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Regularization of Subsolutions in Discrete
Weak KAM Theory

Patrick Bernard and Maxime Zavidovique

Abstract. We expose different methods of regularizations of subsolutions in the context of discrete

weak KAM theory that allow us to prove the existence and the density of C1,1 subsolutions. Moreover,

these subsolutions can be made strict and smooth outside of the Aubry set.

1 Introduction

We consider a smooth connected Riemannian manifold M endowed with the dis-

tance d( · , · ) coming from the Riemannian metric. Fixing a cost function c : M ×
M → R we study the functions u : M → R that satisfy

∀(x, y) ∈ M × M, u(y) − u(x) 6 c(x, y).

We call them subsolutions, by analogy with those appearing in Weak KAM the-

ory (see [3, 14] for example). We will denote by SS the set of subsolutions and by

SSC = SS∩C0(M,R) the set of continuous subsolutions. These subsolutions are one

of the important objects in discrete (in time) weak KAM theory. Some other aspects

of this discrete theory have been discussed in [6, 16, 19]. This theory is also closely

related to the time-periodic weak KAM theory discussed, for example, in [4, 10]. In

many aspects, these various settings (discrete, time-periodic, autonomous) are simi-

lar, but differences appear for some specific questions. For example, the convergence

of the Lax–Oleinik semi-group holds only in the autonomous setting; see [2,7,12,13].

The Hamilton–Jacobi equation does not have such a nice form in the discrete setting

as in the autonomous setting; see [16]. Some other specific aspects of the discrete

case are discussed in [19]. Concerning the regularity of subsolutions, the existence of

C1 subsolutions was obtained in [19] in the discrete setting by an adaptation of the

original proof of Fathi and Siconolfi [14]. On the other hand, the proof of the exis-

tence of C1,1 subsolutions given in [3] for the autonomous setting does not extend

to the discrete setting. The existence of C1,1 subsolutions was, however, obtained in

[20] by a different method. Our goal here is to extend and simplify the results of this

paper.

Defining, as usual, the discrete Lax–Oleinik operators

T−
c u(x) = inf

y∈M
u(y) + c(y, x), T+

c u(x) = sup
y∈M

u(y) − c(x, y),
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we see that a function u is a subsolution if and only if one of the equivalent relations

is verified:

u 6 T−
c u or T+

c u 6 u.

Note that as a consequence the functions T−
c u and T+

c u are themselves subsolutions

whenever u is a subsolution. We will use the following hypothesis on c. More concrete

hypotheses implying this one are given below.

Hypothesis 1 For each subsolution u, the functions T−
c u and −T+

c u are locally

semiconcave.1

Subsolutions do not necessarily exist, and when they exist they are not necessarily

continuous (the continuity of subsolutions is discussed in [19]). Under Hypothesis 1,

the existence of a continuous subsolution is implied by the existence of a (possibly

discontinuous) subsolution u. Just consider the subsolution T−
c u, which is locally

semiconcave hence locally Lipschitz. See also Lemma 2.2.

Theorem 1.1 If Hypothesis 1 holds, then the set of locally C1,1 subsolutions is dense in

the set of continuous subsolutions for the strong topology.

We recall that the strong (or Whitney) topology on C0(M,R) is induced by the

basis of open sets

Oǫ, f =
{

g ∈ C0(M,R), ∀x ∈ M, | f (x) − g(x)| < ǫ(x)
}
,

where f ∈ C0(M,R) and ǫ is a continuous positive valued function on M. For

further precisions on this topology, see [17, Chapter 2]. The existence of C1,1 sub-

solutions was proved in [20], but the density is new. In [20], the existence of C1,1

subsolutions is deduced from the following result of Ilmanen (see [5, 8, 15, 18]).

Theorem 1.2 Let f and g be locally semiconcave functions on M such that f + g > 0.

Then there exists a locally C1,1 function u such that −g 6 u 6 f .

We will offer a direct proof of Theorem 1.1, which is inspired from the proof of

Ilmanen’s Lemma given in [5]. Note that Theorem 1.1 implies Theorem 1.2. This fol-

lows immediately from the equivalence, for a given function u, between the following

two properties:

• the function g + u is bounded from below and −g 6 u − inf(g + u) 6 f ;
• the function u is a subsolution for the cost c(x, y) = g(x) + f (y).

We need to introduce more definitions before we state our other results. The

subsolution u is called free at x if

T+
c u(x) < u(x) < T−

c u(x).

We define the set Au as

Au :=
{

x ∈ M,T+
c u(x) = u(x) = T−

c u(x)
}
⊂ M

1Throughout the paper, what we call semiconcave is sometimes called semiconcave with a linear mod-
ulus.
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and the Aubry set A as

A :=
⋂

u∈SS

Au ⊂ M,

where the intersection is taken on all subsolutions. Under Hypothesis 1, the sets Au

are closed, since they are defined by the equality T+
c u = T−

c u. The set A is then also

closed. Moreover, it makes no difference to restrict the intersection to continuous

subsolutions in the definition of A by Lemma 2.2. We say that the subsolution u is

strict at (x, y) if

u(y) − u(x) < c(x, y).

Obviously, the subsolution u is strict at (x, y) and at (y, x) for each y if it is free at x.

