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SUMMARY 

 

Ti-6Al-4V, known for high strength-to-weight ratio and good resistance to 

corrosion, has been widely used in aerospace, biomedical, and high-performance sports 

applications. A wide range of physical and mechanical properties of Ti-6Al-4V can be 

achieved by varying the microstructures via deformation and recrystallization processes. 

The aim of this thesis is to establish a microstructure-sensitive fatigue analysis approach 

that can be applied in engineering applications such as fretting fatigue to permit explicit 

assessment of the influence of microstructure. In this thesis, crystal plasticity constitutive 

relations are developed to model the cyclic deformation behavior of Ti-6Al-4V.  The 

development of the slip bands within α-TiAl has been widely reported and has been 

found to play an important role in deformation and fatigue behaviors of Ti-6Al-4V. The 

shear enhanced model is used to simulate the formation and evolution of slip bands 

triggered by planar slip under static or quasi-static loading at room temperature. Fatigue 

Indicator Parameters (FIPs) are introduced to reflect driving force for the different crack 

formation mechanisms in Ti-6Al-4V. The cyclic stress-strain behavior and fretting 

fatigue sensitivity to microstructure and loading parameters in dual phase Ti-6Al-4V are 

investigated.  



 1

CHAPTER 1 

INTRODUCTION 

 

1.1 Microstructure and Deformation Behavior of Ti-6Al-4V 

 

Titanium alloys, known for high strength-to-weight ratio and good resistance to 

corrosion, have been widely used in aerospace, biomedical, and high-performance 

sporting good applications. A wide range of physical and mechanical properties can be 

achieved by alloying Ti. Depending on the predominant phase or phases in their 

microstructure, titanium alloys are categorized as α, α/β, or β alloys, or γ-titanium 

aluminides (Kar, 2005). 

The α phase of pure titanium has a hexagonal close packed (HCP) structure and 

remains stable at low temperature. At a temperature of approximately 980°C (transus 

temperature), the α phase transforms to the β phase which has body centered cubic 

structure and remains stable up to the melting point of about 1650°C.  The transus 

temperature of Ti can be raised by adding certain α stabilizing elements such as 

aluminum, gallium and germanium.  The α strengthening elements, notably tin and 

zirconium, have a high solubility in the α phase and can strengthen the α phase with little 

effect on the transus temperature (Kar, 2005).  Single-phase and near-single-phase α Ti 

alloys have good strength, toughness, creep resistance and weldability.  Furthermore, the 

generally high aluminum content of this group of alloys ensures good strength 

characteristic and oxidation resistance at elevated temperatures (in the range of 150 to 

315°C) (Kar, 2005).  

Elements such as chromium, columbium, copper, iron, manganese, molybdenum, 

tantalum, and vanadium stabilize the β phase by lowering the temperature of 

transformation from α to β.  Titanium alloys with high percentage of β−stabilizing 
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elements remain stable as β phase at room temperature; β alloys have good formability 

and can be strengthened considerably by heat treatment.  

The γ based titanium aluminides, having an aluminum level of 45-52%, are 

actually a mixture with γ phase of L10 structure and α2 phases (Ti3Al). The γ-TiAl based 

alloys display some attractive properties such as low density, high specific yield strength, 

high specific stiffness, good oxidation resistance, good resistance against long-term heat, 

and good creep properties at elevated temperatures, and therefore are considered for high-

temperature applications in aerospace and automotive industries (Kruzic et al., 1998). 

The α/β titanium alloys contain a mixture of α and β phases and, roughly 

speaking, combine the properties of strength of the α phase and ductility of β phase. A 

wide range of microstructure and properties of α/β titanium alloys can be achieved by 

appropriate heat treatment and thermomechanical processing. It is therefore important to 

tailor the alloy and its microstructure for a particular application.  

Among Ti alloys, Ti-6Al-4V commands the biggest share of the present aerospace 

market for its combination of reasonable strength and ductility due to modest quantities 

of α stabilizer (Al) and β stabilizer (V) (Picu and Majorell, 2002).  The typical chemical 

composition of Ti-6Al-4V is shown in Table 1 (Majorell et al., 2002).  

 

 

Table 1.1 Chemical composition of a typical Ti-6Al-4V, wt.% 

Al V O Fe Mo C Si Mn 

6.31 4.06 0.18 1.16 0.02 0.016 0.01 0.01 

Cu B Zr Y N Sn Cr Ti 

0.02 0.001 0.02 0.001 0.008 0.02 0.01 Bal 
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At temperatures above 980°C, Ti-6Al-4V is composed of equiaxed β grains.  

Cooling the material slowly from the β phase field into the two-phase field, a coarse 

lamellar arrangement of the α phase is generated.  Subsequent deformation and 

recrystallization processes can produce a wide range of microstructures ranging from 

bimodal to fully lamellar, as shown in Fig. 1.1 (Kar, 2005).  The fully lamellar structure 

is used in applications that require fatigue crack propagation resistance, high fracture 

toughness, and creep resistance (Lütjering and Gysler, 1992).  Bimodal or duplex 

structures, containing both globular and Widmanstatten features, provide good yield 

strength, tensile ductility, and fatigue strength (resistance to crack initiation in HCF) and 

are the focus of this study.   

 

 

 
Figure 1.1   a) lamellar microstructure (Optical micrograph: bright phase is α phase);  b) 
bimodal or duplex microstructure (SEM micrograph: dark phase is α phase) (Kar, 2005). 

 

The mechanical behavior of Ti-6Al-4V is significantly affected by its texture and 

microstructure morphology.  The colony size, width of the lamellae and the character of 

the inter-lamellar interface were found to be important for lamellar structured Ti-6Al-4V 

(Lütjering et al., 1992, 1995, 1998).  For the bimodal structure, Lütjering (1998) 

suggested that grain size and volume fraction of primary α phase were the dominant 
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microstructural features with respect to mechanical behavior.  The grain size determines 

the effective slip distance within the globular α phase, and in turn affects the yield 

strength. Experiments conducted by Lütjering (1998) showed an increase of material 

strength with decreasing volume fraction of primary α phase.   In summary, the key 

microstructural features of Ti-6Al-4V include: average grain size of globular (primary) α 

phase, lamellar colony size, volume fraction of primary α phase, and mean thicknesses of 

the secondary α and β phases in the lamellar structure. 

Due to highly anisotropic nature of crystallographic slip and low symmetry of 

HCP crystals, the orientation distribution of grains strongly affects the mechanical 

behavior of the bulk material (Fager and Spurr, 1968).  For certain applications, as much 

as 30% increase of Young’s modulus or 40% enhancement of yield strength can be 

achieved from textured Ti-Al alloys (Lee et al., 1966).  Fager and Spurr (1968) reported  

a pronounced influence of texture on stress-corrosion resistance.  Textures produced via 

thermomechanical processing of Ti-6Al-4V are generally grouped into three distinct 

categories: basal, transverse, and basal/transverse textures (Schoenfeld and Kad, 2002).  

Thermomechanical processing (e.g., rolling) of the α−dominated microstructure at 

around 815°C produces a basal texture. As temperature increases to 980 °C, rolling of the 

β−dominated microstructure generates a transverse texture.  A mixed basal/transverse 

texture is created via thermomechanical processing at intermediate working temperatures 

ranging from 815°C to 980°C.  A random texture, in which grain orientations are 

randomly distributed, is also found in commercial Ti-6Al-4V alloys. Examples of basal 

plane pole figures of these textures are shown in Fig. 1.2, with ND the direction normal 

to the rolled sheet (through thickness). 
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Figure 1.2  Basal pole figures of representative textures (Mayeur, 2004). 

 

 

Table 1.2  Relative CRSS of slip systems reported in the literature for α-titanium and α/β 
Ti-Al alloys, normalized to the CRSS for prismatic slip at room temperature (Mayeur, 

2004). 

/basal prism
CRSS CRSSτ τ  /pyr a prism

CRSS CRSSτ τ  /pyr c a prism
CRSS CRSSτ τ+

Reference 

0.93 - 1.3 1 1.1 - 1.6 Medina et al., 1995 

1.25 - 2.625 Paton et al.,  1973 

5 5 8.0 - 15.0 Fundenberger et al., 1997 

1.5 1 3 Dunst and Mecking, 1996 

1 - 8 Lebensohn and Canova, 1997 

1.43 - 4.23 Bieler and Semiatin, 2001 

 

TD 

RD 

ND 
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Extensive studies have been conducted on the deformation behavior of α Ti-Al 

alloys subjected to a wide range of strain rates at different temperatures. Nanoindentation 

tests were also conducted by Viswanathan et al. (2005) on Ti-6Al-4V alloys containing 

high volume fraction of globular α phase. It was shown that mechanisms of plastic 

deformation in α Ti-based alloys include glide, twinning, and/or stress induced phase 

transformations, depending on Al content.  As for other HCP crystalline materials, there 

are four different families of slip systems for the α phase: basal, prismatic, first order 

pyramidal and second order pyramidal slip systems (Naka and Lasalmonie, 1982), as 

shown in Fig. 1.3.  The critical resolved shear stress (CRSS) of slip systems reported in 

literature for α-titanium and α/β Ti-Al alloys at room temperature are summarized by 

Mayeur (2004), and are shown in Table 1.2.  It is clear that the slip resistance of the basal 

system is higher than that of the prismatic system.  The pyramidal systems have the 

largest CRSS of all slip systems.   

At temperatures below 980°C, a slight enrichment of Al in α phase leads to 

formation of α2 precipitates (Ti3Al) in the form of very fine particles. A large number of 

α2 particles can homogeneously precipitate inside the α phase after an overaging process.  

Picu and Majorell (2002) found that the influence of α2 precipitation on the CRSS for 

prismatic slip was negligible.  However, a high content of α2 phase was found to decrease 

the strength and ductility but increase the possibility of adiabatic shear band formation 

under dynamic loading (Lee et al., 1966).  

Previous studies (Williams et al., 2002; Picu and Majorell, 2002) have shown that 

both Al concentration and deformation temperature have a pronounced effect on both the 

resolved stress for slip and the deformation character of α Ti-Al.  It was shown that 

prismatic slip dominates polycrystal deformation of α Ti-Al alloys with low fraction of 

Al (e.g., < 2.9 wt.%) at room temperature.  With increasing Al concentration, basal slip 

becomes increasing important. Prismatic and basal slip should be about equally important 
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in deformation of Ti-Al alloys when the Al concentration reaches 5 wt.% to 6 wt.%. At 

the same time, the transition from wavy to planar slip was observed as the Al content 

increases from 1.4 wt.% to 6.6 wt.% (Williams et al., 2002).  The CRSS of every slip 

system decreases with increasing temperature. The drop of CRSS with increasing 

temperature for pyramidal slip systems is much steeper than for the prismatic/basal 

planes.  This results in the critical resolved shear stress values in all active slip planes 

converging at temperatures above 325°C (Paton et al., 1973). The equalization of CRSS 

in all slip systems was reported (Williams et al., 2002) to result in a shift of slip in α 

phase Ti-Al from planar to wavy.  However, Paton and Backofen (1970) showed that 

<c+a> pyramidal slip was always more difficult to activate than either prism or basal slip 

at all temperatures below 730°C.  

 

          (a) Basal.             (b) Prismatic.       (c) 1st order pyramidal.  (d) 2nd order pyramidal. 
 

Figure 1.3  Slip systems for the primary α-phase, with slip direction shown in blue. 
 

The highly planar nature of slip at low temperature is an important slip feature of 

α-TiAl. Picu and Majorell (2002) suggested that the presence of α2 (Ti3Al) precipitate as 

a material imperfection in the alpha matrix triggered the planar slip. Another generally 

accepted explanation for the planar slip is the breakdown of short-range order (SRO) 

( )1120 0001  { }1120 1010 { }1120 1011 { }1123 1011
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between titanium, aluminum and oxygen atoms (Williams et al., 2002; Neeraj et al., 

2001; Xiao and Umakoshi, 2002, 2003).  It was suggested that the leading dislocation 

moving through the lattice breaks down the SRO; subsequent dislocations cannot restore 

the order.  As a result, a favorable dislocation path is introduced due to the lower friction 

stress exerted on trailing dislocations.  Therefore, further slip concentrates in this slip 

plane, leading to planar deformation. The strong planar slip character inhibits cross-slip 

of screw segments; even though there is interaction between slip systems, it is observed 

that the slip bands are able to pass through one another with only minor difficulty (Xiao 

and Umakoshi, 2002, 2003).  

 

 

 

Figure 1.4. Three-dimensional crystallographic sketch of slip bands in Ti-5Al single 
crystal oriented for single prismatic slip (Xiao and Umakoshi, 2003). 

 

Dislocation configurations in form of the band structures have been widely 

reported for the higher-Al-content α Ti-Al alloys deformed under monotonic (Blackburn 

and Williams, 1969), cyclic (Xiao and Umakoshi, 2003), creep (Neeraj et al., 2001), and 

dynamic loading (Xue et al., 2002) at room temperature.  The reason for slip band 

formation has been postulated as the highly planar nature of slip.  The formation of slip 
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bands results in very little work hardening in slip systems.  In the case of monotonic 

deformation, unusually low strain hardening exponent values are found when a strain 

rate-sensitive Hollomon flow law is used to fit the stress-strain curve (Neeraj et al., 

2000). An obvious cyclic softening stage was observed by Umakoshi and Xiao (2003) in 

the cyclic stress-strain curves of the α Ti-5Al single crystal oriented for single and double 

prismatic slips. The low work-hardening manifests significant low temperature creep 

behavior of α TiAl alloys compared to many other metals and alloys (Neeraj et al., 2000). 

Xiao and Umakoshi (2003) investigated the dislocation structure in single crystals 

oriented for single prismatic slip under cyclic loading.  The dislocations were found to be 

arranged in a banded structure, as shown in Fig. 1.4.  Slip bands were found parallel to 

the active slip plane and were uniformly distributed over the specimen surface; they 

widened as the cyclic deformation continued.  The TEM observations showed that the 

width of slip bands increased while spacing between bands decreased with increasing 

cyclic plastic strain amplitude (CPSA) in the α Ti5Al single crystal oriented for single 

prismatic slip (Xiao and Umakoshi, 2002).   In the case of the single crystal oriented for 

double prismatic slip, both the width and spacing of slip bands decreased as the CPSA 

increased, indicating that new slip bands were formed (Xiao and Umakoshi, 2003).  

Twinning is potentially an important deformation mechanism in hcp materials. 

Pure α Ti subjected to low strain rates experiences deformation twinning at temperatures 

below 500ºC.  At higher temperatures, Ti twins only under dynamic loading.  Increasing 

Al concentration inhibits twinning. Ti-6%Al does not twin even at very low temperatures, 

e.g., -170ºC (Paton et al., 1976). Twinning is only observed in Ti-6Al-4V loaded at high 

strain rates (5000 s-1) at room temperature. Thus, twinning is not a major deformation 

mechanism in Ti-6Al-4V at rates and temperatures of practical interest to aerospace 

structures such as blades and disks in the compressor section of an aircraft gas turbine 

engine (Picu and Majorell, 2002). 
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In duplex Ti-6Al-4V, the lamellar colonies contain secondary α and β phases 

arranged in a lamellar structure. TEM observations show that the Burgers orientation 

relation (BOR), shown in Fig. 1.5, holds between these two phases.  The BOR is given as 

( ) { }0001 110 , 1120 111
α β βα  

(Ankem and Margolin, 1980).  The deformation 

behavior of a α/β lamellar colony is not very well-understood due to the difficulties of in-

situ testing and characterization of the very fine structure.  Picu and Majorell (2002) 

found that the mechanical behavior of Ti-6Al-4V changed markedly only when the wt% 

of β was larger than 50% at 970ºC. They believed that the soft V-enriched β phase plays 

a marginal role in deformation of the lamellar colonies at low homologous temperature 

due to the very low volume fraction. Therefore, it was suggested that the deformation of 

the lamellar colony was mainly controlled by the secondary α phase, and the deformation 

mechanism of secondary α phase was similar to that of primary α phase (Picu and 

Majorell, 2002).  The interface between secondary α and β phases was considered to 

have little resistance to dislocation transmission by Lin et al. (1984).  However, Suri et al. 

(1999) reported pronounced anisotropy in the primary creep response of two prismatic 

slip systems which could be attributed to the near-Burgers orientation relationship 

observed in α/β titanium alloys.  Savage et al. (2001) observed that the slip resistance of 

an interface for one basal slip system in colonies of Ti6242 is much lower that that of 

other two basal slip systems.  Ambard et al. (2001) reported that slip occurred primarily 

on prismatic slip planes in equiaxed α regions of Ti-6Al-4V, while basal slip dominated 

in the α/β colonies.  Savage et al. (2004) investigated the anistropic deformation of α/β 

colonies of Ti6242 and showed that the CRSS for a1, a2 and a3 basal slips ordered as 

a2>a3>>a1. Dislocation annihilation in the a1 system is possible due to slip transmission 

through the β laths, resulting in lower strength and work hardening, while the a2 and a3 

systems show significant dislocation pile-ups at the α/β interfaces.  Those observations 

revealed the significant effects of α/β interfaces on the slip behavior.   
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Mayeur (2004) proposed a model for the α/β colonies by homogenizing the 

lamellar structure with 24 possible slip systems: 3 basal ( )1120 0001 , 3 prismatic 

{ }1120 1010 , 6 <a> first-order pyramidal { }1120 1011 , and 12 { }111 110  bcc 

systems, as illustrated in Fig. 1.6.  Prior to assigning grain orientation, the bcc slip 

systems are transformed into the hexagonal coordinate system according to the Burgers 

orientation relation (BOR).  The slip systems that either glide parallel to the α/β interface 

or have parallel slip planes in both the α and β phases are considered as the soft 

deformation modes.  The set of soft deformation modes consists of 3 basal, 1 prismatic, 

and 2 { }111 110  bcc slip systems.  Within the set of soft deformation modes assumed in 

this model, dislocations on the prismatic system glide parallel to the α/β interface, 

whereas the basal and close packed bcc planes are parallel and dislocations gliding in 

these planes are effectively able to transmit and traverse the length of the lamellar colony, 

as shown in Fig. 1.5.   The hard modes of deformation correspond to the slip systems for 

which dislocations cannot transmit through the interface, therefore leading to high CRSS 

for these systems due to net residual dislocation density at the α/β interfaces.  
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Figure 1.5 Lamellar Burgers orientation relationships (BOR). 
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( )1120 0001  { }1120 10 10 { }1120 10 11 { }111 110

 

Figure 1.6  Slip geometry for equivalent representation of α/β colonies, with slip 
direction shown in blue (Mayeur, 2005). 

 

Considerable effort has been devoted to modeling the mechanical behavior of Ti-

6Al-4V for a wide range of loading histories.  Classical rate-independent isotropic 

plasticity theory (J2 plasticity) with nonlinear isotropic and kinematic hardening rules was 

used by Goh (2002) to simulate the fretting behavior of Ti-6Al-4V.  Neeraj et al. (2000) 

used a relatively simple Hollomon flow equation to describe the constant strain rate 

behavior of Ti-6Al-4V. It was shown that the creep response of these alloys at room 

temperature can be correlated by first fitting their constant strain rate response.  Barboza 

et al. (2004) developed a power-law model to describe the normal creep behavior of Ti-

6Al-4V at 500ºC and 600ºC.  It was shown that dislocation climb dominated the primary 

and steady-state creep regimes. Guo et al. (2005) applied both a phenomenological 

Johnson-Cook equation of state plasticity model and a dislocation-mechanics-based BCJ 

(Bammann-Chiesa-Johnson) model to describe the response of Ti-6Al-4V under dynamic 

loading.  The BCJ model incorporates strain rate and temperature dependence, as well as 

damage, and was found to be the more accurate approach to predict the effect of loading 

history, once calibrated to experimental data for other histories.   

While conventional plasticity was found useful to model the macroscopic stress-

strain response of Ti-6Al-4V, the homogenized approach is incapable of explicitly 
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describing the effects of microstructure on mechanical behavior.  Goh et al. (2001) and 

Morrissey et al. (2003) developed a microstructure-scale two-dimensional crystal 

plasticity model of duplex Ti-6Al-4V that employed a planar triple slip idealization; 

fretting fatigue simulations were conducted using a two-dimensional finite element 

model.  The two-dimensional crystal plasticity model was extended to a full three-

dimensional version by Mayeur (2004).  The slip geometry of a lamellar colony was 

modeled by homogenizing the fine structure with 24 slip systems. As just discussed, the 

hard and soft deformation modes were introduced based on the BOR.  The CRSS of each 

slip system of the two phases depends on the corresponding length scale.  Finite element 

(FE) models used to simulate fretting fatigue (Mayeur, 2004; Zhang et al., 2006) reveal a 

significant influence of the microstructural features of Ti-6Al-4V on the plastic 

deformation behavior in the region of contact.   

Similar effects of microstructural features on creep, fretting and high strain rate 

deformation behavior of Ti-6Al-4V were shown in the studies by Hasijia et al.(2003), 

Dick and Cailletaud (2006) and Schoenfeld and Kad (2002), respectively.   Picu and 

Majorell (2002) developed a dislocation density dependent approach in which the stress 

is assumed to be composed of thermally activated and athermal components.  The 

thermally activated stress is described by a Kocks-Mecking model while the athermal 

component is the function of the generic dislocation density and the grain size.  In Picu 

and Majorell (2002), the primary α phase and lamellar colony are assumed to have the 

same deformation behavior at room temperature, which is counter to experimental 

observations.  Marin and Dawson (1998) proposed an elasto-viscoplastic constitutive 

model for polycrystalline materials which was applied to both face centered cubic and 

hexagonal close-packed crystals subjected to both monotonic and non-monotonic loading 

histories. Based on this model, a series of simulations of hot rolling of α/β Ti-6Al-4V 

alloys were carried out to examine the misorientation structure within grains for different 

textured materials loaded at various directions (Barton and Dawson, 2001). To 
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investigate the anisotropic strength of heat-treated Ti-6Al-4V, the iso-strain hypothesis 

(Taylor model) was employed to corporate the evolving orientation distribution (Dawson, 

et. al, 2005). It should be noted that the iso-strain hypothesis is not good for HCP 

polycrystal due to their highly anisotropic nature of crystallographic slip and low 

symmetry. Dick and Cailletaud (2006) developed crystal plastic constitutive relations for 

Ti-6Al-4V in which only the primary α phase is considered.  Fretting fatigue simulations 

were conducted on Ti-6Al-4V with more realistic modeling of grain shapes using 

Voronoi polyhedra.  All these studies showed that the crystal plasticity model is able to 

capture the significant microstructure and texture effects on the mechanical deformation 

behavior of Ti-6Al-4V, which is important for a microstructure sensitivity study and 

microstructure-scale fatigue analysis.  

 

 

1.2 Slip Localization and Slip Bands 

 

Slip bands are regions with localized slip in crystals.  The dislocation density in a 

slip band can be up to two orders higher than that in the matrix. In crystalline material, 

slip bands initiate and thicken as dislocations accumulate within the bands; the 

orientation of slip bands in a single crystal depends on the crystallographic orientation 

relative to applied strain. Under quasi-static loading at room temperature, slip bands in α 

Ti-Al alloys can develop as previously discussed.  Experiments on single crystal metals 

subjected to tensile and compressive loading at large strain are summarized by Dao and 

Asaro (1996). Experimental observations regarding the structure of slip bands and 

corresponding internal stresses within FCC metals can be found in Antonopoulos and 

Winter (1976) and Kassner et al. (1997, 2000, 2001). The nucleation, propagation and 

evolution of slip bands lead to cyclic strain softening of the crystalline materials. Slip 

bands play an important role in the high cycle fatigue (HCF) response of crystalline 
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materials. Dao and Asaro (1996) showed that microvoids formed near the banded region 

due to the intensive shear and contributed to the material failure.  In cyclically deformed 

α Ti-Al alloys, slip bands impinge on the grain boundary, leading to high stress 

concentrations that promote grain boundary decohesion. 

Slip band phenomena are known to play a role in the initiation of fatigue cracks of 

crystalline materials.  It is generally believed that slip bands are triggered by material 

instabilities, including material defects, microvoid nucleation (Steninger and Melander, 

1982), hard or soft inclusions (Sukumar et al., 2001), texture (Nealea et al., 2003), strain 

softening (Argon, 1973), reorientation of smaller grain in nano-crystalline materials (Fu 

et al., 2004), and strain rate softening (Wang and Yao, 1997).  Asaro and Rice (1977) 

argued that localization can also arise from constitutive instability such as non-Schmid 

effects.  Boundary constraints can also trigger the non-uniform deformation, as shown by 

Lemonds et al. (1985).    

For materials described by idealized rate independent constitutive laws, Hill 

(1962) has developed a general theory of bifurcation of a homogeneous elastic-plastic 

flow field into bands of localized deformation.  By considering the non-Schmid effect 

due to contribution from components of stress other than the resolved shear stress, Asaro 

and Rice (1977) showed that the orientation of slip bands and critical plastic-hardening 

modulus could be predicted in the crystal plasticity framework, based on Hill’s 

bifurcation rule.  With this theory, strain localization in single and bi-crystals was then 

investigated by Dao and Asaro (1993, 1996), Paidar et al. (1984) and Lemonds et al. 

(1985).  Shear localization phenomena in bi-crystals were shown to be very similar to 

those in single crystals after finite deformation.  These simulations suggested that the 

misorientation between grains can trigger the slip localization and significantly affect the 

deformation patterns. It should be noted that these approaches are typically more closely 

associated with the large strain regime. 
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Many works have been done to explicitly model the slip bands using macroscopic 

plasticity or crystal plasticity models combined with conventional finite element method. 

Winter (1974) employed a two-phase model in which the volume fraction of PSBs 

(persistent slip bands) was linear with respect to plastic strain amplitude. Sluys and Estrin 

(2000) used a dislocation based gradient crystal plasticity model to investigate the slip 

localization in a single crystal subjected to monotonic tensile loading.  The strain 

localization under cyclic loading in nickel-based superalloys was studied by Flouriot et 

al. (2003) by using a crystal plasticity algorithm.  Zaiser et al., (1998) modeled the strain 

localization in persistent slip band (PSB) structure by using a strain gradient approach. 

Mughrabi (2004) indicated that although a promising match of size effects between 

experimental observation and prediction of strain gradient plasticity model was obtained 

by Aifantis (1984) and Fleck et al. (1994), lack of detailed microscopic consideration and 

unique internal length scale for a given material deformed to a certain plastic strain lead 

to the difficulties in explaining the physical meaning of the material length scale relating 

to measurable microstructural dimensions.  In the “composite model” developed by 

Mughrabi (2001), the material was divided into hard and soft regions representing 

dislocation cell wall and cell interiors, respectively. The strain gradient was considered to 

be developed between these two regions and layers of GND of opposite sign formed on 

the either side of the dislocation walls. Thus, the strain gradient term could be linked to 

the length scale of the slip band. 

It should be noted that in the previous works on explicitly modeling the slip bands 

in crystalline materials, prescribed perturbations were necessary to trigger the localized 

deformation.  The prescribed perturbations include: material imperfection, thickness 

inhomogeneities of FE model, material points with different properties, boundary 

constraints, and so on.  The assumption of such prescribed conditions is consistent with 

the concept that slip localization results from the material instability.  It should be noted 

that the parameters of prescribed perturbations can significantly influence the geometry 
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and structure of the simulated slip band. Zhou et al. (2005) indicated that the deformation 

behavior of slip band and matrix should be different based on uniaxial cyclic loading 

experiments on nickel single crystal oriented for single slip.  To account for this, distinct 

constitutive models are used for the slip band and matrix “phases”.  A stress-based 

criterion was employed to determine the propagation of slip bands. Thus, the prescribed 

perturbations were not required to trigger the shear localization, since the local stress 

perturbations were used. It was found that the resulting average boundary stresses at the 

onset of PSBs were quite consistent with those reported in the literature (Zhou et al., 

2005). 

The slip band spacing is an intrinsic length scale reflecting dislocation 

substructures and internal stresses. A theory of slip band spacing in fatigued materials has 

been developed by Venkataraman et al. (1991) based on a criterion of minimum strain 

energy.  Crack nucleation is considered to occur in the slip band when the strain energy 

in a local region exceeds the surface energy necessary to open up the crack 

(Venkataraman et al., 1991).  Olmstead et al. (1993) developed a theoretical 

characterization of a slip band as a surface of discontinuity for a one-dimensional 

problem. The slip band was idealized as an infinitesimally thin domain. Evolutions of 

stress and temperature within a slip band were obtained. The principle of minimum 

energy was used by many other researchers to calculate the wavelength and thickness of 

PSB. Hecker (1998) assumed that the strain is constant in PSB and predicted extremely 

small PSB wall width and unrealistically high internal stresses. Kratochvil et al. (1998, 

2001) assumed that the strain in PSB varies during deformation. The calculated PSB 

width was shown to be very close to the experimental data of single crystal Ni cycled at 

room temperature by Kratochvil et al. (1998, 2001).  A set of partial nonlinear differential 

equations (reaction-diffusion) was suggested by Differt and Essmann (1993, 1996) to 

describe the walls in PSBs. The shape of the walls can be obtained by solving the 
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equations. It should be noted that FCC metals such as pure Cu and Ni were considered in 

these studies. 

Ortiz et al. (1999, 2000) developed a nonlocal micromechanical theory to 

characterize analytically dislocation structures in fatigue FCC single crystals (e.g. Ni and 

Cu), including PSB. It is shown that the development of dislocation structure is caused by 

the lack of convexity of the incremental energy functional. In this theory, the 

development of complex dislocation structures and the corresponding softening effect are 

accounted by a sequence of simple lamellate process. So far, this theory was only applied 

to FCC single crystals. Implementation of this theory in finite element simulation to 

explicitly simulate the slip band in HCP crystals is unavailable.  

The phase field theory has been widely used in material science to model the 

grain growth (Granasy et al., 2006), phase transformation (Charach et al., 2004), and 

dislocation interaction (Wang et al. 2001). Fried and Gurtin (1993) extended the 

Ginsburg-Landau theory (Landau and Khalatnikov, 1965) of phase transition by 

introducing a micro-force balance law between phases. Bammann et al. (1999) used this 

theory to develop a gradient model of dislocation evolution. Slip band and matrix display 

different deformation behaviors. Therefore, Onuki (2003) suggested that a phase field 

approach would be useful to model the slip localization. The basis of the phase field 

theory is the functional of the local free energy density depending on the order parameter 

of the system and its spatial derivatives. Different phases such as matrix and slip band 

have different ordered status. The motion of individual phases can be derived by 

minimizing the free energy functional (Steinbach et al., 1995). In order to modeling the 

interaction between the slip band and matrix, the local free energy of the two “phases”, is 

required.   

One aim of this study is to explicitly simulate the development of slip band in α 

TiAl alloys. In this study, a composite modeling approach is employed, in which we 

intentionally introduce soft regions in a matrix. Similar to other composite modeling 
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approaches (Winter, 1974; Zhou et al., 2005), different material constants are assigned to 

the slip band (soft region) and matrix. We limit localization by using reduced integration 

elements on the order of the intended width of the slip band. The width and spacing of 

slip bands are obtained from the experimental observations. It is possible that the 

nonlocal approach such as certain forms of strain gradient crystal plasticity can be used to 

model slip bands. However, compared to the strain gradient crystal plasticity models, the 

approach used in this study is simpler, more robust for fatigue simulation, and less 

computationally expensive. Furthermore, the strain gradient approach faces the similar 

issues as the nonlocal approach. For example, the wavelength of slip band effectively 

needs to be determined a priori by assignment of a suitable gradient coefficient. Similar 

to the approach used in this study, these coefficients are constants and independent of 

deformation (Ortiz et al., 2000). 

 

 

1.3 Crystal Plasticity 

 

Microstructure has significant influence on the macroscopic properties. 

Traditional macroscopic models of plasticity are unable to capture the local details of the 

deformation mechanisms at the microstructural level. Crystal plasticity theory was 

developed to describe slip at the single crystal level.   

The anisotropic elastic response of the crystal is modeled using independent 

components of the elastic stiffness tensor with symmetries that correspond to each crystal 

class.  Plastic deformation reflects the accumulation of slips on each active slip systems.  

The crystal plasticity algorithm follows that described in Bennett (1999) and McGinty 

and McDowell (1999).  The total deformation gradient is decomposed multiplicatively, 

i.e.,  
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 e p=F F F  (1.1) 
 
 

where eF  denotes the elastic deformation gradient which incorporates reversible elastic 

stretch and rigid body rotation of the lattice. The plastic deformation gradient pF  

describes the change in the shape of the grain due to dislocation glide while the lattice is 

unchanged. The velocity gradient L in the current configuration is given by 

 

 -1=L FF  (1.2) 

and can be decomposed as 

 

 e p= +L L L  (1.3) 

where 

 

 1 1 1  and  = e e e p e p p e− − −=L F F L F F F F  (1.4) 

 

The kinematics of elastic-plastic deformation of crystals are shown in Fig. 1.7. 

The grids represent the crystal lattice; 0
αs  and 0

αn  denote unit vectors in the slip direction 

and the slip plane normal direction, respectively, for the αth slip system in the 

undeformed configuration. Note that αs and are αn not generally unit vectors, but remain 

orthogonal during deformation. As the material plastically deforms, the lattice undergoes 

elastic deformation and rigid rotations.  Correspondingly, the unit vectors in the current 

configuration, deform with the lattice, i.e., 

 

 1
0 0  and  e eα α α α −= =s F s n n F  (1.5) 
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The plastic velocity gradient in the intermediate configuration is based on the sum 

of shearing rates on active slip systems, i.e., 

 

 ( )0 0
1

ˆ
sysN

p α α α

α

γ
=

= ⊗∑L s m  (1.6) 

 

where αγ is the shearing rate on the αth slip system. 

 
 

Figure 1.7 Kinematics of elastic-plastic deformation of crystalline 
solid deforming by crystallographic slip 

( I: Undeformed, II: Intermediate, III: Deformed (or Current) Configuration). 
 

The elastic Green strain tensor is defined as  
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with the right Cauchy-Green deformation tensor defined as 

 

 e eT e=C F F  (1.8) 

 

The Cauchy stress σ is defined in the deformed configuration as force/(unit deformed 

area).  In the intermediate configuration, the symmetric 2nd Piola-Kirchhoff stress tensor 

pk2σ  is defined by 

 

 ( )pk2 1det e e e T− −= F F σFσ  (1.9) 

 

Therefore, the elasic stress-strain relation with respect to the intermediate configuration 

can be written as 

 pk2 e= ⋅C Eσ  (1.10) 

 

where C is a fourth rank anisotropic elasticity tensor. 

The rate of viscoplastic shear strain ( αγ ), for the αth slip system, is given in this 

work by 

 

 ( )0 sgn

m

D

α α α
α α α

α

τ χ κ
γ γ τ χ

− −
= −  (1.11) 

 

where m is the inverse strain-rate sensitivity exponent, αχ represents the kinematic 

hardening or back stress variable on the αth slip system, ακ is the scalar threshold stress, 

Dα is the drag stress, and γ o is the reference shearing rate.   The Macauley bracket in Eq. 
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(1.11) is defined by <x> = xH(x), where H(x) is the Heaviside step function. In Eqn. 

(1.11), ατ is the resolved shear stress applied on αth slip system and is given by 

 

 ( )pk2
0 0

α α ατ = ⋅ ⊗σ s n  (1.12) 

 

It is important to use several internal state variables to model deformation 

behavior of metallic cyrstals because the sources of internal stress are fundamentally 

different in nature.  The drag stress accounts for the component of slip resistance that can 

be overcome by thermal fluctuation, e.g., climb-assisted glide.  The threshold stress can 

be viewed as resistance arising from athermal statistical strengthening mechanisms 

associated with an increase in the dislocation density.  Variation of the threshold stress 

leads to variation of size of the viscoplastic flow potential. The back stress reflects a 

directional dependence of current plastic flow on previous strain. Origins of back stress 

were discussed in McDowell (1994), including differential yielding among grains, pile-

ups of dislocations against hard obstacles, differential resistance to slip in forward or 

reverse directions, and statistical aspects of dislocations bypassing barriers. Variation of 

back stress results in a shift of the viscoplastic potential surface. Both back stress and 

threshold stress depend on loading history and temperature.  

Evolution laws of back stress, threshold stress and drag stress prescribe the 

deformation behavior of material. Numerous equations have been proposed. A form of 

evolution equation for the drag stress is (Asaro and Needelman, 1985) 

 

 D hα β
αβ

β

γ= ∑  (1.13) 
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where hαβ  are slip-plane hardening moduli; diagonal terms hαα  represent “self-

hardening” on a slip system and the off-diagonal terms reflect “latent hardening”.   

The Armstrong-Frederick (Armstrong and Frederick, 1966) type nonlinear 

kinematic hardening rule is generally used for evolution of the back stress on each slip 

system (McGinty, 2001), i.e., 

 

  -   C Dα α α αχ γ χ γ=  (1.14) 

 

where C and D are direct hardening and dynamic recovery coefficients, respectively.  

 A form of evolution equation for threshold stress is written as (McGinty, 2001) 

 

 ( )A Bα α β
κ κ

β

κ κ γ= − ∑   (1.15) 

 

where Aκ  and Bκ  are direct hardening and dynamic recovery coefficients, respectively. 

Later in present work, only Eq. (1.14) will be used for Ti-6Al-4V. 

The Hall-Petch relation states that flow stress increases with decreasing grain size, 

and has been widely observed for polycrystalline metals.  Several mechanisms have been 

proposed (dislocation pile-ups), but all tend to relate to the mean free path for dislocation 

motion.  A Hall-Petch type relation for threshold stress of α TiAl crystals was proposed 

by Picu and Majorell (2002). Mayeur and McDowell (2007) employed a Hall-Petch type 

relation for a component of the threshold stress to manifest the length scale effect of Ti-

6Al-4V, i.e.,  

 

 ( ) 0.5

1  yk dα ακ
−

=  (1.16) 
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where yk is the Hall-Petch coefficient and d α  is the microstructure scale relating to the 

free slip length of the αth slip system.  Several length scales, including grain size, colony 

size and thickness of lamellar laths, serve as controlling length scales to capture the scale 

effects for this dual phase alloy (Mayeur, McDowell, 2007).  

 

 
1.4 Fatigue Indicator Parameters 

 

Microstructure plays an important role in fatigue crack formation and early 

growth (McDowell, 1996).  Fatigue is a complex, load history dependent process at the 

microstructure level.  A substantial amount of research has been devoted to 

understanding the mechanisms associated with fatigue crack formation and propagation.  

Conventional fatigue studies often involve a large number of experiments with uniaxial 

stress states.  To understand the effect of microstructure on fatigue behavior, fatigue tests 

must be conducted on various microstructures for ostensibly the same material.  These 

tests are generally expensive to conduct and time-consuming.   

A computational-based microstructure sensitive approach to fatigue has been 

advanced by McDowell (1996b) using the measured microstructural features to quantify 

the statistical distribution of fatigue responses. In addition to microstructure parameters, 

sensitivity of fatigue to loading parameters such as the amplitude of the applied strain, the 

load ratio, and multiaxiality can also be explored using computational methods. This 

approach involves the following steps (McDowell, 2005): 

I. Identify controlling microstructure features for crack formation and early 

growth. 

II. Conduct numerical analyses (e.g. finite element) of various 

microstructures for representative loading cases. 
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III. Calculate the fatigue indicator parameters as a function of applied strain 

amplitude, mean stress or strain, and variable amplitude loading, as appropriate. 

IV. Apply microstructure-scale crack formation/incubation relations based on 

simple Coffin-Manson forms to model crack formation life.  

V. Calibrate constants of Coffin-Manson and small crack propagation 

relations to results for experimentally characterized microstructure(s) and then use 

these constants to predict results for other microstructures. 

This approach can provide microstructure-sensitive parameters in fatigue models for 

structural application. Various fatigue damage mechanisms are considered to support 

fatigue life prediction. This computational approach can also greatly reduce the number 

of required experiments to assess scatter in fatigue, providing predictive assessment of 

sensitivity of fatigue life to microstructure.   

