy},Puyt = —E(Puy) J1d({P., Quy}), {Quy: Pugl, Pt =

—E(P.) 2d({Qup: Pugy}), and {{Pu 4, P}, Quyt = E(Quy) 1 d({Ps, Puy}). Thus, we
obtain

{P Quu}:Pugt = % (X7()9, ’f?(év)+¢ 7 (2)0,X7(x)) By,
(X" (2)0,075(x) + 47 (x )3 X"(x)) By, (97)
+sou TOENX (@) B, — ¢, (O07) X () By,

({QuusPuch P} = = X0ty (a)del! A, = XP()ot ()0 A,
= —X"(x)¢) () pwﬁ‘]ﬁﬁX”( Jury (@ )0, 6, (98)
— X (x) i(m) T u‘FXp(?C) 7 (2),077 By,

1 (=X (x) psof"ﬁﬁX”(x) 3v0y” By)
((Xf’(:c)a H% (2)0,X?(x)) B,) ,
((X”(SC) ) 0, (2)0,X°(x)) B,) ,

1 ((0,X")e), “"p Aﬁu —(8,X")¢}(x)B,) = 0.

Let us denote (cyc) := {{P%, Qw,w}, Poot+ {{anln Poot, Pt + {{Puy, P.}, Quy}, the
sum of cyclic permutations. Using (7)) - (@9]), we obtain

(cye) = —p)’ ( )0, X7 (2)B, + 0, V5 (2)0,X" () B, — X (x)yy5 () p%"@/,
—X"(x ) 5(7) pwﬁjﬂu,—w”X”( ) p¢?5($)5u+<ﬁ”X”( ) 0oty () By

{{Pw,@v P%}v Qw,w}
(99)
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We denote by S the (n — 2)-form Z(P,,) A E(Quy) A Z(Py,) JwP € Q" 2(Mopy). Then,
S ==(Py,y) 2 Z2(Quy) 2 Z(P,) Jw®™ . Then,

8:

I'®)
&
N

L
—~

=Z(P,,) JE —5(0,X") B — X'dse A B, + XPdply” Adwl! A B),
+E2(Pu) 1 Z(Quy) I ((75°0,X" (x) — 75" 8,X°(x)) dwi” A B,)

E(Py,p) - ( wi‘]( , U)@/@%) (=XHdse A B),

+E(Pug) + (—U510/0m3) o (XPaps” A dwl? AB)

E(Pu,p) (quIJ( LUET) B — X”w%dw” A 5/)1/) )

= —(pEro/0wl") o (XPYdwl? A B,) = =X U0l By

Therefore,

S = — (Uj(@)g, (x)dX" () + X°(x)yy s(x)de V(@) + ol (0) X ()dw ())Aﬁpu,
= - ()I()ﬁX”()ﬁuW () ()3X”() — XP(2)077 (2)0,0,” (2)B,,
+X”( i), ()8, — ¢, (= ) XP ()0, ©)By + 0, (@ )X”( )0,015() By,

is identically equal to the sum of cyclic permutations: d& = (cyc). Hence, we have proven
the Jacobi property up to coherent homotopy, i.e.

{{Pm Qw,w}v Pw,w} + {{Qw,wv Pw,@}v P%} + {{Puhso’ P%}v Qw,w}'

Using the notation Sp,; := (E1A- - -AZ,) Jw® (where Zy, - -+ ,E, € Q1 (Mpy) are Hamilto-
nian vectors fields), the Jacobi identity, up to a coherent homotopy, is equivalently contained
in the formula

dSyp, = (-1)" Z (oS5 AELA B At A AEj I AEjpi A Ey) Jwr.

1<i<j<n

For a detailed proof, we refer to [90], page 25. Applying it to our example with S,) :=S =
Z(Puy) 4 2(Quy) 4 Z(Ps) JwPY), we obtain

dS = —([E(P.), E(Quy)] AE(Pug) 1w™) = ([E(P.), Z(Pug)] A E(Quy) Jw™),
— ([E(Qup), E(Pu )] AZ(P) Jw™),

= = (E(Pugp) 1[E(P2), Z(Quy)] 1w™) = (E(Qup) 1 [E(P), E(Pugp)] 1w™),
= (2(P.) 2 [E(Qup); Z(Pup)] Jw™),

which is easily verified.

