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3.2.5 Köhler theory analysis (KTA) and molar volume uncertainty 39

3.2.6 Droplet growth kinetics . . . . . . . . . . . . . . . . . . . . 40

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 CCN activity . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Molecular weight estimates and uncertainty . . . . . . . . . 46

3.3.4 Droplet growth kinetics . . . . . . . . . . . . . . . . . . . . 47

3.4 Summary and implications . . . . . . . . . . . . . . . . . . . . . . . 47

IV CCN PROPERTIES OF SESQUITERPENE SOA . . . . . . . . . . . . 53

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 SOA formation and online measurements . . . . . . . . . . . 57

4.2.2 Characterizing the water-soluble fraction of SOA . . . . . . 60

4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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SUMMARY

Aerosols have significant impacts on earth’s climate and hydrological cycle. They

can directly reflect the amount of incoming solar radiation into space; by acting as

cloud condensation nuclei (CCN), they can indirectly impact climate by affecting

cloud albedo. Our current assessment of the interactions of aerosols and clouds is

uncertain and parameters used to estimate cloud droplet formation in global climate

models are not well constrained. Organic aerosols contribute much of the uncertainty

in these estimates and are known to affect the ability of aerosol to form cloud droplets

(CCN Activity) by i) providing solute, thus reducing the equilibrium water vapor

pressure of the droplet and ii) acting as surfactants capable of depressing surface ten-

sion, and potentially, growth kinetics. This thesis investigates various organic aerosol

species (e.g., marine, urban, biomass burning, Humic-like Substances). An emphasis

is placed on the water soluble components and secondary organic aerosols (SOA).

In addition the sampled organic aerosols are acquired via different media; directly

from in-situ ambient studies (TEXAQS 2006) environmental chamber experiments,

regenerated from filters, and cloud water samples. Novel experimental methods and

analyses to determine surface tension, molar volumes, and droplet growth rates are

presented from nominal volumes of sample. These key parameters for cloud droplet

formation incorporated into climate models will constrain aerosol-cloud interactions

and provide a more accurate assessment for climate prediction.

xviii



CHAPTER I

INTRODUCTION

Changes in climate can affect health, air quality, energy, food and water resources

and subsequently human sustainability. As a result, understanding changes in cloud

formation that alter the hydrological cycle and climate is an important issue that must

be addressed in engineering research. Aerosol provide the nuclei for which water can

condense and form cloud droplets; the link between particulate matter and cloud

formation is often referred to as the aerosol-indirect effect and is a major source of

uncertainty in global climate models [99, 205, 130](Fig. 1).

Much of the uncertainty is due to the lack of understanding of the organic aerosol

interactions with water vapor. Constraining the interactions and feedbacks of water

vapor, aerosols, and clouds are complex. As a result, the global annual influence

of the anthropogenic indirect aerosol effect is subject to large uncertainties [130, 34,

158, 90, 99]. Understanding the ability of aerosol to form droplets and act as cloud

condensation nuclei (CCN) is a strong function of their size, composition and physical

state; hence the following work provides novel experimental and analytical techniques

to assess these thermodynamic and droplet kinetic parameters necessary to constrain

model parametrizations for organic droplet formation.

1.1 The importance of the water-soluble organic fraction

Water-soluble organic compounds (WSOC) are ubiquitous in the atmosphere; their

interactions with water are intricate for they can significantly affect particle hygro-

scopicity, reduce the equilibrium water vapor pressure, affect growth kinetics and

decrease surface tension at the droplet interface [45, 56, 60, 175, 176]. As a con-

sequence, these organics may enhance or suppress CCN activity, hence significantly
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Figure 1: Anthropogenic Radiative Forcing Assessment. The aerosol-indirect is
classified with a low level of scientific understanding (LOSU) and is subject to the
greatest uncertainty.

impact cloud droplet number and the aerosol indirect effect [58, 61, 140, 184].

Roughly half of global CCN contain carbonaceous compounds [145]. Carbona-

ceous material (organic carbon, OC) can comprise up to 70-90% of aerosol mass [7,

27, 214], 10-70% of which may be water-soluble organic carbon (WSOC) [59, 201, 218].

WSOC are present in primary organic carbon but also formed during the oxidation

of volatile organic carbon (VOC) to secondary organic aerosol (SOA) [109, 166, 175].

WSOC is believed to be a mixture of neutral and acidic polar organic compounds

[44]. They are important contributors to the aerosol indirect effect for WSOC can

affect CCN activity by i) providing solute, thus reducing the equilibrium water vapor

pressure of the droplet, and, ii) acting as surfactants capable of depressing surface

tension, and potentially, growth kinetics [45, 61, 64, 109, 123, 140, 184]. Yet owing

to its complexity, WSOC cannot be completely speciated using standard analytical

methods, but instead is often characterized using “functional group analysis”, using

either chromatographic techniques or nuclear magnetic resonance [43, 174, 197, 198].
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WSOC can be classified broadly into hydrophilic and hydrophobic fractions; these

are usually operationally defined but correlate with carbon chain length and num-

ber of functional groups per molecule. Hydrophilic compounds are typically highly

oxygenated low molecular weight compounds (with potentially numerous carbonyls

and carboxyl groups per molecule) and tend to be highly soluble in water and exhibit

limited surfactant behavior; hydrophobics can be longer in length, less hygroscopic,

and strongly depress surface tension [109].

An important class of hydrophobic WSOC are Humic-like Substances (HULIS);

these are a mixture of high molecular weight compounds that are strong surfactants

[44, 111, 173]. Surfactants have been known for a long time to be ubiquitous, e.g.,[74].

According to [59], HULIS depressed surface tension in fog water samples by 15-20%

at a 100 mg C L−1 WSOC concentration; [111] showed that HULIS dissolved in water

at a concentration of 1000 mg L−1 could decrease surface tension by 25-42% or even

more if salts like (NH4)2SO4 are present in solution. HULIS are present in continental

aerosol, urban, rural and smog samples [44, 59, 77, 89, 111, 119]. Despite their

importance, the thermodynamic properties of HULIS (e.g., average molecular weight,

molar volume, solubility) are poorly known. This is largely due to the complexity of

HULIS, which do not have a definite chemical structure, but are often described as a

“network” of compounds binding together in solution, potentially forming oligomers

and macromolecules [76, 106, 107, 112].

Aerosol formed during biomass burning episodes are a major source of WSOC

[109, 197]; for VOC emissions and SOA occur in abundance. In pyrogenic air masses,

WSOC can account for 45-75% of the total carbon mass [62, 77, 134]. Natural VOC

emissions (e.g., monoterpernes, sesquiterpenes), estimated to be 1150 Tg yr−1 [84],

are a major source of SOA. Alkene ozonolysis is well established as a source of SOA

[1, 17, 19, 49, 67, 72, 86, 109, 120, 182, 208]. Attempts to speciate SOA [1, 17, 49, 72,

106] have been met with limited success, as 80 to 90% of the aerosol mass can remain
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uncharacterized [106, 167, 179]. The potential for forming oligomeric or polymeric

structures [19, 72, 73, 107] has been suggested to explain the uncharacterized SOA

fraction. Oligomers have the potential to exhibit characteristics similar to humic-like

substances (HULIS) [19], which strongly depress surface tension [14, 47, 76, 111, 173]

and potentially, droplet growth kinetics. All of these can have important impacts

on CCN activity. Nevertheless, a complete thermodynamic characterization of the

secondary aerosol, and its water-soluble components (required to constrain cloud

droplet formation) have remained elusive [109].

For marine conditions, CCN number concentration and cloud droplet number may

increase 10 to 15% in the presence of WSOC [2, 138, 147, 220]. The sources and chem-

ical composition of marine organics vary; primary organic marine aerosols (POMA)

generated during bubble bursting may be insoluble high molecular weight organic

matter [147]. POMA concentrations vary with season [216] and are attributed to

emissions during phytoplankton blooms [109, 147, 216]. The production of secondary

organic marine aerosols (SOMA) during cloud processing (mostly WSOC and car-

boxylic acids such as oxalate) is persistent in marine cloud regions [190]. SOMA

can be produced through glyoxylic acid oxidation pathways [192] via several aqueous

phase intermediates [31, 57, 128].

1.2 Describing cloud droplet formation

The theory traditionally used to describe the formation of cloud droplets from CCN

was first developed by Köhler and is a simple thermodynamic model that describes

cloud droplet activation under ideal conditions [115]. Traditional Köhler theory has

successfully been applied to CCN composed of deliquescent inorganic salt aerosols

(e.g., ammonium sulfate and sodium chloride) and low molecular weight organic

species that exhibit hygroscopic behavior (e.g., adipic acid and glutaric acid) [41, 159].
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Unfortunately, the theory is less successful in describing the behavior of less hygro-

scopic non-ideal organic compounds [41, 159]. Analysis of ambient CCN measure-

ments [35, 207] can show large deviations (often attributed to the complex interaction

of organics with water) between predicted and measured CCN concentration under

polluted conditions. Organics, depending on their solubility, can contribute solute

[184, 121]. Hydrophobic compounds, such as HULIS, with multiple functional groups

may act as strong surfactants and considerably depress surface tension [184, 61, 140];

compressed surfactant layers may act as “film-forming compounds,” and may influ-

ence droplet growth kinetics enough to affect droplet number and spectral dispersion

[22, 74, 64, 141, 35]. Polymerization reactions, thought to occur in secondary organic

aerosol [129], may also have a considerable impact on their CCN properties [206].

All the effects combined give a wide and complex range of effects on CCN and cloud

droplet formation [141].

A common assumption for partially soluble compounds is that solute instanta-

neously dissolves and distributes uniformly throughout the drop [121, 159, 181].

Compared to electrolytes, the majority of organic compounds are not very soluble

in water, do not readily deliquesce, have a higher molar mass and thus diffuse more

slowly in aqueous solutions. The implication for a growing droplet is that mass trans-

fer of the dissolving organics may not be fast enough to assure uniform distribution

of solute through the droplet volume; this kinetic limitation may decrease the so-

lute concentration at the droplet surface and increase the droplet equilibrium vapor

pressure.

[12] showed that if sufficient, the latter may delay or even hinder droplet formation.

Thus, assuming instantaneous dissolution and distribution of solute throughout the

droplet volume could slightly overestimate the effect of partially soluble compounds

on CCN activation. A numerical model of the process was developed. Simulations of

cloud droplet growth were performed for solute diffusivity, droplet growth rates, dry
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particle and droplet diameters relevant for ambient conditions. Simulations suggest

that high ambient supersaturations and low solute diffusivity are major contribu-

tors to significant decreases in effective solute surface concentrations during droplet

growth. The numerical simulations were incorporated into Köhler theory to assess

the impact of dissolution kinetics on the droplet equilibrium vapor pressure. The

modified Köhler theory implies that only CCN, most likely composed of WSOC, with

slowly dissolving solute could have a “dynamical” equilibrium saturation ratio that is

appreciably different from that obtained using thermodynamic equilibrium arguments

alone.

1.3 Thesis outline

As previously mentioned, experimental emphasis is placed on probing the charac-

teristics of the water-soluble organic aerosol component. The aerosol studied are

from various sources; laboratory studies focus on water-soluble properties of biomass

burning extract (Chapter 2), secondary aerosol (SOA) from the ozonloysis of terpenes

(Chapters 3 and 4) and marine and urban cloud water (Chapter 5 and 6) . In the

chapters 2 and 3 analytical methods are developed and presented to infer thermo-

dynamic properties (molar mass and surface tension) of the organic system. These

methods are then applied to in-situ measurements and off-line measurements of SOA

generated from the ozonloysis of sesquiterpenes (Chapter 4). In chapters 5 and 6 we

apply these novel characterization methods to a unique sampling technique and in-

fer properties of already activated CCN from cloud water samples; the water-soluble

properties inferred from these cloud water samples are of particular importance for

CCN predictions and closure studies. Lastly, airborne CCN measurements from the

TEXAS Air Quality Study of 2006 explore the behavior and evoloution of ambient

CCN in urban plumes. This wide array of measurements, experimental techniques

and analysis are designed to move toward a better understanding of organic cloud
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droplet formation and terminally, aerosol-cloud climate interactions.
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CHAPTER II

WSOC PROPERTIES OF BIOMASS BURNING CCN

In this study, a biomass burning sample acquired during a prescribed burning event

in Georgia [200], is fractionated into hydrophilic and hydrophobic components to

assess their individual contribution to surface tension depression and CCN Activity.

Average molar volumes are inferred from Köhler Theory Analysis KTA the surfactant

characteristics are determined and the relative amount of hydrophobic and hydrophilic

compounds are determined. Note: This chapter appears as reference [16].

2.1 Experimental methods

Fine Biomass Burning (BB) particulate matter (PM2.5) was collected on pre-baked

quartz fiber filters with a Thermo Anderson Hi-Volume Air Sampler during a pre-

scribed burning in Augusta, Georgia at Fort Gordon and in Columbus, Georgia at Fort

Benning, which are both located in heavily wooded areas, in April 2004 [126, 200].

Sampling and Filter collection methods can be found in [126]. The freshly burned

biomass aerosol is subsequently extracted in water and fractionated into hydrophobic

and hydrophilic fractions. Figure 2 outlines the procedure adopted to characterize

the original and fractionated samples. Each step is described in subsequent sections.