The total fatigue life can be decomposed into several stages (McDowell, 2007), 

i.e., 

 

 T inc MSC LCN N N N= + +  (1.17) 
 
 
Here, Ninc is the number of cycles for small crack incubation/formation with initial length 

on the order of microstructure feature, and NMSC is the number of cycles to propagate in 

microstructurally small regime.  At this stage, the crack length or plastic zone size is on 

the order of microstructure features and crack growth cannot be calculated based on the 

conventional linear elastic fracture mechanics (LEFM).  The crack driving force is the 

cyclic crack tip displacement range, ∆CTD, which can be related to the fatigue crack 

propagation rate by 

 

 ( )th
MSC

da C CTD CTD
dN

  = ∆ − ∆ 
 

 (1.18) 
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where ∆CTDth is the threshold for crack propagation and C is the slip irreversibility 

factor.   Cycles NLC denote the crack propagation life in long crack regime, for which 

LEFM is applicable.  During HCF, the formation of a fatigue crack can comprise a large 

fraction of the fatigue life of a material (Lankford and Kusenberger, 1973).  

Consequently, for HCF it is important to quantify the relevant driving force for fatigue 

crack nucleation from various microstructural inhomogeneities.  

Various models have been proposed to predict the crack incubation life (fatigue 

crack formation) of materials under multiaxial fatigue loading.  Two types of models are 

generally used for HCF loading conditions: equivalent stress model and critical plane 

model.  The equivalent stress models are essentially extensions of static yield criteria, 

such as the von Mises criterion.   

The critical plane models were developed based on observations that Stage I 

fatigue cracks often form on critical planes.  The term “Fatigue Indicator Parameters” 

(FIPs) is used in this study when such parameters are applied at the microstructure level. 

Both strain-based and stress-based critical plane approaches have appeared in the 

literature for various alloys. Strain-based approaches, such as the Smith-Watson-Topper 

(SWT) (Smith et al., 1970) and the Fatemi-Socie (FS) (1988) parameters, allow 

identification of the critical planes that undergo maximum normal strain or maximum 

cyclic plastic shear strain.  On the other hand, stress-based parameters such as that of 

Findley (1957) adopt the maximum shear stress plane as the critical plane.  In Gallagher 

et al. (2005), the critical plane is not defined by the value of an individual stress or strain 

component; the critical plane is the plane experiencing the maximum value of the critical 

plane parameter.  

Critical plane parameters are found to provide good correlation with multiaxial 

crack initiation test data when applied at the macroscale.  At the level of microstructure, 
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fatigue crack formation is mainly driven by the localized cyclic plastic deformation. 

Consequently, the FIPs used in this study are strain-based critical-plane models.  

Three strain-based critical plane parameters at the macroscale (denoted as DP) are 

generally used in literature: Smith-Watson-Topper (SWT) (Smith et al., 1970), Fatimi-

Socie (FS) (1988) maximum cyclic plastic shear strain.  The SWT parameter is a tensile-

dominated parameter, i.e., 

 

 max
max2

p

SWTDP ε
σ

∆
=  (1.19) 

 
 

where max

2

pε∆  is the amplitude of the maximum normal plastic strain and maxσ is the 

maximum normal stress on this plane during a loading cycle. The FS parameter is a 

shear-dominated parameter, i.e., 

 

 
max

max 1
2

p
n

FS
y

DP Kγ σ
σ

 ∆
= +  

 
 (1.20) 

 

Here, max
pγ∆  is the maximum plastic shear strain range, max

nσ  is the maximum normal 

stress on the corresponding critical plane, and K is a material parameter. Another widely 

used multiaxial parameter is the maximum plastic shear strain range, max
pγ∆ , with respect 

to all possible plastic shear strain range planes, i.e., 

 

 max

2

p

DPγ
γ∆

=  (1.21) 

 

All three parameters are used in Gallagher et al. (2005) to study the fatigue 

behavior of Ti-6Al-4V. It was shown that SWT parameter produced very poor correlation 
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of the biaxial damage, while the shear-based models were reasonably accurate; it can be 

concluded that the initiation of fatigue cracks in Ti-6Al-4V is driven primarily by cyclic 

plastic shear strain. Among the shear dominated parameters, the Fatemi-Socie parameter 

includes the maximum normal stress to the critical plane and therefore is considered to be 

more suitable than max
pγ∆  for the prediction of fatigue life of Ti-6Al-4V (Mayeur et. al, 

2006).  Moreover, as shown by Berard and McDowell (1992), it more closely mimics the 

mixed mode ∆CTD for small cracks.  

At the microstructure level, FIPs (denoted as P) such as Fatemi-Socie (FS) (1988) 

and maximum cyclic plastic shear strain parameters are applied as nonlocal indicators of 

driving force for fatigue crack formation and early growth. The maximum plastic shear 

strain range is linked to the fatigue life of crack formation when the crack formation life 

is mainly controlled by to and fro irreversible motion of the dislocations i.e., 

 

 
* max*

max 1
2
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n

FS
y

P Kγ σ
σ

 ∆
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*
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2

p

Pγ
γ∆

=  (1.23) 

 

where *
max 2∆ pγ  is the average value of maximum max 2pγ∆  over a finite domain which 

we will designate with an asterisk, and max*
nσ  denotes the maximum normal stress on the 

corresponding critical plane over the same averaging domain. It is noted that the process 

of fatigue crack formation at the microstructure level operates over a finite domain.  

Therefore, an averaged *
max 2∆ pγ  is more appropriate for the purpose of quantifying the 

driving force for fatigue crack nucleation. The length scale of averaging domain should 

represent a characteristic length of crack formation at the microstructure level. A typical 
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size of averaging domain is the grain size, for example, or sometime a few micros for 

crack embryos.   

The defined FIPs FSP  and Pγ  can be related to the crack formation life at the scale 

of a grain according to the nonlocal Coffin-Manson laws given in (Goh, 2002), i.e., 

 

 ' '(2 )c
FS f fP Nγ=  (1.24) 

 

 ' '(2 )c
f fP Nγ γ=  (1.25) 

 

The material constants used in Eqs. (1.22)-(1.25) can be the same as that described in 

previous works (Goh, 2002; Mayeur, 2006); they are: ' 0.684c = − , ' 0.687fγ = and 1K = . 

Shear-dominated FIPs account for the classical to-and-fro slip mechanism for 

crack formation. This mechanism is not responsible for all crack formation at the 

microstructure scale. Progressive pileup of dislocations in slip bands (Zener mechanism) 

(Hollomon and Zener, 1946) that impinge on grain or phase boundaries can lead to 

formation and propagation of small cracks in the microstructure. Thus, two crack 

formation mechanisms of HCF α-TiAl must be considered: decohesion of the slip band 

interface due to intense shear along the slip band and slip band impingement on the grain 

boundary. In this study, additional FIPs are proposed to account for various mechanisms 

for crack formation in Chapter 7.  

An important application of the fatigue model is fretting fatigue. Fretting fatigue 

occurs as a result of mixed stick-slip conditions at the interface of two contacting bodies 

under repetitive reversed slip.  Fretting fatigue is drawing increasing attention as one of 

the leading causes of premature failure for gas turbine engines.  For example, the 

vibratory load applied on the blade and disk causes a fretting motion (micron scale 

relative motion) at their interface (Cortez et al., 1999).  Fretting fatigue is a near-surface 
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phenomenon that occurs over a very small region.  Damage and plastic deformation 

accumulate within a depth of several grains in the material.  The tangential relative 

surface displacement between two bodies is also extremely small (several µm).  Since the 

material microstructure is of comparable dimensions, it can significantly influence the 

mechanical behavior.  Experimental observations show that fretting fatigue cracks may 

form at the edge of contact region, at the boundary between the slip and non-slip regions, 

or at the center of contact of the specimens (Antoniou and Radtke, 1997).   

 

 

1.5 Scope of Thesis 

 

The aim of this study is to develop a computational approach that can capture the 

sensitivity of cyclic deformation and fatigue behavior to microstructure of Ti-6Al-4V.  

This approach consists of microstructure-scale constitutive relations for Ti-6Al-4V, a 

finite element mesh that can adequately represent the microstructure of material, with 

FIPs used to indicate the driving force for fatigue crack formation at the microstructure 

level.  

In this study, three-dimensional microstructure-scale crystal plasticity constitutive 

relations of Ti-6Al-4V are fit to the measured stress-strain responses of a heat-treated Ti-

6Al-4V subject to a complex loading history.  The finite element model is constructed to 

adequately represent the microstructure of actual materials. The mesh developed which 

consist of a series of simulated annealing processes performed on the periodic Voronoi 

tessellation.  The calibrated crystal plasticity model can then be used for the 

microstructure sensitivity study of Ti-6Al-4V. Tensile, cyclic and fretting simulations are 

performed on microstructures with various orientation and misorientation distributions, 

average grain sizes and grain size distributions, represented by finite element meshes.  
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Both macroscopic stress-strain response and local stress-strain distribution can be 

obtained and compared.  The deformation behavior is simulated as the function of 

microstructure attributes. The most influential microstructure attributes of Ti-6Al-4V 

include average grain size, volume fraction of primary α phase, thickness of laths of 

lamellar colony, texture,  and grain size distribution.  

Slip banding plays an important role in deformation and fatigue behavior of Ti-

6Al-4V. Therefore, it is important to simulate the development of slip bands in primary α 

grains. A shear-enhanced crystal plasticity model is proposed. Cyclic simulations are 

carried out on single crystal α Ti5Al oriented for single and double prismatic slip. 

Simulation results are compared with the experimental data in terms of stress-strain 

responses and slip distribution.   

This new approach is examined in term of its capability to capture the localized 

slip behavior of Ti-6Al-4V, including dominance of single slip in the HCF regime.   

    

 

1.6 Thesis Layout 

 

Chapters are assembled to address the thesis scope as follows:  

1. In Chapter 2, three-dimensional cyclic simulations are performed on 

various microstructures of Ti-6Al-4V by using the crystal plasticity model 

developed by Mayeur and McDowell (2006). The sensitivity of cyclic 

plastic strain behavior and FIPs to microstructure attributes of Ti-6Al-4V, 

such as grain size, texture, and grain size distribution are investigated.  

2. Chapter 3 focuses on variation of fretting fatigue behavior of Ti-6Al-4V 

with respect to variation of microstructure attributes.  Three-dimensional 

fretting fatigue simulations are conducted on various microstructures. 
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Effects of microstructure on cyclic plastic strain, plastic strain behavior 

and fatigue indicator parameter are examined. 

3. A three-dimensional crystal plasticity model for Ti-6Al-4V is proposed in 

Chapter 4 which includes enhanced evolution laws for threshold stress and 

back stress. The model includes length scale effects associated with 

dislocation interactions with different microstructure features, and is  

calibrated using finite element method to fit the measured macroscopic 

responses (overall stress-strain behavior) of a duplex heat treated Ti-6Al-

4V alloy subjected to a complex cyclic loading history. The finite element 

models are established to adequately represent the microstructures of the 

tested material.  Equivalent orientations with similar probability density 

distributions of the crystallographic orientations are assigned to the finite 

element mesh. A simulated annealing method is used to fit the 

misorientation distributions of the sample.  The microstructure sensitivity 

of the model is examined by comparing the experimental data with 

simulation results in terms of yield strength.  

4. In Chapter 5, variation of tensile behavior of Ti-6Al-4V with respect to 

variation of grain size distribution is systematically studied. A series of 

microstructures are created in such a way that only the grain size 

distribution varies.  Microstructures with various grain size distributions 

are realized in FE meshes, using a sequence of simulated annealing 

performed on random Voronoi tessellations to fit microstructure attributes 

such as grain size distribution and orientation and minimum 

misorientation distributions. 

5. In Chapter 6, formation of slip bands in single crystal α Ti5Al subject to 

various loading histories is simulated.  The shear enhanced crystal 

plasticity model is used to model the planar slip behavior of α Ti5Al.  
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Material perturbations are used to trigger the formation of slip bands.  

Simulation results are compared with the experimental data in term of 

both macroscopic stress-strain response and slip behavior.  

6. In Chapter 7, the slip behavior of polycrystalline Ti-6Al-4V is studied 

using a new computational approach.  This approach consists of the shear 

enhanced crystal plasticity model with a slip system softening strategy. A 

two-dimensional microstructure is created via EBSD measurements on the 

microstructure of Ti-6Al-4V.  The slip behavior of a Ti-6Al-4V subjected 

to tensile load is investigated.  It is shown that the proposed approach can 

qualitatively capture the slip behavior shown in experiments.   

7. In Chapter 8, new FIPs are proposed that can account for the driving 

forces for crack formation at the microstructure level. The so-called 

“rogue” grain combination is introduced and compared with the 

microstructure used in Chapter 7 in terms of its influence on cyclic fatigue 

behavior.  A significant enhancement of driving force for crack formation 

due to slip band impingement is obtained for “rogue” grain combinations. 

This result agrees with other studies and experimental observations.  

8. The summary and conclusions of this study are given in Chapter 9. 

Recommendations for future work are also provided in this chapter. 
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CHAPTER 2 

MICROSTRUCTURE-SENSITIVE CRYSTAL PLASTICITY 

MODELING 

 

 

2.1 Introduction 

 

 The fatigue process consists of crack formation and growth.  It depends on 

morphology of second phases and grains, as well as the presence of inclusions. Fatigue 

crack formation life can be a significant portion of total fatigue life for metallic materials. 

Fatigue crack formation is controlled by three primary factors: microstructure, 

temperature/environments, and loading history. It is well known that for engineering 

materials such as aluminum alloys and titanium alloys, various microstructures can be 

achieved by adjusting components of alloys and heat treatment and thermomechanical 

processes. Thus, it is desired to understand scatter in fatigue as a function of 

microstructure in order to tailor microstructure to improve fatigue resistance.  An 

engineering approach to fatigue life estimation for components typically requires a large 

number of fatigue tests for various microstructures. Here, we pursue a computational 

means of augmenting experiments to accelerate alloy modification and/or design.  

A computational microstructure-sensitive approach developed by McDowell 

(1996b) uses the measured microstructure attributes to quantify the statistical variation of 

fatigue responses. In addition to microstructure sensitivity, the sensitivity of probability 

of fatigue crack formation to the amplitude of the applied strain, the load ratio, and 

multiaxiality can also be explored using computational methods. Such an approach seems 

much more satisfying for purposes of microstructure selection or design aimed at 

improving mean fatigue resistance as well as quantifying variability (McDowell, 2005).   
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Various macro- and micro- scale constitutive relations of Ti-6Al-4V have been 

proposed to model the mechanical behavior as summarized in Chapter 1.  The aim of 

present study is to quantify the influence of the microstructure of Ti-6Al-4V on the cyclic 

fatigue. A three-dimensional crystal plasticity model proposed by Mayeur and McDowell 

(2007) is used to describe the deformation behaviors of primary α phase and lamellar 

colony.  Microstructure attributes considered in this study includes: texture, average grain 

size, and grain size distribution. Complex grain size distributions are introduced via 

Voronoi tessellation and modeled using 3D crystal plasticity to compare with uniform 

grain size results.   

In this Chapter, the descriptions of material and constitutive model are given in 

Sections 2.2 and 2.3, respectively.  The Voronoi tessellations for construction of 3D 

polycrystalline material are described in Section 2.4.  The predicted tensile responses of 

Ti-6Al-4V of different microstructures are shown in Section 2.5. The cyclic and fatigue 

behaviors of Ti-6Al-4V are reported in Section 2.6 and 2.7, respectively. Summary and 

conclusions are given in the last Section. 

 

2.2 Material 

 

The microstructure and deformation behavior of Ti-6Al-4V have been described 

in Chapter 1. In this Chapter, a duplex microstructure is considered which contains a 

mixture of primary hcp α phase, and secondary α plus bcc β phase arranged in a lamellar 

structure, as shown in Fig. 2.1.  It is well known that the texture and microstructure 

morphology have profound influence on performance of Ti-6Al-4V.  For example, the 

grain size determines the effective slip distance within the globular α phase, and in turn 

has an effect on the yield strength (Lütjering, 1998). The key first order microstructure 

attributes of Ti-6Al-4V include average globular (primary) α size, lamellar colony size, 
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volume fraction of the primary α phase, and mean thicknesses of the secondary α and 

β phases in the lamellar structure, as previously discussed.   

 

                                            

 

Figure 2.1. Microstructure of duplex Ti-6Al-4V. 

 

Due to the highly anisotropic nature of crystallographic slip in hcp crystals, along 

with the low symmetry of the hcp structure, the orientation distributions of grains 

strongly affect the mechanical behavior of the bulk material (Fager and Spurr,1968), as 

previously discussed.  Textures created via thermomechanical processing of Ti-6Al-4V 

are generally grouped into three distinct categories: basal, transverse, and basal/transverse 

textures (Schoenfeld and Kad, 2002).  Some commercial Ti-6Al-4V alloys have random 

texture, i.e., grain orientations are randomly distributed. The measured basal plane pole 

figures for these simulated textures are shown in Fig. 2.2 (Mayeur, 2004). 

hcp primary α-phase 

Secondary α and bcc β 
phase arranged in a 
lamellar structure
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Figure 2.2. Basal plane pole figures of representative textures (Mayeur, 2004). 

 

 

2.3 Crystal plasticity model 

 
For the primary α phase, four families of slip systems are included in the model: 

three 1120 (0001)< >  basal, three 1120 {1010}< >  prismatic, six 1120 {1011}< >  first 

order pyramidal, and twelve 1123 {1011}< >  second order pyramidal slip systems, as 

illustrated in Fig. 1.3.  The dominant slip systems of the primary α phase are the basal 

and prismatic due to their relatively low critical resolved shear stress (CRSS).  The slip 

resistance of the first order pyramidal slip system is about twice those of the basal and 

prismatic slip systems.  Among all slip systems, the second order pyramidal system has 

the highest CRSS, more than four times higher than the CRSS of basal and prismatic slip 

systems (Bieler and Semiatin, 2001). A Hall-Petch assumption is invoked that the CRSS 

of each of the slip systems depends inversely on the square root of the mean free path for 

TD 

RD 

ND 
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dislocation motion. For the primary α phase, this is the mean grain size, d. It has been 

shown that this predicts measured scale effects relatively well for this alloy (Zhang et al., 

2007). 

The α/β colony contains secondary α and β phases arranged in lamellar structure.  

The thicknesses of the secondary α and β phase range from hundreds of nanometers to 

several microns.  It is extremely difficult to explicitly model such small structures using a 

finite element mesh that must include a large number of grains.  Thus, the α/β lamellar 

colony is homogenized by considering the crystallographic relationships between the 

secondary α and β laths given by (0001) //{110}α β  and 1120 // 111α β< > < >  (Lütjering 

and Williams, 2003), as illustrated in Fig. 1.5.  Following the approach described by 

Mayeur and McDowell (2007), there are 24 possible slip systems in the lamellar colony: 

three { }1120 0001< >  basal, three 1120 {1010}< >  prismatic, six 1120 {1011}< >  first-

order pyramidal and twelve <111>{110} bcc slip systems, which are transformed into the 

hexagonal coordinate system according to the Burgers orientation relationship, as 

illustrated in Fig. 1.6.  Pyramidal <c+a> systems are not included in the model of the 

lamellar grains because this hard mode of deformation is unlikely to be active in the 

secondary α laths.  Additionally, the accommodation of plastic deformation along the c-

axis in these lamellar regions can be accounted for by the softer bcc systems.   

Three different microstructure length scales, corresponding to secondary α lath 

thickness, β lath thickness, and lamellar colony size, respectively, are considered in terms 

of their effect on strengthening.  The slip systems with a slip direction that intersects the 

secondary α/β interface are considered to be “hard” due to the relatively small effective 

slip distance.  The slip resistances of the hard systems that belong to the hcp slip systems 

and bcc slip systems are governed by the lath thicknesses of the secondary α and β 

phases, respectively.  The soft deformation modes correspond to slip systems that either 

glide parallel to the α/β interface or have parallel slip planes in both the α and β phases.  
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The set of soft deformation mode consists of 3 basal, 1 prismatic and 2 <111>{110} bcc 

slip systems.  Within the set of soft deformation modes assumed in this study, the 

prismatic system glides parallel to the α/β interface, whereas the basal and close packed 

bcc planes are parallel and dislocations gliding in these planes are effectively able to 

traverse the entire length of the lamellar colonies.  Figure 2.3 illustrates the relevant 

microstructural length parameters as well the soft lamellar deformation modes.  Table 2.1 

summarizes the soft and hard slip systems of the lamellar colonies and corresponding 

microstructure length scales lα. 

 

Prismatic Plane

Basal Plane 
{110} Plane 

sα

β

colonyd

dβ

s
dα

 

 

Figure 2.3  Lamellar colony length scales (left) and section view along aligned hcp basal 
and {110} bcc slip planes  that promote soft deformation modes (right). 

 

Table 2.1 Soft and hard slip systems of the lamellar colony. 

Soft slip systems Hard slip systems 
Slip systems lα Slip systems lα 

3 ( )1210 0001  basal dcolony ( )1210 1010  prismatic 
s

dα  

( )2110 0110  prismatic dcolony ( )1120 1100  prismatic 
s

dα  

( )111 101  bcc dcolony  Other ( )111 101  bcc dβ 

( )111 101  bcc dcolony   
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Kinetic equations provide the relationship between slip system shearing rates and 

the driving forces (resolved shear stresses).  In a rate dependent formulation, all slip 

systems are considered to be active for stresses above the threshold, and a flow rule 

relates the shearing rates αγ  for the αth slip system to the resolved shear stress and the 

current state of the microstructure, i.e., 

 

 ( )
-  

sgn -  

m

o D

α α α
α α α

α

τ χ κ
γ γ τ χ

−
=  (2.1) 

 

for α = 1…h, where h is the number of slip systems. Here, ατ is the resolved shear stress, 

Dα is the drag stress, m is the inverse strain-rate sensitivity exponent, αχ represents the 

kinematic hardening variable or back stress on the αth slip system, ακ is the scalar 

threshold stress, and γ o is the reference shearing rate. Superscript “α” denotes to the αth 

slip system in all cases. 

The drag stress on each system of the primary α phase is assumed constant at 

room temperature.  For the hcp slip systems of the secondary α−β lamellar colonies, the 

drag stresses are taken to be the same as their counterparts in the primary α phase (i.e., 

,prism prism basal basalD D D Dα α β α α β+ += = , etc.), whereas the drag stress for the bcc systems is taken to 

be slightly lower than the drag stress for prismatic systems ( { }111 110 0.9 prismD Dα β α+ = ) to 

represent the mechanically softer nature of β-Ti alloys.   

The back stress on each slip system evolves according to a nonlinear kinematic 

hardening rule of Armstrong-Frederick type, i.e., 

 

 
α α αχ = Cγ - Dχ γ

 (2.2) 
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where C and D are direct hardening and dynamic recovery coefficients, respectively.   

The threshold stress does not evolve, i.e., 0ακ = , for slip systems other than the 

prismatic systems of the primary α phase. However, a component of the threshold stress 

depends on certain microstructure length scales, including grain size, colony size, and 

lath size and spacing.  The threshold stress scales according to the Hall-Petch relationship 

 

 ( ) 0.5

1  yk lα ακ
−

=  (2.3) 
 

where yk is the Hall-Petch coefficient and  lα is the microstructure scale relating to the 

mean free path for dislocation glide on the αth slip system. For the primary α phase, lα  

corresponds to the grain size, as mentioned before. For lamellar colonies, three different 

length scales are invoked for different slip systems, corresponding to lamellar colony size 

and α and β lath thicknesses.  In addition, the threshold stress for prismatic slip systems 

of the primary α phase includes a component with non-Schmid effects associated with 

dislocation core spreading, i.e., 

 

 1 1 2( )prism Pyr PyrAα ακ κ τ τ= + −  (2.4) 
 
 

where 1
ακ is defined in Eq. (2.3).  The second term in Eq. (2.4) corresponds to the non-

Schmid effect and will either increase or decrease the threshold stress, depending on the 

sense of the applied load with respect to the crystal orientation.  Shear stresses 1pyrτ and 

2pyrτ  are non-Schmid resolved shear stresses on pyramidal planes that share the 1120< >  

burgers vector with each prismatic plane and promote recombination of the dissociated 

core (Mayeur and McDowell, 2007).  This non-Schmid term is included only for 
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prismatic systems of the primary α phase and leads to tension/compression yield 

asymmetry for these systems.   

 

Table 2.2 Constitutive Equations for Ti-6Al-4V. 

 

 

Flow Rule: 

( )
-  

 sgn -  

m

o D

α α α
α α α

α

τ χ κ
γ γ τ χ

−
=

Evolution Equations for Hardening Variables: 

Back stress (primary α phase and lamellar colony) 

Threshold stress 

Drag stress 

α α α αχ = Bγ - Cχ γ

1 1 2( )prism Pyr Pyrprism
Aα ακ κ τ τ= + −

Primary α phase 

1basal basal

α ακ κ=

1soft soft

α ακ κ=

1pry pry

α ακ κ=

Lamellar colony 

1hard hard

α ακ κ=

0Dα =

( ) 0.5

1  yk lα ακ
−

=

prism prismD Dα α β+= { }111 110 0.9 prismD Dα β α+ =basal basalD Dα α β+=

for all slip systems 

Soft and hard slip systems of the lamellar colony and corresponding 
microstructure length scales lα l are summarized in Table 2.1 
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The constitutive equations are summarized in Table 2.2. The crystal plasticity is 

implemented as a User MATerial (UMAT) subroutine in ABAQUS (2005) using a 

Newton-Raphson (N-R) scheme (McGinty, 2001). The complete set of material 

parameters are given in Mayeur and McDowell (2007).   

 

 

2.4 Finite Element Model 

 

Three microstructure attributes are considered in the microstructure sensitivity 

study: texture, average grain size d, and grain size distribution.  Table 2.3 summarizes the 

microstructure attributes of three Groups of Ti-6Al-4V considered in the simulations 

corresponding to three studied microstructure attributes.  For each Group, other important 

microstructure attributes are assumed unchanged.  These include maintaining the volume 

fraction of primary α phase at 60% and the lath thicknesses of secondary α and β phases 

at 1.5 µm and 0.5 µm, respectively.  Microstructure IV is used as reference 

microstructure which appears in every group. It should be noted that, owing to lack of 

detailed stereological information regarding lamellar colony size, the average primary 

α size and lamellar colony size are assumed to be identical.  

Chapter 4 (Zhang et al., 2007) shows that finite element models containing at 

least 125 grains are needed to sufficiently represent the texture of Ti-6Al-4V. Although 

improved fitting of texture can be achieved with a larger number of grains, the 

computational cost significantly increases with addition of more grains. Thus, in this 

Chapter, the finite element model contains 125 grains (5×5×5 grain statistical volume). 

Each grain is meshed using 3 3 3× ×  elements as shown in Fig. 2.4.  To simulate the 

behavior of bulk material, random periodic boundary conditions are applied to all three 

directions: RD, TD, and the normal direction. This boundary condition imposes 

constraints on the sides such that the opposite edges deform in the same manner (cf. 
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(Smit, et al., 1998; Van der Sluis et al., 2000; Ostoja-Starzewski et al., 1994; Kumar, et 

al., 2006). Displacements are enforced (specified) in the normal direction, as shown in 

Fig. 2.4.  It is noted that when the displacement is specified on an upper boundary, as in 

uniaxial loading, the sides of the mesh (other two directions) experience approximately 

zero net traction, in accordance with the axial loading condition.    

 

Table 2.3  Microstructure attributes considered in this study. 
 

 Group I Group II Group III Microstructure 
IV 

Studied attribute Texture Grain size Grain size 
distribution  

Average grain 
size, d (micron) 30 10, 15, 20, 30, 

35 30 30 

Grain size 
distribution (dc/d) 1 1 0.3, 0.5, 0.8, 1 1 

Vol. Fraction of 
primary α phase, 

Vf (%) 
60 60 60 60 

Texture 

Basal 
Transverse 

Basal/Trans. 
Random 

Random Random Random 

Mean thickness of 
α lath (micron) 1.5 1.5 1.5 1.5 

Mean thickness of 
β lath (micron) 0.5 0.5 0.5 0.5 
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Figure 2.4 Finite element model of periodic polycrystal. 

 

The finite element model shown in Fig. 2.4 idealizes the polycrystalline material 

as an aggregate of cubic crystals of identical size.  Such an idealization represents a 

highly idealized, uniform grain size distribution.  A uniform distribution of 

heterogeneities in microstructure can be sometimes sufficient to predict the macroscopic 

mechanical response. It is known that the local stress-strain field is closely related to the 

morphology of the neighboring grains and higher order spatial statistics. Thus, reasonably 

realistic representation of the microstructure is often preferred for fatigue analysis, 

although the level of reality necessary to achieve useful results is still an open research 

question. Several tessellation models, such as homogeneous Johnson-Mehl model (HJM), 

nonhomogeneous Johnson-Mehl (NHJM) model and Voronoi tessellation for 

approximating three-dimensional realistic microstructures have been proposed (Horalek, 

1990).  Among them, Voronoi tessellation has been extensively used in materials science 

to model polycrystals (Nygards, 2003), intergranular cracks (Cizelj and Riesch-

Oppermann, 2002) and composites (Winterfeld et al., 1981).  It is therefore chosen in this 

study to compare with the idealized uniform grain size distribution.  Although tessellation 

has shortcomings in terms of detail of grain boundary angles at triple junctions, when 

Lamellar colony 

Primary α- phase 

TD (x) 

RD (y) Normal (z) 
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used along with information on grain size distribution, orientation and disorientation 

distribution as constraints to be satisfied in the reconstruction process based on simulated 

annealing, it may offer reasonable results (Zhang et al., 2007). Certainly it is useful as a 

basis for conducting parametric studies to discern systematic effects of microstructure 

attributes, which is our present purpose. 

The Voronoi tessellation algorithm employed here involves constructing a cell 

structure from a Poisson point process by introducing planar cell walls perpendicular to 

lines connecting neighboring points (Horalek, 1990). Before assigning the nuclei, a 

characteristic size of the polycrystalline grains is needed. The average grain size d 

measured from two-dimensional micrographs is (Horalek, 1990) 

 

 30.7d V≈  (2.5) 
 
 

where V is the average volume of grains. Based on Eq. (2.5), the size of the 

polycrystalline finite element model can be determined from a given average grain size 

and number of grains. For the cubic model, the edge size follows the relation 

 

 3 / 0.7L nd=  (2.6) 
 
 
where n is the number of grains. In case of a cuboidal grain model, the product of width 

w, length l, and height h of the rectangular box is related to the average grain size and 

number of grains by 

 

 
3 3/ 0.7wlh nd=  (2.7) 
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In Voronoi tessellation, n nuclei are randomly distributed in space.  The nuclei 

grow simultaneously at a constant rate until mutual contact prevents further expansion.  

The random distribution of nuclei results in a log-normal distribution of grain size 

(Kumar and Kurtz, 1994).  The distance between two neighboring grains should be larger 

than a critical value, dc.  This critical distance can significantly influence the initial grain 

size distribution.  Three different grain size distributions are obtained by assigning the 

ratio of the critical distance to the average grain size dc/d  = 0.3, 0.5 and 0.8.  The larger 

the critical distance, the lower the variance of the grain size distribution about its mean 

value, as shown in Fig. 2.5.  The previous idealized structure with the cubic grains of 

identical size is a special case with dc/d  = 1.  Figure 2.5 shows that the grain size ranges 

from 0.3d to 3d when dc/d = 0.3, where d is the average grain size. In case of dc/d = 1, all 

grains have the same size, d. Clearly, the range of grain size distribution decreases from 

2.7d (81 µm) to 0 µm as dc/d increases from 0.3 to 1.0, respectively. 
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To assign the phase (primary α or lamellar colony) of material when dc/d = 1, the 

number of grains of each phase is defined by the volume fraction of that phase, since all 

grains in the finite element model considered here are assumed to have same size.  In 

case of dc/d ≠1, all grains are divided into 15 groups (bins) according to their grain size. 

The number of grains mi of primary α phase in each group i is determined by 

 

       1,2,....,15i f im V n i= =  (2.8) 
 
 

where Vf is the volume fraction of the primary α phase and ni is the number of grains in 

the group i.  It is assumed that each of the two phases of Ti-6Al-4V is randomly 

distributed and follows the same grain size distribution.  To achieve this, the phase of 

each grain in a group is initially randomly assigned and then adjusted to avoid substantial 

clustering of each phase.  A typical microstructure generated by Voronoi tessellation is 

shown in Fig. 2.6(a). 

To simulate the orientation distribution of grains, the Rodriguez space is evenly 

divided into M sub-spaces.  The target probability of observing an orientation gj in the 

sub-space j is determined by 

 

 ( ) j
j

V
f g

V
=  (2.9) 

 

where Vj  and V are the volume of crystals with the orientation in sub-space j and the total 

volume of all grains, respectively.  For a finite element model with K grains, the 

orientation probability factor (Pj) for each orientation sub-space j is obtained as 

 

 ( )j jP K f g=  (2.10) 
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When dc/d = 1, the number of grains within each orientation sub-space j equals Pj, , 

which sums over all sub-spaces to give 

 

 
1

M

j
j

K P
=

= ∑  (2.11) 

 

Accordingly, K sets of orientation angles are then selected from the orientation 

population P and are assigned to the different grains.   

 

 
 

(a)                                                                (b) 
 

Fig. 2.6.  (a) Polycrystalline microstructure of Ti-6Al-4V generated by Voronoi 
tessellation with light grains representing primary α and dark grains representing   　　

lamellar colonies and (b) corresponding finite element representation. 
 

In case of dc/d ≠1, the simulated annealing method is used to fit the orientation 

distribution (Miodownik, 1999).  The error of the orientation distribution is given by 

 

 2

1

[ ( ) ( )]
M

s t
j j

j

f g f gπ
=

= −∑  (2.12) 
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where ( )s
jf g∆  and ( )t

jf g∆  are the simulated and target frequencies of orientation 

distributed in the sub-domain j.  The variation of error, ∆π, is calculated after randomly 

change the orientation of a grain. Then, ∆π is used to determine whether this operation is 

acceptable based on a probability criterion p(∆π) which, following the Metropolis 

algorithm, is given by 

 

 
1 ( 0)

( )
exp( / ) ( 0)

p
T

λ
π

π λ
∆ <

∆ =  −∆ ∆ >
 (2.13) 

 

Here, T is a control parameter (analogous to temperature) used to define an annealing 

schedule.  The operation is accepted if ∆π < 0 or ∆π > 0 but p(∆π) ≥ ρ, where ρ is a 

random number; otherwise, the operation is rejected.  The operations continue until the 

error is less than a preset critical value (for example π = 10-5). 

Due to the lack of experimental data, the minimum misorientation distribution is 

not fitted in this study. After constructing the microstructure model, its compatibility can 

be verified with information known from 2D observations: volume fraction, average 

grain size, texture, etc.  

The tessellated Ti-6Al-4V polycrystal is meshed in as voxels using small regular 

cubic 8-node solid linear elements with reduced integration (C3D8R).  Each reduced 

integration element has one integration point, therefore significantly reduce 

computational cost.  For first-order reduced integration elements (e.g., C3D8R), the 

uniform strain (one integration point) is assumed which equals to the average strain over 

the element volume (ABAQUS, 2005).  The number of nodes on each edge of the 

polycrystalline region is controlled by the mesh density.  Based on the distance between 

the integration point of an element and the centroid of each grain, elements are assigned 

to grains.  Figure 2.6(b) shows the finite element mesh corresponding to the 

microstructure in Fig. 2.6(a). 
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It is noted that each microstructure may have multiple realizations. For example, 

two realizations may have the same grain size distribution but different grain structures. 

Multiple realizations result in the scatter of the mechanical properties such as the yield 

strength.  For simplicity, in this study each microstructure has only one realization. 

 

 

2.5 Monotonic Tension Simulations 

 

All monotonic tension simulations are carried out at room temperature under 

strain-control with the loading direction shown in Fig. 2.4. This direction is also parallel 

to the normal direction of material shown in Fig. 2.2. As discussed before, the sides of the 

mesh experience approximately zero net traction, in accordance with the axial loading 

condition. A strain rate of 1×10-3 s-1 is used. The variation of two material properties, 

elastic modulus and yield strength, with respect to the variation of microstructure is 

examined. As shown in Table 2.3, three groups of Ti-6Al-4V simulations are used to 

investigate the effects of texture, grain size, and grain size distribution dc/d on the 

deformation behavior.  

The simulated stress-strain responses for four microstructures of Group I with 

different textures are shown in Fig. 2.7. The elastic moduli of these microstructures are 

slightly different due to the anistropic elastic behaviors of the globular α phase and 

lamellar colonies. Transverse texture has the lowest elastic modulus of all samples loaded 

along the normal direction, as shown in Table 2.4. Following Mayeur (2004), the stress at 

a plastic strain of 0.001 has been defined as yield strength, σy. The corresponding total 

strain is defined as yield strain, εy. Both this yield strength and 0.2% offset-defined yield 

strength σ0.2 (common in industry) are listed in Table 2.4.  It is shown that the texture has 

strong influence on the yield strength. Among four considered textures, basal texture has 

the lowest yield strength. The yield strength of basal/transverse textured material is about 
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25% higher than that of the basal textured material when the loading direction is parallel 

to the normal direction of material.  
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Figure 2.7. Simulated stress-strain responses for microstructures with various textures 
with d = 30 µm and dc/d = 1 (Group I). 

 

Table 2.4. Material properties for microstructures of Group I.  

Texture E (MPa) σ0.2 (MPa) σy (MPa) εy 

Random 116,900 730 682 0.00687 

Basal 120,000 619 591 0.00590 

Basal/Transverse 122,400 888 805 0.00760 

Transverse 107,500 700 657 0.00710 
 

Figure 2.8 shows the simulated stress-strain responses for five microstructures of 

Group II with average grain sizes ranging from 10 µm to 40 µm. The elastic moduli for 

the five microstructures are identical. The Hall-Petch type relation between grain size and 
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yield strength is shown in Fig. 2.9.  This can be attributed to the dependence of the 

threshold stress of slip systems of primary α phase and lamellar colony on the 

microstructural dimensions as given in Eq. (2.5).  As previously discussed, each 

microstructure has only one realization. A small scatter of yield strength of each 

microstructure will be obtained if multiple realizations are used. 

Figure 2.10 shows the simulated stress-strain responses for four microstructures 

of Group III with grain size distribution parameter dc/d ranging from 0.3 to 1.0. The 

influence of dc/d on the elastic properties of Ti-6Al-4V is negligible. Small variation of 

the yield strength can be observed when dc/d increases from 0.3 to 1.0. However, there is 

no clear tendency. 
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Figure 2.8. Simulated stress-strain responses for Ti-6Al-4V with random texture with 
various average grain size and dc/d = 1 (Group II). 
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Figure 2.9 Dependence of simulated yield strength on the average grain size (Group II). 
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Figure 2.10 Simulated stress-strain responses for Ti-6Al-4V with random texture with d = 
30 µm and various dc/d (Group III). 
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2.6 Cyclic Loading Simulations 

 

Cyclic loading simulations are performed on the finite element model shown in 

Fig. 2.4.  For all simulations, a completely reversed (Rε = -1) strain-controlled loading 

history is employed at room temperature at a strain rate of 1×10-3 s-1. As in the monotonic 

tension simulations, the loading direction is parallel to the normal direction of rolled 

material, as shown in Fig. 2.2. The strain amplitude, ∆ε/2 = 0.61%, is 0.9εy for 

Microstructure IV, which has a random texture with average grain size of 30 µm and dc/d 

= 1, as shown in Table 2.3.  Five cycles are applied in each simulation to obtain the stable 

cyclic behavior.  

Figures 2.11-2.13 show the contours of cumulative effective plastic strain, defined 

by ( )2 / 3 ε ε=ε ij ij
p p p , where ( )0 0

p

sym

α α α

α

γ= ⊗∑ε s m , after the 5th loading cycles, for 

various microstructures. The contour shows localization of the cumulative plastic strain. 

Some grains significantly yield while the neighboring grains still undergo elastic 

deformation.   Such phenomena can be attributed to the highly anisotropic behavior and 

low symmetry of HCP Ti-6Al-4V.   

The contours of pε for four microstructures of Group I with various textures with 

d = 30 µm and dc/d = 1 are shown in Fig. 2.11. The maximum pointwise pε over the 

model, max
pε ,  are also given in Fig. 2.11. It is shown that the basal texture has the highest 

max
pε . The basal texture is therefore softer than other three textures, which agrees with the 

results of monotonic tension simulations. Among four textures, basal/transverse texture 

has the lowest max
pε . The basal texture considered in this study is characterized by a 

“ring” in the pole figure, as shown in Fig. 2.2.  The angles between the c-axis of grains 

and normal direction range from 15 to 30 degrees.  Consequently, several basal and 

prismatic slip systems have relatively high Schmid factors under the considered loading 
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condition (loading direction parallel to the normal direction), resulting in the lowest yield 

strength among all textures considered in this study. 