4.4.3 Algebraic structure on ceﬁ,cwﬁj

Let us denote by a; the set of two (n — 1)-forms C.1,C,1s, where C.; 1= p/""' B, and Cors =

pry” ,,—l—E[“e ]B,, Note that dC.; = dp?"AB, and dC s = dpw“y/\ﬁ,nL(1/2)61JKL6“””"efdeCL,/\
B,. The related Hamiltonian vector fields E(Cer) and E(C,z) are given by

=(C.;) = /06, 2(Cur) = 00w — (1/2)ersire™? eX0/opss". (100)

The interior products of the Hamiltonian vector fields Z(C.;) and Z(C,zs) with the multi-
symplectic form give Z(C.r) Jw™ = p" A B, = —dC.; and Z(Cy1) Jw™ —dp5" A
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B, — (1/2)€]JKLE'U'VPU€£(d€£ A B, = —dC,1s, respectively. Note that, by definition, Cczle =
C.1sle = 0. We now calculate the bracket operations between the Hamiltonian (rn — 1)-forms
Ceﬁ € Q1 (Mpy) and CwﬁJ € Q- ( Mpw):

{€a.Ca} = —E(Ccp) o (c 1) (dp” Adef, A B, + dpls” Adwl AB)

— —2(Cup) 2 (A A B) =0,

{C%J,Cwﬁ]} = — (Cwﬁf) =(Cy I]) (dpe‘”j A dei A B, + dpl})ﬁy A dw/ij A 5,,) ,
= - (cw{/) ( wuu N 5,, (1/2)€[JKL€/WPU€£{C16£ N ﬁ,,) = 0,

{ceg,cw{[l} = — (Ceg) J :(Cwu) (dpe”V A dei A By + dp?jy A\ dwij A ﬁy),
— (Ceg) _ ( w,u/ A ﬁy (1/2)6[JKL€“Vp065d€£ N ﬁy) ,
= —(1/2)ersrre™ i er By

Note that 8/865(E£”e'3}) = —0/865((1/4)61JKL6“VP"6K6L) = —(1/2)€[JKLEMVPJ6£{. We
reproduce the result of Kanatchikov [57, 58], which underlines his constraints analysis of DW
formulation of vielbein gravity and its precanonical quantization. In particular, we refer to
equations (19) page 6 in [58]. The brackets are written as

d v
{Ceﬁ,cgg} = {CW{LJ,C@L} =0, {Ceg,cw{/} = —ﬁ(E}ueJ})ﬁ,,. (101)

Proposition 4.4. A, := {a; ; {,}} is a Lie algebra, where a; is the set of forms ceg,cwy
and where the bracket operation is {, }.

Proof. We consider the Hamiltonian (n — 1)-forms Cezy,ceg,cwﬁ]. The following bracket
operations based on the cyclic permutations are found:

{{Cor,Cor},Cops)}
{{ceg ’ cwﬁ]}> ce]y} =
{{Cupr Cor },Cot}

(Cwn) _ d{C CeL} = O
(C M) _ d{CeL cwn} = (1/2)6[JML€MV>\ 6,,, (102)
( eL) _ d{cwu C M} = (1/2)€]JML€”V Uﬁ,,

[I] [I] [I]

Y(Mpw). The

Ham

Also, let us consider the Hamiltonian (n — 1)-forms cei” Cwu Coxr € U
brackets based on the cyclic permutations of the Jacobi identlty are

{{ceﬁhcwﬁ(L}acwﬂJ} =
[{Copr Copp},Cov} =
[{Cupr Cor 1Cupr} =

(Cwn) _ d{C chL} =0,
(C M) - d{chL cwIJ} =0, (103)
(chL) J d{cwu C M} =0.

[I] [I] [I]

Then, using (I02) and (I03)), we obtain the Jacobi identity

0 = {{C CeL} cwn} + {{CEL cwIJ} I\/I} + {{Cwn M} CEL}

0 = {{C chL} Cwu} + {{CwKL Cwu} C M} + {{cwu C M} chL}. (104)
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4.5 Towards the canonical forms for vielbein gravity

The quantization of gravity within the MG formulation is still in its infancy. However,
some progress have been made by Kanatchikov within his precanonical quantization based
on his polysymplectic approach. The description of fundamental brackets, using the graded
structure presented in 4.2l between Hamiltonian (n — 1)-forms and Hamiltonian 0-forms is
found in [57, 58]. In particular, the constraints analysis involves a generalization of the Dirac
bracket to the polysymplectic context, see [59].