2.1.1 Extraction and fractionation of biomass burning sample

WSOC is extracted with 125 ml of pure water from the filter by sonication in a heated

water bath (∼60˚C) [20, 198] for 1.25 hours. A portion of this sample (BB) was then

fractionated into hydrophilic (HPHIL) and hydrophobic (HPHOB) components us-

ing a macro-porous nonionic resin (XAD-8) Solid Phase Extraction (SPE) column

[51, 198]. With the WSOC solution adjusted to pH=2 using HCl, the resin does not
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Figure 2: Procedure used for biomass burning sample analysis. The water-soluble
component of the aerosol sample is extracted and characterized for carbon and in-
organic content, surface tension and CCN properties. The sample is then desalted,
fractionated into hydrophilic (HPHIL), hydrophobic (HPHOB), desalted hydrophilic
(D-HPHIL) and desalted hydrophobic (D-HPHOB) components, all of which are char-
acterized.

retain hydrophilic compounds. Calibrations suggest this includes saccharides, amines,

and carbonyls and aliphatic monocarboxylic/dicarboxylic/oxocarboxylic acids with

less than 4 or 5 carbons, or hydrophobic compounds with pKa less than 2. The

column retains the long and short-chained hydrophobic compounds, which calibra-

tions suggest may be aromatic acids, phenols, organic nitrates, cyclic acids, carbonyls

and monocarboxylic and dicarboxylic chains greater than 3 to 4 carbons [198]. The

column is then eluted to pH 13 and a large amount of the adsorbed hydrophobic frac-

tion is removed. The recovered hydrophobic fraction is adjusted to pH 2 with HCl

to avoid the oxidation of organic compounds. Of the compounds tested, aromatic

acids and phenols had the largest recoveries. The hydrophobic compounds retained

on the column at pH 2 and recovered at pH 13 exhibit a dark brown color, suggestive

of HULIS [76]. Speciation methods have shown that HULIS in WSOC can be found

within the hydrophobic fraction [44, 114, 118, 198].

Part of the BB, HPHOB and HPHIL components are subsequently de-salted with

single-use Oasis R© HLB Extraction Cartridges (Waters, Milford, Massachusetts), to

9



reduce the concentration of electrolytes in the samples. Most organics are retained

on the resin while inorganic ions pass through. The organics are subsequently eluted

with 100% high-purity methanol (Romil, Cambridge, UK). This eluate is dried under

a gentle stream of nitrogen gas to remove the methanol and re-dissolved with 18

Mohm ultrapue water. The desalted samples will be referred to as D-HPHOB, D-

HPHIL and D-BB (Table 1).

Table 1: Composition of each sample considered in this study.

Sample aWSOC bCl− bSO2−
4

bNO−
3

(mg C L−1) (µg L−1) (µg L−1) (µg L−1)
BB 850 17510 19698 20834
HPHIL 40 399031 7700 0
HPHOB 375 4058 27 0
D-BB 600 2438 4056 3310
D-HPHIL 130 7.5 15.3 0
D-HPHOB 450 15.6 53.8 0

a The uncertainty of WSOC measurements is 3-5%
b The uncertainty is 40, 200, and 133 µg L−1 for Cl−, SO2−

4 , and NO−
3

measurements, respectively.

It should be noted that there can be a potential for artifacts in the fractionation

process. During the desalting process low molecular weight organic compounds (i.e

acetic and formic acid) that do not strongly adsorb on the resin may pass through

the chromatography column. Hence only when comparing the hydrophilics will the

D-HPHIL sample, compared to HPHIL, be somewhat enriched in higher molecular

weight organics. In addition, not all hydrophobic compounds are recovered from the

column. Based on calibrations [198], carbonyls and carboxylic acids greater than

roughly C5 and organic nitrates are thus most likely to be under-represented in this

analysis.
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2.1.2 Measurement of chemical composition

The WSOC content of the original, fractionated and desalted samples (Table 1)

were measured with a Total Organic Carbon (TOC) Analyzer (Sievers Model 800

Turbo, Boulder, CO). A detailed description of the method can be found in [198].

We also measure anions (SO2−
4 , Cl−and NO−

3 ) and cations (Na+, NH+
4 , Mg+, Ca2+,

K+) with a Dionex DX-500 ion chromatograph with Na2CO3/NaHCO3 eluent and a

Metrosep A Supp 5-100 analytical column (Metrohm, Switzerland). In the original

and fractionated samples, ammonium was in excess, suggesting that all the organic

and inorganic acids were neutralized.

2.1.3 Surface tension measurements

All surface tension measurements were performed using the pendant drop method

with a KSV CAM 200 optical contact angle and surface tension goniometer. The

surface tension at the liquid-air interface, σ, depends on the density jump across the

interface, the gravitational constant, the radius of the droplet and the contact angle

between the droplet and needle used for forming the pendant drop. The drop is al-

lowed to equilibrate for 30-100 seconds, providing enough time so that large molecules

(i.e., HUMIC-like substances) are fast enough to diffuse to the surface layer of acti-

vated CCN [202, 12]. Fifty pendant drops were used for each surface tension measure-

ment, requiring in total less than 200 µL of sample; the σ for commercial ultrafine

de-ionized ultra-filtered water (Fischer-Scientific, W-2) was measured in between or-

ganic samples and were found to agree consistently within 2% of reported literature

values at room temperature. This en sures that cross-contamination between sam-

ples did not occur. The temperature was measured with a 50 K Ohm Thermoresistor

(Digikey ERT-D2FHL503S) thermocouple.

The surfactant characteristics for each sample (Table 2) were characterized by

measuring surface tension as a function of dissolved carbon concentration (at the
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Table 2: Average α and β parameters of the Szyszkowski-Langmuir model for all
samples considered.

Sample α(mN m−1 K−1) βc (L mg−1)
BB 2.78 1.72×10−6

HPHIL 1.00 5.78×10−7

HPHOB 9.18 6.02×10−6

D-HPHIL 1.54×10−1 8.23×10−6

D-HPHOB 6.98 4.62×10−6

cMeasurements obtained between 296 and 299 ◦ K.

original sample concentration, then at 1:1, 1:2, 1:3 and 1:4 dilution with 18-Mohm

ultrapure water). The measurements were then fit to a Szyszkowski-Langmuir [124]

adsorption isotherm which expresses σ as a function of the soluble carbon,

σ = σw − αT ln(1− βc) (1)

where c is the concentration of soluble carbon (mg C L1), α and β are empirical

constants, obtained from least square fitting to σ measurements, and σw is the surface

tension of 18-Mohm ultrapure water at the experiment temperature. If the surfactant

is composed of a single compound, Eq.(1) describes a Gibbs adsorption isotherm of

the partitioning of surfactant between the bulk and droplet surface layer, α and β are

related to the orientation of dissolved molecules and their interactions at the surface

interface [124]. Even though WSOC is a complex mixture of compounds, Eq.(1)

still reproduces the measurements very well (Fig. 5). Table 2 is a summary of α

and β parameters obtained from fitted σ data for the original biomass burning and

fractionated samples.

In addition to measurements of the original and extracted samples, we also mea-

sured the effect of adding electrolytes on surface tension; limited by the amount of

fractionates available, we performed this exercise on the original BB sample. The

concentration of carbon was kept constant at 850 mg L−1 and premeasured amounts
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of electrolytes were dissolved. (NH4)2SO4 and NaCl were used in these experiments,

typical of ionic species found in the atmosphere.

2.1.4 CCN activity measurements

Aerosol generated from the original BB sample and fractions were activated into cloud

droplets to determine their CCN activity. 80 to 100 µL of organic sample were placed

in 3-5 ml of commercial ultrafine de-ionized ultra-filtered water (Fischer-Scientific,

W-2) and atomized with a collision-type (University of Minnesota) atomizer (Fig. 3)

operated at 3.5 psig pressure. The polydisperse droplets are subsequently dried (to

∼10% relative humidity) by passing them through two silica gel dryers (Fig. 3),

neutralized by a Kr-85 bipolar ion source and classified using a Differential Mobil-

ity Analyzed (DMA 3081) (Fig. 3). The classified aerosol is then split and passed

though a TSI 3010 Condensation Particle Counter (CPC) for measuring aerosol num-

ber concentration, (CN). CCN concentrations were measured in the other stream by a

Droplet Measurement Technologies Continuous-Flow Streamwise Thermal Gradient

CCN Counter (STGC) [122, 164].

CCN activity of the aerosol was characterized as follows. For a fixed supersatura-

tion the “activation curves” (i.e., ratio of CCN to CN) was measured between 10 and

250 nm dry mobility diameter. Activation ratios are then determined from 0.2% to

1.0% supersaturation. Figure 4 shows an example of activation curves obtained for

D-HPHIL activation. The activation curves are then fit to a sigmoidal curve, neglect-

ing the impact of doubly charged particles which appear as a characteristic secondary

peak to the left of the main sigmoid (Fig. 4). The particle dry diameter size, d, at

which 50% of the particles were CCN represent the dry diameter of the particle with

critical supersaturation equal to the instrument supersaturation. The dependence of

d with respect to supersaturation can be used to infer solute molar volume and the

presence of surfactants using KTA (Section 2.2) [150].
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2.2 Description of Köhler theory analysis

2.2.1 Single component CCN theory

Each particle requires a discrete amount of water vapor supersaturation to activate

into cloud droplets. This “critical supersaturation”, sc, for simple (water-soluble)

single-component aerosol is given by [115, 179]

sc =

(
4A3

27B

) 1
2

, A =

(
4Mwσ

RTρw

)
, B =

(
6nsMwν

πρw

)
(2)

where Mw, ρw are the molecular weight and density of water, respectively, R is

the universal gas constant, ns are the moles of solute dissolved in the droplet, ν is the

effective van’t Hoff factor of the solute, T is the ambient temperature and σ is the

droplet surface tension at the point of activation. Single-component Köhler theory

can be aptly applied to soluble inorganic salts and has been successfully applied to

soluble low molecular weight organics as well [42, 60, 159]

2.2.2 Multi-component CCN theory

For multi-component CCN, the contribution of solute from each organic and inorganic

component can be accounted for as a modification of the Raoult term (B term in

Eq.(2) as:

B =
∑

i

Bi =
∑

i

(
ρi

ρw

)(
Mw

Mi

)
εiνid

3 = d3

(
Mw

ρw

) ∑
i

(
ρi

Mi

)
εiνi (3)

where d is the dry diameter of the CCN, and ρ, ε, ν, Mi are the density, volume

fraction, effective van’t Hoff factor and molar mass of the solute i, respectively. εi is

related to the mass fraction of i, mi, as

εi =
mi/ρi∑
i

mi/ρi

(4)

mi are obtained from measurements of chemical composition. For a single com-

ponent εi= 1 and Eq.(3) reduces to Eq. (2).
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2.2.3 Köhler theory analysis of ambient CCN

Assuming that all solute dissolves, Eq. (2) can be written as

sc =

(
256M3

wσ3

27R3T 3ρ3
w

)1/2
[∑

i

(
Mw

ρw

)(
ρi

Mi

)
εiνi

]−1/2
d−

3/2 = ωd−
3/2 (5)

where

ω =

(
256M3

wσ3

27R3T 3ρ3
w

) 1
2

[∑
i

(
Mw

ρw

)(
ρi

Mi

)
εiνi

]− 1
2

(6)

The molar volume of the organic component,
Mj

ρj
, is explicitly solved for by rear-

ranging Eq.(6) as follows:

Mj

ρj

=
εjυj

256
27

(
Mw

ρw

)2 (
1

RT

)3
σ3ω−2 − ∑

i6=o

ρi

Mi
εiνi

(7)

where j is used to denote the organic constituent and all other components i refer

to the inorganic components present in the aerosol. Equation (7) is the basis of KTA

[150]. In this study, KTA is applied as follows:

1. If there are no strong surfactants present (i.e., the surface tension of the CCN

does not depend on the concentration of solute at the point of activation), ω

does not depend on d and its value can be determined from a power law fit

between measured sc and d (Table 3). Application of Eq.(7) then infers the

average molar volume of the water-soluble organics, provided that the volume

fractions of all constituents are measured (from WSOC for organics and IC for

inorganics) and the composition of the inorganics are known.

2. If there are strong surfactants present (i.e., the surface tension of the CCN does

depend on the concentration of solute at the point of activation), ω depends

on d, so method ”a” cannot be used to infer the molar volume. Instead, two

alternate methods can be used:
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Table 3: Properties used for Köhler Theory Analysis of all samples.
Property (units) BB D-HPHIL D-HPHOB
σ(N m−1) 6.83×10−2 6.85×10−2 3.53×10−2

ω(m1.5)d 7.78×10−14 3.86×10−14 6.26×10−14

d obtained only for the data with sc ≤ 0.6%

Method b1. Since ω depends weakly on d at low supersaturation (because the CCN

are dilute enough at the point of activation so that surface tension is approximately

constant) method “a” can be used for a subset of the activation experiments. The

appropriate supersaturation range can be determined from the experimental data, by

examining the slope of sc vs. d.

Method b2. For each supersaturation, directly apply Eq. (7) and an estimate of

surface tension at the point of activation (obtained by using Köhler theory to estimate

water volume and from there, WSOC concentration) to infer molar volume. Then

compute the average molar volume over the range of supersaturations examined.

2.2.4 Molar volume sensitivity analysis

The uncertainty in inferred organic molar volume, ∆
(

Mj

ρj

)
, is quantified as

∆

(
Mj

ρj

)
=

√ ∑

for all x

Φx∆x2 (8)

where Φx is the sensitivity of molar volume to each of the measured parameters x

(i.e., any of σ, ω, εi, εj, νi,and νj)

Φx =
∂

∂x

(
Mj

ρj

)
(9)

and ∆x is the uncertainty in x. The Φx for Eq. (9) is obtained by differentiating Eq.