We define the set

Âu :=
{

(x, y) ∈ M2 : u(y) − u(x) = c(x, y)
}
.

We also define

Â :=
⋂

u∈SS

Âu

where the intersection is taken on all subsolutions. Equivalently, if Hypothesis 1

holds, the intersection can be taken on continuous subsolutions by Lemma 2.2. This

yields that Â is also closed.

Theorem 1.3 Assume that c satisfies Hypothesis 1. Given a subsolution u, there exists

a subsolution v such that

• v = u on Au;
• v is smooth and free on the complement of Au;
• v is locally C1,1;
• v is strict at each pair (x, y) where u is strict.

We can then obtain a subsolution that is as smooth, free, and strict as possible.

Theorem 1.4 If c satisfies Hypothesis 1 and admits a subsolution, then there exists a

locally C1,1 subsolution that is free and smooth in the complement of A, and strict on the

complement of Â.

Observe as a consequence that the projections of Â on both the first and the sec-

ond factor are contained in A (and, under the additional Hypothesis 2, each of these

projections is equal to A). Strict C1,1 subsolutions were obtained in [20] under an

additional twist assumption. We will use a simple trick from [3] to obtain the general

result directly from Theorem 1.1. That the subsolutions can be made smooth out-

side of A is well known. It will certainly not be a surprise to specialists that this can

be done without destroying the global C1,1 regularity, although we do not know any

reference for this statement. We prove it using a regularization procedure due to De

Rham [11]. This proof also applies to the “classical” (as opposed to discrete) weak

KAM theory.

The abstract Hypothesis 1 holds in a more concrete setting introduced in [19].
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Hypothesis 2 The function c satisfies the following properties:

• uniform super-linearity: for every k > 0, there exists C(k) ∈ R such that

∀(x, y) ∈ M × M, c(x, y) > kd(x, y) −C(k);

• uniform boundedness: for every R ∈ R, there exists A(R) ∈ R such that

∀(x, y) ∈ M × M, d(x, y) 6 R ⇒ c(x, y) 6 A(R);

• local semiconcavity: for each point (x0, y0) there is a domain of chart containing

(x0, y0) and a smooth function f (x, y) such that c − f is concave in the chart.

(This holds for example if c is C2 or locally C1,1).

This hypothesis has two important consequences, as proved in [19]. First, it im-

plies Hypothesis 1. Second, it implies that the extrema in the definitions of T±
c u(x)

are reached for each continuous subsolution u and each x ∈ M. This in turn implies

that the the projection of Â on the first, as well as on the second, factor are equal to

A, which corresponds to the projected Aubry set introduced in [19].

Lemma 1.5 Assume that c satisfies Hypothesis 2. Given x ∈ A, there exist y and z

such that (x, z) and (y, x) are in Â.

Proof Let w be a continuous subsolution that is strict outside of Â (such a solution

exists by Theorem 1.4). Let y be such that T−
c w(x) = w(y) + c(y, x). Since x ∈ A

we obtain that w(x) − w(y) = c(y, x). Hence (y, x) ∈ Âw = Â. The existence of z is

proved in the same way, using T+
c .

Finally, let us mention one last setting in which Hypothesis 1 holds :

Hypothesis 3 The function c is locally bi-semiconcave, i.e., for all (x, y) ∈ M × M

we can find the following:

• neighborhoods U and V of respectively x and y,
• diffeomorphisms ϕ1 and ϕ2 from Bn to respectively U and V (Bn is the unit ball

in R
n),

• smooth functions f and g from Bn to R,

such that for each x ∈ M, the function z 7→ c(x, ϕ2(z)) − g(z) is concave and for all

y ∈ M, the function z 7→ c(ϕ1(z), y) − f (z) is concave.

It is easy to prove, as in [20, Proposition 4.6], that Hypothesis 3 also implies Hy-

pothesis 1 (using that an infimum of equi-semiconcave functions is itself semicon-

cave).

2 Preliminaries

Here we gather some useful facts obtained from elementary manipulations of the

Lax–Oleinik operators. Let us first list, without proof, some properties of the opera-

tors T±
c .
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• Monotony: u 6 v ⇒ T±
c u 6 T±

c v.
• Convexity: Given a sequence un of functions and a sequence an of non-negative

numbers such that
∑

n∈N
an = 1, and such that the series

∑

n∈N

anT−
c un,

∑

n∈N

anun, and
∑

n∈N

anT+
c un

are converging point-wise, we have

T−
c

( ∑

n∈N

anun

)
>

∑

n∈N

anT−
c un, T+

c

( ∑

n∈N

anun

)
6

∑

n∈N

anT+
c un.

The set SS of subsolutions is convex, and it is closed under point-wise conver-

gence. A convex combination
∑

n∈N
anun of subsolutions, with a point-wise con-

vergent sum, is a subsolution; it is free at x (resp. strict at (x, y)) provided there

exists n such that an > 0 and such that un is free at x (resp. strict at (x, y)).
• We have the equalities T+

c ◦ T−
c ◦ T+

c = T+
c and T−

c ◦ T+
c ◦ T−

c = T−
c .