Another example of canonical Poisson bracket, i.e. a bracket between canonically conju-
gate forms, is obtained by using the copolarization of algebraic observable forms developed
in the work of Hélein and Kouneiher [51]. We present briefly the formulation of a Poisson
bracket on observable functionals for vierbein gravity. The functionals are built on the pair
(w, @) of canonically conjugate forms, i.e {ww, w} = 1, where w := W' @A;; € QL (Mpw) 28
and @ := @y @AY € U2 (Mow) @ 8. We denote @y = (1/2) 3, , 07" B € Ui? (Mow)

Ham Ham

and @wr; = (1/2)32,, 017 B € Q2(Mow). When restricted to the constraint hy-

Ham

persurface C, the (n — 2)-forms are denoted wyle := v'w; = 0 and wyle = r'w =
—(1/2)%, e B, = —(1/8)e e, ke el B Since

de’ Ndw; = (1/2)dp?” A de A (5”5,, — 5”&) =dp}"” A de A By,
dw'” Ndw; = (1/2)dph” A dw” A (5”5,, — 5”@) =dp}s" A dw” A By,

the multisymplectic form is written as w® = ds A § + de! A dw; + dw!’ A dw;;. Following
the method found in [50, [51], we construct a bracket between the observable functionals
Flw,2N7,] : fZﬂ'y w and Flw,X Nyg] = fEﬂ'Ym w, where ¥ is a 1-codimensional slice
[50], and XNy, and ¥ N7y, are submanifolds of codimension n—2 and n—3, respectively. We

construct the Poisson bracket { fEﬂvw w, fEFm, w}(f‘) DDA
a counting function and T is a Hamiltonian n-curve. We refer to a forthcoming paper [103]
for an analysis of canonically conjugate forms and Poisson brackets in the DW Hamiltonian
formulation of vielbein gravity.

¢(m), where ¢(m) is

5 Conclusion

In this paper, we have presented several geometrical frameworks for the DW Hamiltonian
formulation of vielbein gravity. We have chosen to work in a local trivialization of the prin-
cipal fiber bundle (P, X, 7, SO(1,3)). The covariant configuration space is the fiber bundle
Y :=is0(1,3) @ T*X over X, see section 2. We have described the DW Hamilton equations
in geometrical form in sections [2 and Bl In section [2] we studied the Hamilton equations
in the multimomentum phase space Mpy := ATT™*Y, which is described by the set of local
coordinates (¥, el,, w!’, s, p*”, p;"). Working with (C,*Q°"), the DW Hamilton equations
X¢ 1 (Pw™) = (—1)"d(*H"W), reproduce the Einstein system of equations. In section
we consider the n-phase space formulation of dreibein and vierbein gravity, following the
formalism developed by Kijowski and Szczyrba [63, (64, 65, 66], and Hélein [47]. We present
the DW Hamilton equations on the pre-multisymplectic phase space (Co,w®). Then, in the
multisymplectic case, when working on the constraint hypersurface C, the DW Hamilton
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equations are given by (5I)) and (B6]) for dreibein and vierbein gravity, respectively. In the
pre-multisymplectic case, and working on (C,), the equations are given by (68)) and (74).
This fact is related to the first order nature of the Einstein-Palatini gravity. We have repro-
duced in the context of the DW Hamiltonian formulation developed in [46, [49] 50, 51] some
of the results found in [5] 6, 23] [94] [05]. In section [l we give some examples of Hamiltonian
(n—1)-forms, their related Hamiltonian vectors fields, and some Poisson brackets, which lead
to the Lie or homotopy Lie algebra.

One of the interesting questions beyond the scope of the DW formulation is to find
a multisymplectic manifold (M e, t5€2) contained in the following inclusion of spaces:
Mpw = M goge — M, such that a more general Lepagean Legendre correspondence
[49, 50, 51] is non singular. Note that ¢, : M. < M is the canonical inclusion. The
idea is to use a formulation based on a higher Lepagean equivalent of the Poincaré-Cartan
n-form, denoted by #-***¢ := (3f. In such a context we use the multimomentum phase space

M page := AVT*(p @ T*X). Then, for any point (¢, p) in M epage;

gremmse = R 4 pfes el A dw!E A B+ pheet el A ded A B,

(@) +pw£JW§LMdeIJ A dwKL A ﬁuua (105>
where we have introduced additional multimomenta peg“’/]f}“” p6 eﬂ‘“’ and p‘*’ w5 i Within
this geometrical formulation we could be able to construct an 1som0rphlsm between a subset
of the multimomenta and the field derivatives d,¢!, and d,w!’. This viewpoint might allows
us to avoid the primary constraints at all, and eventually shed new light on the problem of
quantization. Another problem for further research, already mentioned in section [[.4] is to
describe a fully covariant setting for vielbein gravity and to establish connections with the
work of Bruno et al. |5 [0, [7, 8] and Hélein [48].