(7) and are shown in Table 4.
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Table 4: Sensitivity of Molar Volume to its dependant parameters.

x Φx,
∂
∂x

(
Mj

ρj

)

σ

(
3×256

27

(
Mw

ρw

)2 (
1

RT

)3 σ2ω−2

εjνj

) (
Mj

ρj

)2

ω

(
2×256

27

(
Mw

ρw

)2 (
1

RT

)3 σ3ω−3

εjνj

) (
Mj

ρj

)2

νNH4Cl

(
ρNH4Cl
MNH4Cl

εNH4Cl

εjνj

) (
Mj

ρj

)2

ν(NH4)2SO4

( ρ(NH4)2SO4
M(NH4)2SO4

ε(NH4)2SO4

εjνj

)(
Mj

ρj

)2

νNH4NO3

( ρ(NH4)2SO4
M(NH4)2SO4

εNH4NO3

εjνj

) (
Mj

ρj

)2

εNH4Cl
1

εjνj

(
ρNH4Cl

MNH4Cl
εNH4ClνNH4Cl +

ρNH4NO3

MNH4NO3
νNH4NO3

) (
Mj

ρj

)2

ε(NH4)2SO4

1
εjνj

(
ρ(NH4)2SO4

M(NH4)2SO4

ε(NH4)2SO4ν(NH4)2SO4 +
ρNH4NO3

MNH4NO3
νNH4NO3

) (
Mj

ρj

)2

νj
256
27

(
Mw

ρw

)2 (
1

RT

)3 −σ3ω−2ν−2
j

εj

(
Mj

ρj

)2

+

(
∑
i6=j

ρi
Mi

εiνi

εj

)
ν−2

j

(
Mj

ρj

)2

εj
256
27

(
Mw

ρw

)2 (
1

RT

)3 −σ3ω−2ε−2
j

νj

(
Mj

ρj

)2

−




ρNH4Cl

MNH4Cl

εNH4ClνNH4Cl

νj
(−ε−2

j )

+
ρ(NH4)2SO4

M(NH4)2SO4

ε(NH4)2SO4
ν(NH4)2SO4

νj
(−ε−2

j )

+
ρNH4NO3

MNH4NO3

νNH4NO3

εjνj

+
ρNH4NO3

MNH4NO3

(1−εNH4Cl−ε(NH4)2SO4
−εj)νNH4NO3

υj
(−ε−2

j )




(
Mj

ρj

)2
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2.3 Experimental results

2.3.1 WSOC and inorganic composition

Table 1 is a summary of the composition for all samples analyzed in this study.

The original 850 mg C L−1 BB sample had to be fractionated twice to yield enough

carbon mass in samples for surface tension and KTA. The HPHOB, D-HPHIL, and

D-HPHOB fractions shown in Table 1 are from this later fractionation. The desalted

original sample contained significant amounts of ions after the desalting process (17%

of the original anion fraction) (Table 1) and thus is not considered in our analysis, as

it does not truly reflect a “desalted” sample.

2.3.2 Surface tension depression

The WSOC of the original BB sample contains large amounts of surfactants; at a

concentration of 850 mg C L−1, σ was measured to be 59 mN m−1 (25oC), 18 % lower

than the surface tension at infinite dilution with 18-Mohm ultrapure water (71.24 ±
0.53 mN m−1). The σ value of the infinitely diluted solution is very close to pure

water, ∼ 2% different from reported literature values for water at room temperature

[215]. The σ value for BB is similar in magnitude to the surface tension depression

reported by [59] for fog water samples and [111] for HULIS dissolved in water.

From our speciated activated aerosol study, the original sample and hydrophobic

component can significantly depress surface tension with increasing carbon concen-

tration; the hydrophilic components do not (Fig. 5). The desalted hydrophobic and

desalted hydrophilic components do not depress surface tension as much as their

salted counterparts. Of the three salted samples, the HPHOB sample exhibits the

largest sensitivity to the presence of salts. The behavior of the HPHOB fraction sug-

gests it is composed of HULIS [198]. The D-HPHIL and HPHIL fractions effectively

have the same σ as water, even at very large carbon concentrations (Fig. 5).
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Figure 5: Surface tension of fractionated biomass burning samples. Effective surface
tension curves are based on Szyszkowski-Langmuir fit to data at room temperatures.
The original sample (solid black), hydrophobic (dark grey), and hydrophilic fractions
(light grey) are shown. The desalted components are represented by dashed lines.
The double dashed line indicates a surface tension depression of 20%.
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Addition of electrolytes to the BB sample (where WSOC concentration is main-

tained constant at 850 mg L−1) further depresses droplet σ (Fig. 6). This is consis-

tent with behavior seen by [111] for HULIS with salts. Greater amounts of NaCl than

(NH4)2SO4 are required to reduce surface tension by the same amount, as the bivalent

SO2−
4 is more effective than Cl− in partitioning the hydrophobic organics (which are

anionic surfactants) to the surface layer [95, 98]. Nonetheless, the increasing presence

of an inorganic salt in the BB sample (which could happen e.g., in cloud processing

of the aerosol) can further decrease surface tension by more than 20% and hence can

have an important impact on CCN activity.

2.3.3 CCN activity

Figure 7 shows the critical supersaturation, sc, of particles generated from the BB and

fractionated samples, as a function of their d. (NH4)2SO4has been added as a basis of

comparison, and based on its van’t Hoff factor and molar volume, is expected to be

more CCN active than all samples of Table 1 (i.e., its activation spectrum should lie

to the left of the samples). Indeed, this is mostly the case; the activation spectra for

HPHIL and D-HPHIL are closest to (NH4)2SO4. Strong surfactants are not present

in the HPHIL, D-HPHIL, as their surface tension is not substantially different from

water, even at very high carbon concentrations (Fig. 6). This suggests that the

hydrophilic components are composed of soluble, low molecular weight compounds

which is consistent with the functional group calibration analysis of [198, 200] done

for similar samples.

Surprisingly, HPHOB (which contains the least hydrophilic component of WSOC)

was the most CCN active of all samples, surpassing even (NH4)2SO4 (Fig. 7). This

seemingly counterintuitive finding can be reconciled when considering the synergism

between the salts and organics. HPHOB contains large amounts of salts, so based on

that alone, one would expect CCN activity close to pure (NH4)2SO4. However, the
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Figure 6: Surface Tension of BB sample with the addition of (NH4)2SO4 and NaCl.
WSOC concentration is constant at 850 mg L−1
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Figure 7: Critical supersaturation vs. dry particle diameter for BB Fractions and
(NH4)2SO4. The original sample (solid red circles), hydrophobic (blue diamonds),
hydrophilic (green squares) and (NH4)2SO4 (black triangles) are shown. The desalted
samples are represented by dashed lines and open symbols.
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of surfactants present in HPHOB, because of the concentrated salts present in the

CCN, tend to partition on the CCN surface and depress surface tension, as was seen

in Fig. 6. This “salting out” effect of the organics would then decrease the CCN criti-

cal supersaturation, making the HPHOB better CCN than pure (NH4)2SO4. “Salting

out” of organics can also explain why HPHOB becomes even more CCN active (com-

pared to (NH4)2SO4) as the dry CCN diameter decreases (Fig. 7); according to Köhler

theory, the concentration of solute (organic and inorganic) increases at the point of

activation as dry particle size decreases. Both decrease surface tension as dry size

decreases, which implies that the CCN activity of HPHOB and (NH4)2SO4 diverge

more at small diameters. Conversely, at large d, the concentrations of solute at the

point of activation are lower, the surface depression of HPHOB is relatively small,

and the CCN activity curve of HPHOB and (NH4)2SO4 tend to converge (Fig. 7).

The D-HPHOB fraction has lower CCN activity than (NH4)2SO4 and HPHOB.

In comparison to (NH4)2SO4,lowering of surface tension in D-HPHOB is not compen-

sated by the lack of solute during the desalting. D-HPHOB and BB have similarly

low CCN activity and the BB sample is the least active of all samples. As illus-

trated in Fig. 7, one cannot assume the CCN activity of BB should reside somewhere

between HPHOB and HPHIL. Even though the BB sample contains more soluble

material (mostly inorganics and some unknown amount of hydrophilics) and did de-

press surface tension (attributed the presence of electrolytes and hydrophobics) the

contribution and interactions with water vapor of all three speciated components: hy-

drophilics, hydrophobics and inorganics is not additive. Regardless, KTA on all sam-

ples should give molar volume estimates that are consistent, i.e., lowest for HPHIL,

then BB, and finally, HPHOB.
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Table 5: Results of Köhler Theory Analysis.

Sample (
Mj

ρj
) Mj

(m3 mol−1) (g mol−1)e

BB 1.6×10−4 248
D-HPHIL 6.2×10−5 87
D-HPHOB 5.6×10−4 (method b1)

f 780 (method b1)
f

6.1×10−4(method b2) 859 (method b2)
e Assuming an average density of 1400 kg m−3 [204]
f Determined from data with sc between 0.4% and 0.6%.

2.4 Köhler theory analysis of samples

2.4.1 Molar volume estimations

We compute average organic molar volumes for the original and desalted hydrophobic

and hydrophilic samples (i.e., BB, D-HPHIL, D-HPHOB), where the organic volume

fraction dominates (Table 5) hence KTA is subject to less uncertainty [150]. The

inorganic compounds present in the sample are assumed to be a mixture of ammo-

nium sulfate, ammonium chloride, and ammonium nitrate in proportion to their ionic

concentrations (Table 1).

In computing the volume fraction of each constituent in the dry aerosol, Eq. (4),

we multiplied the WSOC concentration with 1.4 to obtain the total dissolved organic

carbon mass concentration [204]; the relative amount of each component (OC and

inorganic salts) in solution is then used to determine their mass fraction, mi, in the

dry aerosol (Table 1). Because it can be assumed that our hydrophobic sample is

much like the extracted F5 sample of [46] with a density of 1.5 g cm−3, we estimate a

conservative molecular weight and account for changes in density in our molar volume

sensitivity analysis by varying density from 1.4 to 1.6 g cm−3. In applying Eq. (4),

the density of (NH4)2SO4, NH4Cl, NH4NO3 was taken to be 1760, 1800, and 1500 kg

m−3 respectively [153]. OC density was the most uncertain, and here is assumed to be

1400 kg m−3 [204]. In the case of hydrophobic molar volume analysis, surface tension

becomes negative when the Szyszkowski-Langmuir fit of our data is applied. This
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implies that the critical micelle concentration is reached at the point of activation

beyond which surface tension depression asymptotes. Because of this, the surface

tension of hydrophobics is set to 50% of pure water, corresponding to the lower limit

observed for HULIS [111].

The effective van’t Hoff factor, νi, (defined as the number of ions released into the

solution times the osmotic coefficient) expresses the impact of dissociation on water

activity. For multicomponent electrolyte solutions, νi can be accurately computed

with existing thermodynamic models [143] and has been successfully applied for acti-

vation of inorganic CCN, e.g.,[159]. However, in solutions of WSOC with electrolytes

(which characterize all the samples of this study), ν is quite uncertain as speciation

in solution is not known, and modeling complex organic-water-inorganic interactions

is challenging. For this reason, we approximate ν as follows: i)ν = 2 for NH4Cl and

NH4NO3, ii)ν = 3 for (NH4)2SO4,iii) ν = 1 for organics in the BB sample, as the

sample is acidic and organics are not expected to substantially dissociate, iv) ν = 1

for organics in the HPHOB and D-HPHOB samples, as they are very weakly dis-

sociating and iv) ν = 2.5 for D-HPHIL, as we assume the sample to be composed

of dicarboxylic acids neutralized with ammonium during the extraction process; the

ammonium salts are then assumed to dissociate as effectively as (NH4)2SO4. The

error in organic van’t hoff factor can be as large as 20% (as titration experiments

suggest; [48]) and is considered our sensitivity analysis.

The molar volumes of the organic aerosol components are estimated employing

KTA (presented in Section 2.1) and the above effective van’t Hoff assumptions, the re-

sults of which are shown in Table 5. The molar volume of the hydrophilic organic (6.2

× 10−5 m3 mol−1) is comparable to that of inorganic salts (7.46 × 10−5 m3 mol−1and

2.97 × 10−5 m3 mol−1for (NH4)2SO4 and (NH4)Cl, respectively) and low molecular

weight mono- and di-carboxylic chains (e.g., formic and acetic acid, and succinic,

glutaric, and oxalic acid with 7.54 × 10−5 m3 mol−1, 9.34 × 10−5 m3 mol−1,and 6.4
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× 10−5 m3 mol−1 respectively) typical of those identified in the XAD-8 calibration

studies [198]. The significantly larger estimated molar volume of the hydrophobic

fraction (5.6 × 10−4 m3 mol−1 using method b1), 6.1 × 10−4 m3 mol−1 using method

b2) is consistent with the existence of HULIS in the sample which has been previously

shown by mass spectrometery methods to have molecular weights up to 1000 amu

[76]. Nevertheless, we speculate that the average organic molar mass inferred from

KTA could be smaller for several reasons: i) the KTA value is a number averaged

property, which weighs the average towards a smaller number, when compared to

mass-based averaging, and, ii) HULIS may have a higher ν than unity, as they are

comprised of several polyfunctional groups that may contain polar groups like car-

bonyls, carboxyls, and hydroxls [76, 113]. Therefore, when KTA is applied assuming

ν = 1, the inferred molar volume decreases to compensate.

The average molar mass for the orginal BB samples was found to be 248 g mol−1.