Figure 2.12 shows the distribution of pε for microstructures of Group II with 

random texture with dc/d = 1 and average grain sizes ranging from 10 µm to 40 µm. It is 

shown that the overall distributions of pε for various grain sizes are similar. This can be 

attributed to the identical microstructural parameters assumed for Group II other than 

grain size; all textures are random. An increasing yield strength with decreasing grain 

size is observed from monotonic tension simulations in Section 2.5.  In cyclic 

simulations, the value of pε after the 5th cycles increases with increasing grain size since 

the threshold stress decreases according to Eq. (2.3). Therefore, fatigue resistance 

increases with decreasing grain size. 

Figure 2.13 shows Group III microstructures with random texture with d = 30 µm 

and dc/d ranging from 0.3 to 0.8, which can be compared to the microstructure with dc/d 

= 1 shown in Fig. 2.11(d).  Significant influence of grain size distribution on the contours 

of pε of Group III microstructures is observed in Fig. 2.13.  Such phenomena can be 

attributed to the variation of the size and shape of grains with respect to variation of dc/d. 

No clear trend can be observed between max
pε and dc/d. Figure 2.5 shows that the ranges of 

grain size distribution decrease from 2.7d (81 µm) to 0 µm when dc/d increases from 0.3 

to 1.0. For such a large variation of grain sizes, the variation of maximum effective 

plastic strain is relatively low. Therefore, it is believed that the effect of grain size 

distribution on the deformation behavior of Ti-6Al-4V under loading conditions 

considered in this study is relatively weak.  Since Voronoi tessellation also results in non-

uniform grain shape (to within constraints of the present voxellation/meshing scheme), it 

may also be inferred that the effect of grain shape on max
pε is relatively weak.  
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Figure 2.11. Distribution of effective plastic strain after five cycles for Ti-6Al-4V with 
various textures, d = 30 µm, and dc/d = 1 (Group I), (Rε = -1 and ∆ε/2 = 0.61%).  

max 0.0047pε =

(a) Basal  

max 0.003pε =

(b) Basal/Transverse  

max 0.0033pε =

(c) Transverse  

max 0.004pε =

(d) Random  
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Figure 2.12. Distribution of effective plastic strain after five cycles for Ti-6Al-4V with 
random texture, dc/d = 1, and various average grain size (Group II) , (Rε = -1 and ∆ε/2 = 

0.61%). 
 

max 0.0031pε = max 0.0061pε =

(c) d = 20 µm (d) d = 40 µm  

max 0.0031pε = max 0.0061pε =

(c) d = 20 µm (d) d = 40 µm  
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Figure 2.13. Distribution of effective plastic strain after three cycles for Ti-6Al-4V with 
random texture, d = 30 µm, and (a) dc/d = 0.3, (b) dc/d = 0.5 and (c) dc/d = 0.8 (Group 

III), (Rε = -1 and ∆ε/2 = 0.61%). 
 

 

 

 

max 0.0042pε =

(b) dc/d = 0.5 

max 0.0041pε =

(b) dc/d = 0.3 

max 0.0038pε =

(b) dc/d = 0.8 
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Figure 2.14. Steady-state response of plastic strain behavior during the cycle: (a) elastic 
shakedown; (b) reversed cyclic plasticity; and (c) plastic ratcheting (Morrissey et al., 

2003). 
 

Plots of cumulative plastic strain shown in Fig. 2.11 to 2.13 are based on the 

effective plastic strain.  It is useful to more accurately characterize the nature of the cyclic 

plastic strain behavior at each point. According to Ambrico and Begley (2000), cyclic 

plastic strain behavior can be decomposed into three regimes: elastic shakedown, 

reversed cyclic plasticity, and plastic ratcheting, as shown in Fig. 2.14 (Morrissey, et. al, 

2003).  Elastic shakedown is defined as the condition for which the material is no longer 

plastically deforms under cyclic loading after initial yielding; fully elastic deformation 

after prior yielding is due to the build-up of internal stresses.  Reversed cyclic plasticity is 

the condition in which the material undergoes reversed plastic straining during cycling 

with no net directional accumulation of plastic strain.  Plastic ratcheting is said to occur 

when the material accumulates net (directional) plastic strain over a given cycle.  The 

parameters of the plastic strain behavior described above are based on the 5th loading 

cycle. The ratchet plastic strain increment per cycle is defined as (Mayeur, 2004, Goh, 

2002) 
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 ( )
end of the cycle start of the cycle

p p p
ij ij ijratch

ε ε ε∆ = −  (2.14) 

 

The reversed cyclic plastic strain range is given by, 

 

 ( ) ( ) ( )
max over the cycle

p p p
ij ij ijcyc ratch

ε ε ε∆ = ∆ − ∆  (2.15) 

 

where ( )max over the cycle

p
ijε∆ is the maximum range of plastic strain over the cycle, which is 

given by 

 

 ( ) max minmax over the cycleover the cycle over the cycle

p p p
ij ij ijε ε ε∆ = −  (2.16) 

 
 

The effective cyclic plastic strain range and ratchet plastic strain increment are defined as 

follows: 

 

 ( ) ( )cyc,eff 2 / 3p p p
ij ijcyc cyc

ε ε ε∆ = ∆ ∆  (2.17) 

 

 ( ) ( )ratch,eff 2 / 3p p p
ij ijratch ratch

ε ε ε∆ = ∆ ∆  (2.18) 

 

Elastic shakedown is defined according to 

 

 cyc, eff ratch, eff0 and (  and )p p p
ij cut off yCε ε ε ε−≠ ∆ ∆ ≤  (2.19) 
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where cut offC − is the cut-off value that determines the transition between plastic strain 

behavior and elastic shakedown. The value of cut offC −  affects the plastic strain domain 

size; increase of cut offC − decreases the amount of predicted cyclic and ratcheting plasticity 

zones and increases the size of the elastic shakedown region. In this study, the same value 

of cut offC − = 0.0025 as used in the previous work (Mayeur, 2004) has been chosen, which 

represents 0.25% of the yield strain.  

 

 

Figure 2.15. Contour of the plastic strain parameters of Microstructure IV over the 5th 
cycle (Rε = -1 and ∆ε/2 = 0.61%). 

(a) cyc, eff
pε∆  

(b)  ratch, eff
pε∆  
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Figures 2.15 (a) and (b) show the contour plots of the effective cyclic plastic 

strain range and the effective ratchet plastic strain increment, respectively, which are 

computed over the 5th cycle for Microstructure IV. Different legends are used for cyc, eff
pε∆  

and ratch, eff
pε∆  due to the relatively small value of plastic ratchet strain for completely 

reversed loading. A large number of elements undergo plastic deformation even though 

the applied strain amplitude (0.61%) is lower than the yield strain. Most plastically 

deformed elements have higher cyc, eff
pε∆  than ratch, eff

pε∆ . Therefore, cyclic plasticity is the 

dominant plastic strain behavior for those elements.   

Following the heuristic of Ambrico and Begley (2000), also Goh et al. (2003), the 

deformation behaviors of every element over the 5th cycle are separated into five regimes: 

elastic (unyielded, 0p
ijε = ), elastic shakedown, reversed cyclic plasticity, plastic 

ratcheting and combined cyclic plasticity and ratcheting. The plastic ratcheting regime is 

defined as 

 

 ratch, eff cyc, eff ratch, eff10 and p p p
cut off yCε ε ε ε−∆ ∆ > ∆ >  (2.20) 

 

Likewise a region is said to undergoing cyclic plasticity if 

 

 ratch, eff cyc, eff cyc, eff0.1 and p p p
cut off yCε ε ε ε−∆ ∆ < ∆ >  (2.21) 

 

Combined cyclic plasticity and ratcheting is defined as 

 

 ratch, eff cyc, eff cyc, eff ratch, eff0.1 10 and ,p p p p
cut off yCε ε ε ε ε−≤ ∆ ∆ ≤ ∆ ∆ >  (2.22) 

 

Accordingly, elastic shakedown is defined by Eq. (2.19). 



 65

With this rigorous scheme of defining the regimes of plastic strain behavior, the 

deformation behavior of each element is determined over the 5th loading cycle. Figure 

2.16 shows the distribution of plastic strain behaviors at the single element level of 

Microstructure IV. Various colors are used to represent the different plastic strain 

behaviors. It is shown that cyclic plasticity is the dominant deformation behavior for 

plastically deformed elements which agrees with the observation from Fig. 2.16. Only a 

few elements undergo plastic ratcheting and combined cyclic plasticity and ratcheting.   

  

 

Figure 2.16. Distribution of plastic strain behaviors of Microstructure IV at the 5th cycle. 

 

Table 2.5 summarizes the plastic strain behavior of Ti-6Al-4V for three groups of 

microstructures considered in this study (Table 2.3). In Table 2.5, Np denotes the number 

of elements that plastically deform over the 5th cycle. A close relation between yield 

strength and Np is observed for microstructures of Groups I and II. Basal texture is the 

softest texture and has the highest number of plastically deformed elements. 

Basal/Transverse texture has the highest yield strength and smallest Np. Yield strength of 

random and transverse textures are similar and the Np of these two textures are close. Np 

increases and yield strength decreases with increasing average grain size. The effect of 

Plastic ratcheting 

Combined cyclic plasticity 
and ratcheting 
Cyclic plasticity 

Elastic shakedown 

Elastic
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grain size distribution dc/d on Np is small.  For the loading history considered in this 

study, texture has significant influence on plastic strain behavior of Ti-6Al-4V. For basal 

texture, over 90% of plastically deformed elements are in the cyclic plasticity regime. 

Random and basal/transverse textures have 60% and 40% of plastic deformation 

elements undergoing cyclic plasticity, respectively. For transverse texture, the four plastic 

strain regimes are almost equally present. The percentage of elements that undergo cyclic 

plasticity slightly increases with increasing grain size. Again, there is no clear trend 

between grain size distribution and the distribution of plastic deformation regimes.   

 

Table 2.5. Plastic strain behavior for different microstructures. 

Microstructure 
attributes 

Np  (% of 
elements) 

Elastic 
shakedown 
(% of Np)

Reversed 
cyclic 

plasticity
(% of Np)

Combined 
cyclic and 
ratcheting 
(% of Np) 

Ratcheting 
(% of Np)

Random  2420 (71.7%) 15.5 61.2 11.7 11.7 

Basal/ 
Transverse 

1600 (47.4%) 26.56 40.38 21.5 11.56 

Transverse 2534 (75.1%) 21.74 17.76 31.61 28.89 

Texture 
(Group I) 

Basal 3253 (96.3%) 0.96 97.92 1.11 0 

10 µm 1453 (43%) 32.07 55.88 3.99 8.05 

15 µm 2172 (64.3%) 23.34 61.33 5.39 9.94 

20 µm 2377 (70.4%) 14.05 64.07 9.45 12.43 

30 µm 2420 (71.7%) 15.5 61.2 11.7 11.7 

Average 
Grain size, d 
(Group II) 

40 µm 2722 (80.7%) 5.5 78.9 9.3 6.3 

0.3 2771 (82.1%) 8.7 68.2 11.4 11.7 

0.5 2701 (80.0%) 8.5 66.8 12.8 11.9 

0.8 2728 (80.8%) 3.4 87.9 8.7 0 

Grain size 
distribution 

dc/d  
(Group III) 

1.0 2420 (71.7%) 15.5 61.2 11.7 11.7 
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2.7 Fatigue Behavior 

 

The magnitude and distribution of plasticity among grains are important factors in 

fatigue crack formation and early growth.  A direct measure of cyclic microplasticity is 

the maximum range of cyclic plastic shear strain max 2pγ∆  over all possible shear strain 

planes for a given loading condition in individual grains (Bennett and McDowell, 1996), 

i.e., 

 

 ( ) ( ){ }max 2 2p p
ij i jcyc

u vγ ε∆ = ∆ ⋅ ⊗  (2.23) 

   

Here, ( )p
ij cyc

ε∆ is defined by Eq. (2.15), jv  is the unit normal vector to the critical plane 

and iu is the unit vector in the plane of the maximum range of cyclic plastic shear strain.  

Two different methods are used to quantify max 2pγ∆ : the point-wise maximum 

(for individual elements) value max 2pγ∆ , and an average value of maximum max 2pγ∆  

over a finite domain designated with an asterisk, *
max 2∆ pγ . For each element, both 

max 2pγ∆  and *
max 2∆ pγ  are calculated. The size of the averaging volume is the average 

grain size. The maximum max 2pγ∆  and *
max 2∆ pγ  over a single grain is used to indicate 

the driving force for crack formation of this grain. The distributions of max 2pγ∆  and 

*
max 2∆ pγ  for each grain over the 5th loading cycle for Microstructure IV are shown in Fig. 

2.17. The value of the maximum max 2pγ∆  is much larger than that of the average 

maximum *
max 2pγ∆ . The peak value of max 2pγ∆  is about three times higher than that of 

*
max 2pγ∆ . Fatigue life prediction based on max 2pγ∆  would be more conservative.  It is 

noted that the process of fatigue crack formation operates over a finite volume/process 
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zone.  Therefore, an averaged measure of *
max 2∆ pγ  is more appropriate for the purpose of 

quantifying the driving force for fatigue crack formation. Furthermore, the volume 

averaging process is required to eliminate the mesh sensitivity of max 2∆ pγ  (McDowell, 

2005) as a useful, objective FIP.   

The maximum value of the volume averaged *
max 2∆ pγ  depends on the size of the 

averaging volume.  In a previous study, Mayeur et al. (2006) showed that the predicted 

fatigue life increased with increasing volume size. It is noted that the development of slip 

bands in primary α grains is an important mechanism of crack formation and usually 

extends across entire grains. Therefore, average grain size is considered as a proper size 

of the averaging volume to evaluate the magnitude and distribution of *
max 2∆ pγ  for Ti-

6Al-4V.   
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Figure 2.17. Distribution of the max 2pγ∆  and *
max 2pγ∆  for Microstructure IV. 
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The distributions of *
max 2∆ pγ  computed over the 5th loading cycle for 

microstructures of Group I simulations (texture), Group II simulations (average grain 

size) and Group III simulations (grain size distribution) are shown in Fig. 2.18 (a), (b) 

and (c), respectively. Previous results showed that the basal texture is the softest and 

basal/transverse texture is the hardest in terms of yield strength for loading in the normal 

direction. Similar results can be observed from Fig. 2.18(a). The basal texture has the 

largest number of grains with high *
max 2∆ pγ . The maximum *

max 2∆ pγ of basal texture is 

also the highest among four textures. On the other hand, basal/transverse texture has 

lowest maximum *
max 2∆ pγ and lowest number of grains with high *

max 2∆ pγ . The 

distributions of *
max 2∆ pγ for random and transverse textures are close. Thus, texture has 

significant influence on material strength and fatigue resistance of Ti-6Al-4V. In Fig. 

2.18(b), it is noted that both maximum *
max 2∆ pγ and number of grains with high 

*
max 2∆ pγ increase with increasing grain size. Therefore, both yield strength and fatigue 

resistance of Ti-6Al-4V decrease with increasing grain size.  No clear tendency is evident 

in Fig. 2.19(c) for microstructures of group III, similar distributions and maximum 

*
max 2∆ pγ  are observed for various grain size distributions. Therefore, compared to texture 

and average grain size, the grain size distribution has weaker influence on the distribution 

of cyclic plastic deformation behavior of Ti-6Al-4V. 
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(a) Texture (Group I)  
 

 

 

(b) Grain size (Group II)  
 

Figure 2.18. Influence of microstructure attributes on the distribution of *
max 2∆ pγ  

showing the relative effect of (a) texture, (b) grain size, and (c) grain size distribution. 
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(c) Grain size distribution (Group III) 

 

Figure 2.18. Influence of microstructure attributes on the distribution of average *
max 2∆ pγ  

showing the relative effect of (a) texture, (b) grain size, and (c) grain size distribution 
(cont.). 

 

As described in Chapter 1, various models have been proposed to predict the 

fatigue crack formation life of crystalline materials under multiaxial loading. Fatigue 

crack formation of Ti-6Al-4V is driven primarily by cyclic plastic shear strain.  

Therefore, plastic strain-based critical plane approaches are more appropriate for the 

purpose of predicting fatigue behavior of Ti-6Al-4V at the level of microstructure, i.e., 

FIPs.  Among all critical plane approaches, the Fatemi-Socie parameter PFS is shear-

dominated FIP and includes maximum normal stress to the critical plane. Therefore, PFS 

is considered to be suitable for quantifying the driving force for crack formation.  

The Fatemi-Socie FIP is given by 

 

*
max 2pγ∆

0.0 4.0e-4 8.0e-4 1.2e-3

N
um

be
r o

f G
ra

in
s

1

10

100
0.3
0.5
0.8
1.0

dc / d =



 72

 
* max*

max 1
2

p
n

FS
y

P Kγ σ
σ

 ∆
= +  

 
 (2.24) 

 

where K is a material constant, *
max
pγ∆  has been previously defined, and max*

nσ  denotes the 

maximum normal stress on the corresponding critical plane over the same averaging 

domain.  Following that of previous work (Mayeur et al., 2006), 1K =  is employed.  As 

in the previous case, the averaging volume is the average grain size for both *
max 2∆ pγ  and 

max*
nσ . For each element, PFS is calculated over the averaging domain. The maximum PFS 

over a grain is used to indicate the driving force for crack formation of this grain. 

Distributions of the nonlocal Fatemi-Socie FIP in Eq. (2.24) of microstructures of 

Group I, Group II and Group III are shown in Fig. 2.19 (a), (b) and (c), respectively. The 

maximum PFS over the entire model are given in Table 2.6. Distributions of PFS and 

*
max 2∆ pγ  are similar for all microstructures. In Fig. 2.19(a), it is shown that basal texture 

has the largest number of grains with high PFS. The maximum PFS for the basal texture is 

also the largest among all textures. It is concluded that the basal texture has the lowest 

fatigue resistance, in agreement with previous results. The basal/transverse texture has 

the lowest maximum PFS and thus has the highest fatigue resistance. The same tendency 

is observed in Table 2.6. Distributions of PFS and maximum PFS for random and 

transverse textures are similar. The fatigue resistances of these two microstructures are 

between those of basal and basal/transverse textures. 
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(a) Texture (Group I) 
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(b) Grain Size (Group II) 

Figure 2.19.  Variation of distribution of PFS with respect to variation of microstructure 
attributes showing the relative effect of (a) texture, (b) average grain size, and (c) grain 

size distribution.   
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(c) Grain size distribution (Group III) 

Figure 2.19.  Variation of distribution of PFS with respect to variation of microstructure 
attributes showing the relative effect of (a) texture, (b) grain size, and (c) grain size 

distribution (cont.).   
 
 

In Fig. 2.19(b), the number of grains with high PFS increases with increasing grain 

size. The same trend is observed in Table 2.6. The approximate linear relation between 

maximum PFS and the square root of the grain size is shown in Fig. 2.20. Increasing grain 

size results in reduction of slip resistance. As the result, plastic shear among the crystals 

increases, which leads to increased driving force for crack formation.  

Figure 2.19(c) and Table 2.6 show no clear correlation between grain size 

distribution parameter dc/d and distribution and maximum PFS. Therefore, it is concluded 

that comparing with the effects of texture and average grain size, the effect of grain size 

distribution on the cyclic deformation behavior of Ti-6Al-4V is relatively weak for the 

loading history considered.  
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Figure 2.20. Variation of maximum PFS and predicted crack formation life with respect to 
variation of average grain size (Group II). 

 
 

Table 2.6. Maximum pε  and PFS for different microstructures. 

Microstructure attributes 
Max. PFS averaged over 

grain size 

Predicted crack 
formation life, 2Nf

Random  1.33×10-3 7316 
Basal/ 

Transverse 1.03×10-3 9849 

Transverse 1.16×10-3 8577 

Texture 
(Group I) 

Basal 1.49×10-3 6411 
10 µm 0.56×10-3 20004 
15 µm 0.67×10-3 16239 
20 µm 0.97×10-3 10561 
30 µm 1.33×10-3 7316 

Average Grain size, d 
(Group II) 

40 µm 1.81×10-3 5113 
0.3 1.4×10-3 6892 
0.5 1.75×10-3 5317 
0.8 1.78×10-3 5213 

Grain size 
distribution 

dc/d  
(Group III) 1.0 1.13×10-3 8843 
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Figure 2.21. Crack formation lives. 

 

The FS FIP can be related to the crack formation life according to a Coffin-

Manson relation 

 

 ' '(2 )c
FS f fP Nγ=  (2.25) 

 

where '
fγ and 'c  are constants for a given critical fatigue crack length. A Coffin-Manson 

relation correlating plastic strain range / 2pε∆  and fatigue crack formation life is given 

by 

 

 ' '(2 )
2

p
c

f fNε ε∆
=  (2.26) 

 

The constants '
fε = 2.8 and 'c  = -0.86 reported by Szolwinski et al. (1999) gave good fit 

to the uniaxial LCF data reported in (Gallagher et al., 2001), as shown in Fig. 2.21.  A 

∆ε
/2
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completely reversed (Rε = -1) strain-controlled history at 0.333 Hz was employed in these 

LCF tests at room temperature.  The mechanical properties of the duplex Ti-6Al-4V are 

summarized in Table 2.7 (Lovrich, 2004). Fridrici et al. (2005) showed that the constants 

reported in (Szolwinski et al., 1999) corresponded to the critical fatigue crack length of 

30 µm, which equaled to the length scale of averaging volume used in this study.  

 

Table 2.7 Mechanical properties of Ti-6Al-4V (Lovrich, 2004) 

Elastic modulus, GPa 118 

Poisson’s ratio 0.361 

Yield strength, MPa 930 

 

For simplicity, we assume that ' '
f fγ ε=  and ' 'c c=  for the critical crack length of 

30 µm.  For each microstructure, the maximum PFS is used to calculate fatigue crack 

formation life according to Eq. (2.25).  The predicted lives corresponding to the applied 

strain amplitude, ∆ε/2 = 0.61%, range from 5100 to 20000 reversal which is close to the 

experimental data, as shown in Table 2.6 and Fig. 2.21. It is shown that the 

microstructure has significant effect on the scatter of fatigue crack formation life of Ti-

6Al-4V. 

 

 

2.8 Summary 

 
In this Chapter, three-dimensional finite element simulations are conducted to 

study the effects of microstructure attributes on the cyclic deformation behavior of the 

duplex Ti-6Al-4V alloys. The deformation behaviors of primary α and α/β  lamellar 

phases of Ti-6Al-4V at room temperature are described by a fully three-dimensional 

crystal plasticity constitutive relation developed by Mayeur and McDowell (2006). 
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Microstructure attributes considered in this sensitivity study include crystallographic 

texture, grain size, and grain size distribution.  Voronoi tessellation is used to construct 

the three-dimensional finite element models with various grain size distributions.   

In monotonic tension simulations at room temperature, a slight influence of 

texture on elasticity of polycrystalline Ti-6Al-4V is observed. Grain size and grain size 

distribution show no influence on the elastic stiffness.  Strong dependence of material 

strength on grain size and texture is shown. Influence of grain size distribution on yield 

strength is minimal.  

A completely reversed, strain-controlled loading history is applied in cyclic 

loading simulations at room temperature. The plastic strain behaviors and the distribution 

of the average maximum plastic shear strain among grains are analyzed and contrasted.  

The relative susceptibility for crack formation, including effects of various microstructure 

features, is assessed using the nonlocal Fatemi-Socie FIP.  The results suggest that both 

average grain size and especially crystallographic texture have more influence on the 

plastic deformation and indicated fatigue behavior than the grain size distribution.  

The fatigue crack formation lives of considered microstructures are calculated according 

to a Coffin-Manson relation. It is shown that the predicted fatigue crack formation lives is 

close to the experimental data. The microstructure has significant effect on the scatter of 

fatigue crack formation life of Ti-6Al-4V. 
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CHAPTER 3 

MICROSTRUCTURE-SENSITIVE FRETTING FATIGUE 

SIMULATIONS 
 

 

3.1 Introduction 

 

In Chapter 2, a methodology for using crystal plasticity to explore the sensitivity 

of material strength and cyclic deformation behavior to microstructure was presented and 

demonstrated for duplex Ti-6Al-4V at room temperature.  The crystal plasticity material 

model captures the crystallographic orientation dependence of the deformation behavior 

for both primary α phase and the lamellar colonies. A Voronoi tessellation procedure is 

used to render polycrystalline grain size distributions. Simulation results show a strong 

dependence of material strength and microstructure-level FIPs on crystallographic texture 

and grain size of duplex Ti-6Al-4V. In this chapter, the same methodology is used to 

investigate the effects of microstructure and loading parameters on the fretting fatigue of 

Ti-6Al-4V. 

Fretting fatigue occurs as a result of mixed stick-slip conditions near the edge of 

contact at the interface of two contacting bodies.  Fretting fatigue is drawing increasing 

attention as one of the leading causes of premature failure for gas turbine engines.  For 

example, the vibratory load applied on the blade and disk causes a fretting motion 

(micron scale relative motion) at their interface (Cortez et al., 1999). 

 Fretting fatigue is a near-surface phenomenon that occurs over a very small area.  

Plastic deformation, damage, and microstructure transformation occur within a depth of 

several grains from the surface.  The relative tangential surface displacement between 

two bodies is also extremely small (several µm).  Since the material microstructure is of 
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comparable dimensions, it can significantly influence the mechanical behavior. 

Experimental observations show that fretting fatigue cracks may form at the edge of 

contact region, at the boundary between the slip and non-slip regions, or at the center of 

contact of the specimens (Antoniou and Radtke, 1997).   

Fretting fatigue simulations using a two-dimensional crystal plasticity model 

showed the impact of microstructure on the fretting deformation behavior (Goh et al., 

2001, 2003).  These early works showed that differential yielding among grains due 

primarily to crystallographic orientation in regions of steep cyclic gradients leads to 

intense concentrations of shear.  Plastic strain accumulation was primarily due to 

ratcheting.  Fretting simulations using fully three-dimensional crystal plasticity models 

exhibited similar behaviors but allowed the study of realistic microstructures, including 

the distributions of grain orientations and realistic textures (Mayeur et al., 2007; Zhang et 

al., 2005, 2006).  Dick and Cailletaud (2006) have also conducted fretting fatigue 

simulations on Ti-6Al-4V with more realistic modeling of grain shapes using Voronoi 

polyhedra, although they considered only the primary α phase.  Similar effects of 

microstructure attributes on creep and high strain rate behaviors of Ti-6Al-4V have been 

studied using crystal plasticity by Hasijia et al. (2003) and Schoenfeld and Kad (2002), 

respectively.   

In this Chapter, three-dimensional fretting simulations are conducted on duplex 

Ti-6Al-4V to investigate the sensitivity of three microstructure attributes on fretting 

behavior: the average grain size, the grain size distribution, and the texture. Various 

combinations of normal and tangential forces are applied to investigate the sensitivity of 

loading parameters on fretting behavior. Conclusions on the relative influence of these 

microstructure attributes and loading parameters are drawn based on the deformation 

response and analysis using shear strain-based fatigue indicator parameters (FIPs).  
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3.2 Material 

 

Duplex Ti-6Al-4V considered in this study contains a mixture of primary hcp α 

phase and secondary α plus bcc β phase arranged in a lamellar structure.  As described in 

Chapter 2, the key first order microstructure attributes of Ti-6Al-4V include average 

globular (primary) α size, lamellar colony size, volume fraction of the primary α phase, 

and mean thicknesses of the secondary α and β phases in the lamellar colonies.   

 

Table 3.1.  Microstructure attributes considered in this study. 

 Group I Group II Group III Microstructure 
IV 

Studied attribute Texture Grain size Grain size 
distribution  

Average grain size, 
d (micron) 30 25, 30, 35 30 30 

Grain size 
distribution (dc/d) 1 1 0.3, 0.5, 0.8, 1 1 

Vol. Fraction of 
Globular α Vf (%) 60 60 60 60 

Texture 

Basal 
Transverse 

Basal/Trans. 
Random 

Basal Basal Basal 

Mean thickness of 
α lath (micron) 1.5 1.5 1.5 1.5 

Mean thickness of 
β lath (micron) 0.5 0.5 0.5 0.5 

 

 

Three microstructure attributes are considered in the microstructure sensitivity 

study: average grain size d, grain size distribution, and texture.  Other important 

microstructure attributes are assumed unchanged.  These include maintaining the volume 

fraction of primary α phase (60%) and the lath thicknesses of secondary α and β phases 

(1.5 µm and 0.5 µm, respectively).  Table 3.1 summarizes the microstructure attributes of 
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three groups of Ti-6Al-4V considered in the simulations corresponding to three studied 

microstructure attributes.  Four textures are used in Group I: basal, transverse, 

basal/transverse, and random textures, as shown in Fig. 2.2.  It should be noted that, 

owing to lack of detailed stereological information on lamellar colony size, the average 

primary α size and lamellar colony size are assumed to be identical. To investigate the 

influence of loading parameters on fretting behavior, various combinations of normal and 

tangential forces are applied on Microstructure IV.  

The three-dimensional crystal plastic constitutive relations developed by Mayeur 

and McDowell (2007) are used to describe the deformation behavior of Ti-6Al-4V. The 

description of the model has been given in Chapter 2.  

 

 

3.3 Finite Element Model 

 

The finite element model for fretting fatigue simulations consists of the contact of 

a rigid cylinder with radius of 5 mm on infinite half space shown in Fig. 3.1(a).  A 

cylindrical domain is used for the lower half space, with infinite elastic elements 

comprising the outmost layer.  Infinite elements are generally used when the region of 

interest is small compared to the surrounding medium (ABAQUS, 2005).  The half space 

is fully constrained by assuming the infinite direction is normal to the outmost layer.  In 

this model, the thickness of the indenter is smaller than that of the half space and the 

lateral boundaries normal to the z-direction are assumed to be free of constraint.  

The upper cylindrical body is first subjected to a normal force P in the y-direction, 

and then the fretting motion is applied by prescribing a cyclic tangential force Q parallel 

to the x-direction.  The friction coefficient between the two bodies is set to 1.5 based on 

previous work (Goh et al., 2003).  Only partial slip conditions are considered to prohibit 

the complete sliding between two bodies, which would be unconstrained in this force 
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control analysis.  It should be noted that the length of the rigid cylinder is finite.  

Therefore, a substantial contact edge effect is expected at the regions where the end of the 

rigid cylinder contacts the half space, as shown in Fig. 3.1(b).  Since a sharp contact edge 

would result in a stress singularity at the edge of contact that could lead to the 

computational difficulties, the contacting edge is rounded with a radius of 0.01 mm. The 

finite sliding option in ABAQUS (2005) is assumed between two bodies to avoid 

possible computational divergence, especially when the tangential force is high. 

As shown in Fig. 3.1(b), the half space is separated into four parts.  The inner part 

is defined as a crystal plasticity region; contact with the upper rigid cylinder occurs 

entirely within this region.  The polycrystal Ti-6Al-4V is oriented in the way that the 

normal and rolling directions are parallel to the z- and y-axes, respectively, corresponding 

to the considered textures shown in Fig. 2.2.  The domains shaded as blue and yellow 

colors represent the primary α phase and lamellar colonies, respectively.  Each 3×3×3 

element block denotes a grain. The number of grains in the x-, y-, and z-directions is 12, 

7, and 10, respectively.  Thus, there is a total 22680 elements in the crystal plasticity 

region.  The size of the crystal plasticity region is chosen to include all elements that 

undergo plastic deformation during the simulations.  Outside of the crystal plasticity 

region is the initially isotropic J2 plasticity region, rendered with dark gray color.  For all 

simulations, pure linear isotropic elastic behavior is assigned to the elastic and infinite 

elastic regions beyond.  To allow for transitions in mesh density, two neighboring regions 

are “glued” together by using “tie” surface constraints (ABAQUS, 2005).  To decrease 

the computational costs, three-dimensional 8-node solid linear elements with reduced 

integration (C3D8R) (ABAQUS, 2005) are used in all regions. 

Various grain size distributions are realized by using Voronoi tessellation. The 

descriptions of the Voronoi tessellation algorithm employed in this study are given in 

Chapter 2.  It should be noted that the size of the crystal plasticity region is related to the 

average grain size and number of grains via Eq. (2.7). Three different grain size 
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distributions are obtained by setting the grain size distribution parameter dc/d = 0.3, 0.5 

and 0.8.  The idealized structure with the cubic grains of identical size is a special case 

with dc/d = 1.  Various grain size distributions are simulated with simulated annealing 

method described in Chapter 2.  

  

Figure 3.1.  Three-dimensional finite element model for simulating fretting: (a) contact 
geometry and (b) close-up view of contact region, including the crystal plasticity zone. 
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3.4 Simulation Results 

 

For purposes of the microstructure sensitivity study, the normal force P = Py and 

amplitude of alternating tangential force Q = 0.1Py are prescribed, where reference force 

Py is defined as the force required to initiate yield in the subsurface, assuming 

homogenous and isotropic elastic behavior of duplex Ti-6Al-4V and ideal two-

dimensional frictionless Hertzian contact.  After applying the normal force P, the cyclic 

tangential force Q is applied for three cycles due to the intense nature of the 

computations.  Both P and Q are set to be zero at the last unloading step.  For the cases 

involving texture, the direction of the normal force is parallel to the rolling direction 

(RD).    

To validate the finite element model, fretting simulations are conducted using 

elastic and J2 plasticity material models under the same prescribed fretting conditions.  

These simulations are compared to a crystal plasticity simulation on Microstructure IV 

having basal texture with d = 30 µm and dc/d = 1.0, as shown in Table 3.1.  Contours of 

the von Mises effective stress in the crystal plasticity region after the application of initial 

normal force P are shown in Fig. 3.2.  All contours are shown in x-y midsection view, as 

illustrated by Fig. 3.2(d).  The x-y plane passes through the center of the model.  Both the 

elastic and J2 plasticity simulations show continuous and homogeneous distribution of the 

von Mises stress at the surface and subsurface regions.  The crystal plasticity simulation 

displays a heterogeneous distribution.  The stress in some grains is much higher than that 

of the neighboring grains.  Such phenomena can be attributed to the highly anisotropic 

behavior of Ti-6Al-4V. 

As expected, a strong edge effect is observed where the end of the cylinder 

contacts the half space.   However, the response on the x-y plane (midsection plane) 

closely approximates line contact, since the edge effect is limited to the regions near the 

end of the contacting cylinder.  The elastic simulation predicts the largest von Mises 
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stress because no yield is assumed.  The slightly higher von Mises stress of the crystal 

plasticity simulation at certain locations can be attributed to the relatively high elastic 

modulus and yield strength of certain grains of Ti-6Al-4V having unfavorable 

orientations.   

 

 

 

Figure 3.2.  Contours of von Mises stress at crystal plasticity region after initial normal 
force is applied for different material models, (a) elastic, (b) J2 plasticity, and (c) crystal 

plasticity with basal texture and uniform grain size and distribution, and (d) illustration of 
x-y cross-section (midsection of the model). 

 

The contact pressure of three simulations in x-y plane (center plane) after initial 

normal load is shown in Fig. 3.3. The ideal frictionless Hertzian solution of the contact 

pressure for two-dimensional line contact with plane strain condition is also shown. The 

contact pressure of the elastic simulation is very close but slightly lower than that of the 

Hertzian solution. The frictionless, plane strain conditions assumed in the Hertzian 

solution are believed to account for the higher contact pressure. The slightly different 
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contact pressure at the trailing edge is caused by the low mesh density at the surface. The 

length of the contact half space of the elastic simulation is also very close to that of the 

Hertzian solution. It is concluded that the stress-strain state in x-y plane of the three-

dimensional model is very close to that of the two-dimensional solution, thereby 

validating the finite element model used in this study. Comparing with the elastic 

simulation and the Hertzian solution, a lower contact pressure is observed for the J2 

plasticity simulation which can be attributed to the yielding of material in the subsurface 

region. It is noted that the smooth contact pressure are observed for the Hertzian solution 

and the elastic and J2 plasticity simulations. On the contrary, the contact pressure of the 

crystal plasticity simulation is not smooth due to the anistropic behavior of Ti-6Al-4V 

and discrete grains. Both J2 and crystal plasticity simulations predict larger size of the 

contacting half-space than the Hertzian solution and the elastic simulation for which no 

material yielding is assumed.  
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Figure 3.3. Contact pressure at x-y plane after initial normal load. 
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Figure 3.4 shows the relation between applied normal forces and corresponding 

normal displacements of the rigid body during the initial loading step and the unloading 

step after three tangential loading cycles. For P = Py, the macroscopic normal 

displacement minimally depends on the material model used, increasing from 4.88 µm 

for purely linear isotropic elastic to 5.01 µm for crystal plasticity.  For elastic simulations, 

the force-displacement curves of loading and unloading steps coincide. For J2 and crystal 

plasticity simulations, an apparent difference between these two curves is shown. At the 

same time, the non-zero displacement corresponding to zero normal load is observed at 

the unloading step.  The plastic deformation behavior has a noticeable effect on the 

normal loading behavior.  

The tangential force and displacement responses of the rigid body during the third 

tangential loading cycle are presented in Fig. 3.5. The macroscopic tangential 

displacement response does not significantly depend on the material model, suggesting 

relatively low accumulation of plastic strain during the tangential loading cycle, as 

expected. 
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Figure 3.4. Normal force-displacement responses during loading and unloading steps. 
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Figure 3.5. Tangential force-displacement responses over the 3rd tangential loading cycle. 
 

As shown in Table 3.1, three groups of Ti-6Al-4V simulations are used to 

investigate the effects of texture, grain size, and grain size distribution dc/d on the fretting 

fatigue behavior. The simulation results are summarized in Figs. 3.6-3.8 and Table 3.2. 

Since previous studies suggest that ratcheting plays a major role in fretting fatigue crack 

formation (Goh, 2002), it is most relevant to compare the cumulative plastic strains 

generated by fretting in the different microstructures. There are several ways this can be 

done.  One is to view the effective plastic strain, defined by ( )2 / 3 ε ε=ε ij ij
p p p , where 

( )0 0
p

sym

α α α

α

γ= ⊗∑ε s m , after three tangential loading cycles for various microstructures, 

as shown in Figs. 3.6-3.8.   As one might expect, the values and distributions of pε vary 

with different microstructures.  Relatively large pε is observed where the end of the 

cylinder contacts the half space.  At the x-y plane section cut representing near two-

dimensional loading conditions (i.e., line contact), the value of pε  at the center of contact 

is much lower than that at the edges of contact where microslip occurs due to fretting.  
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This is also the location where fatigue cracks are usually observed to form in 

experiments.  

The contours of pε for four microstructures of Group I simulations with different 

textures are shown in Fig. 3.6. The maximum pointwise pε  at the x-y plane (midsection 

plane), max
p

x y
ε

−
, are given in Table 3.2 for all simulations. The overall features and nature 

of the effective plastic strain distributions for the various textures are similar.  The basal 

and random textures have much higher max
p

x y
ε

−
than transverse and basal/transverse 

textures.  Hence, the basal and random textures are softer textures, at least for the 

particular relative orientation of the fretting loading and texture axes considered here.  

The basal texture considered in this study is characterized by a “ring” shape in the pole 

figure as shown in Fig. 2.2.  The angles between the c-axis of grains and normal direction 

range from 15 to 30 degrees.  Consequently, several basal and prismatic slip systems 

have relatively high Schmid factors under these fretting loading conditions, resulting in 

low yield strength.  

As shown in Fig. 3.7, the overall distributions of pε for Ti-6Al-4V of Group II 

simulations with several average grain sizes are similar. The values of pε  as shown in 

Table 2 increase with increasing average grain size.  This is in part due to the reduction of 

threshold stress according to Eq. (2.3).  It is also due to the strength of the gradient of 

stress and strain at the notch relative to grain size as function of grain size, for fixed 

contact dimensions.  Therefore, fretting fatigue resistance decreases as average grain size 

increases. 

No clear trend can be obtained between max
p

x y
ε

−
and dc/d (Group III simulations of 

Table 3.1).  Therefore, the sensitivity of the deformation behavior of Ti-6Al-4V to grain 

size distribution under these particular fretting loading is relatively small in comparison 

effects of other microstructure attributes considered.  It likely suggests that many more 
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realizations of grain size distributions and crystal orientations need to be considered to 

determine the extremal values of max
p

x y
ε

−
.  The case of dc/d = 0.3 is shown in Fig. 3.8.  

