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SUMMARY 
 
 
 

This thesis describes research based on synthetic protocols, methodologies, and 

applications of polymers containing side-chain molecular recognition elements. The 

motivation for the thesis lies in the belief among many in the field that a strict covalent 

paradigm for polymer chemistry is reaching its limit. The use of molecular recognition, in 

lieu of covalent chemistry, potentially presents a path through the current limits of 

polymer science. The work described in the following chapters of this thesis is, at least in 

part, a testament to this proposal. 

The first two chapters presen a basic introduction and survey of the fundamental 

noncovalent interactions that are ubiquitous in the research of supramolecular polymers 

and molecular recognition. A hierarchy of noncovalent interactions, molecular 

recognition, and self-assembly is outlined and discussed. Chapter 2 lays the foundation 

for the remaining chapters of this thesis by presenting several examples of prior work 

related specifically to the use of molecular recognition on the side-chains of polymers.  

The next two chapters present research focused on advancing the 

functionalization of polymers through molecular recognition. The goal of this research is 

primarily to develop a general polymer backbone that both site-specifically and strongly 

associates noncovalently with small molecular substrates. These chapters demonstrate 

that both architecturally controlled block copolymers and random terpolymers can accept 

a full load of different substrates without interference among distinct molecular 

recognition elements along the polymer backbone. 
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Chapters 5 and 6 present a unique application of polymers containing molecular 

recognition elements, templated synthesis. Chapter 5 first discusses lessons learned from 

small molecule based templated synthesis in which a template and a substrate are held 

together by metal coordination and a subsequent bond forming reaction occurs. 

Ultimately, the results of this chapter directed our work towards a hydrogen bonding 

based system in lieu of metal coordination. In this case, a polymeric template was used, 

and a daughter monomer was polymerized while attached to the template. 

Another application of polymers containing molecular recognition elements is 

presented in Chapters 7 and 8. In these chapters, metal coordination is used to assemble 

polymer multilayer thin films that are both responsive to external stimuli, stable, and 

erasable.  

Finally, Chapter 9 summarizes the main conclusions of each chapter and presents 

a potential view of new projects that might result from the research presented in this 

thesis.       
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CHAPTER 1 
 

Noncovalent Bonding, Molecular Recognition, and Self-Assembly 
 
 
 

1.1 Abstract  
 

This Chapter introduces concepts in noncovalent bonding, molecular recognition, 

and self-assembly starting with an initial fundamental review of noncovalent binding 

interactions. Ionic and electrostatic interactions, hydrogen bonding, metal coordination, 

 system interactions, and weaker forces such as Van Der Waals interactions and 

hydrophobic interactions are surveyed. An emphasis is placed both on the fundamental 

physical phenomena that gives rise to these forces and aspects of these forces that can 

further lead to molecular recognition and self-assembly. A consequence of noncovalent 

bonding is often molecular recognition, and fundamentals of this concept are reviewed. 

Likewise, molecular recognition can often result in self-assembly, and this process is 

highlighted and reviewed.  

 
 

1.2 Introduction  
 

Molecular recognition and self-assembly together define a burgeoning field 

known as supramolecular chemistry. While supramolecular chemistry is a relatively 

young field, with its origin dated to at least thirty years ago,1 the principles governing this 

field are largely based on a Natural approach to molecular systems. That is, 

supramolecular chemistry, like Nature, directs features of chemical species to organize, 

attract, or otherwise assemble to one another through intermolecular noncovalent binding 

interactions.2 Supramolecular chemistry not only fascinates researchers because we are 
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naturally attracted to order or the appearance of order rather than disorder, but also 

because numerous research groups in the field have recognized the inherent limitations of 

the covalent bond for the goal of assembling or otherwise functionalizing 

nanostructures.3-5 Indeed, the evidence for this fascination lies in the coming of age of this 

relatively young field as witnessed by numerous meetings, workshops, extensive 

publications, a Nobel Prize, and recently a journal, Supramolecular Chemistry, devoted 

entirely to this field.  

Supramolecular chemistry has roots in chemistry dating back to the late 1800s. 

One obvious heritage relates back to Alfred Werner’s idea of coordination chemistry 

reported in 1893.6 Likewise, the renown “lock and key” concept developed by Emil 

Fischer in 18947, 8 was probably the first pure example of molecular recognition, although 

little was known about the importance of the individual noncovalent forces giving rise to 

such a phenomenon. Daniel Koshland later refined the “lock and key” principle to 

accommodate a more static interpretation of biological binding events, in what he 

deemed the induced fit model,9 which took into account biological equilibrium concepts 

widely accepted today, such as binding cooperativity. Another catalyst giving rise to 

supramolecular chemistry comes from medical studies during the late 19th and early 20th 

centuries. One example, reported by Paul Ehrlich, is summarized in the Latin phrase, 

Corpora non agunt nisi fixata, meaning that a molecule can only have an effect on the 

body when it is bound.10 Supramolecular chemistry could have arguably began in 1937, 

when Wolf and his coworkers used the term “Übermolekül” (supermolecule) to 

characterize carboxylic acid dimers.11 However, while supramolecular chemistry dates 

back to the late 19th century, and could have begun as early as 1937, most in the field 
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deem Lehn the father of supramolecular chemistry12-16 as he set forth the first clear 

definition of the molecular recognition concept as the “chemistry of molecular assemblies 

and of the intermolecular bond.”1 Moreover, Donald Cram was also instrumental in the 

development of many of the basic concepts upon which supramolecular chemistry is 

based.1 

This thesis is primarily concerned with molecular recognition of polymers, with 

applications of such polymers ranging from templated olefin metathesis to complex 

materials and surface science. Inherent in all of the research in this thesis is a strategy that 

relies on noncovalent rather than covalent interactions to address several important 

problems associated with: (i) efficient and high-yielding polymer multifunctionalization 

(Chapters 2-4), (ii) template assisted oligimer and polymer synthesis (Chapters 5-6), and 

(iii) materials and surface applications of supramolecular polymers (Chapters 7-8). This 

Chapter sets forth basic and fundamental concepts of molecular recognition and self-

assembly and highlights noncovalent binding principles giving rise to such phenomena, 

while Chapter 2 introduces molecular recognition in the context of side-chain 

supramolecular polymers.  

 
 

1.3 Noncovalent Interactions  
 

While molecular recognition can be thought of as an intermediate to a 

supramolecular self-assembled species, single noncovalent interactions can be thought of 

as an even more elementary component of self-assembly, and thus it is fitting to examine 

the forces driving noncovalent interactions at the outset of this thesis. As an example, in 

the case of a diamidopyridine-thymine complex (vide infra), each individual hydrogen 
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bond constitutes a distinct noncovalent interaction, while the combination of all three in 

unison create the full molecular recognition complex. Likewise, if multiple 

diamidopyridine-thymine components were present in a supramolecule, a self-assembled 

species could conceivably arise. Such a hierarchy is outlined in Figure 1.1. There are 

numerous single noncovalent bonds that can lead to molecular recognition and self-

assembly, and each will be examined in the following sections.  

 
 

Noncovalent Interactions

Molecular Recognition

Self-Assembly  

Figure 1.1. Diagram illustrating hierarchy of events leading to self-assembly. Arrows are 
meant to indicate that the proceeding event can occur but does not have to occur. 
 
 
1.3.1 Ionic Bonding  
 

Ion-ion interactions, when present in a non-competing solvent, are among the 

strongest type of noncovalent bonding, and as such they can be pivotal in enabling 

molecular recognition and in forming supramolecular structures. Ionic bonds, by 

themselves, may not be capable of forming molecular recognition partners in the true 

sense of the concept because they are generally not specific. A classic example of an 

ionic-ionic interaction is table salt, or NaCl, which forms due to the attractive charges on 

a Na cation and Cl anion, shown in Scheme 1.1.  
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a) Na+ + Cl-               NaCl

b) K+ + Cl-                 KCl  

Scheme 1.1. Formation of Cl salts from corresponding cation.  
 
 

The lack of specificity among ionic atoms or molecules is also evident from 

Scheme 1.1. While a NaCl complex and a KCl complex are not the same in terms of 

electronic distributions, a Cl anion generally has very little specificity for a Na cation 

over, for example, a K cation. In short, the driving force for this type of interaction is 

purely charge stabilization. Given this fact, there are plenty examples in the literature of 

molecular recognition partners that are at least partially stabilized by ionic bonds, but 

other more specific interactions, such as a hydrogen bond array, are usually present to 

add specificity to the combination.1 Despite this fact, some may argue that pure simple 

ionic interactions can lead to the supramolecular formation of crystal structures, which 

are, by definition, a precise repeating arrangement of atoms that form without outside 

intervention. For example, the NaCl crystal lattice is of the most basic crystal structures, 

a simple cubic, shown in Figure 1.2.  
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Figure 1.2. A NaCl simple cubic crystal lattice. Na shown in blue; Cl shown in green.  
 

The discovery of ionic interactions can be traced back to the late 1800s. J.J. 

Thompson speculated about the bonding nature of HCl when he wrote, “There seems to 

me to be some evidence that the charges carried by the corpuscles in the atom are large 

compared with those carried by the ions of an electrolyte. In the molecule of HCl, for 

example, I picture the components of the hydrogen atoms as held together by a great 

number of tubes of electrostatic force; the components of the chlorine atom are similarly 

held together, while only one stray tube binds the hydrogen atom to the chlorine atom,”17 

in a treatise in 1897. In fact, around 1904, J.J. Thompson attempted to explain all 

chemical bonding in terms of Faraday units, speculating that chemical interactions can be 

fully explained with known electrical theory.17 While this theory was revolutionary in 

defining what is now widely understood as an ionic bond, it failed to address bonding in 

non-ionizing substances, or put simply, covalence.  

Given that ionic-ionic interactions arise from a charge on an atom or molecule, 

these interactions can be either attractive or repulsive or both if multiple charges are 
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simultaneously present on a single species or conglomerate of species acting in unison. 

This can be an important feature of this type of interaction. For example, DNA is 

negatively charged on both strands, and the repulsive forces between strands minimize 

the intermolecular aggregation of neighboring strands in solution. In supramolecular 

terms, either attractive forces, repulsive forces, or both can contribute to the overall 

architecture of the structure.  

Since ionic-ionic bonds are stabilized primarily through charge-charge 

interactions of full positive or negative charges, they are among the strongest type of 

interaction. The strengths of ion-ion interactions generally fall within the range of 100-

350 kJ mol-1, depending on the solvent.18 In contrast, van der Waals interactions are 

generally only a few kJ mol-1.18 The strength of any given ionic bond is dependant on a 

number of factors. (i) The distance between the two charges in the bonded state: as the 

distance between the charge center of a bonding cation and corresponding anion 

increases, the bond strength decreases, and vice versa. This consequence, in terms of 

supramolecular chemistry, will usually be determined by the supramolecular aggregate 

geometry that will either serve to increase or decrease the distance between two bonded 

charges.  (ii) The localization of charge on either the cation or anion: as charge 

localization increases, or as charge density increases, the corresponding strength of the 

stabilized, bonded ionic complex will increase. The charge density is usually a function 

of the size of the charged species. This is an important quality of an ionic bond, and an 

exploitation of this quality is highlighted in later Chapters. Briefly, in the context of 

pseudorotaxanes, however, decreasing the charge density present on a stabilizing anion 

can increase the binding stability of a pseudorotaxane complex. As illustrated in Figure 
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1.3, as the size of the negatively charged species stabilizing a dibenzylammonium cation, 

DBA+, decreases, the binding affinity between DBA+ and a dibenzo-24-crown[8] 

macrocycle, DB24C8, decreases accordingly. A larger anion allows more charge to be 

localized on DBA+, thus increasing its affinity for DB24C8 (infra).   
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Figure 1.3. Effect of counterion size on binding strength of DB24C8 with DBA+ 

 
 
(iii) The external environment of the ionic complex strongly influences the binding 

energy of the species. For example, a polar protic solvent, such as water, can strongly 

stabilize charge, and thus shield the charge from binding strongly to another oppositely 

charged species. Again referring to the pseudorotaxane example, if we examine this 

interaction in water, almost no binding affinity between DBA+, and DB24C8 is observed.  

Ion-dipole interactions, a sub-class of ionic bonds, are also commonly found 

among supramolecular species. Ion-dipole interactions are generally weaker in strength 

when compared to fully ionic bonds, with bond energies ranging from 50 to 200 kJ mol-
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1.18 Supramolecular chemistry has its beginning in the study of these interactions with the 

discovery of the first crown ether host-guest complex (shown in Figure 1.4) by Pederson 

in 1967, and the later discovery of the similar cryptand by Lehn in 1969.15  

 
 

O
O

O

OO
O

K+

 

Figure 1.4. 18-crown[6]:K+ host-guest complex.  
 
 

In the context of later Chapters in this thesis, ion-dipole interactions play an 

important role in the pseudorotaxane depicted in Figure 1.3, similar to the host-guest 

complex shown in Figure 1.4. Likewise, coordination complexes similar to the ones 

discussed in this thesis often have a strong ion-dipole character, particularly if a metal ion 

serves as the core of the complex with the metal ion surrounded by ligands. In this case, 

however, the dative bond generally has more covalent character, and thus it becomes 

difficult to draw the line between supramolecular and molecular chemistry.18  

 
 
1.3.2 Hydrogen Bonding  
 

Similar to the ionic bond is the hydrogen bond, in the sense that both rely on an 

attraction or repulsion of charge; albeit in the case of the hydrogen bond, the charge is 

only partial. Hydrogen bond strengths range from 5-50 kJ mol-1;18 and the properties 

governing hydrogen bonding interactions are very similar to the ones governing ion-

dipole or ion-ion interactions. Hydrogen bonds generally exist between an 

electronegative atom and a hydrogen atom bonded to another electronegative atom. 
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Hydrogen bonds are pivotal in supramolecular chemistry since they can contribute 

to the architecture of a structure by both inter- and intra- molecular bonding. For 

example, a carboxylic acid can engage in intermolecular hydrogen bonding whereas the 

enol tautomer of acetylacetone can engage in intramolecular hydrogen bonding (depicted 

in Figure 1.5).   
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Figure 1.5. Examples of intermolecular (a) and intramolecular (b) hydrogen bonding. 
 
 

Equally important to the hydrogen bonds’ inter and intra molecular capabilities is 

the ability to control supramolecular architecture or geometry with hydrogen bonds.19 

Excellent examples of this level of architectural control in biochemistry include the 

double-stranded DNA helix and folded proteins, both of which are assisted by both inter- 

and intramolecular hydrogen bonds and by the directionality of those hydrogen bonds.18 

There are numerous examples in supramolecular chemistry where these aspects of the 

hydrogen bond can be useful in defining supramolecular architectures.  

It is important to distinguish hydrogen bonds based on their binding energies in 

addition to their internuclear distances, since these parameters can define whether a 

hydrogen bond is purely supramolecular or simply molecular with a covalent bond 

character. Strong hydrogen bonds generally have binding energies in the range of 60-120 

kJ mol-1 and heteroatom-heteroatom distances between 2.2 and 2.5 Å; moderate hydrogen 

bonds generally have binding energies in the range of 15-60 kJ mol-1 with heteroatom-
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heteroatom distances between 2.5 and 3.2 Å, while weak hydrogen bonds have binding 

energies below 15 kJ mol-1 and longer acceptor distances of up to 4Å.18 The former 

ranges are evident particularly from quantum mechanical calculations suggesting that a 

substantial covalent character exists in strong hydrogen bonds. Additionally, the 

geometrical range in strong hydrogen bonds is much more constrained (175-180º) when 

compared to moderate (130-180º) and weak (90-150º) hydrogen bonds.18 Geometry, 

strength, and heteroatom-heteroatom distance (which are all interrelated) play important 

roles in the binding affinity and binding architecture of supramolecular species. Another 

important distinguishing factor among hydrogen bonds is whether the bond is between a 

neutral or charged species. In general, hydrogen bonds between charged species tend to 

be much stronger.18 For example, the F-H•••F- hydrogen bond has a binding energy of 

155 kJ mol-1, making it the strongest hydrogen bond known.18 Other binding energies of 

various selected hydrogen bonds are summarized in Table 1.1.  

 
 
Table 1.1 List of common hydrogen bonds and their corresponding bond disassociation 

energies (gas-phase).19 
 

Hydrogen Bond BDE / kJ mol-1 

F-H•••F 155 

O-H•••N   29 

O-H•••O   21 

HO-H•••OH3
+   18 

N-H•••N   13 

N-H•••O    8 
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Many supramolecular complexes rely exclusively on hydrogen bonding or arrays 

of hydrogen bonds for their formation. Typical examples include purely supramolecular 

polymers, in which the monomeric components hydrogen bond to each other to 

“propagate” the formation of a growing polymer chain, with a degree of polymerization 

(DP) generally proportional to the square root of the binding constant.20 In general, a 

supramolecular species gains more stability as the number of hydrogen bonds increase. In 

fact, some reports indicate that the binding strength of hydrogen bonded complexes 

varies linearly with the number of hydrogen bonds present in the overall species.21 An 

example of a hydrogen bond array complex commonly discussed in this thesis is the 

diamidopyridine-thymine complex diagrammed in Figure 1.6. In this case, three 

hydrogen bonds are formed, which give this complex an association constant of around 

1000 M-1 in nonpolar solvents, such as methylene chloride. Details about this particular 

interaction, specifically as it relates to supramolecular polymers, will be discussed in later 

Chapters.  

 
 

NN

O

N

O
R

N

O N O

R

H HH

DAP:THY  
 

Figure 1.6. 1:1 DAD-ADA complex formed between diamidopyridine and thymine 
derivatives. 
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1.3.3 Metal Coordination 
 

While most metal complexes are simply classified as coordination complexes, 

with strong covalent character traits (much like the strongest hydrogen bonds), such as 

directionality, constrained geometry, and electronic orbital overlaps, the metal complexes 

typically exploited in supramolecular chemistry are at least reversible and usually have at 

least a partial noncovalent attribute.18 This is not to imply that the metal complexes 

discussed in this thesis are noncovalent complexes, but rather that such metal complexes 

have noncovalent character or at least conduct themselves as a noncovalent complex. As 

such, metal complexation will be briefly discussed in this introductory portion of the 

thesis, and a general focus will be kept on metal complexes discussed in the latter part of 

this thesis.  

Metal complexes were previewed in the context of ionic bonding, since many 

metal complexes arise from interactions between ligands with partial or full negative 

charges and metals with positive charges. In this manner, many metal complexes function 

as ionic complexes, in many cases with much stronger bond energies. Numerous 

examples of metal complexes have been used in supramolecular chemistry. For example, 

classic “Werner” complexes have been utilized, such as Co and Fe based complexes with 

ligands being both partially polarized, such as nitrogen based ligands, and fully charged, 

such as the harder, halide based ligands.13 In this thesis, metal pincer-type complexes are 

commonly used in research examples, given their compatibility with a variety of other 

noncovalent interactions. These metal complexes will be discussed further as the context 

in which they are presented arises. However, a brief description of the pincer-type 

complexes utilized in this thesis is presented in Figure 1.7.  
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Figure 1.7. Formation and highlighted aspects of Pincer-type complexes.  
 
 

Pincer-type complexes that have been used in supramolecular chemistry can 

accommodate nitrogen-carbon-nitrogen (NCN), phosphorus-carbon-phosphorus (PCP), 

or sulfur-carbon-sulfur (SCS) based ligands, which after metallation produce a pincer 

type complex in which the metal core is flanked by two neutral (E) electron donors, and 

coordinated to an anionic aromatic core.22 The research in this thesis utilizes such 

complexes on polymer backbones for functionalization and on small molecules for 

molecular recognition based templated synthesis.  
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1.3.4 system Interactions 
 

Many examples of noncovalent supramolecular chemistry also involve  systems. 

Interactions in such systems can range from fundamental  interactions to more 

complicated anion or cation interactions.1 The cation  interaction, for example, plays 

an important role in biology and typically has a bond strength of 5-80 kJ mol-1.18 A 

relatively straightforward explanation for the existence of interactions exists. Aromatic 

rings possess a quadrupole moment with at least a partially positive -scaffold and a 

partially negative  cloud above and below the ring plane (this is the reason why the 1H 

NMR chemical shifts of an aromatic compound resonate so far downfield). As a result, a 

cation, metal, or oppositely polarized neighboring aromatic compound can be attracted to 

the aromatic ring when positioned above the center of the  cloud. These interactions can 

be quite strong as evident from gas-phase binding studies. The gas-phase binding energy 

of a potassium cation to benzene (80 kJ mol-1) is higher than the binding energy (75 kJ 

mol-1) of a single water molecule to the same potassium cation!18 

Likewise, aromatic rings can interact with other neighboring aromatic rings 

through  stacking interactions. Two negatively charged  clouds ordinarily repel one 

another.23 However, this repulsive force can be overcome in one of two ways. (i) Two or 

more aromatic components may adopt an edge-to-face orientation, which allows an 

attraction between the negatively charged face of one aromatic component with the 

partially positive  edge of another. (ii) Two or more aromatic components may align 

themselves with an even more favorable face-to-face orientation, and often one of the 

aromatic components shifts sideways to further reduce the negative repulsion and align 

oppositely charged poles. Even stronger  stacking interactions are observed when one 
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aromatic component is electron rich and one is electron poor, in which case significant 

charge-transfer reactions can take place and can often be identified by UV/vis 

spectroscopy.23 

 stacking interactions have led to the successful construction of numerous 

supramolecular species. For example, in the context of this thesis,  stacking 

contributes to the stability of the pseudorotaxane complex shown in Figure 1.3. This is 

evident not only from the crystal structure, which identifies that the phenyl rings of the 

DB24C8 macroring and the corresponding aromatic groups on DBA+ are in close enough 

proximity to one another to engage in  stacking but also from an examination of the 

association constants of similar pseudorotaxanes (Figure 1.8). The complex 

DB24C8:DBA+ associates the strongest, while similar pseudorotaxanes, such as 24-

crown[8]:dibenzylammonium (24C8:DBA+) have weaker association strengths due to the 

absence of the  system on the crown ether macroring.24   
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Figure 1.8. Association complexes formed between ammonium cations and 24-C8 
macrorings (in CHCl3 or DCM). Specific Ka values have not been reported, only relative 
scales.   
 
 
1.3.5 Hydrophobic Interactions  
 

Hydrophobic interactions are generally not exploited in the research presented in 

this thesis, but a brief discussion of these forces is warranted to demonstrate the 

environmental susceptibility of supramolecular forces. Hydrophobic forces give rise to 

the Hydrophobic Effect, which is dependent on the minimization of energy on 

unfavorable interfaces between polar/protic and unpolar/aprotic molecules.18 The classic 
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example stemming from biology is the cell membrane, which is formed with polar head 

groups pointing outward toward the extracellular matrix and the nonpolar hydrophobic 

tail groups oriented together forming a membrane.25 

Hydrophobic forces, unlike forces based generally on electrostatics and charge, 

are more difficult to characterize thermodynamically. The hydrophobic effect is often 

explained on the basis of Gibbs Free Energy. If free energy is transferred from a 

hydrophobic molecule, G  is positive, and, at room temperature, H is around zero, and 

S  is of course, negative. In this interpretation, the hydrophobic effect is entropy driven 

due to the release of free energy from a nonpolar molecule to a more polar solvent. On 

the other hand, the hydrophobic effect can be viewed from a different thermodynamic 

perspective. Polar molecules, such as water, generally adopt a configuration that seeks to 

maximize entropy. The presence of a hydrophobic molecule in such a solution of polar 

molecules will serve to disrupt at least some of this entropy. This creates a pocket or void 

in which little to no electrostatic interaction can exist between the nonpolar molecules 

and their polar counterparts. To counter this effect, polar molecules can push the 

hydrophobic molecules together forming a tight structure around them and thus leaving a 

smaller surface area in relation to the total surface area of the nonpolar void regions. This 

serves to maximize the amount of free polar molecules and thus the entropy. This 

phenomenon is known as the lipophobicity of polar molecules, which is generally 

described in terms of water.26  

Numerous examples of supramolecular chemistry exist in the literature in which 

the hydrophobic effect has a noncovalent contribution. For example, the hydrophobic 

effect contributes strongly to the formation of cyclodextrin inclusion complexes.1 Water 



 

19 

molecules that reside in the interior of an unpolar cavity, such as present in a 

cyclodextrin, cannot interact with the cavity wall very strongly, because of an essential 

absence of electrostatic forces in the hydrophobic cavity. If the water molecules are 

replaced, however, with a guest with less polarity, the water molecules are then free to 

interact with other water molecules outside the cavity, resulting in a net gain in enthalpy 

for the whole system. Moreover, as in the previous discussion, entropy changes can also 

contribute; when water molecules are replaced by one or more guest molecules, the total 

number of translationally free molecules increases, provided that the size of the guest 

molecule(s) is at least greater than the size of a water molecule.27 

 
 
1.3.6 Other Weak Interactions 
 

Other noncovalent forces, particularly weaker noncovalent forces, exist and 

contribute to supramolecular chemistry. Such interactions include van der Waals forces 

with binding strengths generally less than 5 kJ mol-1 that arise when electron clouds are 

polarized by adjacent nuclei. Van der Waals forces can be thought of as a registration of 

attractive dispersion interactions, which decrease proportionally to the internuclear 

distance r, with an r-6 dependence and with an exchange repulsion decreasing with an r-12 

dependence.18 Similary, forces between multipoles,28 interactions between nitrogen and 

halogen atoms,29 and dihydrogen interactions30 are weak noncovalent forces than can 

contribute to supramolecular chemistry.   
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1.4 Molecular Recognition  
 

A detailed examination of many of the noncovalent forces previously outlined has 

led to the development of molecular recognition. Singular noncovalent interactions, when 

placed at appropriate places on a given molecule, can act in unison or in cooperation to 

form a molecular recognition pair. Most molecular recognition pairs, according to Lehn, 

involve molecular information stored within molecules.21 Molecular recognition can be 

divided into two separate subclasses commonly known as dynamic and static molecular 

recognition.5 These terms apply generally to abiotic systems, but in biological terms, 

these terms are generally equivalent to binding cooperativity or the lack thereof. These 

subclasses are best illustrated in Figure 1.9. In static molecular recognition, one or more 

components bind together, with each binding event essentially unrelated to the next (this 

is also referred to in this thesis as “orthogonality”). In simplest terms, this can involve a 

1:1 complex formed as depicted in Figure 1.9A. In contrast, dynamic molecular 

recognition (Figure 1.9B) usually involves a sequence of binding events,  with at least 

one binding mode affecting the other(s). The dynamic nature of these events can result 

either from  binding cooperativity or binding decooperativity. Cooperativity, the lack 

thereof, or decooperativity can result from a number of structural, physical, or chemical 

responses from a previous binding event.  

a)

b)
 

Figure 1.9. Schematic diagram illustration static (a) and dynamic (b) molecular 
recognition. 
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For example, in the case of antigen-antibody interactions, binding can be strongly 

influenced by allosteric effects.31 In other abiotic examples, cooperativity can arise from a 

confinement effect.24 For example, a DBA+ dimer binds two molecules of DB24C8. The 

first binding event is the weaker of the two, because the crown ether macroring can 

situate itself on either cationic side of the dimer. In other words, it can float back and 

forth. In contrast, the second binding event is at least 25 times stronger than the first since 

the second crown ether can only orient on one cationic site, effectively filling the binding 

site. In a sense, the second binding event does a better job of confining both equivalents 

of the crown ether to the ammonium cation, and thus the overall association is greater for 

the second binding event.  

 
 

 
 

1.4.1 Molecular Complementarity  
 

An important facet of molecular recognition is specificity between interacting 

molecules, which gives rise to the design of orthogonal supramolecular systems, i.e. a 

system comprising multiple noncovalent binding components that interact in or on the 

appropriate molecular partners. Much like Emil Fischer’s original analysis,7,8 

supramolecular chemists generally accept the idea that the more specific the molecular 

recognition pair, the stronger the association strength of that pair.18 The specificity of a 

given molecular recognition pair relates not only to the strength of the individual 

noncovalent bonds involved, but also to the entire electrostratic surface of both engaged 

molecules. Thus, specificity is a result of both steric fit (based on the individual 

noncovalent bonding) and a proper match of charge distributions that give rise to a 
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thermodynamically stable spatial arrangement in which the attractive forces between the 

two (or more) molecules are maximized and the repulsive forces are minimized. This 

important point is precisely the reason why supramolecular chemists often encounter 

challenging obstacles in trying to develop molecular recognition systems with tight 

binding between neutral components,32-37 although in recent years, systems developed by 

Meijer and Zimmerman15 seem to have at least partially overcome many of these 

challenges with the use of strongly associated and often self-complementary hydrogen 

bond arrays. One could argue, however, that these systems are so individually polarized 

that they should not be classified as “neutral.”  

 
 
1.4.2 Molecular Preorganization and Entropy  
 

An important question to ask in the context of supramolecular chemistry is “how 

do two or more molecular recognition components bind so strongly to one another while 

paying the required entropic penalties?” In general, when a molecule binds spontaneously 

to another, entropic costs must be paid due to the reaction enthalpy released upon 

binding. In the context of metal coordination, one way to overcome a large entropic 

barrier is through the chelate effect in which more than one binding site exists on a 

particular molecule. As such, when a first metal coordination bond is formed, entropic 

penalties for binding the rest of the molecule are already minimized. Subsequent 

noncovalent binding events of the two partners then should not suffer the same entropic 

penalty accrued during the first event. Similar effects in the context of supramolecular 

chemistry as a whole have been termed macrocyclic and macrobicyclic effects which 

have been succinctly described by Cram as the “preorganization principle.”38 
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1.4.3 Molecular Recognition Examples  
 

Several examples of molecular recognition partners have been developed over the 

years,15 and far too many exist to adequately review in this thesis. In each case of 

molecular recognition, however, there exists a partnership formed between two or more 

molecular components ultimately relying on an orchestration of individual noncovalent 

interactions. Among these interactions, which were previously discussed, are relatively 

weak noncovalent interactions including single hydrogen bonds and van der Waals 

interactions, among others. Stronger interactions include arrays of hydrogen bonds and 

weak metal coordination interactions, while the strongest of noncovalent interactions 

generally include ionic interactions and metal coordination interactions (albeit with 

strong covalent character traits).  

Early examples of noncovalent partners later classified as molecular recognition 

partners include crown ether-cation interactions.1 For example, organic chemists had 

observed early in the development of the Williamson ether synthesis that the addition of a 

crown ether of an appropriate size to accept a corresponding cation originating from the 

alkoxide species could increase the nucleophilicity of the alkoxide.21 Other early  

examples include cryptands, cavitands, calixarenes,39 and various other macrocyclic host-

guest complexes involving metal coordination, hydrogen bonding, ionic interactions, or 

various combinations thereof.40 

This thesis is primarily concerned with three unique types of molecular 

recognition partners (shown in Figure 1.10 in order of association strength). The 

synthesis and applications of these molecular recognition partners in or on polymer 
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systems or oligomeric systems is the central theme of this thesis. These molecular 

recognition components have been briefly discussed, and will be discussed later in the 

context in which they are presented.  

 
 

 
Figure 1.10. Three types of molecular recognition partners explored in this thesis. 
 
 

1.5 Self-Assembly  
 

“Supramolecular interactions,” “self-assembly,” “molecular recognition,” and 

“noncovalent interactions” are general terms prominently used in the field of 

supramolecular chemistry. While these terms are often used interchangeably in the 

literature, several distinctions should be made to delineate between these terms. 
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Particularly since the liberal use or misapplication of one or more of these terms has 

resulted in extensive debates at conferences and in the literature.5 This distinction is 

probably best described by the hierarchy diagrammed in Figure 1.1.  

The term “self-assembly,” is perhaps becoming the most limited phenomena in 

the field of supramolecular chemistry. George Whitesides defines “self-assembly” 

succinctly as “the autonomous organization of components into patterns or structures 

without human intervention.”5 This is not to say that mixing components in solution 

would be construed as “human intervention,” but rather that the assembly process itself 

occurs without outside intervention. Obviously, one can see that this definition, even in 

its strictest sense could be applied broadly. However, many in the field believe that self-

assembly does not include processes such as the association of organic molecules in 

solution or the growth of quantum dots on solid substrates.5 Rather, “self-assembly” 

should be limited to processes that involve coded information embedded within or on 

individual molecular components. In general, coded information can range from 

noncovalent forces such as electrostatic interactions to van der Waals forces. However, 

all of these forces must cooperate in some fashion such that a super organized or 

patterned structure can form. Six examples of self-assembly that fall under this 

interpretation are shown in Figure 1.11. Additionally, further examples of self-assembly 

and applications thereof are summarized in Table 1.2.  
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Table 1.2 Examples of self-assembly and applications (adapted from ref. 5) 
 

Entry Application 
 
Molecular crystals Materials, optoelectronics3, 4, 41 
 
Self-assembled monolayers Nanoelectronics42 
 
Lipid bilayers Biomembranes25 
 
Liquid crystals Displays43 
 
Ant Swarms, Fish schools Computation models44, 45 

 

While self-assembly in its pure sense is not exploited in this thesis, the use of the 

term self-assembly is often applied to molecular recognition partners in which data 

suggest that an actual assembly forms, and the interaction is more than simply an 

orchestra of single noncovalent interactions, such as, for example, the interaction leading 

to the pseudorotaxane shown in Figure 1.10.  
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Figure 1.11. (A) Ribosome crystal structure; (B) Peptide amphiphiles; (C) Polymeric 
plates; (D) Liquid crystal thin film; (E) Micrometer polyhedra; (F) Micrometer plates. 
[Figure adapted from ref. 5] 
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1.6 Conclusion  
 

Supramolecular systems are defined by individual molecular properties that give 

rise first to one or more single, discreet noncovalent interactions, followed optionally by 

an array or cooperation among each individual interaction to produce molecular 

recognition. Molecular recognition, then, can lead to a fully organized, patterned, or 

otherwise self-assembled structure. Noncovalent interactions leading to molecular 

recognition include ionic and electrostatic interactions, hydrogen bonding, metal 

coordination interactions (although these may be more appropriately characterized as 

dative or coordinative),  stacking interactions, hydrophobic interactions, and weaker 

forces such as van Der Waals interactions. In many molecular recognition systems, 

combinations of the aforementioned forces contribute to the overall thermodynamically 

stabilized and/or preorganized structure. In the chapters that follow, an emphasis on 

molecular recognition in polymer and oligomeric systems is discussed first with an 

overview of molecular recognition on the side-chains of polymers followed by several 

research applications of these polymers and oligimers.  
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CHAPTER 2 
 

Molecular Recognition on the Side-Chains of Polymers 
 
 
 

2.1 Abstract  
 

The design and synthesis of multifunctionalized, architecturally controlled 

polymers is a prerequisite for a variety of future applications of polymeric materials.  

Based on Nature’s use of self-assembly in the creation of biomaterials, this Chapter 

describes concepts that were developed over the past five years and that utilize 

noncovalent interactions such as hydrogen bonding, ionic interactions, electrostatic 

interactions, metal coordination, and  stacking in the modification of side-chain 

copolymers to obtain multi-functional polymeric materials, induce polymer morphology 

changes, and influence bulk-polymer properties.  

 
 

2.2 Introduction  
 

An important aspect of this thesis is the utilization of polymers bearing side chain 

molecular recognition components in applications ranging from improved synthetic 

methods to materials and surface chemistry. This Chapter relates the basic concepts 

discussed in Chapter 1 to polymeric systems developed in the Weck laboratories and 

provides a context for the rest of the thesis by examining several approaches to these 

polymers and applications thereof. 

Current research in polymer chemistry has been recently described as highly 

interdisciplinary with a large number of new research foci ranging from nanoscience to 

bio-related materials.1  Challenges in polymer science have been changing dramatically 
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over the past two decades, specifically in the ever-expanding field of polymer synthesis.  