• We have the inequalities

T+
c ◦ T−

c u 6 u, T−
c ◦ T+

c u > u

for each function u.
• If u is a subsolution, then

(2.1) T+
c u 6 T+

c ◦ T−
c u 6 u 6 T−

c ◦ T+
c u 6 T−

c u

The following criterion for subsolutions is taken from [19].

Lemma 2.1 Let u be a subsolution and let us consider a function v such that

u 6 v 6 T−
c u.

Then v itself is a subsolution.

Proof The statement follows from the inequalities u 6 v 6 T−
c u 6 T−

c v.

Playing with the Lax–Oleinik operators also leads to the following lemma.

Lemma 2.2 Let u be a subsolution, then the subsolution

v :=
T+

c u + T+
c ◦ T−

c u + T−
c ◦ T+

c u + T−
c u

4

is free on the complement of Au, equal to u on Au, and strict on the complement of Âu.

If Hypothesis 1 holds, then v is locally Lipschitz.

We then have Av ⊂ Au, but this inclusion is not necessarily an equality.
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Proof To prove that v is free on the complement of Au, we consider a point x at

which v is not free, and prove that x ∈ Au. We either have T+
c v(x) = v(x) or

T−
c v(x) = v(x). In the first case, we have

4v(x) = 4T+
c v(x) 6 T+

c ◦T+
c u(x)+T+

c ◦T+
c ◦T−

c u(x)+T+
c ◦T−

c ◦T+
c u(x)+T+

c ◦T−
c u(x)

hence the inequalities

T+
c ◦ T+

c u(x) 6 T+
c u(x), T+

c ◦ T+
c ◦ T−

c u(x) 6 T+
c ◦ T−

c u(x)

T+
c ◦ T−

c ◦ T+
c u(x) = T+

c u(x) 6 T−
c ◦ T+

c u(x), T+
c ◦ T−

c u(x) 6 T−
c u(x)

sum to an equality, hence they are equalities. In view of (2.1) the two last equalities

imply that T+
c u(x) = u(x) = T−

c u(x). The second case is similar. It then follows

from Lemma 2.3 that v is strict outside of Âu.

The following lemma allows us to reduce strictness questions to freedom ques-

tions and completes the proof of Lemma 2.2.

Lemma 2.3 Let u, v be subsolutions such that v is free outside of Au and equal to u on

Au, then v is strict at each point (x, y) where u is strict.

Proof Let (x, y) be a pair at which v is not strict. Then v(y) − v(x) = c(x, y), hence

T−
c v(y) = v(y) and T+

c v(x) = v(x). Since v is free outside of Au, this implies that

both x and y belong to Au. Since u = v on Au, we conclude that

u(y) − u(x) = v(y) − v(x) = c(x, y),

hence u is not strict at (x, y).

It will also be useful to quantify the freedom of a subsolution u by its leverage

function.

Definition 2.4 The leverage function λu : M → [0,∞) of the subsolution u is

defined by:

λu(x) := 1
3

min
(

T−
c u(x) − u(x), u(x) − T+

c u(x)
)
.

Note that u is free at x if and only if λu(x) > 0.

Lemma 2.5 Let u be a subsolution and let v be another function such that |u−v| 6 λu.

Then v is itself a subsolution. Moreover, if u is free at x, then so is v, and if u is strict at

(x, y), then so is v.

Proof By definition, we have

3 max{λu(x), λu(y)} 6 max{u(x)−T+
c u(x),T−

c u(y)−u(y)} 6 c(x, y)−u(y)+u(x).

We conclude that

0 6 max{λu(x), λu(y)} 6 c(x, y) − v(y) + v(x),

hence that

T+
c v(x) + λu(x) 6 v(x) 6 T−

c v(x) − λu(x)

for each x, which implies that v is a subsolution that is free at points where u is free.

The last claim follows from Lemma 2.3.
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3 The Uniform Case on R
n and the Jensen Transforms

In this section we work on M = R
n. A function u : R

n → R is called k-semiconcave

if u(x) − k‖x‖2 is concave. We introduce the following more quantitative version of

Hypothesis 1 on the cost c.

Hypothesis 1-K There exists a constant K such that for each subsolution u, the

functions T−
c u and −T+

c u are K-semiconcave.

One setting that implies this condition is the following version of Hypothesis 3.

Hypothesis 3-K There exists a constant K such that the function x 7→ c(x, y) is

K-semiconcave for each y and the function y 7→ c(x, y) is K-semiconcave for each x.

We will use the Jensen transforms, which, for a function u : R
n → R and a positive

real number t , yield the functions

J−t u(x) = inf
y∈Rn

(
u(y) +

1

t
‖y − x‖2

)
, J+t u(x) = sup

y∈Rn

(
u(y) −

1

t
‖y − x‖2

)
.

These are nothing but the Lax–Oleinik operators associated with the costs ct (x, y) =
1
t
‖y − x‖2.