Here, the grain size ranges from 0.3d to 3d for dc/d = 0.3.  This case can be compared to 

Fig. 3.6(a), which is at the same conditions except for dc/d = 1.  

 

Table 3.2 max
p

x y
ε

−
 and maximum FPS for different microstructures.  

Microstructure attributes max
p

x y
ε

−
 Max. FPS 

Random  3.4×10-3 2.2×10-5 

Basal/ 

Transverse 
2.3×10-3 1.1×10-5 

Transverse 2.7×10-3 1.3×10-5 

Texture 
(Group I) 

Basal 4.0×10-3 3.2×10-5 

25 µm 3.6×10-3 2.6×10-5 

30 µm 4.0×10-3 3.2×10-5 Average Grain size, d  
(Group II) 

35 µm 4.3×10-3 4.0×10-5 

0.3 4.6×10-3 2.6×10-5 

0.5 3.9×10-3 2.0×10-5 

0.8 4.5×10-3 2.7×10-5 

Grain size distribution 
dc/d  

(Group III) 
1.0 4.0×10-3 3.2×10-5 
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Figure 3.6.  Distribution of effective plastic strain after three tangential loading cycles for 

Ti-6Al-4V with various textures with d = 30 µm and dc/d = 1 (Group I). 
 

 

 
Figure 3.7.  Distribution of effective plastic strain after three tangential loading cycles for 

Ti-6Al-4V with basal texture with grain size of (a) 25 µm and (b) 35 µm (Group II). 
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Figure 3.8. Distribution of effective plastic strain after three tangential loading cycles for 
Ti-6Al-4V with basal texture, d = 30 µm, and dc/d = 0.3 (Group III). 

 

 

 

 

Figure 3.9.  Distribution of effective plastic strain of Microstructure IV after three 
tangential loading cycles (midsection view). 

 

For fretting simulations, it is desired to know how strain accumulates in the 

contact region. Strain behaviors are decomposed into five regimes: elastic, elastic 

shakedown, reversed cyclic plasticity, combined cyclic plasticity and ratcheting, and 

plastic ratcheting, as defined in Chapter 2. For all simulations, strain behaviors are 

calculated over the 3rd tangential loading cycle. The distribution of plastic strain 

behaviors for the basal textured Ti-6Al-4V with d = 30 µm and dc/d = 1.0 (Microstructure 

IV) is shown in Fig. 3.9. Various colors are used to represent the different plastic strain 
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behaviors.  Ratcheting is the dominant plastic strain behavior in the subsurface region. 

On the contact surface, the ratcheting elements are generally found near the edges of 

contact.  The majority of elements at the center of surface reach elastic shakedown.  Very 

few elements are found to have combined cyclic plasticity and ratcheting behavior and 

most of these are located at the edge of contact.  No element undergoes just reversed 

cyclic plasticity.  

 

Table 3.3. Plastic strain behavior for different microstructures over the 3rd tangential 
loading cycle. 

Microstructure 
attributes 

Np  (% of 
elements) 

Elastic 
shakedown 
(% of Np)

Reversed 
cyclic 

plasticity
(% of Np)

Combined 
cyclic and 
ratcheting 
(% of Np) 

Ratcheting 
(% of Np)

Random  6131 (27%) 22.2 0 6.2 71.6 
Basal/ 

Transverse 
4793 (21.1%) 30.3 0 2.3 67.4 

Transverse 4470 (19.7%) 28.4 0 3 68.6 

Texture 
(Group I) 

Basal 7176 (31.6%) 18 0 7.5 74.4 
25 µm 6381 (28.1%) 18.9 0 6.4 74.7 
30 µm 7176 (31.6%) 18 0 7.5 74.4 

Average 
Grain size, d 
(Group II) 35 µm 7883 (34.8%) 17.8 0 8.5 73.7 

0.3 7697 (33.9%) 16.6 0 6.9 76.5 
0.5 7484 (33%) 18.8 0 7.4 73.8 
0.8 7247 (32%) 18.8 0 8.1 73.1 

Grain size 
distribution 

dc/d  
(Group III) 1.0 7176 (31.6%) 18 0 7.5 74.4 

 

Table 3.3 summarizes the plastic strain behavior of Ti-6Al-4V for three groups of 

microstructures considered in this study (Table 3.1).  In Table 3.3, Np denotes the number 

of elements that plastically deform.  The number of plastically deformed elements for 

softer basal and random textures is significantly higher than that for harder 

basal/transverse and transverse textures.  Hence, assuming fatigue crack formation is 

associated with effective plastic strain, the transverse and basal/transverse textures have 



 95

higher resistance to fretting fatigue since there are fewer numbers of plastically deformed 

elements and lower values of maximum effective plastic strain. Np increases with 

increasing grain size. At the same time, the percentage of elements undergo plastic 

ratcheting marginally decreases.  There is no clear trend on the effect of grain size 

distribution on the plastic deformation behavior.  For all microstructures considered 

under this fretting loading, over 2/3 of the plastically deformed elements are dominated 

by ratcheting, consistent with the previous results (Goh et al., 2001, 2003; Mayeur et al., 

2007). 

The magnitude and distribution of plasticity among grains plays a key role in 

fatigue crack formation and early growth (McDowell, 2007).  A direct measure of cyclic 

microplasticity is the maximum cyclic plastic shear strain max 2pγ∆  over all possible 

shear strain planes for a given loading condition in individual grains (Bennett and 

McDowell, 2003).  Same as that described in Chapter 2, a volume averaged *
max 2∆ pγ  is 

chosen to quantify the driving force for fatigue crack nucleation. The average grain size 

is considered as the scale of the averaging volume. 

The distributions of *
max 2∆ pγ  computed over the 3rd cycle of the tangential 

loading history for microstructures of Group I simulations (texture), Group II simulations 

(average grain size) and Group III simulations (grain size distribution) are shown in Fig. 

3.10 (a), (b) and (c) respectively. In Fig. 3.10(a), it is noted that for basal and random 

textures, a larger number of grains have high *
max 2∆ pγ .  It is clear that basal and random 

textured materials are “soft” compared to the transverse and basal/transverse textured 

materials, which is consistent with the results in Tables 3.2 and 3.3. With increasing 

average grain sizes shown in Fig. 3.10(b), both the maximum *
max 2∆ pγ  and number of 

grains with higher *
max 2∆ pγ  increase, indicating a reduction of fatigue resistance with 

increasing grain size.  In Fig. 3.10(c), basal textured materials with different dc/d show 
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similar frequency distributions of *
max 2∆ pγ , and there is no clear trend among these cases. 

Therefore, compared to texture and average grain size, the grain size distribution has 

weaker influence on the plastic deformation behavior of Ti-6Al-4V.  Texture has 

substantially the strongest influence. 
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(b) Average grain size (Group II) 

Figure. 3.10.  Influence of microstructure attributes on the distribution of *
max 2∆ pγ  

showing the relative effects of (a) texture, (b) average grain size, and (c) grain size 
distribution. 
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(c) Grain size distribution (Group III) 

Figure. 3.10.  Influence of microstructure attributes on the distribution of *
max 2∆ pγ  

showing the relative effects of (a) texture, (b) average grain size, and (c) grain size 
distribution (cont.). 

 

As in Chapter 2, PFS is used to quantify the driving force for crack formation in 

this study. Figure 3.11 shows the distribution of PFS for the basal textured Ti-6Al-4V with 

d = 30 µm and dc/d = 1.0. It is found that in the subsurface region, the grains with high 

effective plastic strain have higher value of PFS. At the surface, grains with larger PFS are 

found at the edge of contact where fretting fatigue cracks usually nucleate. The 

possibility of crack nucleation at the center of contact is extremely low since PFS is close 

to zero.  The maximum PFS on the contact surface is found at the edge of contact near the 

end of the cylinder, as indicated by arrow in Fig. 3.11. 

Figure 3.12 (a), (b) and (c) respectively display the variations of distribution of 

PFS for microstructures of Groups I (texture), II (average grain size) and III (grain size 

distribution) simulations, as summarized in Table 3.1.  The maximum PFS over the entire 

crystal plasticity region are given in Table 3.2 for all simulations. In Table 3.2, transverse 

*
max 2pγ∆
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and basal/transverse textures have lower maximum PFS and therefore have greater fretting 

fatigue crack formation resistance than basal and random texture. Same tendency can be 

observed from Fig. 3.12(a). The fatigue resistance increases with reduction of the average 

grain size as shown in Fig. 3.12(b). An approximate linear relation between average grain 

size and maximum PFS is obtained in Table 3.2.  Variation of the maximum PFS with 

grain size distribution parameter dc/d is relatively low.  From Fig. 3.12(c) and Table 3.2, 

no clear correlation can be found between dc/d and distribution and maximum PFS.  

Therefore, it is concluded that comparing with the effects of texture and average grain 

size, the effect of dc/d of on the fretting fatigue behavior of Ti-6Al-4V is relatively weak 

for the considered fretting loading condition.  It is certainly possible that grain size 

distribution will have more significance as the normal force is decreased and the 

tangential force amplitude is increased, resulting in a majority of the plastically 

deforming elements being located at the edge of contact.   

 

 

 

Figure 3.11.  Distribution of PFS (cross section view). 
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(a) Texture (Group I) 
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(b) Average grain size (Group II) 

 

Figure 3.12.  Variation of distribution of PFS with respect to variation of 
microstructure attributes showing the relative effects of (a) texture, (b) average grain 

size, and (c) grain size distribution.   
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(c) Grain size distribution (Group III) 

 

Figure 3.12.  Variation of distribution of PFS with respect to variation of 
microstructure attributes showing the relative effects of (a) texture, (b) average grain 

size, and (c) grain size distribution (cont.).   
 

Table 3.4. Combinations of normal and tangential forces. 

 P = 0.3Py P = 0.5Py P = 0.75Py P = 1.0Py 

Q = 0.03Py O    

Q = 0.1Py O O O O 

Q = 0.15Py O   O 

Q = 0.2Py    O 

 

 

To study the effects of normal and tangential loads on the fretting fatigue of Ti-

6Al-4V, various combinations of normal and tangential forces are applied on 

Group A

Group B

Group C 
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Microstructure IV.  These combinations are divided into three groups: A, B and C, as 

summarized in Table 3.4. To explore the influence of tangential force, same normal force 

P = 0.3Py and P = Py are used in Groups A and C, respectively. Groups A and C are 

respectively shown with red and green ovals. Four loading combinations, as shown by the 

blue oval, with normal force ranging from 0.3Py to 1.0Py and tangential force Q = 0.1Py 

are used to explore the effect of the normal load on the fretting fatigue behavior.  

Figure 3.13 shows the distribution of the effective plastic strain pε of simulations 

of Group B after three tangential loading cycles. All contours are shown in section view, 

as illustrated in Fig. 3.2(d). The maximum pε  at the x-y plane, max
p

x y
ε

−
, are given in 

Table 3.5 for all simulations. For all four cases, it is noted that the value of pε  at the 

center of contact is much lower than that at the edges of contact where microslip occurs 

due to fretting. Strong contact edge effects are observed where the end of the cylinder 

contacts the half space. It is shown that both the size of the plastically deformed region 

and max
p

x y
ε

−
 significantly increase with increasing normal force P. As shown in Fig. 

3.13(a), for P = 0.3Py, plastic deformation mainly occurs at the edge of the contact. As P 

increases to 0.5Py, plastic strain begins to accumulate at the subsurface region. 

Substantial plastic deformation at the subsurface region is observed in Fig. 3.13(c) for P 

= 0.75Py. It is noted that max
p

x y
ε

−
 at surface is higher than that at subsurface for P = 

0.75Py. In case of P = Py, subsurface region undergo significant plastic deformation. 

Value of max
p

x y
ε

−
 at the subsurface region is higher than that at the edge of contact as 

shown in Fig. 3.13(d), suggesting the potential crack formation at this region.  

Figures 3.14 and 3.15 show the contours of pε of simulations of Groups A and C, 

respectively. It is shown that the overall distributions of pε  for various tangential forces 

Q are close. A significant increase of pε  at the edge of contact is observed in Fig. 3.14 

for P = 0.3Py. These cases can be compared to Fig. 3.13(a) which is at the same normal 
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force with Q = 0.1Py. In Group A, max
p

x y
ε

−
 increases by about twenty times when Q 

increases from 0.03Py to 0.15Py. A much larger increase of max
p

x y
ε

−
is observed when Q 

increases from 0.1Py to 0.15Py.  For P = Py, the size of plastically deformed region 

slightly increases with increasing Q. The value of max
p

x y
ε

−
increases moderately, as shown 

in Table 3.5. Tangential force is observed to have larger influence on the fretting 

behavior when normal force is significantly lower than Py.  

 

 

Figure 3.13. Distribution of pε after three tangential loading cycles for Q = 0.1Py  
(Group B). 

 

(d) P = Py, Q = 0.1 Py (c) P = 0.75Py, Q = 0.1 Py 

(a) P = 0.3Py, Q = 0.1 Py (b) P = 0.5Py, Q = 0.1 Py 
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Figure 3.14. Distribution of pε after three tangential loading cycles for P = 0.3Py  

(Group A). 
 

 
Figure 3.15. Distribution of pε after three tangential loading cycles for P = Py (Group C). 

 

The plastic strain behaviors of simulations of Groups A, B and C are summarized 

in Table 3.5. It is shown that the number of elements undergoing plastic deformation 

significantly increases with increasing normal load P in Group B. When P is smaller than 

0.5Py, only a few surface elements plastically deformed. A large percentage of elements 

undergo plastic deformation at P = Py. This observation is consistent with the 

distributions of the effective plastic strain shown in Fig. 3.13. The plastic deformation 

behaviors change substantially with normal force. Ratcheting plasticity is the dominant 

plastic deformation mechanism when P = 1.0Py. Elastic shakedown becomes increasingly 

(b) P = Py, Q = 0.2Py (a) P = Py, Q = 0.15Py 

(a) P = 0.3Py, Q = 0.03Py (b) P = 0.3Py, Q = 0.15Py 
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important with decreasing normal load. For a normal load P = 0.3Py, elastic shakedown is 

equally important as the ratcheting plasticity.   

The number of elements undergoing plastic deformation increases with increasing 

Q for Groups A and B. It is noted that the percentage of elements undergoing ratcheting 

plasticity among all plastically deformed elements increases with reducing Q for both 

Group A (P = 0.3Py) and Group B (P = 1.0Py). The percentages of elements undergoing 

cyclic plasticity and combined cyclic and ratcheting plasticity are negligible for all 

loading cases. 

 

Table 3.5. Summary of plastic strain behavior for different combinations of normal and 
tangential forces. 

 

Load max
p

x y
ε

−
 

Np  (% of 
total 

elements)

Elastic 
shakedown 
(% of Np  ) 

Cyclic 
plasticity 
(% of Np  

) 

Combined 
cyclic and 
ratcheting 
(% of Np  ) 

Ratcheting 
(% of Np  )

P = 0.3Py  
Q = 0.03Py 

1.3×10-4 90 
(0.4%) 45.6 0 0 54.4 

P = 0.3Py  
Q = 0.1Py 

5.3×10-4 135 
(0.6%) 50.4 0 0 49.6 Group 

A 
P = 0.3Py  
Q = 0.15Py 

2.5×10-3 302 
(1.3%) 56 0.3 0.3 43.4 

P = 0.3Py 
Q = 0.1Py 

5.3×10-4 135 
(0.6%) 50.4 0 0 49.6 

P = 0.5Py 
Q = 0.1Py 

1.1×10-3 1049 
(4.6%) 39.1 0 0 60.9 

P = 0.75Py 
Q = 0.1Py 

2.1×10-3 3359 
(14.8%) 24.5 0 0 75.5 

Group 
B 

P = Py         
Q = 0.1 Py 

4.9×10-3 7176 
(31.6%) 18 0 0 81.9 

P = Py         
Q = 0.1 Py 

4.9×10-3 7176 
(31.6%) 18 0 0 81.9 

P = Py         
Q = 0.15 Py 

5.1×10-3 7768 
(34.3%) 19.4 0 0 80.6 Group 

C 
P = Py         
Q = 0.2 Py 

5.7×10-3 8267 
(36.5%) 21 0 0.2 78.9 
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The distributions of the *
max 2∆ pγ  computed over the 3rd cycle of tangential 

loading history for simulations of Group B are shown in Fig. 3.16. The number of grains 

with large *
max 2∆ pγ  greatly increases with increasing normal force P. The peak value of 

the *
max 2∆ pγ also significantly increase which agrees with previous results. Figure 3.17 

shows that the value of *
max 2∆ pγ increases with increasing tangential force Q when P = 

0.3Py. The maximum *
max 2∆ pγ  increases significantly when Q increases from 0.1Py to 

0.15Py.   Comparing Fig. 3.17 with Fig. 3.18, it is noted that Q has larger the influence on 

distribution of *
max 2∆ pγ  at lower normal force.  

 
 

 
 
Figure 3.16. Variation of distribution of *

max 2∆ pγ with respect to various P with Q = 0.1Py 
(Group B). 
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Figure 3.17. Variation of distribution of *

max 2∆ pγ with respect to various Q with P = 0.3Py 
(Group A). 

 
Figure 3.18. Variation of distribution of *

max 2∆ pγ with respect to various Q with P = Py 
(Group C). 
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The FIP PFS is calculated over the 3rd tangential loading cycle.  The contours of 

PFS of simulations of Groups B, A and C are shown in Figs. 3.19, 3.20 and 3.21, 

respectively. It is shown that the cracks will most likely form at the edge of contact where 

the large value of PFS is found for P = 0.3Py, as shown in Fig. 3.19(a). The non-zero PFS is 

found at both edge of contact and subsurface region as P increases to 0.5Py. As shown in 

Fig. 3.19(b), the value of PFS in the subsurface is lower than that at edge of contact. 

Therefore, it is concluded that cracks will most likely form at the edge of contact regions 

when the normal load is significantly lower than Py. This result agrees with the 

observations that the cracks are generally found at the trialing edge in fretting 

experiments at relatively low normal load P (Araujo and Nowell, 2002). In the fretting 

experiments conducted by Cortez, et. al (1999), fatal cracks were found to propagate near 

the location of the trailing edge of contact when the applied normal load is around 20% of 

the force required to initiate yield of the tested Ti-6Al-4V. As P increases to 0.75Py and 

Py, the value of PFS at both contact surface and subsurface region greatly increase and 

become close. This result suggests that the fatigue cracks may simultaneously form at the 

surface and subsurface regions when P is close to Py.  

Figure 3.20 shows that the overall distributions of PFS are close for Groups A 

simulations. At the same time, value of PFS significant increases with increasing Q. The 

same trend is observed in Fig. 3.21 for Group C simulations. Therefore, the tangential 

force Q significantly influences the fatigue crack formation life.  
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Figure 3.19. Contour of PFS with respect to various P for Q = 0.1Py (Group B). 

 

 

 

Figure 3.20. Contour of PFS with respect to various Q for P = 0.3Py (Group A). 

 

(a) P = 0.3Py, Q = 0.03Py (b) P = 0.3Py, Q = 0.13Py 

(d) P = Py, Q = 0.1 Py (c) P = 0.75Py, Q = 0.1 Py 

(a) P = 0.3Py, Q = 0.1 Py (b) P = 0.5Py, Q = 0.1 Py 
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Figure 3.21. Contour of PFS with respect to various Q for P = Py (Group C). 
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Figure 3.22. Variation of distribution of PFS with respect to various P for Q = 0.1Py 
(Group B). 

 

(b) P = Py, Q = 0.2Py (a) P = Py, Q = 0.15Py 
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Figure 3.23. Variation of distribution of PFS with respect to various Q for P = 0.3Py. 
(Group A). 
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Figure 3.24. Variation of distribution of PFS with respect to various Q for P = Py  

(Group C). 
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Figure 3.25. Variation of maximum PFS with respect to loading parameters. 
 
 

Distributions of PFS of simulations of Groups B, A and C are shown in Fig. 3.22, 

3.23 and 3.24, respectively. The maximum PFS versus tangential force is shown in Fig. 

3.25 for all simulations. Figure 3.22 shows that the number of grains with higher PFS 

increases with increasing normal force. In Fig. 3.25, the maximum PFS moderately 

increase with increasing normal force. These observations are consistent with the 

previous result that the fatigue crack formation life decrease with increasing normal 

force. Figures 3.23 and 3.24 show that the driving force for crack formation increases 

with increasing tangential force at both P = 0.3Py and P = Py. In Fig. 3.25, a significant 

increase of PFS is observed when Q increases from 0.1Py to 0.15Py at P = 0.3Py. 

Tangential force Q is shown to have a much larger influence on the driving force for 

crack formation at low normal force. It is thus concluded that fretting fatigue of Ti-6Al-

4V is dominated by the tangential force Q.  
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3.5 Summary 

 

A methodology for using crystal plasticity to explore the sensitivity of fretting 

fatigue to microstructure and loading parameters was presented and demonstrated for 

duplex Ti-6Al-4V at room temperature.  The crystal plasticity material model captures 

the crystallographic orientation dependence of the deformation behavior for both primary 

α phase and the lamellar colonies. A three-dimensional finite element model is 

constructed to simulate the fretting contact in the partial slip regime between the two 

bodies.  A Voronoi tessellation procedure is used to render grain size distributions in the 

contact region. 

Three microstructure attributes are considered in this sensitivity study:  

crystallographic texture, average grain size, and grain size distribution.  The distribution 

and maximum value of the effective plastic strain and related fatigue indicator parameters 

are all shown to depend on the microstructure.  Moreover, the sensitivity of several other 

microstructure attributes can potentially be considered using this methodology.  These 

include volume fraction of phases, differences in the distribution of primary α and 

lamellar colony sizes, thicknesses of the α and β lathes, as different spatial distributions 

of microstructural features.  

To study the effects of normal and tangential forces on the fretting fatigue 

behavior of Ti-6Al-4V, various combinations of normal and tangential forces are applied 

to each microstructure. The influence of tangential force on the fretting behavior is 

examined at both low and high normal force. 

Based on the relatively limited range of conditions considered in this 

demonstration study, the effect of microstructure attributes and loading parameters on the 

resistance to fretting fatigue can be summarized as:  

1.  Smaller average grain size results in increased fretting fatigue 

resistance. 
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2. In this study, the polycrystal Ti-6Al-4V is oriented in the way that the 

rolling and transverse directions are parallel to the y- and x-axes, 

respectively, corresponding to the considered textures shown in Fig. 

2.2. The normal and tangential forces are respectively applied in the y- 

and x- directions. For this loading condition, transverse and 

basal/transverse textured material exhibit greater fretting fatigue 

resistance, and the effect of texture on subsurface plasticity and FIP was 

more pronounced than that of the other two microstructure attributes. 

3. The effect of grain size distribution is minimal. 

4. Normal force has significant influence on the fretting fatigue of Ti-6Al-

4V. The driving force for crack formation increases with increasing 

normal force. When the normal force is substantially lower than Py, 

cracks are most likely formed at the edge of contact. With increasing 

normal force, the possibility of crack formation at subsurface region 

increase.  

5. The driving force for crack formation increases with increasing 

tangential force at both low and high normal force. The tangential force 

has a larger influence on the driving force for crack formation at low 

normal force and dominates the fretting fatigue behavior of Ti-6Al-4V.  
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CHAPTER 4 

CRYSTAL PLASTICITY MODELING OF CYCLIC 

DEFORMATION OF TI-6AL-4V  

 

 

4.1 Introduction 

 

Considerable work has been done to develop suitable constitutive relations to 

model the mechanical behavior of Ti-6Al-4V.  In Chapter 1, it is shown that the 

homogenized plasticity model, such as J2 plasticity, is unable to capture the effects of 

microstructure on mechanical behavior (Goh, 2002).  Thus, application of those models is 

limited to length scales much larger than microstructure scales.  Due to the lack of the 

microstructure sensitivity of the macroscopic models, they must be calibrated for each 

material with different microstructure.  The calibrations usually require the experimental 

stress-strain responses of the materials, which are sometimes very expensive to obtain.  

To overcome these limitations, three-dimensional crystal plasticity constitutive relations 

have been developed by Mayeur and McDowell (2007) to model duplex Ti-6Al-4V. This 

model has been used in Chapters 2 and 3 for microstructure-sensitive cyclic and fretting 

simulations to explore driving forces for formation of fatigue cracks.  

In this study, a crystal plasticity constitutive model of Ti-6Al-4V relevant to room 

temperature behavior is calibrated using the finite element method by fitting the 

measured stress-strain response of a heat treated Ti-6Al-4V alloy subjected to a complex 

cyclic loading history.  The descriptions of material and constitutive model are given in 

Sections 4.2 and 4.3, respectively. Section 4.4 introduces three-dimensional finite 

element models that can precisely represent the microstructures of the test material.  The 

fitting process and results are discussed in Section 4.5.  The microstructure sensitivity of 



 115

the model is examined in Section 4.6 by comparing the experimental data with simulation 

results in terms of material yield strength.  Discussion and summary are given in the last 

two sections. 

 

 

4.2 Material 

 

Depending on the thermomechanical process path and recrystallization, the 

microstructure of Ti-6Al-4V at room temperature can range from bimodal to fully 

lamellar structures.  In this study, a duplex Ti-6Al-4V provided by Pratt & Whitney 

Company (PW1215) is considered which contains a primary HCP α phase, and 

secondary α plus bcc β phase arranged in a lamellar structure, as shown in Fig. 4.1.  The 

key first order microstructural parameters of Ti-6Al-4V under consideration include 

average globular (primary) α size, lamellar colony size, volume fraction of the primary α 

phase, and mean thicknesses of the secondary α and β phases in the lamellar structure, as 

summarized in Table 4.1.  Owing to lack of detailed stereological information on lamellar 

colony size, the average primary α size and lamellar colony size are assumed to be 

identical based on qualitative observation.  The orientation and disorientation 

distributions are also important due to the highly anisotropic behavior of hcp crystals and 

lamellar colonies, which can either be reflected in a macroscopic yield function (Cazacu 

et al., 2006) or can be addressed explicitly using crystal plasticity.  The basal plane pole 

figure and disorientation distribution of the tested material are shown in Figs. 4.2 and 4.3, 

respectively.  
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Figure 4.1. Microstructure of duplex Ti-6Al-4V (PW1215). 

 

 

 

 

Table 4.1 Microstructure parameters of duplex Ti-6Al-4V (PW1215). 

Globular α 
size  (µm) 

lamellar 
colony size 

(µm) 

Vol. 
Fraction of 
Globular α 

(%) 

Vol. 
Fraction of 
Total α (%) 

Mean 
thickness of 
α lath (µm) 

Mean 
thickness of 
β lath (µm) 

7.74 7.74 24.09 91 0.30 0.03 
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Figure 4.2. Basal plane pole figure of the orientation distribution of tested material 
(PW1215). 
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Figure 4.3. Disorientation distribution of tested material (PW1215).  
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4.3 Crystal Plasticity Modeling of Ti-6Al-4V 

 

The basic concept of crystal plasticity has been given in Chapter 1. Chapter 2 

described the slip system of the primary α phase and lamellar colonies.  

In a rate dependent formulation, all slip systems are considered to be active for 

stresses above the threshold, and the shearing rates are related to the resolved shear stress 

and the current state of the microstructure according to 

 

 ( )
-  

sgn -  

m

o D

α α α
α α α

α

τ χ κ
γ γ τ χ

−
=  (4.1) 

 

Here, ατ is the resolved shear stress, Dα is the drag stress, m is the inverse strain rate 

sensitivity exponent, αχ is the kinematic harding variable or back stress on the αth slip 

system,  ακ is the scalar threshold stress, and γ o is the reference shearing rate.   The 

Macauley bracket in Eq. (4.1) is defined by <x> = xH(x), where H(x) is the Heaviside 

function. 

The drag stress of the primary α- phase is taken as a constant, i.e., 0Dα = .  For 

the HCP slip systems of secondary α+β lamellar phase, the drag stresses are taken to be 

the same as their counterparts in the primary α phase 

( , , etc.prism prism basal basalD D D Dα α β α α β+ += = ), whereas the drag stress for the bcc systems is 

taken to be slightly lower than the drag stress for prismatic systems ( { }111 110 0.9 prismD Dα β α+ = ) 

to represent the mechanically softer nature of β-Ti alloys.  They are also assumed to be 

constant at a given temperature. 

The initial value of back stress is set to be zero for all slip systems in both phases. 

The back stress evolves according to a modified Armstrong-Fredrick direct 
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hardening/dynamic recovery relation (Goh et al., 2001, 2002, 2003; Mayeur and 

McDowell, 2007).  Asymmetry in tension and compression has been reported for α/β 

titanium alloys such that the yield strength is higher in compression than in tension 

(Mayeur and McDowell, 2007).  It was suggested that the asymmetry of slip resistance 

for <c+a> (Williams et al., 2002) and <a> (Neeraj , et al., 2005) slip induces the tension-

compression asymmetry.  In addition, differences in lattice rotation in finite tension and 

compression deformation can induce some asymmetry, and are of course included in our 

model.  However, we describe the additional tension-compression asymmetry that arises 

both from slip interaction under current loading with prior long transient planar slip 

accumulation of screw dislocations (bands) at room temperature and from short transient 

non-planar dislocation core spreading in the α phase. Accordingly, with regard to the 

former mechanism the evolution law of back stress is given by  

 

 ( ) ( ) ( )α α α α α αCχ = Bγ - C χ γ B sgn γ - χ γ
B

x xα α αψ ψ =  
 

 (4.2) 

 
 

 ( )1exp    for  0
( )

1.0           for  0

x x
x

x

α α
α

α

η
ψ

 <= 
≥

 (4.3) 

 
 

 sgn( ) , sgn( )x p with pα α α α α α α ατ χ γ τ χ= − = −  (4.4) 
 
 
Here, 1η > 0 is a constant, B and C are direct hardening and dynamic recovery 

coefficients, respectively.  The additional term ( )xαψ  is introduced in the dynamic 

recovery coefficient to reflect the slip band interaction mechanism described above, with 

xα  conjugate to a strain-like internal state variable pα  that represents a slip history-

weighted sign of the slip system overstress ( α ατ χ− ); the sign of xα  depends on the sign 
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of the current overstress times pα .  Physically, we associate the asymmetry described by 

this term as the interaction of slip in a set of bands associated with current reversed 

loading with a distinct set of planar bands of screw dislocations in the interior of α grains 

established during prior loading.   In other words, different slip bands are assumed 

activated in tension and compression, an effect outside the realm of the kinematics of the 

local crystal plasticity continuum treatment. It should be noted that pα  may increase or 

decrease during a cycle of tensile and compressive loading. A stable cyclic trajectory of 

pα  can be achieved after several loading cycles. For the primary α phase, a component 

of the threshold stress in Eq. (4.6), ακ , is used to incorporate the non-Schmid behavior for 

prismatic systems and associated tension-compression asymmetry that arises from the 

non-planar dislocation core structure (Naka et al., 1988; Bassani et al., 2001) of 

dislocations on prismatic and basal slip systems, described below.   

The threshold stress does not evolve, i.e., 0ακ = , for pyramidal slip systems of 

the primary α- phase and the hard slip systems of α+β colony.  One component of 

threshold stress for each slip system manifests scale effects, i.e., 

 

 ( ) 0.5

1  yk dα ακ
−

=  (4.5) 
 
 

where yk is the Hall-Petch slope and d α  is the microstructural dimension relating to the 

free slip length of the slip system. The threshold stress for prismatic and basal slip 

systems of the primary α- phase is given by 

 

 1 1 2( )prism Pyr Pyr sprism prism
Aα α ακ κ τ τ κ= + − +  (4.6) 
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 1basal sbasal basal

α α ακ κ κ= +  (4.7) 

 

where 1 prism

ακ and 1 basal

ακ are defined by Eq. (4.5), and yk is the same value as for 

pyramidal slip systems.  Slip length d α  for prismatic and basal systems in the primary α-

phase corresponds to the mean α grain size. Shear stresses 1pyrτ and 2pyrτ  in Eq. (4.6) are 

non-Schmid resolved shear stresses on pyramidal planes that share the 1120< >  burgers 

vector with each prismatic plane and promote recombination of the dissociated core 

(Mayeur and McDowell, 2007).  The second term in Eq. (4.6) corresponds to the non-

Schmid effect and will either increase or decrease the threshold stress, depending on the 

sense of the applied load with respect to the crystal orientation.  This non-Schmid term is 

included only for prismatic systems and leads to tension/compression yield asymmetry 

for these systems.  s basal

ακ and s prism

ακ  , respectively, incorporate softening of basal and 

prismatic slip systems associated with breakdown of short range order due to dislocation 

glide at low to moderate homologous temperatures (planar dislocation arrays) that 

promote a nearly elastic-perfectly plastic behavior of the material. These initial softening 

terms decay rapidly, approximated by the evolution laws 

 

 s basal s basal
α ακ µκ γ= −  (4.8) 

 
 

 s prism s prism
α ακ µκ γ= −  (4.9) 

 

where µ is a constant and γ  is defined as 
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1

N
α

α

γ γ
=

= ∑  (4.10) 

 
where N is the number of slip systems. The initial value of  ,s prism basal

ακ  is given by  

 

 , (0) (0)s prism basal s
ακ κ=  (4.11) 

 
 

The threshold stress for soft slip systems of the α+β colony also includes an initial 

softening term, i.e., 

 

 1soft s soft

α α ακ κ κ= +  (4.12) 

 

The softening term evolves according to the evolution law 

 

 s soft s soft
α ακ µκ γ= −  (4.13) 

 

 The initial value of  s soft
ακ  is given by  

 

 (0) (0)s soft s
ακ κ=  (4.14) 

 
 

The constitutive equations are summarized in Table 4.2. 

This crystal plasticity algorithm is applied to both the primary α phase and 

lamellar colonies via implementation into a UMAT subroutine in ABAQUS (2005). 
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Table 4.2 Constitutive equations for Ti-6Al-4V. 

 

Flow Rule: 

( )
-  

 sgn -  

m

o D

α α α
α α α

α

τ χ κ
γ γ τ χ

−
=

Evolution Equations for Hardening Variables: 

Back stress (primary α phase and lamellar colony) 

Threshold stress 

Drag stress 

sgn( ) , sgn( )x p with pα α α α α α α ατ χ γ τ χ= − = −

( )1exp    for  0
( )

1.0           for  0

x x
x

x

α α
α

α

η
ψ

 <= 
≥

( ) 0.5

1  yk dα ακ
−

=

( ) ( ) ( )α α α α α αCχ = Bγ - C χ γ B sgn γ - χ γ
B

x xα α αψ ψ =  
 

1 1 2( )prism Pyr Pyr sprism prism
Aα α ακ κ τ τ κ= + − +

Primary α phase 

1basal sbasal basal

α α ακ κ κ= + s basal s basal
α ακ µκ γ= −

s prism s prism
α ακ µκ γ= −

1soft ssoft soft

α α ακ κ κ= +

1pry pry

α ακ κ= 0pry
ακ =

Lamellar colony 

1hard hard

α ακ κ=

s soft s soft
α ακ µκ γ= −

0hard
ακ =

0Dα = prism prismD Dα α β+= { }111 110 0.9 prismD Dα β α+ =basal basalD Dα α β+=

1

N
α

α

γ γ
=

= ∑(0) (0) (0) (0)s prism s basal s soft s
α α ακ κ κ κ= = =

for all slip systems 
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4.4 Finite Element Model 

 

The microstructure of the tested Ti-6Al-4V is simulated by a finite element 

model.  Microstructure attributes are given in Table 4.1 for this material. The low 

symmetry of the hcp crystal structure and the anisotropy of slip system strengths result in 

material behavior for α-Ti and α/β Ti-Al alloys that depends strongly on the 

polycrystalline texture, as well as disorientation at grain/phase boundaries.  Therefore, it 

is essential to address crystallographic texture in the constitutive model and finite element 

realizations of polycrystals.   

 

 

Figure 4.4. Basal plane pole figure of the initial, target and final orientation distributions. 

 

For simplicity, in this study the target orientation distribution in the Rodriguez 

space and disorientation angle distribution of the polycrystalline material are extracted 

directly from EBSD (electron back scatter diffraction) scanning data (provided by Prof. 

Target Final 

TD 

RD 

ND 
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M. Mills, OSU), taking the crystal symmetry into consideration (Randel and Engler, 

2000; Sztwiertnia et al., 1999; Saylor et al., 2004).  The orientation distribution of grains 

is simulated by using the approach described in Chapter 2. Figure 4.4 shows the basal 

plane pole figures of fitting and target orientation distribution of grains.  It should be 

noted that 125 grains are used to fit the target orientation distribution in Fig. 4.4. 
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Figure 4.5. Initial, target and final disorientation distributions for 125 grains. 

 

The simulated annealing method is used to fit the disorientation angle distribution 

(Miodownik, 1999).  In this method, the domain that includes all possible grain 

disorientations is divided into M sub-domains.  To simulate the disorientation distribution 

while maintaining the target orientation distribution, the resulting orientations from 

previous fitting processes are randomly assigned to a cluster of cubic grains arranged in a 

cubic space.  The error ω of the disorientation distribution is obtained by 

 

 2

1

[ ( ) ( )]
M

s t
j j

j

f g f gω
=

= ∆ − ∆∑  (4.15) 

Disorientation Angle, deg 
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where ( )s
jf g∆  and ( )t

jf g∆  are the simulated and target frequencies of disorientation 

distributed in the sub-domain j.  The variation of error ∆ω is calculated after the 

orientations of two randomly selected grains are swapped.  Then, ∆ω is used to determine 

whether this operation is acceptable based on a probability criterion p(∆ω) which, 

following the Metropolis algorithm, is given by 

 

 
1 ( 0)

( )
exp( / ) ( 0)

p
T

ω
ω

ω ω
∆ <

∆ =  −∆ ∆ >
 (4.16) 

 
 

Here, T is a control parameter (analogous to temperature) used to define an annealing 

schedule.  The operation is accepted if ∆ω < 0 or ∆ω > 0 but p(∆ω) ≥ ρ, where ρ is a 

random number; otherwise, the operation is rejected.  The operations continue until the 

error is less than a preset critical value (e.g., ω =10-5).  The initial, target and final 

disorientation distribution functions for an ensemble of 125 grains are shown in Fig. 4.5. 
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Figure 4.6. Fit for the disorientation distribution with 27, 64, 125 and 512 grains. 
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It should be noted that the fitting results depend strongly on the number of grains 

in the finite element mesh.  During the EBSD scanning (provided by Prof. M. Mills, 

OSU), the orientations of over 10,000 grains were recorded.  Finite element meshes with 

very few grains cannot precisely simulate the orientation and disorientation distributions 

of such a large number of grains.  Figure 4.6 shows the fitting results of disorientation 

frequency functions with 27, 64, 125 and 512 grains.  Clearly, at least 125 grains are 

needed to accurately fit the target disorientation distribution.  The basal plane pole figures 

of target and simulated textures with 125 and 512 grains are shown in Fig. 4.7.  The 

fitting result with 125 grains is shown to be sufficient to represent the target texture.  A 

larger number of grains (512 grains) would result in a more accurate fit, as shown in Fig. 

4.7.  However, computational cost will significantly increase with addition of more 

grains.  

   

 

125 Grains Target 512 Grains  

 

Figure 4.7.  Basal plane pole figures of fit orientation distribution with 125 and 512 
grains, compared to target orientation distribution. 
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The number of grains of each phase is defined by the volume fraction of that 

phase, since all grains in the finite element model considered here are assumed to have 

same size.  It is noted the phases of each grain are randomly distributed due to the lack of 

information regarding the spatial characteristics of the phase distribution.  However, 

certain constraints are introduced to avoid large clusters of either phase.  In this study, the 

phase of each grain is initially randomly assigned according to the volume fraction and 

then adjusted to avoid substantial clustering of each phase, while maintaining the target 

volume fraction. 

In this study, a cubic grain finite element model was used.  The edge size L of the 

model is defined by 

 

 1/ 3L n d=  (4.17) 
 
 

where n is the number of grains and d is the average grain size.  The tested 

polycrystalline material is idealized as an aggregate of cubic crystals of identical size, as 

shown in Fig. 4.8.  Such an idealization represents a highly idealized, uniform grain size 

distribution of two phases.  The finite element mesh was created using a Fortran code and 

implemented in ABAQUS (2005).  As discussed before, a minimum of 125 grains are 

required to simulate the orientation and misorientation distributions of tested material.  