Assuming that the organics in the original BB sample is a mixture of D-HPHIL and

D-HPOB, we can infer the relative proportion of HPHIL and HPOB via the following

equation

MBB = χMHPHIL + (1− χ)MHPHOB (10)

where χ is the mol fraction of hydrophilics in the original BB sample and MBB,

MHPHIL, MHPHOB are the inferred molar masses from the BB, HPHIL and HPHOB

samples. Eq. (10) can be solved for χ to yield

χ =

(
MBB −MHPHIL

MHPHOB −MHPHIL

)
(11)

We determine that χ ∼ 0.25, i.e., there are approximately 3 hydrophilic com-

pounds for every 1 hydrophobic macromolecule in the original WSOC mixture.
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Table 6: Molar Volume Sensitivity Analysis for BB Sample.
Property ∆x Φx Molar Volume
(units) (m3mol−1x−1) uncertainty %
σ (N m−1) 1.37× 10−3 1.06 × 10−2 9.7
ω (m1.5) 9.49 × 10−15 6.25 × 109 39.3
νNH4Cl 0.5 1.49 × 10−5 4.9
ν(NH4)2SO4 0.5 7.43 × 10−6 2.5
νNH4NO3 0.5 6.08 × 10−6 2.0
εNH4Cl 1.95 × 10−3 9.34 × 10−4 1.2
ε(NH4)2SO4 2.03 × 10−3 9.22 × 10−4 1.2
εorganic 6.36 × 10-3 1.09 × 10−3 4.6
νorganic 0.20# 1.78 × 10−4 23.6
Total Uncertainty 47.5

# error based on observations of 20% dissociation of organic HULIS in titration
experiments [48].

2.4.2 Molar volume sensitivity and uncertainty analysis

Application of the sensitivity analysis requires quantification of the uncertainty for

all parameters that affect
Mj

ρj
. ∆σ

σ
is 2% (Section 2.3.2), ∆ ω is the standard deviation

derived from the fit of s and d experimental data to the Köhler curve, ∆νi is 0.5, ∆νj

is 0.2, and ∆εi and ∆εj are uncertainties associated with assuming organic aerosol

density of 1.4 to 1.6 g mol−1 [204].

The sensitivity analysis for methods b1 and b2 suggests that one of the largest

sources of uncertainty for molar volume estimates arises from ω (Tables 6, 7, 8 and

9), which is not surprising, given that it cumulatively expresses CCN activity. Fur-

thermore, ω may vary significantly in the presence of strong surfactants, as the con-

centration of solute at the critical diameter (which varies considerably over a range

of sc) controls σ. CCN with low sc (large d) tend to have low WSOC concentration

at activation and do not affect σ depression at the droplet layer as much as CCN

of smaller d and higher sc. For these reasons, σ may contribute considerable un-

certainty in organic molar volume estimates (up to 10% as shown) but can be the

second largest source of uncertainty for samples containing strong surfactants (e.g.,

hydrophobics). In the case of hydrophobics, uncertainty from exact knowledge of σ
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Table 7: Molar Volume Sensitivity Analysis for D-HPHIL Sample.
Property ∆x Φx Molar Volume
(units) (m3mol−1x−1) uncertainty %
σ (N m−1) 1.37 × 10−3 3.90× 10−3 7.2
ω (m1.5) 4.43 × 10−15 4.62 × 109 27.6
νNH4Cl 0.5 3.58 × 10-8 0.0
ν(NH4)2SO4 0.5 2.70 × 10-9 0.0
εNH4Cl 6.89 × 10−5 8.27 × 10−5 0.0
ε(NH4)2SO4 1.31 × 10−5 8.26 × 10−5 0.0
εorganic 8.2 × 10−5 1.72 × 10−4 0.0
νorganic 0.20# 3.56 × 10-5 9.6
Total Uncertainty 30.1

# error based on observations of 20% dissociation of organic HULIS in titration
experiments [48].

Table 8: Molar Volume Sensitivity Analysis for D-HPHOB Sample.
Property ∆x Φx Molar Volume
(units) (m3mol−1x−1) uncertainty %
σ (N m−1) 7.06× 10−4 5.53 × 10−2 7.0
ω (m1.5) 4.43 × 10−15 2.08 × 1010 16.5
νNH4Cl 0.5 2.65 × 10−7 0.0
ν(NH4)2SO4 0.5 3.38 × 10−7 0.0
εNH4Cl 3.63 × 10−6 1.16 × 10−2 0.0
ε(NH4)2SO4 0 1.16 × 10−2 0.0
εorganic 1.16 × 10−5 1.23 × 10−2 0.0
νorganic 0.20# 6.50 × 10−4 23.3
Total Uncertainty 29.5

# error based on observations of 20% dissociation of organic HULIS in titration
experiments [48].

may introduce even larger uncertainty in molar volume estimates. The uncertainty

in the van’t Hoff factor may also be an important source of uncertainty in estimated

organic molar volume (∼ 24%) even though inorganic fractions and uncertainties are

small (especially for the BB and D-HPHOB samples).

Using an average organic mass density of 1.4 g cm−3 [204] we find the organic

component in the original sample (BB) to have an average molar mass of 248 ± 117

g mol−1, the hydrophobics in D-HPHOB to be on average 780 ± 231 g mol −1 and

the hydrophilic component of D-HPHIL to be the lightest, with an average of 87 ±
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26 g mol−1 (Table 5).

2.5 Implications and summary

This study is focused on characterizing the properties of water-soluble organics found

in fresh biomass burning aerosol. The aerosol, after collection upon filters, is dis-

solved in water and fractionated into hydrophobic and hydrophilic components using

XAD-8 solid phase extraction, and subsequently desalted. The original, fractionated

and desalted samples are then characterized for their surfactant properties and av-

erage thermodynamic properties relevant for CCN activation (i.e., surface tension

depression, solubility and average molar volume). Characterization of solubility and

molar volume is done by combining CCN activity measurements with Köhler The-

ory using the method of “Köhler Theory Analysis” (KTA) (first introduced by [150],

and further developed here). The surface tension and CCN activity of these different

samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise

Thermal Gradient CCN Counter, respectively.

It was found that the less hygroscopic soluble hydrophobic fractions can readily

activate at high supersaturations and depending on the presence of inorganic species,

can exhibit larger CCN activity than pure (NH4)2SO4. This phenomenon can be

attributed to “salting-out” of organics to the CCN surface layer from the presence

of electrolytes; this would decrease surface tension and critical supersaturation. This

hypothesis is supported by direct measurements of surface tension, as well as from

measurements of CCN activity.

Surfactant behavior in the samples is attributed to the hydrophobic fraction that

exhibit properties common to HULIS. The presence of inorganic salts may enhance

surface tension depression to an extent in which insoluble hydrophobic aerosol may

be better CCN than their pure inorganic counterparts. This supports the suggestion

by [111], to include the interaction of inorganic and organic species effect on surface
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tension, whenever appropriate, in aerosol-cloud interaction studies.

Using an average organic mass density of 1.4 g cm−3 we infer the hydrophobic

and hydrophilic fractions to be 780 ± 231 g mol−1 and 87 ± 26 g mol−1, respectively.

From these average values, we estimate the relative molar ratio of hydrophilics to

hydrophobics to be 3:1. Solubility limits, seen as an abrupt change in the scale

dependence of scfromd−1.5 to d−a (a >1.5), were not observed [150].

The inferred molar volumes for the samples considered in this study are on average

subject to 36% uncertainty. Most of the uncertainty arises from the slope of the sc−d

fit and σ [150] and ν in the case of aggregate organics. Nevertheless, the molar volume

estimates are in agreement with expected ranges for these compounds and suggest

that KTA can be applied effectively to characterize CCN activity of water-soluble

organic aerosol.

The study shown here presents a novel method to describe the complex detailed

inorganic, organic and water vapor interactions within a Köhler theory framework ap-

propriate for GCM parameterizations of aerosol-cloud interactions. We have demon-

strated that this novel method can successfully be applied to a very complex aerosol

and provide aggregate properties that comprehensively characterize its CCN activ-

ity. In future work, the properties from other sources of carbonaceous aerosol should

be characterized as presented here. Over time, such efforts will provide a compre-

hensive set of constraints for physically-based assessments of the indirect effects of

carbonaceous aerosol.
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CHAPTER III

WSOC PROPERTIES OF SOA FROM FILTER SAMPLES

The CCN properties, surfactant characteristics, and droplet growth kinetics of sec-

ondary organic aerosol (SOA) formed from the ozonolysis of three parent alkene

hydrocarbons (terpinolene, 1-methlycycloheptene and cycloheptene) are explored.

Based on measurements of CCN activity, total carbon and inorganic ion concentra-

tions, we estimate the average molar volume of the water-soluble organic component

using Köhler Theory Analysis (KTA). The results suggest that the water-soluble or-

ganics in the SOA are composed of relatively low molecular weight species, with an

effective molar mass less than 200 g mol−1. This finding is consistent with the speci-

ated fraction for some of the SOA, and suggests that KTA can be applied to complex

organic aerosol, such as that found in the atmosphere. From measurements of CCN

activity and Köhler Theory, we apply a novel method to infer the surface tension at

the point of activation; this is used to infer the presence of surface-active organics. It

is found that the water-soluble carbon can be surface-active, depressing surface ten-

sion 10-15% from that of pure water at concentrations relevant for CCN activation.

Although important, this level of surface tension depression is lower than expected

for HULIS, which suggest that they are not likely in the SOA examined. In all cases,

the CCN exhibit droplet growth kinetics similar to (NH4)2SO4. Note: This chapter

appears as reference [14].

3.1 Motivation

Natural VOC emissions (e.g., monoterpernes, sesquiterpenes), estimated to be 1150

Tg yr−1 [84], are a major source of SOA. Alkene ozonolysis is well established as a

source of SOA [1, 17, 19, 38, 49, 67, 72, 86, 97, 108, 109, 110, 120, 129, 182, 208].
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Attempts to speciate SOA [1, 17, 49, 72, 108] have been met with limited success, as 80

to 90% of the aerosol mass can remain uncharacterized [108, 167, 179]. The potential

for forming oligomeric or polymeric structures [19, 72, 73, 107] has been suggested to

explain the uncharacterized SOA fraction. Oligomers have the potential to exhibit

characteristics similar to humic-like substances (HULIS) [19], which strongly depress

surface tension [16, 47, 76, 111, 173] and potentially, droplet growth kinetics. All

of these can have important impacts on CCN activity. Nevertheless, a complete

thermodynamic characterization of the secondary aerosol, and of WSOC (required to

constrain cloud droplet formation) have remained elusive [109].

In this study we report the experimental investigation of the CCN activity of the

water soluble fraction of SOA generated in laboratory chamber ozonolysis of alkenes;

these measurements are then used to obtain thermodynamic properties (e.g., molar

mass and surface tension depression), which are inferred using Köhler Theory Analysis

(KTA) [16, 150]. Furthermore, we characterize WSOC SOA droplet growth kinetics,

relative to pure (NH4)2SO4. Finally, we evaluate (by comparing inferred properties to

direct measurements) the applications of KTA for complex organic aerosol systems.

3.2 Experimental methods and theoretical analysis

3.2.1 Filter extraction and chemical composition

Secondary organic aerosol is generated from the seedless dark ozonolysis of three par-

ent alkenes (cycloheptene, 1-methylcycloheptene and terpinolene) and collected upon

Teflon filters. The ozonolysis experiments were performed in the Caltech dual 28 m3

teflon chambers under dry conditions ( > 5% relative humidity), a detailed description

of which can be found in [110]. The ozone mixing ratio was three times that of the re-

actant concentration (Table 10) to insure adequate oxidation [72]. SOA chemical spe-

ciation information measured by liquid chromatography/mass-spectrometry and ion

trap mass spectrometry are available for the cycloheptene and 1-methylcycloheptene
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precursors from [72] (Table 10). No chemical speciation data are available for SOA

generated from terpinolene. The presented analysis is the first study to characterize

the CCN-relevant properties of WSOC from cycloheptene and 1-methylcycloheptene

ozonolysis. Table 10 presents the estimated average (mole fraction weighted) molar

mass and carbon to organic carbon mass ratio for the speciated organics.

Following the protocols outlined in [200] and Weber (2006), the WSOC in the

filter samples was extracted in pure water (18 M Ohms) during a 1.25 h sonication

process with heat (water bath temperature ∼60˚C). WSOC concentration was then

measured with a Total Organic Carbon (TOC) Turbo Siever analyzer [197]. Anion

concentrations (SO2−
4 , Cl−and NO−

3 ) of the extracted sample were measured with the

Dionex DX-500 ion chromatograph with Na2CO3/NaHCO3 eluent and Metrosep A

Supp 5-100 analytical column (Metrohm, Switzerland). Table 11 provides a sum-

mary of the offline WSOC chemical composition measurements and nominal anion

concentrations (less than 2.55 × 10−5 mg L−1) in the extracted samples; as expected,

the ion concentrations are very low and contribute negligible solute to the samples.

However, it is possible that the process of aerosol collection, dissolution, atomization,

and subsequent drying may affect the partitioning of CCN properties and growth

kinetics of the SOA. In future studies, we will do both online and filter analysis to

see whether the extraction process introduces significant artifacts.

3.2.2 CCN activity of SOA

The instruments and experimental set-up used to measure CCN activity are identical

to those described in [16] and [150]. 3-5 ml of extracted sample is atomized in a

collision type atomizer (University of Minnesota), dried with two diffusional driers

and subsequently classified with a scanning mobility particle sizer (TSI SMPS 3080).

A 0.71 cm impactor is placed on the aerosol inlet and aerosol are charged with a Kr-85

neutralizer (TSI 3077A). The sheath to flow ratio within the differential mobilility
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analyzer (TSI DMA 3081) is kept at a constant 10 L min−1 to 1 L min−1. Scanning

Mobility CCN Analysis (SMCA) first introduced by [142], is used to obtain fast size-

resolved CCN activity. As with stepping mode measurements the classified aerosol is

split to be counted by a condensation particle counter (TSI 3010) and also activated

into droplets using a DMT Continuous Flow Stream-wise Thermal Gradient Chamber

[122, 164]. The total concentration (CN) of sized particles measured by the CPC is

used to determine the ratio of CCN to CN. The process is repeated for different

particle sizes. For each supersaturation, s, the cut-off diameter, d, (defined as the

point at which CCN/CN=0.5) provides a quantitative characterization of the SOA

CCN activity (i.e., for a given s, a larger d corresponds to a lower CCN activity).