Theorem 3.1 Let u be a uniformly continuous subsolution. The function J−t ◦ J+2t ◦
J−t u is finite, and, for t small enough, it is a C1,1 subsolution. Moreover, it converges

uniformly to u as t → 0. More precisely, if u is a uniformly continuous subsolution,

then for t, s < K−1 the functions J−t ◦ J+(t+s) ◦ J−su and J+t ◦ J−(t+s) ◦ J+su are C1,1

subsolutions that converge uniformly to u as t, s → 0. Moreover, we have

T+
c ◦ T−

c u 6 J−t ◦ J+(t+s) ◦ J−su 6 T−
c u, T+

c u 6 J+t ◦ J−(t+s) ◦ J+su 6 T−
c ◦ T+

c u.

Note that the last inequalities imply that J−t ◦ J+(t+s) ◦ J−su and J+t ◦ J−(t+s) ◦ J+su

are subsolutions by Lemma 2.1. We recall a few properties of the Jensen transforms,

most of which are proved in [5] or [1]. Both families of operators J− and J+ are

semi-groups. They are monotonous in the following ways:

inf u 6 J−su 6 J−t u 6 u 6 J+t u 6 J+su 6 sup u ∀s > t > 0,

and

u 6 v =⇒ {∀t > 0, J−t u 6 J−t v and J+t u 6 J+t v}.

A continuous function ρ : [0,∞) → [0,∞) such that ρ(0) = 0 is called a modulus

of continuity. A function f is said to be ρ-continuous if | f (y) − f (x)| 6 ρ(‖y − x‖)

for all x and y. Given a modulus of continuity ρ, there exists a modulus of continuity

ǫ such that, for each ρ-continuous function u, the following properties hold:

• the functions J−t u and J+t u are finite-valued and ρ-continuous for each t > 0;
• J−t u is t−1-semiconcave and J+t u is t−1-semiconvex;
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• ‖ J−t u − u‖∞ + ‖ J+t u − u‖∞ 6 ǫ(t);
• J−t ◦ J+t u > u and J+t ◦ J−t u 6 u;
• the equality J−t ◦ J+t u = u (resp. J+t ◦ J−t u = u) holds if and only if u is t−1-

semiconcave (resp. t−1-semiconvex);
• if u is semiconvex (resp. semiconcave) then J−t ◦ J+t u (resp. J+t ◦ J−t u) is C1,1

(and finite valued).

Using these properties, we now prove Theorem 3.1. Let u be a uniformly continuous

subsolution, with modulus ρ. Since the function u is a subsolution, we have u 6

T−
c u, hence T−

c u is finite-valued. Our hypothesis is that the function T−
c u is K-

semiconcave. For s < K−1, we have

u 6 J−s ◦ J+su 6 J−s ◦ J+s(T−
c u) = T−

c u,

where the last inequality follows from the K-semiconcavity of T−
c u and the properties

of J− ◦ J+ listed above. We conclude that the function J−s ◦ J+su is a ρ-continuous,

s−1-semiconcave subsolution. Similarly, if u is ρ-continuous and t < K−1, then the

function J+t ◦ J−t u is a ρ-continuous, t−1-semiconvex subsolution. Applying this

observation to the function J−s ◦ J+su, we conclude that J+t ◦ J−t ◦ J−s ◦ J+su is a

ρ-continuous subsolution. This subsolution is C1,1, since J−s ◦ J+su is semiconcave.

We have the inequality

T+
c ◦ T−

c u = J+t ◦ J−t (T+
c ◦ T−

c u) 6 J+t ◦ J−t u 6 J+t ◦ J−t ◦ J−s ◦ J+su

6 J+t ◦ J−t (T−
c u) 6 T−

c u.

Finally, we have

u 6 J−s ◦ J+su 6 J−s(u+‖ J+su−u‖∞) 6 ‖ J+su−u‖∞ +‖ J−su−u‖∞ +u 6 u+ǫ(s)

and similarly u − ǫ(t) 6 J+t ◦ J−t u 6 u, hence

u − ǫ(t) 6 J+t ◦ J−t u 6 J+t ◦ J−(t+s) ◦ J+su 6 J−s ◦ J+su 6 u + ǫ(s),

where ǫ is the modulus associated with ρ in the list of properties of J.

4 The General Case

In this section, we come back to the general setting and prove Theorem 1.1. We derive

it from the uniform version using partitions of unity, as was done in [5] for Ilmanen’s

lemma. We fix a locally finite atlas (φi)i∈I constituted of smooth maps φi : Bn → M,

where Bn is the open unit ball. We assume that all the images φi(Bn), for i ∈ I, are

relatively compact in M. Moreover, we consider a smooth partition of unity (gi)i∈I

subordinated to the locally finite open covering
(
φi(Bn)

)
i∈I

. Given positive numbers

ai , bi , i ∈ I, we define the operators

∀x ∈ M, Su(x) =
∑

i∈I

[
J−ai ◦ J+ai (giu ◦ φi)

]
◦ φ−1

i (x),

∀x ∈ M, Šu(x) =
∑

i∈I

[ J+bi ◦ J−bi (giu ◦ φi)] ◦ φ−1
i (x).
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The functions in the sums are extended to the whole of M by the value zero outside

of the domain φi(Bn). The sums are locally finite, hence well defined. Theorem 1.1 is

a consequenct of the following theorem.