Thus, the statistical volume element (SVE) FE model consists of 5 5 5× × cubic grains, 

with each grain having 2 2 2× ×  elements, as shown in Figure 4.12.  There are a total of 

1000 8-node linear cubic elements.  All elements employ reduced integration. Each 

reduced integration element has one integration point, therefore significantly reduce 

computational cost. To simulate the behavior of bulk material with only hundreds of 

grains, random periodic boundary conditions are applied to all three directions: RD, TD, 

and the normal direction shown in Fig. 4.8, in view of the strong heterogeneity of the 



 129

SVE. This boundary condition imposes constraints on the sides such that the opposite 

edges deform in the same manner (cf. (Smit, et al., 1998; Van der Sluis et al., 2000; 

Ostoja-Starzewski et al., 1994; Kumar, et al., 2006). The displacements are enforced 

(specified) in the normal direction to correspond to strains imposed in the experiments.  It 

is noted that when the displacement is specified on an upper boundary, as in uniaxial 

loading, the sides of the mesh (other two directions) experience approximately zero net 

traction, in accordance with the axial loading condition.   

 

 

 

Figure 4.8 Finite element model of periodic polycrystal. 

 

 

4.5 Fitting Procedure 

 

All experimental data were obtained from Pratt & Whitney Company. In all 

mechanical tests of the heat treated Ti-6Al-4V (PW1215) conducted at room temperature, 

the loading direction was aligned with the normal direction of the material shown in Fig. 

4.8.  Relatively complex uniaxial strain-controlled loading histories were employed with 

and without strain hold periods interspersed throughout.  In tests with hold periods, four 
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strain rates of 10-3 s-1, 10-4 s-1, 3×10-5 s-1, and 10-5 s-1 were employed to explore the strain 

rate sensitivity of the material. Another type of test enforced a complex uniaxial strain-

controlled cyclic history at a constant strain rate of 10-4 s-1, without hold periods.  Also, a 

load-controlled uniaxial creep test was performed at room temperature with a nominal 

(engineering) stress of 827 MPa and the creep strain was recorded.  Several materials 

parameters such as the inverse strain-rate sensitivity exponent m in Eq. (4.1) are 

amenable to estimation by virtue of the variation of strain rates and stress relaxation 

during strain hold periods or by uniaxial creep tests.  However, creep tests alone are 

unable to calibrate the parameters that control the cyclic behavior, such as the direct 

hardening and dynamic recovery coefficients of the kinematic hardening.  Therefore, in 

this study, the crystal plasticity model is calibrated by fitting the stress-strain response of 

the strain-controlled tests at different strain rates with strain hold periods.  The results of 

constant strain rate strain-controlled experiments and creep tests are then used in a 

predictive sense to validate the calibrated constitutive model.  

 

Table 4.3  Material constants for various microstructures at room temperature 
 (Mayeur, 2004). 

 
Property Value Reference 

11C  162,400 MPa 

12C  92,000 MPa 

13C  69,000 MPa 

33C  180,700 MPa 

44C  46,700 MPa 

Simmons and Wang, 

1971 

oγ  0.001 s-1 Goh, 2002 

yk  17 MPa-mm0.5 
Picu and Majorell, 2002, 

Kalidindi et al., 2003 
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It should be noted that several material constants of the crystal plasticity model 

can be obtained from the literature or directly from characterized microstructure features. 

These constants, shown in Table 4.3, include the elastic constants for the α-phase and 

lamellar colony (Cij), reference shearing rate and Hall-Petch constant; they can be applied 

to the same nominal composition with different microstructures arising from different 

thermomechanical process routes.  

The relationship between Miller-Bravais indices of HCP crystal and Cartesian 

coordinate system is shown in Fig. 4.9. The elasticity tensor C of an HCP crystal is given 

by 
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Figure 4.9.  Coordinate relationship between the Cartesian system and the Miller-Bravais 
system. 
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The threshold stress depends on average grain size via the Hall-Petch slope. The 

value of other constants must be found by fitting the experimental data. These constants 

include the inverse rate sensitivity exponent m, coefficient for tension-compression 

asymmetry of the back stress η1, the drag stress of each slip system Dα, the initial value of 

the softening term κs(0), and degree of softening of the threshold stress of basal and 

prismatic slip systems µ, etc.    

The fitting process is as follows.  For a given loading history, some material 

constants are first determined based on the microstructure attributes; then the values of 

fitting parameters are estimated within a reasonable range based on previous works 

(Mayeur, 2004).  After running simulations, the resulting stress values at each strain point 

are compared with those of the experimental data.  This estimation, simulation and 

comparison loop can be run until the error is minimized.   

The fitting process can be rendered more efficient by conducting a sensitivity 

analysis of variables with respect to the stress-strain response in the first stage of 

calibration.  Given all of the crystal plasticity parameters that needed to be calibrated, it is 

known that some of them have more influence on the response, such as inverse material 

rate sensitivity exponent m and the initial value of the softening term κs(0).  In the fitting 

process, the material rate sensitivity m can be initially approximated by only fitting the 

stress relaxation response during strain hold periods.  Although a small change of m is 

needed to obtain the best fit of the entire relaxation curve, this approximation was shown 

to be very accurate.  The initial value of the softening term κs(0) in the threshold stress, 

which has an effect on initial yield behavior, decays rapidly (breakdown of short range 

order at low to moderate homologous temperatures), which means this term will have 

almost no effect on the long range cyclic stress-strain behavior. Therefore, the softening 

term can be fit by comparing the stress-strain response during the first few loading cycles 

and can then be held constant thereafter.  
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Table 4.4  Relative CRSS of slip systems at room temperature reported in the literature 
for α-titanium and α/β Ti-Al alloys, normalized to CRSS for prismatic slip  

(Mayeur, 2004). 
 

/basal prism
CRSS CRSSτ τ  /pyr a prism

CRSS CRSSτ τ /pyr c a prism
CRSS CRSSτ τ+  Reference 

0.93 - 1.3 1 1.1 - 1.6 Medina et al., 1995 

1.25 - 2.625 Paton et al., 1973 

5 5 8.0 - 15.0 Fundenberger et al., 1997 

1.5 1 3 Dunst and Mecking, 1996 

1 - 8 Lebensohn and Canova, 1997 

1.43 - 4.23 Bieler and Semiatin, 2001 

 

The estimation of material constants involves certain constraints.  Such 

constraints can be imposed as ranges of target values based on the literature. For 

example, it is well known that the CRSS of pyramidal slip systems is much larger than 

that of the basal and prismatic slip systems for α-titanium and α/β Ti-Al alloys (Dunst 

and Mecking, 1996).  Therefore, the drag stresses of these slip systems are estimated in 

proportion to relative ratios of estimated CRSS for various slip systems presented in 

Table 4.4. 

In Fig. 4.10, the stress-strain curves resulting from the fitting procedure are 

compared against the corresponding experimental data for an imposed uniaxial strain 

history with various strain rates and strain hold periods.  Clearly, the model simulations 

agree well with data in terms of the flow stress at both low and high strain rate.   The 

tension-compression asymmetry behaviors are also simulated well, as is stress relaxation 

during strain hold periods (e.g., ε = 0.032).  Material constants are reported in Table 4.5.  

The same constants are used to conduct predictive simulations for cyclic uniaxial strain-

controlled histories at a constant strain rate of 10-4 s-1 without hold times and for creep 

histories. The resulting stress-strain-time predictions are all in reasonable agreement with 
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experimental data, as shown in Figs. 4.11 and 4.12, thereby validating the model for 

purpose of this study.   

The  κ1  values for all slip systems in the globular alpha phase are calculated based 

on the Hall-Petch relation in Eq. (4.5) with grain size of 7.74 µm, giving κ1 =193 MPa.  

For lamellar colonies, ( )+ basal
1

α βκ  and ( )+ easy glide systems
1

α βκ  of soft slip modes are also 

calculated based on the Hall-Petch relation with grain size of 7.74 µm; following Mayeur 

(2004), ( )+
1

basalα βκ  is assumed to be 30 MPa lower than ( )+ easy glide systems
1

α βκ .  Both ( )+
1

prismα βκ  

and ( )+ pyr
1

α βκ  are determined using the alpha lath thickness as the characteristic length 

scale in Eq. (4.5), as 981 MPa. The value of ( )+ bcc
1

α βκ is capped at 800 MPa. 

 

 

Table 4.5  Material constants for PW1215 at room temperature. 
basal
0D  95 MPa basal

1κ  193 MPa µ  40 

prism
0D  95 MPa prism

1κ  193 MPa 1η  800 

pyr a
0D  200 MPa pyr a

1κ  193 MPa A  -0.1 

pyr c+a
0D  200 MPa pyr c+a

1κ  193 MPa m  15 

( )+ basal
0D α β  95 MPa prism

1κ  193 MPa α,α+βB  40000 

( )+ prism
0D α β  95 MPa ( )+ basal

1
α βκ  163 MPa α,α+βC   8000 

( )+ pyr
0D α β  200 MPa ( )+ prism

1
α βκ  981 MPa   

( )+ bcc BOR
0D α β  85.5 MPa ( )+ pyr

1
α βκ  981 MPa ( )+ bcc

1
α βκ  800 MPa 

  ( )+ easy glide systems
1

α βκ 193 MPa ( )0sκ  140 MPa 
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Figure 4.10. Fit for stress-strain curve of tested Ti-6Al-4V for the room temperature 
uniaxial strain history with multiple strain rates of 10-3 s-1, 10-4 s-1, 3×10-5 s-1, and 10-5 s-1 
and strain hold periods (note corresponding stress relaxation events at several points in 

history). 
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Figure 4.11. Comparison of model simulation of stress-strain curve with experimental 
results for Ti-6Al-4V at room temperature. for the uniaxial strain history with constant 

strain rate of 10-4 s-1 and with no hold periods. 
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Figure 4.12. Comparison of simulation with experiment for uniaxial creep strain versus 
time response of Ti-6Al-4V at room temperature for an initial applied stress of 827 MPa. 

 

 

 

4.6 Validation of the Crystal Plasticity Model: Other Microstructures 

 

The good agreement between simulated results and experimental data obtained by 

the crystal plasticity model for these complex histories ensures the utility of this model 

for the Ti-6Al-4V material characterized and tested. Since the model is sensitive to the 

length scales of various microstructure features, it is important to investigate the 

microstructural sensitivity of this model to see if trends match experiments.  In this way, 

the predictive character of the mechanistic model can be explored.   

Experimental data exist to examine the sensitivity of two specific microstructural 

features, average globular α grain size, d, and volume fraction of the globular α phase, Vf. 

These two features are known to have significant influence on the deformation behavior 
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of Ti-6Al-4V.  To avoid the influence of other microstructural features on the sensitivity 

study, the tested samples should be processed in a way that only the considered features 

vary, which is generally not possible due to thermodynamic and kinetic constraints. 

Therefore, efforts were made to choose experimental data associated with microstructures 

for which only d and Vf  vary substantially.   

The simulations are conducted using finite element models similar to the ones 

used for fitting parameters.  To investigate the effect of average grain size, a range of d 

values between 6 µm to 10 µm were considered, holding Vf = 0.5 fixed.  In the studies of 

the influence of volume fraction of globular α-phase, Vf ranged from 0.2 to 0.6, holding d 

= 8.5 µm fixed.  In all simulations, the lath thickness of secondary α phase is 0.5 µm, β 

lath thickness is 0.03 µm, and a constant strain rate of 8.33×10-5 s-1 is applied.  The 

results of the simulations are compared with experimental data in terms of the 0.2% 

offset-defined yield strength of the material.  The variation of material yield strength with 

regard to the variation of the square root of average grain size and Vf of the simulations 

and tests are in reasonably good agreement, as respectively shown in Figs. 4.13 and 4.14.  

The Hall-Petch relation between average grain size and yield strength shown in the 

simulations can be attributed to the length scale effects of threshold stress defined in Eq. 

(4.5).  The area per unit volume of interfaces between primary α grains and lamellar 

colonies deceases with increasing Vf, thereby decreasing incompatibility strains of these 

low symmetry phases and reducing material strength with increasing Vf. Clearly, similar 

trends are shown by the experimental data and the polycrystal plasticity model.  

The deviation of experimental data from the results of simulations can be 

attributed to lack of independent control over microstructural parameters in the 

experimental microstructures.  For example, experimental samples with Vf ranging from 

0.486 to 0.515 and lath thicknesses of secondary α phase ranging from 0.377 to 0.674 µm 

were used to consider the influence of average grain size.  Furthermore, neither the 

orientation or disorientation distributions of grains can be considered due to the lack of 
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companion experimental data, so we assume a random texture for the simulated 

microstructures.   
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Figure 4.13. Variation of material strength with regard to the inverse square root of 
average grain size. 
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Figure 4.14. Variation of yield strength with regard to the volume fraction of primary α 
phase. 
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The goals of the constitutive model and polycrystal simulations considered here 

have something in common with artificial neural network (ANN) models used to 

recognize patterns of dependence of macroscopic responses on individual microstructure 

features such as d and Vf  (Kar, 2005; Kar et al., 2006).  Both approaches explore 

sensitivity of the representative polycrystalline response to variation of microstructure 

features. Both approaches permit assessment of variation of individual microstructure 

features to explore sensitivity, holding other features fixed, something that is not 

generally possible in physical experiments.  In work of Kar et al. (2006) at The Ohio 

State University, an extensive experimental microstructure-response database was used to 

train and test an ANN model; this neural network approach was chosen for its capability 

to address a large number of variables with complex interdependencies, without prior 

knowledge of the physics of the problem.  It should be noted that ANN approaches are 

relatively expensive due to the requirements of a sufficiently large experimental database 

over a sufficiently wide range of microstructures necessary to train and validate the 

pattern identification. An advantage of the present framework, of course, is that the 

crystal plasticity model applies to general loading histories and stress states, an aspect 

ANN cannot really addresses.  

 

 

4.7 Discussion 

 

It is well known that formation of fatigue cracks in metals is dominantly related to 

the cyclic plastic shear strain (slip) range within the microstructure, as well as the local 

stress or strain state.  A homogenous macroscopic plasticity model is unable to provide 

this kind of information for heterogeneous microstructures.  The microstructure-scale 

model proposed in this study is shown to have value in capturing orientation (texture), 

complex cyclic viscoplastic behavior, and scale effects of some key microstructure 
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features in duplex Ti-6Al-4V. The nature of microstructural sensitivity of this model 

enables its application to microstructure-sensitive fatigue analysis (McDowell, 2005) 

with an aim to predict the variation of fatigue behavior with regard to variation of 

microstructure in actual materials.  In this study, the crystal plasticity model of Ti-6Al-

4V follows that described in Mayeur and McDowell (2007). Compared with the 

parameters obtained therein (Mayeur, 2004) by fitting experimental data from uniaxial 

loading, a relatively low value of inverse strain rate sensitivity exponent m is obtained in 

this study, indicative of significant strain rate sensitivity of this material, consistent with 

the observations of substantial creep at room temperature (Neeraj et al., 2000).   

In this study, only the material yield strength is used to validate the sensitivity of 

the proposed model to variation of microstructure.  Of course, the fact that the model was 

capable of describing quite complex cyclic strain histories indicates that it may be useful 

in a broader context.  A more comprehensive study should include the investigation of 

the strain hardening and stress relaxation behaviors as a function of microstructure as 

well.   

 

 

4.8 Summary 

 

Ti-6Al-4V is a dual phase material with range of possible complex 

microstructures.  It is well known that mechanical behavior of Ti-6Al-4V is significantly 

affected by its texture and microstructure morphology.  A three-dimensional scale-

dependent model of the duplex Ti-6Al-4V is proposed in this study.  The model includes 

length scale effects associated with dislocation interactions with different microstructure 

features, and is calibrated using polycrystalline finite element simulations to fit the 

measured macroscopic responses (overall stress-strain behavior) of a duplex heat treated 

Ti-6Al-4V alloy subjected to a complex cyclic loading history.  The finite element 
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models are established to adequately represent the microstructures of the tested material.  

Equivalent orientations with similar probability density distributions of the 

crystallographic orientations are assigned to the finite element mesh. The simulated 

annealing method is used to fit the disorientation distributions of the sample.  For a given 

Ti-6Al-4V alloy, it is shown that its mechanical deformation behavior can be correctly 

predicted by conducting the simulations on the finite element model using the proposed 

material modeling.   Effects of microstructural features are examined and compared with 

the experimental data in terms of their influence on the material yield strength.  The 

results are shown to agree with the experimental observations. The microstructure 

sensitivity of the model enables its application to microstructure-sensitive fatigue analysis 

of duplex Ti-6Al-4V.    
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CHAPTER 5 

EFFECT OF GRAIN SIZE DISTRIBUTION ON MONOTONIC 

TENSION BEHAVIOR OF TI-6AL-4V 

 

 

5.1 Introduction 

 

As discussed before, microstructure has significant influence on the various 

properties of crystalline materials. Experimental approaches have been widely used in 

industry to study the dependence of the mechanical behavior on the microstructure. 

However, experimental studies are usually expensive and time-consuming to study 

effects of varying microstructure. The systematic study of microstructure sensitivity is 

difficult due to the fact that only a limited range of microstructures can be achieved by 

heat treatment and thermomechanical processing. 

A computational approach was developed by McDowell (2005) to systematically 

investigate the variation of material properties with respect to variation of microstructure. 

Such approach can greatly reduce the cost for developing new material and is important 

for robust material design (McDowell et al., 2007). Extensive studies have been 

conducted to explore the sensitivity of tensile, cyclic and fatigue behaviors to 

microstructure by using the computational approach. Gall and coworkers (2001) 

investigated the effect of size and distribution of inclusions and voids in a cast A356-T6 

aluminum alloy on fatigue crack formation.  In the study conducted by Morrissey et al. 

(2003), the cyclic behavior of Ti–6Al–4V was shown to depend on the phase morphology 

and grain orientation distribution. In Chapter 2, the effects of three microstructure 

attributes, texture, average grain size and grain size distribution, on tensile and cyclic 

deformation behaviors of Ti-6Al-4V were examined. Fretting simulations (Chapter 3) 
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were conducted to investigate the effect of various microstructural features on fretting 

fatigue behavior (Mayeur et al., 2006; Zhang et al., 2006). In Chapter 4 (Zhang et al., 

2007), effects of two microstructure attributes are examined and compared with the 

experimental data in terms of their influence on the material yield strength of Ti-6Al-4V. 

It is shown that the material strength increases with decreasing grain size and volume 

fraction of the primary α phase. In Chapters 2 and 3, a relatively simple variant of 

Voronoi tessellation was used to create various grain size distributions. It was shown that 

this modeling parameter (dc/d) has relatively small influence on the tensile and cyclic 

deformation and fretting behaviors of Ti-6Al-4V.  

The macroscopic monotonic tension behavior could be affected by both mean and 

scatter of grain size (Kurzydlowski et al., 1990). A numerical study of the effects of grain 

size distribution was conducted by Ghosh and Raj (1981) by using the Taylor 

assumption.  Berbenni et al. (2007) systematically investigated the effect of grain size on 

the macroscopic yield strength of heterogeneous material by using the representative 

volume element (RVE) containing a large number of spherical homogeneous and 

isotropic grains; self-consistent method was used to simulate the monotonic deformation 

behavior of polycrystal. The material strength was shown to increase with decrease of 

average grain size and grain size dispersion. It is noted that the interaction between grains 

with various sizes and orientations cannot be precisely captured in this work since the 

realistic polycrystalline structure and heterogeneous and anistropic deformation behavior 

of grains was not considered. 

The intrinsic inhomogeneity of polycrystals requires realistic representation of 

polycrystal structure with finite element mesh. The two-dimensional views of 

polycrystalline microstructure can be directly obtained from SEM with EBSD. Two-

dimensional finite element meshes can then be created directly from these observations. 

However, three-dimensional real microstructure is generally unavailable or requires 

considerable effort by using SEM and EBSD. It should be noted that a sufficient number 
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of grains are required to construct the representing microstructures which would be 

highly computationally expensive. Several tessellation models, such as homogeneous 

Johnson-Mehl model (HJM), nonhomogeneous Johnson-Mehl (NHJM) model and 

Voronoi tessellation (Horalek, 1990), for approximating 3D realistic structures from two 

dimensional observations have been proposed. Among them, Voronoi tessellation has 

been extensively used in materials science to model polycrystal (Nygards, 2003; Zhang et 

al., 2006), intergranular cracks (Cizelj and Riesch-Oppermann, 2002) and composites 

(Winterfeld et. al, 1981) and is used in this study. Li and Gross (2002) showed that the 

log-normal grain size distribution can be achieved by using Voronoi tessellation with a 

sequence of minimization procedures (simulated annealing methods). It should be noted 

that orientation and disorientation distributions were not considered in Gross and Li 

(2002). We maintain that use of simulated annealing methods to impose such 

distributions can modify Voronoi tessellation to produce more realistic microstructures. 

Ultimately, the grain boundary character distribution should also be enforced.  

The aim of this study is to develop a computational approach that can capture the 

effects of the grain size distribution on deformation behavior of Ti-6Al-4V. The elastic-

viscoplastic deformation behavior of Ti-6Al-4V is described by a fully three-dimensional 

crystal plasticity constitutive relation developed by Zhang et al. (2007), which has been 

described in Chapter 4. The key component of this approach is to develop a numerical 

tool for microstructure modeling. Simulated annealing method has been used in previous 

chapters to fitting the microstructure attributes (orientation and disorientation 

distributions) of Ti-6Al-4V. In this chapter, a comprehensive modeling tool is developed 

to simultaneously simulate microstructure attributes, such as average grain size, grain 

size distribution, orientation distribution, minimum misorientation (i.e., disorientation) 

distribution, volume fraction of lamellar colonies and so on. A series of microstructures 

with various grain size distributions are created by using this modeling tool. All other 

important microstructure attributes are assumed unchanged. Monotonic tension 
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simulations are then performed on these microstructures. Variations of elastic modulus 

and yield strength with respect to variation of grain size distribution are computed. It 

should be noted that the computational approach developed here can be easily used to 

examine the sensitivity of other microstructure attributes of Ti-6Al-4V. Extension of this 

approach to other heterogeneous materials can be carried out by introducing the 

corresponding material models and appropriate microstructure attributes. 

 

 

5.2 Material 

 

Duplex Ti-6Al-4V considered in this study is a dual phase material with a primary 

HCP α phase, and secondary α plus bcc β phase arranged in lamellar structure. 

Microstructures with various grain size distributions are used. Other microstructural 

parameters, including average globular (primary) α size, lamellar colony size, volume 

fraction of the primary α phase, thickness of secondary α and β phases, and texture, are 

assumed unchanged.  In this study, the material under consideration consists of 60% 

primary α phase and 40% lamellar colonies.  The average primary α size and lamellar 

colony size is assumed to be the same, at d = 10 µm. The lath thicknesses of secondary α 

and β phases of the material are 1.5 µm and 0.5 µm, respectively.  The orientation and 

disorientation distributions are extremely important due to the highly anisotropic 

behavior of low symmetry hcp crystals.  The orientation and disorientation distributions 

of microstructures considered in this study are identical to those of PW1215 in Chapter 4. 

Figures 4.2 and 4.3 shows the basal pole figure of orientation distribution and 

misorientation distribution, respectively, of duplex Ti-6Al-4V.  

The grain size of the single phase polycrystalline materials, such as Cu, follows 

the log-normal distribution (Gross and Li, 2002). For duplex Ti-6Al-4V, grain size 
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distributions of the primary α grains and lamellar colonies are unknown due to the lack of 

the experimental data. For simplicity, we assume that the sizes of primary α grains and 

lamellar colonies of Ti-6Al-4V follow the same log-normal distribution.   

 

Table 5.1 Parameters of the log-normal distributions of grain size.  

 d (µm) Var (µm) µ σ 

Microstructure 1 10 0 2.302 0 

Microstructure 2 10 3 2.288 0.172 

Microstructure 3 10 5 2.278 0.221 

Microstructure 4 10 8 2.264 0.277 

Microstructure 5 10 10 2.255 0.309 

Microstructure 6 10 15 2.233 0.374 

Microstructure 7 10 20 2.211 0.427 

Microstructure 8 10 25 2.191 0.472 

Microstructure 9 10 30 2.171 0.512 

 

 

The probability density function of the log-normal distribution is written as 

 

 ( ) ( )2 2ln 21; ,
2

lf l e
l

µ σµ σ
σ π

− −=  (5.1) 

 

where µ and σ  are mean and standard deviation of the natural logarithm of the variable l 

(grain size). The expected value or average of the grain size d is given by 

 

 ( )2 2d e µ σ+
=  (5.2) 
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and the variance is 

 

 ( )2 21Var e eσ µ σ+= −  (5.3) 

 

Correspondingly, the values of µ and σ can be obtained from the average grain size, d, 

and variance, Var, i.e., 

 

 ( ) 2

1ln ln 1
2

Vard
d

µ  = − + 
 

 (5.4) 

 

 2
2ln 1 Var

d
σ  = + 

 
 (5.5) 

 

Various grain size distributions can be achieved by varying the mean d and 

variance Var of the probability density function. It is noted that this study focuses on the 

effect of grain size distribution. Therefore, nine microstructures with mean d = 10 µm 

and variance Var ranging from 0 to 30 µm are used. The parameters of distributions of 

grain size are summarized in Table 5.1. The possibility density functions can be obtained 

from the mean grain size d and variance of grain size Var through Eqs. (5.1), (5.4) and 

(5.5). Figure 5.1 shows the frequency distributions of grain size of microstructures used 

in this study. It should be noted that Microstructure 1 represents an idealized 

polycrystalline structure in which all grains have same cubic shape and identical size at 

10 µm, as shown in Fig. 5.2.  
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Figure 5.1 Frequency distributions of grain size for Microstructures 2-9 in Table 5.1. 

 

 

 

Figure 5.2 Polycrystalline structure of Microstructure 1. 
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5.3 Finite Element Model 

 

The cubic model used in this study contains 125 grains with the average grain size 

d = 10 µm.  The edge size L of the cubic model is dependent on average grain size d and 

number of grains n, i.e, 

 

 3 / 0.7L nd=  (5.6) 

 

Voronoi tessellation is used in this study to create microstructures with various grain size 

distributions (Microstructure 2-9). In the Voronoi tessellation algorithm employed here, 

the initial polycrystalline structure is created by randomly distributing 125 nuclei in the 

model space.  A periodic cell structure is then constructed from a Poisson point process 

by introducing planar cell walls perpendicular to lines connecting neighboring nuclei.  

The cell walls near the surface of the cubic model are determined by the nuclei at the 

opposite surfaces.  The distance between two neighboring nuclei should be smaller than a 

critical value, dc.  This critical distance can significantly influence the initial grain size 

distribution: the larger the critical distance, the lower the variance of the grain size 

distribution about its mean value (Chapter 2).  Thus, polycrystal with high variance of 

grain size can be obtained by using lower critical value dc.  Gross and Li (2001) indicated 

that the grain size distribution of microstructures created via random Voronoi tessellation 

follow the Poisson distribution.  On the other hand, grain sizes in most polycrystalline 

materials follow log-normal distribution. Therefore, adjustment of the nuclei is required 

to obtain the polycrystalline structure with log-normal grain size distributions given in 

Table 5.1.   

The simulated annealing method is used to fit the grain size distribution 

(Miodownik, 1999).  The grain size domain includes all possible grain sizes ranging from 

0 to 3d.  The size of each grain is calculated from the Voronoi cells via a line section 
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algorithm. To calculate the grain size distribution function, the grain size domain is 

evenly divided into Ngs sub-domains. The possibility factor Pi for sub-domain i is defined 

as: 

 

 i
i

SP
S

=  (5.7) 

 

where Si and S are the number of grains with grain size in sub-domain i and total number 

of grains, respectively. Then the error λ of the grain size distribution is obtained as 

 

 2

1

[ ]
gsN

s t
i i

i

P Pλ
=

= −∑  (5.8) 

 

where s
iP  and t

iP are the simulated and target grain size possibilities in sub-domain i, 

respectively.  The variation of error, ∆λ, is calculated after moving the center of a 

randomly selected grain for a random distance. Then, ∆λ is used to determine whether 

this operation is acceptable based on a probability criterion p(∆λ) which, following the 

Metropolis algorithm, is given by 

 

 
1 ( 0)

( )
exp( / ) ( 0)

p
T

λ
λ

λ λ
∆ <

∆ =  −∆ ∆ >
 (5.9) 

 

Here, T is a control parameter (analogous to temperature) used to define an annealing 

schedule.  The operation is accepted if ∆λ < 0 or ∆λ > 0 but p(∆λ) ≥ ρ, where ρ is a 

random number; otherwise, the operation is rejected.  The operations continue until the 

error is less than a preset critical value (for example λ = 10-5).  Figure 5.3 shows fitted 

and target grain size frequency distributions for Microstructure 9.  



 151

Grain Size, µm

0 5 10 15 20 25 30 35

Fr
eq

ue
nc

y

0.0

0.5

1.0

1.5

2.0

2.5
Fitting
Target

E = 10 µm
Var = 30 µm

 

 

Figure 5.3. Fitting and target grain size distributions of Microstructure 9. 

 

Microstructure 1 is an aggregate of cubic crystals of identical size. To assign the 

phase (α or β) for Microstructure 1, the number of grains of each phase is defined by the 

volume fraction Vf of primary α phase, i.e., 

 

 fM V Kα =  (5.10) 

 

 / (1 )fM V Kα β = −  (5.11) 

 

where Mα and Mα/β  are the number of grains of primary α phase and lamellar phases, 

respectively. The total number of grains is K = 125. The phase of each grain is initially 

randomly assigned and then manually adjusted to avoid substantial clustering of each 

phase.   
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  For microstructures other than Microstructure 1, all grains are divided into Nphase 

groups (bins) according to their grain size. The number of grains mi of primary α phase in 

each group i is determined by 

 

       1,2,....,15i f im V n i= =  (5.12) 
 

where Vf is the volume fraction of the primary α phase and ni is the number of grains in 

the group i.  It is assumed that the two phases of Ti-6Al-4V are randomly distributed and 

follow the same grain size distribution.  To do so, the phase of each grain in a group is 

initially randomly assigned and then adjusted to avoid substantial clustering of each 

phase based on the qualitative observation.   

To simulate the orientation distribution of grains, the Rodriguez space is evenly 

divided into Norien sub-spaces.  The probability of observing an orientation gi in the sub-

space i is determined by 

 

 ( ) i
i

Vf g
V

=  (5.13) 

 

where Vi  and V are the volume of crystals with the orientation in sub-space i and the 

total volume of all grains obtained from the scanning data, respectively.  The domain that 

includes all possible grain disorientations is divided into Nmisorien sub-domains.  The 

possibility of disorientation ∆gj distributed in the sub-domain j is written by 

 

 ( ) j
j

R
h g

R
∆ =  (5.14) 

 

where Rj and R are the area of grain boundaries with disorientation angle in sub-domain i 

and total area of grain boundaries.  
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The size of each grain of Microstructure 1 is the same. Thus, the orientation 

probability factor (Pi) for each orientation sub-space i can be obtained as 

 

 ( )i iP K f g=  (5.15) 

 

where K is total number of grains. The number of grains within each orientation sub-

space i equals Pi, which sums over all sub-spaces to give 

 

 
1

N

i
i

K P
=

= ∑  (5.16) 

 

Accordingly, K sets of orientation angles are then selected from the orientation 

population P and are randomly assigned to the different grains.   

To simulate the disorientation distribution for Microstructure 1 while maintaining 

the target orientation distribution, the resulting orientations from previous fitting 

processes (Eq. 5.15 and 5.16) are randomly assigned to a cluster of cubic grains arranged 

in a cubic space.  The error ω of misorientation distribution is obtained by 

 

 2

1

[ ( ) ( )]
misorienN

s t
j j

j

h g h gω
=

= ∆ − ∆∑  (5.17) 

 

where ( )s
jh g∆  and ( )t

jh g∆  are the simulated and target frequencies of misorientation 

distributed in the sub-domain j.  The variation of error ∆ω is calculated after the 

orientations of two randomly selected grains are swapped.  Similar to Eq. (5.9), a 

probability criterion p(∆ω) is given by  
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1 ( 0)

( )
exp( / ) ( 0)

p
T

ω
ω

ω ω
∆ <

∆ =  −∆ ∆ >
 (5.18) 

 

Same rule as described before is used to determine whether the operation is acceptable. 

The operations continue until the error is less than a preset critical value.   

For microstructures other than Microstructure 1, random orientations are initially 

assigned to grains. Orientation and misorientation distributions are then simultaneously 

fitted by using the simulated annealing method. The error is given by 

 

 2 2

1 1

[ ( ) ( )] [ ( ) ( )]
orien misorienN N

s t s t
i i j j

i j

f g f g h g h gπ
= =

= − + ∆ − ∆∑ ∑  (5.19) 

 

where ( )s
if g  and ( )t

if g  are the simulated and target frequencies of orientation 

distributed in the sub-domain i.  Two types of operations can be randomly performed: (i) 

change the orientation of a grain and (ii) swap orientation of two randomly selected 

grains. The variation of error ∆π is calculated after each operation. The probability 

criterion p(∆ω) is given by 

 

 
1 ( 0)

( )
exp( / ) ( 0)

p
T

π
π

π π
∆ <

∆ =  −∆ ∆ >
 (5.20) 

 

The acceptance of operation is determined by the same rule as described before. A 

minimum error (10-5) is set to terminate the operations. Figure 5.4 shows the basal plane 

pole figures of target and fitting orientation distributions for Microstructure 9. The target 

and fitting disorientation distributions for Microstructure 9 is shown in Fig. 5.5. Figure 

5.6 shows the flow chart of the complete process for the modified Voronoi tessellation 

scheme.  
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Figure 5.4 Basal plane pole figures of target and fitted minimum misorientation 
(disorientation) distributions for Microstructure 9. 
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Figure 5.5. Target and fitting disorientation distributions for Microstructure 9. 
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Figure 5.6. Flow chart of polycrystal fitting processes. 
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Figure 5.7 Polycrystal of Microstructure 9. 

 

 

 

Figure 5.8. Mesh and polycrystal of Microstructure 9. 

 

Figure 5.7 shows the tessellated Ti-6Al-4V polycrystal of Microstructure 9. The 

periodic tessellation contains white and grey cells representing primary α grains and 

lamellar colonies, respectively. The small regular cubic elements (C3D8R) are used to 

mesh the tessellation as shown in Fig. 5.8.  The number of nodes on each edge of the 
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polycrystalline region is controlled by the mesh density.  Based on the distance between 

the integration point of an element and the centroid of each grain, elements are assigned 

to grains.  Figure 5.9 shows the finite element model corresponding to the microstructure 

in Fig. 5.8.   

As discussed in Chapter 2, each microstructure may have multiple realizations. 

For example, two realizations may have the same grain size distribution but different 

grain structures. Multiple realizations result in the scatter of the mechanical properties 

such as the yield strength.  For simplicity, in this study each microstructure has only one 

realization. 

To simulate the behavior of bulk material with only hundreds of grains, periodic 

boundary conditions are applied to all three directions: RD, TD, and the normal direction 

(ND). For all finite element simulations, the tensile load is applied along the normal 

direction (z-axis) of material shown in Figs. 5.4 and 5.9. 

 

 

 

Figure 5.9. Finite element model corresponding to Microstructure 9. 
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5.4 Simulation Results 

 

Tensile deformation is imposed up to 1.5% in all simulations. The strain rate is 

10-3 s-1.  The stress-strain responses for Microstructures 1, 3, 7 and 9 are shown in Fig. 

5.10. The tensile deformation behaviors are very close for these microstructures when the 

applied strain is lower than 0.8%. As shown in Fig. 5.11, the Young’s modulus in the 

loading direction for various microstructures is very close. It is known that elastic 

property of a grain is mainly controlled by its orientation. Grain size does not appreciably 

affect the elastic modulus. The material strength slightly increases with decreasing Var.  

Figure 5.12 shows the variation of yield strength with respect to variation of grain size 

distribution. The stress at a plastic strain of 0.1% has been defined as yield stress σy in 

these simulations.  Both yield strength σy and 0.2% offset-defined yield strength σ0.2 

(common in industry) are shown in Fig. 5.12. Approximate linear relations between σy 

and σ0.2 and Var are shown. This result can be explained by the increasing number of 

large grains with lower strength as Var increase. Comparing with hard small grains, large 

soft grains with high plastic strain have larger influence on the deformation behavior of 

polycrystals. Thus, as Var increases, the yield strength decreases. It should be noted that 

compared to the effect of average grain size, shown in Chapter 2, the effect of grain size 

variance on yield strength is relatively low. This conclusion agrees with the simulation 

results obtained by Berbenni et al. (2007). Figure 5.13 shows variation of flow stress with 

respect to Var at 1.5% strain. The relation between σy and grain size distribution is 

repeated in Fig. 5.13. It is known that the room-temperature tensile deformation of Ti-

6Al-4V exhibits nearly elastic-perfect plastic behavior.  In this study, very low strain 

hardening is predicted for various microstructures. Differences of flow stresses among 

various microstructures increase with increasing applied strain as shown in Figure 5.10 

and 5.13.  Microstructure 1 has the highest flow stress at 1.5% strain.  The grain size 
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distribution is shown to have larger influence on strain hardening behavior than initial 

yield strength. It is noted that each microstructure has only one realization. A small 

scatter of the monotonic tension behavior will be obtained if multiple realizations are 

used. However, the overall tendency between the grain size distribution and the 

monotonic tension behavior will not change.  
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Figure 5.10 Stress-strain responses of Microstructure 1, 3, 7 and 9. 
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Figure 5.11. Variation of E with respect to Var for Microstructure 1-9. 
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Figure 5.12. Variation of yield stress with respect to Var. 
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Figure 5.13 Variation of flow stress with respect to Var. 
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5.5 Summary 

 

In this study, a computational approach is employed to study the effect of the 

grain size distribution on uniaxial tension deformation behavior of Ti-6Al-4V. The 

elastic-viscoplastic deformation behavior of Ti-6Al-4V is described by a fully three-

dimensional, scale-dependent crystal plasticity constitutive relation described in Chapter 

4. Microstructures with various grain size distributions are realized in FE meshes, using a 

sequence of error minimization operations (simulated annealing) performed on random 

Voronoi tessellations to fit microstructure attributes such as grain size distribution and 

orientation and disorientation distributions. A study of grain size distribution on tensile 

behavior of Ti-6Al-4V is carried out.  

The results show that with increasing variance of grain sizes, the yield strength 

decreases slightly while the elastic modulus is unchanged. The grain size distribution has 

the most significant influence on tensile strain hardening behavior past initial yield.  
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CHAPTER 6 

SIMULATIONS OF SINGLE CRYSTAL α TI-5AL SUBJECTED TO 

CYCLIC LOADING  

 

 

6.1 Introduction 

 

In Chapters 2-5, microstructure-sensitive studies for Ti-6Al-4V were performed. 

The deformation behaviors of primary α and α/β  lamellar phases of Ti-6Al-4V at room 

temperature are described by a fully three-dimensional crystal plasticity constitutive 

relation.  

As discussed in Chapter 1, dislocation substructures in the form of planar slip 

bands play an important role in the deformation and fatigue behaviors of α TiAl alloys. 

Many attempts have been made to simulate the deformation behavior of TiAl alloys, as 

summarized in Chapter 1. These studies showed that the crystal plasticity model is able to 

capture the significant microstructure and texture effects on the mechanical deformation 

behavior of Ti-6Al-4V which is important for microstructure sensitivity study and 

microstructure-scale fatigue analysis. However, conventional crystal plasticity theory is 

incapable of fully capturing the formation of intense shear in slip bands (see also Clayton 

et al., 2002), which is important for HCF modeling. Moreover, the dominance of single 

slip in grains for HCF cannot be accurately modeled with standard theory.  

It is well known that the formation of a fatigue crack can comprise a large fraction 

of the HCF life of a material (Lankford and Kusenberger, 1973). For polycrystalline 

materials, two fatigue crack formation mechanisms are typically observed at low plastic 

strain amplitude: intense cyclic shear along slip bands and slip band impingement on the 

grain boundary (Morrison and Moosbrugger, 1997). Since there is no grain boundary in a 



 164

single crystal, the former mechanism is the dominant driving force for fatigue crack 

formation.  