The experiments are repeated a minimum of four times for each supersaturation and

any influence of doubly charged particles are neglected as shown in [150].

3.2.3 Addition of inorganic salts

The impact of adding electrolytes to the CCN activity of the WSOC is explored by

mixing a pre-calculated amount of (NH4)2SO4 to the dissolved SOA sample (so that

the salt mass fraction in the atomized aerosol is known). The mass of organic carbon,

morganic, in the extracted sample is determined by multiplying the measured WSOC

carbon concentration by an organic carbon-to-carbon ratio of 2. The factor of 2

(Table 10) is estimated from speciation information provided in [72] and its subsequent

supplemental material. For each identified compound the carbon to organic carbon

ratio is determined from its molecular formulae and weighted by its abundance in the

speciated compounds. The inorganic mass to be added, mi, to obtain the resulting

inorganic mass fraction, α, is then computed as,

mi =
α

(1− α)
morganic (12)

where morganic = 2 × [WSOC] Vsample, [WSOC] is the the WSOC concentration
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(mg C L−1), and Vsample is the sample volume (ml). The 18 Mohms of filtered

water used to extract the water during sonication contributes negligible ions to the

particulate matter (Table 11).

3.2.4 Measuring and inferring surface tension of the CCN

A CAM 200 pendant drop method goniometer is used to directly measure surface

tension. A description of the method and procedure can be found in [16]. Since the

surface tension depression strongly depends on [WSOC] [45, 92, 111], surface tension,

σ, is measured at numerous concentrations. The measurements are then fit to the

Szyskowski-Langmuir isotherm [16, 124],

σ = σw − αT ln (1 + βc) (13)

where σw is the surface tension of pure water at temperature, T , (obtained by

infinitely diluting our sample with deionized ultra-filtered water), and α, β are em-

pirical constants obtained from the fit. Unfortunately, direct measurement of σ of

WSOC solutions at concentrations relevant for CCN activation (103 ppm and above)

requires significant amount of mass (103µg and above) or usage of dilute WSOC sam-

ple. If α, β are based on using dilute samples, extrapolation of Eq.(13) to higher

concentrations is often subject to substantial uncertainty because i) the uncertainty

α and β can translate to large uncertainty in σ and ii) may not be applicable at

concentrations close to or above the critical micelle concentration; we propose the

following alternate method of inferring σ from CCN measurements.

As one approaches the critical micelle concentration for a solution containing

organic surfactants and electrolytes, the surface tension of droplets would tend to

vary little with carbon concentration. Adding electrolytes can enhance surfactant

partitioning to the surface layer (otherwise known as “salting-out” effect) [16, 111].

A ubiquitous bivalent ion, such as SO2−
4 can be a very effective “salting-out” agent,
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so that CCN containing surfactant and sulfate may have a constant surface tension

(but lower than that of water). This partitioning of organics to the layer has been

addressed in previous works [127, 187, 188]. Salting-out and its effect on surface

tension and CCN activity, has been seen in (NH4)2SO4 - HULIS mixtures [111] and

hydrophobic water-soluble organics isolated from freshly collected biomass-burning

aerosol [16, 111].

Furthermore, if the salt mass fraction exceeds 50%, the majority of dissolved

solute, ns, is usually from the inorganic salt, and any surface tension depression at

the droplet layer could be attributed to the presence of organics. Hence, one could

then infer the droplet surface tension, σ, at the point of activation using a combination

of CCN activation experiments and Köhler theory, as follows. For particles composed

of soluble and insoluble fractions, the critical supersaturation, sc, is (Köhler, 1936;

[179]),

sc =

(
4A3

27B

)1/2
(14)

where A =
(

4Mwσ
RTρw

)
, B =

(
6nsMwν

πρw

)
, R is the universal gas constant, T is droplet

temperature, ns are the moles of dissolved solute, with an effective van’t Hoff factor

ν. Mw and ρw are the molecular weight and density of water, respectively, and σ is

the surface tension of the droplet at the point of activation. The assumption that the

inorganic salt contributes the dominant solute implies it is the only component that

contributes to B (otherwise known as the “Raoult term”),

B =
Mw

Mi

ρi

ρw

d3εiυi (15)

where d is the CCN dry diameter, Mi is the molecular weight of the inorganic

constituent, εi is the volume fraction of the inorganic which relates to mass fraction,

m, and density, ρ, as
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εi =
mi/ρi

mi/ρi + mo/ρo

(16)

where “i” and “o” subscripts refer to inorganic and organic components, respec-

tively. If the organic is not a strong surfactant, then sc for the dry diameter dand

volume εi, should be given by

s∗c =
2

3

(
4Mwσw

RTρw

)3/2 (
3
Mw

Mi

ρi

ρw

d3εiυ

)−1/2

(17)

where σw corresponds to the surface tension of pure water. However, if the organic

depresses surface tension to σ (less thanσw), then the critical supersaturation is given

by

sc =
2

3

(
4Mwσ

RTρw

)3/2 (
3
Mw

Mi

ρi

ρw

d3εiυ

)−1/2

(18)

If sc and d are known from the CCN activity measurements, Eqs. (17) and (18)

can be combined to give σ:

σ = σw

(
sc

sc∗
)2/3

(19)

where s∗c is given by Eq. (17); Eq.(19) represents the extension of Köhler Theory

Analysis to infer surface tension SOAf1from activation experiments. If the organic

contribution to the Raoult term (Eq. 15) is not negligible, then it must be accounted

for in Eqs. (17-19). Thus a molar volume must be calculated to estimate the organic

contribution and the inferred surface tension is determined in conjunction with KTA

(Section 3.2.5).

3.2.5 Köhler theory analysis (KTA) and molar volume uncertainty

Recently several single parameter equations have been employed to characterize CCN

activity [154, 162, 212]. KTA [16, 150] is used in this work to infer average molar

volume (molecular weight, M , over density ρ) of the water-soluble organic fraction
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of the SOA. KTA (method b1, [150]) employs measurements of dry diameter versus

critical supersaturation, sc, which are then fit to the expression, sc
−3
2 , also previously

derived by [65, 185]. From the Fitted CCN activity (FICA) parameter, ω, estimates

of σ and measurements of ionic and WSOC concentrations, Mo

ρo
is obtained as,

Mo

ρo

=
εoυo

256
27

(
Mw

ρw

)2 (
1

RT

)3
σ3ω−2 − ∑

i6=o

ρi

Mi
εiνi

(20)

KTA has been shown to constrain molecular weight estimates of known inorganic

and organic mixtures to within 20% [150] and has also been applied to complex

biomass burning WSOC with an estimated 40% uncertainty [16].

The measured variables employed in the KTA analysis are summarized in Table 12.

In applying KTA, we assume that the effective organic van’t Hoff factor, vorganic = 1.

Molecular weights are presented assuming an average organic density of 1.4 g cm−3

[204]. The uncertainty in inferred molar volume can be computed as ∆
(

Mo

ρo

)
= FIX

where ∆x is the uncertainty in of each of the measured parameters x,(i.e., any of σ,

ω, and υ) and is the sensitivity of molar volume to x, Φx = ∂
∂x

(
Mo

ρo

)
, derived from

Eq. (20). Table 13 provides a list of Φx.

3.2.6 Droplet growth kinetics

When exposed to the same s profile, an activated CCN will grow to cloud droplets

of similar diameter, Dp, provided that the mass transfer coefficient of water vapor

to the growing droplet and the critical supersaturation is the same. The DMT CCN

counter measures droplet sizes by an optical particle counter and therefore can be

used to explore the impact of organics on the droplet growth kinetics. By comparing

the droplet sizes of activated SOA particles against (NH4)2SO4 particles at identical

sc, we directly assess the impact of organics on CCN growth kinetics. This is done

by observing the wet diameter, Dp, that corresponds to particles with sc equal to the

instrument saturation, s, (i.e., CCN with a dry diameter equal to the cutoff diameter,
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d) and subsequently evaluating Dp versus s.

3.3 Results and discussion

3.3.1 CCN activity

The cut-off diameter, d, as a function of supersaturation and (NH4)2SO4 mass fraction

are shown for all SOA samples in Figs. 8-10. WSOC from the SOA for the three

parent alkenes studied (Figs. 8, 9 , and 10) indicate that as the mass fraction of

(NH4)2SO4 increases, the aerosol smoothly transitions to pure (NH4)2SO4 behavior

with roughly a m
−1/2
i dependence. This suggests that the SOA are soluble hygroscopic

relatively low molecular weight compounds that are not strong surfactants. For all

three parent hydrocarbons, the original SOA samples activate at diameters larger than

that of (NH4)2SO4; this is expected as organics are, in general, less CCN active than

(NH4)2SO4. The activation curves are well represented with a power law consistent

with a d
−3
2 dependence; this implies that the water-soluble SOA do not exhibit limited

solubility [150].

3.3.2 Surface tension

11 shows the direct measurements of surface tension for all SOA samples and the

Szyskowski-Langmuir fits to the data (α and β parameters of the fits are given in

Table 11). None of the samples demonstrate significant surface tension depression

at measured concentrations, even when extrapolated to concentrations relevant for

CCN activation (100 mg C L−1 and above) (Fig. 11). If surfactants do exist in the

SOA, it is likely they are not concentrated enough in the extracted samples to have

a notable impact on surface tension; even for strong surfactants extracted from a

biomass burning sample [16], the depression for concentrations up to 100 mg C L−1

is within the measurement uncertainty (Fig. 11).
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Figure 8: CCN activity of WSOC generated from ozonolysis of cycloheptene. Results
are shown for pure WSOC and mixtures of (NH4)2SO4. The cut-off diameter, d, is
the point at which CCN/CN=0.5 is plotted versus supersaturation. Lines are fit of
experimental data points.
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Figure 9: CCN activity of WSOC generated from ozonolysis of terpinolene. Results
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the point at which CCN/CN=0.5) is plotted versus supersaturation. Lines are fit of
experimental data points.
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Figure 10: CCN activity of WSOC generated from ozonolysis of 1-
methylcycloheptene. Results are shown for pure WSOC and mixtures of (NH4)2SO4.
The cut-off diameter, d, is the point at which CCN/CN=0.5) is plotted versus super-
saturation. Lines are fit of experimental data points.

Thus, direct surface tension measurements for dilute samples would not conclu-

sively reveal the presence of surfactants. Acquiring sufficient sample for σ measure-

ment is challenging, so we infer surface tension using the method described in Section

3.2.4. For large mass fractions of salt (>90%), the inferred surface tension approaches

that of water used to extract the WSOC from the SOA filter samples (∼71 mN m−1)

(Table 5). However, for the 33% mixture of sulfate with cycloheptene and terpino-

lene, the inferred σ is ∼ 60 mN m−1 (Table 14), ∼15% depression from pure water,

suggesting that surface active components do exist in the WSOC. The extent of sur-

face tension depression suggests that the surfactants are appreciably strong, which

is expected given the amphiphilic nature of the oxidation products; the presence of

humic-like polymers (unless if in very small quantities) is unlikely, however given

that expected surface tension depression is much higher at the point of activation

[16, 111, 173].
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Figure 11: Direct σ measurements of SOA as a function of water-soluble carbon con-
centration (closed symbols) and inferred values from (Table 5) (open SOA symbols)
as a function of water soluble carbon concentration at activation. Curves represent
Szyskowski-Langmuir isotherm fits of experimental data. HULIS data from [16] is
provided for comparison.
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3.3.3 Molecular weight estimates and uncertainty

Using the inferred values of surface tension (Table 14) and assuming an aerosol density

of 1.4 g mol−1 [204], KTA gives effective organic molecular weights of 162 ± 28 , 101 ±
20, 207 ± 54 g mol−1 for terpinolene, 1-methyl cycloheptene, and cycloheptene SOA,

respectively (Tables 12 and 15), which are close to (that is within uncertainty of) the

estimates from the [72] speciation (Table 10). If water surface tension was used to

infer the molecular weight of the organics, large deviations from the [72] speciations

would be found (Tables 10 and 12) which includes low molecular weight diacids,

carbonyl-containing acids, diacid alkeylsters, and hydroxyl diacids (e.g., pimelic acid,

160 g mol1; adipic acid, 146 g mol1; glutaric acid, 132 g mol1; succinic acid, 118

g mol1; pimelic acid monomethyl ester, 174 g mol1; adipic acid monomethyl ester,

160 g mol1; 2-hydroxypimelic acid, 176 g mol1; 2-hydroxy glutaric acid, 148 g mol1;

6-oxohexanoic acid, 130g mol1 and 6-oxo-7-hydroxyheptanoic acid, 158 g mol1). This

correspondence validates the use of inferred σ values in KTA and to explore the

presence of surfactants.

In terms of molar volume uncertainty, the assumption that νorganic = 1, does

not account for the partial dissociation of the organic species. The greatest source

of uncertainty in the calculations arise from νorganic (Table 15); νorganic larger than

unity suggests larger molar volumes. The potential dissociation of organics (up to

20% as measured in HULIS titration experiments; [46]), contributes roughly 23%

uncertainty to the molar volume estimates. As in previous KTA studies [16, 150],

the contributions of σ and ω variability to the inferred molar volume uncertainty are

around 10% each. Uncertainty in molar mass (not molar volume) also arises from

the value of density; varying from 1.4 g cm−3 to 1.6 g cm−3(Turpin and Lim, 2001)

increases molar masses by 14%(though relatively small compared to the uncertainty

from ν). The total estimated uncertainty in molar mass is approximately 25% for all

SOA samples (Table 15).
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3.3.4 Droplet growth kinetics

Figure 12 presents the droplet size measurements at the instrument OPC for all

supersaturations and samples considered. For all points, the flow rate within the

instrument was maintained constant at 0.5 L min−1 and the sheath to aerosol ratio

is 10:1; this ensures that all the particles were exposed to similar supersaturation

profiles. From Fig. 12 we conclude that the droplet growth kinetic curves for all

SOA samples are virtually indistinguishable for all s values examined; compared to

(NH4)2SO4,SOA particles grow to very similar sizes. Only in some cases, does the or-

ganic CCN appear to grow slightly larger at higher supersaturations; this is attributed

to water depletion effects from the high concentrations of (NH4)2SO4 particles within

the instrument. Fewer particles of SOA (∼600 cm−3) do not deplete water vapor af-

ter activation, while whereas the higher concentration of (NH4)2SO4 aerosols (∼1800

cm−3) after their activation deplete vapor faster than can be provided by diffusion.