In particular, three basic research efforts have fascinated the synthetic polymer chemist 

since the 80’s: (i) the development of highly controlled and living polymerization 

methods, (ii) investigations into new catalysts that allow for full stereo-control during 

polymerizations, and (iii) the rapid synthesis of multifunctional copolymers.2  The first 

two research foci are still areas of intense investigation but have resulted already in a 

number of impressive accomplishments.  Consider, for example, the developments in 

controlled polymerization methods.  Twenty years ago, the only widely useful living 

polymerization method was ionic polymerization.2   

Today, polymerization methods such as ring-opening metathesis polymerization 

(ROMP)3  and controlled radical polymerization4  are standard methods in every polymer 

chemists’ synthetic repertoire.  Similar advances in the design and synthesis of 

stereospecific catalysts for a wide variety of polymerization methods have been 

accomplished.2  Ziegler Natta polymerizations, for example, can be carried out in a 

highly stereoregular fashion using a wide variety of early, and more recently, late 

transition metals.5  Another example is the stereoregular ring-opening polymerization of 

lactides resulting in the formation of poly(lactic acid), an important bio-renewal and 

biodegradable polymer for biomedical applications.6  In contrast, the third research focus, 

the easy and rapid synthesis of multifunctional copolymers is lacking behind.   

The syntheses of highly functional polymers and copolymers are key for a wide 

variety of materials applications ranging from organic light-emitting diodes and 

photovoltaic cells to drug delivery vehicles and tissue engineering.  Over the past 

century, polymer scientists have used covalent approaches to synthesize multifunctional 
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polymers.2  While highly successful, covalent chemistry is time consuming, often low 

yielding, and does not allow for the employment of rapid prototyping and optimization 

methods.  If Nature would have used covalent chemistry for the development of 

biopolymers such as DNA, RNA, and proteins, we might not have the high degree of 

sophistication on earth today that we take for granted.  Nature uses other concepts in 

addition to covalent chemistry to ‘screen’ biopolymers for activity and to optimize them.  

Nature's principles are based on a limited number of building blocks to achieve a high 

degree of complexity in materials and rely on weak and reversible interactions between 

building blocks to introduce function and diversity.7  Nature utilizes these noncovalent 

interactions to create vast libraries of biological materials in a simultaneous multi-step 

self-assembly process that is reversible, selective, self-healing, and spontaneous.  Over 

the past twenty years, polymer chemists have started to learn how to mimic Nature’s use 

of noncovalent chemistry in polymer science resulting in the foundation of 

supramolecular polymer science. 

Supramolecular polymer chemistry started as an independent field in the 1980’s 

mainly based on the work of Jean-Marie Lehn,8 and the history of this development is 

surveyed in Chapter 1.  Since then, a number of research groups have developed 

impressive strategies towards the synthesis, characterization and use of supramolecular 

polymers.  In general, the field can be divided into two categories: (i) main-chain 

supramolecular polymer science, i.e. the weak interaction(s) reside(s) in the polymer 

backbone thereby noncovalently connecting monomer units, oligomers and/or polymers 

and (ii) side-chain supramolecular polymers, i.e. the noncovalent interaction(s) is(are) 

used to either functionalize and/or cross-link the covalent polymer backbone thereby 
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creating highly functionalized polymers with tailorable properties.  This Chapter will 

concentrate on the second strategy, side-chain functionalized supramolecular polymers, 

and describe current approaches to noncovalently side-chain functionalized polymers 

with an emphasis on multifunctionalization.  

 
 

2.2 Monofunctionalization via Side-chain Molecular Recognition  
 

A first approach in among side-chain supramolecular chemists was the attempt at 

polymer functionalization using a single molecular recognition component or receptor. 

The central goal was to monofunctionalize a polymeric receptor at each repeating unit 

with a small molecule substrate (Scheme 2.1). This strategy, in contrast to typical 

covalent approaches, allowed for the production of different types of functional 

homopolymers from the same, generic polymeric precursor (Scheme 2.1).   

 

 

Scheme 2.1.  Noncovalent synthesis of different polymers from a generic polymer 

backbone. 
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2.3 Monofunctionalization via Hydrogen Bonding  
 

The majority of reports on the monofunctionalization of polymers rely on 

hydrogen bonding as the assembly mechanism.9, 10  The versatility of hydrogen bonding 

in polymer functionalization is owed primarily to the responsiveness of these bonds.  

Hydrogen bonds can be manipulated with a variety of external stimuli, including 

temperature, solvent, and pH.9  While single hydrogen bonds are fairly weak (2-5 

kcal/mol), arrays of multiple hydrogen bonds can be significantly stronger, with 

association constants approaching 109 M-1
 (in non-polar solvents) for some quadruple 

hydrogen bonded structures (Figure 2.2).9   

Self-complementary systems, such as ureidopyrimidone (UPy2) are undesirable 

for polymer functionalization since they result in the uncontrolled crosslinking of 

polymers and not in the controlled functionalization of the materials.9  Therefore, 

researchers have focused their attention on non self-complementary recognition pairs 

such as the diaminopyridine:thymine (DAP:THY) interaction, i.e. they have focused on 

hydrogen bond arrays originating from functional groups that have a low tendency to 

self-dimerize in non-polar solvents (Kd < 50 M-1).9 
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Figure 2.1.  Complementary hydrogen bonding pairs frequently used in supramolecular 
assemblies. 
 
 

Kato and Fréchet pioneered early work involving hydrogen bonding based 

functionalization of polymers to synthesize liquid crystalline materials.11  While these 

studies are instrumental to the field, they have been reviewed extensively before11  and 

the field has moved to more general functionalized systems ranging from nanomaterials 

to biomimetic materials.12, 13 

Among the leading research groups working on side-chain supramolecular 

polymer functionalization is the group of Rotello.  The majority of their contributions are 

based on the noncovalent functionalization of polymers with small molecules via 
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hydrogen bonding.  The Rotello group coined the phrase “plug and play” to describe this 

modular hydrogen bonding functionalization strategy.15  The ‘plug and play’ approach 

uses noncovalent synthesis to expand organic polymers into functional composite 

materials using a variety of small molecules for functionalization which can be used to 

influence bulk material properties.16  Among the first examples was the functionalization 

of a diaminotriazine-bearing poly(styrene) (1) with flavin (2) through a triple, non self-

complementary hydrogen bond array (Scheme 2.2).14  In this case, the polymer 

morphology changed from a folded state (due to triazine dimerization) to a fully unfolded 

state (1:(2)n) upon the introduction of flavin.  In addition, by using spin casting to 

kinetically trap host-guest complexes in poly(styrene) films, the Rotello group was able 

to demonstrate the recognition of guests in various polymeric host systems.15  This 

methodology was then expanded further by Rotello into nanoscience with the 

development of the “brick and mortar” strategy.17  For example, poly(styrene)s (mortar) 

functionalized with terminal thymine groups were hydrogen bonded to gold nanoparticles 

(bricks) containing complementary diaminopyridine receptors.  These polymer-gold 

nanoparticle assemblies served then as the basis for the exploration of multivalency in 

recognition induced polymersomes (RIPs).17  
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Scheme 2.2.  Hydrogen bonding between diaminotriazine functionalized copolymer and 
flavin. 
 
 

Similarly, the research efforts of the Weck laboratories have focused on rapidly 

optimizing materials via functional polymer libraries.  The objectives were two-fold; (i) 

the employment of a fully functional group tolerant and living polymerization method 

that results in highly controllable and well-defined polymers and (ii) the use of a 

recognition unit that will allow for high yielding functional group attachment during the 

noncovalent functionalization steps.  To achieve the first objective we employed ROMP, 

a living and fully functional group tolerant polymerization method.3  Objective two was 

met with the introduction of N-butylthymine (NBT) onto both diaminopyridine (3) and 

diaminotriazine polymeric receptors (Scheme 2.3).18  These diaminopyridine (3:(NBT)n) 

and diaminotriazine functionalized polymers were then self-assembled with thymine-

based molecules to create highly functionalized polymers (3:(NBT)n).  The presence of 

the polymer did not significantly impact the association constant between the recognition 

partners, and it was possible to tune the polymer properties by adding small molecule 

substrates to the polymeric receptors.   
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Scheme 2.3.  Noncovalent functionaliziation of diaminopyridine-based polymers with 
complementary thymine substrates. 
 
 

While self-complementary hydrogen bonding systems are undesirable for polymer 

functionalization, such systems can be used to influence polymer morphology.  Using 

ROMP, the Sleiman group synthesized adenine functionalized copolymers that are able to 

fold into cylindrical morphologies arising from the self-complementary of the adenine 

units.19  A similar  self-complementary backbone was explored further with a series of 

triblock copolymers containing diacetoamidopyridine and its complementary 

dicarboximide.20  Sleiman reported that varying the triblock sequence and ratio resulted in 

different self-assembled architectures.  These differences in properties were only 

observed in the hydrodynamic radii without real control over the types of aggregations 

formed.20   
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2.4 Side-chain Functionalization via Metal Coordination  
 

The second class of noncovalent (or partially noncovalent) interactions that have 

been employed in supramolecular polymer functionalization is metal coordination.  

Despite the extensive use of metal coordination in main-chain supramolecular polymers,21  

its use for the functionalization of side-chain supramolecular polymers has been explored 

extensively only in the past five years.  While hydrogen bonding is a relatively weak 

interaction, metal coordination is a significantly stronger binding interaction and yet can 

still be manipulated by external media, such as solvent and competitive coordinating 

ligands.  An obvious place to start investigating the viability of polymerizable metal 

complexes, and polymers functionalized through metal coordination are pyridyl-based 

systems, since a number of pyridine-based ligands are commercially available and many 

pyridine-based ligands can be structurally modified.  Moreover, pyridyl based complexes 

are prominent as actors in various materials including light-emitting materials and solar 

cells.22  Specifically, bipyridines (bpy) and terpyridines (trpy) are desirable since they can 

act as  acceptors to stabilize various metal oxidation states and are known to coordinate 

a variety of metals.  We and others have explored the polymerization behavior of various 

norbornene-based transition metal complexes containing bpy monomers that can be 

polymerized via ROMP.22, 23  Norbornene based monomers containing (tris-bpy) 

ruthenium (II) (5), (bis-bpy) palladium (II) (6), and heterolyptic ruthenium complexes (4) 

(Figure 2.2) were synthesized and polymerized.  Similarly, Ru(II) tris bpy block 

copolymers synthesized by Sleiman were found to self-assemble in acetonitrile/toluene 

solutions into micellar aggregates with luminescent properties similar to the monomeric 

analogues.22  
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Figure 2.2.  Bipyridine containing polymers reported in the literature. 
 
 

While ROMP has been highly successful in producing well-defined polymers 

containing pyridyl based metal complexes, other polymerization methods have also been 

investigated.  Tew and Schubert have demonstrated the controlled radical polymerization 

of trpy containing monomers to yield trpy functionalized poly(styrene) and poly(acrylate) 

copolymers.  Postpolymerization modification via metal coordination of the copolymers 

proved to be a versatile route to polymers functionalized with metal complexes.24-27 

Pincer type complexes containing platinum group metals have also become 

versatile tools in supramolecular science.28  Van Koten and others have used pincer 

complexes as supramolecular synthons for a variety of applications in supramolecular 

chemistry and catalysis.28  Covalent tethering of pincer complexes to polymers can give 
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rise to versatile and responsive materials via simple noncovalent functionalization.  In 

2002, we reported the first side-chain pincer functionalized polymer (7) that could be 

functionalized easily and quantitatively with pyridines (9) and nitriles (10) resulting in 

the formation of fully soluble and highly functionalized metal-coordination polymers 

(8:(9)n, 8:(10)n)  (Scheme 2.4).29  
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Scheme 2.4.  Formation of polymeric liquid crystals through the noncovalent 
functionalization of pincer containing homopolymers. 
 
 

While we and others have shown that rapid functionalization of polymers can be 

accomplished via side-chain self-assembly by either hydrogen bonding or metal 

coordination, our ultimate goal lies in extending these techniques to incorporate multiple 

functionalities for highly complex materials.  However, a reoccurring problem we 

encountered in using poly(norbornene)s as scaffolds for noncovalent polymer 

functionalization was an inability to control the polymerization rate of endo/exo 

norbornene mixtures.  To overcome this problem, we employed isomerically pure exo-
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norbornene esters as monomers.  We not only obtained efficient and controlled 

polymerizations of all functionalized monomers but were also able to polymerize 

norbornenes containing Pd(II) pincer complexes and/or diaminopyridine groups in a 

living fashion.30  This was an important step in advancing our methodology into more 

complicated systems and enabled full architectural control in the next generation of 

noncovalently functionalized polymers.  

 
 

2.5 Multifunctionalization via Side-chain Molecular Recognition  
 

In the previous section we have outlined some examples where scientists have 

used noncovalent interactions to produce monofunctional polymers.  One remaining 

challenge is the development of abiotic systems with non-biological functions that rival 

Nature’s complexity.8  An important problem in polymer chemistry is one that Nature 

probably encountered a long time ago: the production of multifunctional polymeric 

architectures with narrow polydispersities.  Years of research have been devoted to create 

functional group tolerant catalysts and living polymerization techniques.  However, such 

covalent approaches often fall short of natural analogues that utilize noncovalent 

interactions.  Therefore, we and others began to envision noncovalent 

multifunctionalization strategies as simple alternatives to covalent approaches towards 

multifunctional polymers.  

A number of groups have taken advantage of multiple types of noncovalent 

interactions to produce supramolecular structures based on both natural and non-natural 

recognition motifs.  Metal coordination in concert with hydrogen bonding has been used 

to synthesize dendrimers31  and supramolecular polymers.32  Both hydrogen bonding and 



 

45 

ionic interactions have been used in the synthesis of thermotropic liquid-crystals,33  self-

organizing polymeric materials,34  interwoven supramolecular arrays,35  electrochemical 

switchable dyes,36  molecular elevators,37  and functionalized surfaces.38  

While these are examples of supramolecular structures formed through multiple 

types of noncovalent interactions, the use of different types of interactions on the side-

chains and in the main-chains of polymers was not demonstrated when we started 

investigating this strategy six years ago in the Weck group.13  This was surprising given 

that noncovalently functionalized copolymers can potentially minimize many of the 

problems associated with traditional covalent copolymer synthesis.39  For instance, 

multiple functionalities can be introduced noncovalently onto a copolymer with few side-

reactions.  Side-reactions that might occur can be corrected, since the multi-

functionalized polymer has the ability to “self-heal”.  We envisaged a strategy that would 

allow for the functionalization of a single polymer backbone bearing noncovalent 

receptors with different types of substrate motifs (Scheme 2.5) thereby creating fully 

functionalized copolymers fast and efficiently.   
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Scheme 2.5.  Noncovalent approach to different copolymers from a generic polymer 
backbone. 
 
 

In our laboratories, the use of multiple noncovalent interactions to functionalize a 

single polymer backbone has proven to be an exciting new route to densely 

functionalized random and block copolymers as well as terpolymers.  In a series of 

reports,13, 40-47  we were able to functionalize polymers bearing two or three 

complementary noncovalent receptors and/or hosts with their corresponding substrates 

and/or guests.  We examined in detail different strategies for obtaining densely 

functionalized polymers, including the use of (i) two different hydrogen bonding motifs, 

(ii) both weak and strong hydrogen bonding motifs in concert with metal coordination, 

and (iii) ionic interactions combined with metal coordination and/or hydrogen bonding.  
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Our goal in all of these endeavors was to develop a generalized route to highly functional 

polymers.  Of foremost concern was the orthogonality of the functionalization sequence.  

Keeping this in mind, we designed and synthesized several polymeric scaffolds that can 

accommodate a variety of noncovalent functionalities that interact very little, if any, with 

neighboring groups.  This allowed us to modify the order of the post-polymerization 

functionalization steps as well as achieve a rapid, one-pot functionalization in many cases 

(Scheme 2.6).   
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Scheme 2.6.a  Generalized, orthogonal route to multifunctional polymers.a Addition of 
substrate with (a) recognition type I; (b) recognition type II; (c) one-pot addition of both 
substrates. 
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2.6 Polymer Multifunctionalization via Self-Sorting  
 

First, we examined the possibility of using different hydrogen bonding 

recognition processes to functionalize copolymers using the same type of interaction 

through a process known as “self-sorting” (molecules that specifically associate with 

themselves: narcissistic molecules48  or other molecules: social molecules49  through 

noncovalent interactions in the presence of other competitive noncovalent forces are 

referred to as “self-sorting” molecules).  Hallmark examples of a hydrogen bonding “self-

sorters” are the biopolymers DNA and RNA that are able to match base pairs with very 

few mistakes along a polymeric backbone, despite the presence of competing non-

specific hydrogen bonding interactions.50  Isaacs and coworkers have found that many 

molecular systems are capable of “self-sorting.”50  Based on the incredible fidelity of 

small molecule “self-sorters,” and biomacromolecular “self-sorters” like DNA and RNA, 

we decided to investigate unnatural, polymeric “self-sorters”.  The “self-sorting” 

processes we chose to study along polymer backbones were the association between 

thymine (THY) and diaminopyridine (DAP) through DAD-ADA triple hydrogen bond 

arrays and the association between cyanuric acid (CA) and isophthalic wedge type 

receptors (Wedge) through DAD-ADA sextuple hydrogen bond arrays (Scheme 2.7).  
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Scheme 2.7.  Self-sorting, mis-matching and self-repair in triple DAD-ADA and sextuple 
DAD-ADA hydrogen bond arrays. 
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A potential challenge for achieving “self-sorting” in polymer solutions is 

overcoming competitive interactions beyond those that exist in dilute small molecule 

solutions because of a high local concentration of competitive noncovalent interactions 

along a polymer chain.  Despite this obstacle, we found that in both block and random 

copolymers (11) bearing competitive hydrogen bonding receptors, “self-sorting” can be 

achieved, i.e. two competitive recognition pairs along a polymer backbone are able to 

recognize each other with high fidelity (Scheme 2.8).43 

In addition to the observation of “self-sorting” in supramolecular polymers, we 

also investigated the possibility of using two competitive hydrogen bonding interactions 

to achieve step-wise site-specific polymer multifunctionalization.  We studied the 

addition of diaminopyridine (DAP) to a random copolymer (11) containing both cyanuric 

acid  and thymine receptors.  While the thymine is the target receptor for DAP, cyanuric 

acid is also able to hydrogen bond with DAP via a triple hydrogen bond-based interaction 

thereby competing with the thymine receptors.  Using 1H NMR spectroscopic titration 

experiments, we established that DAP and the cyanuric acid recpeptors are indeed 

interacting with each other through a mis-match that could be relieved upon the addition 

of Wedge to the mixture, resulting in the fully functional copolymer 

(11:(DAP)n(Wedge)m).  
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Scheme 2.8.a  Stepwise and one-pot (“self-sorting”) functionalization of copolymers. 
aReagents: (a) diaminopyridine (DAP); (b) isopthalic wedge (Wedge); (c) (DAP) and 
(Wedge), one-pot.   

 

Our unnatural polymeric “self-sorters” behave similarly to biomacromolecular 

analogues such as DNA or RNA.  Despite the presence of very high local concentrations 

of competitive hydrogen bonding actors along the polymer backbones, we observed that 

highly specific hydrogen bonding interactions prevail over non-specific mis-matches.  

Clearly, polymeric “self-sorting” functions as an efficient means for obtaining 

multifunctional polymers at the very least and serves as an interesting example of how 

tools used by Nature can potentially be translated to synthetic systems.  

 
 
2.7 Polymer Multifunctionalization via Metal Coordination and Hydrogen Bonding  
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We hypothesized that a more modular polymer functionalization strategy could be 

realized through the use of two unique types of molecular recognition that would not 

interfere with each other, such as metal coordination and hydrogen bonding.  We 

demonstrated that random copolymers (12) bearing side-chains with Pd(II) pincer 

complexes and diaminopyridine receptors could be functionalized with pyridines (Pyr) 

(through metal coordination) and thymines (NBT) (through DAD-ADA hydrogen bond 

arrays) by both step-wise and one-step, orthogonal synthetic strategies (Scheme 2.9).41   
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This multicomponent functionalization strategy was found to be efficient and 

fully functionalized random copolymers could be obtained easily.  Most importantly, 

characterization of the functionalized polymers proved facile.  The lack of interference 

between the two functionalized side-chains could be established by 1H and 13C NMR 
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spectroscopy experiments.  Figure 2.3 shows an example of a 1H NMR spectroscopic 

characterization of the one-pot functionalization strategy.  The -pyridyl signals display a 

marked upfield shift upon coordination and the imide proton signal originating from the 

thymine substrate displays a characteristic downfield shift upon hydrogen bonding to the 

diaminopyridine receptor.  

 
 

 

Figure 2.3.  Stacked Plot of  partial 1H NMR spectra (400 MHz, 298 K, CD2Cl2) used to 
characterize copolymer functionalization: (A) (Pyr); (B) (NBT); (C) 12; (D) fully 
functionalized 12:(Pyr)m(NBT)n. 
 
 
 
 
 
 

The orthogonality of combining pincer-type metal coordination and hydrogen 

bonding was tested through an examination of the association constants between 

receptors and substrates.  We found that association constants (Kas) for the hydrogen 

bonding event between diaminopyridine receptors (12, 12:(Pyr)m) and thymine substrates 
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(NBT) to be approximately 500 M-1 (in CH2Cl2) regardless of whether or not pyridines 

(Pyr) were assembled onto pincer complexes.  Likewise, the assembly of the hydrogen 

bonding units did not affect subsequent metal coordination steps.  In contrast to our 

previous “self-sorting” experiments, the use of metal coordination and hydrogen bonding 

provides an efficient platform for obtaining polymers with functional groups that can be 

manipulated independently by external stimuli.   

Afterwards, we extended the orthogonal multifunctionalization strategy from 

random to block copolymers.46  We found that in the case of a thymine functionalized 

block copolymer receptor (13), association constants for the formation of ADA-DAD 

hydrogen bond arrays between the thymine receptor and DAP substrate were slightly 

lower than those observed for polymeric diaminopyridine receptors (12) functionalized 

with THY substrates which can be attributed to the greater degree of self-association of 

the thymine receptor verses the diaminopyridine receptor.  However, the independence of 

the two recognition events remained intact and an orthogonal functionalization (Scheme 

2.10) could be achieved just as in the previous study.  Therefore, we concluded that both 

block and random copolymers are excellent candidates for obtaining multifunctional 

polymers through a combination of metal coordination and hydrogen bonding. 
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hydrogen bonding.  Reagents: (a) DAP; (b) Pincer complex (Pinc); (c) DAP, Pinc, one-
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2.8 Polymer Multifunctionalization via Hydrogen Bonding and Ionic Interactions  
 

We reasoned that other types of interactions such as coulombic forces could also 

be used in our orthogonal multifunctionalization strategy.  Our hypothesis was that the 

combination of hydrogen bonding and ionic interactions would be an interesting new 

route to bifunctional ionomers.  We found that bifunctional ionomers based on 

diaminopyridine and thymine recognition partners and ammonium salts could be 

synthesized through stepwise, or one-step orthogonal strategies (Scheme 2.11).47  Most 

importantly, the presence of the ionic complex does not interfere with the hydrogen 

bonding strength of the DAP:THY pair and the hydrogen bonding interactions do not 

impede ion exchange.  These results demonstrate that noncovalent synthetic strategies 

based on two recognition events are not limited to metal coordination and hydrogen 

bonding.  
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Scheme 2.11.  Copolymer functionalization through ion exchange and hydrogen bonding. 
Reagents: (a) NBT; (b) sodium dodecyloxyphenate (SDP); (c) NBT and SDP.  

 
 

  

2.9 Cross-linking  
 

The possibility of obtaining functional materials using our noncovalent 

functionalization strategies is key for the success of this methodology.42  Our first goal 

was to produce both densely cross-linked and densely functionalized polymers using 

exclusively noncovalent side-chain interactions (Scheme 2.13).  One advantage of 

combining both metal coordination and hydrogen bonding containing materials is that the 

dynamics of each interaction can be co-opted individually or in concert with the other to 

obtain a variety of polymers responsive to a catalogue of external stimuli, including 

temperature, pH, solvent, polymer concentration, and competitive metal coordinating 

ligands.  For example, when hydrogen bonding is used to cross-link polymers and pincer 

type metal coordination to functionalize the side-chains of the resulting cross-linked 

arrays, it is possible to break up the cross-links thermally and yet maintain the integrity of 

the metal complex.  On the other hand, when metal coordination is used to crosslink 
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polymers and hydrogen bonding for the functionalization, the cross-links can be reversed 

by the addition of PPh3 which coordinates stronger to the Pd(II) pincer complex than 

pyridine.   

Polymer multifunctionalization can often be difficult to achieve with traditional 

covalent synthetic strategies due to incompatibilities between functional groups and 

polymerization methods, interferences among functional groups, and differences in 

comonomer reactivity ratios.  Over the past five years, we have shown that a viable 

solution to these three common problems is the employment of noncovalent synthetic 

strategies to produce multifunctional polymers.  Using this approach, multifunctional 

polymers can be easily obtained with the use of hydrogen bonding self-sorters, 

copolymer receptors bearing hydrogen bonding and metal coordination recognition units 

or ionic complexes, and copolymer receptors bearing hydrogen bonding and 

pseudorotaxane recognition units.  Moreover, these synthetic strategies are not only 

limited to two recognition types, but can be extended to higher orders of 

functionalization.  Finally, we have proven that these approaches can be applied to 

materials chemistry by fabricating highly responsive and densely functionalized cross-

linked polymers.  
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Scheme 2.12.  Noncovalent synthetic approach to functionalized, cross-linked polymers. a 
Reagents: (a) NBT, AgBF4, 18; (b) 19, AgBF4, Pyr.  

 
 

2.10 Conclusion and Outlook  
 

In this Chapter, strategies for obtaining densely functionalized polymers through 

noncovalent synthetic strategies have been surveyed.  Noncovalent interactions such as 

hydrogen bonding, ionic interactions, metal coordination, electrostatic interactions, and 

 stacking can be used individually or in concert with one another to obtain mono- or 

multiply-functionalized polymers.  These noncovalent synthetic strategies can be 

advantageous over covalent analogues for several reasons: (i) noncovalently 
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functionalized polymers have the ability to self-heal due to the reversibility of 

noncovalent bonds, (ii) a generic polymer backbone can be used to obtain a library of 

fully functionalized polymers, (iii) several different types of noncovalent interactions are 

orthogonal to one another, while many covalent modifications are not, and (iv) such 

polymers are highly responsive to external stimuli.  Aside from simply adding 

functionality to a polymer, this approach also allows for the tuning of bulk polymer 

properties such as morphology or the degree of crosslinking.  The research efforts 

described in this Chapter clearly demonstrate the potential of noncovalently 

functionalized polymers and have certainly laid the ground work for future endeavors in 

this area.  

 

2.11 Thesis Hypothesis 
  

Based on many of the research examples presented in this chapter, further 

research as well as new research areas will be presented in the remainder of this thesis. 

The central hypothesis of the thesis is the following: Noncovalently bonded polymers can 

present viable alternatives to covalent bonded analogues. Within this hypothesis lies a 

prediction that many common problems associated with covalently based polymers can 

be overcome with the use of polymers comprising molecular recognition elements. As 

each research topic is presented, an eye toward the aforementioned hypothesis will be 

maintained.    

Specifically, Chapters 3 and 4 present research focused on advancing the 

functionalization of polymers through molecular recognition. The goal of this research is 

primarily to develop a general polymer backbone that both site-specifically and strongly 
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associates noncovalently with small molecular substrates. These chapters demonstrate 

that both architecturally controlled block copolymers and random terpolymers can accept 

a full load of different substrates without interference among distinct molecular 

recognition elements along the polymer backbone.  

Chapters 5 and 6 present a unique application of polymers containing molecular 

recognition elements, templated synthesis. Chapter 5 first discusses lessons learned from 

small molecule based templated synthesis in which a template and a substrate are held 

together by metal coordination and a subsequent bond forming reaction occurs. 

Ultimately, the results of this chapter directed our work towards a hydrogen bonding 

based system in lieu of metal coordination. In this case, a polymeric template was used, 

and a daughter monomer was polymerized while attached to the template. 

Another application of polymers containing molecular recognition elements is 

presented in Chapters 7 and 8. In these chapters, metal coordination is used to assemble 

polymer multilayer thin films that are both responsive to external stimuli, stable, and 

erasable.  

Finally, Chapter 9 summarizes the main conclusions of each chapter and presents 

a potential view of new projects that might result from the research presented in this 

thesis.  
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CHAPTER 3 
 

Functionalization of Block Copolymers Through Molecular Recognition 
 
 
 

3.1 Abstract  
 

Poly(norbornene)-based block copolymers containing side-chains consisting of 

palladated-pincer complexes/dibenzo[24]crown-8 or palladated-pincer 

complexes/dibenzylammonium salts were synthesized.  Noncovalent functionalization 

was accomplished with their corresponding recognition units through simple 1:1 addition 

with association constants (Ka) greater than 105 M-1.  The self-assembly processes were 

monitored using both 1H NMR spectroscopy and isothermal titration calorimetry.  In all 

cases, we found that the self-assembly of the recognition units along each polymer block 

do not preclude the self-assembly processes along the other block. 

 
 

3.2 Introduction  
 

In previous chapters, basic concepts in molecular recognition and self-assembly 

have been set forth. This chapter presents the results of a research endeavor aimed at 

applying some of the principles discussed in previous sections to block copolymers. It is 

noteworthy to point out that the functionalization of block copolymers through molecular 

recognition is a significant goal particularly from a materials science aspect, in which 

block copolymer are widely used. As such, a theme of this chapter is architectural control 

of the synthesis of block copolymers and their subsequent functionalization.  

As the field of materials science advances, the demand for highly functional and 

versatile materials will likewise increase.  Materials for applications such as organic-light 
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emitting diodes (OLEDs), photorefractives, solar cells, drug delivery vehicles, sensors, 

and molecular machines will require fast and cost effective synthesis and optimization.1-5  

To meet these demands, future synthetic strategies to produce polymeric materials should 

be generic, such that similar functionalization techniques could be applied to a variety of 

applications.  Nevertheless, these functionalization strategies should be tailored to a 

specific application.  For example, a drug delivery application may require functionalities 

with weak noncovalent attachments in order to facilitate effective drug release in 

response to a stimulus at a target site.6 In contrast, materials for use in electro-optics 

require strong and dense functionalization capable of withstanding thousands of working 

hours.7  

Nature has created a system with incredible fidelity in which a myriad of 

biomaterials can be produced from noncovalent mediated synthesis.8  Borrowing from 

this approach, our system uses similar noncovalent forces to create functionalized 

copolymers. Various strategies to use this approach on polymeric systems are outlined in 

Chapter 2.3, 8-10 Herein, we report the next generation of side-chain supramolecular 

polymers by functionalizing an architecturally controlled block copolymer with two 

strong noncovalent functionalities based on (i) pseudorotaxane hydrogen-bonding and (ii) 

metal coordination between palladated Sulfur-Carbon-Sulfur (SCS) pincer complexes and 

pyridines.  This specific approach toward polymer synthesis possesses unique 

advantages.  First, the copolymer architecture is defined prior to functionalization, 

allowing for the introduction of a variety of functional groups that might otherwise hinder 

architectural control if introduced prior to polymerization.  Second, this generation of 

supramolecular polymers rivals covalently functionalized copolymers by utilizing two 
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recognition units with high binding affinities for their corresponding complementary 

recognition units (small molecules), which ensure the production of a densely 

functionalized and monodisperse material.  Finally, our new system retains all the 

benefits of noncovalent modification, including reversibility, self-healing, and ease of 

functionalization, all of which are discussed in detail in Chapter 2. 

In our search for the next generation of supramolecular polymers, depicted in 

Figure 3.1, we sought two important design requirements: (1) architectural control of the 

polymer scaffold, and (2) distinct recognition partners with sufficiently high noncovalent 

binding strengths.  

 
 

 
 
Figure 3.1. Schematic representation of the next generation of universal polymer 
backbones. 
 
 

Block copolymers, which have been used widely in applications ranging from 

drug delivery to electro-optics, form our basis for the architectural control.11  We achieve 

such architectural control by the use of ring-opening metathesis polymerization 

(ROMP)10, 12-19  to produce block copolymers.  ROMP via the ruthenium alkylidene 



 

69 

initiator 1 (Figure 3.2) not only provides the basis of our architectural control, but 1 is 

also highly functional group tolerant.20-23   

 
 

PCy3
Ru

Ph

PCy3

Cl

Cl

1  
 
Figure 3.2.  Ruthenium alkylidene initiator 1 employed in this work for ROMP. 
 
 

Requirement (2) is met with the use of two strong noncovalent interactions 

involving both metal coordination and hydrogen-bonding as shown in Figure 3.3. The 

hydrogen-bonding system is based on the threading of a dialkylammonium cation 2 into a 

dibenzo[24]crown-8 (DB24C8) macrocyle 3 to form a [2]pseudorotaxane.24-42  Since the 

discovery of rotaxane formation resulting from the threading of an ammonium cation into 

a crown ether macrocycle in 1995,43  a number of interactions between ammonium 

cations and crown ether macrocycles have been studied, resulting in a myriad of 

supramolecular structures44-50  and the evolution51  of a “molecular meccano kit.”  The 

driving force for the formation of threadlike structures from dialkylammonium cations 

and crown ether macrocyles is the formation of strong hydrogen bonds between the 

acidic NH2
+ protons and the oxygen atoms in the ring of the crown ether macrocyle.  In 

addition to strong N-H•••O hydrogen-bonding, C-H•••O hydrogen-bonding, -  

stacking interactions, and electrostatic forces also contribute to the strong affinity 

between dialkylammonium cations and DB24C8 macrocycles. Further details about this 

molecular recognition pair are discussed in Chapter 1.   Such interactions are highly 
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solvent dependent.  In apolar solvents, high association constants (Ka) are attainable for 

the dialkylammonium and DB24C8 system (vide supra). 

The metal coordination system we employ is based on a PdII SCS pincer complex 

4 which binds pyridines, nitriles, and phosphines with high efficiencies.10, 52, 53  The 

palladium pincer complex was chosen because of its high stability and the ability of the 

palladium species to undergo substitution with a variety of ligands.52  Pyridine 5 was 

chosen as the ligand for the pincer complex because it can be displaced easily by a 

stronger coordinating phosphorous ligand.53  Moreover, a pincer-pyridine self-assembly 

process can be characterized easily using standard methods such as 1H NMR 

spectroscopy.9 
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Figure 3.3. The two types of molecular recognition pairs employed in this study.  
 
 

3.3 Results and Discussion  
 
 

3.3.1 Monomer Synthesis and Homopolymerizations  
 

Isomerically pure exo-norbornene esters often result in short polymerization times 

as well as living polymer growth.10  Thus, exo-norbornene acid 654-56  was chosen as the 

starting point in our synthetic pathway.  The addition of an alkyl spacer onto 6 was 

accomplished by the DCC/DMAP esterification with 1,10-decanediol to yield 7.  The 

exo-decanol 7 was then oxidized to the corresponding carboxylic acid 8 using pyridinium 
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dichromate (DMAP) in DMF.  Compound 8 was functionalized with the Boc protected 

dialkyl amine 957  or the DB24C8 derivative 1049  using DCC/DMAP esterification to 

afford 11 and 12, respectively.  Monomer 12 was polymerized using initiator 1 to yield 

the resulting polymeric DB24C8 crown ether 14a-e.  Likewise, monomer 11 was 

polymerized to give the polymeric Boc protected amine 13a-e.  The synthetic pathway is 

outlined in Scheme 3.1.  

