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Multisymplectic formulation of vielbein gravity
I. De Donder-Weyl formulation, Hamiltonian (n− 1)-forms

Dimitri VEY1

Abstract. We consider the De Donder-Weyl (DW) Hamiltonian formulation of the Pala-
tini action of vielbein gravity formulated in terms of the solder form and spin connection,
which are treated as independent variables. The basic geometrical constructions neces-
sary for the DW Hamiltonian theory of vielbein gravity are presented. We reproduce the
DW Hamilton equations in the multisymplectic and pre-multisymplectic formulations.
We also give basic examples of Hamiltonian (n−1)-forms and related Poisson brackets.

1 Introduction

The canonical Hamiltonian theory of the Palatini action of vierbein (tetrad) gravity has been
studied by Deser and Isham [15] and Heanneaux et al. [52]. In the canonical formulation,
space and time are treated asymmetrically and the canonical variables are defined on spacelike
hypersurfaces. Therefore, the dynamics implies a global spacelike foliation of the space-time
manifold. The canonical commutation relations are defined on the equal time hypersurfaces.
Accordingly, the Dirac canonical quantization is related to the instantaneous Hamiltonian
formalism, which adds an additional structure of global hyperbolicity on the relativistic
space-time. In this paper, we consider the De Donder-Weyl (DW) Hamiltonian formulation
of vielbein gravity in the broader context of Multisymplectic Geometry (MG). The finite
dimensional DW theory is a covariant Hamiltonian-like formulation for field theory, where
the space and time coordinates are treated symmetrically. Hence, MG may give a profound
geometrical road to field quantization (see e.g. [47, 60]). The DW Hamiltonian formulation
of vielbein gravity based on the first order Palatini action is already found in some papers.
A constraints analysis of the Ashtekar theory based on the multisymplectic formalism is
found in the paper by Esposito et al. [23]. For a glimpse of the DW formulation of vierbein
gravity, see also Rovelli [94, 95]. The work of Bruno, Cianci, and Vignolo [5, 6] gives a
more detailed development at the crossroad of the natural bundles theory and the jet bundle
formalism. Finally, the papers of Kanatchikov [57, 58] focus on the problem of constraints
and precanonical quantization [61] of vielbein gravity in the DW formulation.

In this paper, we first outline in section 1 the basic ingredients needed for the subsequent
study such as the MG, Palatini formulation and the configuration space of vielbein gravity.
Then, in section 2, we present the DW Hamiltonian formulation of the first order Palatini
action of vielbein gravity. More precisely, in section 2.1 we describe the Legendre correspon-
dence in the DW setting. We define the constraint hypersurface C ⊂ MDW in section 2.3.
In section 2.4 we give the expression of the DW Hamiltonian density related to the Palatini
action i.e. HPalatini := ι⋆HDW, where ι is the canonical inclusion ι : C →֒ MDW. In section 2.5
we calculate its exterior derivative dHPalatini := ι⋆dHDW. Then, in section 2.6, we present a
brief comment on the primary constraints set and the extended DW Hamiltonian. Finally,
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2 Multisymplectic formulation of vielbein gravity

in section 2.7 we derive the DW Hamilton equations in three and four dimensional cases.
In section 3 we discuss the pre-multisymplectic formulation of vielbein gravity, i.e. we work
on the level set C◦ := (HDW)−1(0) ⊂ MDW. Thus, the pre-multisymplectic formulation of
dreibein and vierbein gravity is presented in sections 3.1 and 3.2, respectively. In section 4
we focus on the notion of Hamiltonian (n−1)-forms. In particular, we explore its relation to
homotopy Lie algebra and to the graded Poisson bracket in sections 4.1 and 4.2, respectively.
We also present some simple examples of Hamiltonian (n− 1)-forms in sections 4.3 and 4.4.
Finally, in section 4.5 we give succinct comments on canonically conjugate forms for vielbein
gravity.

1.1 Multisymplectic geometry

Let us recall that MG is a generalization of symplectic geometry to field theory. It allows
us to construct a general framework for the calculus of variations with several independent
variables. The origins of MG are connected with the names of Carathéodory [10], Weyl [108]
on one hand and De Donder [19, 20] on the other. We make this distinction since the moti-
vations involved were different. Carathéodory and Weyl were interested in the generalization
of the Hamilton-Jacobi equation to the case of several independent variables and the line of
development stemming from their work is concerned with the solutions of variational prob-
lems given by an action functional. On the other hand, Cartan [12] recognized the crucial
importance of developing an invariant language not dependent on local coordinates. De Don-
der carried this development further by exploring, in the context of field theory, the relation
between Hamilton equations and the theory of integral invariants. The DW system of Hamil-
tonian equations, as noted in [19, 47], has been discovered already by Volterra [105, 106] at
the end of the ninetieth century. Hence, the Hamilton-Volterra system of equations is today
termed the DW Hamilton equations with the reference to the work by De Donder [19, 20]
and Weyl [108]. As was first noted by Lepage [78, 79, 80], the DW theory is a special case of
a more general theory. The geometrical constructions permitting a fully general treatment
were provided by Dedecker [16, 17, 18]. Note also that the line of research focusing on the
related Lepagean equivalents was developed in particular by Krupka [70, 71, 72], Krupková
and Smetanová [73, 74, 75]. Finally, we refer to the review paper by Kastrup [62], the book
by Rund [96], Gotay [40, 42], and Olver [85, 86] for more details about the Lepagean equiva-
lents. The Legendre correspondence, i.e. the generalization of the Legendre transform in the
context of the Lepage-Dedecker theory, the description of observables and the construction
of the Poisson brackets are the cornerstones of the covariant Hamiltonian formalism for field
theories. For example, in the context of the Lepage-Dedecker theory, the papers by Hélein
and Kouneiher [50, 51] develop an insightful classification of observable forms in terms of
algebraic observable forms and observable forms.

A fruitful step in the development of MG and its relation to classical field theories was taken
in the seventies of the past century. In particular, the Polish school formulated important
ideas and developed the «multisymplectic», or «multiphase-space», formalism in the work of
Tulczyjew [100, 101], Kijowski [63, 64], Kijowski and Tulczyjew [67], Kijowski and Szczyrba
[65, 66], and Gawedski [34]. We find the notion of an observable form already in their work.
A formulation of the notion of a dynamical observable used in [50, 51] already emerges in the
work of Kijowski [63]. Parallel to this development, the paper by Goldschmidt and Sternberg
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[43], gave a formulation of the DW Hamilton equations in terms of the Poincaré-Cartan form
and the underlying jet bundles geometry, and a related approach was also developed by the
Spanish school: García [31, 32] and García and Pérez-Rendún [33].

In this paper, we use the multisymplectic formulation based on the DW «multimomentum
phase space». Let us consider a theory with a covariant configuration space given by a fiber
bundle (Y ,X , π), where π : Y−→X is the bundle projection. Let us denote by {xµ}1≤µ≤n local
coordinates on X the base space. The dimension of the space-time manifold is dim(X ) = n.
We denote also by {yi}1≤i≤k local coordinates on Yx, where Yx := π−1(x) is the fiber over
a point of the space-time manifold. The dimension of the fiber is dim(Yx) = k. Local
coordinates on the total space Y are denoted by (xµ, yi). We denote Λn1T

⋆Y the vector
subbundle of ΛnT ⋆Y whose fiber at y ∈ Y consists of all ϕϕϕ ∈ ΛnyT

⋆Y such that for any

vertical vector fields ζv, χv ∈ VY i.e. Λn1T
⋆Y =

{
ϕϕϕ ∈ ΛnyT

⋆Y / ζv χv ϕϕϕ = 0
}
. We

also denote Λn0T
⋆Y the space of horizontal n-forms on Y . Thus, we denote by MDW :=

MDW(Y) := Λn1T
⋆Y the DW multimomentum phase space. The bundle Λn1T

⋆Y → Y carries
a canonical structure θDW = κβ + pµi dy

i ∧ βµ and leads to the multisymplectic structure:
ωωωDW = dκ ∧ β + dpµi ∧ dyi ∧ βµ, with β = dx1 ∧ ... ∧ dxn a volume n-form on X and
βµ := ∂µ β is a (n− 1)-form.

To conclude this overview we mention examples of more recent papers in the field. We
refer to Binz, Sniatycki and Fischer [4], Günther [44], De León, Cariñena, Crampin, Ibort
[9, 11], Forger, Paufler and Römer [28, 29, 30], Gotay et al. [39, 40, 41, 42], Hélein [46, 47],
Hélein and Kouneiher [49, 50, 51], Kanatchikov [53, 54, 55, 56], and Sardanashvily et al.
[36, 37, 38, 97]. Most of the literature on the subject focuses on the contact structure and
jet bundles formalism. For a general presentation of multisymplectic, k-symplectic and k-
cosymplectic geometries, we refer to the review paper by Román-Roy [92] and the book by De
León, Salgado and Vilariño [21]. The multiplicity of formalisms is illustrated by the polysemy
of the term «polysymplectic», first introduced by Günther [44]. Thus, Günther’s polysym-
plectic (or k-symplectic, see [21]) formalism is different from the polysymplectic approaches
developed later by Kanatchikov [53] and Sardanashvily et al. [37], respectively. In the former,
the polysymplectic formulation is based on the polymomentum phase space i.e. the quotient
bundle MPoly

DW
(Y) = Λn1T

⋆Y/Λn0T ⋆Y . The polysymplectic structure on MPoly

DW
(Y) is described

as an equivalence class of canonical forms while the main object is ωωωv := dpµi ∧ dyi ∧ βµ,
the vertical part of the multisymplectic form ωωωDW. In the latter approach, the polymomen-
tum phase space is defined as MPoly(Y) = π⋆TX ⊗ V⋆(Y) ⊗ π⋆ΛnT ⋆X and the canonical
polysymplectic form is given by ωωωPoly = dpµi ∧ dyi ∧ β ⊗ ∂µ.

1.1.1 Poincaré́-Cartan n-form, multisymplectic (n+ 1)-form

In this section, we introduce the multimomentum phase space in MG, i.e. the bundle M :=
ΛnT ⋆Y of n-forms over the configuration space Y . This is a generalization of the phase
space, i.e. of the cotangent bundle introduced in symplectic geometry. We will follow the
terminology found in [47, 49, 50, 51].

Definition 1.1.1. A multisymplectic manifold
(
M,ωωω

)
is a manifold M together with ωωω, a

closed and non degenerate differential (n+ 1)-form on M.

In field theory we are led to think of solutions of variational problems as n-dimensional
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submanifolds Γ embedded in the multimomentum phase space. We introduce the notion of
a Hamiltonian n-curve, see [50, 51]:

Definition 1.1.2. Let H : M → R be a smooth Hamiltonian function (such that dH 6= 0).
A Hamiltonian n-curve is a n-dimensional oriented submanifold Γ ⊂ M such that

∀m ∈ Γ, ∃X ∈ ΛnTmΓ, X ωωωm = (−1)ndHm. (1)

A Hamiltonian n-curve is parametrized by a map x 7→ (q(x), p(x)) from the space-time
manifold X to the multimomentum phase space M. Actually, in definition 1.1.2, the gener-
alized Hamilton equations are written in geometric form as X ωωωm = (−1)ndHm.

The Poincaré-Cartan n-form θ on ΛnT ⋆Y is defined as

∀q ∈ Y , ∀p ∈ ΛnT ⋆q Y , θ(q,p)(X1, · · · , Xn) = p(Π⋆(X1), · · · ,Π⋆(Xn)), (2)

where Π : M := ΛnT ⋆Y Π−→ Y is the bundle projection on the configuration bundle and

Π⋆ := dΠ : TΛnT ⋆Y Π⋆−→ TY . Note that the dimension of a fiber at q ∈ Y is dim
(
ΛnT ⋆q Y

)
=

(n+ k)!/(n!k!), whereas the dimension of the total space of the fiber bundle is dim (ΛnT ⋆Y) =
n+ k + (n+ k)!/(n!k!).

Strictly speaking, the object defined by (2) is the most general Lepagean equivalent of
the Poincaré-Cartan form. Nevertheless, we term it the «Poincaré-Cartan» form, according
to the terminology found in [50, 51]. Let (qµµµ)1≤µµµ≤n+k be the local coordinates on Y , i.e.
qµµµ := (xµ, yi). Let the family (dqµµµ1 ∧ ... ∧ dqµµµn)1≤µµµ1<...µµµn<n+k be a basis of ΛnT ⋆q Y . We
denote by pµµµ1...µµµn the local coordinates of the Poincaré-Cartan form on ΛnT ⋆q Y in the basis
dqµµµ1 ∧ ... ∧ dqµµµn . In particular, we denote κ := p1···n, p

µ
i := p1···(µ−1)i(µ+1)···n, p

µ1µ2
i1i2

:=
p1···(µ1−1)i1(µ1+1)···(µ2−1)i2(µ2+1)···n, ... Finally, we use also the notations βµ1···µp := ∂µ1 ∧ · · · ∧
∂µp β, and β

i1···ip
µ1···µp := dyi1 ∧ · · · ∧ dyip ∧

(
∂µ1 ∧ · · · ∧ ∂µp β

)
. In local coordinates, the

Poincaré-Cartan n-form θ is written as

θ =
∑

1≤µµµ1<···<µµµn<n+k

pµµµ1···µµµn
dqµµµ1 ∧ · · · ∧ dqµµµn ,

= κβ +

n∑

j=1

∑

µ1<···<µj

∑

i1<···<ij

p
µ1···µj
i1···ij

β
i1···ij
µ1···µj .

(3)

The multisymplectic (n + 1)-form ωωω := dθ (called also the «pataplectic form» in [49]) is
the exterior derivative of the Poincaré-Cartan form. Traditionaly the term «multisymplectic
form» refers to Kijowski’s multisymplectic form [63, 64] i.e. in the DW formulation only.
Nonetheless, we will follow the terminology introduced in [50, 51]. In local coordinates, the
multisymplectic (n + 1)-form ωωω := dθ is written as

ωωω =
∑

1≤µµµ1<···<µµµn<n+k

dpµµµ1...µµµn ∧ dqµµµ1 ∧ · · · ∧ dqµµµn ,

= dκ ∧ β +
n∑

j=1

∑

µ1<···<µj

∑

i1<···<ij

dp
µ1···µj
i1···ij

∧ βi1···ijµ1···µj .
(4)
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1.1.2 Bundle of field derivatives

We now describe the Lagrangian side of the formulation of a variational problem on fields
ϕ : X → Y . The Lagrangian density L(q, v) = L(xµ, yi, viµ) = L(xµ, yi, ∂µy

i) is defined on the
bundle P of field derivatives. We associate to ϕ the bundle ϕ⋆TY ⊗ T ⋆X over X . A point
(x, v) ∈ ϕ⋆TY ⊗ T ⋆X is given by v =

∑

1≤µ≤n

∑

1≤i≤k v
i
µ
∂
∂yi

⊗ dxµ. On the bundle Pϕ :=

ϕ⋆TY ⊗ T ⋆X , which is included in the bundle P = {(x, y, v)/(x, y) ∈ Y , v ∈ TyY ⊗ T ⋆xX},
the local coordinates are (xµ, yi, viµ). Note that the dimension of the fiber is dim(P(x,y)) = nk,
whereas the dimension the bundle is dim (P) = n+k+nk. They can be equivalently thought
of as the local coordinates on the first order jet bundle J1(Y). We refer to Saunders [98] for
an introduction to the jet bundle formalism, and to Cariñena et al. [11], and Gotay et al.
[39] for the use of it in the multisymplectic context.

Using the variational principle we obtain for the action S[ϕ] =
∫

X
L(x, ϕ(x), dϕ(x))β the

related Euler-Lagrange

∂

∂xµ

(
∂L

∂viµ
(x, ϕ(x), dϕ(x))

)

=
∂L

∂yi
(x, ϕ(x), dϕ(x)). (5)

We denote by Λn
n
TY the normalized space of decomposable n-vector fields on Y : for any

z1, · · · , zn ∈ TqY , Λn
n
TY := {(q, z) ∈ ΛnTY/z = z1 ∧ ... ∧ zn and β(z1, ..., zn) = 1}. We

construct a diffeomorphism between Λn
n
TY and P. More precisely, for any (xµ, yi) ∈ Y the

fiber Λn
n
T(x,y)Y is identified with P(x,y) using the diffeomorphism

∑

µ

∑

i v
i
µ
∂
∂yi

⊗ dxµ 7→ z =

z1 ∧ ... ∧ zn, where for any 1 ≤ α ≤ n, zα = ∂
∂xα

+
∑

1≤i≤k v
i
α
∂
∂yi

, see [49].

1.1.3 DW Multimomentum manifold

The DW multimomentum manifold MDW is a submanifold of M := ΛnT ⋆Y . For any
(q, p) ∈ ΛnT ⋆Y we restrict ourselves to the case where the interior product ζv χv p = 0
is identically vanishing, where ζv, χv ∈ VY are any two vertical vector fields. Let us recall
that a vector field is vertical if any ξ ∈ TyY such that π⋆(ξ) := dπ(ξ) = 0, where π is the

bundle projection on the space-time manifold Y π−→ X . Then, by definition

MDW := Λn1T
⋆Y =

{
(q, p) ∈ ΛnT ⋆Y / ∀ζv, χv ∈ VY , ζv ∧ χv p = 0

}
. (6)

Let ι1 : MDW →֒ M be the canonical inclusion. Note that θDW := ι⋆1θ ∈ Γ(MDW,Λ
nT ⋆(MDW))

where θ ∈ Γ(M,ΛnT ⋆(M)). Since d
(
ι⋆1θ
)
= ι⋆1dθ = ι⋆1ωωω, we obtain ωωωDW = dθDW = ι⋆1ωωω. We

denote by θDW := θ|MDW
the restriction of θ to MDW. Working on MDW is equivalent to

setting p
µ1···µj
i1···ij

= 0 for all j > 1 in the expression of θ given in (3). In local coordinates, the

Poincaré-Cartan n-form is written as θDW = κβ+pµi dy
i∧βµ. Then, following the terminology

used by e.g. Kijowski [63, 64], Cantrijn, Ibort and León [9], and Hélein [47], we introduce
also the multisymplectic (n+ 1)-form

ωωωDW = dκ ∧ β +
∑

µ

∑

i

dpµi ∧ dyi ∧ βµ. (7)
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1.1.4 Hamilton equation in DW formulation

The DW Hamiltonian function H(xµ, yi, pµi ) = pµi v
i
µ − L(xµ, yi, viµ) is defined by intro-

ducing the Legendre transform (xµ, yi, viµ) 7→ (xµ, yi, pµi ), with the multimomenta pµi :=
∂L/∂viµ(x

µ, yi, viµ). If the Legendre transform is non singular, i.e. det(∂2L/∂viµ∂v
j
ν) 6= 0, the

Euler-Lagrange equations (5) are equivalent to the DW Hamilton equations:

∂ϕi

∂xµ
(x) =

∂H

∂pµi
(xµ, ϕi(x), pµi (x)),

∑

µ

∂pµi
∂xµ

(x) = −∂H
∂yi

(xµ, ϕi(x), pµi (x)), (8)

Following [49], we introduce the Legendre correspondence in the context of the most general
Lepagean theory by the function W : ΛnTY ×ΛnT ⋆Y → R, (q, v, p) 7→ 〈p, v〉−L(q, v), where

〈p, v〉 ∼= 〈p, z〉 = 〈p, z1∧, · · · ,∧zn〉 =
∑

µµµ1<···<µµµn

pµµµ1,··· ,µµµn
z
µµµ1
1 · · · zµµµn

n . (9)

We have denoted by zµµµα the coordinates of the vector fields zα =
∑

1≤µµµ≤n+k z
µµµ
α∂/∂q

µµµ ∈ TqY ,
which are used to construct the decomposable n-vector field z = z1 ∧ · · · ∧ zn ∈ Λn

n
TY ∈

Λn
n
TY ∼= P, see section 1.1.2. The Legendre correspondence is satisfied if and only if, for any

(q, v, w) ∈ Λn
n
TY × R, and for any (q, p) ∈ ΛnT ⋆Y , we have

〈p, v〉 − L(q, v) = w and
∂W

∂v
(q, v, p) = 0. (10)

When the Legendre hypothesis is satisfied, c.f. [49, 50, 51], we denote (q, v, w) ↔↔↔ (q, p).
To obtain the DW Hamilton equations, we restrict ourselves to the manifold MDW with
a Hamiltonian function H : MDW = Λn1T

⋆Y ⊂ ΛnT ⋆Y → R. Only when the Legendre
correspondence is non degenerate we have a unique correspondence (q, v)↔↔↔(q, p), i.e. for
any (q, p) ∈ MDW there exists a unique element (q, v) ∈ TY ⊗ T ⋆X such that (p, v)↔↔↔(q, p).
The DW Hamilton equations (or the generalized Hamilton equations, as termed in [49, 50])
are to be thought of as necessary and sufficient conditions on the map x 7→ (q(x), p(x)) :=
(xµ, ϕi(x),κ(x), pµi (x)) such that there exist fields x 7→ ϕ(x) for which:

• The Legendre condition is satisfied for any x ∈ X , (x, ϕ(x), dϕ(x))↔↔↔(q(x), p(x)).

• The fields x 7→ ϕ(x) are solutions of the Euler-Lagrange equations (5), which are related
to the Lagrangian density L(x, ϕ(x), dϕ(x)).

Note that we can always write H(q, p) = H(xµ, yi,κ, pµi ) = κ +H(xµ, yi, pµi ) = κ +H(q, p)
and then work on the level set H−1(0). The variable κ = p1···n is seen as the canonical variable
conjugate to the volume form β, see [50, 51]. If we fix H(q, p) = 0, then κ = −H(q, p). In
this case, the pre-multisymplectic (n+ 1)-form ωωω◦ := ωωωDW|H=0 is

ωωω◦ = dpµi ∧ dzi ∧ βµ − dH ∧ β, (11)

the exterior derivative of the Poincaré-Cartan n-form θPC := pµi dz
i ∧ βµ − Hβ, see Gotay

[40, 41, 42], the analogue of the Poincaré-Cartan form of mechanics in the multisymplectic
context.
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We denote by C◦ the level set H−1(0) =
{
(q, p) ∈ M = Λn1T

⋆ZZZ/H(q, p) = 0
}
. The triple

(C◦ := H−1(0),ωωω|C◦ , β|C◦) is a n-phase space, where β|C◦ is a nowhere vanishing volume n-
form, and ωωω|C◦ is a closed (n+1)-form, see Kijowski and Szczyrba [63, 64, 65, 66] and Hélein
[47]. We consider the n-dimensional submanifold Γ ⊂ MDW, i.e. the Hamiltonian n-curve
defined by Γ = {(xµ, yi, pµi ) / yi = ϕi(x) , pµi = ∂L/∂viµ(x

µ, ϕi(x), ∂µϕ
i(x))}. Then, on the

level set C◦ ⊂ MDW, the DW system is written in geometric form as

∀m ∈ Γ, ∀X ∈ ΛnTmΓ, X ωωω◦ = 0 and ∃X ∈ ΛnTmΓ, X βm 6= 0. (12)

We refer to section 3 for more details on the pre-multisymplectic scenario, where we reproduce
the DW Hamilton system of equations, which in turn is equivalent to the Einstein system.