The most interesting problem related on the quantization of vielbein gravity would include
the classification of the full set of algebraic and dynamical observable forms and the search
of good conjugate forms. We hope to present elsewhere [103] results on the construction
of canonical forms (w;, w!’), canonical brackets and a pre-quantum theory, in the sense
of geometric quantization, for vielbein gravity. The canonically conjugate forms are the
connection 1-form w'” = w/’dz* and the 2-form w;; = (1/2) Zuyee[lye’j} - Note that
interesting results have been obtained by Kanatchikov within his precanonical quantization
scheme for vielbein gravity [57, [58].

Acknowledgments. I am grateful to Frédéric Hélein and Joseph Kouneiher for discussions
about the topic of multisymplectic geometry and vielbein gravity. I also thank the referees
of CQG for helpful suggestions.

A First order Palatini action of vielbein gravity

First, we consider the first order Palatini action functional of vierbein gravity

Sowanlesw] = i /X vol(e)ee’ F1Y ], (106)
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also called the «Hilbert-Palatini» action functional in Peldan’s review [87], and which corre-
sponds to the «frame-affine» framework in [25]. The functionals Seue] := [, vol(e)efe il [w(e)]
and Seplg, T'] := & [, V—8R[I'|3 := & [, Rvol(g) are termed the «FEinstein-Hilbert» and the
«Finstein-Palatini» action functional in Peldan’s review [87]. They correspond, in the frame-
work developed by Fatibene and Francaviglia [25], to the «purely-frame» and the «metric-
affine» formulations, respectively. Let us sketch the passage from Seplg, '] t0 Spaamil€s W],
using some vielbein algebraic relations.

Lemma A.1. The Palatini action functional Sp,amile, w] is written as

K 1
Spaatini | €, W] = 1 /X EIJKLe”"pUeieinfgL[w]ﬁ = e XEUKLGW””eiein[;L[w]ﬁ. (107)
Proof. Note that vol(e)efe’F,) = Beefe’ L] = 3y/—gRly = 3y/—gR = vol(g)R. Alter-

natively, we have the straightforward calculation:

Vv _gRﬁ = VvV _géf;dg}RaBpaﬁ = (1/4) V _geuuaﬁeuupaRaﬁpaﬁa

= (1/4)€uape"™ R .3 = (1/4)EUKLefLeiefeée“”poRaﬁmﬁ, (108)
= (1/4)€IJKL6£61{€/WPU [656§Raﬁpa]ﬁ = (1/4)€IJKL€MVPU‘3£61{F£L[w]ﬁa
where we have used d7,05 = (1/2)[0405 — 0567] = (1/4)€uwape?”. In the first line of (I08)

the Levi-Civita tensor is written as €08 = v/ —8€was. We have used €,,03 = E[JKLeﬁeiei{eé

and efef R’ ,, = Fi" in the second and the last line of (I08), respectively. We pass from
the Einstein-Palatini action functional Sgp[g, I'l = £ [, Ler[g, '] to the functional

K
Spalatini [6a W] = 5 /EIJKLQI A €J A FEL — GIJKLQI A 6J VAN FKL, (109)

1
321G
written in terms of differential forms.

Proof. Let us evaluate vol(g)R = /—gR, the integrand of the Einstein-Hilbert action.
Contracting the Riemannn curvature tensor we have the following equality R = R*? paé[pa 551.
Therefore,

g @ K S Vpo D&
Lenlg|vol(g) = kvol(g)R = '%VOI(g)é[[;éﬁ]R Bpo - Zvol(g)(_l) €uwap€”” R ﬁpm

where we use the relation 5[’;55}1)!(71 —p)(—1)° = €,0ap€"”” (see the algebraic identity (II3)
in appendix [B.2] with n =4 and p = 2). Then, in a integrable moving co-frame e* := da*,
the volume form vol(g) = \/—gda® A dz' A dz? A dz? is written as
V- 1
vol(g) = ¥ 8 enerndz? A dz® A da” AdaY = € det Ada® Ada” Ada.