Monomers 11 and 12 were found to polymerize in a living fashion.  The absence 

of chain-transfer and chain-termination in addition to controlled molecular weights are 

criteria for living polymerizations.58, 59  A linear relationship between Mn and [M]:[I] was 

established for 11 and 12 (Figure 3.4).  Such a linear relationship indicates the living 

nature of the polymerization for monomers 11 and 12. Additional analysis by GPC of 

block copolymer tests, in which monomers 11 and 12 were polymerized at a low DP and 

more monomer was subsequently added to the mixture, confirm the living nature of 

polymers (Appendix A).  The corresponding gel-permeation chromatography (GPC) data 

are summarized in Table 3.1.  
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Scheme 3.1. Synthesis of Molecular Recognition Monomers and Subsequent ROMP. 
Reagents and conditions: a) Decane-1,10-diol, DCC/DMAP, CH2Cl2, reflux, 12 h, 60%;  
b) PDC, DMF, 48 h, 80%;  c) DCC/DMAP, CH2Cl2, reflux, 12 h, 90%;  d) 1, CH2Cl2, 8 h, 
100%;  e) TFA, CH2Cl2, 3 h;  f) NH4PF6, CH2Cl2, 3 h, 92% from 11.  
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Table 3.1.  Polymer characterization data (GPC) for 13, 14, 18, and 19. 
 

polymer [M]:[I] Mn (10-3) Mw(10-3) PDI 

 

13a 

 

10 

 

11.5 

 

14.1 

 

1.23 

13b 20 16.0 18.6 1.16 

13c 50 38.2 41.4 1.08 

13d 80 59.2 68.6 1.16 

13e 100 70.3 93.3 1.33 

14a 10 9.3 13.1 1.41 

14b 20 11.6 17.4 1.49 

14c 50 30.0 61.7 2.05 

14d 80 44.8 83.7 1.87 

14e 100 57.4 138.0 2.41 

18 50 29.5 35.6 1.21 

19 50 66.0 75.1 1.14 
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Figure 3.4. Plot of Mn vs monomer-to-initiator ratios for polymers 13 ( ) and 14 ( ). 
 
 

We also investigated whether the unprotected amine 11 (11a), could be 

polymerized in a living fashion.  For these experiments, 11 was deprotected using TFA, 

and the resulting 11a was polymerized using 1.  Unfortunately, the polymerization 

behavior of 11a was uncontrolled, and the formation of high molecular weight polymers 

was observed regardless of the [M]:[I] feed ratios.  Additionally, salt exchange was 

achieved with the 11a using ammonium hexafluorophosphate, but the monomeric PF6
- 

salt would not polymerize using initiator 1.  Thus, monomer 11 was chosen for all 

polymerization experiments.  The conversion of polymer 13c to the dialkylammonium 

PF6
- salt 15 was accomplished by deprotection with TFA followed by salt exchange using 

a 100-fold excess of ammonium hexafluorophosphate.  Unfortunately, the resulting 

polyelectrolyte 15 could not be characterized by GPC; the charges either interacted with 

the column packing material or the polymer formed aggregates in an ionomeric fashion 

and did not elute.  
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Scheme 3.2. Synthesis of AB Block Copolymers bearing DB24C8, DBA
+
PF6

-
, and SCS-

Pd-Pincer Recognition Units. Reagents and conditions:  a) Initiator 1, CH2Cl2, 120 min;  

b) 12, 8 h, 100%;  c) 11, CH2Cl2, 8 h, 100%;  d) TFA, CH2Cl2, 3 h;  e) NH4PF6, CH2Cl2, 

3 h, 90% from 19.  

 
3.3.2 Copolymerizations  

 
After establishing that 11 and 12 could be polymerized in a controlled manner, 

AB block copolymerizations were carried out with the SCS-Pd-Pincer monomer 16 

(Scheme 3.2).  The synthesis, polymerization, and living characterization of 16 have been 

reported previously.3, 9, 10, 60  Following the polymerization of 16 using 1, monomers 11 

and 12 were added to 17 to form the bi-functional AB block copolymers 18 and 19.  

Following the deprotection of 19 with TFA and subsequent salt exchange with 

ammonium hexafluorophosphate, copolymer 20 was obtained.  GPC analysis of 

copolymers 18 and 19 were carried out.  Both copolymers have low polydispersities 

demonstrating the living character of the polymerization.  Table 1 summarizes the GPC 

results.  
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3.3.3 Self-Assembly  
   

The aim of this study is to establish the complementarities of polymeric systems 

bearing the strong noncovalent recognition motifs 2, 3, and 4.  We initially established 

that a polyvalent scaffold does not interfere with the self-assembly of homopolymers 14c 

and 15 with their corresponding small molecule receptors.  Using 1H NMR spectroscopic 

studies, we were able to prove that both polymers 14c and 15 can be quantitatively 

functionalized.  Figure 3.5 shows the 1H NMR spectra for the self-assembly of polymer 

14c with the small molecule 2.  Upon the addition of the dibenzylammonium cation 

2•BarF
- to homopolymer 14c, the fully complexed polymer (2)n•14c forms.  The 

ammonium benzylic signals move to 4.5 ppm from their original position at 4.2 ppm 

(spectra A and C).  In addition, upon the threading of 2 into polymer 14c, the crown ether 

signals move from 4.1 ppm, 3.9 ppm, and 3.8 ppm to 4.0 ppm, 3.6 ppm, and 3.2 ppm, 

respectively, indicating the quantitative complexation of the homopolymer (spectrum C).  

After the addition of excess 2•BarF
- to polymer (2)n•14c, a new signal at 4.2 ppm is 

observed that corresponds to the “free” dibenzylammonium salt.  Moreover, after the 

deprotonation of the dialkylammonium cation 2•BarF
- with triethylamine to form 

dibenzylamine, the benzylic ammonium signals disappear along with the complexed 

crown ether signals, and the original signals are evident (spectrum D).  These results 

clearly demonstrate that self-assembly occurred and that the self-assembly step is 

reversible.  Similar results were found for the self-assembly of 3 with polymer 15.  

 



 

78 

 
Figure 3.5.  1H NMR spectra (500 MHz) representing the self-assembly of polymer 14c 
with 2•BarF

- in CDCl3.  (A) 2•BarF
-, Ha represents benzylic protons;  (B) 14c Ha, Hb, Hg 

represent un-equivalent sets of crown ether protons;  (C) Formation of (2)n•14c upon the 
addition of 1 eq. of 2 to polymer 14c (based on integrations of crown ether / 
dibenzylammonium signals), Ha represents complexed benzylic proton , Ha, Hb, Hg 
represent un-equivalent sets of complexed crown ether protons;  (D) Regeneration of 14c 
after the addition of excess Et3N to polymer (2)n•14c, Hb represents benzylic protons on 
dibenzylamine, Ha, Hb, Hg represent un-equivalent sets of un-complexed crown ether 
protons. 
 

Once the self-assembly of homopolymers 14c and 15 with their small molecule 

receptors was found to be independent of the polymer backbone, the self-assembly 

behavior of block copolymers 18 and 20 were examined.  Two distinct routes for the 

functionalization of copolymers 18 and 20 were investigated, one in which the hydrogen-

bonding step precedes the metal coordination and vice versa.  In the case of both 

copolymers 18 and 20, the self-assembly was independent of the order of 

functionalization.   

The DB24C8 recognition moiety 4 assembles spontaneously with the 

dibenzylammonium cation 2 in aprotic solvents.  The palladated pincer, however, 

requires activation via the addition of silver tetrafluoroborate.  Upon activation, the PdII 

pincer immediately assembles with pyridines such as 5.  The same behavior was observed 
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for both copolymers.  Figure 3.6 shows the 1H NMR spectra of the stepwise self-

assembly of copolymer 18 with 5 and 2•BarF
- and the subsequent stepwise de-

functionalization of copolymer (2)m(5)n•18.  Spectrum B shows the copolymer 18 (shown 

by itself in spectrum A) with pyridine 5 added.  Upon the addition of silver 

tetrafluoroborate, the pincer is activated upon removal of the chloride ligand and pyridine 

5 rapidly coordinates to the pincer receptor to form copolymer (5)n•18 (spectrum C).  

The diagnostic a-pyridyl proton moves upfield to 8.1 ppm, while the Pincer methylene 

arms become sharper and move slightly downfield from about 4.6 ppm to 4.8 ppm. The 

dibenzylammonium cation 2•BarF
- is subsequently added, and the crown ether 

complexation occurs, resulting in the fully functionalized copolymer (2)m(5)n•18 

(spectrum D).  The same characteristic shifts for the complexations of 2•BarF
- with the 

crown ether moiety of 18 as detailed above for the complexation of 2•BarF
- with 14 are 

observed.  The noncovalent assembly can then be reversed in a one-step or step-wise 

manner with the addition of triethylamine and triphenylphosphine.  Triethylamine 

deprotonates the dibenzylammonium cation 2•BarF
- resulting in the formation of 

dibenzylamine, effectively de-threading the crown complexation but leaving the pyridine 

fully assembled to the pincer recognition unit (Spectrum E).  Finally, upon the addition of 

triphenylphospine, the pyridine ligand 5 is quantitatively displaced from the pincer 

complex (Spectrum F).  The decomplexation of 5 and 2•BarF
- from the copolymers is 

evident by the shifting of all signals of 18 in the 1H NMR spectrum back to their original 

position that are detailed in spectrum A.  It is important to note that spectrum F contains a 

variety of signals corresponding to non-coordinated pyridine, coordinated 

triphenylphosphine, dibenzylamine and triethylamine that are all absent in spectrum A.  
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However, all signals characteristic of the uncomplexed 18 are evident in spectrum F.  

These results clearly demonstrate that the functionalization of the recognition units are 

independent of each other and can be addressed in an orthogonal fashion. 

 
Figure 3.6.  1H NMR spectra (500 MHz, 298K) in CD2Cl2

61  showing the stepwise 
functionalization of copolymer 18 with 2 and 5 and the subsequent receptor removal.  (A) 
Copolymer 18, Ha, Hb, Hg represent inequivalent sets of crown ether protons;  (B) 
copolymer 18 and receptor 5, (Ha = a-pyridyl protons);  (C) activation of copolymer 18 
with AgBF4 to form copolymer (5)n•18 (Ha =  a-pyridyl protons on pyridine-pincer 
complex);  (D) fully functionalized copolymer (2)m(5)n•18 after addition of 2•BarF

- to 
(5)n•18, (Ha =  a-pyridyl protons on pyridine-pincer complex), (Ha, Hb, Hg = inequivalent 
sets of complexed  crown ether protons), (Ha = complexed benzylic protons on 2•BarF

-);  
(E) copolymer (2)m(5)n•18 after addition of Et3N, (Ha, Hb, Hg = inequivalent sets of un-
complexed crown ether protons), (Ha = a-pyridyl protons complexed pyridine), (Hb = 
benzylic protons on dibenzylamine).  (F) copolymer (5)n•18 after addition of PPh3, (Ha, 
Hb, Hg = inequivalent sets of un-complexed crown ether protons), (Ha = a-pyridyl protons 
un-complexed pyridine).  

To measure if the bond strengths of the recognition units are independent of each 

other, association constants for all polymers and hydrogen-bonding molecular receptors 

in CHCl3 were obtained using isothermal titration calorimetry (ITC).  The results of these 

experiments are summarized in Table 3.2.  The measured Ka values were determined 
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using a single-site binding model; thus, the association constants are representative of the 

average binding strength of a single side-chain on the polymer, i.e. the binding of each 

receptor unit is treated as an independent recognition event.  In general, our ITC results 

show that our polymeric hydrogen-bonding system results in very high association 

strengths.  The highest association constant (Ka = 2 x 106 M-1) was measured for 

homopolymer 14c upon binding with the dialkylammonium cation 2.  Binding of the 

complementary homopolymer 15 with the small molecule 3 resulted in a slightly lower 

association constant (Ka = 1 x 105 M-1).  Potential reasons for the lowered association 

strength are steric hinderence created by the bound DB24C8 3 along the sites of the 

polymer backbone as well as different solubility behavior of the two homopolymers.  In 

general, hydrogen-bonding association constants for all copolymers were less than the 

association constants of their homopolymer analogs, in part due to differences in 

solubility of the individual blocks of the copolymers in comparison to their homopolymer 

analogs.  However, the hydrogen-bonding binding strengths of both copolymers 18 and 

20 were independent of the metal coordination step.  The association constants measured 

before and after metal-coordination for both polymers were identical within experimental 

error.  These results clearly demonstrate that the two employed recognition units do not 

interfere with each other and that the self-assembly of our copolymers can be executed 

orthogonally.  
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Table 3.2.  Association constants for the hydrogen-bonding interactions in all polymers. 
 

Polymer Ligand Ka (104 M-1) Error (104 M-1) 

14c 2•BarF
- 290 + 54 

15 3 10 + 4 

18 2•BarF
- 40 + 15 

(5)n•18 2•BarF
- 50 + 17 

20 3 9 + 4 

(5)n•20 3 5 + 2 

 
 

3.4 Conclusion  

In this chapter, a next generation supramolecular polymer has been reported that 

possess recognition moieties that assemble with their complementary receptor molecules 

with very high association strengths. We have established that through the employment 

of living polymerization techniques, we can control the architecture of such polymeric 

systems.  In this contribution, we have demonstrated this control by synthesizing block 

copolymers.  Using 1H NMR spectroscopic and ITC studies, we have proven that the self-

assembly of our polymers is quantitative, reversible, and can be achieved in an 

orthogonal fashion.  Our study demonstrates the potential for the employment of such a 

functionalization strategy in polymeric materials.  Generic polymer backbones based on 

such high association constant-based recognition units are a prerequisite for the 

employment of the UPB in materials science and the results presented in this Chapter 

further this goal. 
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3.5 Experimental Section  

 
3.5.1 General Methods  

 
Reagents were purchased either from Acros Organics, Aldrich Company, or 

Strem Chemicals and used without further purification unless otherwise noted.  CH2Cl2 

was dried via passage through copper oxide and alumina columns.  Routine NMR spectra 

were recorded using a 300 MHz (1H, 300 MHz; 13C, 75 MHz) or 500 MHz (1H, 500 MHz; 

13C, 125 MHz) Varian Mercury spectrometer; spectra were referenced to residual proton 

solvent.  The Georgia Tech Mass Spectrometry Facility provided mass spectral analysis 

using a VG-70se spectrometer.  Atlanta Microlabs, Norcross, GA, performed all 

elemental analysis.  Gel-permeation chromatography (GPC) analyses for all polymers 

were carried out using a Waters 1525 binary pump linked to a Waters 2414 refractive 

index detector using HPLC grade CH2Cl2 as the eluting solvent on an American Polymer 

Standards 10 μm particle size, linear mixed bed packing columns (2x). Poly(styrene) 

standards were used to calibrate all GPCs.  Isothermal titration calorimetry (ITC) was 

performed on a Microcal VP-ITC Isothermal Calorimeter.  Degassed, HPLC grade 

solvents were used for all ITC experiments.  

 
 

3.5.2 Synthesis  
 
Dibenzylammonium BArF (2).   

H2
N

BArF
-
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In a degassed flask, NaBArF
62  (380 mg, 0.43 mmol) was added to a solution of 

dibenzylammonium chloride (100 mg, 0.43 mmol) in anhydrous Et2O (10 mL).  The 

mixture was stirred vigorously for four hours and then filtered.  Subsequently, the filtrate 

was evaporated to dryness under reduced pressure to afford the product (450 mg, 99%) as 

a white solid.  1H NMR (CD2Cl2):  = 4.29 (br s, 4H), 7.18 (d, 4H, J = 8.7 Hz), 7.45 (t, 

4H, J = 8.7 Hz), 7.50 (t, 2H, J = 8.7 Hz), 7.52 (br s, 4H), 7.68 (br s, 8H).  13C NMR 

(CD2Cl2):  = 51.4, 117.3, 123.4, 125.5, 128.1, 129.1, 130.2, 131.0, 131.5, 134.6.  MS 

(ESI) for C14H16N: m/z 198.1277, found m/z 198.1386 ([M–BArF]
+, 100%).  Anal. Calcd 

for C48H28BF24N: C, 52.05; H, 2.66; N, 1.32. Found: C, 52.16; H, 2.69; N, 1.44.  

exo-Bicyclo[2.2.1] hept-5-ene-2-carboxylic acid 10-hydroxy-decyl ester (7).  

O

O(CH2)10OH
 

exo-Bicyclo[2.2.1] hept-5-ene-2-carboxylic acid (2.6 g, 19 mmol) and decane-

1,10 diol (9.9 g, 57 mmol) were dissolved in anhydrous CH2Cl2 (25 mL) under an argon 

atmosphere.  To the stirred solution, DCC (3.92 g, 19 mmol) in CH2Cl2 (5 mL) and 

DMAP (catalytic amount) were added at 25 °C.  Following stirring at reflux for twelve 

hours, the mixture was cooled to room temperature, and the precipitate was filtered off.  

The filtrate was dried (MgSO4) and the solvent removed under reduced pressure to give a 

yellow oil that was further purified by column chromatography (SiO2, eluant: 3:1 

hexanes/EtOAc) to yield a clear oil (3.35 g, 60%).  1H NMR (CDCl3):  = 6.12 (m, 2H), 

4.07 (t, 2H, J = 6.6 Hz), 3.63 (t, 2H, J = 6.6 Hz), 3.03 (m, 1H), 2.92 (m, 1H), 2.21 (m, 

1H), 1.91 (m, 1H) 1.67-1.50 (m, 5H) 1.43-1.24 (m, 15H).  13C NMR (CDCl3):  = 176.6, 

138.3, 136.0, 64.8, 63.2, 46.8, 46.6, 43.4, 41.9, 33.0, 30.5, 29.7, 29.7, 29.6, 29.4, 28.9, 
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26.1, 25.9.  MS (ESI+): m/z = 295.2 (M+1).  Anal. Calcd for C18H30O3: C, 73.43; H, 

10.27. Found: C, 72.99; H, 10.29.  

exo-Bicyclo[2.2.1] hept-5-ene-2-carboxylic Acid 9-carboxy-nonyl Ester (8). 

O

O(CH2)9COOH
 

Compound 7 (2.27 g, 7.77 mmol) and PDC (17.13 g, 46.64 mmol) were dissolved 

in DMF (50 mL) and stirred at room temperature for 48 hours.  Water (20 mL) was added 

and the mixture was extracted with Et2O (3 x 15 mL).  The combined organic layers were 

washed with H2O (2 x 20 mL) and dried (MgSO4).  The solvent was removed under 

reduced pressure to give a brown oil that was further purified by column chromatography 

(SiO2, eluant: 2:1 hexanes/EtOAc) to yield a clear oil (1.89 g, 80%).  1H NMR (CDCl3):  

=  6.12 (m, 2H), 4.07 (t, 2H, J = 6.6 Hz), 3.03 (m, 1H), 2.92 (m, 1H), 2.35 (t, 2H, J = 7.7 

Hz), 2.20 (m, 1H), 1.90 (m, 1H), 1.63 (m, 4H), 1.53 (d, 1H, J = 8.3 Hz), 1.39-1.26 (m, 

13H).  13C NMR (CDCl3):  = 180.3, 176.7, 138.3, 136.0, 64.8, 46.8, 46.6, 43.4, 41.9, 

34.3, 30.5, 29.5, 29.4, 29.2. 28.9, 26.1, 24.9.  MS (ESI+): m/z = 309.2 (100), 617.5 (25, 

dimer).  Anal. Calcd for C18H28O4: C, 70.10; H, 9.15. Found: C, 69.87; H, 9.06.   

 

exo-Bicyclo[2.2.1] hept-5-ene-2-carboxylic acid 9- (2,5,8,11,18,21,24,27-octaoxa-

tricyclo[26.4.0.012,17]-dotriaconta-1(32), 12(17), 13, 15, 28, 30-hexaen-14-yl-

methoxycarbonyl)-nonyl ester (12).   
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O

O(CH2)9

O

O

O

O O

O

O

OO

O

 

Compound 8 (0.38 g, 1.23 mmol) and compound 10 (0.59 g, 1.23 mmol) were 

dissolved in anhydrous CH2Cl2 (25 mL) under an argon atmosphere.  To the stirred 

solution, DCC (0.3 g, 1.45 mmol) in CH2Cl2 (5 mL) and DMAP (catalytic amount) were 

added at 25 °C.  Following stirring at reflux for twelve hours, the mixture was cooled to 

room temperature, and the precipitate was filtered off.  The filtrate was dried (MgSO4) 

and the solvent removed under reduced pressure to give a yellow oil that was further 

purified by column chromatography (SiO2, eluant: EtOAc) to yield a white solid (0.86 g, 

90%).  1H NMR (CDCl3):  = 6.90 – 6.81 (m, 7H), 6.12 (m, 2H), 5.00 (s, 2H), 4.15 (t, 

7H, J = 4.4 Hz), 4.07 (t, 2H, J = 7.2 Hz), 3.92 (t, 7H, J = 4.4 Hz), 3.83 (m, 7H), 3.03 (m, 

1H), 2.92 (m, 1H), 2.32 (t, 2H, J = 7.2 Hz), 2.20 (m, 1H), 1.91 (m, 1H), 1.71-1.51 (m, 

8H), 1.40-1.25 (m, 12 H).  13C NMR (CDCl3):  = 176.0, 174.0, 149.1, 149.0, 138.3, 

136.0, 129.3, 121.9, 121.6, 114.5, 114.2, 113.8, 71.6, 71.5, 70.2, 70.1, 69.7, 69.6, 66.3, 

64.8, 46.8, 46.6, 43.4, 41.9, 34.6, 34.2, 30.5, 29.5, 29.4, 29.3, 28.9, 26.1, 25.9, 25.2, 25.1.  

MS (FAB+): m/z = 768.5 (30), 154.2 (100).  Anal. Calcd for C43H60O12: C, 67.17; H, 7.87. 

Found: C, 66.93; H, 7.90.   

exo-Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 9-{3-[(benzyl-tert-butoxycarbonyl-

amino)-methyl]-benzyl oxycarbonyl}-nonyl ester (11).   

O

O(CH2)9

O

O
N
Boc
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Compound 8 (0.76 g, 2.5 mmol) and compound 9 (0.95 g, 2.90 mmol) were 

dissolved in anhydrous CH2Cl2 (25 mL) under an argon atmosphere.  To the stirred 

solution, DCC (0.60 g, 2.75 mmol) and DMAP (catalytic amount) were added at 25 °C.  

Following stirring at reflux for twelve hours, the mixture was cooled to room 

temperature, and the precipitate was filtered off. The filtrate was dried (MgSO4) and the 

solvent removed under reduced pressure to give a yellow oil that was further purified by 

column chromatography (SiO2, eluant: 3:1 Hexanes: EtOAc) to yield a clear oil (1.38 g, 

90%).  1H NMR (CDCl3):  = 7.33-7.21 (m, 9H), 6.12 (m, 2H), 5.1 (s, 2H), 4.41 (s, 2H), 

4.33 (s, 2H), 4.07 (t, 2H, J = 6.6 Hz), 3.03 (m, 1H), 2.91 (m, 1H), 2.35 (t, 2H, J = 7.15 

Hz), 2.20 (m, 1H), 1.91 (m, 1H), 1.71-1.58 (m, 4H), 1.49 (s, 9H), 1.40-1.23 (m, 13H).  

13C NMR (CDCl3):  = 176.7, 174.0, 156.4, 138.4, 136.2, 135.6, 128.9, 128.8, 128.4, 

128.0, 127.7, 80.54, 66.21, 64.9, 49.2, 47.0, 46.8, 43.6, 42.0, 34.7, 30.7, 29.7, 29.56, 

29.55, 29.5, 29.4, 29.1, 28.9, 26.3, 25.3.  MS (ESI+): m/z = 618.5 (50).  Anal. Calcd for 

C38H51NO6: C, 73.87; H, 8.32; N, 2.27. Found: C, 73.87; H, 8.34; N, 2.36.   

General Polymerization Procedure.  An amount of monomer was weighed into 

a glass vial with a rubber septum cap, placed under an Argon atmosphere and dissolved 

in anhydrous, degassed CD2Cl2 or CDCl3 (1 mL per 100 mg of monomer).  A stock 

solution of the catalyst (in the corresponding solvent) was prepared, and the desired 

volume of solution was added to the polymerization vessel.  Upon complete 

polymerization, ethyl vinyl ether was added to quench the polymerization.  The polymer 

was isolated and purified by repeated precipitations into cold hexanes or MeOH.  

Polymer 14.  
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O
O(CH2)9

O

O

n

O

O O

O

O

OO

O

 

1H NMR (CDCl3):  = 6.90-6.78 (m, 7H), 5.42-5.10 (br m, 2H), 5.00 (s, 2H), 4.17 

(m, 7H), 4.05 (br m, 2H), 3.90 (m, 7H), 3.80 (m, 7H), 2.8-2.4 (br m, 4H), 2.25 (br t, 2H, J 

= 7.4 Hz), 2.2-1.45 (m, 8H), 1.40-1.00 (m, 12H).  13C NMR (CDCl3):  = 176.2, 173.9, 

149.1, 149.0, 129.4, 121.9, 121.7, 115-113, 72.9, 71.5, 71.4, 70.2, 70.1, 69.7, 69.6, 66.3, 

64.7, 49.4, 34.5, 34.2, 29.6, 29-28, 26.1, 25.8, 25.1.  Anal. Calcd for 14c: C, 76.17; H, 

7.87. Found: C, 66.45; H, 8.14. 

Polymer 13.  

O
O(CH2)9

O

O

n

N
Boc

 

1H NMR (CDCl3):  = 7.41-7.03 (m, 9H), 5.36-5.25 (m, 2H), 5.12 (s, 2H), 4.43 (s, 

2H), 4.33 (s, 2H), 4.00 (br t, 2H, J = 6.5 Hz), 2.72-2.51 (m, 2H), 2.35 (t, 2H, J = 7.5 Hz), 

2.10-1.86 (br m, 2H) 1.60 (m, 4H), 1.50 (s, 9H), 1.47-1.27 (m, 13).  13C NMR (CDCl3):  

= 173.9, 168.1, 156.3, 152.2, 138.5, 135-127, 99.8, 86.8, 80.5, 68.6, 66.2, 64.8, 64.0, 

61.0, 39.2, 34.7, 31.31, 31.26, 30.8, 29.7, 29.6, 29.3, 29.11, 28.8, 26.3, 25.3, 24.2, 23.4, 

20.4.  Anal. Calcd for 13c: C, 73.87; H, 8.40; N, 2.27. Found: C, 73.79; H, 8.40, N, 2.31. 

Polymer 15.   
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O
O(CH2)9

O

O H2
N

PF6
-

n

 

Polymer 13 (0.53 g, 0.85 mmol) was dissolved in anhydrous CH2Cl2 (4 mL) under 

an Argon atmosphere and TFA (1.0 mL, 13.51 mmol) was added.  The mixture was 

stirred for three hours at room temperature.  The solvent was removed under reduced 

pressure to yield the poly(DBA-TFA salt) (0.52 g, 96% yield).  The resulting TFA salt 

(88 mg, 0.14 mmol) was dissolved in CH2Cl2 (10 mL) and NH4PF6 (2.3 g, 14 mmol) was 

added.  The solution was stirred for three hours at room temperature to complete the ion 

exchange.  An excess of CH2Cl2 was added and the mixture was washed with H2O (2 x 20 

mL).  The organic layer was dried (MgSO4) and the solvent was removed under reduced 

pressure to yield the title compound as a brown oil (85 mg, 93%).  1H NMR (CDCl3):  = 

9.10 (br s, 2H), 7.43-6.85 (m, 9H), 5.45-5.10 (m, 2H), 5.00 (s, 2H), 4.15-3.80 (m, 6H), 

3.20-2.20 (m, 5H), 2.19-1.40 (4H), 1.40-1.10 (m, 14H).  13C NMR (CDCl3):  = 174.0, 

168.2, 156.4, 152.0, 138.5, 134-131, 99.8, 87.0, 80.6, 68.6, 66.2, 64.8, 64.0, 65.0, 61.1, 

39.1, 34.7, 31.31, 31.25, 30.8, 29.6, 29.3, 28.8, 26.2, 25.3, 24.2, 23.4, 20.4. 

Copolymer 18.   

O
O(CH2)11O

PhS

PhS

PdCl
O

O(CH2)9

O

O

O

O O

O

O

OO

O
n m

 

1H NMR (CDCl3):  = 7.80 (m, 4H, SPh), 7.38 (m, 6H, SPh), 6.85 (m, 7H), 6.49 

(s, 2H), 5.50-5.18 (m, 4H), 5.00, (s, 2H), 4.50 (br s, 4H), 4.17 (m, 7H), 4.05 (br m, 4H), 
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3.90 (m, 7H), 3.80 (m, 9H), 2.80-2.40 (br m, 4H), 2.25 (t, 2H, J = 7.0 Hz), 2.15-1.90 (br 

m, 4H), 1.80-1.40 (br m, 7H), 1.40-1.00 (br m, 34H).  13C NMR (CDCl3):  = 176.2, 

176.1, 173.9, 157.2, 151.7, 150.3, 149.1, 149.0, 140.0, 134-131, 130.0, 129.4, 121.9, 

121.6, 114.5, 114.3, 113.8, 110.4, 109.0, 90.5, 86.6, 71.5, 70.2, 70.1, 69.7, 69.6, 68.3, 

66.3, 64.7, 57.8, 51.9, 49.8, 49.4, 47.9, 42.2, 36.6, 34.5, 34.2, 29.8, 29.5, 28.9, 26.3, 26.1, 

25.9, 25.2, 24.9.  Anal. Calcd for 18: C, 63.81; H, 6.94. Found: C, 64.19; H, 7.27. 

Copolymer 19.  

m

O
O(CH2)9

O

O

N

n

O
O(CH2)11O

PhS

PhS

PdCl Boc

 

1H NMR (CDCl3):  = 7.85 (m, 4H), 7.40-7.10 (m, 13H), 6.55 (s, 2H), 5.45-5.13 

(m, 4H), 5.10 (s, 2H), 4.53 (br s, 4H), 4.40 (m, 4H), 4.05 (m, 4H), 3.85 (br t, 2H, J = 6.6 

Hz), 2.80-2.45 (m, 6H), 2.35 (t, 2H, J = 7.6 Hz), 2.10-1.85 (m, 6H), 1.80-1.55 (m, 18H), 

1.50 (s, 9H), 1.49-1.10 (m, 22H).  13C NMR (CDCl3):  = 173.9, 168.1, 157.4, 156.4, 

152.2, 151.9, 150.5, 135-127, 109.2, 99.8, 86.8, 80.5, 68.6, 66.2, 64.9, 64.0, 61.0, 58.8, 

52.1, 39.2, 34.7, 31.3, 31.2, 30.8, 29.9, 29.7, 29.6, 29.3, 29.1, 28.8, 26.5, 26.3, 25.3, 24.2, 

23.4, 20.4.  Anal. Calcd for 19: C, 66.65; H, 7.12; N, 1.01. Found: C, 64.96; H, 7.12; N, 

0.83. 

Copolymer 20.   

O
O(CH2)9

O

O H2
N

PF6

n

O
O(CH2)11O

PhS

PhS

PdCl

m
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The block copolymer 20 was prepared analogously to Polymer 15.  1H NMR 

(CDCl3):  = 9.00 (s, 2H), 7.85 (m, 4H), 7.40 (m, 13H), 6.60 (s, 2H), 5.40-5.10 (m, 4H), 

5.00 (s, 2H), 4.60 (m, 4H), 4.30 (m, 4H), 4.10 (m, 4H), 3.90 (br t, 2H, J = 6.6 Hz), 2.80-

2.40 (m, 6H), 2.30 (t, 2H, J = 7.5 Hz), 2.10-1.80 (m, 6H), 1.75-1.51 (m, 18H), 1.40-1.10 

(m, 22H).  13C NMR (CDCl3):  = 174.5, 173.8, 168.2, 156.8, 156.2, 152.2, 151.3, 150.0, 

138.4, 134-127, 108.7, 99.8, 86.8, 80.5, 68.7, 67.9 66.2, 65.0, 64.2, 64.0, 61.0, 68.6, 51.3, 

47.5, 45.3, 40.0, 39.1, 37.3, 36.0, 30.8, 30.1, 29.3, 24.2, 23.4.  
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CHAPTER 4 
 

Functionalization of Random Terpolymers through Molecular Recognition 
 
 
 

4.1 Abstract  
 

Random poly(norbornene)-based terpolymers containing Sulfur-Carbon-Sulfur 

(SCS) palladated pincer complexes, dibenzo[24]crown-8 (DB24C8) rings,  and 

diaminopyridine moieties were synthesized by ring-opening metathesis polymerization.  

Examination of the kinetics of the polymerization led to the conclusion that the 

polymerization of a statistical mixture of the three monomers results in the formation of 

random terpolymers.  The terpolymers have molecular weights between 30,000 to 50,000 

Daltons, with polydispersity indices ranging form 1.3 - 1.5, as determined by gel-

permeation chromatography.  Side-chain functionalization of these terpolymers was 

achieved by self-assembling (i) pyridines to the palladated pincer complexes, (ii) 

dibenzylammonium ions to the DB24C8 rings, and (iii) thymines to the diaminopyridine 

receptors.  1H NMR spectroscopy was used to monitor the self-assembly processes and 

revealed that all self-assembly steps were fast and near quantitative.  Isothermal titration 

calorimetry was employed to determine the association constants for the individual 

noncovalent functionalization steps.  For all the self-assembly steps, the association 

constants were unaffected by neighboring functionalities on the polymer backbone 

demonstrating orthogonality in the recognition expressed by the three pairs of recognition 

site.  
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4.2 Introduction  
 

The previous chapter outlined strategies to functionalize architecturally controlled 

block copolymers through molecular recognition. While various materials and polymer 

applications require block or architecturally controlled copolymers, many of these 

applications also require the use of more than two functional groups along the side-chains 

of the polymer. Thus, a similar approach to the one outlined in Chapter 3 is applied here 

to terpolymers.  

Highly functionalized random terpolymers are desirable synthetic targets for a 

large variety of biological and electronic applications.  In the context of biomaterials, 

terpolymers have been studied as potential drug carriers.1  Terpolymers have also been 

used as cross-linking materials,2  in curing applications,2  and as molecular switches.3  

Recently, Krzysztof et al. reported “smart” polymeric nanospheres produced from 

random terpolymers that change their conformation in response to light exposure in 

solution.3  Moreover, terpolymers are candidates for solution processable materials, such 

as photorefractive devices that require three components in order to become operational.4   

Despite the importance of terpolymers in materials science, synthetic strategies to 

produce such materials are cumbersome and time-consuming since they have relied 

exclusively to date on covalent approaches.  A more modular approach would be to 

employ noncovalent synthesis which has been shown5-7  to be an efficient tool in the 

formation of supramolecular materials.9,10 In this chapter, the complexity of our approach 

is extended to produce an efficient strategy for the functionalization of random 

terpolymers using molecular recognition.  
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A requirement for the successful noncovalent functionalization of terpolymers is 

the selection of three molecular recognition motifs that can be assembled independently 

with their corresponding substrates.  In  two-component polymeric system10 described in 

Chapter 3 that was based on metal coordination and hydrogen bonding, we have shown 

that the two self-assembly events occur in an orthogonal manner.  However, in a two-

component system in which both the noncovalent functionalizations are based on 

hydrogen bonding, we found that competition between the different recognition motifs 

exists.9  Thus, in order to achieve site-specific, non-competitive, noncovalent 

functionalization of terpolymers, we designed a polymeric scaffold bearing three 

independent receptors that can be functionalized using metal coordination, 

pseudorotaxane formation, and hydrogen bond arrays.  A graphical representation of the 

noncovalent functionalization strategy is shown in Figure 4.1.  This approach towards 

terpolymer synthesis provides an attractive alternative to traditional terpolymer 

functionalization strategies based on covalent synthesis.  It is an approach that (1) allows 

for rapid side-chain modification, (2) avoids lengthy post-polymerization purification 

steps, and (3) is reversible and therefore amenable to the rapid optimization of materials.  

 
 

 

Figure 4.1. Diagram depicting noncovalent terpolymer functionalization.  
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The metal coordination unit we have employed is based on the palladated Sulfur-

Carbon-Sulfur (SCS) pincer complex.11-13 Secondly, pseudorotaxane formation, based on 

the threading of dibenzylammonium ions into dibenzo[24]crown-8 (DB24C8) rings, is 

employed.14-23 The third noncovalent recognition motif is based on the diaminopyridine 

and thymine donor-acceptor-donor hydrogen bonding recognition pair that has already 

been used extensively in supramolecular polymer science.5,10,13,24-26  The combination of 

these three recognition motifs along an architecturally controlled polymer backbone 

allows for fast and precise site-specific functionalization with a limited number of 

purification steps.  