1.2 First order Palatini formulation of vielbein gravity

Dynamics of General Relativity (GR) is described by the Einstein’s equations. They are
obtained from the Einstein-Hilbert action functional

SEH[gµν ] = κ

∫

X

LEH[gµν ]β = κ

∫

X

R
√
−gβ, (13)

where κ := (16πG)−1. The Einstein-Hilbert Lagrangian density is LEH[gµν ]. The functional
(13) depends on the metric gµν and its first and second derivatives. In this approach the metric
is the dynamical variable and it satisfies the Euler-Lagrange equations. The fundamental
objects: the Levi-Civita connection Γρµν and the curvature tensor Rρ

µνσ, are expressed via
the metric ant its derivatives. In such a framework, GR is described as a metric theory.
The variational principle is applied to the functional SEH[gµν ]. Variations with respect to the
metric gµν lead to the vacuum Einstein field equations

Gµν = Rµν − (1/2)gµνR = 0. (14)

Classical GR can be also formulated in terms of the vierbein eIµ, or vielbein in the n-
dimensional case, and the spin connection ωIJµ , see section 1.3 for details. The passage
from GR seen as a metric theory to the first order Palatini action of vielbein gravity is built,
as emphasized in [93], in two steps. The first step is the Palatini first order theory. We
consider the metric g and the connection Γ as independent variables. We write

SPalatini[g,Γ] = κ

∫

X

√−ggµνRµν [Γ]β, (15)

and we perform the variations of Γ and g independently. The variations with respect to the
connection coefficients set the connection Γ to be the Levi-Civita affine connection, while
variations with respect to the metric yield the Einstein vacuum equations (14). The second
step concerns the use of the vierbein (tetrad) field. The Einstein-Palatini first order theory
is given by the action

SPalatini[e, ω] =
κ

2

∫

ǫIJKLe
I ∧ eJ ∧ FKL, (16)

which uses of two independent dynamical fields: the co-frame field eI , or the solder form, and
the spin connection ωIJ . We refer to appendix A for details on the action functional (16).
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Using this formulation the Einstein’s equations (14) are equivalent to the Euler-Lagrange
system of equations

dωe
I = deI + ωIJ ∧ eJ = 0,

ǫIJKLe
J ∧ FKL = 0,

(17)

see [3, 45]. We call the action functional SPalatini[e, ω] given in (16) the first order Palatini
action of vielbein gravity.

1.3 Vielbein gravity: dynamical fields

As emphasized in many papers, e.g. [25, 45, 68, 69], the concept of orthonormal moving
frame, or vielbein, is distinct from the concept of the solder form. A moving frame eµ(x), or
repère mobile of Cartan [13, 14], is thought of as a section eµ(x) : X → L(X ) of the linear
frame bundle L(X ). In the same way, an orthonormal moving frame eI(x) is a section of

the Lorentz frame bundle LSO(1,3)(X ). We denote a local frame as {e(α)µ } defined on an open
subset U(α) ⊂ X , where the index (α) is related to a choice of trivialization. If the space-time
manifold is parallelizable, the local nature of the moving frame extends to a well-defined
global object. The vielbein field is written as eI = eµI (x)∂µ and is related to the metric by
the formula gµν = eIµe

J
νhIJ . Note that the dual object is e

I = eIµ(x)dx
µ. In the next section,

the solder form is given as a global section of the bundle V ⊗ T ⋆X over X , see the right side
of figure 1. The solder form is canonically represented by a family of local frames {e(α)µ } on
the space-time manifold and is termed alternatively the vielbein field or co-frame field. In
the subsequent section, we offer some basic remarks about the interplay between the concept
of vielbein, i.e a section of the orthonormal frame bundle, as opposed to the one of solder
form, or «forme de soudure» [22], and the related description of the co-frame field as a bundle
isomorphism.

1.3.1 Co-frame field: the solder form

In the first order Palatini formulation of vielbein gravity, space-time is represented by an
n-dimensional oriented manifold X which is not equipped with a metric a priori. The metric
is obtained via the pullback along the co-frame field, or solder form e : TX → V. Then, we
work in terms of the bundle isomorphism e : TX → V between the not necessarily trivial
tangent bundle TX → X and the vector bundle V → X , see figure 1-[1]. The isomorphism
e is equivalently seen as a section of the vector bundle V ⊗ T ⋆X → X such that for any
x ∈ X , ex is an isomorphism, see figure 1-[2]. Note that Vx is the internal space. The notion
of solder form was introduced by Ehresmann in [22], see also [68, 69]. As emphasized in
[3, 109], the name co-frame is related to the case the manifold is parallelizable, the tangent
bundle is trivial, and the bundle isomorphism e : TX → V = X × R

1,3 is equivalent to a
choice of trivialization. In this context, the solder form is identified locally, on any tangent
space TxX , with the co-frame ex : TxX → R

1,3.

1.3.2 The co-frame field: covariant exterior derivative

In this section, we consider the solder form e ∈ Ω1(X ,V) = Γ(V) ⊗ Ω1(X ) previously in-
troduced in section 1.3.1. Let eI be a frame on the vector space Vx := R

1,3, the Minkowski
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TX V

X
[1]

e //

$$I
II

II
I

zzuu
uu
uu
u

X

T ⋆X ⊗ V
[2]

��
e

;;

Figure 1. [1] The solder form the co-frame field as a bundle isomorphism. [2] Equivalently the

co-frame field is pictured as a global section of T ⋆X ⊗ V −→ X . Note that V does not need to be

trivial.

space. Let eµ be a moving co-frame, locally defined on Ω1(X ) (on an open subset U(α) ⊂ X ).
Locally, for x ∈ U(α), we write e = eIµe

µ ⊗ eI = eIe
I
µe

µ = eIe
I , i.e. e is decomposed with

respect to the basis eI⊗e
µ without any reference to space-time indices. We use the covariant

derivative D : Γ(V) −→ Ω1(X ,V) = Γ(V) ⊗ Ω1(X ). Let σ be a section of the vector bundle
V → X so that Dσ is a section 1-form, Dσ ∈ Γ(V) ⊗ Ωn(X ) = Ωn(X ,V). By means of the
covariant exterior derivative defined for any λ = (1/n!)λIµ1···µne

µ1 ∧ · · · ∧ e
µn ⊗ eI ∈ Ωn(X ,V)

by
dω : Ωn(X ,V) −→ Ωn+1(X ,V),

λ 7−→ dωλ.
(18)

We obtain the expression of dωe ∈ Γ(V)⊗ Ω2(X ), i.e.

dωe = dω
(
eIe

I
µ

)
∧ e

µ + eIe
I
µde

µ = (DeI)e
I
µ ∧ e

µ + eIde
I
µ ∧ e

µ + eIe
I
µde

µ,
= ωJνIeJe

νeIµ ∧ e
µ + eI∂νe

I
µe

µ ∧ e
ν + eIe

I
µde

µ,
(19)

where we have used in (19) the formula DeI = ωJνIeJe
ν as well as deIµ = ∂νe

I
µe
µ. We refer to

the section 1.3.4 for details on the connection ωIJµ . For a non integrable moving co-frame we

obtain deµ = −1/2cµρνe
ρ ∧ e

ν . Hence, in this case dωe = eJ
(
∂νe

J
µ + ωJνIe

I
µ − 1/2eJρ c

ρ
νµ

)
e
ν ∧ e

µ.
For an integrable moving co-frame e

µ = dxµ, we have deµ = 0, and we obtain

dωe = eJ
(
∂νe

J
µ + ωJνIe

I
µ

)
dxν ∧ dxµ ∈ Γ(V)⊗ Ω1(X ). (20)

Now we write the object dωe decomposed with respect to a basis of Γ(V) ⊗ Ω2(X ), i.e.
eI ⊗ e

µ ∧ e
ν . Hence dωe is written as dωe = (1/2) (dωe)

I
µν eI ⊗ e

µ ∧ e
ν . The covariant

exterior derivative dω and the gauge covariant derivative D are related by dωe = eIDeI ,
where DeI = deI + ωIJ ∧ eJ . Since ωIJ = ωIµJdx

µ and deI = d(eIµdx
µ) = deIµ ∧ dxµ we obtain

DeI =
(
∂µe

I
ν + ωIµJe

J
ν

)
dxµ ∧ dxν .

1.3.3 The Lorentz spin connection

Let (P,X , π, SO(1, 3)) be a principal fiber bundle with a gauge group SO(1, 3). We denote
by g the so(1, 3)-Lie algebra. Equivalently, P is thought to be the total space of the h-
orthonormal frame bundle over the space-time manifold. Here, h is the Minkowski metric. We
consider an Ehresmann connection on P i.e. a smooth distribution of horizontal subspaces,
see [22], along with an equivariance property. In a given trivialization we obtain from the
connection 1-form ωωω ∈ Ω1(P, g) on P the local connection form a 1-form ω ∈ Ω1(X , g) on
X . Note that the local connection form or gauge potential is the pull back of the connection
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form ωωω by a section σ(α) : Uα ⊂ X → P - and denoted as ω = (σ(α))⋆(ωωω) ∈ T ⋆X ⊗ g.
The local connection form is only described in the local trivialization σ(α) and therefore is
a notion that depends on the choice of trivialization. In the context of vierbein gravity, the
Lorentz spin connection is written as ω = ωµdx

µ = biω
i
µdx

µ = ωiµdx
µ ⊗ bi, where (b1, · · · , b6)

is a basis of g. Note that in the formulation of dreibein gravity, the basis of the so(1, 2)-
Lie algebra is denoted (b(1,2)1 , · · · , b(1,2)3 ). We induce a connection on associated bundles
P ×ρ V via a representation ρ of the SO(1, 3) group, see [68, 69]. The image ρ(ω) of the
gauge potential ω via the representation ρ gives the matrix connection ρ(ω) = ρ(biω

i
µdx

µ) =
ωiµρ(bi)dx

µ = ωiµ(ρ(bi))
I
Jdx

µ. We denote ρ(bi) := ∆i = (∆i)
I
J , where 0 ≤ I, J ≤ 3 are

Lorentz Lie algebra indices. Working in a given representation, we simply denote the matrix
elements by ωIJ = ωIµJdx

µ with ωIµJ = ωiµ(∆i)
I
J . Alternatively, in section 1.3.5 the Lorentz

spin connection is constructed on the vector bundle V.

1.3.4 Lorentz spin connection: curvature and covariant exterior derivative

The curvature Fωωω ∈ Ω2(P, g) of the connection ωωω ∈ Ω1(P, g) is written as Fωωω := dωωωωωω =
dωωω + (1/2)[[[ωωω,ωωω]]], where for any λλλ = (1/n!)λλλIµ1···µne

µ1 ∧ · · · ∧ e
µn ⊗ bI ∈ Ωn(P, g),

dωωω : Ωn(P, g) −→ Ωn+1(P, g),
λλλ 7−→ dωωωλλλ,

(21)

is the covariant exterior derivative relative to ωωω. The pullback by a section σ(α) gives the
local expression of the connection form ω = (σ(α))⋆(ωωω) ∈ T ⋆X ⊗ g and the curvature 2-form
Fωωω ∈ Ω2(P, g), i.e F ω = (σ(α))⋆Fωωω ∈ Ω2(X , g). The Lie algebra-valued 2-form on space-time
F ω
µν = Fµν is written as F = (1/2)F i

µνbi⊗ dxµ ∧ dxν . The curvature 2-form on the associated
bundle is ρ(F ) ∈ Ω2(X ,End(V)). In that case F = (1/2)Fµνdx

µ ∧ dxν , where Fµν = F i
µν∆i.

We denote F I
µνJ := F i

µν(∆i)
I
J . The curvature of the spin connection ωIJµ is written as [3, 93]

F IJ
µν [ω] = 2∂[µω

IJ
ν] + [ωµ, ων ]

IJ = ∂µω
IJ
ν − ∂νω

IJ
µ + ωIµKω

KJ
ν − ωIνKω

KJ
µ . (22)

Note that the covariant exterior derivative dωω = biDωi, or equivalently dωω = ∆IJDωIJ , is
given by means of the object

DωIJ = dωIJ + ωIK ∧ ωKJ + ωJK ∧ ωIK = dωIJ + ωIK ∧ ωKJ − ωJK ∧ ωKI, (23)

written in components (Dω)IJµν = 2∂[µω
IJ
ν] +2ω[µ

I
K
ωKJν] −2ω[µ

J
K
ωKIν] . The variation δF IJ

µν of the
curvature of the Lorentz spin connection is expressed via the covariant exterior derivative
δF IJ

µν = 2D[µδω
IJ
ν] , see e.g. [3, 93].

1.3.5 The pullbacks g = e⋆h and ∇ = e⋆D

If we have a metric h on V, then we obtain a metric on X by pullback g = e⋆h, where
∀x ∈ X , ∀ξ, ζ ∈ TxX : (e⋆h)x(ξ, ζ) = gx(ex(ξ), ex(ζ)). In this case, the vector space V is
equipped with a connection D, so that we obtain the connection ∇ = e⋆D on TX described
as follows: ∀ξ, σ ∈ Γ(X ) = TX , ∇ξσ = e⋆(Dξe(σ)), where D : Γ(X )×Γ(X ,V) −→ Γ(X ,V) :
(X, σ) 7→ DXσ. The set of 1-forms ωJI defined on an open subset U(α) ⊂ X by ωJI = ωJµIdx

µ
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gives, for any ξ ∈ X(U(α)), ξ
µωJµI = ωJI (ξ). Then Dξs = Dξ(σ

IeI) = dsI(ξ)eI + ωJI (ξ)σ
IeJ .

We have (Dµσ)
I = ∂µσ

I+ωIµJσ
J . Now, using the solder form we obtain a connection on TX .

Pulling back the connection on V via ∇ξσ = e⋆(Dξe(σ)), we get the covariant derivative’s
components:

(∇µξ)
ν = ∂µξ

ν + (eνI∂µe
I
ρ + eνIω

I
µJe

J
ρ )ξ

ρ. (24)

However, we have also (∇µξ)
ν = ∂µξ

ν + Γνµρξ
ρ. Therefore, Γνµρ = eνI∂µe

I
ρ + eνIω

I
µJe

J
ρ and we

reproduce the well known relation between the spin connection coefficients and the Christoffel
symbol Γρµν : ∂µe

I
ν + eKν ω

I
µK − Γρµνe

I
ρ = 0. We summarize the two pull-backs of interest:

h on V,g = e⋆h on TX

∇ = e⋆D on TX D on V,
∇ξσ = e⋆(Dξe(σ))

oo

gm(em(ξ), em(σ)) = (e⋆h)m(ξ, σ)oo

which are related to the metric and to the spin connection, respectively. The bundle isomor-
phism gives a correspondence between objects on the tangent bundle TX and the internal
bundle V. The curvature of the connection D is the 2-form F IJ = dωIJ +ωIK ∧ωKJ , written
in components as F IJ

µν = ωIJ[µ,ν] + ωI[µKω
KJ
ν] . The bundle isomorphism e maps the curvature of

D to that of ∇ with the relation Rρσ
µν = F IJ

µν e
ρ
Ie
σ
J . Finally, we recall the expressions of the

Ricci tensor Rµ
ν = F IJ

µσ e
σ
I e
ν
J and the scalar curvature R = Rµ

µ = eσI e
ρ
JF

IJ
σρ .

1.4 Configuration space

In section 1.4.1, we first briefly present two fully covariant formulations i.e. that does not rely
on any choice of trivialization of some principal bundle. Then, in section 1.4.2, we present
the less sophisticated configuration space that we will use in sections 2 - 4. The latter being
dependent of a given trivialization of the principal bundle (P,X , π, SO(1, 3)).

1.4.1 Fully covariant configuration space

We mention two formalisms to take into account the viewpoint of the geometry of the principal
bundle (P,X , π, SO(1, 3)). The first is related to the Gauge Natural Bundle approach, see
Nijenhuis [83], Eck [24], Kolář, Michor and Slovák [69], Fatibene and Francaviglia [25]. We
construct the gauge natural bundle Pρ :=

(
P ×X L(X )

)
×GL(n) associated to the SO(1, 3)-

principal bundle P, see [25, 81]. We denote by YGNB

purely-frame
:= Pρ the covariant configuration

space of the purely-frame gravitational theory. In the frame-affine framework, i.e. based
on the Palatini action of vielbein gravity, the covariant configuration space is YGNB

frame-affine
:=

Pρ ×YP , where YP is the space of connection of the principal SO(1, 3)-bundle. This fruitful
approach has been used in the context of gravity and Einstein-Cartan gravity by Fatibene
and Francaviglia [25, 26], and Matteucci [81]. Afterward, the gauge natural approach blends
with the multisymplectic viewpoint in the papers by Bruno, Cianci and Vignolo [5, 6]. We
refer also to [7, 8] for the similar treatment of the Yang-Mills fields. In this framework,
the gauge symmetry is obtained via some reduction of the geometry of connections on the
principal bundle.
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Another fully covariant multisymplectic formulation for the Yang-Mills fields is given by
Hélein [48]. We give a brief idea of the corresponding multimomentum phase space for vielbein
gravity, following this line of thought. Let p := iso(1, 3) = so(1, 3)⋉R

1,3 be the Poincaré Lie
algebra. We consider a p-valued connection 1-form ηηη ∈ Ω1(P, p) defined on the principal fiber
bundle (P,X , π, SO(1, 3)) which satisfies some normalization and equivariance conditions.
The covariant configuration space is Y cov := p⊗T ⋆P → P. The multimomentum phase space
is Mcov

DW
= Λm1 T

⋆(p⊗T ⋆P), the DW multisymplectic manifold fibered over p⊗T ⋆P. We refer
to [48] for more details on the dimension m = n + r, where n = dim(X ), and r = dim(p).

1.4.2 Trivialization dependent covariant configuration space

Any connection D on the internal bundle V can be written as D = D◦ + ω, where ω ∈
Ω1(X ,End(V)) is the matrix connection and D◦ : Γ(X ) ⊗ Γ(V) → Γ(V) is the standard flat
connection. Note that D◦

ζσ
(α) = ζ(σ(α)) = ζ((σα)I)eI is trivialization dependent. We restrict

ourselves, as suggested in [50], to this local approach which depends on a particular choice of
trivialization of the principal bundle (P,X , π, SO(1, 3)). The covariant configuration space
is the bundle Y := iso(1, 3)⊗ T ⋆X over X . Albeit non fully covariant from the viewpoint of
the geometry of gauge fields, we nevertheless use this approach in sections 2 - 4.

2 DW formulation of vielbein gravity

In this section we describe the DW Hamiltonian formulation of the first order Palatini action
of vielbein gravity. First, let us begin with the notations and the geometrical background
related to the covariant configuration space used in the paper.

2.1 Geometrical setting and notations

Two independent dynamical fields are e ∈ V ⊗T ⋆X and ω ∈ so(1, 3)⊗T ⋆X := g⊗T ⋆X . The
former is the solder form (or co-frame field), locally seen as a R

(1,3)-valued 1-form, whereas the
latter is the Lorentzian spin connection, a g-valued 1-form. Let Y = p⊗T ⋆X be the bundle of
p := iso(1, 3)-valued 1-forms over the space-time manifold X , i.e. the covariant configuration
space. A point in Y = p⊗T ⋆X is denoted as (x, ex, ωx), where x ∈ X , ex ∈ Ye

x := R
1,3⊗T ⋆xX

and ωx ∈ Yω
x := g ⊗ T ⋆xX . Let us consider the maps e : X → Ye = R

(1,3) ⊗ T ⋆X and

X
[1]

Ye = R
1,3 ⊗ T ⋆X
πe
X

��
e

BB

X
[2]

Yω = so(1, 3)⊗ T ⋆X
πω
X

��
ω

CC

X
[3]

Y = iso(1, 3)⊗ T ⋆X
πX

��
(e,ω)

CC

Figure 2. [1] The fiber bundle Ye := R
1,3⊗T ⋆X over X . [2] The fiber bundle Yω := so(1, 3)⊗T ⋆X

over X . [3] The covariant configuration space is the fiber bundle Y := p ⊗ T ⋆X = iso(1, 3) ⊗ T ⋆X
over the space-time manifold X .
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ω : X 7→ Yω = g⊗ T ⋆X written as

X → Ye = R
(1,3) ⊗ T ⋆X ,

x 7→ (x, e(x)) = (x, eIµ(x)dx
µ ⊗ eI),

and
X → Yω = g⊗ T ⋆X ,
x 7→ (x, ω(x)) = (x, ωIJµ (x)dxµ ⊗∆IJ).

These maps are equivalently thought of as sections of Ye and Yω (see figure 2-[1] and 2-[2],
respectively). We introduce also the map (e, ω) : X → Y , that is written as

X → Y = p⊗ T ⋆X ,
x 7→ (x, e(x), ω(x)) = (x, eIµ(x)dx

µ ⊗ eI , ωIJµ (x)dxµ ⊗∆IJ).
(25)

Any choice as (e(x), ω(x)) is equivalent to the data of an n-dimensional submanifold of the
fiber bundle Y and is equivalently thought of as a section σ(α) : U (α) ⊂ X → Y , where
σ : x 7→ σ(x) = (x, e(x), ω(x)), see figure 2-[3]. Finally, the set of local coordinates in the
covariant configuration bundle Y is equivalently denoted as (xµ, eIµ, ω

IJ
µ ).

2.2 The bundle P = TY ⊗Y T ⋆X
For any point x ∈ X the differential (de)x : TxX 7→ T(x,ex)Ye is seen as an element of
T ⋆xX ⊗ T(x,ex)(T

⋆X ⊗ V) canonically identified with T ⋆xX ⊗ T ⋆xX ⊗ V. Analogously, (dω)x :
TxX 7→ T(x,ωx)Yω is seen as an element of T ⋆xX ⊗ T(x,ωx)(T

⋆X ⊗ g) canonically identified with
T ⋆xX ⊗ T ⋆xX ⊗ g. Let us consider the bundles Pe := e⋆TYe ⊗ T ⋆X and Pω := ω⋆TYω ⊗ T ⋆X
over the space-time manifold X . These bundles enable us to describe the differentials de and
dω of the map e and ω as sections of the bundles Pe and Pω, respectively. In particular, the
points (x, ve) ∈ Pe and (x, vω) ∈ Pω are described by

ve =
∑

µ,ν

∑

I

vIµνdx
µ ⊗ dxν ⊗ eI , vω =

∑

µ,ν

∑

I<J

vIJµνdx
µ ⊗ dxν ⊗∆IJ , (26)

where vIµν := ∂µe
I
ν and vIJµν := ∂µω

IJ
ν , respectively. Local coordinates on Pe and Pω are

denoted by (xµ, vIµν) and (xµ, vIJµν), respectively. Using the map (25), we introduce the bundle

P(e,ω) := (e, ω)⋆TY ⊗ T ⋆X over X . Note that P(e,ω) ⊂ P := TY ⊗Y T
⋆X . This bundle is the

bundle over Y := p⊗ T ⋆X , such that the fiber over (x, ex, ωx) is T(x,ex,ωx)(p⊗ T ⋆X )⊗ T ⋆xX .
In terms of local coordinates:

P =
{
(xµ, eIµ, ω

I
µ, v

I
µν , v

IJ
µν) / (xµ, eIµ, ω

I
µ) ∈ Y , (vIµν , vIJµν ) ∈ T(x,ex,ωx)Y ⊗ T ⋆xX

}
. (27)

Subsequently, the covariant exterior derivatives dωe and dωω are described as sections of the
bundle P. Recall that

dωe = (1/2) (dωe)
I
µν dxµ ∧ dxν ⊗ eI = (1/2)

(
∂µe

I
ν + ωµ

I
J
eJν
)
dxµ ∧ dxν ⊗ eI ,

dωω = (1/2) (dωω)
IJ
µν dxµ ∧ dxν ⊗∆IJ = (1/2)

(
∂µω

IJ
ν + ωµ

I
K
ωKJν − ωµ

J
K
ωKIν

)
⊗∆IJ .