Although this does not affect CCN measurements, the supersaturation profile in the

instrument changes slightly for the (NH4)2SO4 calibration experiments, and Dp at-

tained at the OPC is slightly decreased. Despite this, almost all of the growth kinetics

experiments lie within the measurement uncertainty, so we conclude that the growth

kinetics (or water vapor mass transfer coefficient) are uniform and equal to that of

(NH4)2SO4.

3.4 Summary and implications

In this study, we explore the CCN activity, composition, and droplet growth kinetic

characteristics of SOA generated from the ozonolysis of biogenic precursors. A novel

method is presented to infer surface tension depression from CCN activation exper-

iments, which requires a much smaller aerosol sample than direct surface tension

measurements at CCN-relevant concentrations. From the inferred values of surface

tension we conclude that surfactants are likely present in the water-soluble fraction
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of the SOA, but with a smaller effect than expected for HULIS; together with the

small average molar mass inferred from KTA (100 to 200 g mol−1), this suggests that

HULIS are not an important component of the WSOC fraction of the SOA studied

here. KTA results are consistent with available composition data when using inferred

surface tensions which validate the applicability of the method for complex mixtures.

Finally we find that the presence of organic surfactants does not affect droplet growth

kinetics; all the SOA samples exhibit growth kinetics similar to that of (NH4)2SO4.
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Table 10: Characteristics of parent hydrocarbons and water-soluble fraction of SOA.

Hydrocarbon precursor Cycloheptene 1-methylcycloheptene
O3 concentration (ppb)
for forming SOA

200 171

Major Type of Low Molecular Weight Low Molecular Weight
Compounds Identified Compounds (<250 g mol−1) Compounds (< 250 g mol−1)a

diacids, carbonyl- diacids, carbonyl-
containing acids containing acids

diacid alkyl esters and diacid alkyl esters andClasses speciated
hydroxy diacids hydroxy diacidsa

Adipic Acida

2 Hydroxy Pimelic Acid [146 g mol−1]
[170 g mol−1]

Pimelic Acida

Pimelic Acid [160 g mol−1]
[160 g mol−1]

Adipic Acid
Monomethyl Estera

Major slightly

Adipic Acid [160 g mol−1]

soluble organic

[146 g mol−1]

components identified

6,7-dioxoheptanoic Acida

(< 0.1 g/100 g H2O)

[158 g mol−1]
Major Soluble
Organic Component

Glutaric Acid Glutaric Acid

(> 0.1 g/100 g H2O)
[132 g mol−1] [132 g mol−1]a

% Low Molecular weight
species from total SOA
mass derived from DMA
measurements

34 44a

Number Averaged
molecular weight of the
speciated components

150 147a

Average mass ratio of
carbon to organic carbon
from speciated
components

0.50 0.50a

Obtained from [72]
a Information obtained from 1-methylcyclohexene ozonolysis due to its structural
similarity. Terpinolene SOA is formed in the presence of 188 ppbv O3. Other
information concerning Terpinolene SOA is not available.
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Table 11: Summary of WSOC and ion concentrations, α and β parameters of the
Szyszkowski -Langmuir isotherm for all SOA considered. Measured Cl-, SO2- 4 and
NO-3 concentrations were all below 2.55 × 10−5 mgL−1

Parent Hydrocarbon WSOC α βb

(mg C L−1) (mN m−1K−1) (L mg−1)
Cycloheptene 13 2.59 1×10−6

1-methylcylcoheptene 6 4.82×10−5 4.63×10−19

Terpinolene 10 92.5 1×10−13

b

Measurements are taken at room temperature between 296 and 299 ◦K.

Table 12: Köhler Theory Analysis Properties and Molar Volume Results

Property Cycloheptene 1-methylcylcoheptene Terpinolene
(units)
ω (m1.3) 7.14×10−14 5.67×10−14 6.53×10−14

σ (N m−1)c 5.99×10−2 6.52×10−2 6.11×10−2

Mo

ρo
(m3 mol−1) 1.44×10−4 5.69×10−5 7.54×10−5

Mo(g mol−1)d 207c (126)e 101c (80)e 162c (106)e

c Inferred from activation experiments (Table 14).
d Assuming the density of the solute is assumed to be 1400 kg m−3 [204].
e KTA Results based on σ = σwater (72 mN m−1 )

Table 13: Formulae for the Sensitivity of Molar Volume to the dependant parameters
σ, ω , and εo

Property Sensitivity, Φx = ∂
∂x

(
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)
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Table 14: σ values inferred at the point of activation.

Sample σ ±∆σ
(mN m−1) (mN −1)

Cycloheptene SOA with 90 % (NH4)2SO4 73.6 4.6
Cycloheptene SOA with 33 % (NH4)2SO4 59.9 1.9
1-methylcycloheptene SOA with 33 % (NH4)2SO4 65.2 2.5
Terpinolene SOA with 98 % (NH4)2SO4 74.4 4.9
Terpinolene SOA with 90 % (NH4)2SO4 70.5 4.0
Terpinolene SOA with 33 % (NH4)2SO4 61.1 7.9

Table 15: Molar Volume Sensitivity Analysis for SOA.

SOA Precursor Property x Φx Molar volume
Hydrocarbon (units) (m3 mol−1 x−1) uncertainty %
Terpinolene
σ 1.41×10−3 3.73×10−3 7.0
ω 2.21×10−15 2.69×109 7.9
εorganic 0.20f 8.78×10−5 23.3
Total Uncertainty 26.2
1-methylcycloheptene
σ 1.40×10−3 2.76×10−3 6.8
ω 1.90×10−15 2.26×109 7.5
εorganic 0.20f 6.41×10−5 22.5
Total Uncertainty 25.1
Cycloheptene
σ 1.21×10−3 8.34×10−3 7.0
ω 1.58×10−15 4.71×109 5.2
εorganic 0.20f 1.68×10−4 23.3
Total Uncertainty 26.2

f Error based on observations of 20% disassociation of organic HULIS in titration
experiments [46].
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Figure 12: Growth kinetic measurements for water-soluble SOA extract and
(NH4)2SO4 CCN. Inset graph corresponds to the CCN concentration-dry diameter
histogram determined at a 10:1 sheath to aerosol ratio as a function of mean dry
diameter at 1% supersaturation.
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CHAPTER IV

CCN PROPERTIES OF SESQUITERPENE SOA

This study investigates the droplet formation characteristics of secondary organic

aerosol (SOA) formed during the ozonolysis of sesquiterpene β-caryophyllene (with

and without hydroxyl radicals present). Emphasis is placed on understanding the role

of semi-volatile material on Cloud Condensation Nucleus (CCN) activity and droplet

growth kinetics. Results indicate that ageing of β-caryophyllene SOA significantly

affects all properties measured throughout the experiments (∼ 11 hours). Using a

thermodenuder and two CCN instruments, we find that CCN activity is a strong func-

tion of temperature (activation diameter at 0.6%: 100±10 nm at 20˚C and 130±10

nm at 35˚C), suggesting that the hygroscopic fraction of the SOA is volatile. The

water-soluble organic carbon (WSOC) is extracted from the SOA and characterized

with Köhler Theory Analysis (KTA). The results suggest that the WSOC is com-

posed of low molecular weight (< 200 g mol−1) slightly surface-active material that

constitute 5-15% of the SOA mass. These properties are similar to the water-soluble

fraction of monoterpene SOA, suggesting that predictive understanding of SOA CCN

activity requires knowledge of the WSOC fraction but not its speciation. Droplet

growth kinetics of the CCN is found to be strongly anticorrelated with WSOC frac-

tion, suggesting that the insoluble material in the SOA forms a kinetic barrier that

delays droplet growth. These results carry very important implications for the atmo-

spheric relevance of CCN measurements and the droplet formation characteristics of

SOA.

Note: This chapter appears as reference [9].
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4.1 Motivation

The WSOC fraction of CCN may originate from primary emissions or form during

the oxidation of volatile organic compounds (VOC) [109, 166, 175]. Natural VOC

emissions (e.g., monoterpernes and sesquiterpenes) are estimated to be on the order of

1150 Tg yr−1 [84], and are thought to dominate anthropogenic emissions [82, 83, 109].

The resulting SOA can contribute significantly to the atmospheric organic particulate

mass [50, 109, 148, 152, 166, 180, 194, 211, ?] and become more hygroscopic during the

ageing process [109, 169] hence contributing significant amounts of WSOC. Relatively

little is known about the chemical composition of SOA [167, ?, ?]. As a consequence,

the CCN-relevant thermodynamic properties (solubility, molecular weight, surfactant

characteristics) and droplet growth kinetics of organic aerosol have remained elusive

[109].

The hygroscopicity of SOA has been studied for numerous parent hydrocarbons

and oxidation conditions [208]. SOA produced from seedless monoterpene ozonolysis,

such as α-pinene, has been the focus of numerous studies [55, 97, 172, 155, 206, 210];

most find that the SOA is hygrosocopic and CCN active, but less than (NH4)2SO4.

[206] showed CCN activity dependence on the monoterpene SOA precursor, whereas

[155] and [55] do not; in fact, the latter two studies show that a rather wide variety

of monoterpene SOA exhibit very similar CCN properties. Ageing of aerosol is often

associated with an increase in hygroscopicity (CCN activity), although this may not

always be the case [208, 206]. Decreases in hygroscopicity are often attributed to

the formation of oligomers that deplete the SOA from soluble monomers [208, 206].

Polymeric (i.e., high molecular weight) material tends to be less-hygroscopic and

nonvolatile [19, 107, 160] and often exhibits characteristics similar to HULIS [19]. If

this is the case, humic-like SOA may contain strong surfactants, depressing droplet

surface tension and altering growth kinetics [16, 76, 111], both of which may impact

droplet number [?].
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Though not studied to the same extent as monoterpenes, sesquiterpenes are an

important class of parent hydrocarbons because of their high aerosol yields [79, 80]

and are emitted by more than fourty vegetation species in significant abundance

[8, 88, 91, 93, 116, 219]. β−caryophyllene is one of the most reactive and abundant

sesquiterpenes [37, 75, 88, 91, 101]. Due to the high molecular weight (low volatil-

ity) of its oxidation products, β-caryophyllene produces high aerosol yields in smog

chamber experiments, as large as 70 % [125], and can be an important PM2.5 contrib-

utor in the Southeastern United States [101]. Speciation data for the aerosol phase

can be found in [29], [81], [100], [?], [125] and [183]. The main aerosol phase prod-

ucts of dark seedless β-caryophyllene ozonolysis are two semi-volatile ketoaldehydes;

3,3-dimethyl-y-methylene-2-(3-oxo-butyl)-cyclobutanebutanal (β-caryophyllone alde-

hyde, 236 g mol−1) and 3,3-dimethyl-y-oxo-2- (3-oxobutyl)-cyclobutanebutanal (β-

nocaryophyllone aldehyde, 238 g mol−1; [29, 100]). These compounds exhibit low

volatility (being thermally stable until ∼300˚C; [29]) and can readily form aerosol.

Formaldehyde and its subsequent products were also observed in abundance and are

thought to make up ∼10% of the product composition in the gas phase [29, 81, 125].

[100] presented the most comprehensive β-caryophyllene ozonolysis speciation so far,

identifying 17 compounds in both the gas and aerosol phases for a combined carbon

yield of 65%; based on these studies, the mass-average molecular weight of the SOA

is estimated to be 250 g mol−1 [97].

The aerosol formed during β-caryophyllene ozonolysis can act as CCN [50, 97, 208]

yet SOA from sesquiterpenes are less hygroscopic and CCN-active than monoterpene

SOA [97, 208]. [208] observed the hygroscopicity of β-caryophyllene SOA to decrease

with ageing. Predicting the CCN activity of the SOA requires assumptions for its

solubility and surfactant characteristics. [97] used an “effective solubility” (i.e., one

common solubility for all compounds present in the SOA), which ranges around 0.10

g g−1 H2O for monoterpene and sesquiterpene SOA; other studies assume complete
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solubility of the SOA (e.g., [155]). Surface tension at the point of activation is often

assumed to be equal to that of water, although recent studies relax this assumption

[28, 55, 182, 14]. Even if the usage of simplifying assumptions for thermodynamic

properties (e.g., complete solubility and constant surface tension) reproduce the mea-

sured CCN activity, this does not imply that they reflect the true nature of the aerosol

[55].

There is currently little work on the link between SOA volatility and CCN activity

and the potential effect of semi-volatile organic compounds on aerosol hygroscopicity

and CCN properties [6, 19, 105, 109]. The volatility of VOC oxidation products

largely control their gas-to-particle partitioning [151], and if water-soluble, their CCN

activity. Chamber and ambient studies have measured the volatility for ageing SOA

[6, 19, 78, 107], coupled with hygroscopicity measurements [66, 104, 105, 203]. Results

suggest that SOA formed by OH oxidation is more volatile than the SOA formed

during reactions with other oxidants (e.g., O3) [105]; non-volatile hygroscopic organic

material that forms may resemble the water uptake properties of (NH4)2SO4 [66],

although the hygroscopic water uptake measured for SOA below water saturation

may not accurately reflect their CCN activity [155].