We refer to appendix [B.3] for details on the relation between the volume form and the Levi-
Civita symbols. Since, see the formula (I13), € €y = (—1)84!5&‘5,’;5555:} the Einstein-
Palatini functional is written as

k [ (—=1)*

SerleT] = 4 TeuyaﬁeuupaeknTvRaﬁpadf)\ Adx® Adx™ A da”,
X !
—1)%(—1)4!
- g / %6” valb 5;%";555:} R da* A dz”™ Ada” Ada?,
X !

= (k/4) / €uvap R podat A dz” Ada? Adz® = (k/2) / €wapdr’ A dz” A R
X X
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where in the last equality we use the curvature 2-form R*’ = (1/2)R*" ,,da” A da°. Finally,
using the relation €,,,3 = eﬁeiefeéeuz& (between the volume element €, of 8 = e e hU
and the volume element €7,k of the Minkowski metric h;;), the Palatini functional actlon
is written as

K
SPaIatini[€7w] = 5/ 6,55 €B€[JKde A dz” /\RO‘B
X

K K
= 5/ eIJKLeidx“/\eidx”/\efeéRo‘B = §/€]JKL61/\6J/\FKL.
X

Analogously, in the formulation of dreibein gravity, the Einstein-Hilbert action functional
Senlg,) = [ vV—8RS is equivalent to the action functional Spaum = [ €r7x¢” A R7E.

Proof. Let us evaluate vol(g)R = 5v/—gR, the integrand of the Einstein-Hilbert action.
Contracting the Riemann curvature tensor, we have R = R*? poé[”a 55}. Then,

Sole.T = [ vl@)R = [ w857,

We also have the relation 5” 205 1121(=1)° = €4ap€"?, see the algebraic identity (I13) in
appendix B.2] with n =3 and p = 1. Thus,

1
SeleT] = 5 [ vollg)(—1) €pue B,

The volume form is written: vol(g) = v/—gda' Ada? Ada® = (v/=g/3)ererda Adz" Ada™ =
(1/3D€xerdz* A dz® A da”. Then, we have

_1)s
Serlg, '] = /X (1) €05 €7 €0y R pda™ A da™ A da”,

3!
/ euaﬁRaﬁpgdx“ A\ dxp N dSL’U - / euaﬁdxu N Raﬁ,
X X

N =N —

where we used €*"7€y,,, = (—1)83!5[; 5[,35;'} and since the curvature 2-form is written as R* =
(1/2)RF da? A dz®. Using the identity €,05 = elelef ek, we finally obtain

SPalatini [67 w] = / eieiegEIJdeﬂ /\ Raﬁ = /
X

6[][(6 dx“e KRaﬁ = /eUKeI/\FJK.
X

B Algebraic relations, volume form and vielbein

In this section we present the basic algebraic properties of the Levi-Civita symbols, gen-

eralized Kronecker symbols, Levi-Civita tensors, and densities constructed on the vielbein
field.

B.1 Levi-Civita symbols

We denote by €, ... ., the Levi-Civita symbol and by €, ... ,,, the Levi-Civita tensor. Let S,
be the set of all permutations of n elements. The signature of the permutation o € S, is
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denoted by sgn( ) with value 1 and —1, when the permutation is even or odd, respectively. By

definition, €, ... ., = +1if (g1, -+, itn) is an even permutation of (1,---,n), €, p, = —1
if (pq, - ,,un) 1s an odd permutation of (1,---,n), and €, ... ,, = 0 otherwise.
The determinant det(M) of a matrix M = {M*, },<,, ,<n is given by the Leibniz formula
det(M Z sgn(o MeD e = Z sgn(a)Mlg(l) M (), (110)
O’GSn O'GSn

and is equivalently written as det(M) =37, < €, M M,

B.2 Generalized Kronecker symbols

We introduce the generalized Kronecker symbols oplbm. By definition ofl Tk = +1 if