We now consider the fiber bundle of n-vector fields Λn
n
TY over Y . For any (x, ex, ωx) ∈

Y the fiber Λn
n
T(x,ex,ωx)(p ⊗ T ⋆X ) = Λn

n
T(x,ex,ωx)Y can be identified with P(x,ex,ωx) via the

diffeomorphism:

T(x,ex,ωx)(p⊗ T ⋆X )⊗ T ⋆xX → Λn
n
T(x,ex,ωx)(p⊗ T ⋆X ),

(
∑

µ,ν

∑

I

(dωe)
I

µν dxµ ⊗ dxν ⊗ eI ,
∑

µ,ν

∑

I<J

(dωω)
IJ

µν dxµ ⊗ dxν ⊗∆IJ) 7→ z = z1 ∧ ... ∧ zn,
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where for any 1 ≤ α ≤ n, zα =
∂

∂xα
+
∑

1≤β≤n

zIαβ
∂

∂eIβ
+
∑

1≤β≤n

zIJαβ
∂

∂ωIJβ
,

zIαβ := ∂αe
I
β + ωα

I
Je

J
β ,

zIJαβ := ∂αω
IJ
β + ωα

I
Kωβ

KJ − ωα
J
Kωβ

KI .
(28)

Now we consider the first order Palatini density LPalatini[e, ω] = κvol(e)eµI e
ν
JF

IJ
µν [ω], equiv-

alently written as LPalatini[e, ω]β = (κ/4)ǫIJKLǫ
µνρσeIµe

J
νF

KL
ρσ [ω]β (see appendix A for details).

We now set the constant κ := 1/2, so that

LPalatini[e, ω] = (1/8)ǫIJKLǫ
µνρσeIµe

J
ν

(
∂ρω

KL
σ − ∂σω

KL
ρ + ωKρMω

ML
σ − ωKσMω

ML
ρ

)
,

= (1/2)e (eµI e
ν
J − eνIe

µ
J) (∂µω

IJ
ν + ωIµKω

KJ
ν ),

= E
[µ
I e

ν]
J (∂µω

IJ
ν + ωIµKω

KJ
ν ),

(29)

where we used the identity E
[µ
I e

ν]
J := ee

[µ
I e

ν]
J = (1/4)ǫIJKLe

K
ρ e

L
σ ǫ
µνρσ, see appendix B.5. The

Lagrangian density L[e, ω] : P → R is thought of as a function defined on the bundle P, i.e.
the bundle over Y with the fiber over a point (x, ex, ωx) ∈ Y given by T(x,ex,ωx)Y ⊗Y T

⋆
xX .

Then, the set of local coordinates (xµ, eIµ, ω
IJ
µ , v

I
µν , v

IJ
µν) on P is equivalently described, using

the definitions (28), by the set (xµ, eIµ, ω
IJ
µ , z

I
µν , z

IJ
µν ) on Λn

n
TY . Alternatively, we can use the

set of coordinates on the first jet bundle J1(Y), see for example [5, 6, 23]. We summarize
these constructions in figure 3-[1].

YX [1]

P ∼ Λn
n
TY J1(Y)∼P(e,ω)

ΠP

��
ΠJ1(Y)

~~}}
}}
}}
}}
}}
}}
}

��

πX
oo

�

�

//

ΠP
X

xxqqq
qq
qq
qq
qq
qq
qq
qq
qq

(de,dω)

CC (e,ω,de,dω)
33

YX [2]

MDW := Λn1T
⋆Y

Π
��

πX
oo

ΠX
zzuu
uu
uu
uu
u

(e,ω,κ,pe,pω)

66

Figure 3. [1] The fiber bundles P(e,ω) = (e, ω)⋆TY ⊗X T ⋆X and P := TY ⊗Y T
⋆X , on which the

Lagrangian density is defined. The latter is identified with the bundle of decomposable n-vector

fields Λn
n
T (Y) on the covariant configuration space Y = p ⊗ T ⋆X . [2] The DW multimomentum

bundle MDW := Λn1T
⋆Y as a fiber bundle over Y.

2.3 DW multisymplectic manifold and Legendre correspondence

Now we describe the DW multisymplectic manifold for the Palatini action of vielbein gravity.
The multimomentum phase space is constructed on the covariant configuration space Y :=
p ⊗ T ⋆X , see the construction in figure 3-[2]. We present the notations used for the DW
submanifold MDW ⊂ M := ΛnT ⋆(p⊗T ⋆X ), as introduced in section 1.1.3. The DW manifold
is

MDW = {(x, e, ω, p)/x ∈ X , e ∈ R(1, 3)⊗ T ⋆xX ;ω ∈ g⊗ T ⋆xX , p ∈ Λn1T
⋆(p⊗ T ⋆X )} , (30)
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In the DW formulation we consider all the components of the Poincaré-Cartan form, see
(3), equal to zero except p1...n := κ, p1...(ν−1)(eIJµ )(ν+1)...n := p

eµν

IJ , and p1...(ν−1)(ωIJ
µ )(ν+1),...n :=

p
ωµν

IJ . Thus, we restrict ourselves to n-forms p ∈ ΛnT ⋆(x,ex,ωx)
Y such that ∂eIµ ∧ ∂eIν p, ∂ωIJ

µ
∧

∂ωIJ
ν

p, and ∂eIµ ∧ ∂ωIJ
ν

p are identically vanishing. Equivalently, the DW multisymplectic
manifold is specified as

MDW =
{
(x, e, ω,κβ + p

eµν

I deIµ ∧ βν + p
ωµν

IJ dωIJµ ∧ βν)/(x, e, ω) ∈ Y ,κ, peµνI , p
ωµν

IJ ∈ R
}
.

We consider the following Poincaré-Cartan θDW

(q,p) n-form, for any (q, p) ∈ MDW := Λn1T
⋆Y

θDW

(q,p) := κβ + p
eµν

I deIµ ∧ βν + p
ωµν

IJ dωIJµ ∧ βν . (31)

Now, we describe the Legendre correspondence for the DW formulation of the first order
Palatini Lagrangian LPalatini[e, ω] = E

[ρσ]
IJ

(
∂ρω

IJ
σ + ωIρMω

MJ
σ

)
, where we denote E

[ρσ]
IJ := E

[ρ
I e

σ]
J ,

see appendix B.5. The Legendre correspondence (q, v)↔↔↔ (q, p) for the formulation of vielbein
gravity is given by

P ∼ Λn
n
T (p⊗ T ⋆X ) = TY ⊗Y T

⋆X ↔↔↔ MDW := Λn1T
⋆(p⊗ T ⋆X ) = Λn1T

⋆Y ,
(q, v) ∼ (xµ, eIµ, ω

IJ
µ , z

I
µν , z

IJ
µν ) ↔↔↔ (q, p) = (xµ, eIµ, ω

IJ
µ ,κ, p

eµν

I , p
ωµν

IJ ). (32)

In particular, the construction of the Legendre correspondence involves the relation

(q, v)↔↔↔(q, p) ⇐⇒ ∂〈p, v〉
∂v

=
∂L(q, v)

∂v
, (33)

between (q, v) and (q, p), where we denote 〈p, v〉 := θDW

(q,p)(Z) and Z ∈ Λn
n
TY . We consider a

decomposable multivector field Z = Z1 ∧ Z2 ∧ Z3 ∧ Z4 ∈ Λ4
n
TY , where for any 1 ≤ µ ≤ 4:

Zµ =
∂

∂xµ
+ ZI

µν

∂

∂eIν
+ ZIJ

µν

∂

∂ωIJν
,

=
∂

∂xµ
+
(
∂µe

I
ν + ωµ

I
J
eJν
) ∂

∂eIν
+
(
∂µω

IJ
ν + ωµ

I
K
ων

KJ − ωµ
J
K
ων

KI
) ∂

∂ωIJν
.

(34)

Let us note that the multivector field Z is written as

Z =
∑

µµµ1<···<µµµ4

Zµµµ1···µµµ4
1···4

∂

∂qµµµ1
∧ · · · ∧ ∂

∂qµµµ4
:=

∑

µµµ1<···<µµµ4

∣
∣
∣
∣
∣
∣
∣

Zµµµ1
1 · · · Zµµµ1

4
...

...
Zµµµ4

1 · · · Zµµµ4
4

∣
∣
∣
∣
∣
∣
∣

∂

∂qµµµ1
∧ · · · ∧ ∂

∂qµµµ4
.

Now, for any (q, p) ∈ Λn1T
⋆Y and Z ∈ Λn

n
TY , we make the straightforward calculation

〈p, v〉 = θDW

p (Z) = κβ(Z) + p
eµν

I deIµ ∧ βν(Z) + p
ωµν

IJ dωIJµ ∧ βν(Z),
= κ + p

eµν

I ZI
νµ + p

ωµν

IJ ZIJ
νµ .

(35)

Let us compute the two parts involved in the Legendre correspondence. We calculate the
partial derivatives with respect to the field derivatives ∂νe

I
µ and ∂νω

IJ
µ

∂〈p, v〉
∂(∂νωIJµ )

= p
ωµν

IJ ,

∂〈p, v〉
∂(∂νeIµ)

= p
eµν

I ,

∂LPalatini[e, ω]

∂(∂µωIJν )
=

∂

∂(∂µωIJν )

(

eeµI e
ν
J (∂[µω

IJ
ν] + ωI[µKω

KJ
ν] )
)

= E
[µ
I e

ν]
J ,

∂LPalatini[e, ω]

∂(∂µeIν)
=

∂

∂(∂µeIν)

(

eeµI e
ν
J(∂[µω

IJ
ν] + ωI[µKω

KJ
ν] )
)

= 0.
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Therefore, the Legendre correspondence yields

p
ωµν

IJ = −E[µ
I e

ν]
J = −(1/4)ǫIJKLǫ

µνρσeKρ e
L
σ , p

eµν

I = 0, (36)

for the multimomenta related to ωIJµ and eIµ, respectively. Then, the Legendre correspondence
yields pωνµ

IJ + p
ωµν

IJ = 0 and p
eµν

I = 0. It is an example of the set of Dirac primary constraints
in the DW multisymplectic formalism. Therefore, we shall be restricted to the submanifold
C ⊂ MDW for taking into account the primary constraints:

C ⊂ MDW = {(x, e, ω, p) ∈ MDW / p
ωµν

IJ = −E[µ
I e

ν]
J , p

eµν

I = 0}. (37)

The Legendre transformation is degenerate since we cannot express arbitrary field derivative
via multimomenta. Let us note that the multimomenta p

ωµν

IJ := p
ωµν

IJ (x, e) are functions of
the vierbein.

2.4 DW Hamiltonian of the Palatini action

Now we present the DW Hamiltonian function of the Palatini action of vielbein gravity. The
Legendre correspondence is generated by the function W DW(q, v, p) := 〈p, v〉 − L(q, v), i.e.

W DW(q, v, p) = = κ + p
eµν

I ZI
νµ + p

ωµν

IJ ZIJ
νµ − E

[µ
I e

ν]
J

(
∂µω

IJ
ν + ωIµKω

KJ
ν

)
,

= κ + p
eµν

I ZI
νµ + p

ωµν

IJ

(
∂νω

IJ
µ + ων

I
Kωµ

KJ − ων
J
Kωµ

KI
)
,

−E[ν
I e

µ]
J

(
∂νω

IJ
µ + ωIνKω

KJ
µ

)
.

Let us work on C ⊂ MDW. We introduce the Hamiltonian function H : MDW → R defined
by H = 〈p, ν(q, p)〉 − L(q, p, ν(q, p)), where ν(q, p) is such that (q, ν(q, p)) ↔↔↔ (q, p). For any
v ∈ T(x,ex,ωx)Y ⊗ T ⋆xX the equation (33) has a solution p ∈ MDW if and only if p ∈ C with

C = {(x, e, ω,κβ − ee
[µ
I e

ν]
J dωIJµ ∧ βν) / (x, e, ω) ∈ Y = p⊗ T ⋆X , κ ∈ R}.

The use of the constraint (36), i.e. p
eµν

I = 0 and p
ωµν

IJ = −ee[µI e
ν]
J , leads to the expression of the

Hamiltonian function restricted to the hypersurface of constraints C. Thus, HPalatini(q, p) :=
ι⋆HDW(q, p) is written as

HPalatini(q, p) = κ + p
ωµν

IJ

(
∂νω

IJ
µ + ων

I
Kωµ

KJ − ων
J
Kωµ

KI
)
− p

ωµν

IJ

(
∂νω

IJ
µ + ωIνKω

KJ
µ

)
,

= κ − p
ωµν

IJ ων
J
Kωµ

KI = κ − ee
[µ
I e

ν]
J ωµ

J
K
ων

KI .

The Hamiltonian function HPalatini(q, p) : C → R is equivalently written as HPalatini(q, p) = κ +
HPalatini(q, p), where HPalatini(e, ω) := ι⋆HDW(q, p) is the DW Hamiltonian [57, 58] evaluated on
the constraint hypersurface C. In section 3, we explore the n-phase space approach, we fix κ =
eeµI e

ν
Jω

J
[µKω

KI
ν] . Note that we can always choose κ(x) such that H(x, e(x), ω(x),κ(x), p(x))

is constant, see [50, 51].

2.5 Exterior derivative of the DW Hamiltonian

In this section we derive the exterior derivative of the DW Hamiltonian function for the
formulation of dreibein and vierbein gravity. First, let us consider the case of dreibein
gravity. We denote the exterior derivative by dHPalatini

3D
. We have

dHPalatini

3D
(q, p) = dκ − E

[µ
I e

ν]
J d
(
ωJµKω

KI
ν

)
− d

(

E
[µ
I e

ν]
J

)

ωJµKω
KI
ν . (38)
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When the dimension of the space-time manifold is n = 3, we have the algebraic relation
−E[µ

I e
ν]
J = −ee[µI e

ν]
J = −(1/2)ǫµνρǫIJKe

K
ρ . Then the second term in (38) takes the form

−E[µ
I e

ν]
J d
(
ωJµKω

KI
ν

)
= −(1/2)ǫµνρǫIJKe

K
ρ

(
ωJµKdωKIν + d(ωJMµ hMK)ω

KI
ν

)
,

= −ǫIJMǫµνλeMλ ωJνKdωKIµ = −ǫIJKǫµνρeKρ ωJνMdωMI
µ ,

where we have used the algebraic relation

ǫµρσǫIJKe
I
µωσ

J
MdωMK

ρ = −1/2ǫµρσǫLJKe
I
µωσ

L
Idω

JK
ρ = 1/2ǫµνρǫLJIe

K
ρ ων

L
KdωIJµ . (39)

This relation is used also to decompose the interior product XC ωωωPalatini in the basis 1-forms
dωIJµ . Also, since d(eeµI e

ν
J ) = d(ǫIJMǫ

µνλeMλ ) = ǫIJMǫ
µνλdeMλ , the third term in (38) is written

as (1/2)ǫIJMǫ
µνλωJµKω

KI
ν deMλ . Now, we obtain the expression for the 1-form dHPalatini

3D
(q, p),

namely

dHPalatini

3D
(q, p) = dκ + (1/2)ǫIJMǫ

µνλωJµKω
KI
ν deMλ + (1/2)ǫµνρǫLJIe

K
ρ ων

L
KdωIJµ . (40)

When n = 4, E
[µν]
IJ = (1/4)ǫIJKLe

K
ρ e

L
σ ǫ
µνρσ, therefore d

(
E

[µν]
IJ

)
= (1/2)ǫIJKLǫ

µνρσeKρ deLσ .
Thus, we have

dHPalatini

4D
= dκ − d

(
E

[µ
I e

ν]
J

)
(ωJµKω

KI
ν )− E

[µ
I e

ν]
J d
(
ωJµKω

KI
ν

)
,

= dκ − (1/2)ǫIJKLǫ
µνρσeKρ ω

J
µMω

MI
ν deLσ ,

+(1/2)ǫIJKLǫ
µνρσeKρ e

L
σω

J
νMdωMI

µ .

(41)

Using the algebraic relation

ǫµνρσǫIJKLe
I
µe
J
νωσ

K
MdωML

ρ = −ǫµνρσǫINKLeIµeJνωσNJdωKLρ , (42)

see [5, 6], the last term in (41) is equivalently written as

ǫIJKLǫ
µνρσeKρ e

L
σω

J
νMdωMI

µ = −ǫIJKLǫµνρσeIµeJνωKσMdωML
ρ = ǫµνρσǫINKLe

I
µe
J
νωσ

N
Jdω

KL
ρ ,

= −ǫµνρσǫIJKNeKρ eLνωσNLdωIJµ = −ǫµνρσǫIJKLeKρ eNν ωσLNdωIJµ .

Therefore, the exterior derivative of the DW Hamiltonian function related to the Palatini
action of vierbein gravity is given by

dHPalatini

4D
(q, p) = dκ− (1/2)ǫIJKLǫ

µνρσeKρ ω
J
µMω

MI
ν deLσ +(1/2)ǫIJKLǫ

µνρσeKρ e
N
ν ωσ

L
NdωIJµ . (43)

2.6 Primary constraints and the extended Hamiltonian

The set of primary constraints that weakly vanish on the constraint hypersurface, following
the terminology of Dirac, are p

eµν

I ≈ 0 and p
ωµν

IJ ≈ −ee[µI e
ν]
J . An extension of the traditional

method developed by Dirac in the DW formulation involves the construction of an extended
Hamiltonian,

HExt = κ − ee
[µ
I e

ν]
J ωµ

J
K
ων

KI + λIνµp
eµν

I + λIJνµ
(
p
ωµν

IJ + ee
[µ
I e

ν]
J

)
.
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The extended DW Hamiltonian is HExt = HPalatini + λIνµp
eµν

I + λIJνµ
(
p
ωµν

IJ + ee
[µ
I e

ν]
J

)
. Here, λIνµ

and λIJνµ are Lagrange multipliers. We postulate, since there is no reason to assume they are
valid a priori, the DW Hamilton equations

∂ωIJµ
∂xν

(x) =
∂HExt

∂p
ωµν

IJ

(x, e, ω,κ, p),

∂eIµ
∂xν

(x) =
∂HExt

∂p
ωµν

IJ

(x, e, ω,κ, p),

∑

ν

∂p
ωµν

IJ

∂xν
(x) = −∂H

Ext

∂ωIJµ
(x, e, ω,κ, p),

∑

ν

∂p
eµν

I

∂xν
(x) = −∂H

Ext

∂eIµ
(x, e, ω,κ, p),

(44)

In the context of the polysymplectic formalism [53], the extended DW Hamiltonian function

is written as HExt = HPalatini+λIνµp
eµν

I +λIJνµ
(
p
ωµν

IJ +ee
[µ
I e

ν]
J

)
. Then, the system of DW Hamilton

equation is given as

∂νω
IJ
µ (x) = λIJνµ,

∂νe
I
µ(x) = λIνµ,

∂νp
ωµν

IJ (x) = −(∂HExt/∂ωIJµ )(x, e, ω, p),
∂νp

eµν

I (x) = −(∂HExt/∂eIµ)(x, e, ω, p).
(45)

For a detailed analysis of constraints within the polysymplectic approach to the DW Hamil-
tonian formalism, we refer to [57, 58]. Note that our conventions here differ from those of
Kanatchikov: the polymomenta have opposite sign.

2.7 DW Hamilton equations on (C,ωωωPalatini)

The canonical DW multisymplectic (n+ 1)-form ωωωDW = dθDW previously introduced in (7) is
written as ωωωDW = dκ∧β+dp

ωµν

IJ ∧dωIJµ ∧βν . Let us introduce the (n+1)-formωωωPalatini := ι⋆ωωωDW,
where ι : C →֒ MDW is the canonical inclusion. In local coordinates,

ωωωPalatini = dκ ∧ β − d
(

ee
[µ
I e

ν]
J

)

∧ dωIJµ ∧ βν . (46)

Using (46) we can now describe the Einstein equations in the DW Hamilton formulation,
where the DW Hamilton equations in geometric form are written as

X ωωωPalatini = (−1)ndHPalatini. (47)

Let ΞDW ∈ Γ(MDW, TMDW) be a vector field on MDW and XDW ∈ Γ(MDW,Λ
nTMDW) be a

n-vector field on MDW. Then, we construct on the constraint hypersurface C the vector field
ΞC := πππ⋆Ξ

DW ∈ Γ(C, TC) and the n-vector field XC := πππ⋆Ξ
DW ∈ Γ(C,ΛnTC), respectively. We

have denoted by πππ the canonical projection πππ : MDW → C such that πππ ◦ ι = IdC .

Note that, because of the primary constraints, there is no reason a priori that the set of
DW Hamilton equations is in a one-to-one correspondence with the Euler-Lagrange system
of equations. Nevertheless, working on C →֒ MDW, the DW Hamilton equations in geometric
form (47) reproduces the Einstein system. The DW Hamilton equations XC (ι⋆ωωωDW) =
(−1)nd(ι⋆HDW) are presented for dreibein and vierbein gravity in section 2.7.1 and 2.7.2,
respectively.
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2.7.1 DW Hamilton equations of dreibein gravity

First, we consider the DW Hamilton equations for the Palatini action of dreibein gravity.
Let XC = XC

1 ∧XC
2 ∧XC

3 ∈ Λ3TC be a decomposable 3-vector field, where for any 1 ≤ ν ≤ 3,

XC
ν =

∂

∂xν
+ΘI

νµ

∂

∂eIµ
+ΘIJ

νµ

∂

∂ωIµ
+Υν

∂

∂κ
. (48)

First, we re-express ωωωPalatini as follows:

ωωωPalatini = dκ ∧ β − d
(
E

[µ
I e

ν]
J

)
∧ dωIJµ ∧ βν = dκ ∧ β − (1/2)ǫIJMǫ

µνλdeMλ ∧ dωIJµ ∧ βν .