 
 

4.3 Results and Discussions  
 
 
4.3.1 Polymer Synthesis  
 

The terpolymers are based on norbornene monomers 1-3 bearing recognition 

motifs suitable for subsequent noncovalent modification.  The synthesis and 

homopolymerization behavior by ring-opening metathesis polymerization (ROMP) of the 

three individual monomers have been reported before.13,27  All terpolymers were 

synthesized according to Scheme 4.1 using the ruthenium initiator 4, with varying 

amounts of monomers 1-3 resulting in terpolymers with varying densities of each 

recognition motif expressed along the polymer backbone.  The recognition unit density 

was varied in order to determine if the orthogonality of the noncovalent functionalization 

strategy is dependent on the individual functional group densities along the polymer 

backbone.  The molecular weights of all the terpolymers were determined using gel-

permeation chromatography (GPC).  Controlled molecular weights were observed for all 
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polymers regardless of the monomer feed ratios.  GPC traces of all the terpolymers 

revealed monomodal distributions, ruling out the possibilities of homopolymerizations.  

Additionally, polydispersity indices (PDIs) ranged from 1.3-1.5 (Table 4.1) indicating 

well-behaved copolymerizations.  
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Scheme 4.1. Terpolymer Synthesis; a(a) CH2Cl2, 4 h, 25 ºC; (b) ethyl vinyl ether, 10 min. 
Ph- and EtO- end groups are omitted for clarity.  

 
 

Table 4.1. GPC Data for Terpolymers: solvent, DCM 

 
Terpolymer Mn Mw PDI 

5a 42,500 56,000 1.32 

5b 32,400 44,700 1.38 

5c 30,600 43,600 1.42 

5d 31,400 44,400 1.41 

5e 21,200 30,000 1.42 

5f 30,700 44,600 1.45 

5g 30,000 41,500 1.38 
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The statistical nature of the resulting terpolymers was examined on the basis of 

the polymerization kinetics of individual monomers as well as from the point of view of 

the terpolymerization kinetics.  The rate of the polymerization for the DB24C8 monomer 

3 was determined by in situ 1H NMR spectroscopy and then compared to the previously 

measured rates of polymerization for the monomers 1 and 2.13  The polymerization of a 

20:1 ratio of monomer 3 to initiator 4 was complete after 20 minutes as indicated by the 

shift of the norbornene olefin signals originating from  = 6.17 ppm (monomer) to  = 

5.38 ppm (polymer).  Figure 4.2 displays the kinetic plot for percentage conversion with 

time (top) and the corresponding logarithm plot (bottom) used to calculate the rate 

constant for the polymerization of monomer 3 in CHCl3, using ruthenium initiator 4.   

 
 

 

Figure 4.2. Polymerization conversion of monomer 3 over time (top); corresponding 
logarithmic plot (bottom). 
 



 

103 

 
The pseudo-first order rate constant for the polymerization of monomer 3 with 

[M] = 0.222 M and [I] = 0.0111 M was found to be 5.0 x 103 s-1, a value which is 

comparable to the rate constants for the homopolymerizations of pincer monomer 1 (6.27 

x 103 s-1) and diaminopyridine monomer 2 (6.51 x 103 s-1).13  In addition, the in situ 

monitoring of terpolymerization by 1H NMR spectroscopy revealed that all three 

monomers had undergone copolymerization within 20 minutes.  Taking into account the 

fact that the polymerizable moiety for all three monomers is the same, these results prove 

that the copolymerization proceeded randomly instead of in a block copolymerization. 

 
 

4.3.2 Molecular Recognition Studies  
 

Terpolymers 5a-g used in this study are capable of undergoing molecular 

recogntion with their complementary substrates 6-8, shown in Figure 4.3.  The DB24C8 

recognition moiety undergoes high-yielding pseudorotaxane formation with the 

dibenzylammonium ions 6-H•BArF.  The BArF anion increases the binding affinity of the 

dibenzylammonium ion for the DB24C8 ring by forming a weakly associating salt with 

the ion, thereby increasing the charge density around the ammonium center.  Pyridine (7) 

was chosen as the ligand for coordination with the Pd pincer complex because the 

coordination event can be characterized easily by 1H NMR spectroscopy.10  Finally, N-

butylthymine (8) was chosen as the complementary substrate for the diaminopyridine 

receptor (2) because of the ease of characterizing the complex formed10  and the increase 

in solubility compared to non-functionalized thymines.  
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Figure 4.3. Substrates loaded onto terpolymers.  
 
 

Scheme 4.2 shows the step-wise functionalization of terpolymer 5a.  First, one 

equivalent of pyridine (7) is added relative to the amount of Pd pincer complex in the 

terpolymer 5a, followed by the addition of 1 equiv of AgBF4.  Upon the formation of the 

cationic12-13 Pd species, i.e. the availability of an open coordination site on the Pd, the 

pyridine unit coordinates rapidly to the Pd-pincer complex, forming the monofunctional 

terpolmer {5a•(7•BF4)n}
n+.  Subsequently, the dibenzylammonium salt 6-H•BArF is 

added to terpolymer {5a•(7•BF4)n}
n+, and pseudorotaxane formation ensues, forming the 

bifunctional {5a•[(6-H•BArF)(7•BF4)]n}
2n+.  Finally, after the addition of N-butylthymine 

(8) to terpolymer {5a•[(6-H•BArF)(7•BF4)]n}
2n+, the trifunctional terpolymer {5a•[(6-

H•BArF)(7•BF4)(8)]n}
2n+, is obtained.   
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Scheme 4.1. Noncovalent terpolymer functionalizatition: (a) 7, AgBF4;  (b) 6-H• BArF;  
(c) 1.5 eq. of 8 (solvent = CD2Cl2). 

 

Proton NMR spectroscopy was used to monitor the self-assembly processes.  

Figure 4.4A shows the 1H NMR spectrum of terpolymer 5a, while Figure 4B shows a 

mixture of terpolymer 5a and pyridine (7) which are present in a 1:1 ratio with the pincer 

complexes present along the terpolymer.  Initially, no signal shifts are observed after the 

addition of pyridine 7 to 5a.  Subsequently, after the addition of AgBF4 to the mixture, 7 

coordinates quantitatively to the Pd centers to form the monofunctional terpolymer 

{5a•(7•BF4)n}
n+ (Figure 4.4C).  The coordination of the pyridine ligands to the terpolymer 

5a is reflected in the characteristic upfield shift of the -pyridyl signal (Hb) from  = 8.59 

ppm to  = 8.14 ppm.28  In addition to this diagnostic shift of the -pyridyl proton signals, 

the signal of the methylene arms on the pincer (labeled Ha in Figure 4.4) sharpens and 

shifts downfield (Figure 4C) from  = 4.62 ppm to  = 4.75 ppm.  Furthermore, after the 
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addition of 1 equiv of 6-H•BArF to the monofunctional terpolymer {5a•(7•BF4)n}
n+, 

pseudorotaxane formation ensues, and the bifunctional terpolymer  {5a•[(6-

H•BArF)(7•BF4)]n}
2n+ forms (Figure 4.4D).  The threading event results in diagnostic 

shifts of numerous of proton resonance signals in the 1H NMR spectrum (Figure 4.4D).  

The signals of the , , and  protons in the DB24C8 ring shift upfield from  = 4.18, 

3.88, and 3.79 ppm to  = 4.13, 3.85, and 3.41 ppm, respectively.  Moreover, the benzylic 

methylene protons (labeled Hc in Figure 4.4) adjacent to the ammonium center appear at 

 = 4.62 ppm, indicating that the dibenzylammonium ions are encircled by the DB24C8 

rings.29  Furthermore, upon pseudorotaxane formation, a slight upfield shift of the -

pyridyl signal from  = 8.14 to 7.99 ppm and a downfield shift of the pincer methylene 

protons from  = 4.74 to 4.65 ppm occurs (Figure 4.4D).  These shifts are indicative of a 

stronger coordinative bond between the pyridine ligand and the pincer complex,28  a 

situation which is presumably a result of BF4
- / BArF

- counterion exchange, since  the 

nature of the outer-sphere anion present in Pd-pincer complexes has been shown to create 

conformational changes in the coordinated ligand, thereby affecting its magnetic 

environment.30  To verify this hypothesis, control experiments on homopolymer 1 were 

carried out in which NaBArF and/or dibenzylammonium BArF were added to the polymer 

after the coordination of 7.  In both cases, upfield shifts of the -pyridyl signals and 

downfield shifts of the pincer methylene proton signals were observed.  These shifts are 

analogous to the shifts observed during the noncovalent terpolymer functionalization.  

These results indicate that counterion exchange occurs along the polymer backbone 

during functionalization.  However, such an exchange does not interfere with the integrity 
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of the Pd-pyridine bond during the formation of pseudorotaxanes, proving the 

orthogonality of these two noncovalent interactions along the terpolymers.   

Finally, in order to obtain the fully loaded functional terpolymer {5a•[(6-

H•BArF)(7•BF4)(8)]n}
2n+, 1 equiv of N-butylthymine (8) is added to the bifunctional 

terpolymer {5a•[(6-H•BArF)(7•BF4)]n}
2n+. The 1H NMR spectrum (Figure 4.4F) of the 

resulting functional terpolymer {5a•[(6-H•BArF)(7•BF4)(8)]n}
2n+  (Figure 4.4E-F) shows 

a downfield shift of the imide signal of N-butylthymine from  = 9.40 ppm to  = 10.81 

ppm (Figure 4.4E-F).  Moreover, the amide signals of the diaminopyridine units, which 

were not resolved in the bifunctional terpolymer {5a•[(6-H•BArF)(7•BF4)]n}
2n+, appear 

(Figure 4.4F) characteristically24  upon hydrogen bonding at  = 9.85 ppm (Figure 4.4F).  

Consequently, the 1H NMR spectroscopic studies reveal that the step-wise terpolymer 

functionalization is achieved without affecting the molecular recognition of the next 

receptor.  Analogous chemical shifts upon the stepwise functionalization of all the 

terpolymers, i.e. 5b-g, were observed in the 1H NMR spectra.  
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Figure 4.4.  1H NMR spectra (500 MHz) with the corresponding legend depicting the 
self-assembly of terpolymer 5a in CD2Cl2 at 25 °C.  (A) Terpolymer 5a;  (B) terpolymer 
5a with 1 equiv of pyridine (7) (not assembled);  (C) monofunctional terpolymer 
{5a•(7•BF4)n}

n+
  (after the addition of AgBF4 to the mixture of 5a and 7);  (D) 

bifunctional terpolymer {5a•[(6-H•BArF)(7•BF4)]n}
2n+ (after the addition of 6-H•BArF to 

{5a•(7•BF4)n}
n);  (E) reference spectra of N-butylthymine (8);  (F) fully trifunctionalized 

terpolymer {5a•[(6-H•BArF)(7•BF4)(8)]n}
2n+ after the addition of 1.5 equiv of 8 to 

{5a•[(6-H•BArF)(7•BF4)]n}
2n. 
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Isothermal titration calorimetry (ITC) was attempted to determine the relative 

binding affinities for the three different self-assembly processes.  The single-site binding 

constant for a ligand X binding to a polymer is given by the equation, Ka = [unfilled 

sites]/([filled sites][X]).31  Each binding event along the terpolymer is therefore treated as 

independent, and apparent single-site association constants can be calculated using the 

thermodynamic parameters obtained from ITC measurements. Using this analysis, a 

single site association constant can be calculated from integrated heats of injection and an 

appropriate fit line. An example ITC isotherm with fitted heats of injection is shown in 

Figure 4.5. It is apparent from the isotherm that a strong binding event is occurring upon 

the titration of 6-H BArF into terpolymer 5a. If the first seven heats of injection are 

excluded, a single site association constant of 2 x 105 M-1 is obtained. On the other hand, 

if the first seven injections are included in the calculation, a best fit line is obtained 

assuming a two-site association model, with K2 = 1.9 x 105 M-1 ~ K from the single 

association model (Figure 4.6). In either model, however, the heats of injection do not 

stabilize at the conclusion of the titration. Thus, the observed endothermic effect (Figures 

4.5-4.6) could be occurring throughout the titration. This possibility makes our ITC data 

for the stronger binding components of the terpolymer largely inconclusive, regardless of 

the model fit. Such an endothermic effect was not observed in the case of the weaker 

binding event between n-butyl thymine and the terpolymers. An example ITC  isotherm 

probing this binding event is shown in Figure 4.7; the remaining binding constants for the 

weaker binding event are shown in Table 4.2.   
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Figure 4.5. Raw ITC Isotherm (top) and fitted heats of injection (bottom); note that the 
first seven heats were excluded from this calculation. Ka = 2 x 105 M-1 
  

 

Figure 4.6. Raw ITC Isotherm (top) and fitted heats of injection (bottom) assuming a 
two-site association model; K2 = 1.9 x 105 M-1 
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Figure 4.7. Raw ITC Isotherm (top) and fitted heats of injection (bottom) assuming a 
single-site association model for the titration of the thymine substrate into terpolymer 5g; 
Ka = 1.3 x 103 M-1 
 

 

For terpolymers 5a-g, the Ka value for coordinating pyridine (7) to the Pd-pincer 

complexes was found to be larger than 109 M-1.  Upon the titration of pyridine (7) into 

terpolymers 5a-g, a heat saturation curve was observed, indicating the upper sensitivity 

level (> 109 M-1) on the ITC instrument has been reached.  Strong binding isotherms are 

also observed upon the titration of 6-H•BArF with the terpolymers 5a-g. In all cases, the 

binding of the dibenzylammonium ion of the salt 6-H•BArF with the DB24C8 rings on 

the terpolymers resulted in very tight binding, indicating near quantitative 

functionalization.   
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Table 4.2. Association Constants measured by ITCa 

 
Terpolymer  Ka

b (M-1) 

5a  1,600 

5b  1,520 

5c  1,760 

5d  1,650 

5e  1,440 

5f  1,260 

5g  1,400 

{5a•[(6-H•BArF)(7•BF4)]n}
2n+  1,570 

aValues determined in CH2Cl2 at 298 K; bKa for the complexation with 8. 
 
 

Nonetheless, given that association constants retrieved from binding isotherms 

resulting from the titration of 6-H•BArF  into terpolymers may be inconclusive given a 

background endothermic reaction, we attempted to establish a lower limit of binding for 

this process using an independent method. A precedent for establishing lower limits of 

binding has been established by Wilcox and coworkers.32 The experiment involves 

making a 1:1 complex of the substrate: receptor pair and monitoring the chemical shift of 

a diagnostic proton resonance as the 1:1 complex is diluted. In simple terms, if the 

diagnostic proton resonance in question does not shift toward the corresponding 

resonance value of the same proton on the free species at a given dilution, then one can 

say that the association constant is above the inverse of the solution concentration. More 

precisely, however, the Kd value can be accurately determined by fitting a plot of obs of 
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the diagnostic proton versus the solution concentration of the 1:1 complex to Equation 

4.1.  

 
 

Equation 4.1.  

 

 
 

Thus, an experiment was carried out in  CDCl3 in which terpolymer 5c (chosen 

because of greater density of DB24C8 on the backbone) and 6-H•BArF were mixed in a 

1:1 ratio and monitored by 1H NMR spectroscopy. The best diagnostic proton was 

determined to be Hc (Figure 4.4) on the dibenzylammonium cation. The s value, or the 

resonant frequency of this proton on the free cation was determined to 4.14 ppm, whereas 

the  value, or the difference in ppm( ) between the proton resonance on the bound and 

unbound species, was determined to be 0.44 ppm. Spectra were taken starting from an 

intitial Co value of 7 x 10-3 M-1 until a concentration of approximately 10-5 M-1 was 

reached, after which point resonance signals could not be resolved on a 500 MHz 

instrument. The results are plotted in Figure 4.8 along with a theoretical plot for an 

association constant of 105 M-1 based on Equation 4.1. The results strongly indicate that 

the association constant for this system is at least 105 M-1 not only because the complexed 

species diagnostic resonance does not shift toward to the unbound resonance value, but 

also because the plot clearly shows a divergence from the theoretical plot and the 

observed results. In other words, since diagnostic resonances shown in Figure 4.8 do not 

shift upfield during the course of the dilution (as would be expected with an association 

constant as low as 105 M-1), it can be reasonably concluded that this system associates at a 
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value greater than or equal to 105 M-1. Likewise, since our ITC experiments showed no 

major difference in association constants between terpolymers 5a-g, we can reasonably 

conclude that the association constant for all terpolymers binding with  6-H•BArF is at 

least 105 M-1. The NMR spectra used to obtain these results are shown in Figure 4.9.  

 

 

Figure 4.8. NMR titration experiment in which 6-H•BArF :5c was diluted and chemical 
shifts were monitored.  
 
 

 

 

 

 



 

115 

 

Figure 4.9. Partial stacked 
1
H NMR spectra acquired through dilution experiment. 
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Lower Ka values are observed for the self-assembly process between 8 and the 

diaminopyridines on the terpolymers.  For this self-assembly process, association 

constants ranging from 1,400 M-1 to 1,700 M-1 with only slight changes in association 

constants between terpolymers 5a-g were measured.  The small changes observed are 

within the experimental error limits suggesting that the Ka value for the hydrogen 

bonding event is independent of the terpolymer composition. Importantly, once both 

strong substrates like 7 and 6-H•BArF are assembled onto terpolymer 5a, the subsequent 

binding of N-butylthymine (8) with the diaminopyridine receptor to produce the fully 

functional terpolymer {5a•[(6-H•BArF)(7•BF4)(8)]n}
2n+ is not affected (Table 4.2) by 

either of these two binding events.  The measured association constant for the hydrogen 

bonding self-assembly was 1,570 M-1, a value close to the Ka values measured for non-

functionalized systems.  These results indicated that the terpolymers can be 

functionalized in an orthogonal and stepwise fashion without compromising the integrity 

of neighboring interactions.   

 
 

4.4 Conclusions  
 

A noncovalent functionalization strategy for terpolymers based on self-assembly 

processes has been developed.  The highly controlled terpolymerization of three different 

functional norbornene monomers bearing recognition motifs was successfully achieved 

by ROMP.  An investigation of the kinetics of the polymerization of the three monomers 

revealed that statistical random terpolymers are formed during the controlled 

polymerization.  Noncovalent functionalization of the terpolymers was achieved by the 

introduction of (i) pyridine units into Pd-pincer complexes, (ii) dibenzylammonium ions 
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into DB24C8 rings and (iii) N-butylthymines to the diaminopyridines.  1H NMR 

spectroscopic characterization of the self-assembly events indicates that the three 

noncovalent interactions act independently of each other and demonstrate that the 

functionalization strategy can be applied to terpolymers in a stepwise fashion.  Isothermal 

titration calorimetry and NMR spectroscropy were employed to determine the strength of 

these noncovalent interactions.  The results show that the binding of recognition pairs is 

not affected by the composition of the terpolymer backbone and that functionalization 

can be achieved in an orthogonal manner without decreasing the binding affinities of the 

receptors attached to the polymer backbone.  Eventually, this noncovalent 

functionalization strategy will be useful for creating materials for various applications 

that require extensive screening and rapid materials optimization.  The approach we are 

describing requires polymer characterization of only a single, generic backbone that can 

be shelved and used for several different purposes.  Such a generic backbone may 

provide a gateway to a combinatorial approach to polymer synthesis.  

 
 

4.5 Experimental Section  
 
4.5.1 General Methods  
 

All reagents were purchased either from Acros Organics, Aldrich, or Strem 

Chemicals and used without further purification unless otherwise noted.  CH2Cl2 was 

dried via passage through copper oxide and alumina columns.  NMR spectra were 

recorded using a 500 MHz Bruker DRX spectrometer (1H NMR: 500 MHz, 13C NMR: 

125 MHz).  Spectra were referenced from the residual proton of the deuterated solvent.  

Gel-permeation chromatography analyses were carried out at room temperature using a 
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Waters 1525 binary pump coupled to a Waters 2414 refractive index detector with 

CH2Cl2 as the eluant and a flow rate of 1 mL/minute on American Polymer Standards 10 

μm particle size, linear mixed bed packing columns.  Gel-permeation chromatograms 

were calibrated using poly(styrene) standards.  Isothermal titration calorimetry was 

performed on a Microcal VP-ITC Isothermal Calorimeter.  Degassed, HPLC grade 

CH2Cl2 was used for all ITC experiments.  Monomers 1,13  2,13  and 3,27  and compounds 

6-H•BArF
27  and 824  were synthesized according to the previously published procedures. 

The preparation chemistry involving terpolymer 5a is given as an example for all 

copolymerizations and polymer functionalizations. 

 
 

4.5.2 Synthesis  
 
Terpolymer 5a.   
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Monomers 1 (20 mg, 0.03 mmol), 2 (14 mg, 0.03 mmol), and 3 (20 mg, 0.03 

mmol) were dissolved in anhydrous, degassed CH2Cl2 under an Argon atmosphere.  The 

ruthenium initiator 4 (2.47 mg, 0.003 mmol) was added as a solution in CH2Cl2.  Upon 

complete polymerization, a drop of ethyl vinyl ether was added to quench the 

polymerization.  The terpolymer 5a was isolated by repeated precipitations into cold 

MeOH (52 mg, 97%).  1H NMR (CD2Cl2):  = 8.00 (m, 4H), 7.58 (m, 6H), 7.37 (s, 2H), 
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7.01 (m, 7H), 6.69 (m, 2H), 5.55-5.31 (m, 6H), 5.12 (s, 2H), 4.77 (s, 4H), 4.31 (m, 8H), 

4.10 (m, 6H), 3.98 (m, 8H), 3.83 (m, 8H), 3.22-3.00 (m, 6H), 3.05-1.87 (m, 83H).  13C 

NMR (CDCl3):  = 176.0, 173.8, 150.5, 149.4, 149.3, 133.0, 131.8, 130.3, 129.9, 121.9, 

121.8, 114.9, 114.7, 114.2, 109.2, 71.4, 70.2, 70.2, 69.7, 69.6, 68.5, 66.2, 64.8, 52.2, 50.0, 

34.6, 29.9, 29.8, 29.7, 29.5, 29.1, 26.4, 26.3, 25.3.  

Terpolymer {5a•(7•BF4)n}
n+.   
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Terpolymer 5a (50 mg) was dissolved in CH2Cl2 or CD2Cl2 and pyridine (7) was 

added until a 1:1 equivalency was reached in relation to the Pd pincer complexes as 

determined by 1H NMR spectroscopy.  One equivalent of AgBF4 dissolved in MeNO2 

was added to the reaction mixture.  After stirring for 5 min, the precipitated AgCl(s) was 

removed by centrifugation.  The supernatant liquid was filtered through a plug of celite 

and subsequently through a 0.45 μm syringe filter.  The solvent was removed in vacuo to 

yield the monofunctional terpolymer {5a•(7•BF4)n}
n+

 as an orange solid (yield: 100%).  

1H NMR (CD2Cl2):  = 8.14 (s, 2H), 7.89 (m, 3H), 7.73 (m, 4H), 7.56 (m, 6H), 7.37 (s, 

2H), 7.04 (m, 6H), 6.79 (m, 2H), 5.55-5.31 (m, 6H), 5.09 (s, 2H), 4.91 (s, 4H), 4.31 (m, 

8H), 4.10 (m, 6H), 3.98 (m, 8H), 3.83 (m, 8H), 3.22-3.00 (m, 6H), 3.05-1.87 (m, 83H).  

13C NMR (CDCl3):  = 176.0, 173.8, 150.5, 149.5, 149.4, 149.3, 133.0, 130.8, 130.7, 
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130.3, 129.9, 121.8, 121.7, 121.5, 114.9, 114.7, 114.2, 109.2, 71.5, 70.2, 70.1, 69.7, 69.6, 

68.5, 66.2, 64.8, 52.2, 50.0, 34.6, 29.9, 29.8, 29.6, 29.5, 29.1, 26.4, 26.3, 25.3.  

 

Terpolymer {5a•[(6-H•BArF)(7•BF4)]n}
2n+.   
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Terpolymer {5a•(7•BF4)n}
n+

 (50 mg) was dissolved in CH2Cl2 and one equivalent 

of the dibenzylammonium salt 6-H•BArF was added.  Upon stirring the solution for 10 

min, the solvent was removed in vacuo to yield the bifunctional terpolymer {5a•[(6-

H•BArF)(7•BF4)]n}
2n+ as an orange solid (yield: 100%).  1H NMR (CD2Cl2):  = 8.08 (s, 

2H), 7.89 (m, 11H), 7.73 (m, 4H), 7.70 (m, 4H) 7.54 (m, 6H), 7.36 (s, 2H), 7.02 (s, 6H), 

6.86 (m, 2H), 6.75 (m, 2H), 5.55-5.31 (m, 6H), 5.07 (s, 2H), 4.95 (s, 4H), 4.73 (s, 4H), 

4.32 (m, 8H), 4.10 (m, 6H), 3.85 (m, 8H), 3.61 (m, 8H), 3.22-3.00 (m, 6H), 3.05-1.87 (m, 

83H).  13C NMR (CD2Cl2):  = 176.0, 173.8, 150.5, 149.5, 149.4, 149.3, 147.8, 135.2, 

133.0, 132.1, 130.8, 130.7, 130.2, 130.0, 129.6, 129.0, 122.0, 121.8, 121.7, 121.5, 114.9, 

114.7, 114.2, 109.2, 71.5, 71.0, 70.6, 70.2, 70.2, 69.7, 69.6, 68.6, 68.5, 66.2, 64.8, 52.2, 

50.0, 34.6, 29.9, 29.8, 29.6, 29.5, 29.1, 26.4, 26.3, 25.3.  

Terpolymer {5a•[(6-H•BArF)(7•BF4)(8)]n}
2n+. 
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Terpolymer {5a•[(6-H•BArF)(7•BF4)]n}
2n+ (50 mg) was dissolved in CH2Cl2 and 

1.5 equiv of N-butylthymine (8) were added.  Upon stirring the solution for 10 min, the 

solvent was removed in vacuo to yield the trifunctional terpolymer {5a•[(6-

H•BArF)(7•BF4)(8)]n}
2n+ as an orange solid (yield: 100%).  1H NMR (CD2Cl2):  = 10.80 

(s, 1H), 9.65 (s, 2H), 8.08 (s, 2H), 7.89 (m, 11H), 7.73 (m, 4H), 7.70 (m, 4H) 7.54 (m, 

6H), 7.36 (s, 2H), 7.15 (m, 2H) 7.02 (s, 6H), 6.86 (m, 2H), 6.75 (m, 2H), 5.55-5.31 (m, 

6H), 5.07 (s, 2H), 4.95 (s, 4H), 4.73 (s, 4H), 4.32 (m, 8H), 4.10 (m, 6H), 3.85 (m, 8H), 

3.76 (t, 2H, J = 6.5 Hz), 3.61 (m, 8H), 3.22-3.00 (m, 6H), 3.05-1.87 (m, 89H).  13C NMR 

(CD2Cl2):  = 177.0, 176.0, 173.8, 164.9, 162.7, 162.3, 161.9, 161.5, 151.4, 150.6, 147.8, 

146.3, 141.1, 135.1, 132.3, 131.8, 131.5, 130.7, 130.3, 129.6, 129.4, 129.1, 129.0, 128.2, 

126.5, 126.1, 123.9, 122.1, 117.9, 113.4, 113.1, 112.8, 110.5, 94.6, 71.0, 70.6, 68.7, 68.6, 

68.6, 66.0, 64.8, 53.1, 48.5, 34.6, 31.4, 30.5, 30.1, 29.9, 29.7, 29.1, 26.3, 26.1, 25.3.  
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CHAPTER 5 
 

Templated Ring-closing and Cross Metathesis 
 
 
 

5.1 Abstract  
 

Olefin metathesis, a versatile carbon-carbon bond forming and breaking reaction, 

has recently found widespread use in the templated synthesis of entropically constrained 

and topologically interesting structures such as catenanes, rotaxanes, and macrocycles, as 

well as other many other synthetic targets such as asymmetric olefins, ADMET trimers, 

and lactams. This chapter examines several strategies to reach difficult synthetic targets 

using templated olefin metathesis. Additionally, several research examples are presented 

in which Pd and Pt based pincer-type complexes were used as the mediator between a 

templated olefin cross-metathesis reaction. The results acquired from this research 

demonstrate the potential for using a template to confine molecules such that an enhanced 

concentration can enhance the reaction rate and regioselectivity of a particular reaction.  

 
 

5.2 Introduction  
 

In previous chapters, strategies for placing functional groups onto polymers in a 

precise manner using molecular recognition have been examined. This chapter marks the 

transition into applications of molecular recognition. Specifically, this chapter is devoted 

to small molecular templated synthesis, with an ultimate goal of applying lessons learned 

from small molecules to polymers.  

Again looking toward Nature as a guide, we see that both regioselectivity and 

stereoselectivity of chemical tranformations are influenced and controlled by templates 
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that manipulate reactive groups through noncovalent interactions, molecular recognition, 

and self-assembly.1 The high-fidelity replication of information rich sequences by DNA 

and RNA are hallmark examples of biochemical templated synthesis that operate under 

an umbrella of complexity unprecedented in conventional chemical laboratories.1 

Nonetheless, synthetic chemists are increasingly motivated by Nature, and the reliance on 

templates during difficult chemical transformations is on the rise.1  

With the advancement of template-directed synthetic protocols, olefin metathesis2 

has quickly emerged as a powerful tool for the covalent bond forming step(s) required 

during many templated reactions. What makes olefin cross metathesis (CM) and ring-

closing metathesis (RCM) particularly suited for template-directed synthesis is the 

dynamic nature of these reactions,3 in which the covalent bond making and breaking 

steps are reversible, providing for an internal error checking mechanism similar to 

Nature’s synthetic machinery. Aside from being  dynamic covalent reactions, olefin CM 

and RCM using ruthenium alkylidene catalysts (Figure 5.1) are tolerant of a wide array of 

functional groups, allowing for easy noncovalent manipulation of pre-organized and 

thermodynamically stable templates prior to the covalent bond forming step(s). 
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Figure 5.1. Ruthenium-alkylidene initiators commonly employed in template-directed 
synthesis. 1 is a phosphine based benzylidene, while 2-3 are heterocyclic carbene based 
benzylidenes.  
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5.3 Templated Ring-Closing Metathesis  
 

An excellent illustration of both the dynamic and tolerant nature of olefin CM is 

the so-called “magic ring” formation developed by Grubbs, Stoddart, and coworkers.5c In 

these systems, a preorganized template was formed through supramolecular4 assistance 

provided by the interaction between dibenzylammonium cations and crown ether macro-

rings or precursors to crown ether macro-rings. The mechanism for these “magic” 

transformations can be illustrated by the catenane formation example (Scheme 5.1) which 

presumably proceeds through a ring-opening metathesis of 4 to form a linear oligoether 

species, which then threads through 5 to form a [2]-pseudorotaxane after which a ring-

closing metathesis reaction occurs to form catenane 6. Similar approaches were used for 

the synthesis of rotaxanes,5a catenanes,5c and an otherwise inaccessible “molecular 

bundle,”5b under thermodynamic control.   
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Scheme 5.1. “Magic Ring” catenation by Grubbs and Stoddart 
 
 

Mechanically interlocked structures, such as the “magic” catenane 6 shown in 

Scheme 1, provide not only for aesthetically pleasing molecular structures that are 
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interesting from a historical and philosophical viewpoint6 but have also been tested7a as 

memory and logic elements in electronic devices. An example7b has emerged from the 

Stoddart group in which rotaxanes have been used as the key element  in a memory 

device with a density of 1011 bit/cm2, a density predicted for commercial devices in 

2020. As the successful utility of interlocked molecules continues to be demonstrated in 

materials science, the need for straightforward synthetic approaches to these structures 

will increase, and templated olefin metathesis approaches are at the forefront of many of 

these efforts.   

Supramolecular interactions other than electrostatic and hydrogen bonding 

interactions have been used in similar examples of template-assisted catenane synthesis. 

Namely, metal complexes based on a number of transition metal complexes involving 

Zn8d (Scheme 2A), Rh,8b Ru,8c and Cu8a (Scheme 5.2B) to name a few, have mediated 

several successful catenane syntheses.  In some cases, a linear species bearing two 

terminal olefins is threaded through a preformed macrocycle and held in place by a 

coordination bond. Subsequently, RCM forms the second ring, producing an interlocked 

[2]-catenane, such as 7a shown in Scheme 5.2A. Alternatively, two linear segments can 

be brought together using metal-ligand interactions, and a two-fold RCM reaction can be 

used to form both rings at once. A [2]-catenane 8a produced in this fashion is shown in 

Scheme 2B.  

 
 



 

131 

N

N

N

Zn
N

N

O
O

O
O

O

O

O

O

O

O

NN

N

OO

O O

O

O

N

O O

OO

O

O

Cu

N

N

N

Zn
N

N

O
O

O
O

O

O

O

O

O

O

1

40%

A)

NN

N

OO

O O

O

O

N

O O

OO

O

O

Cu
1

90%

B)
7 7a

8 8a  

 
Scheme 5.2. Two approaches to catenanes mediated by metal-ligandiInteractions. A) 
RCM around a preformed ring and B) RCM of two connected linear segments.  

 

Several other topologically interesting and otherwise hard to reach structures have 

been synthesized by templated RCM and templated CM. The van Koten group has 

utilized a templated metathesis approach to synthesize huge macrocycles based on Pt 

NCN pincer-type complexes.9 In one elegant example, three different linear segments 

each consisting of di-olefins are combined with a trifurcate Pt template, and the 

metathesis of all three segments proceeds around the template in one-pot to produce a 

large macrocycle 9a in 67% yield (Scheme 5.3). It is important to note that the synthesis 

of such macrocycles from multiple components without a template has thus far not been 

possible. Likewise, similar macrocycles have been produced by templated CM and RCM 

mediated by metal-ligand based calixarenes,10b and porphyrins.10a, c-d 
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Scheme 5.3. Templated multimacrocycle synthesis.  
 
 

5.4 Templated Cross Metathesis  
 

Another unique element that is often seen in Nature’s templated syntheses is the 

ability to achieve different transformations on the same substrate under different 

environments, i.e. by utilizing different templates.1 To be able to alter reactivity in this 

way in conventional chemical laboratories would open up endless possibilities for 

dynamic and combinatorial approaches to diverse libraries of compounds. A proof-of-

principle example has recently emerged in the literature demonstrating that by varying 

the template used during an olefin metathesis reaction, one mechanism can be favored 

over the other, creating two different products from the same starting material and the 

same catalyst (Scheme 5.4). This example is based on pseudorotaxane interactions 

between dibenzylammonium cations and dibenzo[24]crown-8 (DB24C8) macrorings.  

As shown in Scheme 5.4, if a dimer, DBA2+, is used as the template for metathesis 

with the di-olefin containing DB24C8 monomer 10, then the CM mechanism is 

predominately enabled, producing mainly a dimer (10a) (70% yield) of monomer 10, and 
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largely disabling the production of higher order products which would be expected if 

acyclic diene metathesis (ADMET) would be the dominant mechanism.11a On the other 

hand, if the trifurcate template, DBA3+, is used, then ADMET is enabled and the cyclic 

trimer 10b is formed in 50% yield.11b Neither exclusively dimer or trimer is formed with 

monomer 10 under metathesis conditions in the absence of a template. These results can 

be explained largely on the basis of effective concentrations. When only the dimer 

template, DBA2+, is used under dilute (10 mM) conditions, the effective concentration is 

only sufficient to allow for the formation of a corresponding dimer based on the pre-

organization of two monomers on a dimeric template. When the trimer template, DBA3+, 

is used, however, three olefin bearing monomers are in close enough proximity to react 

via ADMET, producing a cyclic trimer replicated from the trimeric template. 