2Wn sUn

(1, -+, pn) is an even permutation of (v, -, vy,), 5511,’ b = =1 (g, ,,un) is an an
odd permutation of (vy,---,v,), and €. ., = 0 otherwise. The generalized Kronecker
symbol provides a way to write the anti-symmetric Levi-Civita symbols €, ... ., = 52“" im
and etk = Gtk \We adopt the anti-symmetry conventions of Wald [107] i.e.
1
R DI LTS T R (111)
UES'!L
then, o5 ke = nldy, -0, = 3o cs, S8N(0)0, () 0p(, = €malt - ohr. For any
1<p<n, ‘we also have the 1dent1ty
(1/p.)€”1“.unippl...pp€V1~~~Vn7pp1“~pp — 5511.‘.‘.‘1/;/”11:;). (112)
The identity (I12)) is very useful and give
Eulmupmmanipem...upBL--anp = pl (n p)|5[a1 524::;,]’
e n!&fl“. 5577], (113)
ettre, o = nl

Finally, using the generalized Kronecker symbol, the general formula for the determinant of
a matrix M € Mat,(R) is written as det(M) = (1/n!) >_ Grbn N e ME

1 UnV1VUn ~ M1, Mn n*

B.3 Volume form, Levi-Civita tensor, Levi-Civita tensor density

Let (X, g) be a Riemannian manifold. The canonical volume form, a nowhere vanishing n-
form on X is denoted by vol(g) € A"T*X is related to the metric g,, by vol(g) = \/gdz' A

. ANda" = /g8, where g := |g| := |det(g,,)|- The Levi-Civita tensor is connected to the
volume form vol(g) by the following formulae:

€urepn = V |8l€wpins ettt = (=1)7(1//|g)er -, (114)

where o is the number of negative values in the signature of the metric i.e. (—1)° =1 and

(—1)? = —1in the Riemannian and Lorentzian cases, respectively. We construct the tensorial
invariant volume n-form vol(g) = /|g|8, where § = da' A...Adz"™ = (1/n))ey, p,dat AL A
da#». We have vol(g) = (1/n!)emmundx“ Ao Ndat = (1/n)v/|glep, . pda™™ A oA datn.

Qn—p]

Finally, the important formula e*t#r®1n-re, . o 5 = (=1)7pl(n — p)!d[ﬁfl...%%p

specializes to €1 tre,, . = (—1)”n!5£‘f1...5ﬁ§} and e tre,, o, = (—1)7nl
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B.4 Volume form and vielbein

We introduce the covariant volume form vol(g), from the vielbein viewpoint. We denote
vol(e) = el = el A+~ Aeln where B = da' A--- Ada”™ = (1/n)ey, ..y, dat™ A« A dai.
The space-time Levi-Civita symbols e/t #" and €, .. , have a counterpart in the vielbein
setting. They correspond to the alternating symbols with tangent space indices €/t and
€1,.-1,, respectively. For any 1 < 7 < n we have eli = e,ﬂ? dz#i | thus vol(e) is written as

vol(e) = (1/nep,..p, e A---Nelm = (1/n!)611...fne/€11 > -eﬁ;da:‘“ A Adah, (115)

Using e = det(e},) = (1/n!)e,..p e #nell ---eln (the formula for the determinant of the
vielbein matrix), (II3) is now written as vol(e) = (1/n!)es,..p, el --- el (nl)et o+ g = ef.
Then, the determinant ey := det(e;,) of the dreibein and the determinant ey, := det(e;,) of

the vierbein are given by

ey = (1/30ersxePepeer, ey = (1/4)ersxre™ejee)el, (116)

respectively. The determinant of the inverse vielbein matrix det((ei)_l) is given by
et = det((ei)_l) = (det (e’;))_l = det(ef) = (1/n)e" ey, et e, (117)
Let us note that the formula in (I14]) are equivalently, in the vielbein formalism, written as

€rin = €1 pins € in = (—1)%e Tt (118)

_ I,J. K _ I,J, KL _ _
We have €,,, = €1JKE,EEy and €,,,8 = €1JKLE,E; €, €5, where €., = €€uq and €,,08 =

e€wap, for the dreibein and vierbein formulation, respectively. Note that we have also the

: _ Hrov o _ “ov oo B
relations €y = €ua€jeiey and €yxr = €uapeleieie] -

B.5 Vielbein densities

We introduce the vielbein densities, denoted by Eﬁ 1,::'1‘; " with 1 < p < n. They are con-

structed on the determinant of the vielbein det(e) and p vielbeins ej' - -e’;;’ such that
EZ{:};” = det(e) []; e‘;jj = eey! - -e‘;;’. We consider the anti-symmetrized object, i.e.