The left hand side of (47) is given by the interior product XC ωωωPalatini. Then,

XC ωωωPalatini = −(1/2)ǫIJLǫ
µνα
(
(dωIJµ ∧ βν)(X)deLα − (deLα ∧ βν)(X)dωIJµ

)
,

−(1/2)ǫIJLǫ
µνα
(
(deLα ∧ dωIJµ ∧ βρν)(X)dxρ

)
,

= dκ − (dκ ∧ βρ)(X)dxρ − (1/2)ǫIJLǫ
µνα(deLα ∧ dωIJµ ∧ βρν)(X)dxρ,

−(1/2)ǫIJLǫ
µνα(dωIJµ ∧ βν)(X)deLα + (1/2)ǫIJLǫ

µνα(deLα ∧ βν)(X)dωIJµ .

Finally, the expression becomes

XC ωωωPalatini = dκ −Υρdx
ρ − (1/2)ǫIJLǫ

µνα
(
ΘIJ
νµΘ

L
ρα −ΘIJ

ρµΘ
L
να

)
dxρ,

−(1/2)ǫIJLǫ
µναΘIJ

νµde
L
α + (1/2)ǫIJLǫ

µναΘL
ναdω

IJ
µ .

(49)

which is equal to the right hand side of (47)

dHPalatini

3D
(q, p) = dκ + (1/2)ǫIJMǫ

µνλωJµKω
KI
ν deMλ + (1/2)ǫµνρǫLJIe

K
ρ ων

L
KdωIJµ . (50)

The equality between (49) and (50) leads to the DW Hamilton system of equations

ǫIJLǫ
µνα
(
ΘIJ
νµ + ωJµKω

KI
ν

)
= 0,

ǫIJLǫ
µνα
(
ΘL
να + eKα ων

L
K

)
= 0,

−ǫIJLǫµνα
(
ΘIJ
νµΘ

L
ρα −ΘIJ

ρµΘ
L
να

)
= Υρ.

(51)

The system (51) is the DW Hamilton equations associated to the first order Palatini action
of dreibein gravity and is written as

ǫIJKF
JK = 0, ǫIJKdωe

K = 0, (52)

with the additional equation Υρ = ∂ρκ = −ǫIJLǫµνα
(
ΘIJ
νµΘ

L
ρα −ΘIJ

ρµΘ
L
να

)
.

2.7.2 DW Hamilton equations of vierbein gravity

Now, we are interested in the DW Hamilton equations for the Palatini action of vierbein
gravity. We consider the 5-form

ωωωPalatini = dκ∧β−d(ee
[µ
I e

ν]
J )∧dωIJµ ∧βν = dκ ∧β− (1/2)ǫIJKLǫ

µνρσeKρ deLσ ∧dωIJµ ∧βν . (53)

Let us consider a multivector field XC = XC
1 ∧XC

2 ∧XC
3 ∧XC

4 ∈ Λ4TC, where for any 1 ≤ ν ≤ 4,

XC
ν =

∂

∂xν
+ΘI

νµ

∂

∂eIµ
+ΘIJ

νµ

∂

∂ωIµ
+Υν

∂

∂κ
. (54)
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Then

XC ωωωPalatini = X (dκ ∧ β)− (1/2)ǫIJKLǫ
µνρσeKρ X (deLσ ∧ dωIJµ ∧ βν),

= β(X)dκ − (dκ ∧ βρ)(X)dxρ,
−(1/2)ǫIJKLǫ

µνρσeKρ
(
(dωIJµ ∧ βν)(X)deLσ − (deLσ ∧ βν)(X)dωIJµ

)
,

−(1/2)ǫIJKLǫ
µνρσeKρ

(
(deLσ ∧ dωIJµ ∧ βλν)(X)dxλ

)
.

Since, (dωIJµ ∧ βν)(X) = ΘIJ
νµ, (de

L
σ ∧ βν)(X) = ΘI

νµ and (deLσ ∧ dωIJµ ∧ βλν)(X) = (ΘIJ
νµΘ

L
λσ −

ΘIJ
λµΘ

L
νσ), the left hand side of (47) is written as

XC ωωωPalatini = dκ−Υρdx
ρ−(1/2)ǫIJKLǫ

µνρσeKρ
(
ΘIJ
νµde

L
σ−ΘL

νσdω
IJ
µ +(ΘIJ

νµΘ
L
λσ−ΘIJ

λµΘ
L
νσ)dx

λ
)
.

The DW Hamilton equations (47) are obtained by equalizing the interior product XC ωωωPalatini

with the expression of dHPalatini

4D
(q, p) found in (43). We obtain

−ǫIJKLǫµνρσeKρ ΘIJ
νµ = −ǫIJKLǫµνρσeKρ ωJµMωMI

ν ,
ǫIJKLǫ

µνρσeKρ Θ
L
νσ = ǫIJKLǫ

µνρσeKρ e
N
ν ωσ

L
N ,

−Υλ − (1/2)ǫIJKLǫ
µνρσeKρ

(
ΘIJ
νµΘ

L
λσ −ΘIJ

λµΘ
L
νσ

)
= 0.

(55)

Therefore, we obtain the DW Hamilton system of equations

ǫIJKLǫ
µνρσeKρ

(
ΘIJ
µν + ωIµMω

MJ
ν

)
= 0,

ǫIJKLǫ
µνρσeKρ

(
ΘL
νσ + ωLνNe

N
σ

)
= 0,

−Υλ − (1/2)ǫIJKLǫ
µνρσeKρ

(
ΘIJ
νµΘ

L
λσ −ΘIJ

λµΘ
L
νσ

)
= 0.

(56)

We reproduce the results obtained by Bruno, Cianci and Vignolo [5, 6]. The equations of
motion (56) are equivalent to the Einstein’s equations (17) written as

ǫIJKLe
J ∧ FKL = 0, ǫIJKLe

I ∧ dωe
J = 0, (57)

with the additional equation ∂ρκ := −(1/2)ǫIJKLǫ
µνρσeKρ

(
ΘIJ
νµΘ

L
λσ −ΘIJ

λµΘ
L
νσ

)
.

3 n-phase space formulation of vielbein gravity

In this section we concentrate on the study of the pre-multisymplectic space defined by the
constraint HPalatini(q, p) = κ−ee[µI e

ν]
J (ω

J
µKω

KI
ν ) = 0. This formulation is related to the n-phase

space framework introduced by Kijowski and Szczyrba [63, 64, 65, 66] and further developed
by Hélein [47]. Let us begin with some definitions, see [47]:

Definition 3.0.1. A n-multimomentum phase space (or simply an n-phase space) is a triple
(M,ωωω, β), where M is a smooth manifold, ωωω is a closed (n+1)-form and β is an everywhere
non-vanishing n-form.

Definition 3.0.2. A pre-multisymplectic manifold is a pair
(
M,ωωω

)
, where M is a smooth

manifold M and ωωω is a closed (n+ 1)-form on M.
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In the DW n-phase space formulation we express the dynamical structure on the level set
of H i.e. by means of the constraint H = 0. We can canonically construct a n-phase space
(C◦,ωωω|C◦ , β = Ξ ωωω|C◦), where C◦ := H−1(0) := {(q, p) ∈ M/ H(q, p) = 0} and Ξ is a vector
field such that dH(Ξ) = 1. The dynamical equations in the pre-multisymplectic formulation,
already presented in geometrical form (12), are equivalently written as

∀Ξ ∈ C∞(MMM, TmM), (Ξ ωωω)
∣
∣
Γ
= 0 and β|Γ 6= 0, (58)

see [46, 47]. We denote by C◦ the hypersuface of constraints contained in the level set C◦,
i.e. we have the inclusion of spaces C◦ ⊂ C◦ →֒ MDW. Using the primary constraints, the
hypersurface of constraints is now

C◦ := {(x, e, ω, p) ∈ MDW / κ = ee
[µ
I e

ν]
J (ω

J
µKω

KI
ν ), p

ωµν

IJ = −E
[µ
I e

ν]
J , p

eµν

I = 0}. (59)

Now we give the pre-multisymplectic formulation of dreibein and vierbein gravity. Note that
we introduce the canonical inclusion ι◦ : C◦→֒MDW and the projection πππ◦ : MDW → C◦. Then,
we consider n-vector fields XC◦ ∈ Γ(C◦,ΛnC◦) obtained by the push-forward XC◦ = (πππ◦)⋆X

DW.

3.1 Pre-Multisymplectic formulation of dreibein gravity

In this section, we consider the first order Palatini functional of dreibein gravity SPalatini[e, ω] =∫
ǫIJKe

I ∧ F JK , where F JK = dωJK + ωJL ∧ ωLK is the curvature 2-form.

3.1.1 Canonical forms

Since eI = eIµdx
µ and ωJK = ωJKµ dxµ, we obtain the following expression for the Poincaré-

Cartan 3-form, identified with the Palatini action 3-form itself i.e. ǫIJKe
I ∧ F JK:

θ◦ = ǫIJKǫ
µρσ
(
eIµdω

JK
σ ∧ βρ + eIµωρ

J
L
ωLKσ β

)
. (60)

We demonstrate (60) by direct calculation θ◦ = ǫIJKe
I
µdx

µ∧dωJKσ ∧dxσ+ǫIJKe
I
µωρ

J
L
ωLKσ dxµ∧

dxρ ∧ dxσ. The Poincaré-Cartan 3-form is written as θ◦ = θ◦1 + θ◦2 , where

θ◦1 = ǫIJKe
I
µωρ

J
L
ωLKσ dxµ ∧ dxρ ∧ dxσ, θ◦2 = ǫIJKe

I
µdx

µ ∧ dωJKσ ∧ dxσ. (61)

We re-express the terms θ◦1 and θ◦2 using the following lemma.

Lemma 3.1. The terms θ◦1 and θ◦2 are given by

θ◦1 = ǫIJKǫ
µρσeIµωρ

J
L
ωLKσ β,

θ◦2 = −ǫIJKǫµρσeIµdωJKρ ∧ βσ.
(62)

Proof. The formula for θ◦2 is straightforward. Since β1 = dx2 ∧ dx3, β2 = −dx1 ∧ dx3, and
β3 = dx1 ∧ dx2 we find ǫIJKǫ

µρσeIµdω
JK
ρ ∧ βσ = −ǫIJKeIµdxµ ∧ dωJKσ ∧ dxσ = −θ◦2 . Now we

focus on the first term θ◦1 . Using β = dx1 ∧ dx2 ∧ dx3 = (1/3!)ǫαβγdx
α ∧ dxβ ∧ dxγ , we have

ǫIJKǫ
µρσeIµωρ

J
L
ωLKσ β = ǫIJKǫ

µρσeIµωρ
J
L
ωLKσ β,

= (1/3!)ǫIJKǫ
µρσǫαβγe

I
µωρ

J
L
ωLKσ dxα ∧ dxβ ∧ dxγ .
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Using the formula ǫµρσǫαβγ = 3!δ
[µ
α δ

ρ
βδ

σ]
γ = (3!/3)

(

δµαδ
[ρ
β δ

σ]
γ − δραδ

[µ
β δ

σ]
γ + δσαδ

[µ
β δ

ρ]
γ

)

, see ap-

pendix B, we obtain

ǫIJKǫ
µρσeIµωρ

J
L
ωLKσ β = ǫIJKe

I
µωρ

J
L
ωLKσ dxµ ∧ dxρ ∧ dxσ.

Note that ǫµρσβ = (1/3!)ǫµρσǫαβγdx
α ∧ dxβ ∧ dxγ = dxµ ∧ dxρ ∧ dxσ. Using lemma 3.1, the

Poincaré-Cartan 3-form (60) is written as θ◦ = ǫIJKǫ
µρσ
(
eIµdω

JK
σ ∧ βρ + eIµωρ

J
L
ωLKσ β

)
. We

are now interested in the exterior derivative dθ◦. The exterior derivative is decomposed in
two terms dθ◦ = dθ◦1 + dθ◦2 , where

dθ◦1 = ǫIJKǫ
µρσωρ

J
L
ωLKσ deIµ ∧ β + ǫIJKǫ

µρσeIµ
(
dωρ

J
L
ωLKσ + ωρ

J
L
dωLKσ

)
∧ β,

dθ◦2 = ǫIJKǫ
µρσdeIµ ∧ dωJKσ ∧ βρ.

(63)

Note that the exterior derivative dθ◦1 is given as

dθ◦1 = d(ǫIJKǫ
µρσeIµωρ

J
L
ωLKσ β) = ǫIJKǫ

µρσd(eIµωρ
J
L
ωLKσ ) ∧ β,

= ǫIJKǫ
µρσωρ

J
L
ωLKσ deIµ ∧ β + ǫIJKǫ

µρσeIµ(dωρ
J
L
ωLKσ + ωρ

J
L
dωLKσ ) ∧ β. (64)

where we have used d(eIµωρ
J
L
ωLKσ ) = d(eIµ)ωρ

J
L
ωLKσ + eIµd(ωρ

J
L
)ωLKσ + eIµωρ

J
L
d(ωLKσ ).

Using (63), the multisymplectic 4-form ωωω◦ = dθ◦ = dθ◦1 + dθ◦2 is now written as

ωωω◦ = ǫIJKǫ
µρσdeIµ ∧ dωJKσ ∧ βρ + ǫIJKǫ

µρσ(ωρ
J
L
ωLKσ )deIµ ∧ β,

−ǫLJKǫµρσ(eIµωσLI)dωJKρ ∧ β. (65)

3.1.2 DW Hamilton equations

In the pre-multisymplectic formulation, we work on the level set C◦ := H−1(0). The sub-
manifold of interest is the constraint hypersurface C◦ ⊂ C◦. The DW Hamilton equations are
written in geometric form as XC◦ ωωω◦|Γ = 0. We evaluate the interior product of the vector
field XC◦ with the terms dθ◦1 and dθ◦2 , respectively. First, we find the term

XC◦ dθ◦1 = XC◦
(
ǫIJKǫ

µρσωρ
J
L
ωLKσ deIµ ∧ β − ǫLJKǫ

µρσeIµωρ
L
I
dωJKσ ∧ β

)
,

= ǫIJKǫ
µρσωρ

J
L
ωLKσ

(
β(X)deIµ − (deIµ ∧ βλ)(X)dxλ

)
,

−ǫIJKǫµρσ
(
eLµωρ

I
L
β(X)dωJKσ − (dωJKσ ∧ βλ)(X)dxλ

)
,

(66)

where we have used β(X) = 1. Then, we find the other term

XC◦ dθ◦2 = XC◦
(
ǫIJKǫ

µρσdeIµ ∧ dωJKσ ∧ βρ
)
,

= ǫIJKǫ
µρσ
((

dωJKσ ∧ βρ
)
(X)deIµ −

(
deIµ ∧ βρ

)
(X)dωJKσ

)
,

+ǫIJKǫ
µρσ
(
deIµ ∧ dωJKσ ∧ βλρ

)
(X)dxλ

)
.

(67)

Now, using the equations (67) and (66),

XC◦ ωωω◦ = ǫIJKǫ
µρσ
((

ΘJK
ρσ + ωρ

J
L
ωLKσ

)
deIµ −

(
ΘI
ρµ + eLµωρ

I
L

)
dωJKσ

)
+Υλdx

λ
)

,

with Υλ = eLµωρ
I
L
ΘJK
λσ − ωρ

J
L
ωLKσ ΘI

λµ +
(
ΘJK
λσ Θ

I
ρµ − ΘJK

ρσ ΘI
λµ

)
. Then, the DW Hamilton

equations in the pre-multisymplectic formulation (i.e. X ωωω◦|Γ = 0) are given by

ǫIJKǫ
µρσ
(
ΘJK
ρσ + ωρ

J
L
ωLKσ

)
= 0,

ǫIJKǫ
µρσ
(
ΘI
ρµ + eLµωρ

I
L

)
= 0,

ǫIJKǫ
µρσΥλ = 0,

(68)
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Remarks: (1) Note that if the first two conditions in (68) are satisfied, then the last one is
automatically verified.

ǫIJKǫ
µρσΥλ = ǫIJKǫ

µρσeLµωρ
I
L
ΘJK
λσ − ǫIJKǫ

µρσωρ
J
L
ωLKσ ΘI

λµ +
(
ΘJK
λσ Θ

I
ρµ −ΘJK

ρσ ΘI
λµ

)
,

= −ΘI
ρµΘ

JK
λσ +ΘJK

ρσ ΘI
λµ +

(
ΘJK
λσ Θ

I
ρµ −ΘJK

ρσ ΘI
λµ

)
= 0.

(2) The system (68) reproduces the Einstein’s equations and is equivalently written as the
following two equations: ǫIJKF

JK and ǫIJKdωe
I = 0.

Proof Note that ǫρσµβµ = dxρ ∧ dxσ, where βµ 6= 0. We straightforwardly obtain

ǫIJKF
JK = ǫIJK

(
∂[ρω

JK
σ] + ωJ[ρLω

LK
σ]

)
dxρ ∧ dxσ = ǫIJKǫ

µρσ
(
ΘJK
σρ + ωJρ Lω

LK
σ

)
βµ,

ǫIJKdωe
K = ǫIJK

(
∂[ρe

K
σ] + ωK[ρ Le

L
σ]

)
dxρ ∧ dxσ = ǫIJKǫ

ρµσ
(
ΘK
µρ + ωKρ L

eLµ
)
βσ.

3.2 Pre-multisymplectic formulation of vierbein gravity

In this section we are interested in the pre-multisymplectic formulation of vierbein gravity.
Here we will reproduce some results found in Bruno et al. [5, 6] and Rovelli [94, 95].

Let us consider the action functional SPalatini[e, ω] = (1/2)
∫
ǫIJKLe

I ∧ eJ ∧ FKL, where
FKL = dωKL + ωKM ∧ ωML.

3.2.1 Canonical forms

Since eI := eIµdx
µ and ωKL := ωKLµ dxµ, we obtain the following expression for the Poincaré-

Cartan 4-form θ◦ = (1/2)
(
ǫIJKLǫ

µνρσeIµe
J
νdω

KL
ρ ∧ βσ + ǫIJKLǫ

µνρσeIµe
J
νωσ

K
Mω

ML
ρ β

)
. By di-

rect calculation

θ◦ = (1/2)ǫIJKLe
I
µdx

µ ∧ eJνdxν ∧ (d(ωKLρ dxρ) + ωρ
K
M

dxρ ∧ ωML
σ dxσ),

= (1/2)ǫIJKLe
I
µe
J
νdx

µ ∧ dxν ∧ dωKLσ ∧ dxσ,
+(1/2)ǫIJKLe

I
µe
J
νωρ

K
M
ωML
σ dxµ ∧ dxν ∧ dxρ ∧ dxσ.

(69)

The Poincaré-Cartan form is written as θ◦ = θ◦1 + θ◦2 , where

θ◦1 = (1/2)ǫIJKLe
I
µe
J
νdx

µ ∧ dxν ∧ dωJKσ ∧ dxσ,
θ◦2 = (1/2)ǫIJKLe

I
µe
J
νωρ

K
M
ωML
σ dxµ ∧ dxν ∧ dxρ ∧ dxσ.

(70)

Since ǫµνρσβσ = (1!(4− 1)!/3!) δ[µα δ
ν
βδ

ρ]
γ dxα ∧ dxβ ∧ dxγ , we obtain ǫµνρσβσ = dxµ ∧ dxν ∧ dxρ.

Then, dxµ ∧ dxν ∧ dωKLσ ∧ dxσ = ǫµνρσdωKLρ ∧ βσ. Hence,

ǫIJKLe
I
µe
J
νdx

µ ∧ dxν ∧ dωJKσ ∧ dxσ = (1/2)ǫIJKLǫ
µνρσeIµe

J
νdω

KL
ρ ∧ βσ = θ◦1 . (71)

Note that the volume form β = dx1∧dx2∧dx3∧dx4 is equivalently written β = (1/4!)ǫαβγδdx
α∧

dxβ ∧ dxγ ∧ dxδ, then the second term in (69) is written as

ǫIJKLǫ
µνρσeIµe

J
νωσ

K
Mω

ML
ρ β = (1/2)ǫIJKLe

I
µe
J
νωρ

K
M
ωML
σ dxµ ∧ dxν ∧ dxρ ∧ dxσ = θ◦2

where we have used the formula (113) for the expression ǫµνρσǫαβγδ.
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Let us compute the pre-multisymplectic 5-form ωωω◦ = dθ◦:

ωωω◦ = ǫIJKLǫ
µνρσeIµ

(
deJν ∧ dωKLρ ∧ βσ + ωKσMω

ML
ρ deJν ∧ β

)
,

+(1/2)ǫIJKLǫ
µνρσeIµe

J
νω

ML
ρ d

(
ωKσM

)
∧ β + (1/2)ǫIJKLǫ

µνρσeIµe
J
νωσ

K
Md
(
ωML
ρ

)
∧ β,

= ǫIJKLǫ
µνρσeIµ

(
deJν ∧ dωKLρ ∧ βσ + ωKσMω

ML
ρ deJν ∧ β

)
,

+ǫIJKLǫ
µνρσeIµe

J
νωσ

K
MdωML

ρ ∧ β.

Using the algebraic relation ǫµνρσǫIJKLe
I
µe
J
νωσ

K
MdωML

ρ = −ǫµνρσǫINKLeIµeJνωσNJdωKLρ , the
pre-multisymplectic 5-form is written as

ωωω◦ = ǫIJKLǫ
µνρσeIµde

J
ν ∧ dωKLρ ∧ βσ + ǫIJKLǫ

µνρσeIµωσ
K
Mω

ML
ρ deJν ∧ β,

−ǫµνρσǫINKLeIµeJνωσNJdωKLρ ∧ β. (72)

3.2.2 DW Hamilton equations

In the pre-multisymplectic setting we work with the constraint H = 0. The dynamics is
expressed on the level set C◦ := H−1(0) and the DW Hamilton equations are written as

XC◦ ωωω◦
∣
∣
Γ
= 0. (73)

We now evaluate, for vierbein gravity, the interior product of the multivector field XC◦ ∈
Λ4TC◦, with the three terms in (72). We choose a 4-vector XC◦ = XC◦

1 ∧XC◦
2 ∧ XC◦

3 ∧ XC◦
4 ,

where for any 1 ≤ α ≤ 4, the vector field Xα ∈ X1(C◦) is

XC◦
α =

∂

∂xα
+ΘI

αµ

∂

∂eIµ
+ΘIJ

αµ

∂

∂ωIµ
.