Multivalency5c and binding cooperativity12 may have also promoted olefin metathesis of 

the DB24C8 monomers (10) situated on either dimer or trimer template. In both cases, 

binding cooperativity has been observed for the binding of multiple DB24C8 rings with 

DBAn+ templates (i.e. Ka1 < Ka2 or Ka1 < Ka2 < Ka3).
11a Future studies will hopefully 

highlight an example where binding cooperativity is not required for switching 

mechanisms of olefin metathesis as well as probe the relationship between olefin 

reactivity and the association strength (and even association and dissociation kinetics) of 

the preorganized template.  

Influencing regioselectivity and, most importantly, sequence are also important 

goals among synthetic chemists. Nature’s approach to synthesizing sequence-specific 

biopolymers is based exclusively on templated synthesis. A few biomimetic examples 

have recently emerged in the literature based on templated olefin metathesis. Gong and 
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coworkers succesfully synthesized a heterodimer from CM on a sacrificial template that 

alligned two olefin containing monomers 11a in the desired geometry (Scheme 5.5) 

sufficient for hetero-CM.13  

In this case, complementary oligoamide strands bearing terminal olefins were 

designed to form a heterodimeric hydrogen bonded duplex that situated the two olefin 

arms on the same side of the duplex. Using initiator 1, CM covalently connects the two 

strands. Upon hydrolysis of the ester linkages, a heterodimeric product 11b is obtained in 

high overall yield. Without a template, two unwanted homodimeric products mixed with 

the desired heterodimeric product are formed.  
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5.5 Template Metathesis in Natural Products and Medicinal Chemistry  
 

While most examples of templated olefin metathesis fall under the umbrella of 

supramolecular chemistry involving self-assembly and molecular recognition with 

various noncovalent interactions, templated CM and RCM have become prolific among 

medicinal and total synthetic laboratories. A clever approach14 taken by Maarseveen and 

coworkers utilizes a covalently bound sacrificial template to efficiently synthesize 

medium-sized lactams (Scheme 5.6). Salicylaldehyde is used as an auxiliary, sacrificial 

template for the synthesis of lactams. Salicylaldehyde serves two roles as a template: (i) it 

promotes the RCM reaction between the amine and the aryl ester olefinic containing arms 

by keeping the olefins in close proximity to one another, and (ii) it provides the correct 

spatial positioning of the secondary amine and the carbonyl functional group during the 

transannular ring-contraction reaction. After ring-contraction, the benzyl protecting group 

is removed, and the desired lactam is obtained (Scheme 5.6).  
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Scheme 5.6. Templated synthesis of lactams. 
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Other approaches have utilized a similar internal template that is part of the 

desired synthetic final target and is not sacrificed after use. For example, -lactones have 

been used15 as templates for RCM in the enantioselective synthesis of medium-sized 

carbocycles fused to butyrolactones, a functional motif common to many natural 

products.16 Similarly, macrocyclic helical peptides have been used as templates for RCM 

between the i and i+4 amino acid residues within the helix. In this case, the helix is the 

template, and the resulting templated product is more stable than the helical precursor.17a 

The Arora group has optimized this approach by replacing one of the hydrogen bonds 

between i and i+4 residues in small alpha helices with a covalent bond formed by 

templated RCM to produce “hydrogen-bond surrogate helices.”17b This approach has been 

applied in medicinal chemistry, as the surrogate helices produced by templated 

metathesis are more stable and are hence more successful at regulating protein-protein 

interactions (Scheme 5.7).17c  
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5.6 Our Attempts at Dimer and Heterodimer Synthesis from a Template  
 

The previous sections of this Chapter presented a literature review of small-

molecule based templated olefin metathesis. The remaining portion of this Chapter will 

present research carried out in the Weck, Grubbs, and Stoddart labs based on metal-

coordination based templated synthesis. Our interest in templated synthesis primarily 

arises from an interest and long-term goal to template polymer synthesis (Chapter 6). 

Ultimately, a major goal in synthetic polymer chemistry is to control sequence, tacticity, 

etc. in a similar way Nature does during templated biosynthesis.  While it is likely that 

synthetic chemists will not be able to rival Nature’s complexity with purely abiotic 

polymer systems, it might be possible to at the very least template the sequence of a 

polymer or control the information embedded within a polymer. This is quite a lofty goal, 

and we reasoned that lessons learned from small-molecule based templated metathesis 

would be valuable as we advanced a templated synthetic methodology to polymer 

systems.  

Our initial approach was to template the formation of a dimer from a dimeric 

template using molecular recognition. Motivated by van Koten’s work on templated 

metathesis involving pincer-type complexes,9 we investigated templated dimer synthesis 

using similar organometallic pincer-type complexes. We utilized both Pt and Pd pincer-

type complexes as monomers and attempted to form dimers of these monomers from a 

pyridyl based template, which acts as a strong receptor for the Pt or Pd monomers.  

We first attempted dimer formation of a Pd pincer monomer from a bipyridyl 

template. The pincer complex was initially attached to the bipyridyl template 17 after 

precipitation of the Cl atom on the pincer complex assisted by AgBF4 (Scheme 5.7). The 
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resulting dicationic complex exposed to ruthenium initiators 1-3, and in each case, 

isomerization of the double bond was observed with little CM (Scheme 5.8). 
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Scheme 5.7. Attachment of a Pd Pincer containing olefin to a bipyridal template and 
observed isomerization during attempted CM of 19 using ruthenium initiators 1-3.   
 
 

Van Koten had previously observed similar results during the attempted 

macrocycle formation using the corresponding Pd based Pincer complex.9 A proposed 

explanation for the observed results is that the dissociation rate of complex 19 is such that 
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neighboring pincer complexes 18 are able to react with one another, leading to olefin 

insertion and subsequently isomerization.  

A solution to the observed isomerization that took place during the attempted 

dimer synthesis of pincer complex 18 is to use another metal complex with greater 

stability (higher association constant and lower disassociation rate). Van Koten 

successfully applied this hypothesis to macrocycle synthesis and observed good yields 

with Pt pincer complexes.9 Thus, we synthesized a series of Pt pincer complexes to use as 

monomers for a similar templated synthesis as that outlined in Scheme 5.7. The synthesis 

of the starting materials for our templated synthesis is outline in Scheme 5.9. The 

synthesis of intermediate 20 is known9 and will not be discussed in detail. In comparison 

to the synthesis of Pd pincer complex analogues, however, Pt pincer complexes are 

generally easier to purify relative to the Pd complexes. Thus, a variety of Pt pincer 

complex analogues could be synthesized relatively easily from the common intermediate 

20. 

Starting from the protected pincer complex 20, olefins with a variety of carbon 

spacer lengths and incorporated heteroatoms were synthesized (Scheme 5.10). Olefins 

containing Pt pincer complexes were readily accessible upon deprotection of the 

protected Pt pincer complex 20 followed by reaction of the phenol (not isolated) with a 

suitable alkyl halide or akyl tosylate. Yields for these reactions ranged from 38-70%.  

The first attempted templated dimerization reaction was investigated by attaching 

Pincer complex 21 to template 17 analogously to Scheme 5.7. Once this complex (17:21) 

was purified, the metathesis reaction was attempted with initiators 1-3. In each case, the 

presence of an internal olefin was not observed by 1H NMR spectroscopy indicating that 
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the desired product did not form. Additionally, the molecular ion peak for the desired 

product was not observed. In lieu of the results of our experiments with longer olefin 

tethers (vide supra), we attributed the observed lack of reactivity to the lack of spacer 

length on the olefin (17). While the catalyst initiated with at least one of the olefins, the 

other olefin was probably not in close enough proximity to react in the metathetical 

exchange reaction to produce the desired product.   
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We viewed the results of our metathesis attempts on complex 17:21 as a positive 

result. It is likely that the lack of reactivity is due to a template “confinement” effect, 

meaning that the template is at least playing a role in the observed reactivity (or lack 

thereof). Several control experiments were carried out to help verify this hypothesis. 

First, a free olefin (hexene) was added to the reaction mixture including complex 17:21 

and the initiator (1, 2, or 3). Upon the addition of hexene, an internal olefin peak 

appeared in the 1H NMR spectrum. While the product of this reaction was not isolated, 

this result verified that our catalyst was active and  did not decompose after exposure to 

complex 17:21. Second, olefin 21 was subjected to metathesis conditions using initiators 

1, 2, and 3. In each case, olefin 21 promptly initiated the corresponding catalyst, and 

olefin CM was subsequently observed. The dimerized products in these cases were 

isolated. These results indicate that olefin 21 is at least capable of undergoing olefin cross 

metathesis. Our results could be characterized as a likely template de-cooperative effect 

that prevents olefin CM. While our desired product did not form, these results suggest 

that it might be possible to use this approach or a similar approach to protect two 
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neighboring olefins from reacting with one another during an adjacent desired olefin CM 

reaction, so long as the proximity of the targeted olefins was not close enough to induce 

metathesis at the protected site.  

Our next approach was to lengthen the carbon tether length on the olefin and see 

if this helped to induce reactivity on the template. Complexes 22 and 23 were attached to 

template 17 to form complexes 17:22 and 17:23,  respectively, analogously to Scheme 

5.7. When complex 17:22 was subjected to metathesis conditions using initiators 1, 2, or 

3, the reaction was slow, but the presence of an internal olefin was observed by 1H NMR 

spectroscopy. The molecular ion of the desired product was observed by mass 

spectrometry (MS). Likewise, when complex 17:23 was subjected to metathesis 

conditions using intiators  1, 2, or 3, the presence of an interal olefin was observed by 1H 

NMR spectroscopy, and the product molecular ion was observed by MS. Coinciding with 

our hypothesis of a “template suppression effect,” the reactivity of the olefins with 

initiators 1, 2, or 3, was faster with complex 17:23 compared to that of complex 17:22. 

These results further suggest that it is likely that the template is suppressing the reactivity 

of shorter tethered olefins. In both cases, however, the desired product was not isolated 

but only observed by 1H NMR spectroscopy and MS. Accompanying the desired products 

of these reactions were substantial quantities of cross-metathesized isomerized products, 

all with the same or very similar polarities such that the purification of the final reaction 

mixture was too difficult to achieve using conventional purification techniques.  

We attempted further to achieve a cleaner templated olefin CM reaction by 

utilizing a homoallylic olefin containing heteroatoms for increased flexibility. Likewise, 

we observed similar results when complex 17:24 was subjected to metathesis conditions 
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using initiators 1, 2, or 3. However, the molecular ion of the desired product was 

observed by MS. We also attempted additives which are known by the Grubbs group to 

minimize olefin isomerization during CM. Among the additives used were benzoquinone, 

and acetic acid, both of which served, in this case, to reduce the reactivity of the initiator 

with our template organized olefins. We suspect that our results are likely due to 

isomerization resulting from olefin insertion into the Pt complex, and the competition of 

this process with the metathesis event involving the Ru catalyst.  

  
 

Table 5.1. Summary of results of dimerization reactions. 
 

Entry Template:Complex Initiator Obs. Mol. Iona (yes/no) 

1 17:18 1-3 no 

2 17:21 1-3 no 

3 17:22 2, 3 yes 

4 17:23 1, 3 yes 

5 17:24 3 yes 

aMolecular Ion refers to molecular ion of dimerized product still attached to the template. 

 
 

5.7 Conclusion  
 

In conclusion, templated olefin metathesis provides straightforward routes to 

many otherwise inaccesible molecular structures such as catenanes, rotaxanes, and multi-

macrocycles, heterodimers, and natural product moeties. Olefin metathesis is particularly 

suited for templated synthesis because of its reversibility, which permits templates to 

engage in error checking mechanisms throughout the bond forming or breaking steps. 
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Much like enzymes in biochemistry, templates can readily engage or disengage different 

metathetical pathways depending on the pre-organization of substrates around a template. 

Most of the examples discussed in this Chapter are probably more aptly defined as 

“template-assisted synthesis,” i.e. a catalyst is needed to form a new chemical bond; 

whereas true “templated synthesis” should not require a catalyst or additional reagent. 

But rather, the structure of the template itself should induce a new chemical 

transformation.18 Nonetheless, template assisted synthesis offers alternatives to typical 

and generally more conventional protecting group strategies that can be cumbersome. 

Our interest in templated synthesis stemmed from a goal to apply concepts learned in 

small molecule templated synthesis to polymeric systems. Generally, the use of an 

organometallic complex in templated synthesis involving a metathesis initiator has 

advantages and disadvantages. On one hand, the stability of such complexes is typically 

greater than the stability of complexes based purely on hydrogen bonding or ionic 

interactions allowing a tight and thermodynamically preorganized template structure to 

form. On the contrary, the use of an organometallic template during a catalytic 

organometallic reaction can be met with compatibility problems, as we observed. The 

interest in templated synthesis and template-directed synthesis is growing among those in 

the art, and it is probable that in the near future, we will see many more examples of how 

reaction yield, reaction rates, and various forms of selectivity can be controlled through 

templated olefin metathesis. 
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5.8 Experimental  
 

5.8.1 General Methods  
  

Reagents were purchased either from Acros Organics, Aldrich Company, or 

Strem Chemicals and used without further purification unless otherwise noted.  CH2Cl2 

was dried via passage through copper oxide and alumina columns.  Routine NMR spectra 

were recorded using a 300 MHz (1H, 300 MHz; 13C, 75 MHz) or 500 MHz (1H, 500 MHz; 

13C, 125 MHz) Varian Mercury spectrometer; spectra were referenced to residual proton 

solvent.  The Georgia Tech Mass Spectrometry Facility provided mass spectral analysis 

using a VG-70se spectrometer. 

 
 

5.8.2 Synthesis  
 
dimethyl 5-(tert-butyldimethylsilyloxy)isophthalate 

OTBS

O

O

O

O  

A modification to the literature procedure9 was used. Dimethyl 5-

hydroxyisophthalate (25 g, 0.12 mol), tert-butyl dimethyl silyl chloride (TBDMS) (19.7 

g, 0.13 mol), and imidazole (17.7 g, 0.26 mol) were dissolved in anhydrous DMF (250 

mL), and the solution was heated to reflux for 24 h. The reaction mixture was cooled; 

diethyl ether (150 mL) was added along with H2O (200 mL). The organic layer was 

separated, and the remaining aqueous layer was extracted with diethyl ether (3 x 100 

mL). The combined organic layers were washed with H2O and dried (MgSO4). The dried 

organic layer was filtered, and the solvent was removed under reduced pressure to yield a 
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white solid. The isolated solid was purified by column chromatography (Silica gel, 4:1 

Hexanes: EtOAc) to yield a white solid. The purified product was dried over CaH2 under 

reduced pressure. (30 g, 78%). Characterization data are consistent with literature 

reports.19  

(5-(tert-butyldimethylsilyloxy)-1,3-phenylene)dimethanol 

OTBS

OHHO  

Lithium Aluminum Hydride (LAH) (2.81 g, 0.074 mol) was suspended in dry THF, and 

dimethyl 5-(tert-butyldimethylsilyloxy)isophthalate (10 g, 0.031 mol) was added as a 

solution in THF via cannula filtration at O ºC over a period of 30 min. The solution was 

gradually warmed to ambient temperature and stirred overnight. The reaction mixture 

was poured over ice and stirred for 30 min until a white sludge was obtained. The sludge 

was extracted with DCM to yield a white solid (5.5 g, 66%). Characterization data are 

consistent with literature reports.19  

(3,5-bis(chloromethyl)phenoxy)(tert-butyl)dimethylsilane 

OTBS

ClCl  

(5-(tert-butyldimethylsilyloxy)-1,3-phenylene)dimethanol (11.23 g, 0.042 mol) and Et3N 

(12 mL, 0.126 mol) were dissolved in dry DCM at 0 ºC. Mesyl Chloride (14.43 g, 0.126 

mol) was slowly added at 0 ºC. Upon complete addition, the reaction mixture was 

refluxed overnight. The reaction mixture was added to a separatory funnel and washed 

with 1N NaOH, 1N HCl, and H2O. The organic layer was evaporated under reduced 

pressure to yield a yellow oil. The oil was purified using a column chromatography 
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(SiO2, Hexanes: EtOAc, 3:1) to yield a light yellow oil (11.41 g, 89% yield). 

Characterization data are consistent with literature reports.20 

1,1'-(5-(tert-butyldimethylsilyloxy)-1,3-phenylene)bis(N,N-dimethylmethanamine) 

OTBS

NN  

(3,5-bis(chloromethyl)phenoxy)(tert-butyl)dimethylsilane (11.41 g, 0.0373 mol) 

and Et3N (16.64 g, 0.164 mol, 21 mL) were dissolved in dry DMF (200 mL) and 

(Me)2NHCl was subsequently added. The mixture was stirred overnight at ambient 

temperature. The mixture was filtered; H2O was added to the mixture, and the organic 

layer was extracted with Et2O. The solvent was removed to yield a light brown oil which 

was flash distilled to give a clear oil (11 g, 91%). Characterization data are consistent 

with literature reports.21  

1,1'-(5-(tert-butyldimethylsilyloxy)-2-iodo-1,3-phenylene)bis(N,N-

dimethylmethanamine) 

OTBS

N NI
 

1,1'-(5-(tert-butyldimethylsilyloxy)-1,3-phenylene)bis(N,N-dimethylmethanamine) (3.44 

g, 0.011 mol) was dissolved in dry hexanes (100 mL), and n-BuLi (1.6 M in Hexanes, 

1.16 eq., 7.7 mL) was slowly added at -78 ºC at which time the solution turned blue 

indicating the presence of the newly formed Lithium salt. The solution was allowed to 

warm to ambient temperature, and I2 (3.63 g, 0.0143 mol) was added via cannula 

filtration from an ethereal solution (to produce a final 1:1 Hexanes:Ether reaction 
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mixture). The solution was stirred at ambient temperature for 3 h. The solution was 

filtered to remove any salts, and the organic layer was washed with H2O. The Ether was 

evaporated to give a light red oil. The oil was filtered through celite to remove colored 

impurities to give a clear oil. (4 g, 81%). Characterization data are consistent with 

literature reports.21 

[PtCl2(SEt2)2] 

Pt
Cl Cl

S S
Pt

Cl

S Cl

S

cis trans  

PtCl2 (5.61 g, 0.021 mol), and Et2S (7.6 g, 0.084 mol, 9.0 mL) were suspended / 

dissolved in dry benzene, and the mixture was stirred for 4 h after which time the solution 

became homogenous. The solvent was evaporated, and the product was washed 

extensively with Hexanes and cold E2O to give a light yellow solid (85%). 

Characterization data are consistent with literature reports.21  

[Pt(p-Tol)2(SEt2)]2 

Pt
S

S
Pt

 

[PtCl2(SEt2)2],  and p-Iodotoluene were dissolved in benzene. N-BuLi was slowly 

added at -78 ºC. The solution was warmed to ambient temperature. The solvent was 

removed under reduced pressure, and the resulting solid was washed extensively with 

cold Et2O. Characterization data are consistent with literature reports.21  
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Pt Pincer Complex  

OTBS

N NPt
I  

The Diamine (1.43 g, 0.0032 mol), and [Pt(p-tolyl)2(SEt2)]2 were dissolved in dry 

benzene and refluxed for 3 h under an Ar atmosphere. The solvent was removed after 3 h, 

and the yellow solid was washed with Ether to yield a white solid (0.91 g). The remaining 

brown solid recovered from the filtrate was purified by column chromatography (SiO2, 

Hexanes: EtOAc, 3:1) to yield a light yellow solid (1.44 g total, 70%). Characterization 

data are consistent with literature reports.21  

Pt Pincer 4C tethered olefin 

O

N

N

PtI

 

TBS protected Pincer complex (500 mg, 0.777 mmol), TBAF (270 mg, 0.8 

mmol), Cs2CO3 (2.5 g, 7.97 mmol), and alkyl halide (0.224 g, 1.17 mmol) were dissolved 

in dry Acetone. The mixture was stirred at ambient temperature until deprotected was 

deemed complete according to TLC analysis. The mixture was then heated to 50 ºC, and 

the reaction was stopped after conversion was determined by TLC. The solvent was 

removed under reduced pressure, and the crude product was dissolved in DCM and 

washed with H2O. The solvent was removed to yield a brown solid which was purified by 
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column chromatography (SiO2, 4:1 Hexanes: EtOAc) to yield a light brown solid (0.25 g, 

55%) as the product. See Appendix C for characterization.  

 

Pt Pincer 11C tethered olefin 

O

N

N

PtI

 

TBS protected Pincer complex (100 mg, 0.155 mmol), TBAF (54 mg, 0.1705 

mmol), K2CO3, alkyl halide (1.5 eq) and 18-crown-6 (cat. Amount) were dissolved in dry 

DMF. The mixture was stirred at ambient temperature until deprotected was deemed 

complete according to TLC analysis. The mixture was then heated to 50 ºC, and the 

reaction was stopped after conversion was determined by TLC. The mixture was poured 

over ice water and stirred. The H2O layer was extracted with Et2O. The solvent was 

removed from the combined organic layers, and the resulting brown solid was purified by 

column chromatography (SiO2, 2:1 Hexanes: EtOAc) to yield a light brown solid (40 mg, 

38%) as the product. The remaining phenol was recovered by eluting the column with 

EtOAc (20 mg recovered). Yield based on reacted phenol was 80%. See Appendix C for 

characterization. 

 

Pt Pincer 11C tethered olefin 

O

N

N

PtI
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TBS protected Pincer complex (500 mg, 0.777 mmol), TBAF (270 mg, 0.8 

mmol), Cs2CO3 (2.5 g, 7.97 mmol), and alkyl halide (0.224 g, 1.17 mmol) were dissolved 

in dry Acetone. The mixture was stirred at ambient temperature until deprotected was 

deemed complete according to TLC analysis. The mixture was then heated to 50 ºC, and 

the reaction was stopped after conversion was determined by TLC. The solvent was 

removed under reduced pressure, and the crude product was dissolved in DCM and 

washed with H2O. The solvent was removed to yield a brown solid which was purified by 

column chromatography (SiO2, 2:1 Hexanes: EtOAc) to yield a light brown solid (0.34 g, 

68%) as the product. See Appendix C for characterization. 

2-(2-(but-3-enyloxy)ethoxy)ethanol 

O
O

OH  

1-Bromo-4-butene (3.93 g, 0.029 mol) and diol (12.36 g, 0.12 mol) were 

dissolved in H2O (50 mL). NaOH (2.33g, 0.058 mol) was slowly added. The reaction 

mixture was heated to 80 ºC overnight. The mixture was extracted with DCM. The 

solvent was removed under reduced pressure to yield a brown oil which was purified by 

column chromatography (SiO2, Et2O) to yield a clear oil (0.77 g, 17%). See Appendix C 

for characterization.   

2-(2-(but-3-enyloxy)ethoxy)ethyl 4-methylbenzenesulfonate 

O
O

OTs  

TsCl (1.8 g, 9.4 mmol) was added to a solution of Et3N (2.3 g, 22.5 mmol), 

DMAP (cat. amount), and alcohol (0.72 g, 4.49 mmol) over a period of 2 h. The resulting 

mixture was stirred overnight at ambient temperature. The mixture was washed with 

H2O. The H2O washes were back extracted with DCM and Et2O (extensively). The 
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combined organic layers were dried (MgSO4). The solvent was removed to give a brown 

oil which was purified by gradient column chromatography (SiO2, Et2O: Hexanes, 1:2) 

followed by elution with pure Et2O to yield a clear oil (1.0 g, 70%). See Appendix C for 

characterization.   

Pt Pincer Homoallylic olefin 

O

N

N

PtI
O

O

 

TBS protected Pincer complex (0.6 g, 0.93 mmol), TBAF (0.32 g, 1.03 mmol), 

Cs2CO3 (3.04 g, 9.32 mmol), and tosylated olefin (0.44 g, 1.4 mmol) were dissolved in 

dry Acetone. The mixture was stirred at ambient temperature until deprotected was 

deemed complete according to TLC analysis. The mixture was then heated to 50 ºC for 

16 h. The solvent was removed under reduced pressure, and the crude product was 

dissolved in DCM and washed with H2O. The solvent was removed to yield a brown oil 

which was purified by column chromatography (SiO2, 2:1 Hexanes: EtOAc) to yield a 

brown oil which solidified under reduced pressure (0.42 g, 67%). See Appendix C for 

characterization. 

 

 

 

 



 

155 

5.9 References  
 
1. Diederich, F., Stang, P. J.; Eds. Templated Organic Synthesis; Wiley-VCH: 

Weinheim, 2000.  
 
2.  (a) Fürstner, A. Olefin Metathesis and Beyond. Angew. Chem. Int. Ed. 2000, 39, 

3012.  
 

(b) Trnka, T. M.; Grubbs, R. H. The Development of L2X2Ru=CHR Olefin 
Metathesis Catalysts: An Organometallic Success Story. Acc. Chem. Res. 2001, 
34, 18.  
 
(c) Grubbs, R. H. Olefin metathesis. Tetrahedron 2004, 60, 7117. 

 
3.  For a discussion of dynamic covalent chemistry, see: Chichak, K. S.; Cantrill, S. 

J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. 
Molecular Borromean Rings. Science 2004, 304, 1308.  

 
4.  Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1996.  
 
5.  (a) Kilbinger, A. F. M.; Cantrill, S. J.; Waltman, A. W.; Day, M. W.; Grubbs, R. 

H. Magic Ring Rotaxanes via Olefin Metathesis. Angew. Chem. Int. Ed. 2003, 42, 
3281.  

 
(b) Badjic, J. D.; Cantrill, S. J.; Grubbs, R. H.; Guidry, E. N.; Orenes, R.; 
Stoddart, J. F. The Exclusivity of Multivalency in Dynamic Covalent Processes. 
Angew. Chem. Int. Ed. 2004, 43, 3273.  
 
(c) Guidry, E. N.; Cantrill, S. J.; Stoddart, J. F.; Grubbs, R. H. Magic Ring 
Catenation by Olefin Metathesis. Org. Lett. 2005, 7, 2129.  

 
6.  Molecular Catenanes, Rotaxanes, and Knots; Sauvage, J.-P., Dietrich-Buchecker, 

C., Eds.; Wiley-VCH: Weinheim, 1999.  
 
7.  For a selected examples, see: (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; 

Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. A 
[2]Catenane-Based Solid State Electronically Reconfigurable Switch. Science 
2000, 289, 1172.  

 
(b) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; 
Delonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, 
J. F.; Heath, J. R. A 160-kilobit molecular electronic memory patterned at 1011 
bits per square centimeter. Nature 2007, 445, 414.  

 
 



 

156 

8.  (a) Mohr, B.; Weck, M.; Sauvage, J.-P.; Grubbs, R. H., High-Yield Synthesis of 
[2] Catenanes by Intramolecular Ring-Closing Metathesis. Angew. Chem. Int. Ed. 
Engl. 1997, 36, 1308. 

 
(b) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. A [2]Catenane Constructed around a 
Rhodium(III) Center Used as a Template. Inorganic Chemistry, 2003, 42, 8633.  

 
(c) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. A [2]Catenane Constructed around a 
Ru(Diimine)32+ Complex Used as a Template. J. Am. Chem. Soc. 2003, 125, 
2016.  

 
(d) Hamann, C.; Kern, J.-M.; Sauvage, J.-P. Zinc(II)-Templated Synthesis of a 
[2]-Catenane Consisting of a 2,2',6',2' '-Terpyridine-Incorporating Cycle and a 
1,10-Phenanthroline-Containing Ring. Inorganic Chemistry, 2003, 42, 1877.  

9.  Chase, P. A.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. J. Mol. 
Cat. A: Chem. 2006, 254, 2. 

 
10.  (a) Vyotsky, M. O.; Bogdan, A.; Wang, L.; Böhmer, V. Template synthesis of 

multi-macrocycles by metathesis reaction. Chem. Commun. 2004, 1268.  
 

(b) Cao, Y.; Wang.; Bolte, M.; Vysotsky, M. O.; Böhmer, V. Synthesis of huge 
macrocycles using two calix[4]arenes as templates. Chem. Commun. 2005, 3132.  

 
(c) Wakabayashi, R.; Kubo, Y.; Hirata, O.; Takeuchi, M.; Shinkai, S. Allosteric 
function facilitates template assisted olefin metathesis. Chem. Commun. 2005, 
5742.  

 
(d) van Gerven, P. C. M.; Elemans, J. A. A. W.; Gerritsen, J. W.; Speller, S.; 
Nolte, R. J. M.; Rowan, A. E. Dynamic combinatorial olefin metathesis: 
templated synthesis of porphyrin boxes. Chem. Commun. 2005, 3535.  

 
(d) Wakabayashi, R.; Kubo, Y.; Kaneko, K.; Takeuchi, M.; Shinkai, S. Olefin 
Metathesis of the Aligned Assemblies of Conjugated Polymers Constructed 
through Supramolecular Bundling. J. Am. Chem. Soc. 2006, 128, 8744.  
 

11. (a) Cantrill, S. J.; Grubbs, R. H.; Lanari, D.; Leung, K. C.-F.; Nelson, A.; Poulin-
Kerstien, K. G.; Smidt, S.; Stoddart, J. F.; Tirrell, D. A. Template-Directed Olefin 
Cross Metathesis. Org. Lett. 2005, 7, 4213.  

 
(b) Hou, H.; Leung, K. C.-F.; Lanari, D.; Nelson, A.; Stoddart, J. F.; Grubbs, R. 
H. Template-Directed One-Step Synthesis of Cyclic Trimers by ADMET. J. Am. 
Chem. Soc. 2006, 128, 15358.  
 

12.  Conners, K. A. Binding Constants; Wiley: New York, 1987. 
 



 

157 

13.  Gong, B.; Yang, X. Template-Assisted Cross Olefin Metathesis. Angew. Chem. 
Int. Ed. 2005, 44, 1352. 

 
14. Bieräugel, H.; Jansen, T. P.; Schoemaker, H. E.; Hiemstra, H.; van Maarsevaan, J. 

H. A Novel Strategy for the Synthesis of Medium-Sized Lactams. Org. Lett. 
2002, 4, 2673.  

 
15. Ravelo, J. L.; Rodríguez, C. M.; Martín, V. S.  -Lactones as templates in ring-

closing metathesis: Enantioselective synthesis of medium sized carbocycles fused 
to butyrolactones. J. Organomet. Chem. 2006, 691, 5326.  

 
16.  Corey, E. J.; Cheng, X. M., Eds. The Logic of Chemical Synthesis, Wiley: New 

York, 1989.  
 
17.  (a) Blackwell, H. E.; Sadowsky, J. D.; Howard, R. J.; Sampson, J. N.; Chao, J. A.; 

Steinmetz, W. E.; O’Leary, D. J.; Grubbs, R. H. Ring-Closing Metathesis of 
Olefinic Peptides: Design, Synthesis, and Structural Characterization of 
Macrocyclic Helical Peptides. J. Org. Chem. 2001, 66, 5291. 

 
(b) Chapman, R. N.; Arora, P. S. Optimized Synthesis of Hydrogen-Bond 
Surrogate Helices: Surprising Effects of Microwave Heating on the Activity of 
Grubbs Catalysts. Org. Lett. 2006, 8, 5825.  

 
(c) Wang, D.; Chen, K.; Kulp, J. L. III; Arora, P. S. Evaluation of Biologically 
Relevant Short -Helices Stabilized by a Main-Chain Hydrogen-Bond Surrogate. J. 
Am. Chem. Soc.  2006, 128, 9248.  
 

18.  Stoddart, J.F., in Frontiers in Supramolecular Organic Chemistry and 
Photochemistry Weinheim: New York, 1991, p. 262.  

 
19.  Felder, D; Nava, Gutierrez, M; Maria, D.P.C.; Eckert, J-F.; Luccisano, M.; Schall, 

C.; Masson, P.; Gallani, J-L.; Heinrich, B.; Guillon, D.; Nierengarten, J-F. 
Synthesis of Amphiphilic Fullerene Derivatives and Their Incorporation in 
Langmuir and Langmuir-Blodgett Films. Helvetica Chimica Acta  2002,  85,  288.   

 
20.  Davies, P. J.; Veldman, N.; Grove, D. M.; Spek, A. L.; Lutz, B. T. G.; van Koten, 

G. Organoplatinum Building Blocks for One-Dimensional Hydrogen-Bonded 
Polymeric Structures. Angew. Chem., Int Ed Eng.  1996,  35,  1959.   

 
21.  Davies, P. J.; Grove, D. M.; van Koten, G. Advances in the Synthesis of 

Multimetallic Systems: Hydroxyl Group Protection in (Aryldiamine)platinum 
Species. Organometallics  1997,  16,  800. 

 
 



 

158 

CHAPTER 6 
 

Template Enhanced Ring-Opening Metathesis Polymerization 
 
 
 

6.1 Abstract  
 

The template enhanced ring-opening metathesis polymerization (ROMP) of a 

norbornene-based thymine monomer was examined.  The template, based on 

diaminopyridine functionalized norbornenes that are designed to recognize thymine 

substrates with high fidelity, was synthesized via ROMP.  The resulting template was 

used to harness the polymerization of the thymine monomer producing a bis-

poly(norbornene) complex.  Using 1H NMR spectroscopy, we determined that the 

polymerization conditions do not disrupt the hydrogen bonding.  In addition, the template 

enhances the rate of the polymerization by inducing an increase in local monomer 

concentration.  To examine whether the polymerization is controlled, we synthesized a 

solid-supported diaminopyridine template.  After the polymerization off this solid-

supported template, we extracted the daughter polymer from the support.  Detailed 

analysis of the daughter template proved that the templated polymerization was 

controlled, and that the supported template produces a well-defined daughter polymer.  

 
 

6.2 Introduction  
 

In the previous chapter, strategies to template dimeric and oligimeric structures 

from templates were surveyed. Ultimately, however, our goal is to template complex 

polymer structures in a similar way that Nature templates biopolymers.1 This chapter 
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presents our initial attempts at this goal and provides more insight into the complexity of 

a biomimetic approach to polymers.  

An enduring goal in synthetic polymer chemistry is to both understand and 

potentially harness Nature’s templation strategies to produce abiotic polymers with 

controlled lengths, tacticities, and sequences.  Polymer chemists have studied the effects 

of templates on various types of polymerization methods including condensation, 

addition, step, and chain polymerization.2  Arguably the most impressive examples are 

the use of DNA templated synthesis (DTS)3  and nucleic acid templated synthesis4  to 

either elongate DNA and oligonucleotide strands or to polymerize daughter monomers 

from a predefined DNA sequence.4c  While DTS provides an attractive platform for the 

production of monodisperse and even sequence defined polymers, it has thus far been 

limited to biopolymers.3  While synthetically templated biopolymers provide insight into 

and perhaps even rival Nature’s complexity, similar strategies for the production of 

synthetically templated abiotic polymers are still in their infancy.  Advances in 

templation using synthetic polymers would be highly desirable, since they might provide 

a harness to control and even tune polymer properties.  A few examples of influencing 

polymer properties through templation have recently emerged in the literature in which 

tacticity5  and chain organization6  can be controlled with a template.  In addition, 

template polymerizations appear to be an excellent route to ladder and ladder-like 

polymers,7  the properties of which are still not widely understood.  Other potential 

applications include surface based template polymerizations for the production of 

intertwined structures and free-standing two–dimensional polymers.8  
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Nature’s mechanisms have undoubtedly inspired the development of template-

directed synthesis9-10  mediated by molecular recognition and supramolecular self-

assembly11  for the production of topologically interesting small molecules and oligimeric 

structures12-21 (Chapter 5). The success of templated olefin metathesis, in particular, is 

attributed to both functional group tolerance, namely catalyst tolerance toward a wide 

variety of noncovalent interactions, and the dynamic nature of the metathesis reaction.22  

During templated RCM and CM, both the template recognition event and the covalent 

bond formation step(s) is(are) reversible, which enables full thermodynamic control10c  

analogous to the proofreading mechanisms of DNA and RNA.  Motivated by many 

small-molecule templated syntheses based on metathesis, we decided to investigate 

template effects on ROMP since the polymerization of bis-norbornene structures has 

been shown to be an efficient means for generating bridged polymer architectures.23  

While ROMP is not a dynamic covalent process, it is a highly functional group tolerant 

process, and thus well suited for template polymerizations.  In the previous Chapters, the 

compatability of ROMP with a variety molecular recognition partners has been shown.24 

We utilize the molecular recognition process between the complementary recognition 

pair thymine (THY) 1 and diaminopyridine (DAP) 2 (Figure 6.1).  Our design involves 

the use of a DAP based poly(norbornene) template that recognizes THY containing 

norbornene monomers, followed by the polymerization of the resulting 

template:monomer complex via ROMP.  
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Figure 6.1.  Schematic representation of the template polymerization investigated in this 
contribution. 
 