el 1 Moy o) _ L oy vy L g [v1-vp]
Epl," = ] Z By, "0 = ZjéﬁfzipEIfI: = _!5511~~~IZ,I)E11%..IPP
UTSn (119)
_ — V1UppPrePn— M1 Hp
_ (n o p>!€m"'ﬂpﬁ1"'ﬁnfpp!€ ! pEll---Ip
First, we are interested by the density EY = eef = det(ef)el. We have, for p := 1 (n is

. . . . wo_ St I In 1 .
the dimension of the space-time manifold), Ef = ((1/n!)ef,...r, e+ el '6un)€l or equiv-

alently E} = (1/(n—1)l)e#Fn—tey, g el ---eint. This relation is straightforwardly

Hn—1
derived. Let us denote (1) := et#1-#n-terp el ...elnm1  Using the algebraic relation

” Vo1 M1 Hn—1
P v n— 3
€10y Iy = €viy..v, 1 €7€L €, We obtain
(l) — Elu‘lu‘l“‘)u"!lfl (e el/e'/l . el’nfl) I . elnfl — 66““1'“”’”7161/61/1 . €Vn71611 - elnfl
V1. Un-1-1%14 1,1 ui Un—1 vvl..Vn—1 "I In—1"p1 Un—1"

_ BHL-fn—1 SV (SV1 | SUn—1\ o SHML - fin—1 U _\ISELY 1\ IH
edht - bn 61(5;“ 5#7171) oyt ey e(n —1)love] =e(n —1)ley.
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Now, we are interested in the density B = eelte”) = (1/2)e(ele? — evet), which is written
] _ 1 w1, o pin o 11 I vl _ 1 VL o r—2 I In_ o :

as Ly = (HEH---ME teu 'eu';) €r€r = am_a2y€ €101 2€) - €5 This

relation is obtained as follows. Let us denote (2) := e#H1-Fn—2¢ ;7 1 el .. -efj;j. By the

1.
1
straightforward calculation

_ UV .. —2 pPo vi . Vn=2\_I1 _In-2
(2) = € (eponman?eIeJeh 61n72)€u1 Clin_2>
— HUPL-pn—2 oP 0 V1 SVn=2 01 | In—2 __ [ SHVHL..fin—2 P 0 (SV1  SVn—2
- 66PO'V1---Vn72 €résn €I2Cm Clin—2 = 65001/1---%72 €€y (5u1 6/1/1172)’ ]
— PVRL - Hn—2 ,P 50 0P o0 (0 W P o0 () sl — ( Ky
= eop i 2ele] = eehe(n 2)!5m = eefe(n 2)!2!5p = (n—2)121E/}",
(n—2)!

where we use the formula §#vF1--Hn-2 —

o mdgg =(n-— 2)!5;‘(’; to pass from the second
to the third line.

Lemma B.1. Let us consider the vielbein density (I19), with p = 2, i.e. E%”} = ee[I“eij,].

(] _ 1 I In—2 pvp1---pp—2
Then, EIJ = 2!(n_2)!€]J[1...[n726p1 s 6p:§72€ nTe

Proof. By the straightforward calculation

E%V] = ((l/n!)eh...fne‘“"“’“”efjl . '63;) (5;“55}) ere,

= ((l/n!)eh...fne‘“"“’“”efjl > '63;) (1/(2(n = 2))) 7 (€72, o) €5€T,

— El?f:gn _ 2;3%_1611”1”6’/1“%zwélgfl[' . .55%:22553—155;] (pezltll) . -efﬁle?eg) ,

= (1/(2U(n —2)!)) "epy..q, 2 (e} - e n2e e el e

1(n — 2)))~ ! ' I Inlilz MVP#?%??QP 7
(1/(2(n = 2)!)) €1IL Ty 2Cpy """ €2 E )

In particular when n = 3 and n = 4 we have:
Lemma B.2. The densities E%V] = ee[I” eZ], which are constructed with two dreibeins and
vierbeins are given by E%V] = (1/2)€IJK6£(€‘LWP, and E%V] = (1/4)6[JKL6£(6£€“VPU, in the case

where the dimension of the space-time manifold is n = 3 and n = 4, respectively

C Calculation of Z(Q, ) o w™™

The interior product =(Q, ) 4w is given by the straightforward computation:

(3) = —(1/2)ersxre™ e dey (—(1/6)9 (2)e?eapne0/0ey) dw,” A By,
(1/12)eOPQLeUKLeWp”eagmefe%@DO‘B(x)dwi‘] A By, (120)
(1/12)(3)8,765 52 (31) 8 a500 X ey () dwl? A B,