The left side of (73) is written as

XC◦ ωωω◦ = −ǫµνρσǫINKLeIµeJνωσNJdωKLρ ∧ β − ǫIJKLǫ
µνρσeIµ(de

J
ν ∧ βσ)(X),

−ǫINKLǫµνρσeIµeJνωσNJ
(
(β)(X)dωKLρ + (dωKLρ ∧ βλ)(X)dxλ

)
,

+ǫIJKLǫ
µνρσeIµ

(
(deJν ∧ dωKLρ ∧ βλσ)(X)dxλ

)
,

= ǫIJKLǫ
µνρσeIµ

(
(ΘKL

σρ + ωσ
K
Mω

ML
ρ )deJν − (eIµe

N
ν ωσ

J
N +ΘI

σν)dω
KL
ρ +Υλdx

λ
)
,

where Υλ = eNν ωρ
J
N
ΘKL
λσ −ωσKMωML

ρ ΘJ
λν+

(
ΘKL
λσ ΘJ

ρν−ΘKL
ρσ ΘJ

λν

)
. In the pre-multisymplectic

setting we find the DW Hamilton equations for the Palatini action

ǫIJKLǫ
µνρσeIµ

(
ΘKL
σρ + ωσ

K
Mω

ML
ρ

)
= 0,

ǫIJKLǫ
µνρσeIµ

(
ΘJ
σν + eNν ωσ

J
N

)
= 0,

ǫIJKLǫ
µνρσΥλ = 0.

(74)

Analogously to the dreibein case, see the end of the section 3.1.2, we obtain the Einstein’s
system of equations in term of differential forms. We have, see also (57), ǫIJKLe

I ∧ dωe
J = 0

and ǫIJKLe
I ∧ eJ ∧ FKL = 0, together with the equation ǫIJKLǫ

µνρσΥλ = 0.



I. De Donder-Weyl formulation, Hamiltonian (n− 1)-forms 25

4 Hamiltonian (n− 1)-forms and brackets

4.1 Hamiltonian (n− 1)-forms, homotopy Lie algebra

We begin this section with the definition of Hamiltonian (n − 1)-forms and their related
Hamiltonian vector fields, c.f. Cariñena, Crampin and Ibort [11], Kanatchikov [53, 54, 55],
Forger et al. [28, 29, 30], Hélein and Kouneiher [49, 50, 51].

Definition 4.1.1. Let (M,ωωω) be a multisymplectic manifold. An (n− 1)-form ϕϕϕ is called a
Hamiltonian (n− 1)-form if and only if there exists Ξϕϕϕ ∈ X(M) such that Ξϕϕϕ ωωω + dϕϕϕ = 0.

We denote by Ωn−1
Ham

(M) the set of all Hamiltonian (n−1)-forms. For any ϕϕϕ,ρρρ ∈ Ωn−1
Ham

(M),
let us define the bracket

{
ϕϕϕ,ρρρ

}
:= Ξϕϕϕ ∧ Ξρρρ ωωω = Ξϕϕϕ dρρρ = −Ξρρρ dϕϕϕ, (75)

where {ϕϕϕ,ρρρ} ∈ Ωn−1
Ham

(M). For any form ηηη ∈ Ω∗(M) and any decomposable multivector field
Ξ := Ξ1∧ · · ·∧Ξn ∈ Xn(M), we have Ξ ηηη = (Ξ1∧ · · ·∧Ξn) ηηη := Ξn · · · Ξ1 ηηη. This
definition is the natural analogue of the Poisson bracket in classical mechanics. The bracket
defined in 4.1.1 satisfies the antisymmetry property: {ϕϕϕ,ρρρ

}
+
{
ρρρ,ϕϕϕ} = 0, but the Jacobi

condition is only satisfied modulo an exact term, see [49, 90]. For any ϕϕϕ,ρρρ,ηηη ∈ Pn−1
◦ (M)

{{ρρρ,ηηη},ϕϕϕ}+ {{ηηη,ϕϕϕ}, ρρρ}+ {{ϕϕϕ,ρρρ}, ηηη} = d(Ξϕϕϕ ∧ Ξρρρ ∧ Ξηηη ωωω). (76)

Using the Cartan formula, i.e. LΞωωω = d(Ξ ωωω)+Ξ dωωω = 0, we define a locally Hamiltonian
vector field of (M,ωωω) to be a vector field Ξ ∈ Γ(M, TM), such that LΞωωω = 0 (since dωωω = 0).
We are looking for vector fields Ξ ∈ Γ(M, TM), such that d(Ξ ωωω) = 0. We denote by
X1

Ham
(M) the set of locally Hamiltonian vector fields of the multisymplectic manifold (M,ωωω),

i.e.

X1
Ham

(M) = {Ξ ∈ Γ(M, TM) / d(Ξ ωωω) = 0} = {Ξ ∈ Γ(M, TM) / LΞωωω = 0} . (77)

Although antisymmetric, the bracket (75) nevertheless fails to respect the Jacobi property
which is necessary to obtain a strict Lie algebraic structure. Thus,

(
Ωn−1

Ham
(M),

{
·, ·
})

is not a
Lie algebra. The fact that this bracket satisfies the Jacobi identity only up to an exact form
was already noted by Goldschmidt and Sternberg in [43]. This co-cycle obstruction reveals
the connection with homotopy Lie algebra, see [76, 77]. We refer to the paper by Baez and al.
[1, 2], where the Lie 2-algebra is used to describe the dynamics of the classical bosonic string.
More generally, the relation between MG and L∞-algebra is found in Rogers [90, 91], Richter
[88, 89], and Vitagliano [104], where a L∞-algebra is a chain complex equipped with an
antisymmetric bracket operation that satisfies the Jacobi identity up to coherent homotopy
[1, 91].

4.2 Hamiltonian forms, graded Poisson bracket

In Kanatchikov’s approach [53, 54, 55, 56] the polysymplectic form ωωωV = dpµi ∧dyi∧βµ is used
to construct the graded Poisson bracket on forms of arbitrary degrees. Let ϕϕϕ ∈ ΩpHam(M),
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ρρρ ∈ ΩqHam(M) and ηηη ∈ Ωr
Ham

(M) (where 0 ≤ p, q, r ≤ n− 1) be Hamiltonian forms, as defined
in [53], of degrees deg(ϕϕϕ) := p, deg(ρρρ) := q, and deg(ηηη) := r, respectively. The graded Poisson
bracket on Hamiltonian (p− 1)-forms of arbitrary degrees is

{ pϕϕϕ, qρρρ} = (−1)n−pΞϕϕϕ Ξρρρ ωωωV = (−1)n−pΞϕϕϕ dV
q
ρρρ, (78)

where dV is the vertical exterior derivative and the respective Hamiltonian multivector fields
related to ϕϕϕ and ρρρ are Ξϕϕϕ ∈ Xn−p

Ham (M),Ξρρρ ∈ Xn−q
Ham (M). The graded Poisson bracket (78) is

graded antisymmetric, i.e.

{ pϕϕϕ, qρρρ} = −(−1)(n−p−1)(n−q−1)
{q
ρρρ,

p
ϕϕϕ
}
, (79)

and satisfies the graded Jacobi identity

(−1)dϕϕϕdηηη{ pϕϕϕ{qρρρ, rηηη}}+ (−1)dρρρdϕϕϕ{pρρρ{qηηη, qϕϕϕ}}+ (−1)dηηηdρρρ{pηηη{ qϕϕϕ, rρρρ}} = 0, (80)

where we have denoted by dϕϕϕ := n − deg(ϕϕϕ) − 1, dηηη := n − deg(ηηη) − 1, and dρρρ := n −
deg(ρρρ) − 1. Note that deg(ηηη) denote the degree of the Hamiltonian form ηηη. The Poisson
bracket of Hamiltonian forms is obtained using the Schouten-Nijenhuis bracket [[[, ]]] of the
related Hamiltonian multivector fields −d{ϕϕϕ,ρρρ} = [[[Ξϕϕϕ,Ξρρρ]]] ωωωV. The Schouten-Nijenhuis
bracket, see [83, 84, 99], i.e. a bilinear map [[[, ]]] : X∗

Ham
(M) × X∗

Ham
(M) → X∗

Ham
(M), that

obeys the graded antisymmetric property and the graded Leibniz rule

[[[Ξ1,Ξ2]]] = −(−1)(deg(Ξ1)−1)(deg(Ξ2)−1)[[[Ξ2,Ξ2]]],

[[[Ξ1,Ξ2 ∧ Ξ3]]] = [[[Ξ1,Ξ2]]] ∧ Ξ3 + (−1)(deg(Ξ1)−1)deg(Ξ2)Ξ2 ∧ [[[Ξ1,Ξ3]]],
(81)

as well as the graded Jacobi identity

0 = (−1)d1d3[[[Ξ1, [[[Ξ2,Ξ3]]]]]] + (−1)d2d3[[[Ξ3, [[[Ξ1,Ξ2]]]]]] + (−1)d1d2[[[Ξ2, [[[Ξ3,Ξ1]]]]]], (82)

where di := deg(Ξi) − 1 and deg(Ξi) denote the degrees of the respective multivector fields.
On vector fields, the Schouten-Nijenhuis bracket reduces to the standard Lie bracket. How-

ever, the exterior product of two Hamiltonian forms
p
ϕϕϕ ∧ q

ρρρ is not Hamiltonian in general.
Kanatchikov introduces the co-exterior product • of horizontal forms ϕϕϕ • ρρρ = ⋆−1(⋆ϕϕϕ ∧ ⋆ρρρ),
see [55]. The space of Hamiltonian forms is closed with respect to the co-exterior product.
Thus, APoly

DW
= {Ω∗

Ham
(MPoly

DW
), {, }, •} is a Gerstenhaber algebra [35]. As an illustration of the

use of the higher dimensional algebraic structures in field theory we refer to the example
of the classical string. The DW Hamiltonian formulation of Nambu-Goto string, using the
polysymplectic formalism and the Poisson-Gerstenhaber algebra [56], is given by Kanatchikov
in [53, 54].

In section 4.3 and 4.4 we will consider Hamiltonian (n− 1)-forms ϕϕϕ = ϕϕϕµβµ ∈ Ωn−1
Ham

(M).
In that case, the graded Poisson structure reduces to a Poisson structure. For any ϕϕϕ,ρρρ ∈
Ωn−1(MPoly

DW
), the bracket is defined as {ϕϕϕ,ρρρ} := −Ξϕϕϕ Ξρρρ ωωωV = (−1)n−rΞϕϕϕ dVρρρ, where

Ξϕϕϕ,Ξρρρ ∈ X1
Ham

(M). The Poisson bracket has the antisymmetry property {ϕϕϕ,ρρρ}+ {ρρρ,ϕϕϕ} = 0
and it satisfies the Jacobi identity {ϕϕϕ{ρρρ,ηηη}}+ {ρρρ{ηηη,ϕϕϕ}}+ {ηηη{ϕϕϕ,ρρρ}} = 0.
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4.3 Hamiltonian (n− 1)-forms

In this section we consider Hamiltonian (n − 1)-forms and their related Hamiltonian vec-
tor fields on the DW manifold MDW. We will work with the multisymplectic manifold
(MDW,ωωω

DW) = (MDW, ι
⋆
1ωωω) and with the pair (C, ι⋆ΩDW), respectively.

First, we use the results of Hélein and Kouneiher [51], see, in particular, section 5.2, page
771. We consider the general formula which describes the Hamiltonian vector fields and their
related Hamiltonian (n−1)-forms. In the terminology by Hélein and Kouneiher those objects
are termed «algebraic observable (n − 1)-forms» and «infinitesimal symplectomorphisms»,
respectively (see [51]). This formulation corresponds to the algebraic structure described in
section 4.1.

Let Ξ ∈ Γ(MDW, TMDW) be an arbitrary vector field on MDW written as

Ξ :=XXXν ∂

∂xν
+ΘΘΘM

λ

∂

∂eMλ
+ΘΘΘIJ

µ

∂

∂ωIJµ
+ΥΥΥ

∂

∂κ
+ΥΥΥ

eµν

I

∂

∂p
eµν

I

+ΥΥΥ
ωµν

IJ

∂

∂p
ωµν

IJ

, (83)

such that d(Ξ ΩDW) = 0. Note that XXXν ,ΘΘΘM
λ ,ΘΘΘ

IJ
µ ,ΥΥΥ,ΥΥΥ

eµν

I and ΥΥΥ
ωµν

IJ are smooth functions
on MDW. The set of all infinitesimal symplectomorphisms, i.e. locally Hamiltonian vector
fields, of (MDW,Ω

DW) is described by vector fields Ξ = Ξ(Q) + Ξ(P), where

Ξ(Q) = Υ
∂

∂κ
+Υ

eµα

I

∂

∂p
eµα

I

+Υ
ωµα

IJ

∂

∂p
ωµα

IJ

, with
∂Υ

∂ωIJµ
− ∂Υ

eµν

I

∂xν
− ∂Υ

ωµν

IJ

∂xν
= 0,

Ξ(P) = Xν ∂

∂xν
+ΘM

λ

∂

∂eMλ
+ΘIJ

µ

∂

∂ωIJµ
−
(

κ(
∂Xν

∂xν
) +

∂ΘIJ
µ

∂xν
p
ωµν

IJ +
∂ΘI

µ

∂xν
p
eµν

I

)

∂

∂κ
,

+

(

p
eρσ

K δµρ

(

δKI
[
(
∂Xν

∂xσ
)− δνσ(

∂Xλ

∂xλ
)
]
− (

∂ΘK
σ

∂ωIν
)

)

− κ(
∂Xν

∂eIµ
)

)
∂

∂p
eµν

I

,

+

(

p
ωρσ

KL δ
µ
ρ

(

δKI δ
L
J

[
(
∂Xν

∂xσ
)− δνσ(

∂Xλ

∂xλ
)
]
− (

∂ΘKL
σ

∂ωIJν
)

)

− κ(
∂Xν

∂ωIJµ
)

)
∂

∂p
ωµν

IJ

,

and Xν ,ΘM
λ ,Θ

IJ
µ ,Υ,Υ

eµν

I and Υ
ωµν

IJ are smooth functions on Y . We hope to present elsewhere
[102] a detailed analysis of all algebraic observable (n − 1)-forms, i.e. of all Hamiltonian
(n− 1)-forms as defined in section 4.1, in the DW formulation of vielbein gravity.

We now restrict ourselves to simple examples of Hamiltonian (n−1)-forms in Ωn−1
Ham

(MDW).
Let us consider the (n− 1)-forms Qe,χ = QI

e,χ ⊗ eI , Qω,ψ = QIJ
ω,ψ ⊗∆IJ , P

ω,ϕ
IJ = P

ω,ϕ
IJ ⊗∆IJ ,

and P
e,ζ
I = P

e,ζ
I ⊗ eI , where

Qe,χ = χµνI (x)eIµβν ,
Qω,ψ = ψµνIJ (x)ω

IJ
µ βν ,

Pe,ζ = ζIµ(x)p
eµν

I βµ,
Pω,ϕ = ϕIJµ (x)p

ωµν

IJ βν .
(84)

If we evaluate those different (n − 1)-forms on the hypersurface of constraints C defined in
section 2.3, we obtain

Qe,χ

∣
∣
C

= ι⋆Qω,ψ = χµνI (x)eIµβν = Qe,χ

Qω,ψ

∣
∣
C

= ι⋆Qω,ψ = ψµνIJ (x)ω
IJ
µ βν = Qω,ψ,

Pe,ζ

∣
∣
C

= ι⋆Pe,ζ = 0,

Pω,ϕ

∣
∣
C

= ι⋆Pω,ϕ = −(1/4)ϕµ(x)ǫIJKLǫ
µνρσeKρ e

L
σβν .

(85)
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The exterior derivative of (n− 1)-forms Qe,χ, Qω,ψ, Pe,ζ, and Pω,ϕ, are given by

dQe,χ = eIµ∂νχ
µν
I (x)β + χµνI (x)deIµ ∧ βν ,

dQω,ψ = ωIJµ ∂νψ
µν
IJ (x)β + ψµνIJ (x)dω

IJ
µ ∧ βν ,

dPe,ζ = ζIµ(x)dp
eµν

I ∧ βν + p
eµν

I ∂νζ
I
µ(x)β,

dPω,ϕ = ϕIJµ (x)dp
ωµν

IJ ∧ βν + p
ωµν

IJ ∂νϕ
IJ
µ (x)β.

(86)

The Hamiltonian (n− 1)-form Qω,ψ is equivalently written as Qω,ψ = (1/2)ψµν(x)ωIJ ∧ βµν ,
where ψµν(x) is a real function such that ψµν = −ψνµ. Then, Qω,ψ = (1/2)ψµν(x)ωIJρ dxρ ∧
βµν = (1/2)ψµν(x)

(
ωIJµ βν − ωIJν βµ

)
= ψµν(x)ωIJµ βν . The exterior derivative of the (n − 1)-

forms is

dQω,ψ = d(ψµν(x)ωIJµ βν) = ωIJµ ∂σψ
µν
IJ (x)dx

σ ∧ βν + ψµνIJ (x)dω
IJ
µ ∧ βν ,

= ωIJµ ∂νψ
µν
IJ (x)β + ψµνIJ (x)dω

IJ
µ ∧ βν ,

(87)

whereas the exterior derivative of the (n− 1)-form Pω,ϕ is written as

dPω,ϕ = d
(
ϕIJµ (x)p

ωµν

IJ βν
)
= ϕIJµ (x)dp

ωµν

IJ ∧ βν + p
ωµν

IJ dϕIJµ (x) ∧ βν ,
= ϕIJµ (x)dp

ωµν

IJ ∧ βν + p
ωµν

IJ ∂νϕ
IJ
µ (x)β.

(88)

Using the constraints (37), the exterior derivatives of the Hamiltonian (n− 1)-forms of type
Qω,ψ

∣
∣
C

and Pω,ϕ

∣
∣
C

are now written as

dQω,ψ

∣
∣
C

= ωIJµ ∂νψ
µν
IJ (x)β + ψµνIJ (x)dω

IJ
µ ∧ βν = dQω,ψ,

dPω,ϕ

∣
∣
C

= −(1/4)ǫIJKLǫ
µνρσeKρ e

L
σdϕ

IJ
µ (x) ∧ βν − (1/2)ϕIJµ (x)ǫIJKLǫ

µνρσeKρ deLσ ∧ βν .

Lemma 4.1. The Hamiltonian vector fields related to the Hamiltonian (n − 1)-forms Qe,χ,
Qω,ψ, Pe,ζ, and Pω,ϕ, which are denoted as Ξ(Qe,χ), Ξ(Qω,ψ), Ξ(Pe,ζ), and Ξ(Pω,ϕ), are given
by

Ξ(Qe,χ) = −eIµ (∂νχµνI )
∂

∂κ
− χµνI

∂

∂p
eµν

I

,

Ξ(Qω,ψ) = −ωIJµ (∂νψ
µν
IJ )

∂

∂κ
− ψµνIJ

∂

∂p
ωµν

IJ

,

Ξ(Pe,ζ) = ζIµ
∂

∂eIµ
− p

eµν

I

(
∂νζ

I
µ

) ∂

∂κ
,

Ξ(Pω,ϕ) = ϕIJµ
∂

∂ωIJµ
− p

ωµν

IJ

(
∂νϕ

IJ
µ

) ∂

∂κ
.

Proof. Let us compute the contractions on the multisymplectic manifold (MDW,ωωω
DW),

where the vector field Ξ(Pω,ϕ) on MDW is given as in lemma 4.1. By the straightforward
calculation,

Ξ(Pω,ϕ) ωωωDW =
(
ϕµ(x)∂/∂ω

IJ
µ −

(
∂νϕµ(x)p

ωµν

IJ

)
∂/∂κ

) (
dκ ∧ β + dp

ωµν

IJ ∧ dωIJµ ∧ βν
)
,

= −
(
∂νϕµ(x)p

ωµν

IJ

)
β − ϕµ(x)dp

ωµν

IJ ∧ βν = −dPω,ϕ,

Ξ(Qω,ψ) ωωωDW = −
(
(ωIJµ ∂νψ

µν)∂/∂κ + ψµν(x)∂/∂p
ωµν

IJ

) (
dκ ∧ β + dp

ωµν

IJ ∧ dωIJµ ∧ βν
)
,

= −ωIJµ (∂νψ
µν(x)) β − ψµν(x)dωIJµ ∧ βν = −dQω,ψ.

Analogously, a straightforward calculation yields the Hamiltonian vector fields on the con-
straints hypersurface C defined in section 2.3. More precisely, working on (C, ι⋆ΩDW) we
obtain:
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Lemma 4.2. The Hamiltonian vector fields related to the Hamiltonian (n−1)-forms Qe,χ

∣
∣
C
,

Pe,ζ

∣
∣
C
, Qω,ψ

∣
∣
C
, and Pω,ϕ

∣
∣
C

are given by

Ξ(Qe,χ)
∣
∣
C

= −eIµ (∂νχµνI )
∂

∂κ
+ χµνI

∂

∂p
eµν

I

,

Ξ(Pe,ζ)
∣
∣
C

= ζIµ(x)
∂

∂eIµ
,

Ξ(Qω,ψ)
∣
∣
C

= −
(
ωIJµ

∂ψµν

∂xν
) ∂

∂κ
−
(
1

6
ψµν(x)ǫIJKLǫµνρσe

ρ
K

)
∂

∂eLσ
,

Ξ(Pω,ϕ)
∣
∣
C

= ϕIJµ
∂

∂ωIJµ
+

(
1

4
ǫIJOP ǫ

µναβ ∂ϕµ
∂xν

eOα e
P
β

)
∂

∂κ
.

(89)

We present the explicit calculation for the (n − 1)-forms Qω,ψ and Pω,ϕ. The interior
product Ξ(Pω,ϕ

∣
∣
C
) ωωωPalatini yields

Ξ(Pω,ϕ

∣
∣
C
) ωωωPalatini =

(
ϕµ(x)∂/∂ω

IJ
µ +

(
(1/4)ǫIJOP ǫ

µναβ∂νϕµe
O
α e

P
β

)
∂/∂κ

)
,

(
dκ ∧ β − (1/2)ǫIJKLǫ

µνρσeKρ deLσ ∧ dωIJµ ∧ βν
)
,

= (1/2)ǫIJKLǫ
µνρσϕµ(x)e

K
ρ deLσ ∧ βν + (1/4)ǫIJKLǫ

µνρσeKρ e
L
σ∂νϕµ(x)β.

Therefore, Ξ(Pω,ϕ)
∣
∣
C

ωωωPalatini = −dPω,ϕ

∣
∣
C
. Now, we calculate Ξ(Qω,ψ)

∣
∣
C

ωωωPalatini. Let us

contract both sides of p
ωµν

IJ = −(1/4)ǫIJMNǫ
µναβeMα e

N
β with ǫIJKLǫµνρσe

ρ
K . We obtain

ǫIJKLǫµνρσp
ωµν

IJ eρK
︸ ︷︷ ︸

(1)

= −(1/4)ǫIJKLǫµνρσǫIJMNǫ
µναβeMα e

N
β e

ρ
K

︸ ︷︷ ︸

(2)

,

where

(2) = −(1/4)ǫIJMNǫ
IJKLǫµνρσǫ

µναβeMα e
N
β e

ρ
K = −(1/4)(2!)(2!)δ

[K
M δ

L]
N (2!)(2!)δ[αρ δ

β]
σ e

M
α e

N
β e

ρ
K ,

= −2δ
[K
M δ

L]
N (eMρ e

N
σ e

ρ
K − eMσ e

N
ρ e

ρ
K) = −2δ

[K
M δ

L]
N (δMK e

N
σ − eMσ δ

N
K ),

= −
(
(δKKe

L
σ − eKσ δ

L
K)− (δLKe

K
σ − eLσδ

K
K )
)
= −

(
(4eLσ − eLσ )− (eLσ − 4eLσ )

)
= −6eLσ .