Theorem 4.1 Assume that the cost c satisfies Hypothesis 1. Let u be a continuous

subsolution and let ǫ : M → ]0,∞) be a continuous function. For suitably chosen

positive constants (ai)i∈I and (bi)i∈I , the function Š ◦ S(u) is a locally C1,1 subsolution

such that |u − Š ◦ Su| 6 ǫ and

T+
c ◦ T−

c u 6 Š ◦ Su 6 T−
c u.

Proof Since the image φi(Bn) is relatively compact and since the atlas is locally finite

the set Ai = { j ∈ I, φ j(Bn) ∩ φi(Bn) 6= ∅} is finite. Let us denote by ei its cardinal.

Setting

ǫi :=
min j∈Ai

infx∈Bn
ǫ
(
φ j(x)

)

2 max j∈Ai
e j

,

we observe that

∀i ∈ I,
∑

j∈Ai

ǫ j 6
1

2
inf

x∈Bn

ǫ
(
φi(x)

)
.

Let us make the convention to extend all functions that are compactly supported

inside Bn, like (giu) ◦ φi by the value 0 to the whole of R
n. For each i, we choose a

positive constant ai such that

(4.1)
∥∥ (giu) ◦ φi − J−ai ◦ J+ai

(
(giu) ◦ φi

)∥∥
∞
< ǫi .

Such a constant exists because the function (giu) ◦φi is uniformly continuous on R
n.

Since T−
c u is locally semiconcave, the function (giT

−
c u)◦φi , extended by zero outside

of Bn, is semiconcave on R
n (see [5]). We can assume by taking ai > 0 small enough

that it is a−1
i -semiconcave, so that

[giu] ◦ φi 6 J−ai ◦ J+ai
(

[giu] ◦ φi

)
6 J−ai ◦ J+ai

(
[giT

−
c u] ◦ φi

)
=

[
giT

−
c u

]
◦ φi

on R
n. This implies in particular that the function J−ai ◦ J+ai (giu ◦ φi) is supported

in Bn. As a consequence, the function
[

J−ai ◦ J+ai (giu ◦ φi)
]
◦ φ−1

i , extended by zero

outside of φi(Bn), is locally semiconcave on M, hence the function Su is locally semi-

concave, being a locally finite sum of locally semiconcave functions. By summation

we get

u =

∑

i∈I

(giu) ◦ φi ◦ φ
−1
i 6 Su 6

∑

i∈I

[
giT

−
c u

]
◦ φi ◦ φ

−1
i = T−

c u,

which, by Lemma 2.1, implies that Su is a subsolution. We have |u − Su| < ǫ/2

by (4.1).
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Next, we chose bi such that [giT
+
c ◦ T−

c u] ◦ φi is b−1
i -semiconvex, which implies

that

[giT
+
c ◦ T−

c u] ◦ φi = J+bi ◦ J−bi
(

[giT
+
c ◦ T−

c u] ◦ φi

)
6 J+bi ◦ J−bi

(
[giu] ◦ φi

)

6 J+bi ◦ J−bi
(

[giSu] ◦ φi

)
6 [giSu] ◦ φi .

As above, this implies that J+bi ◦ J−bi
(

[giSu] ◦ φi

)
is supported on Bn. Note that it

is also C1,1, hence the function
(

J+bi ◦ J−bi
(

[giSu] ◦ φi

))
◦ φ−1

i , extended by zero

outside of φi(Bn), is locally C1,1 on M. By summation, we obtain that

T+
c ◦ T−

c u 6 Šu 6 Š ◦ Su 6 Su 6 T−
c u,

which implies that Š ◦ Su is a subsolution. This function is locally C1,1 as a locally

finite sum of locally C1,1 functions. Finally, we can assume by possibly reducing bi

that ∥∥ (giSu) ◦ φi − J+bi ◦ J−bi
(

(giSu) ◦ φi

)∥∥
∞
< ǫi ,

which implies that |Š ◦ Su − Su| 6 ǫ/2 hence that |Š ◦ Su − Su| 6 ǫ.

Theorem 4.2 We assume Hypothesis 1. Let Ω ⊂ M be an open set and let u be a

continuous subsolution that is free on Ω. Then the subsolution u belongs to the closure,

for the strong topology, of the set of C1,1 subsolutions that are free on Ω and equal to u

on Au.

Proof Let ǫ : M → ]0,∞) be a continuous function. We can chose ai and bi in such

a way that Š◦Su is a subsolution that is equal to u on Au, and such that |Š◦Su−u| 6 ǫ.
However, Š ◦ Su need not be free on Ω. To preserve the freedom of u, we work with

the modified cost

c̃(x, y) = c(x, y) − ψ(y),

where ψ is a smooth bounded function such that 0 6 ψ 6 λu (the leverage function

of u), with strict inequalities on Ω. The associated Lax–Oleinik operator is

T−
c̃ v(x) = −ψ(x) + T−

c v(x).