 

6.3 Results and Discussion  
 
6.3.1 Template Synthesis  

In order to fully understand templated ROMP mediated by DAP:THY 

interactions, we investigated both solution and solid support-based templates.  DAP was 

chosen as the recognition motif for the polymeric template because the dimerization 

constant of a polymeric DAP scaffold is lower than the dimerization constant of a THY 

scaffold, resulting in higher association constants (Kas) for small molecule THY 

substrates with DAP polymers relative to Kas for small molecule DAP substrates with 

THY polymers.24c-d  The synthesis of the solution based template is outlined in Scheme 
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6.1 and was accomplished by the polymerization of the DAP-based monomer 5 using 

Grubbs’ first generation catalyst.  The polymer characterization data of poly(3) is 

outlined in Table 6.1.  The support based template synthesis was carried out in close 

analogy to recent work by Kiessling and coworkers.25  They demonstrated that the 

immobilization of poly(norbornene)s onto poly(styrene) resins is more successful when 

block copolymers consisting of one reactive block are used relative to strategies that 

utilize reactive polymer endgroups.25  In our case, the reactive block contains a carboxylic 

acid group that is used to couple the template to the resin.  Because of the uncontrolled 

nature of the polymerization of 4 using Grubbs’ first generation catalyst, the carboxylic 

acid monomer was protected using a benzyl group through a DCC assisted esterification 

(Scheme 6.2).  The resulting benzyl protected acid 5 polymerized in a controlled fashion, 

with molecular weights of the resulting polymers poly(5a) linearly dependent on the 

initiator loading (Appendix D).  



 

163 

O(CH2)11O

O

N

NH

Et
O

NH

Et
O

a, ca, b, c, d

m n

O
O

(CH2)9
COOH

O
O

(CH2)11

O

N N
H

Et

O

N
H

Et

O

n

O
O

(CH2)11

O

N N
H

Et

O

N
H

Et

O

Rink
NH2 e

m n

O
O

(CH2)9

O
O

(CH2)11

O

N N
H

Et

O

N
H

Et

O
N
H

O
Rink

3

poly(3)poly(3)-block-poly(5b)

poly(3)-block-poly(5c)  
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Table 6.1.  GPC Data for template and daughter polymers. 
 

Entry Mw Mn Mw / Mn m n 

poly(3) 11,800 9,150 1.29  20 

poly(3)-block-poly(5b) 21,200 17,200 1.23 20 5 

poly(3)-block-poly(5b)a 17,900 13,800 1.30 20 5 

poly(6) 8,100 4,700 1.73  20 

poly(6):(2) 10,200 8,000 1.28  20 

poly(6)b 9,800 8,200 1.19  20 

a after deprotection,  bpolymerized from template (at 10 mM in CH2Cl2).  
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4 5

poly(5a)  
Scheme 6.2.a  Synthesis and polymerization of protected carboxylic acid 
monomer.aReagents and Conditions:  (a) Benzyl alcohol, DCC, DMAP, 12 h, 80%;  (b) 
Grubbs’ 1st generation catalyst, 2 h, then ethyl vinyl ether.  
 
 

Having demonstrated that monomer 5 can be polymerized in a controlled fashion, 

block copolymers consisting of both a DAP-based block and a protected carboxylic acid 

block were synthesized (Scheme 6.1).  DAP-based monomer 3 has previously been found 

to polymerize in a living fashion26  and thus was polymerized first.  After complete 

consumption of 3 as evidenced by thin-layer chromatography (TLC), 5 was added to the 
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reaction mixture.  The polymerization was terminated upon complete consumption of 5.  

Upon hydrogenolysis of the benzyl protecting group, poly(3)-block-poly(5b) was 

obtained.  The polymer characterization data before and after deprotection of poly(3)-

block-poly(5b) is outlined in Table 6.1.  The resulting block copolymer was coupled to a 

poly(styrene) Rink amine resin using HATU and DIEA (Scheme 6.1).  Since a three-fold 

excess of polymer to resin (based on reactive carboxylic groups) was used, quantitative 

polymer attachment was achieved.  Evidence of polymer attachment could be determined 

visually, as the color of the resin retained the dark brown polymer color after repeated 

washes.  Additionally, a negative ninhydrin test indicated that surface amine reactive 

groups were consumed.  Any residual amine groups were capped following the addition 

of acetic anhydride.  

 
 
6.3.2 Template Polymerizations  
 

Our hypothesis was that the DAP:THY interactions would be particularly suited 

for template polymerizations since the binding constant for this interaction is sufficiently 

high to result in an increase in local monomer concentrations, while low enough to allow 

for sufficient flexibility to retain full solubility of the noncovalently cross-linked 

polymers during the template polymerization. As a benchmark and control experiment, a 

non-templated polymerization analogue was investigated (Scheme 6.4).  For the non-

templated polymerization, the small molecule DAP-based compound 2 was added to 

monomer 6 to (a) reduce the dimerization behavior of this monomer, which ordinarily 

prevents a controlled polymerization in non-polar solvents (vide infra) and (b) mimic the 
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templation polymerization experiment as close as possible by having the same functional 

groups present in solution during the polymerization.   
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Detailed 1H NMR spectroscopic studies were performed to monitor the templated 

polymerization in situ (Figure 6.3).  The amide proton resonances originating from 

poly(3) and the imide proton resonance originating from 6 and poly(6) are diagnostic 

signals for identifying the presence (or absence) of the hydrogen bonded complex.24a, 24d  

Signals originating from the amide protons present in the hydrogen bonded complex 

poly(3):6 appear at 9.25 ppm, while the imide proton resonates downfield at 11.44 ppm.  

The presence of these signals provides good evidence for the formation of a polymeric 

DAP:THY hydrogen bonded complex, since the uncomplexed amide proton resonance 

typically appears around 8 ppm, while the complexed amide proton resonates downfield 

past 9 ppm in CDCl3.
24d  Furthermore, the uncomplexed imide proton typically resonates 

at or upfield of 10 ppm, while the complexed analogue resonates downfield of 10.4 

ppm,24d  although the precise location of this proton usually depends on the ratio of DAP 

to THY present in the mixture.24a  The 1H NMR spectra (Figure 6.3) provide sufficient 

evidence to conclude that a hydrogen bonding complex between the polymeric DAP 

receptor (poly(3)) and THY monomer (6) is present.  Once the presence of the hydrogen 

bonded complex was established, the important question to address was whether the 

hydrogen bonded species resides unaffected during the templated polymerization.  Thus, 

we recorded 1H NMR spectra at different intervals during a sample polymerization.  We 

found that the nature of the hydrogen bonded complex does not appear to be affected by 

the formation of the polymer:polymer complex (poly(3):poly(6)) and that the hydrogen 

bonded species is not disrupted by the polymerization conditions.  Both the amide proton 

resonance and the imide proton resonance remain at 9.25 and 11.44 ppm, respectively, 

throughout the polymerization (Figure 6.3).  Additionally, the 1H NMR spectra clearly 
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show the complete consumption of monomer 6 over time.  The olefinic proton resonance 

originating from monomer 6 at 6.15 ppm disappears while the signal corresponding to the 

olefin-containing polymer at 5.28 ppm increases throughout the polymerization (Figure 

6.3).  

 
 

 

Figure 6.3.  Stacked plot of partial 1H NMR spectra (10 mM, CDCl3, 298K) and 
corresponding peak assignments displaying the polymerization progress of monomer 6 
bound to template poly(3) in situ.  
 
 

We then investigated the kinetics of the template polymerization in detail to 

determine whether or not the polymer based template (poly(3)) could enhance the rate of 

polymerization.  Such a phenomenon has been observed before during ionic and 
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hydrogen bond based free-radical template polymerizations.2  Furthermore, kinetic 

enhancements are also seen during many examples of DTS and nucleic acid based 

templated polymerizations; in some cases, the template is required for polycondensation 

to ensue at dilute concentrations.4b  We studied kinetics of both templated 

polymerizations and non-templated polymerization analogues at 10 mM, 50 mM, and 100 

mM using 1H NMR spectroscopy. Our hypothesis, based on many examples of DTS, was 

that the greatest template effect would be observed at the lowest concentration. In this 

case, 10 mM was the lowest concentration we investigated, since concentrations below 

10 mM resulted in errors in the rate constants originating from baseline noise that were 

too high to properly assess the data. In order to compare templated and non-templated 

analogues, we chose to use a small molecule DAP substrate (2) to protect THY monomer 

6 during the non-templated polymerization. We assumed that this would ensure the 

comparison of truly analogous systems, since THY monomer 6 has been shown to 

aggregate due to self-dimerization of polymer chains in non-polar solvents at moderate 

degrees of polymerization (DP > 50).24a  

Pseudo-first order rate constants (kobs) for the polymerization (in CDCl3) of 

monomer 6 bound to template poly(3) or protected with small molecule 2 were measured 

by monitoring the decrease in peak height of the signal originating from the monomeric 

olefin protons.  In the solution-based polymerization examples with or without a template 

(Schemes 6.3 and 6.4), exponential decreases in monomer concentrations were observed, 

indicating that the polymerizations follow expected pseudo-first order kinetics, in which 

all cases reached 100% conversion (Figures 6.4-6.6). The greatest rate enhancement was 

observed at 10 mM, the most dilute concentration studied. An approximate three-fold 
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increase in the rate constant was observed when the template was used relative to the 

non-templated analogue (Table 6.2). A result that was not entirely expected was observed 

at higher concentrations. The effect of the template seems to decrease exponentially as 

concentration decreases (Figure 6.7). At 10 mM, a three-fold template enhancement 

effect was observed, while at 50 mM, the enhancement was only two-fold, and at 100 

mM, no enhancement was observed. These results suggest that at high dilution, a local 

concentration enhancement induced by the template is sufficient to speed up the rate of 

polymerization. At higher concentrations, however, this effect probably still exists, yet 

has little effect on the observed kinetics of the polymerization. Thus, at concentrations 

approaching 100 mM, the bulk solution molarity seems to dictate the rate of 

polymerization, rather than any local concentration effects induced by the template.  



 

171 

 

Figure 6.4.  Polymerization kinetics at 10 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 
2:6 ( ) and poly(3):6 ( ).   
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Figure 6.5.  Polymerization kinetics at 50 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 
2:6 ( ) and poly(3):6 ( ).   
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Figure 6.6.  Polymerization kinetics at 100 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 
2:6 ( ) and poly(3):6 ( ).   
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Table 6.2.  Kinetic Data for template polymerizations and control polymerizations. 
 

Entry Concentration (mM) kobs (103 s-1) 

2:6 10 0.37 ± 0.01 

poly(3):6 10 1.22 ± 0.06 

6 10 0.36 ± 0.01 

2:6 + p(NBE) 10 0.41 ± 0.02 

2:6 50 0.90 ± 0.03 

poly(3):6 50 1.85 ± 0.02 

6 50 0.82 ± 0.04 

2:6 + p(NBE) 50 0.91 ± 0.02 

2:6 100 2.99 ± 0.12 

poly(3):6 100 3.09 ± 0.12 

6 100 2.67 ± 0.09 

2:6 + p(NBE) 100 2.65 ±0.06 
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Figure 6.7. Rate constant dependence on concentration for templated (square) and non-
templated (diamond) polymerizations. The corresponding inset plot displays the percent 
increase in kobs induced by the polymeric template at varying concentrations.  
 
 

Several control experiments were carried out to verify our hypothesis. First, it is 

plausible that the template prevents the slowing of the polymerization by reducing the 

aggregation behavior of monomer 6, rather than actually speeding up the polymerization 

by inducing a local concentration effect, especially since aggregation behavior of 

monomer 6 has been observed when attempts were made to polymerize monomer 6 with 

a desired DP of greater than 50 (in CH2Cl2).
24a  This aggregation behavior would 

presumably be mitigated by protecting the THY moiety with the corresponding DAP (2) 

substrate, but it is possible that aggregation might still exist in competition with the 

protecting group, since we are considering an equilibrium process. Thus, we examined 

the polymerization of unprotected monomer 6 at varying concentrations in the hopes of 

quantifying how large of an effect aggregation might have on the rate constant. To our 

surprise, unprotected monomer 6 does not visibly aggregate at low concentrations (10-
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100 mM), and no effect on the rate constant was observed relative to the rate constant 

observed for the polymerization of 2:6 (Table 6.2, Appendix D). Monomer 6 only tends 

to aggregate as initiator loading is decreased with desired DPs of greater than 50. It is 

important to note that when aggregation is observed while trying to polymerize monomer 

6 with higher DPs, the polymerization only tends to proceed to around 50% conversion. 

Thus, these results indicate that the rate constants for the non-templated analogue 

polymerizations of monomer 6 are not hampered by aggregation. Most importantly, these 

data provide strong evidence that the template is not an aggregation suppressant, but 

rather an inducer of a local concentration increase.     

The role of the polymer backbone during the template polymerization might also 

be important, since the template is based on a poly(olefin) and ROMP is used as the 

polymerization method. While we predicted that the polymer backbone would not 

interfere with subsequent template polymerizations since the first generation Grubbs 

catalyst is active primarily toward strained olefins, we nevertheless carried out control 

experiments in which monomer 2:6 was polymerized in the presence of poly(norbornene) 

(DP = 20, Mw = 2000, Mn = 1850, PDI = 1.08). The rate constant measurements were 

independent of the presence of the polymer backbone (Table 6.2, Appendix D). These 

results support the conclusion that the poly(olefin) backbone is not a nuisance during the 

polymerization, and if minimal back-biting is occurring, this has no noticeable effect on 

kobs.    

Next, we investigated the nature and the control of the templated polymerization.  

Since the daughter polymer (poly(6)) formed could not be separated easily from poly(3), 

we utilized the support based template poly(3)-block-poly(5c) (Scheme 6.5).  Once 
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monomer 6 was polymerized completely from the support based template, DMF was 

added to the reaction mixture to break up the hydrogen bonded complex and to remove 

the daughter polymer (poly(6)) from the resin.  The resulting polymer could then be 

analyzed by GPC and compared to its non-templated analogues.  
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Scheme 6.5. Support-based template polymerization. aReagents and Conditions: (a) 
Grubbs’ 1st generation catalyst, CH2Cl2 followed by ethyl vinyl ether; (b) DMF.  
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The homopolymerization of monomere 6 in nonpolar solvents (CH2Cl2, CHCl3) 

results in a rather uncontrolled polymerization with the formation of larger molecular 

weight species (Figure 6.8, Table 6.1). Our kinetic studies indicate that aggregation is not 

a problem during the polymerization of monomer 6 with DP < 50, so this is probably not 

a contributing factor to the uncontrolled polymerization. It is possible, however, that 

monomer 6 may interfere with the catalyst in some way, and this interference may have 

not been detectable during our 1H NMR spectroscopy studies. Another factor may be the 

solubility of monomer 6 in CH2Cl2. Under dilute conditions, the limited solubility of 

monomer 6 in CH2Cl2 did not have a noticeable effect on the kinetics of the 

polymerization, but this still could potentially have an effect on the control of the 

polymerization.   These are merely assumptions, however, as the exact reason why 

monomer 6 polymerizes in an uncontrolled fashion is not fully understood. Nevertheless,  

the addition of a small molecule DAP substrate (2) to monomer 6 clearly allows for a 

more controlled polymerization (Figure 6.8, Table 6.1).  The resulting polymer has a 

lower polydisperity index (PDI) (1.28) than the analogue polymer formed without the 

addition of the THY additive, which has a PDI of 1.73 (Table 6.1).  

Likewise, the polymer formed from the support based template poly(3)-block-

poly(5c) has a PDI of 1.19. Such a narrow PDI indicates a controlled polymerization, and 

the GPC results indicate a monomodal distribution of molecular weights.  A small 

amount of high molecular polymer is present according to the GPC results (Figure 6.8).  

However, significantly less high molecular weight polymer is formed during the 

templated polymerization relative to the homopolymerization of 6 (Figure 6.8).  It is clear 

from these results that the support based template does not interfere with the 
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polymerization, a satisfactory result since we did not see the evidence of cross-linking at 

dilute conditions. Furthermore, upon washing with DMF, a solvent that is able to disrupt 

the hydrogen bonds between the template and the daughter polymer thereby releasing the 

daughter polymer, polymer was recovered. Based on initial monomer loading to the 

supported template, we found that 96% of the resulting polymer was recovered after the 

DMF wash. This rules out the possibility of higher molecular weight species being 

retained on the template after the wash. Our results from the supported template 

experiments indicate that the template is capable of providing an environment in which 

monomer 6 can polymerize in a controlled fashion. However, when the small molecule 

protecting group (DAP 2) is used, similar results are obtained. Thus, the supported 

template does not appear to be significantly advantageous over the small molecule 2 in 

providing a controlled polymerization environment.  
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Figure 6.8.  GPC traces of poly(6) without any template, poly(6) in the presence of 2, 
and poly(6) released from the template. 
 
 

We also investigated the effect of the template on the degree of polymerization 

(DP) of the daughter polymer and found no relationship between the DP of the template 

with the DP of the daughter polymer. Rather, the DP was based on initiator loading. 

Regardless of the DP of the template, the initiator loading was the only factor that seemed 

to affect the DP of the daughter polymer.  Although relationships between template DP 

and daughter DP have been observed during radical polymerizations,27  these results 

cannot be generalized and applied to our system.  The observed control during the 



 

181 

support based template polymerization is most likely the result of the protection of the 

thymine moiety, analogous to the effect of the small molecule DAP (2) protecting group. 

Another possibility, however, is that the template speeds up the polymerization such that 

catalyst death is minimized, and the larger molecular weight species are not produced, a 

result that we have previously observed during the polymerization of similar monomers.26 

 
 

6.4 Conclusion  
 

Template polymerizations are of great interest because they mimic the impressive 

polymerization techniques found in Nature thereby allowing for a high degree of control 

during the polymerization and might permit for the realization of applications to which 

templated polymers are key.  Most of the prior studies on templated polymerizations, 

however, deal with uncontrolled polymerization methods that have difficulties separating 

the daughter polymer from the template.  In this contribution, we present that both a 

controlled polymerization method can be performed from a polymeric template and that 

the daughter polymer can be separated from a support-based template easily.  We find 

that a polymeric template enhances both polymerization kinetics under dilute conditions 

and the control of the resulting polymerization.  These results are satisfactory for our next 

challenge to apply templated ROMP to materials applications, such as surface templated 

polymerizations or polymerizations from nanoparticle assemblies.   

 
 
 
 
 
 
 
 



 

182 

6.5 Experimental Section  
 
 

6.5.1 Materials  
   

Grubbs’ 1st generation catalyst was purchased from Aldrich.  N,N’-

dicyloclohexylcarbodiimide (DCC) and dimethylaminopyridine (DMAP) was purchased 

from Alfa Aesar.  Benzyl alcohol was purchased from Alfa Aesar and distilled prior to 

use.  2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 

(HATU) was purchased from Oakwood Products, West Columbia, South Carolina.  Rink 

Amide AM Resin (200-400 mesh, 0.71 mmole/g) was purchased from Novabiochem.  

Ethyl vinyl ether (stabilized) and dry N,N-Dimethylformamide (DMF) was purchased 

from Acros Organics.  5% palladium on carbon powder, 50% water wet, was purchased 

from Aldrich.  CHCl3 purchased from Fischer was dried (CaCl2), distilled, and degassed 

prior to use.  CH2Cl2 purchased from Fischer was dried via passage through copper oxide 

and alumina columns.  Compounds 3,26  4,24f  and 6,24a  were synthesized according to 

literature procedures.  N-diisopropylethylamine purchased from Avocado Research 

Chemicals was distilled over CaH prior to use.  

6.5.2 Methods  
  

Reactions were carried out under an Argon atmosphere unless otherwise noted.  

Thin-layer chromatography (TLC) was performed on Silica XHL TLC glass backed 

plates (Sorbent Technologies).  Column chromatography was performed on premium Rf 

grade silica gel (Sorbent Technologies, 40-75μm).  Nuclear magnetic resonance (NMR) 

spectra were recorded using a 500 MHz Bruker DRX spectrometer (1H NMR: 500 MHz, 

13C NMR: 125 MHz) or a 300 MHz Varian Vx 300 spectrometer (1H NMR: 300 MHz, 

13C NMR: 75 MHz).  Spectra were referenced from the residual proton resonance of the 
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deuterated solvent.  Chemical shifts are reported as parts per million (ppm) downfield 

from the signal origination of Me4Si as an internal standard for 1H and 13C NMR 

spectroscopy.  Kinetic experiments for polymerizations were conducted using 1H NMR 

spectroscopy (298˚ K) by monitoring the decay in proton resonances originating from 

monomer.  The peak heights were subsequently fitted to a decreasing exponential 

function (pseudo-first order) from which rate constants were extrapolated.  Gel-

permeation chromatography (GPC) analyses were carried out using a Shimadzu pump, a 

Shimadzu UV detector with THF or DMF as the eluants and a set of American Polymer 

Standards columns (100,1000,100,000 Å linear mixed bed).  The flow rate used for all 

the measurements was 1 mL/min.  All GPC measurements were calibrated using 

poly(styrene) standards and were carried out at room temperature.  Mw, Mn and PDI 

represent weight average molecular weight, number average molecular weight and the 

polydispersity index, respectively.  Isothermal titration calorimetry was performed on a 

Microcal VP-ITC Isothermal Calorimeter using degassed CHCl3 as the solvent with a cell 

concentration of 1 mM and a syringe (titrant) concentration of 10 mM.  

6.5.3 Synthesis  
 
Monomer 5.   

O

O(CH2)9COOBz

5  

Carboxylic acid monomer 4 (100 mg, 0.325 mmol), benzyl alcohol (35 mg, 0.325 

mmol), DCC (74 mg, 0.358 mmol) and DMAP (cat) were dissolved in dry CH2Cl2, and 

the reaction mixture was refluxed overnight.  The precipitate was filtered off, and the 
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solvent was removed using rotary evaporation under reduced pressure.  The resulting oil 

was purified using column chromatography (Hexanes/EtOAc = 9:1) to give a clear oil 

(120.5 mg, 93%).  1H NMR (CDCl3):  = 7.37 (m, 5H), 6.12 (m, 2H), 5.12 (s, 2H), 4.08 

(t, J = 6.7 Hz, 2H), 3.01 (m, 1H), 2.98 (m, 1H), 2.35 (t, J = 7.6 Hz, 2H), 2.22, (m, 1H), 

1.81-0.90 (m, 18H).  13C NMR (CDCl3):  = 174.0, 171.1, 140.3, 136.0, 135.9, 128.5, 

128.0, 127.3, 70.3, 68.9, 50.6, 48.3, 43.0, 34.2, 31.3, 30.2, 29.5, 29.1, 29.0, 28.6, 25.4, 

24.7. Anal. Calcd for C25H34O4: C, 75.34; H, 8.60.  Found: C, 75.59; H, 8.74. 

General Procedure for the Synthesis of Poly(3) and Poly(5a).  

O
O

(CH2)9
COOBz

m

poly(5a)

n

O
O

(CH2)11
O

N N
H

Et

O

N
H

Et

O

poly(3)  

The desired amount of monomer was weighed into a glass vial with a rubber 

septum cap, placed under an Argon atmosphere and dissolved in anhydrous, degassed 

CH2Cl2.  A stock solution of the catalyst (in the corresponding solvent) was prepared, and 

the desired volume was added to the polymerization vessel.  Upon complete 

polymerization, ethyl vinyl ether was added to quench the polymerization.  The polymer 

was isolated and purified by repeated precipitations into MeOH.  

Poly(3). All analytical data are consisted with previously published results.47  

Poly(5a).  1H NMR (CDCl3):  = 7.37 (m, 5H), 5.39 (m, 2H), 5.12 (s, 2H), 4.08 (t, J not 

resolved, 2H), 2.80-2.60 (m, 2H), 2.36 (t, J = 7.7 Hz, 2H), 1.90-1.20 (m, 18H).  13C NMR 
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(CDCl3):  = 174.3, 170.1, 140.3, 137.0,  134.0, 133.1, 130.2, 128.5, 128.0, 127.3, 70.3, 

67.6, 50.3, 48.0, 43.0, 34.2, 30.3, 30.2, 29.3, 29.1, 28.9, 28.6, 24.9, 24.3. 

Poly(3)-block-poly(5b).   

m n

O
O
(CH2)9

COOH

O
O

(CH2)11
O

N N
H

Et

O

N
H

Et

O

poly(3)-block-poly(5b)  

Monomer 3 (44 mg, 0.083 mmol) was dissolved in anhydrous, degassed CH2Cl2.  

Grubbs’ first generation catalyst (3.45 mg, 0.004 mmol) was added in a solution of 

CH2Cl2.  The polymerization was monitored by TLC.  Upon complete disappearance of 3, 

5 (8.3 mg, 0.021 mmol) was added as a solution in CH2Cl2.  Upon complete consumption 

of 5, the polymerization was terminated with ethyl vinyl ether.  The polymer was isolated 

and purified by successive precipitations in cold methanol (50 mg, 96%).  1H NMR 

(CDCl3):  = 7.80 (br m, 2H), 7.45 (m, 2H), 7.36 (m, 5H) 5.27 (m, 4H), 5.10 (s, 2H), 4.05 

(m, 6H), 2.80 (m, 2H), 2.21 (m, 23H) 1.80-1.11 (m, 40H).  13C NMR (CDCl3):  = 176.2, 

173.9, 172.8, 169.3, 150.7, 136.3, 133.9, 128.8, 128.4, 96.3, 68.7, 66.3, 64.8, 49.8, 47.8, 

42.1, 36.5, 34.5, 31.0, 29.7, 29.5, 29.1, 28.9, 27.2, 26.5, 26.1, 25.1.  

The resulting polymer was dissolved in THF / MeOH = 3:1 and hydrogenated for 

24 h to remove the benzyl protecting group using H2 over Pd/C (60 p.s.i.).  The reaction 

mixture was filtered over celite, and the solvent was removed using rotary evaporation 

under reduced pressured to yield poly(3)-block-poly(5b) as a light brown glassy solid (40 
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mg, 80%).  1H NMR (CDCl3):  = 11.20, (br s, 1H), 7.80 (br m, 2H), 7.45 (m, 2H), 5.27 

(m, 4H), 5.10 (s, 2H), 4.05 (m, 6H), 2.75 (m, 2H) 2.21 (m, 23H) 1.80-1.11 (m, 40H).  13C 

NMR (CDCl3):  = 176.2, 173.9, 172.8, 169.3, 150.7, 136.3, 133.9, 96.3, 68.7, 66.3, 64.8, 

49.8, 47.8, 42.1, 36.5, 34.5, 31.0, 29.7, 29.5, 29.1, 28.9, 27.2, 26.5, 26.1, 25.1.  

Resin supported Poly(3)-block-poly(5c).   

m n
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O

(CH2)11
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N N
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O

N
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Et

O
N
H

O
Rink

poly(3)-block-poly(5c)  

Rink amide AM resin (121 mg, 0.71 mmol/g, 0.086 mmol) was added to a fritted 

filter equipped coupling vessel and swelled in CH2Cl2 for 45 min followed by DMF for 

10 min with shaking using a WS180 º Shaker (Glas-Col).  The resin was subsequently 

washed with MeOH and DMF.  Piperidine (20% in DMF, 1mL) was added to remove the 

Fmoc protecting group.  The mixture was agitated for 10 min and the resin was 

thoroughly washed with CH2Cl2, MeOH, and DMF.  A ninhydrin test indicated the 

presence of free amine groups.  Poly(3)-block-poly(5b) (3 eq, 135.5 mg, 0.258 mmol, ), 

HATU (130 mg, 0.344 mmol), and DIEA (0.05 mL) were added to the resin as solutions 

in DMF and the coupling vessel was shaken overnight.  The resin was filtered and 

washed thoroughly with DMF, MeOH, and CH2Cl2.  A negative ninhydron test indicated 

the consumption of surface amine groups. Residual amine groups were capped with 

acetic anhydrid.  The resin-supported polymer was dried under high vacuum for 24 h.  
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Solution-based Template Polymerization for Poly(3):poly(6).  Poly(3) was dissolved 

in CH2Cl2 or CDCl3 followed by the addition of 6.  The concentration of 6 was kept at 10 

mM.  The mixture was sonicated for 30 min to ensure complete dissolution followed by 

the addition of Grubbs’ 1st generation catalyst.  The polymerization was monitored by 1H 

NMR spectroscopy.  Upon complete conversion, the polymerization was quenched with 

ethyl vinyl ether.  The resulting polymer:polymer complex poly(3):poly(6) was isolated 

by precipitation into cold MeOH.  

Support-based Template Polymerization for Poly(3)-block-poly(5c):poly(6).  

Resin supported poly(3)-block-poly(5c) was swelled in CH2Cl2 for 45 min.  Monomer 6 

was then added to the vessel and the mixture was shaken for 1 h to ensure complete 

complexation.  Then, Grubbs’ 1st generation catalyst was added and the polymerization 

was allowed to proceed for 6 h, and the polymerization was terminated with ethyl vinyl 

ether.  The resin was washed with CH2Cl2, and subsequently with DMF to remove the 

daughter polymer (poly(6)).  Analytical data for poly(6) are consistent with previous 

reported values.47 
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CHAPTER 7 
 

Erasable Coordination Polymer Multilayers on Gold 
 
 
 

7.1 Abstract  
 

In this chapter, the use of reversible coordination chemistry to assemble polymer 

multilayers on gold surfaces is examined. Such multilayers have potential application 

ranging from drug delivery to electro-optics. Our system (i) provides for uniform film 

deposition and control of multilayer thickness, (ii) allows for the integration of diverse 

polymer components embedded in alternating polymer bilayers, and (iii) affords stable, 

yet responsive multilayers that can be manipulated by chemical means using competing 

supramolecular interactions.  

 
 

7.2 Introduction  
 

Current methods to assemble multilayers on surfaces rely predominantly on 

Layer-by-Layer (LbL) deposition of polycations and polyanions to produce 

polyelectrolyte multilayers (PEMs)1,2  that are stabilized primarily through polyvalent 

electrostatic interactions.3  While PEMs have been employed successfully as key material 

in biological applications such as drug delivery,4  their performance in applications that 

demand either long-term use or added stability toward heat and other solution conditions 

such as changes in salt concentrations, or even mild pH changes is limited.5  To overcome 

these shortcomings, several groups have explored the use of covalently bound 

multilayers6  as a robust alternative to PEMs for use in OLEDs,7  etch resistant 

materials,8a  dielectrics,8a  and as feature replicants.8b  These covalently bound multilayers 
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offer additional stability toward heat, solvent changes, pH, and other solution conditions, 

but the responsiveness afforded by PEMs is sacrificed.  

A significantly less studied area is the use of metal-ligand interactions to integrate 

components within polymer multilayer thin films with the goal of enhancing stability and 

adding functionality.9 Metal-ligand assisted lateral film growth has been achieved 

through Ru-pyridine complexation,10a  while Fe-bipyridine complexes have been laterally 

integrated between poly(styrene sulfonate) and poly(ethylene imine) multilayers.10b  

Polyelectrolyte assembly has also been assisted by intermittent integration of metal 

cations, namely Cu2+, allowing for the reductive formation of polymer / Cu 

nanocomposites.11  Similarly, poly(oxometalate) nanoclusters have been integrated 

between poly(cations) within multilayered thin films.12  Additionally, the use of polymer 

multilayers with embedded metal complexes have been explored in a variety of 

applications, including sensors that detect chemical toxicity13a  and damaged DNA.13b-c  

Much like covalent multilayers, metal-coordination multilayers tend to increase 

multilayer stability while sacrificing responsiveness.  A methodology that allows for the 

formation of metal-coordination multilayers that are stable with fully reversible formation 

has not been demonstrated.  

 
 

7.3 Results and Discussion  
 

Our system described herein combines the advantages offered by covalent 

multilayers, metal-bound multilayers, and PEMs by using strong, yet reversible 

noncovalent14  metal-ligand interactions to create a new class of coordination polymer 

multilayers (CoPMs). It is based on the coordination of weak bases to palladium 
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complexes as the key noncovalent interaction to create stable, yet responsive CoPMs. We 

utilize Pd(II) pincer-type complexes15  because of their strength (Ka > 109 M-1 in nonpolar 

solvents)16  and inertness14c  toward a variety of functionalities, including polar, nonpolar, 

charged, and even acidic groups. Furthermore, Pd(II) pincer complexes are tolerant 

toward many reaction conditions, including organometallic reactions,17  yet responsive 

toward stronger coordinating ligands. In our study, the Pd(II) pincer complexes are 

supported on poly(norbornene)s, PNBE+ (Mw = 30,000), creating a polymer with a metal 

complex on each repeating unit. The acetonitrile coordinated to the Pd(II) pincer 

complexes along the PNBE+ can be displaced quantitatively by pyridine (Scheme 7.1).18  

Therefore, we employed commercially available poly(vinyl pyridine) (Mw = 20,000), 

PVP, as the complementary macroligand.  
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Scheme 7.1. Pincer-type coordination chemistry between PNBE+ and poly(vinyl 
pyridine) PVP to yield [PNBE+-PVP]n coordination multilayers.  
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We began our study by functionalizing a gold surface with 4-mercaptopyridine. 

Upon exposure of the pyridyl functionalized surface to PNBE+, the acetonitrile ligands 

on the Pd(II) pincer complexes along the PNBE+ are quantitatively and instantaneously 

displaced by surface pyridines forming a polyvalent layer upon which multilayers can be 

built. CoPM buildup then proceeded by simple alternation of PVP and PNBE+ solution 

treatments (Scheme 7.2). Using this simple methodology, we were able to fabricate 

CoPMs based on coordination chemistry with up to 25 bilayers in less than three hours. 

The multilayer buildup was initially monitored by UV-vis absorption 

spectroscopy. As multilayer buildup progressed, the absorption band attributable to the 

aromatic groups on both the PNBE+ and the PVP (lmax = 254 nm) increased linearly with 

bilayer number (Figure 7.1A). Grazing angle FT-IR experiments additionally 

demonstrated peak intensity increases upon bilayer build-up (Figure 7.2). Additionally, 

XPS confirmed the presence of N, S, and Pd in our CoPMs.  

 

 

 

 

 



 

197 

 

Figure 7.1. (A) UV-vis absorption spectra for CoPM buildup taken at every bilayer 
(PNBE+-PVP)n on a 20 nm Au layer deposited on quartz. The inset plot displays 
absorbance intensity at 254 nm vs. deposition cycle (R2 = 0.98) and a corresponding 
control experiment to rule out non-specific adsorption in which a non-activated PNBE-Cl 
was used in place of PNBE+ as the deposition polymer. (B) UV-vis absorption spectra 
for CoPM breakdown taken over time. The inset plot displays absorbance intensity at 254 
nm vs. time. 
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Figure 7.2. Partial RAS-FTIR spectra displaying absorbance intensity increases observed 
in the aliphatic C-H stretching region upon bilayer buildup. 
 
 

Surface heights were measured using ellipsometry and AFM. Ellipsometry data 

indicate an average layer thickness of 28 nm and an average bilayer thickness of 58 nm. 

Linear trends between surface height and layer number were observed for both even and 

odd (PNBE+-PVP)n layers (Figure 7.3A-B). Heights determined by ellipsometry for the 

eight and sixteen layer films were 199 (± 20) nm and 523 (± 50) nm, respectively. These 

values corresponded well with height values measured by AFM of 190 (± 10) nm and 

451 (± 32) nm for the eight and sixteen layer films, respectively. 
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Figure 7.3. Plot of surface height determined by spectroscopic ellipsometry vs. even (A) 
and odd (B)  bilayer number. 
 