Then, we obtain
eLσ = −(1/3!) · (1) = −(1/6)ǫIJKLǫµνρσp

ωµν

IJ eρK . (90)

We directly verify this result by the straightforward calculation:

−(1/6)ǫIJKLǫµνρσp
ωµν

IJ eρK = (1/4)(1/6)ǫIJKLǫIJOP ǫµνρσǫ
µναβ(eOα e

P
β )e

ρ
K ,

= (1/24)
[
(2!)(2!)δ

[K
O δ

L]
P

][
(2!)(2!)δ[αρ δ

β]
σ

]
eOα e

P
β e

ρ
K

= (1/6)
[
(eKρ e

L
σe

ρ
K − eKσ e

L
ρ e

ρ
K)− (eLρ e

K
σ e

ρ
K − eLσe

K
ρ e

ρ
K)
]

= 2(1/6)(eKρ e
L
σe

ρ
K − eKσ e

L
ρ e

ρ
K) = 2(1/6)(δρρe

L
σ − δρσe

L
ρ ),

= 2(1/6)(4eLσ − eLσ ) = 6 · (1/6)eLσ = eLσ .

Using (90), we obtain
∂

∂p
ωµν

IJ

= (
∂eLσ
∂p

ωµν

IJ

)
∂

∂eLσ
=
(
−(1/6)ǫIJKLǫµνρσe

ρ
K

) ∂

∂eLσ
, so that

Ξ(Qω,ψ) = −
(
ωIJµ

∂ψµν

∂xν
) ∂

∂κ
− (1/6)ψµν(x)ǫIJKLǫµνρσe

ρ
K

∂

∂eLσ
. (91)
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Finally, we obtain the expression

Ξ(Qω,ψ)
∣
∣
C

ωωωPalatini = Ξ(Qω,ψ)
(
dκ ∧ β − (1/2)ǫIJKLǫ

µνρσeKρ deLσ ∧ dωIJµ ∧ βν
)
,

= −ωIJµ (∂νψ
µν
IJ ) β−(1/2)ǫIJKLǫ

µνρσeKρ deLσ (Ξ(Qω,ψ))dω
IJ
µ ∧ βν

︸ ︷︷ ︸

(3)

In the appendix C, we explicitly prove that (3) = ψµνIJdωIJµ ∧ βν .
Finally, we also consider the Hamiltonian (n − 1)-form Qκ,τ = τ νµ (x)X

µβν and Pκ =
κXαβα − p

ωµν

IJ XαdωIJµ ∧ βαν . We will use them in section 4.4.2 to give an example of an
homotopy Lie structure. Working on the constraint hypersurface C defined in section 2.3,

Qκ

∣
∣
C

= = ι⋆Qκ = τ νµ (x)X
µβν = Qe,

Pκ

∣
∣
C

= ι⋆Pκ = κXαβα − ee
[µ
I e

ν]
J X

αdωIJµ ∧ βαν .
(92)

Lemma 4.3. The Hamiltonian vector field related to the Hamiltonian (n − 1)-form Pκ is
Ξ(Pκ) = Xµ(x)∂µ − (κ (∂µX

µ)) ∂/∂κ + p
ωµσ

IJ

(
(∂σX

ν)− δνσ(∂X
λ/∂xλ)

)
∂/∂p

ωµν

IJ .

Proof. The interior product Ξ(Pκ) ωωωDW yields

Ξ(Pκ) ωωωDW = (Xρ(x)∂/∂xρ − κ (∂ρX
ρ) ∂/∂κ)

(
dκ ∧ β + dp

ωµν

IJ ∧ dωIJµ ∧ βν
)
,

+pωλσ
KL ((∂σX

ρ)− δρσ(∂κX
κ)) ∂/∂pωλρ

KL

(
dp

ωµν

IJ ∧ dωIJµ ∧ βν
)
,

= −κ (∂µX
µ) β −Xµdκ ∧ βµ +Xρdp

ωµν

IJ ∧ dωIJµ ∧ βρν ,
+p

ωµσ

IJ

(
(∂σX

ν)− δνσ(∂λX
λ)
)
dωIJµ ∧ βν .

Note that dPκ = Xαdκ ∧ βα + κ(∂µX
µ)β −Xαdp

ωµν

IJ ∧ dωIJµ ∧ βαν − p
ωµν

IJ dXα ∧ dωIJµ ∧ βαν .
The last term is equivalently written as −

(
p
ωµρ

IJ (∂ρX
ν)− p

ωµν

IJ (∂ρX
ρ)
)
dωIJµ ∧ βν , where we

have used dxα ∧ βρν = δαρ βν − δαν βρ.

4.4 Brackets of Hamiltonian (n − 1)-forms, Lie and homotopy Lie

structures

In this section, we study bracket operations between Hamiltonian (n−1)-forms. In particular,
the exactness or the failure of the Jacobi property is clarified along with simple examples.
First, in section 4.4.1 we give an example of an exact Lie algebra A1 := {a1, {, }}, where
a1 is the set of Hamiltonian (n − 1)-forms {Qe,χ,Qω,ψ,Pe,ζ,Pω,ϕ}. Then, in section 4.4.2
we present some aspects of an homotopy Lie algebra A2 := {a2, {, }}, where a2 is the set of
Hamiltonian (n− 1)-forms {Qe,χ,Qω,ψ,Pκ,Pe,ζ,Pω,ϕ}. Finally, in section 4.4.3, we present a
third algebraic structure on the set of Hamiltonian (n− 1)-forms a3 := {CCCeIµ,CCCωIJ

µ
}. This one

reproduces some aspects of the formulation of vielbein gravity in polymomentum variables
[57, 58].

4.4.1 Lie algebraic structure

We construct some bracket relations with the Hamiltonian (n−1)-forms introduced in section
4.3. Let us consider the Hamiltonian (n−1)-forms Qω,ψ = ψµνIJ (x)ω

IJ
µ βν , Qω,ψ = ψµνIJ (x)ω

IJ
µ βν ,

Pω,ϕ = ϕIJµ (x)p
ωµν

IJ βν , and Pω,ϕ = ϕIJµ (x)p
ωµν

IJ βν . Note that φIJµ (x), φIJµ (x), ψµνIJ (x), and ψµνIJ(x)

are smooth functions on the space-time manifold X , where ψµν(x) = −ψνµ(x) and ψ
µν
(x) =

−ψνµ(x).
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Proposition 4.1. On the multisymplectic manifold, (MDW,ωωω
DW), the brackets on the set of

Hamiltonian (n− 1)-forms Qω,ψ,Qω,ψ,Pω,ϕ, and Pω,ϕ ∈ Ωn−1
Ham

(MDW) are given by

{
Qω,ψ,Qω,ψ} = {Pω,ϕ,Pω,ϕ} = 0, {Qω,ψ,Pω,ϕ} = −ψµνIJ (x)ϕIJµ (x)dyν . (93)

Proof. The brackets are easily computed using lemma 4.1

{Qω,ψ,Qω,ψ} = −Ξ(Qω,ψ) Ξ(Qω,ψ) ωωωDW = Ξ(Qω,ψ) dQω,ψ,

= Ξ(Qω,ψ)
(
ωIJµ

(
∂νψ

µν
IJ

)
β + ψµνIJdω

IJ
µ ∧ βν

)
= 0,

{Pω,ϕ,Pω,ϕ} = −Ξ(Pω,ϕ) Ξ(Pω,ϕ) ωωωDW = Ξ(Pω,ϕ) dPω,ϕ,
= Ξ(Pω,ϕ)

(
ϕIJµ (x)dp

ωµν

IJ ∧ βν + p
ωµν

IJ ∂νϕ
IJ
µ (x)β

)
= 0,

{Qω,ψ,Pω,ϕ} = Ξ(Qω,ψ)
(
ϕIJµ (x)dp

ωµν

IJ ∧ βν + p
ωµν

IJ ∂νϕ
IJ
µ (x)β

)
,

= −[δIKδ
J
Lδ

ρ
µδ

σ
ν ]ψ

ρσ
KL(x)ϕ

IJ
µ (x)βν = −ψµνIJ (x)φIJµ (x)βν .

Proposition 4.2. A1 is a Lie algebra.

Proof. We consider the Hamiltonian (n− 1)-forms Qω,ψ1
,Qω,ψ2

,Qω,ψ3
∈ Ωn−1

Ham
(MDW) and

Pω,ϕ1
,Pω,ϕ2

,Pω,ϕ3
∈ Ωn−1

Ham
(MDW). The brackets {{Qω,ψ1

,Qω,ψ2
},Qω,ψ3

}, {{Qω,ψ1
,Qω,ψ3

},Qω,ψ2
},

{{Qω,ψ2
,Qω,ψ3

},Qω,ψ1
}, {{Pω,ϕ1

,Pω,ϕ2
},Pω,ϕ3

}, {{Pω,ϕ1
,Pω,ϕ3

},Pω,ϕ2
}, as well as the bracket

{{Pω,ϕ2
,Pω,ϕ3

},Pω,ϕ1
} are identically vanishing. We also have

{{Qω,ψ1
,Pω,ϕ},Qω,ψ2

} = −Ξ(Qω,ψ2
) d{Qω,ψ1

,Pω,ϕ},
= Ξ(Qω,ψ2

)
(
∂νψ

µν
IJ (x)ϕ

IJ
µ (x) + ψµνIJ (x)∂νϕ

IJ
µ (x)

)
dy = 0.

Analogously, {{Pω,ϕ,Qω,ψ2
},Qω,ψ1

} = {{Qω,ψ2
,Qω,ψ1

},Pω,ϕ} = 0. Finally, the last brackets
{{Pω,ϕ1

,Qω,ψ},Pω,ϕ2
}, {{Qω,ψ,Pω,ϕ2

},Pω,ϕ1
}, and {{Pω,ϕ2

,Pω,ϕ1
},Qω,ψ} are also identically

vanishing. The Jacobi property is satisfied exactly, i.e.

0 = {{Qω,ψ1
,Pω,ϕ},Qω,ψ2

}+ {{Pω,ϕ,Qω,ψ2
},Qω,ψ1

}+ {{Qω,ψ2
,Qω,ψ1

},Pω,ϕ},
0 = {{Pω,ϕ1

,Qω,ψ},Pω,ϕ2
}+ {{Qω,ψ,Pω,ϕ2

},Pω,ϕ1
}+ {{Pω,ϕ2

,Pω,ϕ1
},Qω,ψ}.

(94)

Note that [Ξ(Qω,ψ),Ξ(Pω,ϕ)] ωωωDW = Ξ({Qω,ψ,Pω,ϕ}) ωωωDW = −d({Qω,ψ1
,Pω,ϕ}). In this

case the Hamiltonian vector field is Ξ({Qω,ψ1
,Pω,ϕ}) =

(
∂νψ

µν
IJ (x)ϕ

IJ
µ (x) + ψµνIJ (x)∂νϕ

IJ
µ (x)

)
∂/∂κ.

4.4.2 Homotopy Lie Algebraic structure

In this section, we work with the set of Hamiltonian (n−1)-forms a2 := {a1,Pκ}. We present
the failure of the Jacobi identity, i.e. the homotopy type of the Lie algebraic structure. Here
we only focus on the brackets between the (n− 1)-forms Pκ,Qω,ψ,Pω,ϕ ∈ Ωn−1

Ham
(MDW).

Proposition 4.3. On the multisymplectic manifold (MDW,ωωω
DW), the bracket operations be-

tween the Hamiltonian (n − 1)-forms Pκ ∈ Ωn−1
Ham

(MDW) and Qω,ψ,Pω,ϕ ∈ Ωn−1
Ham

(MDW) are
given by

{Pκ,Qω,ψ} = Xρ(x)
(
ωIJµ (∂νψ

µν
IJ(x))βρ − ψµνIJ (x)dω

IJ
µ ∧ βρν

)
,

{Pκ,Pω,ϕ} = Xρ(x)
(
p
ωµν

IJ ∂νϕ
IJ
µ (x)βρ − ϕIJµ (x)dp

ωµν

IJ ∧ βρν
)
,

+p
ωµσ

IJ (∂σX
ν)ϕIJµ (x)βν − p

ωµν

IJ (∂λX
λ)ϕIJµ (x)βν .
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Proof. By a straightforward calculation, using lemma 4.1 and lemma 4.2, we obtain

{
Pκ,Qω,ψ

}
= Ξ(Pκ) dQω,ψ = Xρ(x)∂ρ

(
ωIJµ (∂νψ

µν
IJ (x)) β + ψµνIJ(x)dω

IJ
µ ∧ βν

)
,

= −Xρ(x)ωIJµ dψµνIJ ∧ βρν −Xρ(x)ψµνIJ (x)dω
IJ
µ ∧ βρν ,

{
Pκ,Pω,ϕ

}
= Ξ(Pκ) dPω,ψ = Xρ(x)∂ρ

(
ϕIJµ (x)dp

ωµν

IJ ∧ βν + p
ωµν

IJ ∂νϕ
IJ
µ (x)β

)
,

+pωασ
KL

(
(∂σX

β)− δβσ(∂λX
λ)
)
∂/∂pωαβ

KL

(
ϕIJµ (x)dp

ωµν

IJ ∧ βν
)
,

= −Xρ(x)p
ωµν

IJ dϕIJµ ∧ βρν −Xρ(x)ϕIJµ (x)dp
ωµν

IJ ∧ βρν ,
+ϕIJµ (x)

(
p
ωµρ

IJ (∂ρX
ν)− p

ωµν

IJ (∂ρX
ρ)
)
βν .

Then,

d
({

Pκ,Qω,ψ

})
= − (Xρ(x)∂ρψ

µν
IJ (x) + ψµνIJ (x)∂ρX

ρ(x)) dωIJµ ∧ βν ,
+ (Xν(x)∂ρψ

µρ
IJ(x) + ψµρIJ(x)∂ρX

ν(x)) dωIJµ ∧ βν ,
+(∂νψ

µν
IJ )X

ρ(x)dωIJµ ∧ βρ − (∂ρψ
µν
IJ )X

ρ(x)dωIJµ ∧ βν ,
+ωIJµ ∂ρX

ρβ − ωIJµ ∂νX
ρβ,

(95)

d
{
Pκ,Pω,ϕ

}
= −Xρ(x)∂ρϕ

IJ
µ dp

ωµν

IJ ∧ βν +Xρ(x)∂νϕ
IJ
µ dp

ωµν

IJ ∧ βρ,
+p

ωµν

IJ (∂ρX
ρ(x))∂νϕ

IJ
µ β,−

(
p
ωµν

IJ ∂νX
ρ(x)

)
∂ρϕ

IJ
µ β,

+
(
Xρ(x)∂ρϕ

IJ
µ (x) + ϕIJµ (x)∂ρX

ρ(x)
)
dp

ωµν

IJ ∧ βν ,
−
(
Xρ(x)∂νϕ

IJ
µ (x) + ϕIJµ (x)∂νX

ρ(x)
)
dp

ωµν

IJ ∧ βρ,
+(∂ρX

ν)ϕIJµ (x)dp
ωµρ

IJ ∧ βν + (∂ρX
ν)p

ωµρ

IJ ∂νϕ
IJ
µ (x)β,

−(∂ρX
ρ)ϕIJµ (x)dp

ωµν

IJ ∧ βν − (∂ρX
ρ)p

ωµν

IJ ∂νϕ
IJ
µ (x)β.

(96)

We have used in (95) and (96) the definition βµν := ∂µ ∂ν β := ∂ν ∧ ∂µ β and the
algebraic identity dxα ∧ βρν = δαρ βν − δαν βρ. The brackets obtained by cyclic permuta-
tions are given by {{Pκ,Qω,ψ},Pω,ϕ} = −Ξ(Pω,ϕ) d ({Pκ,Qω,ψ}), {{Qω,ψ,Pω,ϕ},Pκ} =
−Ξ(Pκ) d ({Qω,ψ,Pω,ϕ}), and {{Pω,ϕ,Pκ},Qω,ψ} = Ξ(Qω,ψ) d ({Pκ,Pω,ϕ}). Thus, we
obtain

{{Pκ,Qω,ψ},Pω,ϕ} = −ϕIJµ (Xρ(x)∂ρψ
µν
IJ (x) + ψµνIJ (x)∂ρX

ρ(x)) βν ,

+ϕIJµ (Xν(x)∂ρψ
µρ
IJ(x) + ψµρIJ(x)∂ρX

ν(x)) βν ,
+ϕIJµ (∂νψ

µν
IJ )X

ρ(x)βρ − ϕIJµ (∂ρψ
µν
IJ)X

ρ(x)βν ,
(97)

{{Qω,ψ,Pω,ϕ},Pκ} = −Xρ(x)ψµνIJ (x)dϕ
IJ
µ ∧ dyρν −Xρ(x)ϕIJµ (x)dψµνIJ ∧ dyρν ,

= −Xρ(x)ψµνIJ (x)∂ρϕ
IJ
µ βν +Xρ(x)ψµνIJ (x)∂νϕ

IJ
µ βρ,

−Xρ(x)ϕIJµ (x)∂ρψ
µν
IJβν +Xρ(x)ϕIJµ (x)∂νψ

µν
IJβρ,

(98)

{{Pω,ϕ,Pκ},Qω,ψ} = −ψµνIJ
(
−Xρ(x)∂ρϕ

IJ
µ βν +Xρ(x)∂νϕ

IJ
µ βρ

)
,

−ψµνIJ
((
Xρ(x)∂ρϕ

IJ
µ (x) + ϕIJµ (x)∂ρX

ρ(x)
)
βν
)
,

+ψµνIJ
((
Xρ(x)∂νϕ

IJ
µ (x) + ϕIJµ (x)∂νX

ρ(x)
)
βρ
)
,

−ψµνIJ
(
(∂ρX

ν)ϕIJµ (x)dp
ωµρ

IJ ∧ βν − (∂ρX
ρ)ϕIJµ (x)βν

)
= 0.

(99)

Let us denote (cyc) := {{Pκ,Qω,ψ},Pω,ϕ}+ {{Qω,ψ,Pω,ϕ},Pκ}+ {{Pω,ϕ,Pκ},Qω,ψ}, the
sum of cyclic permutations. Using (97) - (99), we obtain

(cyc) = −ϕIJµ ψµνIJ (x)∂ρXρ(x)βν + ϕIJµ ψ
µρ
IJ(x)∂ρX

ν(x)βν −Xρ(x)ψµνIJ (x)∂ρϕ
IJ
µ βν ,

−Xν(x)ψµρIJ (x)∂ρϕ
IJ
µ βν ,−ϕIJµ Xρ(x)∂ρψ

µν
IJ(x)βν + ϕIJµ X

ν(x)∂ρψ
µρ
IJ(x)βν .
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We denote by S the (n − 2)-form Ξ(Pκ) ∧ Ξ(Qω,ψ) ∧ Ξ(Pω,ϕ) ωωωDW ∈ Ωn−2(MDW). Then,
S = Ξ(Pω,ϕ) Ξ(Qω,ψ) Ξ(Pκ) ωωωDW. Then,

S = Ξ(Pω,ϕ) Ξ(Qω,ψ)
(
−κ (∂µX

µ) β −Xµdκ ∧ βµ +Xρdp
ωµν

IJ ∧ dωIJµ ∧ βρν
)
,

+Ξ(Pω,ϕ) Ξ(Qω,ψ)
((
p
ωµρ

IJ ∂ρX
ν(x)− p

ωµν

IJ ∂ρX
ρ(x)

)
dωIJµ ∧ βν

)
,

= Ξ(Pω,ϕ)
(
−ωIJµ (∂νψ

µν
IJ ) ∂/∂κ

)
(−Xµdκ ∧ βµ) ,

+Ξ(Pω,ϕ)
(

−ψαβKL∂/∂pωαβ
KL

) (
Xρdp

ωµν

IJ ∧ dωIJµ ∧ βρν
)
,

= Ξ(Pω,ϕ)
(
XµωIJµ (∂νψ

µν
IJ )βµ −XρψµνIJdωIJµ ∧ βρν

)
,

= −
(
ϕKLα ∂/∂ωKLα

) (
XρψµνIJdωIJµ ∧ βρν

)
= −XρψµνIJϕ

IJ
µ βρν .

Therefore,

dS = −
(
ψµνIJ (x)ϕ

IJ
µ (x)dXρ(x) +Xρ(x)ψµνIJ (x)dϕ

IJ
µ (x) + ϕIJµ (x)Xρ(x)dψµνIJ (x)

)
∧ βρν ,

= −ψµνIJ (x)ϕIJµ (x)∂ρX
ρ(x)βν + ψµρIJ (x)ϕ

IJ
µ (x)∂ρX

ν(x)βν −Xρ(x)ψµνIJ (x)∂ρϕ
IJ
µ (x)βν ,

+Xν(x)ψµρIJ (x)∂ρϕ
IJ
µ (x)βν − ϕIJµ (x)Xρ(x)∂ρψ

µν
IJ (x)βν + ϕIJµ (x)Xν(x)∂ρψ

µρ
IJ (x)βν ,

is identically equal to the sum of cyclic permutations: dS = (cyc). Hence, we have proven
the Jacobi property up to coherent homotopy, i.e.

dS = {{Pκ,Qω,ψ},Pω,ϕ}+ {{Qω,ψ,Pω,ϕ},Pκ}+ {{Pω,ϕ,Pκ},Qω,ψ}.

Using the notationS[n] := (Ξ1∧· · ·∧Ξn) ωωωDW (where Ξ1, · · · ,Ξn ∈ Ωn−1
Ham

(MDW) are Hamilto-
nian vectors fields), the Jacobi identity, up to a coherent homotopy, is equivalently contained
in the formula

dS[n] = (−1)n
∑

1≤i<j≤n

([Ξi,Ξj] ∧ Ξ1 ∧ · · ·Ξi−1 ∧ Ξi+1 ∧ · · · ∧ Ξj−1 ∧ Ξj+1 ∧ · · ·Ξn) ωωωDW.

For a detailed proof, we refer to [90], page 25. Applying it to our example with S[n] := S =
Ξ(Pω,ϕ) Ξ(Qω,ψ) Ξ(Pκ) ωωωDW), we obtain

dS = − ([Ξ(Pκ),Ξ(Qω,ψ)] ∧ Ξ(Pω,ϕ) ωωωDW)− ([Ξ(Pκ),Ξ(Pω,ϕ)] ∧ Ξ(Qω,ψ) ωωωDW) ,
− ([Ξ(Qω,ψ),Ξ(Pω,ϕ)] ∧ Ξ(Pκ) ωωωDW) ,

= − (Ξ(Pω,ϕ) [Ξ(Pκ),Ξ(Qω,ψ)] ωωωDW)− (Ξ(Qω,ψ) [Ξ(Pκ),Ξ(Pω,ϕ)] ωωωDW) ,
− (Ξ(Pκ) [Ξ(Qω,ψ),Ξ(Pω,ϕ)] ωωωDW) ,

which is easily verified.