2In Peldan’s review [87] we found the relation ee[lﬂelj] = (1/2)ersrrel el et P since there the terms in

antisymmetric sums are weighted with 1, e.g. e[l”e;] = ef'e; —eYel;. In our conventions, e[l”e;] = (1/2)(ele —

v H ] _ K L uvpo
efel;), thus eeje; = (1/4)ersx e, e, e'r?.
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Since €77 €, 5,0 = (31)04'0504 = ((31)/3) (84'6550 + 615 6% + 64 85)51), we obtain

= (1/12)01757 530 (315554 — 1555y — (620405 — 51050%) + 62640, — 045504 ) ek eyl A B,

= (1/12)67° 875 (nop00ek eyl dwl? A B, — okohore N el dwl! A B, — 018485 eK ey Pdwl! A B,
LTk P duwl? A B, + 020405 el A B, — 85l Ut A B, ),

= (1/12)6&0655% efegw“” e eQz/J“p - eKep oV + eKe‘éw”p + eKe” oYt —e, Kett z/Jp”)dw” A By,

= (1/12)0)765 5 (6w — el etpre — §Eyri 4 eKelh e 4 e ety — el w””>d 1J A3,

= (1/6)5&0555}%] (5g1/1‘“’ e egw“’) + eKe“ 1/)”p)dwu A By,

and since €97 ;i = 696762 — 596965 — (676962 — 67 6962) + 62696k — 695559, then (3) is written as

(3)

= (1/6)(87050% — 67650 — (67 6967 — 67 6F8%) + 678565 — 6785 6%)
(05U — ep b + el e )dw,” A By,
= (1/6) 696707 (85w dwf’ A B, ) — 0P 0F 0% (o5 v dwl? A 8, ) — o 6767 (35 v+ dwl A ﬁ,),
+6F 5959 (85w dwl’ A ﬁ,,) +69696% (5 Y dwl? A [31,) - 5Q5§5K SE g dwl? A B,,
+0P65 0% (= el et dwl” A B, ) — 690765 ( — eXeburrdwl’ A B, ) — 678957 eHPdwl’ A B,),
+07096% ( — eXetyurrdw!’ A B, ) + 630905 ( — eXetyyprrdwl’ A ﬁl,g — 0967 5KE — eKelprrdwl! A ﬁl,g
+0P0 6L ( + e ety dwl! AB,) — 0P0F0R ( + el ety dwl’ A B, ) — 0T 0F6%( + el ety Pdwl’ A B, ),
+47 5?5}{ + efegdﬂ’pdw{/ ABy )+ 5?5?5}2 + eKegi/J”pdw” A [33 — 5Q5 g + eKe‘éw”pdwU A Byg] ,
— (1/6) [( + 4 dwO A m) + ( — 5w A m) (ePeg?dewOQ A m 5L dwPO A ﬁ,,)
+( — egeé@[}“pdwa A B,,) + ( — efeé@[}“pdwﬁgo A ﬁl,) — ( —€, O ¢“pdeP A By
+(+ 05 dwl A B,) — (4 ebelyy e dl A B, ) — (+ s P dwEO AR,

)

)

,
+((+ Qe rdwE QN B, ) + (+ eF ety PdwO A B, ) — (+eQelyy P dwT A 6],

— (1/6) [( + 60" dwPO A 5,,) n (( £ dwO9 A ﬁl,) - ( eQetydwl@ A ﬁ,),
+( —e, Pev ¢“pdeO A B,,) ( w“”deP A ﬁl,) ( poeéw”pdwiQ A B,,),
—(e, Pelt w”pdwOQ A ﬂl,) (efe‘éd)l’pdwfo A ﬂl,) — (ep e‘éw””dwﬁzp A By)},

_ K +6(1/6)"dw PO A ﬂl,) (1/6) (2 (65651/;“%3@ A ﬂl,) —(1/6) (2e§eg¢ﬂpdwa A ﬂl,),
+(1/6) (Qege‘éw”pdwa A B,,) —(1/6) (2efe‘é¢”pdw8Q A ﬁy)} :

Therefore, we conclude that (3) = 6(1/6)¢“”dw{[’ ABy, = (1/6)((1/6))_1¢“”dw[[’ ABy, = @[J“”dwﬁ‘] A By.
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