Each subsolution for the cost c̃ is thus a subsolution for the cost c, and c̃ satisfies

Hypothesis 1. Moreover, the function u is a subsolution for the cost c̃. We apply

Theorem 4.1 and get a locally C1,1 subsolution w− for the cost c̃, which satisfies

|w− − u| 6 ǫ and w−
= u on Au. This function then satisfies

T−
c w−

= ψ + T−
c̃ w−

> ψ + w−,

hence it is a subsolution for the cost c. Similarly, by applying Theorem 4.1 with

the modified cost c(x, y) − ψ(x), we get a locally C1,1 subsolution w+ (for the cost

c) such that T+
c w+ 6 w+ − ψ, |w+ − u| 6 ǫ, and w+

= u on Au. We then set

w := (w+ + w−)/2 and claim that this locally C1,1 subsolution is free on Ω. This

follows from the inequalities

T−
c w >

(
T−

c w− + T−
c w+

)
/2 > w + ψ/2,

T+
c w 6

(
T+

c w− + T+
c w+

)
/2 6 w − ψ/2,

since ψ is positive on Ω. We also obviously have |w − u| 6 ǫ and w = u on Au.
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5 Proof of Theorem 1.3

We will build, successively, subsolutions v1, v2, v3 that are all equal to u on Au and free

on the complement Ω of Au. By Lemma 2.3, this also implies that the subsolutions vi

are strict where u is strict. We take

v1 =
T+

c u + T+
c ◦ T−

c u + T−
c ◦ T+

c u + T−
c u

4
,

which is continuous, equal to u on Au, and free on the complement of Au by

Lemma 2.2.

We then build v2 by applying Theorem 4.2 to v1, with Ω = M \ Au, and get a

locally C1,1 subsolution v2 that is free on Ω and equal to u on Au.

The following mollification result, which will be proved in the Appendix using a

procedure due to De Rham, allows to smooth our subsolution on Ω.

Theorem 5.1 Let f be a locally Ck,1 function on M and let ǫ : M → [0,∞) be a

continuous function. Then, there exists a locally Ck,1 function g : M → R that is smooth

on the open set Ω := ǫ−1(0,+∞) and satisfies, for all x ∈ M,

| f (x) − g(x)| + ‖dx f − dxg‖ + · · · + ‖dk
x f − dk

xg‖ 6 ǫ(x).

More precisely, we apply Theorem 5.1 to the function f = v2, with k = 1, and

with a function ǫ(x) such that ǫ = 0 on Au, ǫ > 0 on Ω (the complement of Au),

and ǫ 6 λv2
(the leverage function of v2). We get a C1,1 function v3, which is smooth

on Ω and is equal to u on Au. Since |v3 − v2| 6 λv2
, Lemma 2.5 implies that v3 is

a subsolution that is free on Ω. Lemma 2.3 then implies that v3 is strict where u is

strict.

6 Proof of Theorem 1.4

It is enough to prove the existence of a subsolution u that is free on the complement

of A and strict on the complement of Â. Theorem 1.3 then implies the existence of

a locally C1,1 solution v that is free and smooth on the complement of A, and that is

strict on the complement of Â. We start with the following lemma.

Lemma 6.1 If c satisfies Hypothesis 1 and admits a subsolution, then there exists a

continuous subsolution w1 that is free on the complement of A.

Proof Let us consider a point x /∈ A. By definition, there exists a subsolution vx such

that x /∈ Avx
, hence, by Lemma 2.2, there exists a continuous subsolution ux ∈ SSC

that is free at x. By continuity of ux, T−
c ux, and T+

c ux we may consider a positive

number ǫx and an open neighborhood of x, Ox, on which the following holds:

∀y ∈ Ox, T−
c ux(y) − ǫx > ux(y) > T+

c ux(y) + ǫx.

The set M \A satisfies the Lindelöf property (it is a separable metric space). We can

thus extract a countable covering On, n ∈ N of the covering Ox, x ∈ M \A. Denoting
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by un and ǫn the continuous subsolution and positive real number associated with

On, we consider a convex combination

w1 =

∑

n∈N

anun,

where an is a sequence of positive numbers such that
∑

N
an = 1 and such that the

sum in the definition of w1 is normally convergent on each compact set. The function

w1 is then a continuous subsolution. For each x /∈ A, there exists n0 ∈ N such that

x ∈ On0
, and we have

T−
c w1(x) = T−

c

( ∑

n∈N

anun

)
(x) >

∑

n∈N

anT−
c un(x) > an0

ǫn0
+
∑

n∈N

anun > w1(x).

A similar computation shows that T+
c w1(x) < w1(x).

Lemma 6.2 If there exists a continuous subsolution, then there exists a continuous

subsolution w2 that is strict at each pair (x, y) where a strict continuous subsolution

exists. Under Hypothesis 1, the subsolution w2 is then strict outside of Â.

Proof Since M is separable, the set SSC of continuous subsolutions is also separable

(for the compact-open topology), and we consider a dense subsequence (un)n∈N. Set

(6.1) w2 =

∑

n∈N

anun,

where the an are positive real numbers such that
∑

an = 1 and the sum (6.1) is

uniformly convergent on each compact subset. The function w2 is a subsolution

since it is a convex combination of subsolutions. If now (x, y) ∈ Âw2
, summing the

inequalities

∀n ∈ N, an

(
un(y) − un(x)

)
6 anc(x, y),

gives an equality; therefore, all inequalities are equalities and

∀n ∈ N, (x, y) ∈ Âun
.

By density of the sequence un, we deduce that (x, y) ∈ Âu for each continuous so-

lution u. Under Hypothesis 1, Â is exactly the set of pairs at which no continuous

subsolution is strict: Â =
⋂

u∈SSC
Âu hence, (x, y) ∈ Â.