4.4.3 Algebraic structure on CCCeIµ ,CCCωIJ
µ

Let us denote by a3 the set of two (n − 1)-forms CCCeIµ ,CCCωIJ
µ

, where CCCeIµ := p
eµν

I βν and CCCωIJ
µ

:=

p
ωµν

IJ βν+E
[µ
I e

ν]
J βν . Note that dCCCeIµ = dp

eµν

I ∧βν and dCCCωIJ
µ

= dp
ωµν

IJ ∧βν+(1/2)ǫIJKLǫ
µνρσeKρ deLσ∧

βν . The related Hamiltonian vector fields Ξ(CCCeIµ) and Ξ(CCCωIJ
µ
) are given by

Ξ(CCCeIµ) = ∂/∂eIµ, Ξ(CCCωIJ
µ
) = ∂/∂ωIJµ − (1/2)ǫIJKLǫ

µνρσeKρ ∂/∂p
eσν
L . (100)

The interior products of the Hamiltonian vector fields Ξ(CCCeIµ) and Ξ(CCCωIJ
µ
) with the multi-

symplectic form give Ξ(CCCeIµ) ωωωDW = −dp
eµν

I ∧ βν = −dCCCeIµ and Ξ(CCCωIJ
µ
) ωωωDW = −dp

ωµν

IJ ∧
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βν − (1/2)ǫIJKLǫ
µνρσeKρ deLσ ∧ βν = −dCCCωIJ

µ
, respectively. Note that, by definition, CCCeIµ |CCC =

CCCωIJ
µ
|CCC = 0. We now calculate the bracket operations between the Hamiltonian (n− 1)-forms

CCCeIµ ∈ Ωn−1
Ham

(MDW) and CCCωIJ
µ

∈ Ωn−1
Ham

(MDW):

{
CCCeIµ,CCCeIµ

}
= −Ξ(CCCeIµ) Ξ(CCCeIµ)

(
dp

eµν

I ∧ deIµ ∧ βν + dp
ωµν

IJ ∧ dωIJµ ∧ βν
)
,

= −Ξ(CCCeIµ)
(
dp

eµν

I ∧ βν
)
= 0,

{
CCCωIJ

µ
,CCCωIJ

µ

}
= −Ξ(CCCωIJ

µ
) Ξ(CCCωIJ

µ
)

(
dp

eµν

I ∧ deIµ ∧ βν + dp
ωµν

IJ ∧ dωIJµ ∧ βν
)
,

= −Ξ(CCCωIJ
µ
)
(
dp

ωµν

IJ ∧ βν + (1/2)ǫIJKLǫ
µνρσeKρ deLσ ∧ βν

)
= 0,

{
CCCeLσ ,CCCωIJ

µ

}
= −Ξ(CCCeLσ ) Ξ(CCCωIJ

µ
)
(
dp

eµν

I ∧ deIµ ∧ βν + dp
ωµν

IJ ∧ dωIJµ ∧ βν
)
,

= −Ξ(CCCeLσ )
(
dp

ωµν

IJ ∧ βν + (1/2)ǫIJKLǫ
µνρσeKρ deLσ ∧ βν

)
,

= −(1/2)ǫIJKLǫ
µνρσeKρ βν .

Note that ∂/∂eLσ
(
E

[µ
I e

ν]
J

)
= −∂/∂eLσ

(
(1/4)ǫIJKLǫ

µνρσeKρ e
L
σ

)
= −(1/2)ǫIJKLǫ

µνρσeKρ . We
reproduce the result of Kanatchikov [57, 58], which underlines his constraints analysis of DW
formulation of vielbein gravity and its precanonical quantization. In particular, we refer to
equations (19) page 6 in [58]. The brackets are written as

{
CCCeIµ ,CCCeJν

}
=
{
CCCωIJ

µ
,CCCωKL

ν

}
= 0,

{
CCCeLσ ,CCCωIJ

µ

}
= − ∂

∂eLσ

(
E

[µ
I e

ν]
J

)
βν . (101)

Proposition 4.4. A3 := {a3 ; {, }} is a Lie algebra, where a3 is the set of forms CCCeLσ ,CCCωIJ
µ

and where the bracket operation is {, }.

Proof. We consider the Hamiltonian (n − 1)-forms CCCeM
λ
,CCCeLσ ,CCCωIJ

µ
. The following bracket

operations based on the cyclic permutations are found:

{{CCCeM
λ
,CCCeLσ},CCCωIJ

µ
} = −Ξ(CCCωIJ

µ
) d{CCCeM

λ
,CCCeLσ} = 0,

{{CCCeLσ ,CCCωIJ
µ
},CCCeM

λ
} = −Ξ(CCCeM

λ
) d{CCCeLσ ,CCCωIJ

µ
} = (1/2)ǫIJMLǫ

µνλσβν ,

{{CCCωIJ
µ
,CCCeM

λ
},CCCeLσ} = −Ξ(CCCeLσ ) d{CCCωIJ

µ
,CCCeM

λ
} = −(1/2)ǫIJMLǫ

µνλσβν .

(102)

Also, let us consider the Hamiltonian (n − 1)-forms CCCeM
λ
,CCCωIJ

µ
,CCCωKL

ν
∈ Ωn−1

Ham
(MDW). The

brackets based on the cyclic permutations of the Jacobi identity are

{{CCCeM
λ
,CCCωKL

ν
},CCCωIJ

µ
} = −Ξ(CCCωIJ

µ
) d{CCCeM

λ
,CCCωKL

ν
} = 0,

{{CCCωKL
ν
,CCCωIJ

µ
},CCCeM

λ
} = −Ξ(CCCeM

λ
) d{CCCωKL

ν
,CCCωIJ

µ
} = 0,

{{CCCωIJ
µ
,CCCeM

λ
},CCCωKL

ν
} = −Ξ(CCCωKL

ν
) d{CCCωIJ

µ
,CCCeM

λ
} = 0.

(103)

Then, using (102) and (103), we obtain the Jacobi identity

0 = {{CCCeM
λ
,CCCeLσ},CCCωIJ

µ
}+ {{CCCeLσ ,CCCωIJ

µ
},CCCeM

λ
}+ {{CCCωIJ

µ
,CCCeM

λ
},CCCeLσ},

0 = {{CCCeM
λ
,CCCωKL

ν
},CCCωIJ

µ
}+ {{CCCωKL

ν
,CCCωIJ

µ
},CCCeM

λ
}+ {{CCCωIJ

µ
,CCCeM

λ
},CCCωKL

ν
}. (104)
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4.5 Towards the canonical forms for vielbein gravity

The quantization of gravity within the MG formulation is still in its infancy. However,
some progress have been made by Kanatchikov within his precanonical quantization based
on his polysymplectic approach. The description of fundamental brackets, using the graded
structure presented in 4.2, between Hamiltonian (n − 1)-forms and Hamiltonian 0-forms is
found in [57, 58]. In particular, the constraints analysis involves a generalization of the Dirac
bracket to the polysymplectic context, see [59].

Another example of canonical Poisson bracket, i.e. a bracket between canonically conju-
gate forms, is obtained by using the copolarization of algebraic observable forms developed
in the work of Hélein and Kouneiher [51]. We present briefly the formulation of a Poisson
bracket on observable functionals for vierbein gravity. The functionals are built on the pair
(ω, ̟̟̟) of canonically conjugate forms, i.e {̟̟̟, ω} = 1, where ω := ωIJ⊗∆IJ ∈ Ω1

Ham
(MDW)⊗g

and ̟̟̟ := ̟̟̟IJ ⊗∆IJ ∈ Ωn−2
Ham

(MDW)⊗ g⋆. We denote ̟̟̟I := (1/2)
∑

µ,ν p
eµν

I βµν ∈ Ωn−2
Ham

(MDW)

and ̟̟̟IJ := (1/2)
∑

µ,ν p
ωµν

IJ βµν ∈ Ωn−2
Ham

(MDW). When restricted to the constraint hy-
persurface CCC, the (n − 2)-forms are denoted ̟̟̟I |CCC := ι⋆̟̟̟I = 0 and ̟̟̟IJ |CCC := ι⋆̟̟̟IJ =

−(1/2)
∑

µ,ν ee
[µ
I e

ν]
J βµν = −(1/8)ǫµνσρǫIJKLe

K
σ e

L
ρβµν . Since

deI ∧ d̟̟̟I = (1/2)dp
eµν

I ∧ deIρ ∧
(
δρµβν − δρνβµ

)
= dp

eµν

I ∧ deIµ ∧ βν ,
dωIJ ∧ d̟̟̟IJ = (1/2)dp

ωµν

IJ ∧ dωIJρ ∧
(
δρµβν − δρνβµ

)
= dp

ωµν

IJ ∧ dωIJµ ∧ βν ,

the multisymplectic form is written as ωωωDW = dκ ∧ β + deI ∧ d̟̟̟I + dωIJ ∧ d̟̟̟IJ . Following
the method found in [50, 51], we construct a bracket between the observable functionals
F [ω,Σ ∩ γγγωωω] :=

∫

Σ∩γγγωωω
ω and F [̟̟̟,Σ ∩ γγγ̟̟̟ ] :=

∫

Σ∩γγγ̟̟̟
̟̟̟, where Σ is a 1-codimensional slice

[50], and Σ∩γγγωωω and Σ∩γγγ̟̟̟ are submanifolds of codimension n−2 and n−3, respectively. We

construct the Poisson bracket
{∫

Σ∩γγγ̟̟̟
̟̟̟,
∫

Σ∩γγγωωω
ω
}

(ΓΓΓ) =
∑

m∈Σ∩γγγ̟̟̟∩γγγωωω∩ΓΓΓ
ccc(m), where ccc(m) is

a counting function and Γ is a Hamiltonian n-curve. We refer to a forthcoming paper [103]
for an analysis of canonically conjugate forms and Poisson brackets in the DW Hamiltonian
formulation of vielbein gravity.

5 Conclusion

In this paper, we have presented several geometrical frameworks for the DW Hamiltonian
formulation of vielbein gravity. We have chosen to work in a local trivialization of the prin-
cipal fiber bundle (P,X , π, SO(1, 3)). The covariant configuration space is the fiber bundle
Y := iso(1, 3)⊗ T ⋆X over X , see section 2. We have described the DW Hamilton equations
in geometrical form in sections 2 and 3. In section 2 we studied the Hamilton equations
in the multimomentum phase space MDW := Λn1T

⋆Y , which is described by the set of local
coordinates (xµ, eIµ, ω

IJ
µ ,κ, p

eµν

I , p
ωµν

IJ ). Working with (CCC, ι⋆ΩDW), the DW Hamilton equations
XCCC (ι⋆ωωωDW) = (−1)nd(ι⋆HDW), reproduce the Einstein system of equations. In section 3
we consider the n-phase space formulation of dreibein and vierbein gravity, following the
formalism developed by Kijowski and Szczyrba [63, 64, 65, 66], and Hélein [47]. We present
the DW Hamilton equations on the pre-multisymplectic phase space (CCC◦,ωωω

◦). Then, in the
multisymplectic case, when working on the constraint hypersurface CCC, the DW Hamilton
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equations are given by (51) and (56) for dreibein and vierbein gravity, respectively. In the
pre-multisymplectic case, and working on (CCC◦), the equations are given by (68) and (74).
This fact is related to the first order nature of the Einstein-Palatini gravity. We have repro-
duced in the context of the DW Hamiltonian formulation developed in [46, 49, 50, 51] some
of the results found in [5, 6, 23, 94, 95]. In section 4 we give some examples of Hamiltonian
(n−1)-forms, their related Hamiltonian vectors fields, and some Poisson brackets, which lead
to the Lie or homotopy Lie algebra.

One of the interesting questions beyond the scope of the DW formulation is to find
a multisymplectic manifold (MLepage, ι

⋆
2Ω) contained in the following inclusion of spaces:

MDW →֒ MLepage →֒ M, such that a more general Lepagean Legendre correspondence
[49, 50, 51] is non singular. Note that ι2 : MLepage →֒ M is the canonical inclusion. The
idea is to use a formulation based on a higher Lepagean equivalent of the Poincaré-Cartan
n-form, denoted by θLepage := ι⋆2θ. In such a context we use the multimomentum phase space
MLepage := Λn2T

⋆(p⊗ T ⋆X ). Then, for any point (q, p) in MLepage,

θLepage

(q,p) := θDW

(q,p) + pe
I
ρω

JK
σ µνdeIρ ∧ dωJKσ ∧ βµν + pe

i
ρe

J
σµνdeIρ ∧ deJσ ∧ βµν ,

+pω
IJ
ρ ωKL

σ µνdωIJρ ∧ dωKLσ ∧ βµν ,
(105)

where we have introduced additional multimomenta pe
K
α ω

IJ
β
µν , pe

I
αe

J
β
µν , and pω

IJ
α ωKL

β
µν . Within

this geometrical formulation we could be able to construct an isomorphism between a subset
of the multimomenta and the field derivatives ∂µe

i
ν and ∂µω

IJ
ν . This viewpoint might allows

us to avoid the primary constraints at all, and eventually shed new light on the problem of
quantization. Another problem for further research, already mentioned in section 1.4, is to
describe a fully covariant setting for vielbein gravity and to establish connections with the
work of Bruno et al. [5, 6, 7, 8] and Hélein [48].

The most interesting problem related on the quantization of vielbein gravity would include
the classification of the full set of algebraic and dynamical observable forms and the search
of good conjugate forms. We hope to present elsewhere [103] results on the construction
of canonical forms (̟̟̟IJ , ω

IJ), canonical brackets and a pre-quantum theory, in the sense
of geometric quantization, for vielbein gravity. The canonically conjugate forms are the
connection 1-form ωIJ = ωIJµ dxµ and the 2-form ̟̟̟IJ = (1/2)

∑

µ,ν ee
[ν
I e

µ]
J βµν . Note that

interesting results have been obtained by Kanatchikov within his precanonical quantization
scheme for vielbein gravity [57, 58].

Acknowledgments. I am grateful to Frédéric Hélein and Joseph Kouneiher for discussions
about the topic of multisymplectic geometry and vielbein gravity. I also thank the referees
of CQG for helpful suggestions.

A First order Palatini action of vielbein gravity

First, we consider the first order Palatini action functional of vierbein gravity

SPalatini[e, ω] = κ

∫

X

vol(e)eµI e
ν
JF

IJ
µν [ω], (106)
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also called the «Hilbert-Palatini» action functional in Peldan’s review [87], and which corre-
sponds to the «frame-affine» framework in [25]. The functionals SEH[e] := κ

∫

X
vol(e)eµI e

ν
JF

IJ
µν [ω(e)]

and SEP[g,Γ] := κ
∫

X

√−gR[Γ]β := κ
∫

X
Rvol(g) are termed the «Einstein-Hilbert» and the

«Einstein-Palatini» action functional in Peldan’s review [87]. They correspond, in the frame-
work developed by Fatibene and Francaviglia [25], to the «purely-frame» and the «metric-
affine» formulations, respectively. Let us sketch the passage from SEP[g,Γ] to SPalatini[e, ω],
using some vielbein algebraic relations.

Lemma A.1. The Palatini action functional SPalatini[e, ω] is written as

SPalatini[e, ω] =
κ

4

∫

X

ǫIJKLǫ
µνρσeIµe

J
νF

KL
ρσ [ω]β =

1

64πG

∫

X

ǫIJKLǫ
µνρσeIµe

J
νF

KL
ρσ [ω]β. (107)

Proof. Note that vol(e)eµI e
ν
JF

IJ
µν = βeeµI e

ν
JF

IJ
µν = β

√−gRµν
µν = β

√−gR = vol(g)R. Alter-
natively, we have the straightforward calculation:

√
−gRβ =

√
−gδρ[αδ

σ
β]R

αβ
ρσβ = (1/4)

√
−gǫµναβǫ

µνρσRαβ
ρσβ,

= (1/4)ǫµναβǫ
µνρσRαβ

ρσβ = (1/4)ǫIJKLe
I
µe
J
ν e

K
α e

L
β ǫ
µνρσRαβ

ρσβ,

= (1/4)ǫIJKLe
I
µe
J
ν ǫ
µνρσ[eKα e

L
βR

αβ
ρσ]β = (1/4)ǫIJKLǫ

µνρσeIµe
J
νF

KL
ρσ [ω]β,

(108)

where we have used δρ[αδ
σ
β] = (1/2)[δραδ

σ
β − δρβδ

σ
α] = (1/4)ǫµναβǫ

µνρσ. In the first line of (108)

the Levi-Civita tensor is written as ǫµναβ =
√−gǫµναβ . We have used ǫµναβ = ǫIJKLe

I
µe
J
ν e

K
α e

L
β

and eKα e
L
βR

αβ
ρσ = FKL

ρσ in the second and the last line of (108), respectively. We pass from
the Einstein-Palatini action functional SEP[g,Γ] = κ

∫

X
LEP[g,Γ]β to the functional

SPalatini[e, ω] =
κ

2

∫

ǫIJKLe
I ∧ eJ ∧ FKL =

1

32πG
ǫIJKLe

I ∧ eJ ∧ FKL, (109)

written in terms of differential forms.
Proof. Let us evaluate vol(g)R = β

√−gR, the integrand of the Einstein-Hilbert action.
Contracting the Riemannn curvature tensor we have the following equality R = Rαβ

ρσδ
ρ

[αδ
σ
β].

Therefore,

LEH[g]vol(g) = κvol(g)R = κvol(g)δρ[αδ
σ
β]R

αβ
ρσ =

κ

4
vol(g)(−1)sǫµναβǫ

µνρσRαβ
ρσ,

where we use the relation δρ[αδ
σ
β]p!(n− p)!(−1)s = ǫµναβǫ

µνρσ (see the algebraic identity (113)

in appendix B.2, with n = 4 and p = 2). Then, in a integrable moving co-frame e
µ := dxµ,

the volume form vol(g) =
√−gdx0 ∧ dx1 ∧ dx2 ∧ dx3 is written as

vol(g) =

√−g

4!
ǫλκτγdx

λ ∧ dxκ ∧ dxτ ∧ dxγ =
1

4!
ǫλκτγdx

λ ∧ dxκ ∧ dxτ ∧ dxγ .

We refer to appendix B.3 for details on the relation between the volume form and the Levi-
Civita symbols. Since, see the formula (113), ǫµνρσǫλκτγ = (−1)s4!δ

[µ
λ δ

ν
κδ

ρ
τδ
σ]
γ the Einstein-

Palatini functional is written as

SEP[g,Γ] =
κ

4

∫

X

(−1)s

4!
ǫµναβǫ

µνρσ
ǫλκτγR

αβ
ρσdx

λ ∧ dxκ ∧ dxτ ∧ dxγ ,

=
κ

4

∫

X

(−1)s(−1)s4!

4!
ǫµναβδ

[µ
λ δ

ν
κδ

ρ
τδ
σ]
γ R

αβ
ρσdx

λ ∧ dxκ ∧ dxτ ∧ dxγ,

= (κ/4)

∫

X

ǫµναβR
αβ
ρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ = (κ/2)

∫

X

ǫµναβdx
µ ∧ dxν ∧ Rαβ,
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where in the last equality we use the curvature 2-form Rαβ = (1/2)Rαβ
ρσdx

ρ ∧ dxσ. Finally,
using the relation ǫµναβ = eIµe

J
ν e

K
α e

L
β ǫIJKL (between the volume element ǫǫǫµναβ of gµν = eIµe

J
νhIJ

and the volume element ǫIJKL of the Minkowski metric hIJ), the Palatini functional action
is written as

SPalatini[e, ω] =
κ

2

∫

X

eIµe
J
ν e

K
α e

L
β ǫIJKLdx

µ ∧ dxν ∧ Rαβ ,

=
κ

2

∫

X

ǫIJKLe
I
µdx

µ ∧ eJνdxν ∧ eKα eLβRαβ =
κ

2

∫

ǫIJKLe
I ∧ eJ ∧ FKL.

Analogously, in the formulation of dreibein gravity, the Einstein-Hilbert action functional
SEH[gµν ] =

∫

X

√−gRβ is equivalent to the action functional SPalatini =
∫
ǫIJKe

I ∧RJK .
Proof. Let us evaluate vol(g)R = β

√−gR, the integrand of the Einstein-Hilbert action.
Contracting the Riemann curvature tensor, we have R = Rαβ

ρσδ
ρ

[αδ
σ
β]. Then,

SEP[g,Γ] =

∫

X

vol(g)R =

∫

X

vol(g)δρ[αδ
σ
β]R

αβ
ρσ.

We also have the relation δρ[αδ
σ
β]1!2!(−1)s = ǫµαβǫ

µρσ, see the algebraic identity (113) in
appendix B.2, with n = 3 and p = 1. Thus,

SEP[g,Γ] =
1

2

∫

X

vol(g)(−1)sǫµαβǫ
µρσRαβ

ρσ.

The volume form is written: vol(g) =
√−gdx1∧dx2∧dx3 = (

√−g/3!)ǫλκτdx
λ∧dxκ∧dxτ =

(1/3!)ǫλκτdx
λ ∧ dxκ ∧ dxτ . Then, we have

SEP[g,Γ] =
1

2

∫

X

(−1)s

3!
ǫµαβǫ

µρσ
ǫλκτR

αβ
ρσdx

λ ∧ dxκ ∧ dxτ ,

=
1

2

∫

X

ǫµαβR
αβ
ρσdx

µ ∧ dxρ ∧ dxσ =

∫

X

ǫµαβdx
µ ∧Rαβ ,

where we used ǫ
µρσ

ǫλκτ = (−1)s3!δ
[µ
λ δ

ρ
κδ
σ]
τ and since the curvature 2-form is written as Rαβ =

(1/2)Rαβ
ρσdx

ρ ∧ dxσ. Using the identity ǫµαβ = eIµe
J
αe

K
β ǫIJK , we finally obtain

SPalatini[e, ω] =

∫

X

eIµe
J
αe

K
β ǫIJKdxµ ∧ Rαβ =

∫

X

ǫIJKe
I
µdx

µeJαe
K
β R

αβ =

∫

ǫIJKe
I ∧ F JK .

B Algebraic relations, volume form and vielbein

In this section we present the basic algebraic properties of the Levi-Civita symbols, gen-
eralized Kronecker symbols, Levi-Civita tensors, and densities constructed on the vielbein
field.

B.1 Levi-Civita symbols

We denote by ǫµ1,··· ,µn the Levi-Civita symbol and by ǫǫǫµ1,··· ,µn the Levi-Civita tensor. Let Sn
be the set of all permutations of n elements. The signature of the permutation σ ∈ Sn is
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denoted by sgn(σ) with value 1 and −1, when the permutation is even or odd, respectively. By
definition, ǫµ1,··· ,µn = +1 if (µ1, · · · , µn) is an even permutation of (1, · · · , n), ǫµ1,··· ,µn = −1
if (µ1, · · · , µn) is an odd permutation of (1, · · · , n), and ǫµ1,··· ,µn = 0 otherwise.