A major issue that is set to be elucidated is the effect of composition on droplet

growth kinetics. Complex growth kinetics can arise from numerous mechanisms, such

as incomplete solubility [184, 181], slow dissolution kinetics of solute [?], and organic

films which can potentially decrease α, the “effective” water vapor accommodation

coefficient. Values of α ∼ 0.042 is associated with H2O uptake coefficients used in

earlier cloud modeling studies for inorganic aerosol [123]. More recent aerosol-cloud

droplet closure studies show a range of α from 0.04 to 1 [135]. [39], [137], and [70]

conducted aerosol-cloud droplet closure using in-situ observations of cumuliform and

stratiform clouds formed in polluted and clean air masses; both studies achieved clo-

sure for α between 0.03 and 1.0, with optimum estimates (i.e., both average error and
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standard deviation within experimental uncertainty) between 0.03 and 0.06. [196],

using a static diffusion chamber combined with a model of the instrument estimated

α=0.07 for ambient biogenic CCN sampled during the CELTIC experiment. [170]

also observed a wide range of growth kinetics for ambient aerosol sampled in sites

across the Northern Unites States.

In this study we investigate the droplet formation characteristics of ageing β-

caryophyllene SOA generated via seedless dark ozonolysis. Employing two different

CCN counters, we comprehensively characterize the CCN activity and droplet ki-

netics of the SOA, and explore the role of its volatile fraction on droplet formation.

From filter samples of SOA obtained during these experiments, surfactant charac-

teristics, molar volumes and droplet growth kinetics of the water-soluble component

are determined with Köhler Theory Analysis (KTA) [14, 16, 150]. SOA and WSOC

measurements are then combined to infer the soluble fraction of SOA, as well as the

impacts of chemical ageing thereon. Finally, we explore the impact of composition

(i.e., insoluble fraction) on droplet growth kinetics, by combining the CCN activa-

tion measurements with comprehensive models of the CCN instrumentation; growth

kinetics is parameterized in terms of an “effective” water vapor uptake coefficient,

which is then expressed as a function of WSOC fraction.

4.2 Experimental methods

4.2.1 SOA formation and online measurements

Experiments in this study were conducted in the Carnegie Mellon University 12

m3 Teflon SOA chamber (Welch Fluorocarbon), suspended inside a temperature-

controlled room (Fig. 13). Details of the smog chamber and its operation are reported

elsewhere [157, 156, 194]. As shown in Fig. 13, the aerosol from the chamber inlet is

classified by a scanning mobility particle sizer (SMPS 3080) and differential mobility

analyzer (DMA 3081). The total aerosol concentration (CN) of the monodisperse
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particles is counted by a condensation particle counter (TSI CPC 3010) and the CCN

concentration is measured by a DH Associates-M1 Static Diffusion (SD) CCN Counter

and a DMT Continuous-Flow Streamwise Thermal Gradient (CFSTG) CCN Counter

[122, 164]. The SOA was formed in unseeded dark ozonolysis of β-caryophyllene

(Fluka > +98.5%). For each dry chamber experiment, oxidation occurred at 22˚C

at low relative humidity (3-8%); aerosol measurements commenced after the injection

of sesquiterpene and lasted up to 11 hours. Table 16 summarizes the initial ozone

and sesquiterpene concentrations for particle nucleation in our experiments. 0.5 ml

of 2-butanol was used as hydroxyl radical (OH) scavenger so oxidation could occur

in the presence and absence of OH (Table 16).
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Figure 13: Experimental set-up for SOA generation and online analysis.

Experiment 2 and 6 (Table 16) focused largely on the relationship between volatil-

ity and CCN activity. The SOA (formed in the presence of OH) was at times

passed through a thermodenuder (TD) at 35˚C for ∼15 seconds before introduc-

tion to aerosol classification and CCN measurements. The temporal conditions in the

thermodenuder simulate and closely resemble those in the CFSTGC.

The counting frequency and operating conditions of the two CCN instruments are
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very different. The SD CCN counter requires 7.5 minutes per datum (∼0.002 Hz); to

capture the impacts of ageing on CCN activity, the SD is operated at 0.60% ± 0.02%

supersaturation in experiments 1,2 and 6, and is supplied with 100 nm diameter

classified aerosol. Additional experiments (4 and 5) were performed with the SD

counter to estimate the activation diameter, d, (i.e., the dry diameter of the aerosol

particle with critical supersaturation, sc). For these experiments, a similar analysis

and set-up (not shown here) to that presented in [41] are used. Two classifying

systems are employed; the first DMA selects a monodiserpse aerosol, and the second

DMA scans several sizes and measures the distrbution of particles. The method

uses the activated fraction (CCN/CN) to determine the fraction of particles in each

distribution with a diameter greater than d.

The CFSTG is considerably faster (∼1 Hz) than the SD counter, allowing for a

comprehensive characterization of size resolved CCN activity using Scanning Mobility

CCN Analysis (SMCA) [142] which couples the CFSTG CCN counter with a SMPS.

By keeping the CFSTG supersaturation, s, constant during the scanning cycle of the

SMPS, we obtain the time series of CN and CCN counts; an inversion procedure then

leads to the CCN/CN ratio as a function of dry mobility diameter [142]. This pro-

cedure is repeated over multiple supersaturations (e.g., 0.65 % and 1.09 %), giving

a characterization of the size-resolved CCN properties for a range of supersatura-

tions every 2.25 minutes. SMCA has been evaluated for calibration, laboratory and

ambient aerosol, SOA filter samples, biomass burning aerosol [14, 16, 142, 150] and

monoterpene SOA [55].

SMCA also provides size-resolved droplet growth measurements as the DMT CCN

counter sizes particles of Dp > 1 µm with an optical particle counter (OPC). SOA,

when exposed to the same s profile, will grow to the same wet diameter, Dp, provided

that the mass transfer coefficient of the water vapor to the growing droplet and the

critical supersaturation is the same [141]. The dependence of droplet size on the
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supersaturation profile and particle size can then be used to study the impact of

organics on the droplet growth kinetics [14, 55, 122, 139, 170]. Changes in growth

kinetics are quantified by i) comparison against the droplet size attained by CCN

composed of pure (NH4)2SO4, and, ii) using comprehensive models of the instruments

to infer growth kinetic parameters of the SOA.

4.2.2 Characterizing the water-soluble fraction of SOA

β−caryophyllene SOA oxidized in the presence of OH and O3 (Table 16) was col-

lected on a Teflon filter and subsequently used to characterize the properties of its

water-soluble organic carbon (WSOC) fraction. The WSOC in the filter samples was

extracted with 20 ml of ultra-pure water (18 Mohms) during a 1.5 hour sonication

process with heat (bath water temperature ∼ 60˚C;)[14, 16, 199]. The WSOC con-

centration was measured with a Total Organic Carbon (TOC) Turbo Siever analyzer

[199] and found to be 10.8 µg C mL−1. The extracted sample is subsequently at-

omized, dried, size selected, and characterized for its CCN activity (following the

procedure of [14]) using SMCA between 0.2 and 1.4% supersaturation. This proce-

dure is repeated for pure WSOC and mixture with (NH4)2SO4 using the procedure

of [14]. The composition of the salted mixtures are verified with ion chromatography

(IC) analysis. Köhler Theory Analysis (KTA) combined with the CCN activity mea-

surements, are used to infer the molecular weight, surface tension [14, 150, 139], and

droplet growth kinetic characteristics [14].

The concentration of WSOC extracted from filter samples is often too low (∼100

mg L−1) to have a measurable impact on surface tension; σ measurements relevant

for CCN activation need to be obtained at much higher WSOC concentrations (>500

mg C L−1) [14]. Although concentrating these solutions is possible [16], obtaining the

required volume of organic sample is often impractical [14]. It is possible, however, to

infer the surfactant characteristics of the SOA from the CCN activity of pure WSOC
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and mixtures with (NH4)2SO4, following the procedure of [14] and [139]

4.3 Data Analysis

4.3.1 Köhler theory analysis of WSOC

Köhler Theory Analysis (KTA), (method b1) [16, 150] is used to infer the average

molar volume (molecular weight, Mo, over density, ρo) of the water-soluble organic

fraction. KTA employs measurements of the activation diameter, d, to obtain a

Fitted CCN Activity (FCA) factor, ω, as sc = ωd−3/2. If the organic is assumed to

be composed of a soluble and insoluble organic fraction, FCA can be used to infer

the average organic molar volume, Mo

ρo
, as

Mo

ρo

=
ενo

256
27

(
Mw

ρw

)2 (
1

RT

)3
σ3ω−2

(21)

where R is the universal gas constant, T is droplet temperature. Mw and ρw are the

molecular weight and density of water, respectively, ε is the soluble fraction, and σ

is the surface tension of the droplet at the point of activation (Section 4.3.2). For

aerosol composed solely of WSOC, we assume that ε = 1, and the organic effective

van’t Hoff factor, νo = 1.

Mo

ρo
is computed for each sc, d point and an average value is obtained. The aver-

age molecular weight, Mo, is then computed by assuming an average organic density

of 1500 kg m−3 [117]. The standard deviation in Mo

ρo
is then compared against the

estimated molar volume uncertainty, ∆
(

Mo

ρo

)
=

√∑
x

(Φx∆x)2, where ∆x is the un-

certainty of each of the measured parameters x, (i.e., any of σ, ω, and ν) and Φx is

the sensitivity of molar volume to x, Φx = ∂
∂x

(
Mo

ρo

)
(Table 17)[150, 14, 16].

KTA, when applied to organic aerosol of known composition, has been shown

to yield organic molar volumes to within 20% [150]. KTA has also been applied to

biomass burning aerosol [16], WSOC from alkene ozonolysis [14] and marine organic

matter [139], where inferred σ was in agreement with direct measurements using the
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pendant drop technique. KTA has also been used to infer the soluble fraction and

the molecular weights of water-soluble components of monoterpene SOA [55].

4.3.2 Inferring Surface Tension

If CCN activity data is available for mixtures of WSOC and a salt (e.g., (NH4)2SO4),

KTA can be used to concurrently infer Mo

ρo
and σ (as a function of WSOC concen-

tration) using an iterative procedure [139]. However, if enough salt is present in the

sample, the contribution of organic solute is negligible; the effect of the organic on

CCN activity amounts to its impact on surface tension, and can be inferred as [14],

σ = σw

(
sc

s∗c

)2/3

(22)

where sc is the measured critical supersaturation, and s∗c is the predicted value (from

Köhler theory), assuming σ = σw, the surface tension of pure water computed at the

average CFSTGC column temperature [14],

s∗c =
2

3

(
4Mwσw

RTρw

)1.5 (
3εiνiρiMwd3

Miρw

)−0.5

(23)

where the subscript i denotes the inorganic salt properties. In this study, both meth-

ods are applied to infer σ as a function of carbon concentration.

4.3.3 Inferring the WSOC fraction in the SOA

The SOA formed during the ozonolysis can to first order be described as a mixture of

a water-soluble and insoluble fractions. Assuming the extracted WSOC (Sect. 4.3.1)

is similar to the soluble fraction of SOA, we can use the Mo and σ of the WSOC

estimated by KTA (Sect. 4.3.1) to infer the ε for the SOA. This is done by solving

Eq. 21 for ε,

ε =
256

27

(
Mw

ρwRT

)3 (
Mo

ρo

)(
ρw

Mw

)
σ3ω−2

νo

(24)
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4.3.4 Quantifying the droplet growth kinetics

The extent to which droplets grow in each instrument depends on the supersaturation

profile, residence time, droplet growth kinetic behavior, and to a lesser degree, dry

particle size [141]. We quantitatively describe the growth of SOA by simulating the

process of droplet formation within each CCN counter using comprehensive computa-

tional fluid dynamic models: the SD chamber model of [141], and, the DMT CFSTGC

model of [122]. Each of these models numerically simulates the temporal and spa-

tial distributions of velocity, pressure, temperature and water vapor concentration

throughout the growth chamber of each instrument (the particle and gas phases are

coupled through release of latent heat and condensational loss of water vapor); the

fields are then used to drive the condensation growth of a population of aerosol as it

flows through the instrument. The kinetic model includes aerosol with size-dependant

composition; condensation growth of aerosol is computed based on a size-dependant

mass transfer coefficient [141] multiplied by the difference between gas-phase and

equilibrium water vapor pressure. The latter is calculated with a comprehensive im-

plementation of Köhler theory that accounts for multicomponent aerosol consisting of

soluble, partially soluble and insoluble material. Organic surfactants can be present

in any of these fractions.

The CCN models were initialized using the appropriate geometric dimensions and

operating conditions of each CCN instrument (Sect. 4.2.1). A computational grid of

200 cells in the radial and 200 cells in the axial direction was used in each simulation;

condensational growth and gravitational settling in the SD simulations commences

after steady state is established for all gas-phase profiles. In CFSTGC simulations,

the droplet diameter at the exit of the flow chamber is then compared against the

measured size distribution, following the binning scheme used in the optical detection

of the instrument [122]. Particles with diameter larger than 2 µm are counted as

droplets in the SD simulations. Organics are allowed to affect the growth kinetics of
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CCN, by modifying surface tension, equilibrium vapor pressure and the water uptake

coefficient used to compute the water-vapor mass transfer coefficient [141, 122].