In this study, an approach is proposed which employ perturbation elements to 

initiate slip bands. Using a fully three-dimensional crystal plasticity constitutive model, 

finite element meshes for column grains are simulated for a cyclically deformed single 

crystal α Ti-5Al oriented for single and double prismatic slips at various completely 

reversed, strain-controlled cycling at room temperature at a strain rate of 3×10-4 s-1. 

Several modeling and meshing parameters are examined in terms of their effects on the 

stress-strain responses, distribution of cyclic plastic strain and fatigue behavior. The 

simulation results are compared with the experimental data reported in Xiao and 

Umakoshi (2002, 2003). This Chapter is organized as follows. The crystal plasticity 

constitutive relation for α Ti-5Al is introduced in Section 6.2 and the FE model is 

described in Section 6.3. Section 6.4 presents simulation results. The simulated 

deformation and fatigue behaviors are compared with experimental data. The influence of 

two modeling parameters, mesh density and distribution of initial defects, on simulation 

results are examined in Section 6.5. Summary and Conclusions are given in the last 

section. 

 

 

6.2 Crystal Plasticity Model 

 

Single phase α Ti-5Al has the hexagonal-close-packed structure (HCP) at room 

temperature. There are four families of slip systems: 3 1120 (0001)< > basal, 3 

1120 {1010}< >  prismatic, 6 1120 {1011}< > first order pyramidal and 12 

1123 {1011}< >  second order pyramidal slip systems (Naka and Lasalmonie, 1982), 

illustrated in Figure 6.1.  The dominant slip systems of the primary α phase are the basal 
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and prismatic slip due to their relatively low CRSS (critical resolved shear stress). The 

slip resistances of the first order pyramidal slip systems are about twice that of the basal 

and prismatic slip systems.  The second order pyramidal systems have the highest CRSS 

of all slip systems. 

 

 

Figure 6.1.  Slip systems for the α Ti-5Al. 

 

The anisotropic elastic deformation behavior of each phase of α Ti-5Al is 

determined by an elasticity tensor Cijkl with five independent components, as shown in 

Eq. (4.18). In the crystal plasticity framework, the shearing rate, αγ , on the αth slip 

system is given by  

 

 ( )0 sgn

m

D

α α α
α α α

α

τ χ κ
γ γ τ χ

− −
= −  (6.1) 

 

where Dα is the drag stress, m is the inverse strain-rate sensitivity exponent, 

αχ represents the back stress on the αth slip system, ακ is the scalar threshold stress, 

( )1120 0001  { }1120 1010 { }1120 1011 { }1123 1011



 166

and γ o is the reference shearing rate.   The Macauley bracket in Eq. (6.1) is defined by 

<x> = xH(x), where H(x) is the Heaviside function.  

The drag stress is taken as a constant, i.e., 0Dα = .  The back stress is initially set 

to zero for all slip systems and evolves according to a nonlinear kinematic hardening rule 

of Armstrong-Frederick type, i.e., 

 

 C Dα α α αχ γ χ γ= −  (6.2) 

 

where C and D are direct hardening and dynamic recovery coefficients, respectively.  

Cyclically deformed crystalline material with dislocation substructure often 

contains matrix and slip bands. Slip bands are the regions with intense shear. It was 

observed that plastic strains in persistent slip bands (PSBs) of Cu are as much as two 

orders of magnitude higher than in the matrix (Winter, 1974). For α TiAl at room 

temperature, a slip band is a ‘soft’ region with lower slip resistance due to breakdown of 

short range order (SRO) between Ti and Al atoms (Neeraj and Mills, 2001). This 

softening effect causes strong plastic strain localization in the slip band and should be 

considered in the crystal plasticity constitutive relations. In this study, a shear-enhanced 

evolution law of the threshold stress is employed to account for this softening effect to 

simulate the initiation and propagation of a slip band within single crystal α Ti-5Al. It 

should be noted that the elastic stiffness of the points within the slip band is assumed to 

be identical to that of the matrix. To incorporate the softening effect of the slip band, the 

threshold stresses for prismatic and basal systems are given by 

 

 1 1 2( )prism Pyr Pyr sprism prism
Aα α ακ κ τ τ κ= + − +  (6.3) 
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 1basal sbasal basal

α α ακ κ κ= +  (6.4) 

 

where 1 1basal prism

α ακ κ= are constants for single crystal α Ti-5Al, and s basal

ακ and s prism

ακ  

respectively incorporate softening of basal and prismatic slip systems associated with 

breakdown of short range order due to dislocation glide at room temperature. The second 

term of Eq. (6.3) corresponds to core spreading effects, as described in Chapter 2. A 

similar definition of the threshold stress has been used in Chapter 4 for α phase of Ti-

6Al-4V. The softening terms in Eqs. (6.3) and (6.4) follow the evolution laws 

 

 ( )s prism s prism
α α ακ µ ξκ γ= −  (6.5) 

 

 ( )s basal s basal
α α ακ µ ξκ γ= −  (6.6) 

 

where µ is a constant and ξ is the softening coefficient.  Contrary to the uniform evolution 

law of threshold stress for all basal and prismatic slip systems used in Chapter 4 and 

Zhang et al. (2007), a softening criteria is employed here to trigger the softening of the 

threshold stress, i.e., 

 

 
1     

        
0                  

crit saturate dt
otherwise

α
α αγ γ γ

ξ γ γ
 ≤ <= =


∫  (6.7) 

 

where critγ  and saturateγ are the threshold and saturated plastic shear strain, respectively. 

The magnitude of plastic shear αγ for the αth slip system is used to trigger the softening 

of s
ακ . It is noted that the criteria is based on plastic shear strain due to the fact that the 

leading dislocations destroy the short range order (SRO), manifesting a softening effect 
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on the glide plane (Neeraj and Mills, 2001). As a result, further slip concentrates in the 

same glide plane. Following dislocations do not destroy or restore the SRO and therefore 

have no softening effect. Hence, saturated plastic shear strain saturateγ is used to prohibit 

further softening of the threshold stress with increasing slip. The initial value of 

,s prism basal
ακ  is given by 

 

 ( ), 0s prism basal s
ακ κ=  (6.8) 

 

The softening effect applies only to basal and prismatic slip systems. The threshold stress 

does not evolve (i.e., 0ακ = ) for pyramidal slip systems. The threshold stress for 

pyramidal systems is defined as  

 

 1pry
α ακ κ=  (6.9) 

 

In this study, the same 1
ακ is assumed for all slip systems. To account for the higher slip 

resistance (CRSS) of pyramidal slip systems, larger drag stresses are assigned to the 

pyramidal systems.  

The constitutive equations are summarized in Table 6.1. All material parameters 

are listed in Table 6.3.  The material constants are obtained by fitting the stress-strain 

response of single crystal α Ti5Al as reported in Section 6.3.2.  The crystal plasticity 

algorithm has been implemented into ABAQUS via a UMAT subroutine (ABAQUS, 

2005). 
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Table 6.1 Constitutive equations for α Ti5Al. 

 

 

 

 

 

 

 

Flow Rule: 

( )
-  

 sgn -  
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o D

α α α
α α α

α

τ χ κ
γ γ τ χ

−
=

Evolution Equations for Hardening Variables: 

Back stress  

Threshold stress 

Drag stress 

α α α αχ = Bγ - Cχ γ

1 1 2( )prism Pyr Pyr sprism prism
Aα α ακ κ τ τ κ= + − +

1basal sbasal basal

α α ακ κ κ= +

1pry pry

α ακ κ= 0pry
ακ =

0Dα =

( )s prism s prism
α α ακ µ ξκ γ= −

( )s basal s basal
α α ακ µ ξκ γ= −

(0) (0) (0)s prism s basal s
α ακ κ κ= =

1     
        

0                  
crit saturate dt

otherwise

α
α αγ γ γ

ξ γ γ
 ≤ <= =


∫

for all slip systems  
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6.3 Single Crystal α Ti5Al Oriented for Double Prismatic Slip 

 

Finite element simulations are performed to simulate the cyclic deformation 

behavior of single crystal α Ti-5Al oriented for double prismatic slip. Completely-

reversed strain-controlled deformation is applied. The simulation results are then 

compared with the experimental data reported by Xiao and Umakoshi (2002) in terms of 

stress-strain response and slip bands. 

 

 

6.3.1 Finite Element Model 

 

To simulate the cyclic deformation behavior of single crystal α Ti-5Al oriented 

for double prismatic slip at various strain amplitudes, a finite element model containing 

19×60 4-node square elements with reduced integration (CPEG4R) (ABAQUS, 2005) 

was created, as shown in Fig. 6.2. Each reduced integration element has one integration 

point, therefore significantly reduce computational cost. For first-order reduced 

integration elements (e.g., CPEG4R), the uniform strain (one integration point) is 

assumed for the element which equals to the average strain over the element volume 

(ABAQUS, 2005).  The constitutive model is fully 3D. To incorporate deformation in the 

third (z) direction, generalized plane strain elements are used. Generalized plane strain 

implementation used in ABAQUS assumes that the model lies between two bounding 

planes, which may move parallel with respect to each other, thus causing strain of the 

“thickness direction” fibers of the model (ABAQUS, 2005). The two bounding planes are 

free of traction. Generalized plane strain elements are typically used to model a section of 

a long structure that is free to expand. 

For all simulations, displacement is specified along the y direction on edges AB 

and CD with a strain rate of 3×10-4 s-1. The crystallographic orientation angles are 
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assigned to the model such that 2110    is parallel to  the loading direction, as shown in 

Fig. 6.2, which is consistent with the experimental setup (Xiao and Umakoshi, 2002).  

It is generally accepted that slip bands are triggered by material instabilities such 

as material defects, microvoid nucleation (Steninger and Melander, 1982), hard or soft 

inclusions (Sukumar et al., 2001), and so on. In previous modeling works on slip bands, 

prescribed perturbations were used as material defects to initiate the localized 

deformation in single crystal (Dao and Asaro, 1993; Sluys and Estrin, 2000; Zhou et al., 

2005). The perturbations can be material imperfections, boundary constraints, 

inhomogeneities of the FE model, etc. In this study, lower initial threshold stress for 

prismatic and basal systems is used as a perturbation at selected integration points to 

trigger the slip band, i.e., 

 

 , 1defects prism basal
α ακ κ=  (6.10) 

consistent with 

 ( )( ) , 0 0s defects prism basal
ακ =  (6.11) 

 

All other material parameters at perturbed integration points are identical to that of 

regular elements. This means that these points have already been pre-softened. It is noted 

that the regular elements have the same limiting threshold stress as the slip band 

softening saturates, i.e., , 0s prism basal
ακ → . 

In Xiao and Umakoshi (2002), it was shown that the width of slip bands is close 

to 1.5 µm for cyclic strain amplitudes ranging from 0.2% to 0.8%.  For the mesh shown 

in Fig. 6.2, each slip band is triggered by one perturbation element. Simulations with 

various element sizes and distributions of perturbation element (Section 6.5) show that 

the slip band usually spans 2 to 3 elements. For simplicity, the size of each element is set 
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to 0.5×0.5 µm. To simulate the behavior of bulk material with a model of dimension 

9.5×30 µm, periodic boundary conditions are applied in both x and y directions. This 

boundary condition imposes constraints on the sides such that the opposite edges deform 

in the same manner. This implies that deformation pattern of edge AB must be same as 

that of edge CD, and deformation pattern of edge AC must be same as that of edge BD, 

as shown in Fig. 6.2.  

 

Table 6.2. Wavelength, width and spacing of slip bands of single crystal a Ti-5Al 
oriented for double prismatic slip 

Applied strain 

amplitude, ∆εt/2 

Width, lw 

(µm) * 

Spacing, ls 

(µm) * 

Wavelength, ld 

(µm) 
0.2% 1.5 2 3.5 

0.4% 1.5 1.5 3 

0.6% 1.1 0.9 2 

0.8% 1 0.5 1.5 

* Data from Xiao and Umakoshi (2002) 

 

By applying periodic boundary conditions, the finite element model represents a 

periodic cell which requires the slip band structure to be periodic as well. Therefore, all 

defects are located along the line of symmetry of the FE model. Uniformly distributed 

perturbation elements with wavelength ld are assigned along the y direction in the middle 

of the FE model. The wavelength ld sets the wavelength of the slip bands, i.e., 

 

 d w sl l l= +  (6.12) 
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where lw and ls are the width and spacing of slip bands, respectively, as illustrated in Fig. 

6.3. Xiao and Umakoshi (2002) showed that lw and ld depend on the applied strain 

amplitude, as shown in Table 6.2.  

 

 

 

Figure 6.2. Finite element model. 

 

 

Figure 6.3. Illustration of slip band structure. 
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6.3.2 Simulation Results 

 

Prior to performing the cyclic simulations, parameters of the crystal plasticity 

model are calibrated by fitting the stress-strain response for an applied cyclic strain 

amplitude at ∆εt/2 = 0.6% of single crystal α Ti-5Al oriented for double prismatic slip as 

in Fig. 6.2 as reported in (Xiao and Umakoshi, 2002).  It is noted that six hysteresis loops 

ranging from cycle 1 to cycle 2500 were given in Xiao and Umakoshi (2002). In this 

study, only the 1st, 5th and 50th loops are used to calibrate the model. The crystal plasticity 

model is then validated by comparing the simulation results and experimental data in 

terms of variation of the cyclic shear stress amplitude with number of loading cycles at 

different completely reversed applied strain amplitudes,  ∆εt/2.  

Several material parameters, such as the elastic constants, can be obtained from 

the literature. It is noted that the direct hardening and dynamic recovery coefficients of 

the backstress only have a short range effect on the cyclic deformation behavior. 

Therefore, these two parameters can be determined by fitting the first hysteresis loop.  

The evolution of the threshold stress dominates the long range cyclic softening behavior 

of single crystal α Ti-5Al. The 5th and 50th loops can be used to calibrate the threshold 

plastic shear strain critγ , saturated  plastic shear strain saturateγ , and consistant µ.  

The fitting results of the stress-strain responses at 1st, 5th and 50th cycles are 

shown in Figures 6.4 (a), (b) and (c), respectively. All material parameters are listed in 

Table 6.3. Following that described in Xiao and Umakoshi (2002), the cyclic shear stress 

amplitude ∆τa/2 was defined as the average of the absolute values of the maximum and 

minimum resolved shear stress on the 1210 {1010}< >  prismatic slip system. In Fig. 6.5, 

the simulation results of the variation of ∆τa/2 with number of loading cycles at ∆εt/2 = 

0.2%, 0.4%, 0.6% and 0.8% are shown to be in good agreement with the corresponding 

experimental data during the first 50 loading cycles. The experimental data shows that a 
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saturation stage at ∆τa/2 ≈ 90 MPa is reached for all loading cases after around 200 

cycles. It is believed that the same result can be obtained from the simulations since the 

applied loading amplitude will not affect the minimum s
ακ . The cyclic softening will 

cease as s prism
0ακ →  for all loading cases. 

Figure 6.6 shows the contours of effective plastic strain at ∆εt/2 = 0.6%, defined 

by ( )2 / 3 :p p p=ε ε ε , where ( )0 0
p

sym

α α α

α

γ= ⊗∑ε s m , at the 1st, 10th and 50th loading 

cycles. In Fig. 6.5, it is shown that the variation of the cyclic shear amplitude is relatively 

low for the first 5 cycles.  This phenomenon can be attributed to the relatively 

homogeneous plastic deformation within the single crystal except the regions around the 

defects, as shown in Fig 6.6(a). Clearly, the slightly heterogeneous slip around the defect 

has insignificant influence on the macroscopic stress-strain responses of the initial several 

cycles. With increasing number of loading cycles, strongly heterogeneous slips develop 

due to softening of the threshold stress of elements within the slip band. In Fig. 6.6(c), it 

is shown that the effective plastic strain in the slip band is about 3 times larger than that 

in the matrix at the 50th cycle. Similar to the transmission electron microscopy (TEM) 

observations (Xiao and Umakoshi, 2002), two slip bands along prismatic slip planes can 

be seen from the Fig. 6.6(b) and 6.6(c) since the single crystal α Ti-5Al is oriented for 

double prismatic slip. The maximum effective plastic strain can be found at “defect 

elements” for which lower slip resistance is assumed. A larger effective plastic strain can 

also be found at the elements where slip bands cross. At the same time, ∆τa significantly 

decreases with increasing number of loading cycles.  

Figures 6.6(b) and 6.6(c) show that slip bands on two prismatic systems are 

equally developed, resulting in an interference pattern. Two slip bands can easily cross 

each other with relatively low resistance since these planar bands are dominantly 

populated by screw dislocations. The same phenomenon was observed in the experiments 

(Xiao and Umakoshi, 2002).  
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(a) 1st cycle 
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(b) 5th cycle  

 

Figure 6.4. Hysteresis loops for different cycles. 
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(c) 50th cycle 

 

Figure 6.4. Hysteresis loops for different cycles (cont.). 

 

Table 6.3. Material constants. 

Property Value Property Value Property Value 

11C  170,400 MPa basal
0D  40 MPa C 1000 

12C  92,000 MPa prism
0D  40 MPa D 50 

13C  69,000 MPa pyr a
0D  100 MPa m 15 

33C  180,700 MPa   pyr c+a
0D  200 MPa critγ  0.0005 

44C  46,700 MPa 1κ  30 MPa saturateγ  0.0015 

oγ  0.001 s-1 
s prism,basal (0)ακ  40 MPa µ 5 
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Figure 6.5. Variation of ∆τa/2 with number of loading cycles. 

                                                      

 

  

Figure 6.6. Distribution of the effective plastic strain at the peak of the cycle  
for ∆εt/2 = 0.6%. 

(a) 1st cycle (b) 10th cycle (c) 50th cycle 
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6.3.3 Fatigue Indicator Parameters (FIPs) 

 

In addition to the deformation behavior, the fatigue behavior of the single crystal 

α Ti-5Al is also investigated. Two nonlocal FIPs, Fatemi-Socie (FS) (1988) parameters 

FSP  and maximum plastic shear strain amplitude Pγ , are used, which are respectively 

given by Eqs. (1.22) and (1.23).   

As discussed in Chapter 2, nonlocal FIPs are to capture crack formation driving 

force over a finite process zone size. In this study, four different averaging areas are used 

for the FIPs: 0.5×0.5 µm, 1×1 µm, 1.5×1.5 µm, and 2×2 µm, as illustrated in Fig. 6.7.  

FIPs calculated over each single element can be considered as the averaged FIPs over an 

area of 0.5×0.5 µm, since the size of each element is 0.5×0.5 µm. For averaging area 

larger than 0.5×0.5 µm, the FIPs of the black domain in Fig. 6.7 are calculated by 

averaging the stress and plastic strain over the grey areas with 4, 9 and 16 elements.  

Since periodic boundary conditions are used in the simulations, for the elements close to 

boundary, the averaging area contains the elements at the opposite boundary, as shown in 

Fig. 6.7.  

 

 

Figure 6.7. Scheme of averaged calculation of FIPs. 

Averaged FIPs over 
1×1 µm area (4 
elements) 

Averaged FIPs over 
1.5×1.5 µm area (9 
elements) 

Averaged FIPs over 
2×2 µm area (16 
elements) 

Averaged FIPs for 
element near 
boundary 

FIPs over 0.5×0.5 µm 
area (1 element) 
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The frequency distributions of two nonlocal FIPs averaged over each single 

element (0.5×0.5 µm) at the 50th cycle for ∆εt/2 = 0.6% are shown in Fig. 6.8.  It should 

be noted that different scales are used for two parameters. It is shown that two parameters 

have similar “bimodal” distributions with two distinct peaks. For example, the frequency 

distribution of Pγ  has peaks at Pγ  = 0.002 and Pγ  = 0.005. This observation is contrary 

to the uni-modal distribution of the FIPs obtained in pervious works on polycrystalline 

Ni-based alloy and Ti-6Al-4V (Shenoy, 2006; Zhang et al., 2006a). Clearly, two distinct 

deformation regions in the model, slip bands and matrix, result in the bi-modal 

distribution of the FIPs. The FIPs in the slip band are much larger (2 to 3 times) than in 

the matrix.  

Figure 6.8 shows that only a few percent of elements have the highest fatigue 

indicator parameters. For example, about 5% elements have a FS parameter larger than 

0.013. It is believed that the maximum FIPs can generally be found at the material defects 

and/or the elements where the slip bands cross and reinforce. For material defects and the 

elements where the slip bands cross, both the effective plastic strain and the resolved 

plastic shear strain significantly increase due to double prismatic slip. Thus, for the given 

loading condition, the microscopic crack can nucleate from the material defects and/or 

regions where slip bands cross and then propagate along the slip band.  

Crack formation of α Ti-5Al is related to irreversible to and fro slip in slip bands. 

The overall distributions of two shear-dominated FIPs are somewhat similar. Among 

these shear-dominated FIPs, the FS parameter includes the maximum normal stress to the 

critical plane and therefore is considered to be more suitable than Pγ  for purposes of 

correlating fatigue crack formation and early growth (McDowell, 1996).  
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Figure 6.8. Frequency distribution of nonlocal FIPs at the 50th cycle for ∆εt/2 = 0.6%, 
with 0.5×0.5 µm averaging area. 
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Figure 6.9. Frequency distributions of nonlocal PFS and Pband at the 50th cycle  
for ∆εt/2 = 0.6%, with 0.5×0.5 µm averaging area. 

 

Experimental observations show that cracks generally form along slip bands. 

Equation (6.13) shows that the FS parameter, PFS, is calculated on the critical plane on 

which the maximum range of the plastic shear strain is found; PFS does not consider the 

influence of the possible dislocation structures within the crystals that organize in 

accordance with crystallographic planes. Therefore, another nonlocal FIP, Pband, is 

proposed in this study to account for the intense shear along crystallographic slip planes, 

i.e., 

 

 
* max*

1 '
2

p
band band

band
y

P Kγ σ
σ

 ∆
= +  

 
 (6.13) 

 

where *p
bandγ∆  is the nonlocal amplitude of the maximum plastic shear strain along all 

possible slip bands and max*
bandσ  is the nonlocal maximum normal stress acting on the slip 
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band during a loading cycle. The constant K’ is assumed to equal to K of Eq. (6.15). It is 

noted that the definition of Pband is nearly identical to that of PFS.  

Figure 6.9 compares the frequency distributions of nonlocal PFS and Pband at the 

50th cycle for ∆εt/2 = 0.6%, with 0.5×0.5µm averaging area. These two parameters 

display a similar bimodal distribution, but the values of Pband are larger than those of PFS 

for most elements. Pband will be used in this study to investigate the variation of the 

fatigue crack formation life with respect to applied strain amplitude.  

As shown in Fig. 6.6, the effective plastic strain of slip bands increases with 

increasing number of loading cycles. At the same time, Figure 6.5 shows that the cyclic 

shear stress amplitude decreases with increasing number of loading cycles due to the 

cyclic softening of the single crystal. Thus, Pband evolves with number of loading cycles. 

Figure 6.10 shows the frequency distribution of Pband calculated over single element at 1st, 

5th, 30th and 50th cycles. It is shown that the frequency distribution of Pband is almost 

unchanged while the value of Pband slightly increases during the first 10 loading cycles. At 

the 30th and 50th cycle, bimodal distributions of Pband develop. The maximum value of 

Pband, max
bandP ,  increases with number of loading cycles. In Fig. 6.10, a small change of 

max
bandP  occurs after 30th cycle. The fraction of elements with higher Pband increases due to 

the development of the slip band, which affects probability of fatigue crack formation. 

Figure 6.11 shows that the maximum Pband increases with number of loading 

cycles as slip band intensifies. It is found that a nearly constant value of Pband is reached 

after about 40 cycles. The reason is believed to be the decrease of the normal stress on the 

slip band due to the cyclic softening. At the same time, the increase of cyclic plastic shear 

strain within the slip band is much slower as , 0s prism basal
ακ → . Therefore, the stable 

maximum Pband after the 40th cycle should be used for purposes of correlating fatigue 

crack formation and early growth. In this study, Pband at 50th cycle is used since only 50 

loading cycles are applied. 
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Figure 6.10. Frequency distribution of Pband with number of loading cycles for ∆εt/2 = 
0.6%, with 0.5×0.5 µm averaging area. 
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Figure 6.11. Variation of maximum Pband with number of loading cycles for ∆εt/2 = 0.6%, 
with 0.5×0.5 µm averaging area. 
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Figure 6.12. Frequency distribution of averaging Pband at the 50th cycle  
for ∆εt/2 = 0.6%. 
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Figure 6.13. Variation of maximum Pband with averaging area at the 50th cycle  
for ∆εt/2 = 0.6%. 
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The nonlocal FIPs reported to this point have been obtained from the single 

element calculation with averaging size of 0.5×0.5 µm. To explore effects of averaging 

volume size, three other different averaging areas are used: 1×1 µm, 1.5×1.5 µm, 2×2 

µm, as illustrated in Fig. 6.7. Figure 6.12 shows the frequency distributions of nonlocal 

Pband calculated over various averaging area at the 50th cycle for ∆εt/2 = 0.6%. The 

0.5×0.5 µm averaging Pband shows a bi-modal type of distribution which spread over a 

large range. With increasing averaging area, uni-modal distributions of Pband are 

displayed with peak Pband of about 0.007. The strong contrast between slip band and 

matrix can be effectively removed by this averaging process. Figure 6.13 shows that the 

maximum Pband decreases with increasing averaging area. Thus, the prediction of the 

crack formation life depends on the averaging area. It is noted that for the amplitude of 

applied strain ranging from 0.2% to 0.8%, the minimum wavelength of the slip bands is 

1.5 µm, as shown in Table 6.1. We may assert that the proper averaging length scale 

should respect both characteristic length of crack embryos at nucleation and 

intensification of slip in the slip bands. Accordingly, we suggest an averaging area of 1/2 

the slip band width as a characteristic averaging length scale. In this case, it is 

approximately the element size.  

 

 

6.3.4 Prediction of Fatigue Crack Formation 

 

The maximum Pband values averaged over 0.5×0.5 µm,  1×1 µm, and 1.5×1.5 µm 

area at the 50th cycle are referred to as 0.5
fatigueP , 1

fatigueP  and 1.5
fatigueP , respectively.  The finite 

element simulations are carried out at various amplitude of the applied strain ∆εt/2. 

Approximate linear relations between 0.5
fatigueP , 1

fatigueP  and 1.5
fatigueP and ∆εt/2 are shown in 

Fig. 6.14. 0.5
fatigueP is much larger than 1

fatigueP  and 1.5
fatigueP  for ∆εt/2 > 0.4% due to the intense 
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plastic shear within the slip band. 1
fatigueP  and 1.5

fatigueP  average over both slip band and 

matrix, and therefore are unable to distinguish the shear localization of the slip band.  The 

FIP 0.5
fatigueP can be related to the crack formation life using Coffin-Manson relation 

 

 0.5 ' '(2 )c
fatigue f fP Nγ=  (6.14) 

 

where 'γ f and 'c  can be obtained by fitting the fatigue lives at various ∆εt/2 as reported 

in (Xiao and Umakoshi, 2002). In this study, fatigue lives at ∆εt/2 = 0.4%, 0.6% and 

0.8% are used to determine the constants of Coffin-Manson relation. A constraint is 

imposed on the constant 'c , which is known to lie in the range from -0.5 to -0.7 for most 

metals.  For Ti-6Al-4V deformed at room temperature, 'c is reported to range from -0.51 

to -0.67 when various FIPs were used to fit biaxial test data (Gallagher et al., 2005). 

Figure 6.15 shows results of fitting with two constants ' 0.95fγ = and ' 0.51c = − . The 

correlated fatigue lives agree well with experimental data. It should be noted that the 

arrow in Fig. 6.15 indicates run-out of the fatigue life at ∆εt/2 = 0.2%, means that no 

failure was observed during applied loading cycles with the test stopped at 104 cycles.  

As discussed before, the averaging length scale should respect the critical length 

of crack embryos at nucleation. However, critical crack length corresponding to failure 

used in fatigue tests was not given in (Xiao and Umakoshi, 2002). Therefore, two 

constants obtained here should not be directly used for other loading histories. Although 

not offering a prediction per se, this exercise demonstrates that this methodology can be 

used for other amplitudes to correlate fatigue life.  
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Figure 6.14. Variation of maximum Pfatigue at the 50th cycle with applied strain amplitude 
∆εt/2.  

 

Figure 6.15. Fitting for Coffin-Manson relation with 0.5
fatigueP  for single crystal α Ti5Al 

orientated for double prismatic slip. 
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6.4 Single Crystal α Ti-5Al Oriented for Single Prismatic Slip 

 

In the last section, finite element simulations are performed to simulate the cyclic 

deformation behavior of single crystal α Ti-5Al oriented for double prismatic slip. The 

simulation results are shown to calibrate well with the experimental data reported by 

Xiao and Umakoshi (2002). In this section, the same methodology and material constants 

will be used to predict the deformation and fatigue of single crystal α Ti-5Al oriented for 

single prismatic slip, a geometry not used to calibrate any aspects of the model. To 

validate the approach and material constants reported in last section, the simulation 

results are compared with the experimental data reported in Xiao and Umakoshi (2003). 

 

 

6.4.1 Finite Element Model 

 

The generalized plane strain finite element model for single prismatic slip is 

shown in Fig. 6.16. The model contains 4-node square elements with reduced integration 

(CPEG4R) (ABAQUS, 2005), as described in last section. Periodic boundary conditions 

are applied in both x and y directions. Fully-reversed strain-controlled deformation is 

applied along the y direction at a strain rate of 3×10-4 s-1 at room temperature.  To enforce 

single prismatic slip, the crystal is oriented in such way that the Schmid factor of the 

most favored (1100) prismatic slip system is 0.5, as shown in Fig. 6.16.  
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Figure 6.16. Finite element model for single prismatic slip. 

 

Table 6.4. Wavelength, width and spacing of slip bands of single crystal a Ti5Al oriented 
for single prismatic slip. 

 
Applied strain 

amplitude 
Width, lw 
(µm) * 

Spacing, ls 
(µm) * 

Wavelength, ld 
(µm) 

0.2% 2.5 1.5 4 

0.3% 2.6 1.4 4 

0.4% 2.7 1.3 4 

0.6% 2.8 1.2 4 

0.8% 3 1 4 

1.0% 3 1 4 

* Data from Xiao and Umakoshi (2003) 
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In Xiao and Umakoshi (2003), the amplitudes of completely-reversed strain range 

from 0.2% to 1.0%. The width, spacing and wavelength of slip bands for ∆εt/2 = 0.2%, 

0.3%, 0.4%, and 0.6% reported by Xiao and Umakoshi (2003) are summarized in Table 

6.3. The parameters of slip bands for ∆εt/2 = 0.8% and 1.0% in Table 6.3 are assumed 

based on the tendency of reported parameters. The widths of slip bands are shown to 

range from 2.5µm to 3µm. The size of each element is set to 1×1 µm. To enforce the 

periodic structure of slip bands, the width of the model (17µm) is determined by the 

wavelength of slip bands, as shown in Fig.6.16.  

 

 

6.4.2 Simulation Results 

 

Figure 6.17 shows the variation of ∆τa/2 with number of loading cycles at ∆εt/2 

ranging from 0.2% to 1.0%d 0.8%.  The simulation predictions are shown to agree fairly 

well with the experimental data during first 50 loading cycles. This observation validates 

the crystal plasticity constitutive relations and material constants outlined in last Section.  

Figure 6.18 shows the contours of effective plastic strain at ∆εt/2 = 0.6 at the 1st, 

10th and 50th loading cycles. The material defects are shown to have large value of pε at 

the 1st cycle, as shown in Fig. 6.18(a). Relatively homogeneous plastic deformation 

within the single crystal is observed except the regions around the defects. This 

observation is close to the contour of pε of a single crystal oriented for double prismatic 

slip, as shown in Fig. 6.6(a). In Fig. 6.17(a), the variation of the cyclic plastic shear strain 

amplitude is relatively low for the first few cycles.  Combined with the simulations of 

double prismatic slip, it is concluded that the slightly heterogeneous slip around the 

defect has insignificant influence on the macroscopic stress-strain responses of the initial 

several cycles.  



 192

Number of Cycles
1 10 100 1000

C
yc

lic
 s

he
ar

 s
tre

ss
 a

m
pl

itu
de

, M
P

a

80

90

100

110

120

130

∆εt = 0.8% Exp.
∆εt = 0.8% Sim.
∆εt = 0.4% Exp.
∆εt = 0.4% Sim.
∆εt = 0.2% Exp.
∆εt = 0.2% Sim.

 

(a)  

Number of Cycles
1 10 100 1000

C
yc

lic
 s

he
ar

 s
tre

ss
 a

m
pl

itu
de

, M
P

a

80

90

100

110

120

130

140

∆εt = 1.0% Exp.
∆εt = 1.0% Sim.
∆εt = 0.6% Exp.
∆εt = 0.6% Sim.
∆εt = 0.3% Exp.
∆εt = 0.3% Sim.

 

(b) 

 

Figure 6.17. Variation of ∆τa/2 with number of loading cycles for (a) ∆εt/2 = 0.2%, 0.4%, 
and 0.8% and (b) ∆εt/2 = 0.3%, 0.6%, and 1.0%. 

 

With increasing number of loading cycles, a single slip band system initiates and 

develops from the material defects, aligned with the favorable prismatic slip plane. The 

observation agrees with the TEM observations of Xiao and Umakoshi (2003). The 
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strongly heterogeneous slip is attributed to the softening of the threshold stress within the 

slip band. In Fig. 6.18(b), the slip band is shown to initiate and pε in slip band is about 

twice as higher as that of the matrix. The value of pε in slip band increases with 

increasing number of loading cycles. At the same time, pε in matrix does not change. At 

the 50th cycle, pε in slip band is about 3 times higher than that in matrix, as shown in Fig. 

6.18(c). At the same time, ∆τa significantly decreases with increasing number of loading 

cycles. Similar to the case of double prismatic slip, the maximum effective plastic strain 

can be found at “defect elements” for which lower slip resistance is assumed.  

 

 

  

Figure 6.18. Distribution of the effective plastic strain at the peak of the cycle  
for ∆εt/2 = 0.6%. 

 

 

 

(a) 1st cycle (b) 10th cycle (c) 50th cycle 



 194

6.4.3 Prediction of Crack Formation 

 

In Section 6.3, the FIP Pband is proposed to account for the driving force for crack 

formation in single crystal Ti-5Al subjected to cyclic loading. The maximum nonlocal 

Pband averaged over a 0.5×0.5 µm area at the 50th cycle, hereafter referred as Pfatigue is 

used for fatigue life prediction. The Coffin-Manson relation is calibrated by fitting the 

fatigue lives at various ∆εt/2 as reported in (Xiao and Umakoshi, 2002).  Two constants 

' 0.95fγ = and ' 0.51c = − of the Coffin-Manson relation (6.14) are employed in Section 

6.3.4. However, it was shown in Section 6.3.4 that these two constants should not be 

directly used for other loading histories, since the critical crack length corresponding to 

failure was not reported in (Xiao and Umakoshi, 2002). 

In this Section, the same methodology as used in Section 6.3.4 is used to correlate 

the fatigue lives of single crystal α Ti-5Al oriented for single prismatic slip. In Section 

6.3.3, we suggested an averaging area of 1/2 the slip band width as a characteristic 

averaging length scale. Table 6.4 shows that for single prismatic slip, the width of slip 

band ranges from 2.5 to 3 µm, 1/2 of the slip band width is close to the element edge size 

(1 µm).  Therefore, the maximum nonlocal Pband averaged over 1×1 µm area at the 50th 

cycle is referred as 1 1
fatigueP ×  and is plotted versus fatigue lives reported in Xiao and 

Umakoshi (2003) in Fig. 6.19. It should be noted that the critical crack length 

corresponding to failure used in the fatigue tests was not also reported in Xiao and 

Umakoshi (2003). 

The characteristic length scale of the averaging area corresponds to the scale of 

the process for fatigue crack formation. Therefore, for a different averaging area, the 

constants of Coffin-Manson relation are different. Thus, two constants ' 0.95fγ =  

and ' 0.51c = −  cannot be used here, since the averaging area of 0.5×0.5 µm is used in 

Section 6.3.4.  In this Section, fatigue lives at ∆εt/2 = 0.4% and 0.6% are used to calibrate 
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the Coffin-Manson relation which is plotted in Fig. 6.19. Two constants 

' 0.75fγ = and ' 0.5c = −  are obtained. It should be noted that the arrows in Fig. 6.19 

indicate run-out of the fatigue life at ∆εt/2 = 0.2%, meaning that no failure was observed 

during applied loading cycles with the test stopped at 104 cycles. Fatigue lives at ∆εt/2 = 

0.3% and 0.8% are used to validate the Coffin-Manson relation. The calibrated Coffin-

Manson relation agrees fairly well with the crack formation lives for ∆εt/2 = 0.3%, 0.8%. 

This result validates the approach reported in Section 6.3 based on correlation for double 

prismatic slip. However, two constants obtained here should not be directly used for other 

loading histories due to the lack of the critical crack length used in fatigue tests.  

 

Figure 6.19. Fit for Coffin-Manson relation with 1 1
fatigueP ×  for single crystal α Ti5Al 

orientated for single prismatic slip. 
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6.5 Discussion 

 

6.5.1 Mesh sensitivity 

 

It is noted that both the finite element method and the crystal plasticity model 

employed here are local approaches, thereby giving rise to mesh sensitivity. Strongly 

heterogeneous deformation such as a slip band in the single crystal is a nonlocal 

phenomenon. To address this, we employ a minimum mesh refinement scale relative to 

expected slip band width and spacing, as well as nonlocal FIPs to incorporate driving 

force for fatigue crack formation. It is necessary to investigate the influence of the mesh 

density on the simulation results to ensure that our strategy is robust.  

 

 

 

Figure 6.20. Finite element models with various mesh densities. 

 

(a) Coarse mesh (b) Fine mesh (c) Finer mesh



 197

In this study, three meshes containing 300, 1200 and 4800 two-dimensional 

generalized plane strain elements with reduced integration (CPEG4R) (ABAQUS, 2005) 

are used to examine the mesh sensitivity. These meshes are referred as coarse, fine and 

finer meshes and have the same overall size of 9.5×30 µm, as shown in Fig. 6.20. The 

element sizes of the coarse, fine and finer meshes are 1×1 µm, 0.5×0.5 µm and 0.25×0.25 

µm, respectively. The identical orientation (for double prismatic slip) and boundary 

conditions as shown in Fig. 6.2 are used for the three models. The perturbation elements 

that serve as material defects are assigned in three models such that the wavelength of 

shear band, ld, is unchanged. 

Finite element simulations are carried out on three models with completely 

reversed load strain amplitude of ∆εt/2 = 0.6% at a strain rate of 3×10-4 s-1 at room 

temperature. A significant effect of the mesh density on the plastic strain distribution is 

shown in Fig. 6.21. The slip bands are clearly demarcated in the finer mesh model. The 

coarse mesh model displays a rather homogenous distribution of the plastic strain. No 

clear slip band structure is developed. The fine and finer mesh models show that the slip 

band width refines to the scale of a single element. Thus, the width of the slip band 

decreases with increasing mesh density while the plastic strain within the slip band 

increases. This means that one key constraint of this approach is to limit the mesh 

refinement in accordance with the characteristic length scales of slip band width and 

spacing, as experimentally observed.  

The variation of macroscopic ∆τa over the entire mesh with number of loading 

cycles for different mesh densities is shown in Fig. 6.22. It is shown that the three curves 

are very close. During the first 10 cycles, the finer the mesh, the higher the cyclic shear 

stress amplitude, ∆τa. This phenomenon can be explained as the lower volume fraction of 

the defects for the finer mesh. Since the defect is assumed as the material point with 

lower slip resistance, the high volume fraction of the defects would result in the lower τa. 

After the 10th cycle, three curves are close. Clearly, the mesh density has only small 
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effect on the macroscopic stress-strain response, especially after the slip bands develop, 

even in the softening regime. 

As described before, the averaging area for Pband should be properly chosen based 

on the physical phenomenon of interest. Crack formation in single crystal with 

dislocation substructures results from decohesion of the interface between slip band and 

matrix. Therefore, the proper averaging areas should be determined by the width and 

wavelength of the slip band. 

 

 

 
Figure 6.21. Distribution of the plastic strain at ∆εt/2 = 0.6% for different mesh densities 

at the 50th cycle.  
 

(c) Finer mesh (b) Fine mesh (a) Coarse mesh
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Figure 6.22. Variation of ∆τa with number of loading cycles for different mesh densities. 
 