The determinant det(m) of a matrix m = {mµ
ν}1≤µ,ν≤n is given by the Leibniz formula

det(m) =
∑

σ∈Sn

sgn(σ)mσ(1)
1 · · ·mσ(n)

n =
∑

σ∈Sn

sgn(σ)m1
σ(1) · · ·mn

σ(n), (110)

and is equivalently written as det(m) =
∑

1≤µ1···µn≤n
ǫµ1,··· ,µnm

µ1
1 · · ·mµn

n.

B.2 Generalized Kronecker symbols

We introduce the generalized Kronecker symbols δµ1,··· ,µnν1,··· ,νn
. By definition δµ1,··· ,µnν1,··· ,νn

= +1 if
(µ1, · · · , µn) is an even permutation of (ν1, · · · , νn), δµ1,··· ,µnν1,··· ,νn

= −1 if (µ1, · · · , µn) is an an
odd permutation of (ν1, · · · , νn), and ǫµ1,··· ,µn = 0 otherwise. The generalized Kronecker
symbol provides a way to write the anti-symmetric Levi-Civita symbols ǫµ1,··· ,µn = δ1···nµ1,··· ,µn

and ǫµ1,··· ,µn = δµ1,··· ,µn1···n . We adopt the anti-symmetry conventions of Wald [107] i.e.

δµ1[ν1 · · · δ
µn
νn]

=
1

n!

∑

σ∈Sn

sgn(σ)δµ1
σ(ν1)

· · · δµn
σ(νn)

=
1

n!
ǫν1,··· ,νnδµ1ν1 · · · δ

µn
νn
, (111)

then, δµ1,··· ,µnν1,··· ,νn
= n!δµ1[ν1 · · · δ

µn
νn]

=
∑

σ∈Sn
sgn(σ)δµ1

σ(ν1)
· · · δµn

σ(νn)
= ǫν1,··· ,νnδµ1ν1 · · · δµnνn . For any

1 ≤ p ≤ n, we also have the identity

(1/p!)ǫµ1···µn−pρ1···ρpǫν1···νn−pρ1···ρp = δµ1···µn−p
ν1···νn−p

. (112)

The identity (112) is very useful and give

ǫµ1...µpα1...αn−pǫµ1...µpβ1...βn−p
= p!(n− p)!δ

[α1

β1
...δ

αn−p]
βn−p

,

ǫµ1...µnǫν1...νn = n!δ
[µ1
ν1 ...δ

µn]
νn ,

ǫµ1...µnǫµ1...µn = n!.

(113)

Finally, using the generalized Kronecker symbol, the general formula for the determinant of
a matrix m ∈ Matn(R) is written as det(m) = (1/n!)

∑

µ1···µnν1···νn
δν1,··· ,νnµ1,··· ,µn

m
µ1
ν1 · · ·mµn

νn.

B.3 Volume form, Levi-Civita tensor, Levi-Civita tensor density

Let (X , g) be a Riemannian manifold. The canonical volume form, a nowhere vanishing n-
form on X is denoted by vol(g) ∈ ΛnT ⋆X is related to the metric gµν by vol(g) =

√
gdx1 ∧

.... ∧ dxn =
√

gβ, where g := |g| := |det(gµν)|. The Levi-Civita tensor is connected to the
volume form vol(g) by the following formulae:

ǫǫǫµ1...µn =
√

|g|ǫµ1...µn, ǫǫǫµ1...µn = (−1)σσσ(1/
√

|g|)ǫµ1...µn, (114)

where σσσ is the number of negative values in the signature of the metric i.e. (−1)σσσ = 1 and
(−1)σσσ = −1 in the Riemannian and Lorentzian cases, respectively. We construct the tensorial
invariant volume n-form vol(g) =

√

|g|β, where β = dx1 ∧ ...∧dxn = (1/n!)ǫµ1...µndx
µ1 ∧ ...∧

dxµn . We have vol(g) = (1/n!)ǫǫǫµ1...µndx
µ1 ∧ ... ∧ dxµn = (1/n!)

√

|g|ǫµ1...µndxµ1 ∧ ... ∧ dxµn .

Finally, the important formula ǫǫǫµ1...µpα1...αn−pǫǫǫµ1...µpβ1...βn−p
= (−1)σσσp!(n − p)!δ

[α1

β1
...δ

αn−p]
βn−p

specializes to ǫǫǫµ1...µnǫǫǫν1...νn = (−1)σσσn!δ
[µ1
ν1 ...δ

µn]
νn and ǫǫǫµ1...µnǫǫǫµ1...µn = (−1)σσσn!.
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B.4 Volume form and vielbein

We introduce the covariant volume form vol(g), from the vielbein viewpoint. We denote
vol(e) = eβ = eI1 ∧ · · · ∧ eIn , where β = dx1 ∧ · · · ∧ dxn = (1/n!)ǫµ1,··· ,µndxµ1 ∧ · · · ∧ dxµn .
The space-time Levi-Civita symbols ǫµ1,··· ,µn and ǫµ1,··· ,µn have a counterpart in the vielbein
setting. They correspond to the alternating symbols with tangent space indices ǫI1···In and
ǫI1···In, respectively. For any 1 ≤ j ≤ n we have eIj := e

Ij
µjdx

µj , thus vol(e) is written as

vol(e) = (1/n!)ǫI1···Ine
I1 ∧ · · · ∧ eIn = (1/n!)ǫI1···Ine

I1
µ1
· · · eInµndxµ1 ∧ · · · ∧ dxµn . (115)

Using e = det(eIµ) = (1/n!)ǫI1···Inǫ
µ1,··· ,µneI1µ1 · · · eInµn (the formula for the determinant of the

vielbein matrix), (115) is now written as vol(e) = (1/n!)ǫI1···Ine
I1
µ1
· · · eInµn(n!)ǫµ1,··· ,µnβ = eβ.

Then, the determinant e[3] := det(eIµ) of the dreibein and the determinant e[4] := det(eIµ) of
the vierbein are given by

e[3] = (1/3!)ǫIJKǫ
µνρeIµe

J
ν e

K
ρ , e[4] = (1/4!)ǫIJKLǫ

µνρσeIµe
J
ν e

K
ρ e

L
σ , (116)

respectively. The determinant of the inverse vielbein matrix det
(
(eIµ)

−1) is given by

e−1 = det
((
eIµ
)−1)

=
(
det
(
eµI
))−1

= det(eµI ) = (1/n!)ǫI1···Inǫµ1,··· ,µne
µ1
I1
· · · eµnIn . (117)

Let us note that the formula in (114) are equivalently, in the vielbein formalism, written as

ǫǫǫµ1...µn = eǫµ1...µn, ǫǫǫµ1...µn = (−1)σσσe−1ǫµ1...µn. (118)

We have ǫµνα = ǫIJKe
I
µe
J
ν e

K
α , and ǫµναβ = ǫIJKLe

I
µe
J
ν e

K
α e

L
β , where ǫµνα = eǫµνα and ǫµναβ =

eǫµναβ , for the dreibein and vierbein formulation, respectively. Note that we have also the

relations ǫIJK = ǫµναe
µ
I e
ν
Je

α
K and ǫIJKL = ǫµναβe

µ
I e
ν
Je

α
Ke

β
L.

B.5 Vielbein densities

We introduce the vielbein densities, denoted by E
µ1···µp
I1···Ip

, with 1 ≤ p ≤ n. They are con-

structed on the determinant of the vielbein det(e) and p vielbeins eµ1I1 · · · e
µp
Ip

such that

E
µ1···µp
I1···Ip

= det(e)
∏

j e
µj
Ij

= eeµ1I1 · · · e
µp
Ip

. We consider the anti-symmetrized object, i.e.

E
[µ1···µp]
I1···Ip

=
1

p!

∑

σ∈Sn

E
µσ(1)···µσ(p)

I1···Ip
=

1

p!
δµ1···µpν1···νp

E
ν1···νp
I1···Ip

=
1

p!
δµ1···µpν1···νp

E
[ν1···νp]
I1···Ip

=
1

(n− p)!
ǫµ1···µpρ1···ρn−p

1

p!
ǫν1···νpρ1···ρn−pE

µ1···µp
I1···Ip

(119)

First, we are interested by the density Eµ
I = eeµI = det(eµI )e

µ
I . We have, for p := 1 (n is

the dimension of the space-time manifold), Eµ
I =

(
(1/n!)ǫI1···Inǫ

µ1,··· ,µneI1µ1 · · · eInµn
)
eµI or equiv-

alently Eµ
I = (1/(n− 1)!)ǫµµ1...µn−1ǫII1...In−1e

I1
µ1
· · · eIn−1

µn−1
. This relation is straightforwardly

derived. Let us denote (1) := ǫµµ1...µn−1ǫII1...In−1e
I1
µ1
· · · eIn−1

µn−1
. Using the algebraic relation

ǫII1...In−1 = ǫǫǫνν1...νn−1e
ν
Ie
ν1
I1
· · · eνn−1

In−1
, we obtain

(1) = ǫµµ1...µn−1
(
ǫǫǫνν1...νn−1e

ν
Ie
ν1
I1
· · · eνn−1

In−1

)
eI1µ1 · · · eIn−1

µn−1
= eδµµ1...µn−1

νν1...νn−1
eνIe

ν1
I1
· · · eνn−1

In−1
eI1µ1 · · · eIn−1

µn−1
,

= eδµµ1...µn−1
νν1...νn−1

eνI
(
δν1µ1 · · · δ

νn−1
µn−1

)
= eδµµ1...µn−1

νµ1...µn−1
eνI = e(n− 1)!δµν e

ν
I = e(n− 1)!eµI .
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Now, we are interested in the density E
[µν]
IJ = ee

[µ
I e

ν]
J = (1/2)e(eµI e

ν
J − eνIe

µ
J), which is written

as E
[µν]
IJ =

(
1
n!
ǫI1···Inǫ

µ1,··· ,µneI1µ1 · · · eInµn
)
e
[µ
I e

ν]
J = 1

2!(n−2)!
ǫµνµ1...µn−2ǫIJI1...In−2e

I1
µ1
· · · eIn−2

µn−2
. This

relation is obtained as follows. Let us denote (2) := ǫµνµ1...µn−2ǫIJI1...In−2e
I1
µ1
· · · eIn−2

µn−2
. By the

straightforward calculation

(2) = ǫµνµ1...µn−2
(
ǫǫǫρσν1...νn−2e

ρ
Ie
σ
Je

ν1
I1
· · · eνn−2

In−2

)
eI1µ1 · · · e

In−2
µn−2

,

= eδµνµ1...µn−2
ρσν1...νn−2

eρIe
σ
Je

ν1
I1
· · · eνn−2

In−2
eI1µ1 · · · e

In−2
µn−2

= eδµνµ1...µn−2
ρσν1...νn−2

eρIe
σ
J

(
δν1µ1 · · · δ

νn−2
µn−2

)
,

= eδµνµ1...µn−2
ρσµ1...µn−2

eρIe
σ
J = eeρIe

σ
J(n− 2)!δµνρσ = eeρIe

σ
J(n− 2)!2!δ[µρ δ

ν]
σ = (n− 2)!2!E

[µν]
IJ ,

where we use the formula δµνµ1...µn−2
ρσµ1...µn−2

= (n−2)!
(n−2−(n−2))!

δµνρσ = (n− 2)!δµνρσ to pass from the second
to the third line.

Lemma B.1. Let us consider the vielbein density (119), with p = 2, i.e. E
[µν]
IJ = ee

[µ
I e

ν]
J .

Then, E
[µν]
IJ = 1

2!(n−2)!
ǫIJI1···In−2e

I1
ρ1
· · · eIn−2

ρn−2
ǫµνρ1···ρn−2 .

Proof. By the straightforward calculation

E
[µν]
IJ =

(
(1/n!)ǫI1···Inǫ

µ1,··· ,µneI1µ1 · · · e
In
µn

) (
δ[µρ δ

ν]
σ

)
eρIe

σ
J ,

=
(
(1/n!)ǫI1···Inǫ

µ1,··· ,µneI1µ1 · · · e
In
µn

)
(1/(2!(n− 2)!))−1

(
ǫν1···νn−2µνǫν1···νn−2ρσ

)
eρIe

σ
J ,

= (1/(2!(n− 2)!))−1ǫI1···Inǫ
ν1···νn−2µνδ[µ1ν1

· · · δµn−2
νn−2

δµn−1
ρ δµn]σ

(
eI1µ1 · · · e

In
µn
eρIe

σ
J

)
,

= (1/(2!(n− 2)!))−1ǫI1···Inǫ
µ1···µn−2µν

(
eI1µ1 · · · eIn−2

µn−2
eIn−1
ρ eInσ e

ρ
Ie
σ
J

)
,

= (1/(2!(n− 2)!))−1ǫIJI1···In−2e
I1
ρ1
· · · eIn−2

ρn−2
ǫµνρ1···ρn−2 .

In particular when n = 3 and n = 4 we have:

Lemma B.2. The densities E
[µν]
IJ = ee

[µ
I e

ν]
J , which are constructed with two dreibeins and

vierbeins are given by E
[µν]
IJ = (1/2)ǫIJKe

K
ρ ǫ

µνρ, and E
[µν]
IJ = (1/4)ǫIJKLe

K
ρ e

L
σǫ
µνρσ, in the case

where the dimension of the space-time manifold is n = 3 and n = 4, respectively.2

C Calculation of Ξ(Qω,ψ) ωωωPalatini

The interior product Ξ(Qω,ψ) ωωωPalatini is given by the straightforward computation:

(3) = −(1/2)ǫIJKLǫ
µνρσeKρ deLσ

(
−(1/6)ψαβ(x)ǫOPQLǫαβησe

η
Q∂/∂e

L
σ

)
dωIJµ ∧ βν ,

= (1/12)ǫOPQLǫIJKLǫ
µνρσǫαβησe

K
ρ e

η
Qψ

αβ(x)dωIJµ ∧ βν ,
= (1/12)(3!)δ

[O
I δ

P
J δ

Q]
K (3!)δ[µα δ

ν
βδ

ρ]
η e

K
ρ e

η
Qψ

αβ(x)dωIJµ ∧ βν ,
(120)

2In Peldan’s review [87] we found the relation ee
[µ
I e

ν]
J = (1/2)ǫIJKLe

K
ρ e

L
σ ǫ

µνρσ since there the terms in

antisymmetric sums are weighted with 1, e.g. e
[µ
I e

ν]
J = eµI e

ν
J −eνI e

µ
J . In our conventions, e

[µ
I e

ν]
J = (1/2)(eµI e

ν
J −

eνI e
µ
J), thus ee

[µ
I e

ν]
J = (1/4)ǫIJKLe

K
ρ e

L
σ ǫ

µνρσ.
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Since ǫµνρσǫαβησ = (3!)δ
[µ
α δνβδ

ρ]
η = ((3!)/3)

(
δ
[µ
α δ

ν]
β δ

ρ
η + δ

[ρ
α δ

µ]
β δ

ν
η + δ

[ν
α δ

ρ]
β δ

µ
η

)
, we obtain

(3) = (1/12)δ
[O
I δPJ δ

Q]
K

(

δµαδ
ν
βδ

ρ
η − δµαδ

ρ
βδ

ν
η − (δναδ

µ
βδ

ρ
η − δναδ

ρ
βδ

µ
η ) + δραδ

µ
βδ

ν
η − δραδ

ν
βδ

µ
η

)

eKρ e
η
Qψ

αβdωIJ
µ ∧ βν ,

= (1/12)δ
[O
I δPJ δ

Q]
K

(

δµαδ
ν
βδ

ρ
ηe

K
ρ e

η
Qψ

αβdωIJ
µ ∧ βν − δµαδ

ρ
βδ

ν
ηe

K
ρ e

η
Qψ

αβdωIJ
µ ∧ βν − δναδ

µ
βδ

ρ
ηe

K
ρ e

η
Qψ

αβdωIJ
µ ∧ βν ,

+δναδ
ρ
βδ

µ
η e

K
ρ e

η
Qψ

αβdωIJ
µ ∧ βν + δραδ

µ
βδ

ν
βe

K
ρ e

η
Qψ

αβdωIJ
µ ∧ βν − δραδ

ν
βδ

µ
βe

K
ρ e

η
Qψ

αβdωIJ
µ ∧ βν

)

,

= (1/12)δ
[O
I δPJ δ

Q]
K

(

eKρ e
ρ
Qψ

µν − eKρ e
ν
Qψ

µρ − eKρ e
ρ
Qψ

νµ + eKρ e
µ
Qψ

νρ + eKρ e
ν
Qψ

ρµ − eKρ e
µ
Qψ

ρν
)

dωIJ
µ ∧ βν ,

= (1/12)δ
[O
I δPJ δ

Q]
K

(

δKQψ
µν − eKρ e

ν
Qψ

µρ − δKQψ
νµ + eKρ e

µ
Qψ

νρ + eKρ e
ν
Qψ

ρµ − eKρ e
µ
Qψ

ρν
)

dωIJ
µ ∧ βν ,

= (1/6)δ
[O
I δPJ δ

Q]
K

(

δKQψ
µν − eKρ e

ν
Qψ

µρ + eKρ e
µ
Qψ

νρ
)

dωIJ
µ ∧ βν ,

and since ǫOPQǫIJK = δOI δ
P
J δ

Q
K − δOI δ

Q
J δ

P
K − (δPI δ

O
J δ

Q
K − δPI δ

Q
J δ

O
K)+ δQI δ

O
J δ

P
K − δQI δ

P
J δ

O
K , then (3) is written as

(3) = (1/6)
(
δOI δ

P
J δ

Q
K − δOI δ

Q
J δ

P
K − (δPI δ

O
J δ

Q
K − δPI δ

Q
J δ

O
K) + δQI δ

O
J δ

P
K − δQI δ

P
J δ

O
K

)

(
δKQψ

µν − eKρ e
ν
Qψ

µρ + eKρ e
µ
Qψ

νρ
)
dωIJ

µ ∧ βν ,
= (1/6)

[

δOI δ
P
J δ

Q
K

(

δKQψ
µνdωIJ

µ ∧ βν
)

− δOI δ
Q
J δ

P
K

(

δKQψ
µνdωIJ

µ ∧ βν
)

− δPI δ
O
J δ

Q
K

(

δKQψ
µνdωIJ

µ ∧ βν
)

,

+δPI δ
Q
J δ

O
K

(

δKQψ
µνdωIJ

µ ∧ βν
)

+ δQI δ
O
J δ

P
K

(

δKQψ
µνdωIJ

µ ∧ βν
)

− δQI δ
P
J δ

O
K

(

δKQψ
µνdωIJ

µ ∧ βν
)

,

+δOI δ
P
J δ

Q
K

(

− eKρ e
ν
Qψ

µρdωIJ
µ ∧ βν

)

− δOI δ
Q
J δ

P
K

(

− eKρ e
ν
Qψ

µρdωIJ
µ ∧ βν

)

− δPI δ
O
J δ

Q
K

(

− eKρ e
ν
Qψ

µρdωIJ
µ ∧ βν

)

,

+δPI δ
Q
J δ

O
K

(

− eKρ e
ν
Qψ

µρdωIJ
µ ∧ βν

)

+ δQI δ
O
J δ

P
K

(

− eKρ e
ν
Qψ

µρdωIJ
µ ∧ βν

)

− δQI δ
P
J δ

O
K

(

− eKρ e
ν
Qψ

µρdωIJ
µ ∧ βν

)

,

+δOI δ
P
J δ

Q
K

(

+ eKρ e
µ
Qψ

νρdωIJ
µ ∧ βν

)

− δOI δ
Q
J δ

P
K

(

+ eKρ e
µ
Qψ

νρdωIJ
µ ∧ βν

)

− δPI δ
O
J δ

Q
K

(

+ eKρ e
µ
Qψ

νρdωIJ
µ ∧ βν

)

,

+δPI δ
Q
J δ

O
K

(

+ eKρ e
µ
Qψ

νρdωIJ
µ ∧ βν

)

+ δQI δ
O
J δ

P
K

(

+ eKρ e
µ
Qψ

νρdωIJ
µ ∧ βν

)

− δQI δ
P
J δ

O
K

(

+ eKρ e
µ
Qψ

νρdωIJ
µ ∧ βν

)]

,

= (1/6)
[(

+ 4ψµνdωPO
µ ∧ βν

)

+
(

− δνρψ
µρdωOP

µ ∧ βν
)

+
(

ePρ e
ν
Qψ

µρdωOQ
µ ∧ βν

)

+
(

δνρψ
µρdωPO

µ ∧ βν
)

,

+
(

− eOρ e
ν
Qψ

µρdωPQ
µ ∧ βν

)

+
(

− ePρ e
ν
Qψ

µρdωQO
µ ∧ βν

)

−
(

− eOρ e
ν
Qψ

µρdωQP
µ ∧ βν

)

,

+
(

+ δµρψ
νρdωOP

µ ∧ βν
)

−
(

+ ePρ e
µ
Qψ

νρdωOQ
µ ∧ βν

)

−
(

+ δµρψ
νρdωPO

µ ∧ βν
)

,

+
(

+ eOρ e
µ
Qψ

νρdωPQ
µ ∧ βν

)

+
(

+ ePρ e
µ
Qψ

νρdωQO
µ ∧ βν

)

−
(

+ eOρ e
µ
Qψ

νρdωQP
µ ∧ βν

)]

,

= (1/6)
[(

+ 6ψµνdωPO
µ ∧ βν

)

+
((

ePρ e
ν
Qψ

µρdωOQ
µ ∧ βν

)

−
(

eOρ e
ν
Qψ

µρdωPQ
µ ∧ βν

)

,

+
(

− ePρ e
ν
Qψ

µρdωQO
µ ∧ βν

)

−
(

− eOρ e
ν
Qψ

µρdωQP
µ ∧ βν

)

+
(

eOρ e
µ
Qψ

νρdωPQ
µ ∧ βν

)

,

−
(

ePρ e
µ
Qψ

νρdωOQ
µ ∧ βν

)

+
(

ePρ e
µ
Qψ

νρdωQO
µ ∧ βν

)

−
(

eOρ e
µ
Qψ

νρdωQP
µ ∧ βν

)]

,

=
[(

+ 6(1/6)ψµνdωPO
µ ∧ βν

)

+ (1/6)
(

2
(

ePρ e
ν
Qψ

µρdωOQ
µ ∧ βν

)

− (1/6)
(

2eOρ e
ν
Qψ

µρdωPQ
µ ∧ βν

)

,

+(1/6)
(

2eOρ e
µ
Qψ

νρdωPQ
µ ∧ βν

)

− (1/6)
(

2ePρ e
µ
Qψ

νρdωOQ
µ ∧ βν

)]

.

Therefore, we conclude that (3) = 6(1/6)ψµνdωIJ
µ ∧ βν = (1/6)((1/6))−1ψµνdωIJ

µ ∧ βν = ψµνdωIJ
µ ∧ βν .
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