To finish the proof of Theorem 1.4, we consider the subsolution u = (w1 + w2)/2.

This subsolution is free on the complement of A, because w1 is, and it is strict on the

complement of Â, because w2 is.
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A Proof of Theorem 5.1

We prove Theorem 5.1 using a regularization procedure due to De Rham; see [11].

The idea of De Rham is to construct an action t of R
n on R

n by smooth diffeomor-

phisms supported on the unit sphere Bn, in such a way that the induced action on Bn

is conjugated to the standard action of R
n on itself by translations. More precisely,

there exists a diffeomorphism h : Bn → R
n and diffeomorphisms ty , y ∈ R

n, of R
n,

equal to the identity outside of the open unit ball Bn, such that the map (x, y) 7→ ty(x)

is smooth and such that h ◦ ty = y + h on Bn. This implies that t is an action of the

group R
n on R

n, which means that ty ◦ ty ′ = ty+y ′ for each y, y ′. Since t is smooth,

t0 = Id, and ty = Id outside of the unit ball, the maps ty converge uniformly to the

identity as y −→ 0, and all their derivatives converge uniformly to the derivatives of

the identity.

Let us give some details on the construction of h and t. We set

h(x) =
h(‖x‖)

‖x‖
x,

where h : [0, 1[ → R+ is a smooth, strictly increasing (h ′ > 0) function such that

{
h(r) = r, 0 6 r 6 1/3,

h(r) = exp((r − 1)−2), 2/3 6 r < 1.

We then define ty , for each y ∈ R
n by

{
ty(x) = h−1

(
h(x) + y

)
if x ∈ Bn,

ty(x) = x if x ∈ R
n \ Bn.

It is clear from these formulæ that ty+y ′ = ty ◦ ty ′ . The only issue is the smoothness

of t. Differentiating the previous group property with respect to y ′ and taking y ′
= 0

yields the following relation:

∂

∂y
ty =

∂

∂y
t0 ◦ ty .

This implies that

ty(x) = x+

∫ 1

0

d

dt
tt y(x)dt = x+

∫ 1

0

( ∂

∂y
tt y(x)

)
ydt = x+

∫ 1

0

( ∂

∂y
t0

(
tt y(x)

))
ydt.

In other words, the map ty is the time-one flow of the vector field Xy(x) := M(x)y,

where M(x) = ∂y ty(x)|y=0. In order to prove that the map t is smooth, it is enough to

observe that the matrix M(x) depends smoothly on x. This matrix can be computed,

recalling that the gradient of the norm x 7→ ‖x‖ is rx := x/‖x‖:

M(x) = dh(x)h−1
=

1

h ′(‖x‖)
r t

x rx +
‖x‖

h(‖x‖)
(In − r t

x rx).
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Since 1/h, 1/h ′, as well as all their derivatives go to 0 when ‖x‖ → 1, we conclude

that M(x) is smooth.

We have exposed the construction of h and t. They allow us to define a local

regularization procedure with the help of a smooth kernel K1 : R
n → [0,∞). We

assume that K1 is supported in the unit ball Bn and that
∫

K1 = 1. For η > 0, we set

Kη(x) = η−nK1(η−1x).

Lemma A.1 Let O ⊂ R
n be an open set containing Bn. Given a locally integrable

function f : O → R and η ∈]0, 1[, we define

fη(x) =

∫

Rn

f
(

ty(x)
)

Kη(−y)dy.

The following assertions hold:

(i) the function fη is C∞ in Bn, and equal to f outside of Bn;

(ii) if f is Ck on O, then so are the functions fη , and fη → f in Ck as η → 0;

(iii) if f is Ck,1 on O, then so are the functions fη , and

lim sup
η→0

Lip(dk fη) 6 Lip(dk f );

(iv) if, in some open set O ′ ⊂ O, f is C l in O ′, then so is fη .

Proof On Bn we have

fη ◦ h−1
= ( f ◦ h−1) ⋆ Kη,

where ⋆ is the convolution. Since the functions Kη are smooth, this implies the first

claim. Writing

fη − f =

∫

B(0,η)

( f ◦ ty − f )Kη(−y)dy

and observing that f ◦ ty − f → 0 in Ck(R
n,R

n) as y → 0 (because ty → Id in

Ck(R
n,R

n)) yields the second claim. We will now prove that

(A.1) lim sup
y→0

Lip
(

dk( f ◦ ty)
)
6 Lip(dk f ),

which yields the third claim in view of the relation

dk
x fη =

∫

B(0,η)

dk
x( f ◦ ty)Kη(−y)dy.

Let us consider a component ∂αx ( f ◦ ty) of the differential dk( f ◦ ty), where α =

(α1, . . . , αn) is a multi-index such that |α| =
∑
αi = k. By the Faà di Bruno for-

mula, expressed in terms of partial differentials (see [9] for example), we have

∂αx ( f ◦ ty) =
∑

16|λ|6|α|

∂λty (x) f · Bα,λ(dxty , . . . , d
|α|
x ty),
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where the Bα,λ are universal multi-variable polynomials with no constant terms.