 

The observed heights for the multilayers are much thicker than expected. 

Molecularly thin PEMs can often be produced through LbL methods with layer 

thicknesses as small as a few nanometers.19 Based on molecular mechanics energy 

minimized decamer models of PNBE+ and PVP, we predict molecularly thin multilayers 



 

200 

to have bilayer thicknesses of about 7 nm, whereas the observed thicknesses correspond 

to about ten linear polymer molecules per bilayer. These models, however, are just rough 

predictions for perspective and do not take into account polymer folding and swelling. In 

reality, we believe that several factors contribute to the observed thicknesses.  

First, while PEMs are often very thin due to counterion expulsion upon multilayer 

buildup resulting in greater multilayer packing through a process known as “intrinsic 

compensation,” 21b we would not expect the counterion on PNBE+ to be expelled during 

the deposition process. The presence of the counterion within the multilayer contributes 

significantly to swelling, a phenomena known as “extrinsic compensation.” 21b  

Second, the effect of electrostatic repulsion and charge compensation upon 

multilayer buildup is often cited as one key reason why PEMs are so thin.21b Since our 

deposition is not purely electrostatic, we would not expect our polymers to spread out as 

flat as PEMs (this is also evident by our roughness measurements).  

 

 

Figure 7.4. Molecular mechanics energy minimized simulation of PVP decamer using 
Spartan software.  
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Figure 7.5. Molecular mechanics energy minimized simulation of PNBE+-Cl decamer 
using Spartan software.  
 

Third, we suspect that since our individual polymer recognition units have such a 

high association constant, entangled polymers are getting “dragged” to the surface. This 

should largely be an effect due to the deposition concentration. To test this hypothesis, 

we deposited an eight layer film at 5 mM concentrations, rather than 10 mM, since we 

reasoned that a lower concentration would reduce polymer entanglement in solution. The 

height of this film was measured by AFM to be 115 nm + 17 nm, a height about half as 

thick as the eight layer film deposited at 10 mM. While we suspect polymer entanglement 

to be the main source of this effect,20 other concentration and kinetic effects might also be 
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contributing to the observed results. However, we are pleased that these results indicate 

that we might be able to modulate film thicknesses in a controlled manner by merely 

varying the deposition concentration (Figure 7.4).   

 
 

 
Figure 7.6. A-D) section line height profiles of scratched CoPMs (16 layers)  on  (A) 
gold plated slides for multilayers deposited at (B) 1 mM, (C) 5 mM, and (D) 10 mM; E) 
corresponding surface heights and RMS roughness measurements for the films deposited 
at 1 mM, 5 mM, and 10 mM. F) Example AFM image taken in air of a scratched 16 layer 
CoPM (x = y = 90 μm; z = 4 μm); rougher area is polymer; smooth areas are scratch 
edges defining center of scratch (deeper portion).  
 

 

Nonspecific adsorption between the polymer and the surface was ruled out on the 

basis of a control experiment in which we employed non-activated PNBE instead of 
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PNBE+ where a Cl- ligand was in place of the more labile acetonitrile ligand. Deposition 

experiments analogous to the one described previously were carried out. After fifteen 

deposition cycles, no absorbance was observed demonstrating that no polymer was 

adsorbed to the gold surface. The stability of the multilayers to solvent changes, 

temperature in solution and the solid state as well as salts was examined. First, we 

exposed them to EtOH, THF, and DMF for short rinsing periods. In all cases, the 

absorbance intensity of the multilayer remained constant.  

 

 

Figure 7.7.  Control UV-vis absorption spectra: alternate deposition cycles were 
performed with PVP and PNBE-Cl.  No absorption was observed after fifteen deposition 
cycles.  For reference, a spectra (blue line) corresponding to a 10-bilayer film (after 5 
deposition cycles) is included.  
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Figure 7.8.  Plot of absorbance intensity after short rinsing periods with DCM, EtOH, 
THF, and DMF.  No changes in absorption were observed.  
 

 

 

Figure 7.9.  Plot of Absorbance intensity vs. time for Soxhlet DMF etch extraction 
experiment.  
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To further test the stability of our CoPMs toward solvent etching, we placed an 

eight layer CoPM in a DMF Soxhlet extractor and monitored the etching progress over 

time. The CoPM was completely etched in three days. We attribute the degradation to 

both solubility of the multilayers in DMF as well as decomposition of the metal complex 

at 153 °C in solution. It is important to note, however, that these CoPMs are far more 

stable than most PEMs towards polar solvents. Some of the most commonly used and 

stable PEMs based on poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) or 

poly(styrene sulfonate) (PSS) are etched almost completely after 1 hr of DMF exposure 

at room temperature.21 This problem is often circumvented by cross-linking the 

multilayers;21 however, upon cross-linking, responsiveness if largely sacrificed.  

Additionally, no significant etching was observed after oven heating the surfaces 

to 140 °C for two weeks and subsequently washing with CHCl3 before analysis using 

UV-vis spectroscopy. The observed thermal stability is orders of magnitude greater than 

most PEMs, such as PAH-PSS or PAH-PAA, which typically either degrade or undergo 

crosslinking at these temperatures over short time periods.21 To test the stability of our 

CoPM functionalized surfaces toward salt exchange, we placed the functionalized gold 

surfaces in a CHCl3 solution of AgOTf, and no etching was observed by UV-vis 

spectroscopy. However, if the CoPMs are exposed to excess NaCl, the metal 

complexation is reversed, and the formation of PNBE-Cl most likely results effectively 

etching the multilayers. We believe this to be a positive finding, since a similar 

responsiveness to NaCl has recently been used to spatially pattern PEMs through 

controlled etching in a “top-down” approach.22 We intend to investigate the possibility of 

controlled etching of our multilayers to produce patterned surfaces using NaCl solutions.  
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We subsequently tested the ability to etch our CoPMs chemoresponsively using 

competing ligands. Upon exposure of a multilayer to a 10 mM solution of PPh3, a 

stronger base and a tighter coordinating ligand for the Pd(II) complexes along the 

PNBE+, the absorbance intensity decreased dramatically within a few minutes (Figure 

7.1B) demonstrating the removal of our multilayers and their responsiveness to chemical 

stimuli and suggesting a possible trigger mechanism for surface applications, such as 

“top-down” patterning.22 

 
 

7.4 Conclusion  
 

In summary, we have demonstrated that coordination chemistry between 

palladium complexes and bases can be used to assemble CoPMs. The CoPMs produced 

in this fashion rival the stability of covalent multilayers, while retaining the 

responsiveness of PEMs. These appealing characteristics of our system makes CoPMs 

desirable for a variety of applications, specifically, as key materials in optical devices, 

delivery systems, catalytic systems, and templated23  synthesis.  

 

 
 

7.5 Experimental  
 
 
7.5.1 Materials and General Methods  
 

NMR and GPC.  Nuclear magnetic resonance (NMR) spectra were recorded using 

a 500 MHz Bruker DRX spectrometer (1H NMR: 500 MHz, 13C NMR: 125 MHz) or a 

300 MHz Varian Vx 300 spectrometer (1H NMR: 300 MHz, 13C NMR: 75 MHz).  

Spectra were referenced to residual proton resonances of the deuterated solvent.  
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Chemical shifts are reported as parts per million (ppm) downfield from the signal 

origination of Me4Si as an internal standard for 1H and 13C NMR spectroscopy.  Gel-

permeation chromatography (GPC) analyses were carried out using a Shimadzu pump, a 

Shimadzu UV detector with THF or DMF as the eluants and a set of American Polymer 

Standards columns (100,1000,100,000 Å linear mixed bed).  The flow rate used for all 

the measurements was 1 mL/min.  All GPC measurements were calibrated using 

poly(styrene) standards and were carried out at room temperature.  Mw, Mn and PDI 

represent weight average molecular weight, number average molecular weight and the 

polydispersity index, respectively. 

 
Gold slide preparation.  For UV-vis studies, we placed quartz slides (20 mm x 20 

mm, ChemGlass) into a plasma cleaner for 20 min. Using Teflon coated tweezers, we 

removed the slides and placed them in a solution (2% by volume) of 3-

mercaptopropyltrimethylsilane (MPTMS, Aldrich) in EtOH. After removal from this 

solution, we rinsed the slides with EtOH and dried the slides under a stream of N2. We 

then vacuum deposited gold (gold shot, 99.999% pure, Alfa Aesar) at a rate of 0.10 nm/s 

until a desired thickness of 20 nm was reached. After removal from the gold evaporator, 

the slides were placed directly into the desired thiol solution or EtOH. For AFM, 

ellipsometry, and RAS-FTIR, we purchased gold slides (1 in. x 1 in.) from Evaporated 

Metal Films (EMF) and cleaned them using a DMF sonication and EtOH rinse prior to 

use.  The purchased slides consisted of 100 nm of gold deposited onto 5 nm of Titanium 

deposited onto float glass.  
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Ellipsometry.  Ellipsometry measurements were carried out using a J.A. Woollam 

Co. Inc. Spectroscopic Ellipsometry (M2000 VI).  Spectra were collected at a 75o 

incidence angle from 372nm – 1000 nm using a Cauchy dispersion method to model the 

film.  Errors for height measurements obtained by ellipsometry were less than 10% in all 

cases.   

 
Grazing Angle FT-IR.  FT-IR data were collected at 4 cm-1 resolution using a 

Digilab FT-IR equipped with an LN2 cooled MCT detector.  The measurements were 

taken using a Pike grazing angle apparatus.  The chamber was purged with UHP N2.  A 

desiccant was used in the chamber to further minimize moisture.   

 
XPS.  We carried out XPS characterization on a Phi model SCA 1600 XPS with 

an Al Ka (1486.7eV) electron source. We probed an 800 micron spot size at a depth of 10 

nm. We kept the chamber pressure at 3 x 10-9 Torr. We conducted alignment using a C1s 

peak. We analyzed our spectra were analyzed using Multipak 8.2.  
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Figure 7.10. XPS Spectra for a five-bilayer CoPM.  
 

AFM.  AFM data were taken in air in AC mode on an Asylum Research MFP3D 

instrument.  We processed all AFM images and analyzed surface heights using Asylum 

Research MFP3D software operating in IgorPro (WaveMetrics, Inc., Lake Oswego, OR).  

An Olympus cantilever (k = 42 N/m, f0 = 377 kHz) was employed for imaging substrates, 

prelayers substrates, and multilayer films.  The same cantilever was used for surface 

thickness determination.  Images for surface analysis were taken over a 10 mm x 10mm 

scan range (512 x 512 pixels for each image).  For absolute surface height measurements 

using AFM, we first scratched a blank gold slide with a razor blade and scanned (512 x 

512 pixels for each image) this area on the gold slide (90 mm x 90 mm or 50 mm x 50 

mm) so as to include enough area around.  CoPM films were scratched and imaged in the 

same manner.  To determine surface height, the AFM software was used to process the 
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image and perform an averaged line analysis over 100 lines for each image.  A point 

along the averaged line corresponding to the top of the surface was selected, and from 

this height value was subtracted a value corresponding to a point at the bottom of the 

surface (step-etch from scratch).  The thickness of the blank gold slide (125 nm) was 

subtracted from the height value determined for the multilayer films.  Errors in these 

values were calculated from standard deviations in the averaged line height analyses.  

 

 

Figure 7.11.  AFM image (90 mm x 90 mm) of a blank gold slide displaying a scratch 
used to calculate base thickness for subsequent CoPM thickness determinations.  
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Figure 7.12.  AFM image (90 mm x 90 mm) of (PNBE+-PVP)4 and a scratch on a gold 
surface used to calculate thickness for the four bilayer CoPM.  
 

 

 

Figure 7.13.  AFM image (50 mm x 50 mm) of (PNBE+-PVP)8 and a scratch on a gold 
surface used to calculate thickness for the eight bilayer CoPM.  
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Figure 7.14.  AFM image (10 mm x 10 mm) of (PNBE+-PVP)4 on a gold surface used 
for the surface analysis.  
 
 

UV-Vis spectroscopy.  Solution and solid-state UV-vis absorption spectra were 

acquired using a Varian Cary 5A spectrometer.  Solution-based absorption spectra were 

referenced to a blank containing the same solvent as the sample.  Solid-state absorption 

spectra were referenced to a blank gold slide.  For all solid-state measurements, 

transparent gold slides consisting of 18-20 nm of gold deposited on quartz were used. 

7.5.2 Synthesis  
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PNBE+.  We dissolved the NBE monomer (50 mg, 0.065 mmol) in dried (Na, 

benzophenone), degassed CH2Cl2 (1 mL).  Then Grubbs 1st generation catalyst (1 mg 

dissolved in 0.1 mL of CH2Cl2) was added under Argon, and the resulting mixture was 

stirred for 30 min.  We quenched the polymerization with the addition of ethyl vinyl ether 

and precipitated the resulting polymer out of CH2Cl2 using cold MeOH to give a yellow 

solid (48 mg, 96% yield).  Characterization data are consisted with previous reports.1  We 

dissolved the resulting polymer in acetonitrile and AgBF4 (1 mg) was added.  The 

solution was stirred in the dark for 15 min.  The acetonitrile was removed under reduced 

pressure, the resulting residue dissolved in CH2Cl2, and the polymer precipitated out 

using cold MeOH to give a yellow solid (52 mg, 94%).  1H NMR (500 MHz, CD2Cl2, d): 

7.85 (m, 4H, SPh), 7.40, (m, 6H, SPh), 6.60 (s, 2H, OPh), 5.50-5.15 (m, 2H, -CH=CH-), 

4.60 (br s, 4H, ArCH2-), 4.05, (t, J not resolved, 2H, -OCH2-), 3.85, (t, J not resolved, 2H, 

-OCH2-), 3.13 (s, 1H, ring CH), 3.05 (s, 1H, ring CH), 2.80-2.40 (m, 2H), 2.15 (m, 2H), 

1.80-1.53 (m, 4H), 1.50-1.25 (m, 15H). 13C NMR (125 MHz, CD2Cl2, d): =174.4, 156.8, 

151.3, 149.9, 132.3, 131.2, 129.6, 129.5, 108.7, 108.6, 67.9, 64.2, 51.5, 48.0, 45.4, 40.4, 

39.7, 37.3, 36.0, 29.3, 29.2, 28.9, 28.6, 27.2, 26.0, 25.8. Mn = 28,500 Mw = 30,000 PDI = 

1.05. 

PYR Monolayer Formation and LbL deposition.  The gold slides were placed 

into a 10 mM solution (in EtOH) of 4-mercaptopyridine for 24 hrs (Others have fully 

characterized PYR monolayers produced in this fashion2).  We rinsed the resulting slides 

with EtOH, dried them under a stream of N2 and placed the slides into a solution of 

PBNE+ (10 mM in CH2Cl2) for five min.  Again, the resulting slides were rinsed 
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(CH2Cl2), dried under a stream of N2, and placed into a solution of PVP (10 mM in 

CH2Cl2).  This cycle was repeated until the desired layer number was reached.  
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CHAPTER 8 
 

Bridged Coordination Polymer Multilayers with Tunable Properties 
 
 
 

8.1 Abstract  
 

Coordination multilayers consisting of Pd(II) pincer type complexes and 

poly(vinyl pyridine) were synthesized and characterized. Layer-by-layer Polymer 

deposition was carried out on a pyridyl functionalized quartz slide.  Film properties were 

found to be dependent on, and could be tuned by varying, bath deposition concentrations, 

polymer molecular weights, and solution additives that compete with binding. Generally, 

smoother, thinner films were obtained with lower poly(vinyl pyridine) deposition bath 

concentrations. Likewise, film thickness and roughness could be reduced by employing a 

higher molecular weight poly(vinyl pyridine). Film properties were influenced by using 

acetonitrile as a solution additive, which effectively drives the binding equilibrium 

toward the free species. 

 
 

8.2 Introduction  
 

In the previous Chapter, an alternative2,3 to traditional poly(electrolyte) multilayer 

(PEMs)1 thin films was presented. While the previous work outlined a new method to 

produce thin films without the use of poly(electrolytes), other approaches to assemble 

thin films onto surfaces exist and include hydrogen bonding,4-10  covalent chemistry,2  

halogen bonding,11  and metal ion coordination,18-27  to name a few.  Of particular interest 

to us is the use of metal coordination, however, given that coordination polymer 
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multilayers (CoPMs) can be responsive to environmental stimuli, much like PEMs, while 

still being as robust as films formed through covalent bonding.2 

The potential uses of metal coordination multilayers are arguably as widespread 

as uses envisioned and practiced with PEMs,1 a few of which were briefly introduce in 

Chapter 7. Examples of already existing technologies include the use of polymer 

multilayers with embedded metal complexes in biological applications.12-14  Likewise, 

CoPMs have potential uses in electrical and photoelectrical devices.15  Moreover, a 

diverse range of functional components can be easily integrated into CoPMs to impart a 

desired property to the film.16,17  For example, a light responsive azobenzene dye was 

periodically incorporated into a polyelectrolyte component, and ZrO2 was used to cement 

the polymer layers.18  We and others are also attracted to methods utilizing reversible 

coordination chemistry to assemble erasable multilayers10,19  on surfaces, particularly 

since these approaches can yield thin films that are subject to top down lithography using 

a stimulus other than light. 

Current strategies employing coordination chemistry to build polymer multilayers 

on surfaces typically rely on metal ion induced assembly in an aqueous environment.  For 

example, terpyridine-based metal ion coordination chemistry has been used to fabricate 

surface anchored polyelectrolyte networks.20  Other examples include the orthogonal use 

of both electrostatic and coordination chemistry, to assemble polymer multilayers.21  

Likewise, dendritic multilayers have been assembled onto surfaces using Ag(II),22  

Co(II)23  and Zr(IV) metal ions.24  Zirconium has also been used to assemble polymer 

multilayer thin films.25  Other examples have utilized metal ion-based coordination 

chemistry to induce changes in polymer film properties, such as morphology,26  by 
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exposing a PEM to an aqueous solution of metal ion.  More common than coordination 

polymer multilayers are molecular multilayers based on coordination chemistry.  Here 

too, however, aqueous metal ion coordination is typically the method of choice for the 

assembly of components onto a surface.  For example, carboxylic acid ligands were 

assembled onto silica surfaces using aqueous Zn(II) complexes.27  Similarly, a variety of 

charged and uncharged ligands have been assembled onto surfaces using metal ion 

coordination.24,28-32 

The approach introduced in Chapter 7, in contrast to typical metal ion approaches, 

allow for both the build up and break down of a polymer multilayer in an organic solvent, 

while also imparting diverse functionality to the multilayer.33  Such an approach allows 

for the integration of non-water soluble materials into thin films, such as optical dyes or 

other aliphatic materials. This approach can also allow for the use of multilayer films in 

applications that are sensitive to water or humidity such as electro-optical and hydrogen 

storage applications.34 

The investigation detailed in Chapter 7 involved the assembly of a 

poly(norbornene) containing side-chain Pd(II) pincer type complexes onto a 

commercially available, complementary macroligand, poly(vinylpyridine) (PVP).  We 

demonstrated the uniform build-up and subsequent eraseability of these polymer films.33  

Based on our positive result using coordination chemistry to fabricate multilayers, we 

extended our approach of coordination multilayers by using a simplified small molecule 

Pd(II) pincer complex assembled using reversible coordination chemistry as depicted in 

Scheme 8.1.  The use of the small molecule Pd(II) pincer complex (1) allows us to 

employ non-aqueous deposition techniques and can optionally provide for the integration 
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of diverse ligands and functionalities into the films. Small molecule 1 is also compatible 

with a number of deposition parameters, including varying concentrations of PVP with 

deposition enabled at concentrations as low as 1 mM [PVP] and as low as 0.4 mM [1]. 

Additionally, 1, because of its high association strength with PVP, can be deposited into 

or onto films and surfaces quickly (~ 2 minutes) and quantitatively, in contrast to weaker 

associating small molecules and metal ions that typically require longer deposition times 

and often strict deposition parameters.22-23 Furthermore, 1 also results in thinner, smoother 

films, in comparison to the poly(norbornene) based analogue.35 The use of 1 with PVP 

could also provide a versatile platform for the integration of other components, including 

hydrogen bonding materials such as poly(4-vinyphenol) (PSOH).8  In light of the 

versatility of the system reported herein, we  have extended upon our previous approach 

by tuning film properties by modulating various deposition parameters. 
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Scheme 8.1.  Ligand displacement reaction between PVP and 1 used to build 
coordination polymer multilayers. 
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8.3 Results and Discussion  
 

Quartz was chosen as the substrate of choice for the LbL deposition.  We opted to 

use a prelayer template based on pyridine rather than attempting to attach 1 directly to a 

surface.  The quartz slide was reacted with 4-(2-(trichlorosilyl)ethyl)pyridine 2 in analogy 

to a prior report under anhydrous conditions to yield a densely packed pyridine 

monolayer.37  The molar surface density, , was extrapolated using UV-vis 

spectroscopy38  to be 1.5 x 10-9  mol/cm2 (Figure E.1) assuming that the molar extinction 

coefficient in solution lies reasonably close to the molar extinction coefficient in the solid 

state.  Our calculated  value agrees well with the  value (1.3 x 10-9 mol/cm2) calculated 

by Paulson and coworkers for the same monolayer on quartz.37  Assuming a moderately 

ordered monolayer is formed during the polymerization of the silyl chlorides as well as 

an average pyridine headgroup radius of about 4Å (calculated using molecular mechanics 

and Spartan software), a  value of 1.2 x 10-9 is expected, a value that closely 

corresponds with our and Paulson’s results. These calculations correspond to about nine 

pyridine headgroups per 1 nm2, suggesting a uniform, densely packed monolayer. 

A common concern with the lateral polymerization of silyl chlorides is the 

formation of islands or large defects on the surface.  Paulson and coworkers did not 

observe such defects on their monolayers during their earlier work.37  We were able to 

verify their finding in our system by both optical microscopy (OM) and atomic-force 

microscopy (AFM).  At 10,000 x’s magnification, observed through OM, no defects were 

observed on our films.  Likewise, AFM showed a smooth surface, with no obvious 
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defects observed at several locations on the slide and with a calculated roughness (rms) of 

0.4 nm (Figure E.2).  The rms value increased slightly, as expected, after the 

polymerization, from a value of 0.1 nm for the clean quartz slide (Table 8.1).  We 

concluded, on the basis of these results, that our pyridine-functionalized surface was 

adequate as a prelayer for the LbL deposition of polymers. 

 
 

Table 8.1. Surface characterization data. 
 
Entry Sample [Polymer]/mMa Height/nmc Error /nm A / a.u. rms/nmc 

1 PVPa:1 film 1 40 6 0.02 6.3 

2 PVPa:1 film 5 150 30 0.10 29.9 

3 PVPa:1 film 10 370 17 0.15 17.3 

4 PVPb:1 film 1 30 1 0.007 1.3 

5 PVPb:1 film 5 90 9 0.03 8.7 

6 PVPb:1 film 10 150 14 0.07 13.8 

7 PVPb:1 

filmb 

10 100 5 0.10 4.6 

8 Quartz slide - - - - 0.09 

9 2 on quartz - - - - 0.35 

10 2:1 on quartz - - - - 0.41 

adeposition solution concentration;  bwith acetonitrile additive in baths;  cdetermined from 
AFM. 
 
 

To modify the pyridine prelayer so that PVP is able to stick to the surface, we 

simply deposited compound 1 onto the slide.  Deposition was monitored by UV-vis 
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spectroscopy.  According to UV-vis data, layer deposition in using a 10 mM solution 

(CH2Cl2) of 1 is complete (no further increases in absorption intensity is observed after 

continued exposure of the film to a deposition solution) after about two minutes (Figure 

E.5).  Roughness (rms) measurements of the modified prelayer were calculated to be 

between 0.3-0.4 nm (Table 8.1) for each prelayer produced.  Subsequent multlilayer 

buildup was then accomplished by placing the functionalized surface into a bath of PVP 

and 1, with thorough rinsing and sonication in between deposition cycles. 

Our initial deposition experiments utilized 10 mM solutions (CH2Cl2) of both, 

PVP and 1.  UV-vis spectroscopy measurements revealed that the deposition of each 

layer is complete within two minutes (Figure E.5), which is consistent with our previous 

results.33  UV-vis spectroscopy data also indicated uniform layer buildup, with a linear 

relationship between layer number, n, and absorption, A.  However, AFM data taken of 

the films revealed rough films.  The films were so rough, in fact, that a 20 μm x 20 μm 

area could not be scanned without either breaking an AFM tip or having tips irreversibly 

spring from the surface after encountering large defects.  We have observed relatively 

rough surfaces before, using a similar system, and concluded that the deposition 

concentration is a critical parameter during the multilayer buildup of these coordination 

polymers.33 Ultimately, through varying the concentration of 1 and measuring the 

resulting film roughness, we determined that the optimum concentration of 1 should be 

around 0.4 mM to achieve smooth thin films.  We thus employed 0.4 mM concentrations 

of 1 for all remaining deposition experiments. 

Based on our prior observation, originating from the hypothesis that a lower 

deposition concentration can minimize polymer entanglement,33  we lowered the 
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deposition concentration of PVP first to 5 mM and subsequently to 1 mM.  With 

deposition concentrations of 1, 5, and 10 mM, we observed uniform film buildup 

determined by UV-vis spectroscopy (Figure 8.1B-C), with final absorbance values of 10 

layer films increasing proportionally with PVP concentration.  By monitoring the 

absorbance band corresponding to the PVP * transition at 257 nm, we determined the 

deposition to be approximately linear with each layer being close to uniform.  UV-vis 

spectroscopy data also revealed another important feature attributable to the high energy, 

nitrile complex absorption band at 217 nm, which is generally distinct at times when 1 is 

covering the surface as the terminal layer, and fades when PVP covers the surface as the 

terminal layer.  This is consistent with our hypothesis that the acetonitrile ligand is 

released when PVP is coordinated to 1 (Scheme 8.1).  This exchange of a weaker ligand 

(acetonitrile) with a stronger one (pyridine) has been well-established in solution 

experiments investigating similar chemistry.35-36 
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Figure 8.1.  UV-vis data for polymer multilayers consisting of 1 and PVPa:  (A) 
Example UV-vis absorption spectra taken at each deposition interval between 1 (0.4 mM 
in CH2Cl2) and PVPa (1 mM in CH2Cl2). Dotted lines represent odd buildup, with 1 on 
top of the film, while solid lines represent even buildup, with PVPa on top;  (B) Plot of 
layer number, n, vs. absorption, A, for films deposited using 1 and PVPa at deposition 
solution concentrations of 1, 5, and 10 mM of PVPa;  (C) Plot of layer number, n, vs. 
absorption, A, for films deposited using 1 and PVPb at deposition solution concentrations 
of 1, 5, and 10 mM of PVPb. 
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Our UV-vis results correlate well with more direct data probing the mechanism of 

deposition collected by infrared spectroscopy (IR) (Figure 8.2).  We were interested in 

determining the existence and fate of the nitrile ligand on 1 after the initial deposition of 

1 as well as during the deposition of PVP on top of 1.  For all IR experiments, we first 

spun cast a PVP film onto a CaF plate and subsequently deposited 1 and a layer of PVP 

using solution deposition.  Generally, Figure 8.2 shows intensity increases, consistent 

with our UV-vis results, upon deposition of each layer.  Specifically, after the deposition 

of 1 onto a PVP layer,  one coordination site on 1  is coordinated to a nitrile ligand while 

the other coordination site is complexed to the PVP layer, as the band attributable to the 

nitrile stretching frequency at 2250 cm-1 is evident in the IR spectrum (Figure 8.2). After 

the subsequent deposition of PVP on top of this layer, the band attributable to the nitrile 

ligand disappears, presumably due to the displacement of the second nitrile ligand by the 

incoming PVP macroligand (Figure 8.2). These results suggest the chemistry of Scheme 

8.1, well known in solution, is occurring at the surface interface. Further evidence for this 

conclusion was obtained by control experiments, in which a similar Pd pincer complex 

comprising a harder Cl ligand in place of the more labile nitrile ligand (1) was exposed to 

a pyridine monolayer (2 on quartz) and a PVP layer. In this case, PVP is not capable of 

displacing the Cl ligand, and no deposition was evident by UV-vis spectroscopy. This 

observation is also consistent with our previous report.33 
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Figure 8.2. Transmission IR spectra of films consisting of 1 and PVPb: (Red spectrum) 
A PVPb film formed by spin casting the polymer onto a CaF plate; (Blue spectrum) after 
the deposition of 1 onto the PVPb film; the inset blowup of the nitrile region shows a 
resolved nitrile band at 2250 cm-1; (Green spectrum) after the subsequent deposition of 
PVPb onto previous bilayer; the disappearance of the nitrile band is evident from the 
insent blowup plot. The H2O broad peak past 3000 cm-1 may be due to residual water in 
the solvent or water adsorbed by PVP from the atmosphere. Likewise, we suspect the 
broad band at 2400 cm-1 to attributable to a complex OH stretching frequency due to 
water absorption frequently seen in solid state silica IR spectra. 
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AFM experiments were used to determined film morphology, height, and 

roughness.  For a typical AFM experiment, we first gently scratched though the polymer 

film with a razor blade to form a step edge that served as an internal AFM height 

standard.  During the process of scratching the surface, displaced polymer often builds up 

around the edges of the scratch to form “dog-ear” features evident most clearly from the 

section line height profiles of the final image (Figure 8.3).  This area was excluded from 

the polymer film height and roughness calculations.  Occasionally, we observed greater 

film trauma such as cracks in the films or film displacement during the scratch, 

exemplified in Figure 8.3E.  Nonetheless, the AFM data were sufficient to calculate 

roughness and thickness values from the undisturbed film areas.  We attempted to verify 

our surface height calculations through ellipsometry to obtain an independent 

measurement.  Unfortunately, however, due to the opacity of our films, the ellipsometry 

data could not be succinctly fit to an appropriate model.  We thus deemed our 

ellipsometry data largely inconclusive; although ellipsometry measurements also 

suggested, through comparisons of each film spectra, uniform layer buildup. 

Most importantly, however, AFM results are consistent with our UV-vis data, rms 

roughness and film thickness measurements (Figure 8.3-8.4) suggesting a strong 

dependence of the dipping solution concentration on the film properties (Table 8.1).  By 

varying the deposition concentration of PVP, we observed films with different 

morphology, rms roughness, and thickness (Table 8.1).  In general, the lower the 

concentration of PVP, the thinner and smoother the desired film.  The thickness of these 

films, for both low and high molecular weight PVP is approximately linearly related to 

the deposition concentration (Figure 8.4).     
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Figure 8.3.  AFM images of scratched PVP:1 films and corresponding section line 
height profiles:  PVPa:1 deposited at  (A) 1 mM;  (B) 5 mM;  (C) 10 mM; PVPb:1 
deposited at  (D) 1 mM;  (E) 5 mM;  (F) 10 mM. 
 
 

While the deposition concentration can be varied to modulate the amount of 

polymer deposited onto the film, other deposition parameters can also be used to tune 

film properties.  Our initial experiments used a low molecular weight PVP (PVPa, Mw = 

20,000 g/mol).  To investigate the influence of molecular weight on the film 

characteristics, we decided to investigate high molecular weight poly(vinyl pyridine) 

(PVPb, Mw =  300,000 g/mol).  Interestingly, films comprising higher molecular weight 

PVPb were thinner and smoother in comparison to the lower molecular weight PVPa 

films.  Films deposited with PVPb at 5 mM and 10 mM, for example, were almost half as 

thick (90 nm, 150 nm, respectively) as films deposited with PVPa under the same film 
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forming conditions (150 nm, 370 nm).  Likewise, roughness measurements generally 

indicate smoother films when the higher molecular weight PVPb is used during 

deposition (Table 8.1).  Our results also correlate well with the UV-vis data indicating 

that the amount of polymer absorbed is less when the high molecular weight polymer 

PVPb is used in comparison to when the low molecular weight polymer PVPa (Table 

8.1). 

 

Figure 8.4.  Plot of height, determined by AFM, vs. deposition concentration for low 
(PVPa) and high (PVPb) molecular weight PVP. 
 
 

Our results obtained with the higher molecular weight PVPb agree well with 

previously published analyses39-41  regarding the molecular weight dependence of thin 

film thicknesses and roughness values.  Rubner and coworkers reported that while 

thicknesses of films of PEMs were independent of molecular weight due to segmental 

repulsion irregardless of molecular weight, thicknesses of films containing neutral 
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hydrogen bonded polymers were dependent on molecular weight of the polymer, with 

film thickness increasing as polymer molecular weight increased.39  They reasoned that 

with a neutral, hydrogen bonding system, segmental chain repulsion is minimized 

resulting in more folded polymers during the film formation.  On the other hand, Ito and 

coworkers reported that when stronger noncovalent interactions such as charge transfer 

interactions are used, little variations in layer thickness are observed as the molecular 

weight of the polymer increases.  They attribute this result to the strength of the 

interaction, such that the polymer, when binding to the film, accrues a large enthalpic 

energy gain compared with the entropic loss in conformation energy.  They further 

conclude that this energy balance can result in a chain extension during binding.  

Presumably, if films containing polymers with large differences in molecular weights 

were compared, one could reason that an enthalpic gain would be greater for the polymer 

with the most binding sites.  In fact, this hypothesis was explored in detail by Schlenoff 

and coworkers; they observed that bound low molecular weight poly(electrolyte)s could 

even be displaced by poly(electrolyte)s with much larger molecular weights in a thin 

film.42  In this context, and based on the analysis of Ito and coworkers, since the 

interaction that we have used is even stronger (Ka > 109 M-1 in nonpolar solvents)43  we 

hypothesize that higher molecular weight chains have a larger enthalpic gain upon 

binding, and thus extend more in light of the relatively small entropic loss paid during 

unfolding. 

We also reasoned, that since the metal coordination interaction we were using was 

so strong, that we could potentially reduce the amount of coiled polymer bound to the 

surface by lowering the association constant between the film and the polymer.  We 
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initially attempted to carry out the deposition experiments in DMF.  However, due to 

solubility limitations of 1 in DMF, very little deposition occurred.  We next attempted the 

deposition in CH2Cl2 at 10 mM concentration of PVPb, and 0.4 mM concentration of 1, 

with the addition of 3% (v/v) acetonitrile.  Our hypothesis was that the acetonitrile would 

shift the equilibrium in the backward direction (Scheme 8.1), potentially allowing for 

more polymer reorganization after the binding event. Indeed, with the addition of 3% 

acetonitrile to the deposition solution, thinner and smoother films result (100 nm with an 

rms = 5 nm) (Figure 8.5, Table 8.1).   Analogously, we have previously observed that 

similar films can be completely erased with a 5% solution of pyridine.33 Noteworthy is 

that the amount of acetonitrile that could be added to the solution while still allowing for 

deposition seemed to be critical,.  With more than about 3% acetonitrile, incomplete 

deposition results presumably due to the acetonitrile in solution erasing the polymer once 

it is bound. 
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Figure 8.5.  AFM image and corresponding section line height profile of a scratched film 
deposited using PVPb and 1 in a 10 mM solution of each component with acetonitrile 
(3%) as an additive. 
 
 
 

8.4 Conclusion  
 

Our results reported herein suggest a straightforward way to achieve multilayer 

thin films through metal coordination in a non-aqueous environment. Films produced in 

this manner could be useful in, for example, hydrogen storage materials that are 

extremely water sensitive. Additionally, based on our previous reported erasable metal 

coordination films involving analogous chemistry,33 the films reported herein could have 

both diverse function and presumably form through appropriate top down lithographic 

engineering. Most importantly, however, we can also modify film properties using 

solution concentration, different molecular weight polymers, and additives that compete 

with binding, much like pH and salt additives are used to modulate the properties of 

PEMs. These results suggest that metal coordination films, and perhaps other non-

traditional thin films, might be at least as versatile as the more common PEMs. While all 

of our films were thicker than “molecularly thin” films attainable through 

poly(electrolyte)s, we view our results as significant, especially given that a seemingly 

uncooperative deposition system can be tuned easily with various deposition parameters. 