 
 

 

6.5.2 Slip Band Wavelength 

 

The slip band wavelength, ld, has strong effects on the fatigue behavior of 

crystalline material. It is interesting to understand the variation of deformation and 

fatigue behavior of single crystal α Ti-5Al with respect to various ld via finite element 

analysis. Experimental observations (Xiao and Umakoshi, 2002, 2003) showed that the 

detailed structure of the slip bands is determined by the crystallographic orientation and 

strain amplitude. In this study, slip bands are triggered by the material defects. Thus, 

various structures of the slip bands can be obtained by varying the wavelength of the 

defects,  ld, in the finite element model.   

Figure 6.24(a) and (b) show the finite element meshes for defects spacing of 2 µm 

and 4 µm, respectively. The identical orientation (for double prismatic slip) and boundary 

conditions as shown in Fig. 6.2 are used for the two models. The overall sizes of two 
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meshes are also identical. All simulations are carried out at fully reversed, strain-

controlled history at ∆εt/2 = 0.6% for 50 cycles.  

The significant influence of the distribution of defects on contours of the effective 

plastic stain at 50th cycle is shown in Fig. 6.25. The overall shape and orientation of slip 

bands are same for two models. Increasing ld leads to fewer slip bands in the model. The 

effective plastic strain within each slip band increases. Although the material defects in 

the model trigger the formation of slip bands, their distribution controls the degree of 

intensification of plastic strain within the slip band.  

Variation of ∆τa with number of loading cycles for these two ld value is shown in 

Fig. 6.26. Two curves are close over the first 50 cycles, indicating a relatively small 

effect of ld on the macroscopic stress-strain response of the model.  

 

 

 
 

Figure 6.24. Finite mesh with various ld. 

 

(a) ld = 2 µm (b) ld = 4 µm 
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Figure 6.25. Distribution of the plastic strain at ∆εt/2 = 0.6% for different ld.  
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Figure 6.26. Variation of ∆τa with number of loading cycles for different ld.  

 

(b) ld = 4 µm (a) ld = 2 µm 
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Figure 6.27 shows the maximum Pband averaged over 0.5×0.5 µm area at the 50th 

cycle for different ld. The maximum Pband significantly increases with increasing ld due to 

the increasing intensification of plastic strain within the slip band. The simulation results 

predict a significant effect of the wavelength of the slip band on the deformation and 

fatigue behavior of single crystal α Ti-5Al. The sensitivity of the FIP to ld cannot be 

removed with the averaging method. Therefore, the wavelength ld is a key modeling 

parameter that must be determined through experimental observations (Xiao and 

Umakoshi, 2002, 2003) or theoretical calculations (Venkataraman, et. al., 1991a, 1991b) 

before any meaningful fatigue analysis can be carried out.  
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Figure 6.27. Variation of maximum PBand with 0.5×0.5 µm averaging area at the 50th 
cycle for ∆εt/2 = 0.6% for different ld.  

 

 

6.6 Summary 

 

In this study, a shear-enhanced crystal plasticity model is used to model the 

deformation behavior of the single crystal α Ti-5Al oriented for single and double 

prismatic slip. Softening of the threshold stress is introduced to incorporate the cyclic 
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strain softening observed in the experiments. The cyclic strain softening is associated 

with highly planar slip of α Ti-5Al at room temperature. Finite element models are 

established to simulate the deformation and fatigue behaviors of the α Ti-5Al. In order to 

model the slip band effect, the element size and the distribution of the defects within the 

model are determined by the experimentally observed slip band structure. The simulated 

stress-strain responses are shown to be in good agreement with the experimental results at 

different orientations and various amplitudes of completely reversed cyclic strain at room 

temperature.  

A new FIP, Pband, is proposed to correlate fatigue crack formation along the slip 

band. An averaging procedure for the FIP over integration points is employed to 

incorporate the crack formation mechanism over a physically representative scale on the 

order of slip band width. The nonlocal Coffin-Manson law is used to correlate the fatigue 

life and the FIP and is calibrated by fitting the fatigue lives of single crystal α Ti-5Al 

oriented for double prismatic slip. Predicted fatigue lives are shown to be in good 

agreement with the experimental data of single crystal α Ti-5Al oriented for single 

prismatic slip.  

Two modeling parameters, mesh density and spacing of defects, are investigated 

in terms of their effects on the deformation and fatigue behavior of α Ti-5Al. It is found 

that these two parameters have minor effect on the macroscopic stress-strain response. 

However, the distribution of the effective plastic strain and FIP vary substantially with 

variation of these two parameters. The mesh size should be assigned to less than the slip 

band width.  Parameter ld is an important material length scale that must be determined 

before conducting simulations. 
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CHAPTER 7 

SIMULATION OF SLIP BAND BASED ON SHEAR ENHANCED 

CRYSTAL PLASTICITY MODEL 

 

 

7.1 Introduction 

 

Extensive studies summarized in Chapters 1 and 6 have been conducted to 

simulate the slip localization in crystalline materials. Many of those works explicitly 

model the slip bands using macroscopic plasticity or crystal plasticity models combined 

with the finite element method. In those works on explicitly modeling the slip bands in 

crystalline metals, the prescribed perturbations were necessary to trigger the localized 

deformation.   

Simulations of slip bands in single crystal α-Ti5Al subjected to cyclic loading 

have been carried out in Chapter 6. The simulation results are shown to agree with the 

experimental observations of single crystals oriented for single and double prismatic slip 

in terms of macroscopic stress-strain responses and deformation behavior (Xiao and 

Umakoshi, 2002, 2003).  The fatigue analyses were performed by calculating fatigue 

indicator parameters.  A modified Coffin-Manson relation was calibrated and used to 

correlate the FIPs with fatigue lives. It was shown that the predicted fatigue lives for 

various loading histories are in good agreement with the experimental data.   

The works reported in Chapter 7 and 8 will focus on the simulation of slip bands 

in polycrystalline Ti-6Al-4V. The objectives of this study are as follows: 

• Develop a physically-based crystal plasticity constitutive model that can 

simulate the development of slip band in the primary α phase of Ti-6Al-



 205

4V deformed at room temperature. This microstructure-scale model can be 

used to study the effects of microstructure on the deformation and fatigue 

behaviors of Ti-6Al-4V. 

• Develop physically-based FIPs that can reflect driving forces for various 

mechanisms for fatigue crack formation.  

• Conduct simulations demonstrating the role of microstructure in cyclic 

deformation and fatigue behaviors. 

• Develop a computational approach for microstructure-scale material 

modeling and fatigue analyses. 

Emphasis is placed on the developing and using the computational tools and frameworks 

to study the effect of microstructure of Ti-6Al-4V on deformation and fatigue behavior 

while considering the slip localization in the primary α phase.  

 In Chapter 6, perturbation elements with lower slip resistance are used to trigger 

slip localization in single crystal α-Ti5Al.  The distribution of perturbation elements is 

determined from experimental observations.  It is shown that the slip bands gradually 

propagate from the perturbation elements. This approach is unsuccessful in simulating 

slip band in polycrystal.  It is found that the slip band cannot initiate from the 

perturbation elements. A rather homogenous slip is observed due to the strong 

heterogeneity of the grain boundary. In order to enforce the localized slip in polycrystal, a 

new strategy is developed in Section 7.2. In this strategy, the crystal is divided into two 

regions representing slip band and matrix based on the experimental observations and 

orientation of slip planes. Different material constants are assigned to each of the two 

regions to model different deformation behaviors of slip band and matrix.  The 

simulations are conducted on a 2D finite element model obtained from the EBSD 

observation of the polycrystalline structure of a Ti-6Al-4V subjected to monotonic 

tension history, as shown in Section 7.3. In Section 7.3, the simulated slip band structures 

are shown to be in qualitative agreement with the experimental observations.  
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7.2 Crystal Plasticity Model 

 

The kinematics of crystal plasticity theory has been explained comprehensively in 

Chapter 1 and the slip systems of primary α phase and lamellar colony are given in 

Chapter 2. Same flow rule as shown in Eq. (4.1) is used. The evolution laws for drag 

stress and backstress for primary α phase and lamellar colonies follow that described in 

Chapter 4.  

The threshold stress does not evolve, i.e., 0ακ = , for pyramidal slip systems of 

the primary α phase and the hard slip systems of α+β colony.  The threshold stresses for 

basal and prismatic slip systems of primary α phase are given by 

 

 1 1 2( )prism Pyr Pyr sprism prism
Aα α ακ κ τ τ κ= + − +  (7.1) 

 
 

 1basal sbasal basal

α α ακ κ κ= +  (7.2) 

 
 
where 1 prism

ακ and 1 basal

ακ  are defined by Eq. (4.5). The second term in Eq. (7.2) 

corresponds to the non-Schmid effect (core spreading effects), as described in Chapter 2.  

It is noted that breakdown of SRO causes strong planar slip and results in slip 

localization in primary α phase. As a result, slip bands develop when polycrystal is 

deformed at room temperature. Same as in the Chapter 6, the magnitude of plastic shear 

αγ for the αth slip system is used to trigger the softening of s
ακ . Therefore, the evolution 

laws of the softening terms of Eqs. (7.2) and (7.3) is written as 

 

 ( )s prism s prism
α α α ακ µ ξ κ γ= −  (7.3) 
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 ( )s basal s basal
α α α ακ µ ξ κ γ= −  (7.4) 

 

where µ is a constant and ξa is the softening coefficient for αth slip system.  The initial 

value of  s prism
ακ  and s basal

ακ are given by  

 

 (0) (0)s prism s
ακ κ=  (7.5) 

 

 (0) (0)s basal s
ακ κ=  (7.6) 

 
 

A slip band is the region in which cyclic plastic shear strain is localized.  The 

matrix, on the other hand, contains very low plastic shear strain. The differential slip in 

slip band and matrix shows that the threshold stress does not soften uniformly in all 

material points.  In effect, the softening only occurs at the material points that are located 

within the slip band.  A new strategy is proposed to create banded slip in primary α 

grains, as illustrated in Fig. 7.1.  

In Fig. 7.1, multiple slip bands are assumed to have the same thickness t and be 

separated by uniform distance l. The wavelength of the slip band is w t l= + .  For a 

material point, the value of the softening coefficient ξa for αth slip system is determined 

by the distance ϖ  between the slip plane and a remote reference point, i.e., 

 

 
1   if   / 2 / 2

    1,2,3...
0                 otherwise             

nw t nw t
n

α

α

ξ ϖ
ξ

 = − ≥ ≥ +
=

=
 (7.7) 
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With this strategy, only the material points that reside within the slip bands will soften, as 

shown in Fig. 7.1. Thus, the plastic shear will concentrate in the slip band regions due to 

relatively low slip resistance.  

 

 

Figure 7.1 Illustration of softening strategy for primary α phase. 

 

The thickness and spacing of slip bands are important characteristic material 

length scales that need to be determined before conducting simulations.  It is well known 

that t and l of slip bands are dependent on material, loading conditions, temperature, and 

so on. However, a theoretical formulation that allows calculation of slip band thickness 

and spacing in α TiAl alloys is lacking.  Experimental observations on cyclically 

deformed single crystal α Ti5Al showed that for various loading histories, variation of 

spacing and thickness of slip band was relatively low (Xiao and Umakoshi, 2002, 2003).  

Table 7.1 summarizes the value of t and w for various α TiAl alloys subjected to various 

loading conditions. Most experiments were conducted at room temperature except the 

experiment carried out by Williams et al. (2002).  The values of t and w are obtained 

based on the SEM images provided in the literatures. Table 6.1 shows that the thickness 

Slip Band 

Matrix 
1αψ =

0αψ = Wavelength w 

Ref. Point 

ϖ 

mα

sα

t 

l 
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of slip band ranges from 0.3 µm to 2 µm and the wavelength ranges from 1 µm to 3 µm.  

For simplicity, uniform slip band thickness t = 0.8 µm and slip band wavelength w = 1.5 

µm are assumed for all primary α grains.  It is assumed that no new slip bands will be 

formed during the deformation.  

 

 

Table 7.1 Thickness and wavelength of slip band reported and observed in 
literature for α Ti-Al alloys. 

Thickness 
of slip 
band t,  
(µm) 

Wavelength 
of slip 

band, w 
(µm) 

Material Loading Condition 
Reference (based 

on TEM 
observations) 

0.8 2.8 α Ti-6Al Creep at 552 MPa 
Brandes and 
Mills, 2004 

0.8~1 1.5~2 
Various heat 

treated Ti-6Al 
Creep at 552 MPa 

Neeraj and Mills, 
2001 

0.3 * 1.2 * 
Single crystal Ti-

6.6Al 
Compressive load at 77K 

Williams et al., 
2002 

0.5 1 Ti-6Al Creep at 716 MPa Neeraj et al., 2000

1~2 1~1.5 
Single crystal Ti-

5Al 
Double prismatic slip, strain 

amplitude 0.2% ~ 0.8% 
Xiao, Umakoshi, 

2003 

1~3 2~3 
Single crystal Ti-

5Al 
Single prismatic slip, strain 

amplitude 0.2% ~ 1.0% 
Xiao, Umakoshi, 

2003 

0.5~2 0.8~1.8 
Single crystal Ti-

5Al 
Various orientation, strain 

amplitude 0.4% 
Xiao, Umakoshi, 

2002 

0.3-0.8 1 
IMI834, Ti-

5.8Al-4Sn-3.7Zr
Strain amplitude 0.8% ~ 

1.5% 
Singh et al., 2002

<1 1~2 Ti-6Al-4V 6% tensile strain 
Le Biavant et al., 

2001 

0.5 1 Ti-6Al Creep and compressive load 
Neeraj and Mills, 

2002 
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Table 7.2 Constitutive equations for Ti-6Al-4V. 

 

Flow Rule: 

( )
-  

 sgn -  

m

o D

α α α
α α α

α

τ χ κ
γ γ τ χ

−
=

Evolution Equations for Hardening Variables: 

Back stress (primary α phase and lamellar colony) 

Threshold stress 

Drag stress 

sgn( ) , sgn( )x p with pα α α α α α α ατ χ γ τ χ= − = −

( )1exp    for  0
( )

1.0           for  0

x x
x

x

α α
α

α

η
ψ

 <= 
≥

( ) 0.5

1  yk dα ακ
−

=

( ) ( ) ( )α α α α α αCχ = Bγ - C χ γ B sgn γ - χ γ
B

x xα α αψ ψ =  
 

1 1 2( )prism Pyr Pyr sprism prism
Aα α ακ κ τ τ κ= + − +

Primary α phase 

1basal sbasal basal

α α ακ κ κ= +

1soft ssoft soft

α α ακ κ κ= +

1pry pry

α ακ κ= 0pry
ακ =

Lamellar colony 

1hard hard

α ακ κ=

s soft s soft
α α ακ µκ γ= −

0hard
ακ =

(0) (0) (0) (0)s prism s basal s soft s
α α ακ κ κ κ= = =

( )s prism s prism
α α α ακ µ ξ κ γ= −

( )s basal s basal
α α α ακ µ ξ κ γ= −

0Dα = prism prismD Dα α β+= { }111 110 0.9 prismD Dα β α+ =basal basalD Dα α β+=

for all slip systems 
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The threshold stress for soft slip systems of the α+β colony also includes an 

initial softening term, i.e., 

 

 1soft s soft

α α ακ κ κ= +  (7.8) 

 

Since the slip band is generally not formed in the lamellar phase, the softening strategy is 

not applied to lamellar colonies. The softening term s soft

ακ evolves according to the 

evolution law 

 

 ( )s soft s sfot
α α α ακ µ ξ κ γ= −  (7.9) 

 

where the softening coefficient for the lamellar colony is ξa = 1.  The constitutive 

equations are summarized in Table 7.2. The described crystal plasticity algorithm is 

applied to both the primary α phase and the lamellar colony via implementation into a 

UMAT subroutine in ABAQUS (2005). 

 

 

7.3 Calibration of Crystal Plasticity Model of Ti-6Al-4V 

 

The calibration of the crystal plasticity model of Ti-6Al-4V is carried out by 

fitting the macroscopic stress-strain responses of a duplex Ti-6Al-4V subjected to a 

complex loading history at the room temperature.  The same material (PW1215) and 

loading history as described in Chapter 4 (also in Zhang et al. 2007) is used.  The 

microstructure of the duplex Ti-6Al-4V is shown in Figure 4.1. Table 4.1 summarizes the 

microstructure parameters. The detailed calibration process can also be found in Chapter 

4. A brief description is given in below.   
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Figure 7.2 Finite element model of periodic polycrystal. 

 

The microstructure of the tested Ti-6Al-4V is simulated by a finite element model 

as shown in Fig. 7.2.  To adequately represent the microstructures of the tested material 

by the finite element mesh, microstructure attributes such as average grain size, volume 

fraction of primary α phase are simulated. A serious of simulated annealing processes is 

performed to fit the orientation and disorientation distributions, as described in Chapter 4. 

The same finite element model as described in Chapter 4 is used here.  In this 

model, the polycrystalline material is idealized as an aggregation of cubic crystals of 

identical size, as shown in Fig. 7.2.  Such an idealization represents a highly idealized, 

uniform grain size distribution of two phases. The finite element model consists of 

5 5 5× × cubic grains, with each grain containing 2 2 2× ×  elements.  

To simulate the behavior of bulk material with only hundreds of grains, random 

periodic boundary conditions are applied to all three directions: RD, TD, and the normal 

direction shown in Fig. 7.2. The displacements are enforced (controlled) in the normal 

direction, consistent with the experiments in which strains are controlled in this direction. 

Lamellar colony 

Primary α- phase 

TD (x)

RD (y)Normal (z) 

Strain dirction
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A detailed description of the finite element model is given in Chapter 4 and (Zhang et. al, 

2007). 

It should be noted that several material constants of the crystal plasticity model 

can be obtained from the literature or directly from characterized microstructure features, 

as shown in Table 4.3. The value of other constants must be found by fitting the 

experimental data.  

Certain constraints on the slip resistance are applied. For example, the slip 

resistance of the basal system is known to be close to that of the prismatic system.  The 

CRSS of the pyramidal slip systems is much larger than that of the basal and prismatic 

slip systems for α-titanium and α/β Ti-Al alloys.  Therefore, the drag stresses of these 

slip systems are estimated in proportion to relative ratios of estimated CRSS for various 

slip systems presented in Table 4.4. 

In this study, only part of the loading history that was used in Chapter 4 is applied 

in this work to calibrate the crystal plasticity model.  The computational cost will be 

greatly reduced by using the loading history up to 2.5% applied strain. This loading 

history includes four strain rates 10-3 s-1, 10-4 s-1, 3×10-5 s-1, and 10-5 s-1 and hold periods, 

and it is adequate for calibrating the rate sensitivity exponent, coefficient for tension-

compression asymmetry of the back stress, the drag stress of each slip system, the value 

of the softening term, and the degree of softening of the threshold stress of basal and 

prismatic slip systems, etc.    

The simulated stress-strain responses are in good agreement with the experimental 

data up to 2.5% applied strain, as shown in Fig. 7.3.  Material constants are reported in 

Table 7.3. Compared with the material constants reported in Chapter 4, a lower drag 

stress for prismatic and basal slip systems of primary α phase is obtained. At the same 

time the drag stress of the pyramidal slip system significantly increases. Thus, each 

primary α grain will undergo single slip when the applied load is relatively low, which is 

consistent with the experimental observations (Bridier et al., 2005). 
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Table 7.3  Material constants for PW1215 at room temperature. 

basal
0D  65 MPa basal

1κ  193 MPa µ  70 

prism
0D  65 MPa prism

1κ  193 MPa 1η  500 

pyr a
0D  400 MPa pyr a

1κ  193 MPa A  -0.1 

pyr c+a
0D  800 MPa pyr c+a

1κ  193 MPa m  15 

( )+ basal/soft
0D α β  65 MPa prism

1κ  193 MPa α,α+βB  40000 

( )+ prism/soft
0D α β  65 MPa ( )+ basal

1
α βκ  163 MPa α,α+βC   8000 

( )+
0D hardα β  400 MPa ( )+ prism

1
α βκ  981 MPa   

( )+ bcc BOR
0D α β  58.5 MPa ( )+ pyr

1
α βκ  981 MPa ( )+ bcc

1
α βκ  800 MPa 

  ( )+ easy glide systems
1

α βκ 193 MPa ( )0sκ  140 MPa 
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Figure 7.3. Fit for stress-strain curve of tested Ti-6Al-4V (PW1215) for the room 
temperature uniaxial strain history. 
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7.4 Simulation of the Slip Behavior of Ti-6Al-4V 

 

 In the last section, it was shown that the proposed crystal plasticity model can 

simulate the macroscopic stress-strain response of a polycrystalline Ti-6Al-4V subjected 

to a complex loading history at the room temperature.  The finite element model used in 

the last section can adequately represent the microstructure of the test material.  It is 

noted that this finite element model has a relatively coarse mesh. The edge length of each 

element is about 3.5 µm.  Apparently, such a coarse mesh is unable to simulate the 

formation and propagation of the slip bands.  

Bridier and co-workers (2005, 2007) investigated the slip behavior of Ti-6Al-4V 

subjected to monotonic tension strain-controlled history. Electron back-scatting 

diffraction (EBSD) measurement of the polycrystalline structure at a 48 52×  µm zone 

centered on the gauge length was reported.  The slip activity within this zone for various 

applied strain level were recorded.  In this study, a two-dimensional finite element mesh 

is created based on the EBSD map to represent the microstructure of the measured zone. 

Finite element simulations are carried out by using the proposed crystal plasticity model 

and softening strategy for the primary α phase. The simulation results are then compared 

with the experimental observations.  

The EBSD map and corresponding scanning electron microscope (SEM) image of 

the measured zone are shown in Figs. 7.4 and 7.5, respectively.  Figure 7.6 shows the 

corresponding finite element model used in this study. It is noted that the periodic 

boundary conditions are applied in the x and y directions.  These boundary conditions 

impose constraints on the sides such that the opposite edges deform in the same manner. 

The displacements are enforced (specified) in the y direction to correspond to strains 

imposed in the experiments.  It is noted that when the displacement is specified on an 

upper boundary, as in uniaxial loading, the x side of the mesh experiences approximately 

zero net traction, in accordance with the axial loading condition.  It is noted that the 
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experimentally measured zone is not a periodic cell of the tested material.  In other 

words, this zone does not repeat itself in the x and y directions.  Direct application of the 

periodic boundary conditions on the EBSD zone may impose incorrect constraints.  To 

relax the extra constraints imposed on the EBSD zone by periodic boundary condition, a 

simple expansion of the EBSD zone is applied in both the x and y directions such that the 

expanded region has the same orientation as the boundary grains.  As shown in Fig. 7.6, 

the size of the finite element mesh is 60 60×  µm, and it consists of two regions: EBSD 

zone and expanded zone.  The orientation of the elements at the expanded zone is same 

as that of the nearest elements at the boundary of EBSD zone.  

The finite element mesh was created using a FORTRAN code and implemented in 

ABAQUS (2005).  There are a total of 57600 two-dimensional generalized plane strain 

elements (CPEG4R).  The size of each element is 0.25 0.25× µm.  The generalized plane 

strain element allows for the slip in the z direction, i.e., 3D crystal plasticity relations.  

The generalized plane strain theory used in ABAQUS assumes that the model lies 

between two bounding planes, which may move as rigid bodies with respect to each 

other, thus causing strain of the “thickness direction” fibers of the model (ABAQUS, 

2005). The two bounding planes are free of traction. Generalized plane strain elements 

are typically used to model a section of a long structure that is free to expand. In order to 

reduce execution time, all elements employ reduced integration. 
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Figure 7.4 EBSD image of the measured zone.  

 

 

 

 

Figure 7.5 SEM image of the measured zone. 
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Figure 7.6 Finite element model. 

 

The EBSD zone consists of 43 grains. Among these grains, there are 7 primary α 

grains labeled from 1 to 7, as shown in Fig. 7.7. The orientation angles of these grains in 

Bunge-Roe convention are given in Table 7.4.  Table 7.4 also lists the Schmid Factors of 

basal and prismatic slip systems of each primary α grain when the loading direction is 

parallel to the y direction. In Table 7.4, B1, B2 and B3 represent basal slip systems 

( )1210 0001 , ( )1120 0001  and ( )2110 0001 , respectively; P1, P2 and P3 denote 

prismatic slip systems ( )1210 1010 , ( )1120 1100  and ( )2110 0110 , respectively.  

It should be noted that the grain size dα is determined by the area of each grain due to the 

lack of the microstructure information in the third direction.  
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Figure 7.7 Primary α grains at EBSD zone. 

 

Table 7.4 Schmid factors and orientation angles in Bunge-Roe convention of 
primary α grains. 

Grain 
Orientation 

angle, degree 
Schmid factors for basal and prismatic slip systems 

 φ1 Φ φ2 B1 B2 B3 P1 P2 P3 

1 105 65 249 0.31 0.41 0.097 0.12 0.065 0.05 

2 88 38 280 0.38 0.45 0.073 0.3 0.21 0.08 

3 80 69 283 0.34 0.26 0.08 0.04 0.07 0.03 

4 143 24 217 0.19 0.21 0.01 0.43 0.37 0.06 

5 179 19 177 0.01 0.01 0.0004 0.39 0.46 0.07 

6 1 71 351 0.01 0.01 0.002 0.34 0.49 0.15 

7 8 77 9 0.10 0.13 0.02 0.48 0.30 0.18 
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                          (a)  Basal system                                        (b) P1 slip system 

 

        

               (b) P2 slip system                                     (c) P3 slip system 

Figure 7.8 Distribution of ξa.  

 

The distributions of the softening coefficient ξa for basal and prismatic systems 

are shown in Fig. 7.8.  The red and blue colors denote ξa = 1 and ξa = 0, respectively. The 

softening coefficient distributes in a band structure at primary α phase.  Such structure 

allows for softening of threshold stress of the elements at the slip band only and in turn 

enforces shear localization.  The contours of the softening coefficient effectively show 

the structure of the possible slip bands viewed at the x-y plane.  It is noted that all three 
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basal slip bands have the same configuration since they share the same slip plane.   Three 

prismatic slip bands corresponding to slip systems ( )1210 1010 , ( )1120 1100  and 

( )2110 0110  have different orientations.  It is noted that the x-y section view of slip 

bands for different grains are different, even though the same thickness and wavelength 

of slip band are assumed for all primary α grains. The discrepancy is caused by the 

various orientation angles of the slip planes. When the angle between the slip plane and 

the x-y plane decreases from 90 degree to 0 degree, the thickness and wavelength of slip 

band shown in the x-y plane increase.  

The softening coefficient for the basal system of lamellar phase is ξa = 1 since the 

basal system belongs to soft system. Similarly, ξa = 1 for P3 slip system which is also a 

soft system. The hard systems P1 and P2 have the value ξa = 0.  

 

 

Figure 7.9 Simulated stress-strain responses.  

 

Figure 7.9 shows the simulated stress-strain responses for a monotonic tension 

strain-controlled history up to 2.5%. The strain rate is 10-3 s-1.  It is noted that the size of 

Strain
0.000 0.005 0.010 0.015 0.020 0.025 0.030

S
tre

ss
, M

P
a

0

200

400

600

800

1000

1200

1400

0.7% 1.4% 2%



 222

the simulated zone is relatively small ( 48 52×  µm).  Such a small zone is inadequate to 

statistically represent the microstructure of the bulk material.  Furthermore, the EBSD 

observation provides 3D lattice orientation and 2D grain structure of polycrystal.  Thus, 

direct comparison of the simulated stress-strain curve with experimental data is not 

performed.  

The strong plastic shear localization can be viewed from the contour of effective 

plastic strain, defined by ( )2 / 3 ε ε=ε ij ij
p p p , where ( )0 0

p

sym

α α α

α

γ= ⊗∑ε s m , at various 

applied strain εt.  Figure 7.10 compares SEM images and contours of the effective plastic 

strain.  When the applied strain is relatively low at 0.7%, no clear slip trace can be seen 

from the SEM image at Fig. 7.10 (a). This strain level is lower than the macroscopic yield 

strain as shown in Fig. 7.9.  However, the contours of the effective plastic strain show 

that there are a few grains with favored orientations undergoing plastic deformation and 

the effective plastic strain is relatively low.  The banded structure of effective plastic 

strain is shown for grains 1, 2 and 7. Both grains 1 and 2 undergo basal slip while grain 7 

undergoes prismatic slip.  The active slip system of each grain has the highest Schmid 

factor, as shown in Table 7.4.  It is noted that the effective plastic strain at the slip band is 

close to that that of matrix.  It is believed that the threshold stress of slip band is close to 

that of the matrix at low applied load.   

When the applied strain increases to 1.4%, the plastic deformation is shown in the 

macroscopic stress-strain curve in Fig. 7.9.  In Fig. 7.10(b), clear slip traces are shown in 

the SEM image in grains 1, 2, 3 and 6.  Within these four grains, basal slip is the main 

slip mode for grains 1 and 3. Grain 6 mainly undergoes prismatic slip.  Both basal and 

prismatic slip bands are developed in grain 2 due to relatively high Schmid factor for slip 

systems B2 and P1. In the SEM image, large wavelengths are observed in the slip bands 

for grains 3 and 6; the wavelengths of the slip bands in grains 1 and 2 are relatively small.  

The finite element simulation at the right of Fig. 7.10(b) shows that most grains undergo 
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plastic deformation at εt = 1.4%. The effective plastic strain distributed in clearly banded 

structure for all primary α grains. The orientations of the simulated slip bands of grains 1, 

2, 3 and 6 are same as that of the observed slip traces. The finite element model can 

correctly predict the active slip system. The wavelength of the simulated slip band is 

generally close to the experimental observation. However, a clear discrepancy of 

wavelength can be seen from grain 3 which is resulted from the assumption of uniform 

wavelength of the slip band in the model.  In grain 2, the simulated plastic shear in the 

prismatic slip system is stronger than that in the basal system which is opposite to the 

SEM observation. Such discrepancy can be attributed to the 2D generalized plane strain 

elements and periodic boundary conditions used in the finite element simulation.  

The SEM image in Fig. 7.10(c) shows significant plastic deformation of primary 

α grains when εt = 2%.  The wavelength of the slip band decreases with increase of 

plastic deformation. Grains 4 and 7 begin to develop prismatic slip bands.  The 

orientations of the slip bands in grains 4 and 7 are in agreement with the simulation 

results.  As shown in Table 7.4, the active slip systems (P1 for grain 4, P2 for grain 7) 

have the highest Schmid factors among all basal and prismatic systems.  The contours of 

effective plastic strain show strong plastic deformation in both primary α grains and 

lamellar colonies when εt = 2%. It is noted that different legends are used for Fig. 7.10(b) 

and 7.10(c). In comparison with Fig. 7.10(b), Fig. 7.10 (c) shows that the effective plastic 

strain within the slip band significantly increases while pε  of matrix does not change. 

The slip localization is apparently caused by relatively low threshold stress of the 

elements within slip bands.  

In Fig. 7.10, it is shown that the simulated slip bands structure is in qualitative 

agreement with the experimental observations. The finite element simulation correctly 

predicts the orientations of the slip bands.  The wavelength of the slip bands is also close 

to the experimental observations. For all primary α grains, the first activated slip system 
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is the system with the highest Schmid factor.  Most grains undergo single slip at different 

applied strain level. Only a few grains can undergo multiple slips when load is high, such 

as grain 2.  Both experimental observations and simulations show that basal and prismatic 

slips are the most active slip systems for primary α grains.  

 

 
(a) εt = 0.7% 

 

 

(b) εt = 1.4% 
 

Experiment Simulation 

Experiment Simulation 
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Figure 7.10 Comparison of slip behaviors at various applied strain εt. 

 

(c) εt = 2% 

Figure 7.10 Comparison of slip behaviors at various applied strain εt (Cont.).  

 

Experimental observations show that the wavelength of the slip bands decrease 

with increasing plastic deformation. At the same time, the thicknesses of the slip bands 

increase (Xiao and Umakoshi, 2002, 2003). In finite element simulations, constant slip 

band thickness and wavelength are assumed for all primary α grains at various plastic 

strains.  This assumption results in the discrepancy in the structure of slip bands between 

experiment and simulation.  The finite element simulation is unable to fully capture the 

slip behavior of primary α grains.  For example, the simulation shows stronger prismatic 

slip than basal slip in grain 2 which contradict to the experimental observations.  From 

the contour of effective plastic strain at εt = 2%, both grains 4 and 5 are shown to undergo 

significant plastic deformation. However, the SEM image shows slight slip traces in grain 

4 and no slip trace in grain 5.  Such a discrepancy can be in part attributed to the periodic 

boundary conditions used in this study.  Lack of microstructure information in the z 

direction can also lead to discrepancies between simulation and experiment.  

Simulation Experiment 
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In this Section, it is shown that the proposed crystal plasticity model and softening 

strategy can be used to simulate the development of slip bands in the primary α phase of 

Ti-6Al-4V deformed at room temperature.  The proposed crystal plasticity model can 

simulate the softening of slip resistance due to breakdown of the short range order 

between titanium and aluminum atoms.  

The development of slip bands in crystalline material is a nonlocal phenomenon. 

That is, the slip and deformation behaviors of a material point are influenced by both the 

surrounding material points and the remote material points.  In this study, the slip band is 

modeled with a local approach (conventional finite element method) combined with the 

experimental observations regarding characteristic length scale of the slip bands.  It is 

possible that the nonlocal approach such as certain forms of strain gradient crystal 

plasticity can be used to model slip bands. However, compared to the strain gradient 

crystal plasticity model, the approach used in this study is simpler, more robust for 

fatigue simulation, and less computationally expensive. Furthermore, the strain gradient 

approach faces the similar issues as the nonlocal approach. For example, the wavelength 

of slip band effectively needs to be determined a priori by assignment of a suitable 

gradient coefficient.   

 

 

7.5 Summary 

 

In this Chapter, shear enhanced crystal plasticity constitutive relations are 

proposed to account for the slip softening due to breakdown of the short range order 

between titanium and aluminum atoms. In the primary α phase, the threshold stress 

evolves according to softening restricted to slip band only. Thus, slip concentrates in the 

slip bands due to their relatively low slip resistance.  In this softening strategy, uniform 

thickness and wavelength of slip bands are assumed for all grains during deformation 
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since the theoretical calculations of these two parameters are unavailable. This study 

employs a combination of typical values of thickness and wavelength obtained from 

experimental observations.  The proposed model is calibrated by performing finite 

element simulations on a polycrystalline Ti-6Al-4V (PW1215).  The 3D finite element 

model is constructed to precisely represent the microstructure of the polycrystalline Ti-

6Al-4V as described in Chapter 4.  The simulated stress-strain response is shown to be in 

good agreement with the experimental data provided by Pratt & Whitney up to 2.5% 

strain.  

The slip behavior of a Ti-6Al-4V subjected to monotonic tension history is 

investigated. The two-dimensional finite element mesh is obtained from the EBSD 

observation (Bridier et al., 2005).  The finite element simulation is performed with the 

proposed shear enhanced model and softening strategy. The contours of effective plastic 

strain are compared with the SEM images at various stain levels.  It is shown that the 

proposed approach for slip band simulation can qualitatively capture the slip behavior 

measured in experiments.  The slip bands often form on the basal or prismatic slip system 

with the highest Schmid factor.  The thickness and wavelength of the simulated slip 

bands are close but are often not same as the SEM observations. Such a discrepancy can 

be attributed in part to the constant thickness and wavelength of slip bands assumed in 

this approach.   

This approach provides a useful computational tool to study the effect of slip 

bands on the deformation behavior of Ti-6Al-4V, particularly grain scale shear 

localization and stresses related to fatigue crack formation.  It is also noted that slip bands 

play an important role in fatigue crack initiation in Ti-6Al-4V.  Therefore, the approach 

can add value to the study of the microstructure-scale fatigue behavior of Ti-6Al-4V.  
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CHAPTER 8 

MICROSTRUCTURE-SCALE FATIGUE ANALYSIS OF TI-6AL-4V 

BASED ON SHEAR ENHANCED CRYSTAL PLASTICITY MODEL 

 

 

8.1 Introduction 

 

Fatigue is a complex process that depends significantly on the 

temperature/environment, loading history, and microstructure of the material.  It is 

desired to understand scatter in fatigue as a function of microstructure in order to tailor 

microstructure to improve fatigue resistance.  Moreover, we can gain some understanding 

of dependence of mean fatigue behavior on microstructure. An engineering approach to 

fatigue life estimation for components requires a large number of fatigue tests for various 

microstructural materials which are generally expensive and which require significant 

amounts of time to conduct.   

The formation of fatigue cracks is a highly localized process that occurs at various 

microstructure inhomogeneities.  For Ti-6Al-4V, fatigue cracks can initiate from primary 

α grains, lamellar colonies and grain boundaries. During high cycle fatigue (HCF) life, 

the formation of a fatigue crack can take a large fraction of the fatigue life of a material 

(Lankford and Kusenberger, 1973).  Consequently, it is important to quantify the relative 

driving force for fatigue crack formation at various microstructure inhomogeneities.  

Various models have been proposed to predict the crack incubation life (fatigue 

crack formation) of materials under multiaxial fatigue load. Among them, the critical 

plane approaches such as Fatemi-Socie (FS) (1988) and maximum cyclic plastic shear 

strain have demonstrated superior predictive capabilities in modeling fatigue crack 
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formation at the microstructure level (McDowell, 1996a). It should be noted that these 

fatigue indicator parameters (FIPs) are calculated over a finite volume since the crack 

formation operates over a finite domain. Crack formation in Ti-6Al-4V was shown to be 

a shear-dominated phenomenon (Goh, 2002). Among the shear-dominated FIPs, the 

Fatemi-Socie FIP includes the maximum normal stress to the critical plane and therefore 

is considered to be more suitable than the maximum cyclic plastic shear strain for the 

predication of fatigue life of Ti-6Al-4V (Mayeur et. al, 2006). The FIPs can be related to 

the crack formation life according to modified Coffin-Manson relations. 

Slip banding plays an important role in fatigue crack initiation in crystalline 

materials.  Intense shear along the persistent slip band causes formation of protrusions at 

the surface in Cu (Ma and Laird, 1989).  Protrusion consists of many small intrusions and 

extrusions, and cracks often nucleate at or close to protrusions, as shown in Fig. 8.1 (Ma 

and Laird, 1989).  Cracks can also initiate along internal slip bands in primary α grain 

due to to-and-fro slip, as shown in Fig. 8.2.   

Fatigue crack formation due to the impingement of slip bands on the grain 

boundary has been reported for crystalline materials such as Ni (Morrison and 

Moosbrugger, 1997) and Ti alloys (Neal and Blenkinsop, 1975; Evans and Bache, 2003). 

The impingement mechanism of crack formation was first proposed by Hollomon and 

Zener (1946). It was shown that high normal stress concentrated at the region where the 

slip band impinged on the grain boundary due to the dislocation pile-up. Stroh (1954) 

shows that the tensile stress intenσ that developed on the slip band normal to the slip plane 

was a function of the resolved shear stress τ and the distance r from the head of the pile-

up, i.e., 
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where η is a constant that depends on the orientation of the slip band and L is the distance 

over which the leading dislocation in the pile-up has traveled from the source. This 

distance can be assumed to be equal to the grain size. Clearly, the highest tensile stress 

due to impingement occurs at the grain boundary where r is minimal. Slip band 

impingement on grain boundary can lead to formation and propagation of small cracks in 

the microstructure (McDowell, 2005).  Figure 8.3 shows cracks that have formed at grain 

boundary due to slip band impingement of a single crystal Ni cycled at ∆ε/2 = 2.5×10-4 at 

room temperature.  

Another important crack formation mechanism is decohesion of α/β interface in 

lamellar colony (Neal and Blenkinsop, 1975). It is believed that the intense shear along 

the interface causes decohesion of lamellar layers, possibly enhanced by residual 

dislocation content at the interface.  

  

 

 

 

Figure 8.1 Crack nucleate at protrusion of single crystal copper deformed at room 
temperature (Ma and Laird, 1989). 
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Figure 8.2 Crack initiate along a slip band on Ti-6Al-4V subjected to a cyclic bending 
test at room temperature (Le Biavant et al., 2002). 