These polynomials satisfy the equalities

Bα,α(Id, 0, . . . , 0) = 1 and Bα,λ(Id, 0, . . . , 0) = 0

for all λ 6= α. Since ty → Id in C∞, the first of these equalities implies that the

function x 7→ Bα,α(dxty , . . . , d
|α|
x ty) is converging to 1 in C∞. Concerning the other

factor in this term, we have

Lip
(

(∂α f ) ◦ ty

)
6 Lip(∂α f ) Lip(ty) −→ Lip(∂α f ).

We deduce that the upper limit of the Lipschitz constants of the term corresponding

to λ = α is not greater than Lip(∂α f ).

On the other hand, for each of the terms with λ 6= α, the function

x 7−→ Bα,λ(dxty , . . . , d
|α|
x ty)

is converging to 0 in C∞, hence the Lipschitz constant of the function

x 7−→ ∂λty (x) f · Bα,λ(dxty , . . . , d
|α|
x ty)

is converging to 0. We conclude that

lim sup Lip
(
∂α( f ◦ ty)

)
6 Lip(∂α f ),

which implies (A.1), hence the third point of the statement.

Regarding the last claim of the statement, we consider the set

Ω :=
⋂

y∈B(0,η)

t−1
y (O ′),

and claim that Ω is open. Assuming the claim, we observe that the function fη is

smooth in Bn and that it is C l in Ω. Since the maps ty are all the identity outside of

Bn, the set Ω contains O ′ − Bn. We have covered O ′ by two open sets, Bn and Ω, such

that the fη is C l on each of them. We conclude that this function is C l on O ′.

To prove that Ω is open, we fix x0 ∈ Ω. For each y0 ∈ B(0, η), we have

ty0
(x0) ∈ O ′, hence there exists an open set U y0

containing y0 and an open set Ωy0

containing x0 such that ty(x) ∈ O ′ for all (x, y) ∈ Ωy0
×U y0

. By compactness, there

exists finitely many points yi ∈ B(0, η) such that the open sets U yi
cover B(0, η). The

open intersection
⋂

i Ωyi
, which contains x0, is then contained in Ω. Since this holds

for each x0 ∈ Ω, we have proved that Ω is open.

Lemma A.2 Let O be open subsets of R
n and let f : O → R be a Ck,1 function. Given

a continuous function ǫ : O → [0,∞), there exists a function fǫ such that:

(i) the function fǫ is C∞ in the open set {x ∈ O, ǫ(x) > 0} ⊂ O;

(ii) | fǫ(x) − f (x)| + ‖dx fǫ − dx f ‖ + · · · + ‖dk
x fǫ − dk

x f ‖ 6 ǫ(x) for each x ∈ O;

(iii) the function fǫ is Ck,1 on O, and Lip(dk fǫ) 6 1 + Lip(dk f ).
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Proof Let us denote by F the closed set {ǫ = 0}. The complement of F in O is open,

and we consider a locally finite covering (Oi)i∈N∗ of O \ F by open balls compactly

included in O\F. Since inf{ǫ(x), x ∈ Oi} > 0. we can construct inductively, using

Lemma A.1 a sequence of functions, ( fi)i∈N such that

• f0 = f ;
• for each i ∈ N, the function fi+1 is C∞ in O1 ∪ · · · ∪ Oi+1;
• for each i ∈ N, the functions fi and fi+1 are equal in O \ Oi+1;
• for each i ∈ N, the function fi+1 is Ck,1 in O, and Lip(dk fi+1) 6 2−i−1 + Lip(dk fi);
• | fi+1(x) − fi(x)| + ‖dx fi+1 − dx fi‖ + · · · + ‖dk

x fi+1 − dk
x fi‖ 6 2−1−iǫ(x) for each

x ∈ O, i ∈ N,

Each point of O has a neighborhood on which the sequence fi is eventually constant,

hence the limit fǫ := lim fi is well defined and smooth on
⋃

i Oi = O\F. The desired

estimates on fǫ follow immediately from the inductive estimates by summation.

Proof of Theorem 5.1 We fix a locally finite atlas (φi)i∈N∗ constituted of smooth

maps φi : 2Bn → M, where Bn is the open unit ball. We assume that all the images

φi(2Bn), i ∈ N
∗ are relatively compact in M and that the φi(Bn), i ∈ N

∗ still cover

M. By Lemma A.2, it is possible to construct inductively a sequence of functions fi ,

by iteratively modifying fi ◦ φi+1 on Bn, such that

• f0 = f ;
• for each i ∈ N, the function fi+1 is C∞ in

⋃
j6i+1 φ j(Bn) ∩ Ω;

• for each i ∈ N, in M \ φi+1(Bn), the functions fi and fi+1 are equal;
• for each i ∈ N, the function fi+1 is Ck,1 on M;
• for each i ∈ N, x ∈ M, | fi(x) − fi+1(x)| + · · · + ‖dk

x fi − dk
x fi+1‖ 6 2−i−1ǫ(x).

Each point x ∈ M has a neighborhood on which the sequence fi is eventually

constant, hence the limit g = lim fi is well defined, locally Ck,1, and smooth on Ω.

The inequality on the differentials follows by summation from the iterative assump-

tions.
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