Additionally, our surface height measurements and analysis should incite others, 

particularly theoreticians, to investigate more the physical chemistry of polymer 

deposition when the interaction used is not electrostatic in nature. Many models have 

been suggested and developed to explain PEMs,1 particular since PEMs can often be 

modeled with well known methods involving electrostatics,  but very little work has been 
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completed on understanding more complicated binding modes at surfacial interfaces, 

such hydrogen bonding and metal coordination. 

8.5 Materials and Methods  
 

Poly(vinylpyridine) was purchased from commercial sources and used without 

purification (Mw = 20,000 PVPa from Monomer-Polymer & Dajac Labs, Inc.; Mw = 

300,000 PVPb from Sigma-Aldrich).  Compound 1 was synthesized according to 

previously published methods.36  Solvents were either distilled over Na and 

benzophenone or anhydrous solvents were purchased from Acros Organics or Sigma 

Aldrich.  Quartz microscope slides (25 x 25 x 1 mm) were purchased from ChemGlass 

and plasma cleaned for at least 20 min prior to use. 

Preparation of Quartz Prelayer.  In a dry box, cleaned quartz slides were added 

to a solution of 4-(2-(trichlorosilyl)ethyl)pyridine (15% in toluene) as described by 

Paulson and coworkers.37  After two hours of immersion, the slides were removed, rinsed, 

and sonicated with toluene.  The slides were characterized by UV-vis spectroscopy prior 

to their use as substrates in multilayer buildup.  The molar surface density of the 

prelayers was calculated from UV-vis spectroscopy data according to the analysis 

described by Durfor and coworkers.38  The molar surface density was consistent with 

Paulson’s report.37  To verify that large islands did not form during the lateral 

polymerization of 4-(2-(trichlorosilyl)ethyl)pyridine, optical microscopy was utilized 

(10,0000 x magnification) to scan each slide for any defects.  According to these 

characterization methods, no islands were formed.  To determine the roughness of the 

prelayer, AFM was used. 
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Multilayer Buildup.  A pyridine functionalized quartz slide was added to a 

freshly prepared solution of 1 (concentration varied) in a slide trough.  The slide was kept 

immersed for 2 minutes (UV-vis spectroscopy verified saturation of the prelayer with 1 

after 2 minutes).  The slide was removed from the trough and rinsed thoroughly with the 

solvent used for deposition.  The slide was then dried in a stream of nitrogen or argon. 

Subsequently, a similar process was used for the addition of PVP to the film, with the 

saturation point (2-3 minutes) determined again by UV-vis spectroscopy.  These 

processes were repeated until the desired number of layers had been deposited.  The 

resulting films were stored in air and were stable for extended periods of time (months). 

Spectroscopy.  Solution and solid-state UV-vis absorption spectra were acquired 

using a Varian Cary 5A spectrometer.  Solution-based absorption spectra were referenced 

to a blank containing the same solvent as the sample.  Solid-state absorption spectra were 

referenced to a blank quartz slide.  For all solid-state measurements, 1 mm quartz slides 

(ChemGlass) were used.  IR spectra were acquired with a Perkin-Elmer Spectrum 1000 

spectrometer. 

AFM.  AFM data were taken in air on an Asylum Research MFP3D instrument.  

We processed all AFM images and analyzed surface heights using Asylum Research 

MFP3D software operating in IgorPro (WaveMetrics, Inc., Lake Oswego, OR).  An 

Olympus cantilever (k = 42 N/m, f0 = 377 kHz) was employed for imaging substrates, 

prelayers substrates, and multilayer films.  The same cantilever was used for surface 

thickness determination.  Images for surface analysis were taken over a predetermined 

scan range (512 x 512 pixels for each image).  For absolute surface height measurements 

using AFM, we scratched through a multilayer deposited on a quartz slide with a razor 
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blade (care was taken not to scratch through the quartz) and scanned (512 x 512 pixels for 

each image) this area on the slide (90 mm x 90 mm or 50 mm x 50 mm) so as to include 

enough area around the scratch.  To determine surface height, the AFM software was 

used to process the image and perform an averaged line analysis over at least 100 lines 

for each image.  The averaged line corresponding to the top of the surface was selected, 

and from this height value was subtracted a value corresponding to a point at the bottom 

of the surface (step from scratch).  Errors in these values were calculated from standard 

deviations in the averaged line height analyses. 
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CHAPTER 9 
 

Molecular Recognition on the Side-Chains Of Polymers: Conclusions and Future 
Directions 

 
 
 

9.1 Abstract  
 
 This final chapter summarizes the conclusions learned from the results reported in 

earlier parts of this thesis. Analysis regarding the advantages and disadvantages of the 

methods reported is included. A further presentation of the limitations of each approach 

presented herein is also provided. Finally, potential future directions and potential ideas 

to address the limitation of the results of this thesis are disclosed.   

 
 

9.2 Introduction  
 
 The central hypothesis of this thesis is that molecular recognition can provide for 

new and easy ways for polymer functionalization, polymer synthesis, and provide a new 

platform for polymer applications, in contrast to typical synthetic polymer approaches 

that rely heavily on covalent bonding. Since polymer reactivity and polymer 

functionalization are often difficult to achieve using traditional covalent approaches, it is 

reasonable to predict that a noncovalent approach would allow for the error-checking and 

cleanliness required for polymer synthesis and polymer applications. Based on this 

central hypothesis, this thesis was designed to expand upon previous methods of 

noncovalent polymer functionalization by providing more efficient means of polymer 

synthesis and by using molecular recognition in polymers in applications toward the goal 

of demonstrating the promise of supramolecular side-chain polymers. This goal was met 

and the hypothesis was supported by the research results presented in this thesis. 
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Specifically, new and efficient polymer functionalization strategies were developed, new 

ways of controlling polymer synthesis were developed using a templated approach 

centered on molecular recognition, and finally, molecular recognition was used in 

multilayer thin films, demonstrating the vast possibility of molecular recognition based 

polymers.  

 
 

9.3 Summary and Conclusions  
 

Chapter 3 presents the results of using two strong molecular recognition 

components to functionalize polymers with architectural control. To demonstrate that an 

architecturally controlled copolymer could be used in conjunction with two strong 

molecular recognition components, we utilized a block copolymer based on norbornene, 

which can be easily polymerized using ROMP.1 The results of this study were promising 

and advanced our original2 noncovalently functionalized copolymers to include a 

copolymer with two recognition units that associated strongly with their small molecule 

counterparts, in comparison to the previous system in which one of the polymer 

recognition units required 10-fold excess of substrate to achieve saturation of the polymer 

backbone.2 Furthermore, the use of both a pseudorotaxane and a metal complex along the 

backbone of a copolymer also enabled us to remove and replace functional groups on 

each side of the polymer using a distinct stimulus. We were able to remove the threaded 

component of the pseudorotaxane using a base stimulus, while the metal complex could 

be broken apart using a competing ligand.     

Chapter 4 discusses yet another advancement of our noncovalent polymer 

functionalization strategy. To demonstrate that such a strategy could potentially have 
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broad appeal, we added another component to a random copolymer to produce a fully 

functional terpolymer similar to the block copolymer discussed in Chapter 3. Our 

incentive was simply to demonstrate that a noncovalent polymer functionalization 

strategy was not limited to only two recognition units, and if a particular application 

required the use of more than two functional groups, a noncovalent strategy could rise to 

the challenge.3 

Chapter 5 presents results of extensive study on templated synthesis aided by 

molecular recognition. While our interest lies in templating architecturally controlled 

polymers, we decided to first begin our approach with small molecules with the use 

cross-metathesis to see if our molecular recognition partners could survive metathesis and 

vice-versa. Ultimately, it became obvious to us that the use of a metal complex as a 

template alongside an organometallic catalyst as a bond forming reagent was not a 

fruitful endeavor, despite several successful reports by van Koten and coworkers that 

might suggest the contrary.4 However, important lessons were learned from these studies. 

For example, we observed that metathesis could be disabled if two olefins that were 

attached to a template were too far apart to react. We envision that such an approach in 

synthesis might be useful as a protected group strategy, especially given that olefin 

metathesis has emerged as the carbon-carbon bond forming reaction of choice for many 

chemists.5 

In the next Chapter, results of our efforts in templated polymer synthesis are 

presented. Based on our small molecule studies, and the limitations of the metal complex 

we used for template attachement, we transitioned to a hydrogen bonding complex for 

our intitial polymer templating work.6 The results of this study were positive, and we 
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were able to control an uncontrolled polymerization using a template. Importantly, we 

also observed moderate kinetic enhancements during polymerizations in which a template 

was utilized. We attributed this observation to an increase in local concentration via the 

template. Ultimately, the template we used for this study both prevented monomer 

aggregation as well as enhanced reaction kinetics.6 

The last part of the thesis, Chapters 7-8, discusses a transition into materials 

science. We are interested in taking polymers with molecular recognition elements into a 

new more applied direction. Thus, for this goal we first investigated the use of 

noncovalent molecular recognition as a tool for building up polymer multilayers on 

surfaces. Our first approach utilized two different polymers that could recognize each 

other, and we depositied each polymer on top of the other to form a multilayer.7 We 

found that these multilayers were both stable and responsive. Next, we simplified our 

approach and tuned multilayer properties using a poly(vinyl pyridine) polymer and a 

small molecule analog complex similar to the polymer discussed in Chapter 7. These 

results were even more promising, especially since we observed that films could be made 

thinner and smoother by varying deposition parameters. We observed that by the addition 

of an additive that shifted the equilibrium away from the bound metal complex, that a 10-

layer film had roughness values of less than 5 nm.  

The results of the surface science Chapters especially open up new areas for 

future study. Metal-ligand interactions are interesting when studied at a surface interface. 

In particular, metal-ligand interactions on polymers are unique because it seems from the 

results of our studies, that the interactions produce such a large enthalpic gain, that the 

entropic loss accrued during the polymer deposition is negligible. This results suggests a 



 

247 

mechanism quite different than that of typical poly(electrolyte) deposition, in which the 

individual interactions are very weak.  

To summarize, this thesis demonstrate that noncovalent binding principles can be 

used to design and implement research strategies aimed at minimizing problems 

associated with traditional covalent bonding based strategies. For example, polymers can 

be functionalized with strongly associating substrates quantitatively and site-selectively 

without extensive purification (Chapters 3-4). Such an approach to polymer synthesis 

might not only enable the easy synthesis of polymeric libraries, but also might allow for 

the recycling of polymer backbones since each functionalization strategy relies on a 

reversible reaction. This concept can be applied to templated synthesis, wherein a 

template can control an otherwise hard-to-control polymerization (Chapter 6). Moreover, 

noncovalent binding strategies are not limited to methodology and/or proof-of-principle 

based research. Chapters 7-8 demonstrate that polymers with side-chain molecular 

recognition elements can be used in materials applications, such as polymer thin films. 

 
 

9.4 Potential Future Directions  
 
 The work presented in this thesis, as a whole, resoundingly echoes the belief 

among many in the field that some of the key problems associated with covalent polymer 

synthetic strategies can be overcome by using noncovalent reactions in lieu of the more 

traditional approaches. Thus, in light of the results presented in this thesis, there are many 

possibilities for future work. 
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9.4.1 Complex Polymer Targets through Molecular Recognition 
 
 An area of polymer science that is quickly emerging as a promising field is the 

study of dendrimers, despite the fact that dendrimers are hard to reach molecular 

structures that require extensive purification after the attachment of each generation. 

Alternatives to dendrimers exist,8 however, and linear dendronized polymers have been 

found to present a viable alternative to traditional dendrimers, particularly for 

applications that do not require polydispersity indeces of unity. The Hawker group 

established a fairly straightforward way to reach dendronized copolymers using click-

chemistry.8 While this approach worked well, a more generalized approach that would 

not require extensive monomer synthesis and polymer purification would be through the 

use of molecular recognition. The Stoddart group explored this area using a DB24C8 

containing polymer.9 They found that the supramolecular architecture could be shifted 

through the attachment of a dendron on the backbone of a polymer. A suitable new 

endeavor to explore would be the use of our strong, pincer-type complex as a vehicle to 

attach large dendrons onto the backbone of polymers. The polymers of choice could be 

random copolymers, block copolymers, or graft copolymers. Figure 9.1, taken from 

reference 9, shows this general approach in a covalent context. One can see that Route I, 

specifically, would likely be compatible with the use of molecular recognition for the 

dendron attachment step.  
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Figure 9.1. Routes to dendronized polymers.8 
 
 
While dendronized polymers represent a suitable new target to work toward using 

molecular recognition, other complex polymers that require extensive purification are 

also ideal candidates.  

 

9.4.2 Investigating effects of template structure during template-directed synthesis 
 
 Our initial efforts in templated synthesis involved the use of metal coordination as 

the binding force for keeping substrates on a template (Chapter 5). We chose this 

approach primarily because of the strength of the metal complex utilized. Ultimately, 

however, we found no conclusive evidence that the binding strength was critical during a 

template synthesis event. In light of this quandary, it would be ideal to investigate the 

effect of a weaker binding motif during a templated synthesis. A suitable template to 
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investigate would be a cyclobutane thymine photodimer, not only because of potential 

biological implications, but also because of the unique nature of this dimer. The Hamilton 

group reported the synthesis of a suitable thymine dimer10 that would be ideal for a 

templated bond forming reaction, such as metathesis. They observed that 1 could 

assemble in a 1:2 ratio with diamidopyridine counterparts. In the context of templated 

synthesis, 1 would be unique because it is likely that once two diamidopyridine 

components formed a bond between one another while on the template, the resulting 

diamidopyridine dimer would bind less strongly to 1 than the individual monomers due to 

such a large entropic penalty paid after the reaction (Figure 9.2). Such a scenerio would 

potentially yield an autocatalytic system, or at the very least a unique example of product 

activation. This proposed project could also elucidate the effects of a template that 

associates less strongly with substrates than does a template based on metal coordination.   

1

 

Figure 9.2. Template synthesis from a cyclobutane thymine dimer. Adapted from ref. 10. 
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9.4.3 New directions for Molecular Recognition on Surfaces 
  
 There are numerous possibilities for future work dealing with molecular 

recognition and multilayer thin films. However, the next logical step for this area of work 

would be two fold: (1) utilize more than one distinct recognition pattern to assemble 

polymer multilayer films, and (2) pattern these films using external stimuli through a 

“top-down” lithography approach. In general, for polymer multilayers, it is desirable to 

use cost-effective materials that do not require lengthy synthetic procedures. In particular 

since proper deposition of a polymer onto a surface or film usually requires a fresh 

deposition solution at each interval. Therefore, for the use of multiple recognition motifs, 

it would be desirable to design a system using commercially available, cheap materials. 

An straightforward example could use materials shown in Figure 9.3.  

N
OH

PVP
PSOH

Pd

Cl

Cl

PdCl2
 

Figure 9.3. Materials for orthogonal multilayer build-up / break-down. 
 
 

Poly(vinyl pyridine) (PVP) can be assembled through any commercially available trans 

Pd(II) complex, such as PdCl2, which is formed in situ from K2PdCl4 and the exposure to 

a competing ligand. Likewise, PVP can also bind to poly(4-vinyl phenol) (PSOH) 

through hydrogen bonding. Thus, for example, an orthogonal multilayer could be built 

from these materials having a structure of  -(-PVP-PdCl2-PSOH-)-n. Furthermore, such a 

multilayer could be patterned by first patterning a substrate and using a bottom-up 
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approach by orthogonally depositing each material onto the appropriate section of the 

surface. Or, a top-down approach could be utilized in which bits of the multilayer were 

washed away using, for example, a phosphine to erase the bonds between PdCl2 and 

PVP. The top-down approach is attractive because such a method could be compatible 

with user-friendly, cheap processes such as ink-jet printing.  

 
 

9.5 Conclusion 
 
 While several examples of possible future work are presented in this Chapter, the 

possibilities for new ideas and uses of polymers containing molecular recognition 

elements are limitless. This thesis has demonstrated several unique examples of 

applications of molecular recognition in polymer science, all of which are seemingly very 

different. Yet in each example, the common thread of molecular recognition exists. 

Similarly, almost every biopolymer cooperates with other molecules through molecular 

recognition producing a vast library of bioapplications that all aid an orchestra of life. 

While the work presented in this thesis serves as a reminder of the complexity of 

molecular recognition, especially in biological systems, it also serves as a reminder of the 

level of complexity that we cannot yet attain in a conventional laboratory. Thus, in a 

giant scheme, this thesis is but a small step in advancing abiotic applications of molecular 

recognition in polymers. One day, however, we can hopefully fulfill the ultimate goal of 

rivaling natural processes with synthetic polymers.  
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APPENDIX A 
 

Supplemental Material for Chapter 3 
 



 

255 

 
Figure A.1. 1H NMR spectrum of an endo / exo mixture of compound 6 that can be be 
bought commercially or synthesized from cyclopentadiene and acrylic acid (this sample 
was synthesized according to this method); see refs. 54-56 in Chapter 3.  
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Figure A.2. 1H NMR spectrum of 5-norbornene carboxylic acid (pure exo) after an 
iodolactonization reaction (see ref. 54 in Chapter 3) with an endo / exo mixture.  



 

257 

 
Figure A.3. 1H NMR spectrum of compound 7 taken in CDCl3.  
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Figure A.4. 13C NMR spectrum of compound 7 taken in CDCl3.  
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Figure A.5. 1H NMR spectrum of compound 8 in CDCl3. 
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Figure A.6. 1H NMR spectrum of compound 12 in CD2Cl2.  
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Figure A.7. 13C NMR spectrum of compound 12 in CDCl3.  
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Figure A.8. 1H NMR spectrum of compound 9 in CDCl3.  
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Figure A.9. 1H NMR spectrum of compound 11 in CDCl3.  
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Figure A.10.  13C spectrum of compound 11 in CDCl3.  
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Figure A.11. 1H NMR of compound 11 after deprotection with TFA (spectrum taken in 
CDCl3).  
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Figure A.12. 1H NMR spectrum of polymer 14 (a-e) in CDCl3.  
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Figure A.13. Living Test for the polymerization of monomer 12: GPC traces (eluant: 
CH2Cl2) of polymer 14 with [M]:[I] = 10:1 (dotted line) and polymer 14 with [M]:[I] = 
210:1 (solid line). The solid-line GPC trace is the result of adding 200 equivalents of 
monomer 12 to a “living” solution of a decamer of 14 in CH2Cl2 (GPC trace shown as 
dotted line).  
 



 

268 

 
Figure A.14. 13C NMR spectrum of polymer 13 (a-e) in CDCl3.  
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Figure A.15. 1H NMR spectrum of polymer 15 taken in CDCl3.  
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Figure A.16. 1H NMR spectrum of monomer 16 taken in CD2Cl2.  
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Figure A.17. 1H NMR spectrum of polymer 18 taken in CDCl3.  
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Figure A.18. GPC trace of block copolymer 18 (solid line) after the addition of 1 
equivalent of monomer 12 to a living solution of polymer 17 in CH2Cl2 (GPC trace 
shown as dotted line).  
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Figure A.19. GPC trace of block copolymer 19 (solid line) after the addition of 1 
equivalent of monomer 11 to a living solution of polymer 17 in CH2Cl2 (GPC trace 
shown as dotted line).  
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Figure A.20. Reference 1H NMR spectra taken in CD2Cl2 for complexation studies. 1st 
spectrum (from top to bottom): compound 2-BArF; 2nd spectrum: compound 3; 3rd 
spectrum: 1:1 complex with 2-BArF and 3; 4th spectrum: decomplexed 2-BArF and 3 
after the addition of Et3N.  



 

275 

 
Figure A.21. Reference 1H NMR spectra taken in CD3CN for complexation studies 
(showing incomplete complexation). 1st spectrum (from top to bottom): compound 3; 2nd 
spectrum: compound 2-PF6; 3

rd spectrum: 1:1 complex with 2-PF6 and 3; 4th spectrum: 
decomplexed 2-PF6 and 3 after the addition of Et3N.  
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Figure A.22. 1H NMR spectra displaying complexation studies with polymer 15 and 
compound 3 taken in CDCl3.  
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Figure A.23. ITC Data for the titration of 2-BArF into polymer 14c.  
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Figure A.24. ITC Data for the titration of 3 into polymer 15.  
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Figure A.25. ITC Data for the titration of 2-BArF into polymer 18.  
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Figure A.26. ITC Data for the titration of 3 into polymer 5n-20.  
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Supplemental Information for Chapter 4 
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Figure B.1. Ethyl carboxylate used in DAP monomer synthesis.  
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Figure B.2. Benzyl protected starting material used in DAP monomer synthesis.  
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Figure B.3. Hydrogenated amide used in DAP monomer synthesis.  
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Figure B.4. Diamine used in DAP monomer synthesis.  
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Figure B.5. Diamidopyridine norbornene monomer.  
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Figure B.6. Terpolymer 5a.  
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Figure B.7. Terpolymer with pyridine added.  
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Figure B.8. Terpolymer with pyridine assembled.  
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Figure B.9. Terpolymer with pyridine and DBA assembled.  
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Figure B.10. Reference spectum with DAP bound to NBT.  
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Figure B.11. Terpolymer 13C NMR spectrum 
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Figure B.12. Functionalized Terpolymer 13C NMR spectrum.  
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Supplemental Information for Chapter 5. 
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Figure C.1. PtCl2(SEt2)2 
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Figure C.2. Diamine used in Pt Pincer complex synthesis.  
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Figure C.3. Dichloride precursor to diamine.  
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Figure C.4. Iodated diamine precursor to metallated Pincer complex.  
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Figure C.5. Protected Pt Pincer complex.  
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Figure C.6. Pt pincer olefin with four carbon tether.  
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Figure C.7. Octene Pt Pincer complex.  
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Figure C.8. Heteroatom containing olefinic alcohol.  
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Figure C.9. Homoallylic heteroatom containing olefinic alcohol.  
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Figure C.10. Homoallylic heteroatom containing pincer complex.  
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Figure C.11.  Pt complex used in pincer olefin synthesis.  



 

306 

APPENDIX D 
 

Supplemental Information for Chapter 6. 
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Figure D.1. Plot of Mn vs. [M]:[I] for the polymerization of monomer 5 showing linear 
dependence of Mn on initiator loading.   
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Figure D.2. Polymerization kinetics at 10 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 6. 
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Figure D.3. Polymerization kinetics at 50 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 6. 
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Figure D.4. Polymerization kinetics at 100 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 6. 
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Figure D.5. Polymerization kinetics at 10 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 
2:6 in the presence of poly(norbornene). 
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Figure D.6. Polymerization kinetics at 50 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 
2:6 in the presence of poly(norbornene). 



 

313 

 

Figure D.7. Polymerization kinetics at 50 mM (CDCl3, 298 K): plot of conversion vs. 
time (top) and corresponding 1st order kinetics plot (bottom) for the polymerization of 
2:6 in the presence of poly(norbornene). 
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Figure D.8. Rate constant dependence on concentration for control polymerizations 
(DAP protected non-templated, non-templated DAP protected in the presence of 
poly(norbornene) and non-templated polymerization of monomer 6 in CDCl3 (298 K).   
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Table D.1. Raw and processed data acquired from NMR array experiments at 10 mM (Varian, 300 MHz) 
 

 

NON-TEMPLATED (protected with DAP small molecule)

TIME /s PEAK HEIGHT / mm [MON] [POLY] CONVERSION LN [MON] TIME / min

0 153 10 0 0 0

47.93 135 8.823529412 1.176470588 13.44286781 2.17742195 0.798833333

395.9 117 7.647058824 2.352941176 26.88573562 2.034321106 6.598333333

743.8 102 6.666666667 3.333333333 38.08812547 1.897119985 12.39666667

1092 88.7 5.797385621 4.202614379 48.02091113 1.757407061 18.2

1440 77.6 5.071895425 4.928104575 56.31067961 1.623714599 24

1788 68.3 4.464052288 5.535947712 63.25616131 1.496056938 29.8

2135 60.4 3.947712418 6.052287582 69.15608663 1.373136277 35.58333333

2483 53.6 3.503267974 6.496732026 74.23450336 1.25369624 41.38333333

2831 47.9 3.130718954 6.869281046 78.4914115 1.141262676 47.18333333

3179 43.1 2.816993464 7.183006536 82.07617625 1.035670169 52.98333333

4127 33.4 2.183006536 7.816993464 89.32038835 68.78333333

5075 25 1.633986928 8.366013072 95.59372666 84.58333333

6023 23.2 1.516339869 8.483660131 96.93801344 100.3833333

6971 20.7 1.352941176 8.647058824 98.80507842 116.1833333

7919 19.1 1.248366013 8.751633987 100 131.9833333

TEMPLATED

0 168 10 0 0 2.302585093 0

94 123.5 7.351190476 2.648809524 28.70967742 1.99486227 1.566666667

395.9 78.8 4.69047619 5.30952381 57.5483871 1.54553411 6.598333333

743.8 54.7 3.255952381 6.744047619 73.09677419 1.180484823 12.39666667

1092 38.2 2.273809524 7.726190476 83.74193548 0.821456629 18.2

1440 24.7 1.470238095 8.529761905 92.4516129 0.385424357 24

1788 17 1.011904762 8.988095238 97.41935484 0.011834458 29.8

2135 13 0.773809524 9.226190476 100 35.58333333
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Table D.2. Raw and processed data acquired from NMR array experiments at 50 mM (Varian, 300 MHz) 
 
NON-TEMPLATED (protected with DAP small molecule)

TIME PEAK HEIGHT [MON] [POLY] CONVERSION LN [MON] TIME(Min)

0 162 50 0 0 3.912023005 0

47.93 149 45.98765432 4.012345679 12.46404602 3.828372976 0.798833333

125.9 142 43.82716049 6.172839506 19.17545542 3.780253728 2.098333333

203.8 128 39.50617284 10.49382716 32.59827421 3.676456934 3.396666667

281.7 122 37.65432099 12.34567901 38.35091083 3.628447715 4.695

359.6 113 34.87654321 15.12345679 46.97986577 3.551814489 5.993333333

437.6 106 32.71604938 17.28395062 53.69127517 3.487865764 7.293333333

515.5 96.4 29.75308642 20.24691358 62.89549377 3.392932872 8.591666667

593.4 88.5 27.31481481 22.68518519 70.46979866 3.307429222 9.89

671.3 85 26.2345679 23.7654321 73.82550336 3.267077927 11.18833333

749.3 81.8 25.24691358 24.75308642 76.89357622 3.228703914 12.48833333

827.2 77 23.7654321 26.2345679 81.49568552 3.168232092 13.78666667

935.1 74 22.83950617 27.16049383 84.37200384 3.128491763 15.585

1043 70 21.60493827 28.39506173 88.20709492 3.072921912 17.38333333

1151 66.5 20.52469136 29.47530864 91.56279962 3.021628618 19.18333333

1350 57.7 17.80864198 32.19135802 100 2.879683844 22.5

TEMPLATED

TIME PEAK HEIGHT [MON] [POLY] CONVERSION LN [MON] TIME(Min)

0 164 50 0 0 3.912023005 0

11.98 150 47 3 6.968838527 3.850147602 0.199666667

53.96 146 44.51219512 5.487804878 12.74787535 3.795763199 0.899333333

95.94 133 40.54878049 9.451219512 21.95467422 3.702505706 1.599

137.9 122 37.19512195 12.80487805 29.74504249 3.616177622 2.298333333

179.9 111 33.84146341 16.15853659 37.53541076 3.521686779 2.998333333

221.9 104 31.70731707 18.29268293 42.49291785 3.456547477 3.698333333

263.9 92.3 28.1402439 21.8597561 50.77903683 3.337200719 4.398333333

335.9 82.2 25.06097561 24.93902439 57.93201133 3.22131188 5.598333333

407.8 69.8 22 28 65.04249292 3.091042453 6.796666667

479.8 65.7 20.0304878 29.9695122 69.61756374 2.997255503 7.996666667

551.8 59.5 17 33 76.6572238 2.833213344 9.196666667

623.8 48.4 14.75609756 35.24390244 81.86968839 2.691656391 10.39666667

695.8 48.2 13 37 85.9490085 2.564949357 11.59666667

767.7 40.9 12 38 88.27195467 2.48490665 12.795

839.7 33.8 10.30487805 39.69512195 92.20963173 2.33261738 13.995

911.7 30 9.146341463 40.85365854 94.90084986 2.213353959 15.195

983.7 28.5 8.68902439 41.31097561 95.9631728 2.162060665 16.395

1056 28.7 8 42 97.56373938 2.079441542 17.6

1128 24.4 7.43902439 42.56097561 98.86685552 2.00673971 18.8

1200 22.8 6.951219512 43.04878049 100 1.938917114 20
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Table D.3. Raw and processed data acquired from NMR array experiments at 100 mM (Varian, 300 MHz) 
 

 
 

NON-TEMPLATED (protected with DAP small molecule)

TIME PEAK HEIGHT [MON] [POLY] CONVERSION LN [MON] TIME(MIN)

0 200 100 0 0 4.605170186 0

47.93 151.2 75.6 24.4 26.52173913 4.325456283 0.798833333

125.9 116.824 58.412 41.588 45.20434783 4.067521348 2.098333333

203.9 88.678 44.339 55.661 60.50108696 3.791864651 3.398333333

281.7 67.7333 33.86665 66.13335 71.88407609 3.522430754 4.695

359.6 54.1522 27.0761 72.9239 79.2651087 3.29865142 5.993333333

437.6 43.7958 21.8979 78.1021 84.89358696 3.086390742 7.293333333

515.5 37.4654 18.7327 81.2673 88.33402174 2.93027066 8.591666667

623.4 29.786 14.893 85.107 92.5076087 2.700891304 10.39

731.3 24.8861 12.44305 87.55695 95.17059783 2.521162234 12.18833333

839.3 19 9.5 90.5 98.36956522 2.251291799 13.98833333

947.2 16 8 92 100 2.079441542 15.78666667

TEMPLATED

TIME PEAK HEIGHT [MON] [POLY] CONVERSION LN [MON] TIME(MIN)

0 200 100 0 0 4.605170186 0

47.93 151.2 75.6 24.4 27.308338 4.325456283 0.798833333

125.9 115.935 57.9675 42.0325 47.04252938 4.059882509 2.098333333

203.8 87.48 43.74 56.26 62.96586458 3.778263015 3.396666667

281.7 65.8 32.9 67.1 75.09792949 3.493472658 4.695

359.6 52.2 26.1 73.9 82.70844992 3.261935314 5.993333333

437.6 42.8 21.4 78.6 87.96866256 3.063390922 7.293333333

515.5 35.2 17.6 82.4 92.22160045 2.867898902 8.591666667

593.4 31.3 15.65 84.35 94.4040291 2.750470917 9.89

671.3 27.9 13.95 86.05 96.30665921 2.635479508 11.18833333

749.3 23.4 11.7 88.3 98.82484611 2.459588842 12.48833333

827.2 21.3 10.65 89.35 100 2.365559892 13.78666667



 

318 

Table D.4. Raw and processed data acquired from NMR array experiments (control with p(NBE) added – 100 mM) (Varian, 300 
MHz) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TIME PEAK HEIGHT [Monomer] [Polymer] Conversion LN

0 180 100 0 0 4.60517019

47.93 151.2 84 16 18.5328185 4.4308168

125.9 122.2 67.8888889 32.1111111 37.1943372 4.21787238

203.9 97 53.8888889 46.1111111 53.4105534 3.98692431

281.7 77.2 42.8888889 57.1111111 66.1518662 3.75861279

359.6 60 33.3333333 66.6666667 77.2200772 3.5065579

437.6 50 27.7777778 72.2222222 83.6550837 3.32423634

515.5 41.7 23.1666667 76.8333333 88.996139 3.14271446

593.4 35.2 19.5555556 80.4444444 93.1788932 2.97325942

671.4 28.5 15.8333333 84.1666667 97.4903475 2.76211742

749.3 25.1 13.9444444 86.0555556 99.6782497 2.63508118

827.2 24.6 13.6666667 86.3333333 100 2.61495978
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Table D.5. Raw and processed data acquired from NMR array experiments (control with p(NBE) added – 50 mM) (Varian, 300 
MHz) 

 

 
 
 
 
 
 
 
 
 
 
 
 

TIME PEAK HEIGHT [Monomer] [Polymer] Conversion LN

0 162 50 0 0 3.91202301

47.93 151.2 46.6666667 3.33333333 9.67221924 3.84303013

125.9 140.4 43.3333333 6.66666667 19.3444385 3.76892216

203.8 129.2 39.8765432 10.1234568 29.3748881 3.68578826

281.7 120 37.037037 12.962963 37.6141859 3.61191841

359.6 110.5 34.1049383 15.8950617 46.1221565 3.52944219

437.6 105 32.4074074 17.5925926 51.0478238 3.47838702

515.5 97 29.9382716 20.0617284 58.2124306 3.39913765

593.4 90 27.7777778 22.2222222 64.4814616 3.32423634

671.4 85 26.2345679 23.7654321 68.9593409 3.26707793

749.3 80 24.691358 25.308642 73.4372201 3.2064533

827.2 77 23.7654321 26.2345679 76.1239477 3.16823209

905.1 70 21.6049383 28.3950617 82.3929787 3.07292191

1013 60.12 18.5555556 31.4444444 91.2412681 2.92076924

1121 50.34 15.537037 34.462963 100 2.74322666
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Table D.6. Raw and processed data acquired from NMR array experiments (control with p(NBE) added – 10 mM) (Varian, 300 
MHz) 

 

 
 
 
 
 

TIME PEAK HEIGHT [Monomer] [Polymer] Conversion LN

0 154 10 0 0 2.30258509

47.93 137 8.8961039 1.1038961 13.1274131 2.18561342

395.9 118 7.66233766 2.33766234 27.7992278 2.03631712

743.8 109 7.07792208 2.92207792 34.7490347 1.95698037

1092 82.6 5.36363636 4.63636364 55.1351351 1.67964217

1440 73.6 4.77922078 5.22077922 62.0849421 1.56427752

1788 63.1 4.0974026 5.9025974 70.1930502 1.41035326

2135 58.2 3.77922078 6.22077922 73.976834 1.32951785

2483 52.3 3.3961039 6.6038961 78.5328185 1.22262886

2831 46.5 3.01948052 6.98051948 83.011583 1.1050848

3179 46.7 3.03246753 6.96753247 82.8571429 1.10937666

4127 42.8 2.77922078 7.22077922 85.8687259 1.02217059

5075 27.4 1.77922078 8.22077922 97.7606178 0.5761755

6023 24.5 1.59090909 8.40909091 100 0.46430561
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Figure D.9. Example output from a NMR array experiment (Varian); peak shown is 
norbornene monomer peak (~ 6.14 ppm). Each signal corresponds to a spectrum taken at 
a different time after the polymerization has begun. Note: this is an automated 
experiment, and the rate constants given by the Varian calculation were not used; rate 
constants were calculated by hand.  
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Figure D.10. 1H NMR spectrum of THY monomer after polymerization: note the 
carbene signal present past 19 ppm (Figure D.11) 
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Figure D.11. Partial (carbene region) 1H NMR spectrum of THY monomer after 
polymerization; the carbene signal suggests an incomplete polymerization consistent with 
our GPC results.  
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Figure D.12. Reference 1H NMR spectrum of THY monomer before polymerization
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APPENDIX E 
 

Supplemental Material for Chapter 8 
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Figure E.1.  AFM image of quartz slide functionalized with 2.  
 



 

327 

 

 
 

Figure E.2.  UV-vis spectra of a quartz slide functionalized with 2. 
 



 

328 

 

 
 

Figure E.3.  Remaining UV-vis profiles for the deposition of PVPa and 1; deposition 
profile taken with [PVPa] = 1 mM is shown in Figure 8.1.  
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Figure E.4.  UV-vis absorption profiles for the deposition of PVPb with 1 at different 
concentrations of PVPb.  



 

330 

 
 
Figure E.5.  Kinetic profile taken during the deposition of PVPa with 1.  
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