 

 

 

 

Figure 8.3 Crack formation at grain boundaries of Ni where slip band impinged, arrows 
identify the location of crack (Morrison and Moosbrugger, 1997). 
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A simulation-based microstructure sensitive approach to fatigue has been 

developed by McDowell (1996b) using the measured microstructural attributes to 

quantify the statistical distribution of fatigue responses. In addition to microstructure 

parameters, sensitivity of fatigue to loading parameters such as the amplitude of the 

applied strain, the load ratio, and multiaxiality can also be explored using computational 

methods (McDowell, 2005). This approach involves the following steps (McDowell, 

2005): 

1. Identify controlling microstructural features for crack formation and early growth. 

2. Conduct numerical analyses (e.g. finite element) of various microstructures for 

representative loading cases. 

3. Calculate the fatigue indicator parameter as a function of applied strain amplitude, 

mean stress or strain, and variable amplitude loading, as appropriate. 

4. Apply microstructure-scale crack formation/incubation relations based on simple 

Coffin-Manson forms to model crack formation life.  

5. Calibrate constants of Coffin-Manson and small crack propagation relations to the 

results for experimentally characterized microstructure(s) and then use these 

constants to predict results for other microstructures. 

This approach can be applied to investigate the microstructure sensitivity of fatigue crack 

formation life of Ti-6Al-4V as previous shown.   

In previous chapters, shear-dominated fatigue indicator parameter (Fatemi-Socie 

parameter) was used to quantify the driving force for crack formation in Ti-6Al-4V at the 

microstructure level. Apparently, the Fatemi-Socie FIP is unable to account for all crack 

formation mechanisms, as previously discussed. Additional FIPs are needed to account 

for slip bands.  In last Chapter, a new approach containing shear enhanced crystal 

plasticity constitutive relations and softening strategy is proposed to simulate the 

formation of slip bands in primary α grains of duplex Ti-6Al-4V. Fatigue analysis of Ti-

6Al-4V is performed by combining this new approach with additional FIPs.  The aim of 
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this study is to provide a new computational approach that can quantify the various 

driving forces for crack formation in primary α grains, grain boundaries and lamellar 

colonies.   

Quasi-cleavage is an important failure mechanism of TiAl alloys subjected to 

loading history with “cold-dwell” (Bache and Evans, 2003; Evans and Bache, 1994). This 

is not a brittle phenomenon. The term ‘‘quasi-cleavage’’ is used in recognition of the fact 

that the facets are found to have a near basal plane crystallographic orientation.  It is 

found that quasi-cleavage results from the presence of “hard” and “soft” grains. The grain 

with c-axis parallel to the loading direction is the “hard grain”.  The slip band forms in 

neighboring “soft” grain and impinges on the grain boundary between the “soft” and 

“hard” grains.  The strong stress intensification on the grain boundary causes facets in 

“hard” grains in spite of their unfavorable orientation.  

To investigate the quasi-cleavage phenomenon, Dunne et al. (2007) introduced a 

“rogue” gain combination in which the basal plane of the hard grain is perpendicular to 

the loading direction. The c-axis of the adjacent grain made an angle of about 20 degree 

to the loading direction. By using a strain-gradient crystal plasticity model (Dunne et al., 

2007), it was shown that the rogue grain combination causes very high basal normal 

stress on the hard grain.  

The works reported in this Chapter will focus on the simulation of slip band in 

polycrystal Ti-6Al-4V. The objectives of this study are as follows: 

• Apply the physically-based crystal plasticity constitutive model developed 

in the last Chapter to various microstructures.  

• Develop physically-based fatigue indicator parameters that can account for 

various crack formation mechanisms.  

• Simulate the role of microstructure in deformation and fatigue behavior. 

• Develop a computational approach for microstructure-scale material 

modeling and fatigue analyses. 
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More emphasis is placed on the developing and using computational tools and 

frameworks to study the effects of microstructure of Ti-6Al-4V on deformation and 

fatigue behaviors while considering the slip localization in α TiAl.  

In this study, cyclic loading is applied on the microstructure that was used in 

Chapter 7. A second microstructure is established to introduce a rogue grain combination, 

as shown in Section 8.2. The new fatigue indicator parameters are described in Section 

8.3. The monotonic tension behaviors of the two microstructures are shown in Section 

8.4. Section 8.5 shows the fatigue behaviors of these two microstructures.  A summary is 

given in the last Section.   

 

 

 

Figure 8.4 Microstructure II. 
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8.2 Finite Element Model 

 

Two microstructures characterized by EBSD, along with expanded regions are 

used in this study to identify the effect of a rogue grain combination on resistance to 

crack formation of Ti-6Al-4V.  The first microstructure (Microstructure I) is the same as 

that used in Chapter 7, which contains 7 primary α grains. To introduce the hard grain in 

Microstructure II, the orientation of grain 2 is changed in such a way that its c-axis is 

parallel to loading direction (y direction), as shown in Fig. 8.4.  The Schmid factors of the 

basal and prismatic systems of grain 2 are zero. Since the slip resistant of pyramidal 

system is relatively high, grain 2 of Microstructure II will mainly undergo elastic 

deformation.  

 

 

8.3 Fatigue Indicator Parameters (FIPs) 

 

Extensive study has been devoted to the development of robust fatigue models 

that are applicable to multiaxial stress states.  The critical-plane approaches currently 

appear to be receiving the most attention among active researchers because of their good 

correlation with multiaxial test data (McDowell, 1996; Gallagher et al., 2004).  In 

previous chapters, the shear dominated Fatemi-Socie FIP (PFS), was used to quantify the 

driving force for crack formation in Ti-6Al-4V at the microstructure level.  The critical 

plane defined in this model is the plane experiencing the maximum range of cyclic plastic 

shear strain.  The Fatemi-Socie FIP is given by Eq. (1.22) 
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Figure 8.5 Crack formation mechanisms of Ti-6Al-4V. 

  

As discussed before, two crack formation mechanisms of HCF α−TiAl need to be 

considered: decohesion of the slip band interface due to the intense shear along the slip 

band and slip band impingement on the grain boundary, as shown in Fig 8.5 (a) and (b). 

In this work, two FIPs are proposed, corresponding to these two mechanisms. A modified 

FS FIP can be used to account for the first crack formation mechanism, which is shear-

dominated, i.e.,  
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where 1K  = 1 is constant and *p
BANDγ∆  is the plastic shear strain range along the slip band 

averaged over a finite volume, *BAND
nσ  and yσ denote the averaged maximum normal 
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critical plane for this FIP is the slip band plane with the maximum range of plastic shear 

strain.  

Slip band impingement on grain boundaries leads to stress intensification due to 

progressive slip. The critical plane is thus the grain boundary plane. The FIP accounting 

for the impingement mechanism is used for the grain boundary elements and is written as 
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where *p
BANDγ∆  is the averaged maximum plastic shear strain range over a finite volume 

along the slip band at the grain boundary, 2K  = 1 is constant and *GB
nσ is the averaged 

normal stress applied on the grain boundary.  

For lamellar colonies, decohesion of lamellar phases is the dominant mechanism 

for crack formation as shown in Fig. 8.5(c). Therefore, the α/β interface is the critical 

plane for this FIP. The conventional form of the FS FIP can be used for the lamellar 

colonies as the driving force for fatigue crack nucleation, i.e., 

 

 
* max*

max
31

2

p
n

LAMELLAR
y

P Kγ σ
σ

 ∆
= +  

 
 (8.4) 

 
 

where 3K  = 1 is constant  and *
max
pγ∆  and max*

nσ  denote the averaged maximum plastic 

shear strain range and the maximum normal stress on the corresponding critical plane, 

respectively.  

These three proposed FIPs are the relevant FIPs and will be used to assess the 

relative potency of crack formation for Ti-6Al-4V as a function of microstructure under 

cyclic loading. The Fatemi-Socie parameter PFS is also calculated and compared with the 
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proposed FIPs.  It should be noted that the FIP is computed using a nonlocal volume 

averaging procedure over integration points. Its nonlocal range reflects the scale of crack 

formation and it is not mesh dependent.  The frequency distributions of FIPs significantly 

depend on the size of averaging volume.  In this study the edge size of the averaging 

volume is 0.5 µm which is about 1/2 of the width of slip band.  There is also a 

consideration that averaging is performed over a minimum volume to reflect the scale of 

crack formation. 

Both the maximum value and frequency distributions of FIPs are important to 

identify the variations of the fatigue behaviors with respect to variation of the 

microstructures and loading history. The crack formation life can be calculated from the 

maximum nonlocal FIPs. The frequency distribution of the nonlocal FIPs can be used to 

identify the distributed crack formation. 

 

 

8.4 Monotonic Tension Simulations  

 

The same periodic boundary conditions as shown in Chapter 7 are used to study 

of two microstructures in this Chapter. To examine the monotonic tension behavior of 

Microstructures I and II, strain-controlled tension is applied with the loading direction 

parallel to y direction. The simulated stress-strain responses are shown in Fig. 8.6.  Two 

microstructures have the same elastic properties.  Microstructure II has higher yield 

strength than Microstructure I for the considered loading direction. The yield strain and 

stress for these two microstructures are listed in Table 8.1. At the same total strain level, 

the plastic deformation of Microstructure I is larger than that of Microstructure II.  
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Figure 8.6 Tensile stress-strain responses of Microstructures I and II. 

 

Table 8.1 Tensile properties of microstructure I and II. 

 Yield strength (0.2% yield strength), MPa Yield strain 

Microstructure I 1010 0.98% 

Microstructure II 1095 1.09% 

 

 

 

8.5 Cyclic Loading Simulations  

  

To calculate FIPs, a strain-controlled cyclic loading history with strain rate at 

4.25×10-4 s-1 and load ratio at -1 is used, as shown in Fig. 8.7. The applied strain 

amplitude ∆εt/2 is 0.85% which is lower than the yield strain of both microstructures I 
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and II. The loading direction is parallel to the y direction.  Ten cycles are applied to 

achieve the stable cyclic behavior.  

 

 

 

Figure 8.7 Applied loading history. 

 

The stress-strain responses for the two microstructures are shown in Fig. 8.8.  A 

significant drop of the maximum stress for the first loading cycle is shown. A slight 

reduction of stress is shown for the following 4 to 5 cycles. After that, the hysteresis loop 

is relatively stable.  The cyclic softening can be attributed to the softening of the 

threshold stresses of the prismatic and basal systems of primary α grains and the soft 

system of lamellar colonies.  It is noted that the threshold stress decreases rapidly 

according to a power law relation which causes the largest reduction of stress during the 

first cycle.  
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Figure 8.8 Stress-strain responses for two microstructures. 

 

The cumulative plastic strains p
cumε  can be effectively used to display the 

cumulative plastic deformation over loading cycles, defined as 

 

 p p
cum dε ε= ∫  (8.5) 

 

where pε  is the effective plastic strain as defined before.  Figures 8.9(a) and (b) show the 

contours of the cumulative plastic strain of two microstructures at time t = t1 as shown in 

Fig. 8.7.  For Microstructure I, the clear band structure of p
cumε  is shown for all primary α 

grains except grain 4.  Grain 4 has relatively low cumulative plastic strain and thus 

mainly undergoes elastic deformation. The same band structure of  p
cumε  is found in grains 

1, 3, 4, 6 and 7 of Microstructure II.  No plastic deformation is found for grain 2, which 

has the c-axis parallel to the loading direction.  Grain 4 of Microstructure II has much 



 242

higher cumulative plastic strain than that of Microstructure I.  The significant yielding of 

grain 4 in Microstructure II is caused by high stress induced by the hard grain.  The 

introduction of hard grain 2 in Microstructure II also affects the plastic deformation 

behavior of the neighboring grains 1 and 3. p
cumε  of grain 1 of Microstructure II is higher 

than that of Microstructure I. The effect of hard grain on the plastic deformation behavior 

of remote grains 4, 6 and 7 is negligible.  

Figures 8.10(a) and (b) show contours of von Mises stress of two microstructures 

at time t = t1. It is noted that the von Mises stress is also distributed in a band structure for 

primary α grains. The von Mises stress in the slip band is much lower than that of matrix 

which is considered as “hard” region. Grain 2 of Microstructure II has von Mises stress 

about two times higher than that of Microstructure I.  Introduction of a hard grain also 

causes stress intensification on the neighboring grains. The von Mises stress of grains 1, 2 

and 5 increases. Comparing Fig. 8.10(a) with (b), it is shown that variation of von Mises 

stress in remote grains 4, 6 and 7 is relatively low.  

Observation of the cumulative plastic strain and von Mises stress for the two 

microstructures shows that the introduction of a hard grain significantly affects the 

deformation behavior of the neighboring grains. Both plastic deformation and stress 

increase due to the stress intensification induced by the hard grain.  At the same time, 

variation of deformation behavior of the remote grains is relatively low.  
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(a) Microstructure I 

 

      

 

(b) Microstructure II 

 

Figure 8.9 Contours of the cumulative plastic strain at time t1. 
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(a) Microstructure I 

 

    

 

(b) Microstructure II 

 

Figure 8.10 Contours of von Mises stress of two microstructures at time t1. 
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Strain behavior can be characterized as belonging to one of five regimes: elastic, 

elastic shakedown, reversed cyclic plasticity, combined cyclic plasticity and ratcheting, 

and plastic ratcheting.  The detailed definitions of these regimes have been given in 

Chapter 2.  In this study, the characteristic regime of plastic strain behavior is determined 

over the 10th loading cycle. 

 

Table 8.2. Plastic strain behavior for two microstructures. 

 Microstructure I Microstructure II 

max
pε  0.032 0.034 

Np  (% of elements) 35008 (86.8%) 32378 (80.2%) 

Elastic shakedown (% of Np) 17.8 20.8 

Reversed cyclic plasticity (% of Np) 79.4 75.9 

Combined cyclic and ratcheting (% of Np) 2.8 3.3 

Ratcheting (% of Np) 0 0.1 

 

 

Table 8.2 summarizes the plastic strain behavior for two microstructures. In Table 

8.2, Np denotes the number of elements that plastically deform and max
pε  is the maximum 

effective plastic strain over the microstructure at t = t1.  It is shown that Microstructure I 

has a larger number of plastically deformed elements due to the favored orientation of 

grain 2.  Application of hard orientation to grain 2 in Microstructure II results in an 

increment of max
pε  due to stress intensification.  The overall plastic strain behavior of 

Microstructures I and II is close. The dominant plastic strain behavior for Microstructures 

I and II is the reversed cyclic plasticity.  Only a few percent of plastically deformed 

elements undergo combined cyclic and ratcheting plasticity.  
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All FIPs are calculated over the 10th cycle for the EBSD region of Microstructures 

I and II.  FIPs in the expanded region are not used to evaluate the fatigue behaviors of 

two microstructures.  The contours of PFS, PBAND, PLAMELLAR, and PIMP are given in Figs. 

8.11, 8.12, 8.13 and 8.14, respectively. Both the maximum values and the frequency 

distributions of FIPs are potentially important for fatigue analysis.  The maximum FIPs 

are listed in Table 8.3.  In Table 8.3, the maximum PFS at the grain boundary is given and 

compared with PIMP.  Variations of maximum FIPs for two microstructures are also listed 

in Table 8.3.  The variation is given by 

 

 2 1

1

Microstructure Microstructure

Microstructure

P P
Variation

P
−

=  (8.6) 

 
 

Figures 8.15, 8.16, 8.17 and 8.18 show the frequency distributions of PFS, PBAND, 

PLAMELLAR, and PIMP of two microstructures, respectively.  The frequency distribution of 

PFS at the grain boundary is given in Fig. 8.19.  

The overall distributions of PFS for two microstructures are close to the 

distribution of the cumulative plastic strain as shown in Fig. 8.9.  In Fig. 8.11, PFS of the 

primary α grains that plastically deformed is distributed in the band structure.  The 

Fatemi-Socie parameter of Grain 2 of Microstructure II is close to zero since grain 2 

mainly undergoes elastic deformation.  Compared with Microstructure I, PFS in the 

primary α grains 1, 3 and 4 of Microstructure II increases.  The introduction of a hard 

grain in Microstructure II does not affect PFS in grains 6 and 7.  The maximum PFS of two 

microstructures is found in lamellar colonies.  In Table 8.3, introduction of hard grain in 

Microstructure II results in an 8.9% increment of maximum PFS.  The frequency 

distribution of PFS displays a similar tendency as shown in Fig. 8.15. A larger number of 

elements in Microstructure II has higher PFS.  For example, Microstructure II has about 



 247

0.087% of elements with PFS ranging between 0.021 and 0.03, while Microstructure I has 

only 0.03% of elements with PFS in the same range.  These observations show that 

compared with Microstructure I, Microstructure II has larger driving force for crack 

formation in both primary α phase and lamellar colonies due to introduction of hard 

grain.  Therefore, the expected fatigue life of Microstructure II is shorter than that of 

Microstructure I based on PFS.  The reduction of fatigue life of Microstructure II is 

relatively modest since the maximum PFS increases only a few percent.    

The fatigue indicator parameter PBAND is not calculated for lamellar colonies and 

grain boundaries. The other two FIPs, PIMP and PLAMELLAR, are used for these two regions.  

As shown in Fig. 8.12, the distribution of PBAND is close to that of PFS in primary α phase.  

Such a phenomenon can be attributed to the single slip behavior of primary α grains of 

Microstructures I and II under the currently considered loading history.  The maximum 

plastic shear plane is the same as the slip plane of the active slip system.  The slip plane is 

assumed to be the critical plane in PBAND.  Therefore, for primary α grains undergoing 

single slip, PBAND and PFS share the same critical plane and thus have same value.  An 

increment of PBAND in grains 1, 3 and 4 of Microstructure II is shown in Fig. 8.12.  Grain 

2 has PBAND close to zero.  In Fig. 8.16, the frequency distribution of PBAND shows that 

the driving force for crack formation along the slip band increases.  The maximum PBAND 

increases moderately 22.6% for Microstructure II.  It is shown that for the microstructure 

considered in this study, introduction of hard grain in Microstructure II results in a higher 

driving force for crack formation in neighboring primary α grains.  It should be noted 

that this conclusion is only valid for the loading history used in this study.   

Figure 8.13 shows that the overall distributions of PLAMELLAR are unchanged for 

Microstructures I and II. At the same time, the value of PLAMELLAR of Microstructure II is 

higher than that of microstructure I for almost all lamellar colonies.  For the same strain-

controlled loading, introduction of hard grain 2 results in a slight increment of stress in 
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Microstructure II and causes larger cyclic plastic deformation of lamellar colonies.  

Therefore, the driving force for decohision of lamellar interfaces increases.  The same 

tendency is shown in the frequency distribution of PLAMELLAR in Fig. 8.17.  The increment 

of the maximum PLAMELLAR (4.9%) of Microstructure II is about the same as that of 

maximum PBAND (8.9%) but much smaller than PFS (22.6%), as shown in Table 8.3. 

It is generally believed that introduction of hard particles in the polycrystal would 

significantly decrease the fatigue crack formation life. Results show that fatigue indicator 

parameters PFS, PLAMELLAR and PBAND of Microstructure II increase from only a few 

percent to about 20%.  Figure 8.14 shows that Microstructure II has much higher PIMP 

than Microstructure I.  In Microstructure I, a larger value of PIMP is found at the boundary 

of grain 1, 4 and 7.  Grain 4 has the largest PIMP. A significant increase of PIMP is found at 

the boundary between grain 1 and 2 of Microstructure II.  An increase of PIMP can be 

attributed to the increase of plastic strain in grain 1 and stress in grain 2 due to 

application of hard orientation to grain 2, as shown in Figs. 8.9 and 8.10.  Therefore, the 

driving force for crack formation at the boundary between grain 1 and 2 greatly increases.  

This result is consistent with the simulation results obtained by Dunne et al. (2007).  The 

frequency distribution of PIMP (Fig. 8.18) also shows significant increase of the driving 

force for crack formation at the grain boundary of Microstructure II.  Figure 8.19 shows 

the frequency distribution of PFS at grain boundary.  A moderate increase of PFS in 

Microstructure II is shown. Thus, PFS is insufficient to quantify the driving force of crack 

formation due to grain boundary impingement.  The same tendency can be seen in Table 

8.3. The maximum PIMP increases over 46% while the maximum PFS at the grain 

boundary increase about 23%. 
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(a) Microstructure I 

      

      

 

(b) Microstructure II 

 

Figure 8.11 Distribution of PFS for two microstructures. 
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(a) Microstructure I 

 

       

 

(b) Microstructure II 

 

Figure 8.12 Distribution of PBAND for two microstructures. 
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(a) Microstructure I 

 

  

 

(b) Microstructure II 

 

Figure 8.13 Distribution of PLAMELLAR for two microstructures. 
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(b) Microstructure I 

 

    

 

(b) Microstructure II 

 

Figure 8.14 Distribution of PIMP for two microstructures. 
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Table 8.3 Maximum FIPs for two microstructures. 

 Microstructure I Microstructure II Variation, defined in 
Eq. (8.6) 

Maximum PFS 0.0269 0.0293 8.9% 

Maximum PBAND 0.0128 0.0157 22.6% 

Maximum PIMP 0.0124 0.0182 46.7% 

Maximum PLAMELLAR 0.0282 0.0293 4.9% 

Maximum PFS at 
Grain Boundary 0.0138 0.0171 23.2% 
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Figure 8.15 Frequency distribution of PFS for two microstructures. 
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Figure 8.16 Frequency distribution of PBAND for two microstructures. 
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Figure 8.17 Frequency distribution of PLAMELLAR for two microstructures. 
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Figure 8.18 Frequency distribution of PIMP for two microstructures. 
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Figure 8.19 Frequency distribution of PFS at grain boundary for two microstructures. 
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8.5 Summary 

 

In the last Chapter, the proposed approach containing shear enhanced crystal 

plasticity constitutive relations and a softening strategy is used to simulate the formation 

of slip bands in primary α grains of Ti-6Al-4V. In this Chapter, fatigue analysis of Ti-

6Al-4V is performed by combining this new approach with additional FIPs.  These new 

FIPs account for various mechanisms of fatigue crack formation in Ti-6Al-4V.  The aim 

of this study is to provide a new computational approach that can quantify the various 

driving forces for crack formation in primary α grains, grain boundaries and lamellar 

colonies.  

In this Chapter, finite element simulations are carried out on two microstructures.  

The first microstructure is same as the one used in Chapter 7. A “rogue” grain 

combination is introduced in the second microstructure by changing the orientation of a 

grain in such way that its c-axis is parallel to the loading direction.  Monotonic tension 

and cyclic deformation behaviors of two microstructures are examined. It is shown that 

the second microstructure has higher yield strength than the first one.  Introduction of 

hard grain in Microstructure II affects the deformation behavior of the neighboring 

grains.  At the same time, variation of deformation behavior of remote grains is 

negligible.  

FIPs are calculated for the two microstructures at the 10th cycle.  It is shown that 

the driving forces for all three crack formation mechanisms increase for Microstructure II 

relative to Microstructure I.  The increase of the grain boundary impingement parameter 

is much higher than that of PBAND and PLAMELLAR.  Therefore, introducing the hard grain 

will greatly increase the possibility of crack formation at a grain boundary and the crack 

will likely propagate along the basal plane of the hard grain since the normal stress on the 

basal plane is high.  It is shown that this effect cannot be captured by the Fatemi-Socie 

parameter.  
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The demonstration simulation shows that the new microstructure-scale fatigue 

analysis approach can effectively capture the effect of microstructure on the various 

fatigue crack formation mechanisms. This approach can therefore be used in other 

applications such as fretting fatigue.  
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CHAPTER 9 

CONCLUSIONS AND RECOMENDATIONS 

 

 

9.1 Overview 

 

This thesis has addressed microstructure-sensitive crystal plasticity constitutive 

relations and algorithms for assessing fatigue crack formation probability of Ti-6Al-4V 

subjected to cyclic and fretting loadings. The physics-based model incorporates 

multiscale microstructure-dependent hardening and softening mechanisms of α/β TiAl 

alloys. Fatigue indicator parameters (FIPs) are used to represent the driving force for 

crack formation at the microstructure level. The aim of this study is to develop a 

computational approach that can capture the sensitivity of deformation and fatigue 

behaviors to microstructure of Ti-6Al-4V.   

The approach presented here is generic and should translate to other alloy 

systems. 

 

 

9.2 Microstructure-sensitive Crystal Plasticity Modeling 

 
In Chapter 2, three-dimensional finite element simulations are conducted to study 

the effects of microstructure attributes on the cyclic deformation behavior of the duplex 

Ti-6Al-4V alloys. The deformation behaviors of primary α and α/β  lamellar phases of 

Ti-6Al-4V at room temperature are described by a fully three-dimensional crystal 

plasticity constitutive relation developed by Mayeur and McDowell (2006). 

Microstructure attributes considered in this sensitivity study include crystallographic 



 259

texture, grain size, and grain size distribution.  Voronoi tessellation is used to construct 

the three-dimensional finite element models with various grain size distributions.   

In monotonic tension simulations at room temperature, a slight influence of 

texture on elasticity of polycrystalline Ti-6Al-4V is observed. Grain size and grain size 

distribution show no influence on the elastic stiffness.  Strong dependence of material 

strength on grain size and texture is shown. Influence of grain size distribution on yield 

strength is minimal.  

A completely reversed, strain-controlled loading history is applied in cyclic 

loading simulations at room temperature. The plastic strain behaviors and the distribution 

of the average maximum plastic shear strain among grains are analyzed and contrasted.  

The relative susceptibility for crack formation, including effects of various microstructure 

features, is assessed using the nonlocal Fatemi-Socie FIP.  The results suggest that both 

average grain size and especially crystallographic texture have more influence on the 

plastic deformation and indicated fatigue behavior than the grain size distribution.  

The fatigue crack formation lives of considered microstructures are calculated 

according to a Coffin-Manson relation. It is shown that the predicted fatigue crack 

formation lives is close to the experimental data. The microstructure has significant effect 

on the scatter of fatigue crack formation life of Ti-6Al-4V. 

 

 

 

9.3 Microstructure-sensitive Fretting Fatigue Simulations 

 

In Chapter 3, a methodology for using crystal plasticity to explore the sensitivity 

of fretting fatigue to microstructure and loading parameters was presented and 

demonstrated for duplex Ti-6Al-4V at room temperature.  The crystal plasticity material 

model captures the crystallographic orientation dependence of the deformation behavior 
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for both primary α phase and the lamellar colonies. A three-dimensional finite element 

model is constructed to simulate the fretting contact in the partial slip regime between the 

two bodies.  A Voronoi tessellation procedure is used to render grain size distributions in 

the contact region. 

Three microstructure attributes are considered in this sensitivity study:  

crystallographic texture, average grain size, and grain size distribution.  The distribution 

and maximum value of the effective plastic strain and related fatigue indicator parameters 

are all shown to depend on the microstructure.  Moreover, the sensitivity of several other 

microstructure attributes can potentially be considered using this methodology.  These 

include volume fraction of phases, differences in the distribution of primary α and 

lamellar colony sizes, thicknesses of the α and β lathes, as different spatial distributions 

of microstructural features.  

To study the effects of normal and tangential forces on the fretting fatigue 

behavior of Ti-6Al-4V, various combinations of normal and tangential forces are applied 

to each microstructure. The influence of tangential force on the fretting behavior is 

examined at both low and high normal force. 

Based on the relatively limited range of conditions considered in this 

demonstration study, the effect of microstructure attributes and loading parameters on the 

resistance to fretting fatigue can be summarized as:  

1.  Smaller average grain size results in increased fretting fatigue 

resistance. 

2. In this study, the polycrystal Ti-6Al-4V is oriented in the way that the 

rolling and transverse directions are parallel to the y- and x-axes, 

respectively, corresponding to the considered textures shown in Fig. 

2.2. The normal and tangential forces are respectively applied in the y- 

and x- directions. For this loading condition, transverse and 

basal/transverse textured material exhibit greater fretting fatigue 
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resistance, and the effect of texture on subsurface plasticity and FIP was 

more pronounced than that of the other two microstructure attributes. 

3. The effect of grain size distribution is minimal. 

4. Normal force has significant influence on the fretting fatigue of Ti-6Al-

4V. The driving force for crack formation increases with increasing 

normal force. When the normal force is substantially lower than Py, 

cracks are most likely formed at the edge of contact. With increasing 

normal force, the possibility of crack formation at subsurface region 

increase.  

5. The driving force for crack formation increases with increasing 

tangential force at both low and high normal force. The tangential force 

has a larger influence on the driving force for crack formation at low 

normal force and dominates the fretting fatigue behavior of Ti-6Al-4V.  

6. A Coffin-Manson relation is used to correlate the FS FIP with the 

fatigue crack formation life for various combinations of normal and 

tangential forces.  It is shown that the general tendency of predicted 

crack formation lives is same as that of the experimental data. 

 

 

9.4 Crystal Plasticity Modeling of Cyclic Deformation of Ti-6Al-4V 

 

In Chapter 4, a three-dimensional scale-dependent model of the duplex Ti-6Al-4V 

is proposed.  The model includes length scale effects associated with dislocation 

interactions with different microstructure features, and is calibrated using polycrystalline 

finite element simulations to fit the measured macroscopic responses (overall stress-strain 

behavior) of a duplex heat treated Ti-6Al-4V alloy subjected to a complex cyclic loading 

history.  The finite element models are established to adequately represent the 
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microstructures of the tested material.  Equivalent orientations with similar probability 

density distributions of the crystallographic orientations are assigned to the finite element 

mesh. The simulated annealing method is used to fit the disorientation distributions of the 

sample.  For a given Ti-6Al-4V alloy, it is shown that its mechanical deformation 

behavior can be correctly predicted by conducting the simulations on the finite element 

model using the proposed material modeling.   Effects of microstructural features are 

examined and compared with the experimental data in terms of their influence on the 

material yield strength.  The results are shown to agree with the experimental 

observations. The microstructure sensitivity of the model enables its application to 

microstructure-sensitive fatigue analysis of duplex Ti-6Al-4V.    

 

 

9.5 Effect of Grain Size Distribution on Monotonic Tension Behavior of Ti-6Al-4V 

 

In Chapter 5, a computational approach is employed to study the effect of the 

grain size distribution on uniaxial tension deformation behavior of Ti-6Al-4V. The 

elastic-viscoplastic deformation behavior of Ti-6Al-4V is described by a fully three-

dimensional, scale-dependent crystal plasticity constitutive relation described in Chapter 

4. Microstructures with various grain size distributions are realized in FE meshes, using a 

sequence of error minimization operations (simulated annealing) performed on random 

Voronoi tessellations to fit microstructure attributes such as grain size distribution and 

orientation and disorientation distributions. A study of grain size distribution on tensile 

behavior of Ti-6Al-4V is carried out.  

The results show that with increasing variance of grain sizes, the yield strength 

decreases slightly while the elastic modulus is unchanged. The grain size distribution has 

the most significant influence on tensile strain hardening behavior past initial yield. 
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9.6 Simulations of Single Crystal α Ti5Al Subjected to Cyclic Loading 

 

In Chapter 6, a shear-enhanced crystal plasticity model is used to model the 

deformation behavior of the single crystal α Ti-5Al oriented for single and double 

prismatic slip. Softening of the threshold stress is introduced to incorporate the cyclic 

strain softening observed in the experiments. The cyclic strain softening is associated 

with highly planar slip of α−Ti5Al at room temperature. Finite element models are 

established to simulate the deformation and fatigue behaviors of the α Ti-5Al. In order to 

model the slip band effect, the element size and the distribution of the defects within the 

model are determined by the experimentally observed slip band structure. The simulated 

stress-strain responses are shown to be in good agreement with the experimental results at 

different orientations and various amplitudes of completely reversed cyclic strain at room 

temperature.  

A new FIP, Pband, is proposed to correlate fatigue crack formation along the slip 

band. An averaging procedure for the FIP over integration points is employed to 

incorporate the crack formation mechanism over a physically representative scale on the 

order of slip band width. The nonlocal Coffin-Manson law is used to correlate the fatigue 

life and the FIP and is calibrated by fitting the fatigue lives of single crystal α Ti5Al 

oriented for double prismatic slip. Predicted fatigue lives are shown to be in good 

agreement with the experimental data of single crystal α Ti5Al oriented for single 

prismatic slip.  

Two modeling parameters, mesh density and spacing of defects, are investigated 

in terms of their effects on the deformation and fatigue behavior of α Ti-5Al. It is found 

that these two parameters have minor effect on the macroscopic stress-strain response. 

However, the distribution of the effective plastic strain and FIP vary substantially with 

variation of these two parameters. The mesh size should be assigned to less than the slip 
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band width.  Parameter ld is an important material length scale that must be determined 

before conducting simulations.   

 

 

9.7 Simulation of Slip Band Based on Shear Enhanced Crystal Plasticity Model 

 

In Chapter 7, shear enhanced crystal plasticity constitutive relations are proposed 

to account for the slip softening due to breakdown of the short range order between 

titanium and aluminum atoms. In the primary α phase, the threshold stress evolves 

according to softening restricted to slip band only. Thus, slip concentrates in the slip 

bands due to their relatively low slip resistance.  In this softening strategy, uniform 

thickness and wavelength of slip bands are assumed for all grains during deformation 

since the theoretical calculations of these two parameters are unavailable. This study 

employs a combination of typical values of thickness and wavelength obtained from 

experimental observations.  The proposed model is calibrated by performing finite 

element simulations on a polycrystalline Ti-6Al-4V (PW1215).  The 3D finite element 

model is constructed to precisely represent the microstructure of the polycrystalline Ti-

6Al-4V as described in Chapter 4.  The simulated stress-strain response is shown to be in 

good agreement with the experimental data provided by Pratt & Whitney up to 2.5% 

strain.  

The slip behavior of a Ti-6Al-4V subjected to monotonic tension history is 

investigated. The two-dimensional finite element mesh is obtained from the EBSD 

observation (Bridier et al., 2005).  The finite element simulation is performed with the 

proposed shear enhanced model and softening strategy. The contours of effective plastic 

strain are compared with the SEM images at various stain levels.  It is shown that the 

proposed approach for slip band simulation can qualitatively capture the slip behavior 

measured in experiments.  The slip bands often form on the basal or prismatic slip system 
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with the highest Schmid factor.  The thickness and wavelength of the simulated slip 

bands are close but are often not same as the SEM observations. Such a discrepancy can 

be attributed in part to the constant thickness and wavelength of slip bands assumed in 

this approach.   

This approach provides a useful computational tool to study the effect of slip 

bands on the deformation behavior of Ti-6Al-4V, particularly grain scale shear 

localization and stresses related to fatigue crack formation.  It is also noted that slip bands 

play an important role in fatigue crack initiation in Ti-6Al-4V.  Therefore, the approach 

can add value to the study of the microstructure-scale fatigue behavior of Ti-6Al-4V. 

 

 

9.8 Microstructure-scale Fatigue Analysis of Ti-6Al-4V Based on Shear Enhanced 

Crystal Plasticity Model 

 

In the Chapter 7, the proposed approach containing shear enhanced crystal 

plasticity constitutive relations and a softening strategy is used to simulate the formation 

of slip bands in primary α grains of Ti-6Al-4V. In Chapter 8, fatigue analysis of Ti-6Al-

4V is performed by combining this new approach with additional FIPs.  These new FIPs 

account for various mechanisms of fatigue crack formation in Ti-6Al-4V.  The aim of 

this study is to provide a new computational approach that can quantify the various 

driving forces for crack formation in primary α grains, grain boundaries and lamellar 

colonies.  

In Chapter 8, finite element simulations are carried out on two microstructures.  

The first microstructure is same as the one used in Chapter 7. A “rogue” grain 

combination is introduced in the second microstructure by changing the orientation of a 

grain in such way that its c-axis is parallel to the loading direction.  Monotonic tension 

and cyclic deformation behaviors of two microstructures are examined. It is shown that 
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the second microstructure has higher yield strength than the first one.  Introduction of 

hard grain in Microstructure II affects the deformation behavior of the neighboring 

grains.  At the same time, variation of deformation behavior of remote grains is 

negligible.  

FIPs are calculated for the two microstructures at the 10th cycle.  It is shown that 

the driving forces for all three crack formation mechanisms increase for Microstructure II 

relative to Microstructure I.  The increase of the grain boundary impingement parameter 

is much higher than that of PBAND and PLAMELLAR.  Therefore, introducing the hard grain 

will greatly increase the possibility of crack formation at a grain boundary and the crack 

will likely propagate along the basal plane of the hard grain since the normal stress on the 

basal plane is high.  It is shown that this effect cannot be captured by the Fatemi-Socie 

parameter.  

The demonstration simulation shows that the new microstructure-scale fatigue 

analysis approach can effectively capture the effect of microstructure on the various 

fatigue crack formation mechanisms. This approach can therefore be used in other 

applications such as fretting fatigue.  

 

 

9.9 Recommendations for Future Work 

 

Extensive computational studies relating to Ti-6Al-4V have been performed in 

this thesis. There are many areas for future work. 

1. Experiments 

• Tests for a wide range of microstructures. 

In this thesis, a systematic study on effect of microstructure on 

deformation and fatigue behaviors is performed. The simulation results 

are compared with experimental data to calibrate and validate the 
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computational approach employed here. Due to very limited test data, 

the validation is preliminary. Therefore, cyclic and fretting fatigue 

tests should be conducted on a wider range of microstructures to 

validate the algorithm for using FIPs to rank order microstructures. 

The stress-strain data obtained from these tests can be used to validate 

the crystal plastic constitutive model and modeling algorithm. 

• Observations of slip banding. 

Slip localization in primary α phase significantly affects the 

deformation and fatigue behavior of Ti-6Al-4V. A comprehensive 

experimental study on slip band has been conducted on single crystal 

α Ti5Al.  SEM and EBSD study on the evolution of dislocation 

structures in polycrystalline Ti-6Al-4V should be conducted to gain 

better understanding of the deformation mechanisms. The observation 

results can be served as input into the constitutive model and can be 

used to validate the model. 

•  Observations of fatigue crack formation 

In this thesis, three mechanisms have been proposed to account for 

fatigue crack formation in Ti-6Al-4V. Cracks could be classified into 

three groups corresponding to three mechanisms.  Thus, experimental 

observations on different types of crack shall be obtained to validate 

the proposed mechanisms and crack formation life prediction models.  

2. Improvement of shear enhanced crystal plasticity model 

In this thesis, it is shown that the shear enhanced crystal plasticity model can 

capture the slip localization in primary α phase of Ti-6Al-4V. The softening 

strategy employed in this model assumes uniform slip band width and spacing 

which are obtained from experimental observations. This assumption is useful 
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for slip band modeling. However, a uniform distribution of slip bands is rarely 

found in polycrystalline Ti-6Al-4V deformed at room temperature. The 

dislocation structure varies with respect to microstructure, loading history. 

Thus, a predictive strategy (perhaps based on discrete dislocation theory) for 

slip band width and spacing is needed to improve the softening strategy and 

the shear enhanced crystal plasticity model.  

3. Actual microstructures. 

Most simulations in this thesis are performed on the finite element model 

simulating the statistical microstructure attributes of Ti-6Al-4V. It would be 

interesting to establish three-dimensional FE models representing more 

measured microstructures. Simulations can be performed on Ti-6Al-4V 

subjected to cyclic and fretting loadings and will help us to validate and 

improve the microstructure-scale material model and assessment of relevant 

fatigue resistance of microstructure.  

4. More realistic and comprehensive loading conditional environments 

Relatively simple cyclic and fretting loadings are used in this thesis to 

investigate the deformation and fatigue behavior of Ti-6Al-4V. These 

simulations can be improved by introducing actual loading conditions. For 

example, it is well known that turbine components made by TiAl alloys are 

subjected to harsh environments which induce material degradation. 

Therefore, the effect of environment could be introduced into the model. In 

this thesis, most fretting fatigue simulations are conducted at relative high 

normal force which is generally not used in real application. Additional 

simulations can focus on the low normal force regime which is closer to the 

loading conditions in the real applications. A finer mesh will be used in the 

trailing edges where the fatigue cracks are generally found. Wear of surface 

due to fretting should also be considered in future work.  
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5. Hierarchical modeling of Ti-6Al-4V 

Microstructure-scale models are of great important in reducing the costly 

experiments. Considerable work has been done to develop macroscopic 

viscoelastoplastic constitutive relations to model the multiaxial cyclic stress-

strain response of engineering materials. These models are widely used in 

industry but do not contain an explicit dependence of microstructure features. 

Shenoy and coworkers (2006) developed a hierarchical methodology for Ni-

based superalloy to embed the microstructure dependence in the macroscale 

model. This methodology can be applied to Ti-6Al-4V to develop a 

microstructure dependent macroscopic model. Key microstructure attributes 

such as average grain size, volume fraction of lamellar colony, lath 

thicknesses of secondary α and β phase, and texture should be considered.  
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