4.4 Results and Discussion

4.4.1 CCN activity of SOA

Figure 14 presents the CCN activity of 100 nm SOA particles (formed with and with-

out OH), concurrently measured by the SD and CFSTG at ∼ 0.6% supersaturation

in experiments 1 and 2 and by the SD in experiment 6 (Table 16). CCN activity

is presented in terms of an activated fraction, the ratio of CCN/CN. The gradual

increase in CCN activity suggests active chemical ageing of the aerosol; this is in

agreement with [50], although it is unclear if it is from oxidation in the gas or aerosol

phase. Although both CCN instruments show an increase of activity with ageing, the

magnitudes and trends of the activated fractions are remarkably different. First SOA

formed in experiment 1 without OH appears more CCN active in the SD counter than

SOA formed with OH oxidation in experiment 2, whereas the CFSTG measurements

show the opposite. Secondly, according to the SD counter SOA ages more rapidly

(i.e., CCN/CN has a larger slope) than the CFSTG data; the SD aerosol ages at a

rate of 0.10 and 0.07 CCN/CN hr−1 for SOA formed without and in the presence of

OH, respectively. Applying the same linear trend, the CFSTG counter ages at a rate

of 0.02 and 0.04 CCN/CN hr−1 for SOA formed without and in the presence of OH,

respectively. Finally, CCN are immediately measured in the SD, while up to 6 hours

are required to register the first CCN counts in the CFSTGC (Figures 14,15). The

discrepancy in measured CCN activity is most likely not an experimental artifact, as

both instruments agree very well for calibration (NH4)2SO4 and monoterpene SOA

[55]. We postulate that β-caryophyllene SOA (at least the hygroscopic component)

partially evaporates in the CFSTGC, given that it is operated at ∼10˚C above the

chamber temperature. Conversely, vapors may be condensing onto the CCN in the
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SD (given that particles are exposed to supersaturation at ∼1˚C below the chamber

temperature), thus affecting the measured CCN properties of the aerosol. If true, this

suggests that the hygroscopic fraction from the b-caryophyllene SOA formed during

the reaction with O3 tends to be more volatile than the hygroscopic SOA formed dur-

ing the reaction with OH. The SD counter results in experimetns 1 and 2 also suggest

that the ozonolysis products are better CCN than the products of OH reaction.
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Figure 14: CCN activity (at ∼0.6% supersaturation) of 100 nm β-caryophyllene
SOA formed in the presence of OH (circles) and without OH (triangles). Data ob-
tained using the CFSTG and SD CCN counters are presented.

Similar behavior also seen at higher supersaturations; Figure 15 is similar to Fig-

ure 14, but the CFSTGC is operated at 1.09% supersaturation. Consistently with

Figure 14, the SOA significantly age over time, and SOA formed in the absence of

OH requires a very long time ('4 hours) before any CCN counts are registered; SOA

formed in the presence of OH form CCN almost immediately. The CCN/CN tends

to exhibit a sigmoidal shape with time, unlike the data in Figure 14 where trends

65



exhibit a more linear dependence with time.
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Figure 15: CCN activity of 100 nm β-caryophyllene SOA formed in the presence
of OH (circles) and without OH (triangles). Measurements are obtained with the
CFSTGC at 1.09% supersaturation.

4.4.1.1 Understanding the CCN activity

To characterize the time-dependant CCN behavior, SMCA is applied to SOA formed

in the absence of OH at ∼1% supersaturation passed through the denuder and also

for SOA of both types at ∼1% and ∼0.6% (Fig. 16). In these measurements, CCN

activity is quantified by the activation diameter, d, defined as the size of particles

with sc equal to the instrument supersaturation; this is determined by the dry aerosol

diameter for which CCN/CN=0.5. d is determined for measurements with the SD in

experiments 4 and 5 using the methods of [41] (Sect. 4.2.1).

In the absence of OH, the SD counter initially measures d ' 102 nm at s = 0.6%

and decreases gradually with time at a rate of -0.94 nm hr−1. In the absence of

OH, the CFSTGC cannot determine d within the first five hours due to insufficient

CCN counts (< 10 CCN cm−3). Compared to the SD, the slope of d with time in

66



the CFSTGC is three times larger, suggesting that the volatility of the hygroscopic

material in each SOA type may change with time. Beyond the sixth hour, the CCN

activity of CFSTGC measurements (i.e., d) for both types of SOA (with and without

OH oxidation in experiments 1 and 2) agree to within 5%, suggesting that the oxidized

products of both SOA types become similar (Fig. 16). The consistency between

aerosol types is supported by the measurements of [183], who suggested the addition

of OH scavenger does not significantly affect the product distribution because only

a small amount (∼6% yield) of OH is formed during β-caryophyllene reaction with

O3. The CFSTGC measurements support this, as CCN activity for both SOA types

agree to within 5% uncertainity at 0.6% supersaturation.

To verify that aerosol volatility accounts for the differences seen in the CCN

activity between instruments, we pass the most volatile SOA (i.e., formed with OH

absent) through a thermodenuder before introduction into the CFSTGC. SMCA is

applied to measurements at 0.65% and 1.09% supersaturation; however, the lack of

CCN counts at the lower supersaturation prohibits the determination of d. For similar

reasons, the CCN activity of denuded SOA at 1.09% can not be determined during

the first five hours of the experiment (Fig. 16); compared to the SOA, d is much larger

(∼25%) for the denuded aerosol . This suggests that the non-volatile aerosol exiting

the thermodenuder is less CCN-active than the semi-volatile material, and that the

latter is primarily responsible for the observed CCN activity of freshly formed SOA.

Since the CFSTGC is operated at conditions similar to the thermodenuder, some

of the soluble material will evaporate in the CCN instrument and exhibit reduced CCN

activity. In the SD instrument however, particles are exposed to supersaturation at

one degree below chamber temperature (because the temperature difference between

plates is 2∼1˚C, and smax in the instrument is located halfway between plates. It is

therefore expected that the SD measurements reflect the CCN activity of the particles

in the SOA chamber, and any additional condensation of SOA in the SD chamber
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Figure 16: Activation diameter as a function of time, for β-caryophyllene SOA
formed in the presence of OH (circles) and SOA formed without OH (triangles);
CFSTG 1.09% supersaturation (green symbols), SD 0.6% supersaturation (blue sym-
bols) and CFSTG 0.6% supersaturation (grey symbols) measurements are shown.
Aerosol passed through the thermodenuder and exposed to 1.09% supersaturation in
the CFSTGC are denoted by open green symbols. Assuming a linear dependence,
the rate of decrease with d is -0.94, -2.8, -3.6, -4.6, -2.0, -2.6 nm hr−1, for the SD-
0.6% (O3), CFSTG-1.09% (OH + O3), CFSTG-1.09% (O3), CFSTG-TD-1.09% (OH
+ O3), CFSTG-0.6% (O3)and CFSTG-0.6% (OH + O3)respectively.

(because of the 1 degree difference) will have a minor impact on composition and CCN

activity. The possibility that the SOA experiences significant kinetic limitations,

enough to prohibit their activation in the CFSTGC within the measurement time

frame (10-30s), is unlikely since the timescale of CCN activation in the SD is less

than 5 s (Section 4.4.4).

The original SOA contains more hygroscopic material, as seen from the enhanced

CCN activity (compared to CFSTGC measurments) at 0.6% (Fig. 16). Minor differ-

ences in CCN activity are seen between SOA from O3, and, O3+OH oxidation; this

is seen in the SD measurements, as a smaller difference in CCN activity is observed
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between the two SOA aerosol types (Fig. 14). After sufficient aging has occurred,

the volatility of organic components may decrease enough for CCN activity measure-

ments from the SD and CFSTGC to converge; this was not seen however over the

duration of the experiments.

4.4.2 Characterization of the hygroscopic fraction

Figure 17 displays the sc vs. d for β-caryophyllene SOA and WSOC. For compar-

ison, we also present data for WSOC extracted from monoterpene SOA [55] and

(NH4)2SO4. The results show that aerosol generated from β-caryophyllene WSOC

are more CCN-active than the original SOA, but less CCN active than (NH4)2SO4. In

fact, the CCN activity of WSOC from oxidation of monoterpenes and β-caryophyllene

is remarkably similar. Gas Chromatography- Mass Spectrometry (GC-MS) analysis

of the β-caryophyllene sample exclude the presence of monoterpenes; hence similarity

of WSOC properties is not an experimental artifact but an inherent property of the

WSOC. Despite this, the CCN activity of monoterpene and β-caryophyllene SOA is

substantially different (the latter being less hygroscopic) [97, 55], suggesting that the

WSOC fraction in sesquiterpene SOA is less than in monoterpene SOA.

The molecular weight of the WSOC fraction is estimated with KTA from the non-

salted data set; a summary of the values employed in the analysis are summarized in

Table 18. The average molecular weight of the WSOC was found to be 156 ± 44 g

mol−1 (Tables 18, 20). This degree of WSOC CCN activity is similar to dicarboxylic

organic species that are moderately surface active and of low (< 200 g mol−1) molec-

ular weight (e.g. adipic acid, 146 g mol−1; succinic acid 118 g mol−1) [92, 150, 159]

The molar volume uncertainty is estimated to be ∼ 25% (Table 20) and is consistent

with the observed variability in the inferred Mo

ρo
.
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Low molecular weight species in the range of the KTA estimates have been iden-

tified in β-caryophllene SOA. [100] identify 3,3-dimethyl-2-(3-oxobutyl)-cyclobutane-

methanal and 3,3-dimethyl-2-ethanal-cyclobutane, of molecular weight 192 and 154

g mol−1, respectively in the aerosol phase. [125] using proton transfer reaction mass

spectrometry (PTR-MS) measure several unknown compounds of mass charge ratio

(m/z) < 250. In particular, [125] identify a compound with m/z = 159 in the ambient

and laboratory experiments of β-caryophllene. Our WSOC analysis is derived from

significantly aged (∼ 12 hour) filter samples. As a result, more condensed species

may form in the aerosol, including oligomers from formaldehyde (31 g mol−1) that is

in abundance in the gas phase [29, 100, 125] may be a source of low molecular weight

oxidized products in the aerosol phase.

Addition of (NH4)2SO4 to the WSOC mixture could produce better CCN than

using pure (NH4)2SO4 alone, if the organics depress surface tension. This is indeed

the case, and shown in Figure 17b; the activation curve of the 92% aerosol should lie

notably to the right of the pure (NH4)2SO4. Instead, the organics (present in ∼10%)

depress surface tension (by ∼5%, Table 19) so that the mixture behaves like pure

(NH4)2SO4. Similar CCN enhancement from surface tension depression is also seen

in monoterpene and marine WSOC [55, 139], suggesting that this may be a robust

characteristic of CCN containing water-soluble organics.

4.4.3 Estimating SOA Soluble Fraction

Once the surface tension and average molar volume of the WSOC is estimated from

KTA, its volume fraction, ε, in the SOA can be inferred by applying Eq. 24 to the

online CCN activation data. The results of this calculation is shown in Figure 18a,

where ε is plotted against time for all the experimental data of Figure 16. CCN

activity is only observed when sufficient amounts (ε > 0.03) of soluble non-volatile

material exist in the aerosol phase (Figs. 16 and 18). Figure 18a suggests that
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ε is minimum for aerosol processed in the thermodenuder, since that is when d is

maximum (Figure 16), and is consistent with the hypothesis of volatile WSOC.

Analyzing the inferred ε trend over time (Fig. 18a) yields some very interesting

aspects of the SOA ageing process. Early on in the experiment (0-5 h), the ε inferred

from the CFSTGC 0.65% and 1.09% datasets is almost identical; this is consistent

with the SOA being initially of uniform composition (and also confirms that the

method to infer ε gives consistent results across a wide range of operation conditions

and experiments). Later on in the experiment (5-11 h), ε between the two supersatu-

rations diverge; the 1.09% dataset tends to infer a larger ε than for the 0.6%. This is

consistent with size-dependant processing of the aerosol in the chamber; smaller par-

ticles (i.e., those with sc=1.09%) would tend to age more quickly than larger particles

(i.e., those with sc=0.6%), because of differences in their surface-to-volume ratio. It

is unclear however if this ageing is from the condensation of gas-phase species, or

chemical ageing of material inside the aerosol.

Figure 18b presents the sensitivity of ε to the value of Mo

ρo
and σ used in Eq. 24;

despite the large variation considered in aerosol properties, ε does not exceed 15%,

supporting the postulation that the hygroscopic material mostly resides in the volatile

fraction, and is present in small amounts in the aerosol. Because of the latter, any

volatilization of the soluble fraction would have a strong impact on CCN activity.

4.4.4 Composition and Droplet Growth Kinetics

Figure 19 shows that more than six hours of ageing are required before the SOA with

sc=1.09% can grow to droplet sizes similar to those of (NH4)2SO4; even more time is

required for particles with sc=0.65%. Since we evaluate the droplet growth kinetics by

comparing the measured droplet sizes for particles with similar sc, differences in the

SOA and (NH4)2SO4 Köhler curves do not account for the observed large droplet size

difference. Combining the data in Figures 18 and 19 suggest that the SOA droplet
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growth kinetics accelerate as ε increases, suggesting that i) the insoluble material

may somehow form surface films that can delay growth, and, ii) the chemical ageing

of the aerosol (expressed as an increase in ε) eventually diminishes the extent of this

delay.

Figure 20 presents droplet sizes of WSOC (pure and mixed with (NH4)2SO4) as

a function of sc. For comparison, droplet sizes for pure (NH4)2SO4 and SOA CCN

are presented. The WSOC (pure and salted) behave much like (NH4)2SO4, as the

wet diameters for all samples are within one size bin (0.5 µm) of the OPC sizing.

This, combined with the marked delay in growth of SOA CCN (Figure 19) strongly

suggests that the source of kinetic limitations in the latter arises from the “insoluble”

component of the SOA.

To compare the observed droplet growth kinetics in both CCN counters, we derive

the α from the simulations of the activation of CCN in each instrument. Figure 21

shows the simulated normalized droplet concentration in the viewvolume of the SD

(used for determining the CCN concentration), as a function of time and α. The

simulations suggest that α strongly influences the timing, but not the value, of peak

droplet concentration; we therefore use the timing where the peak concentration

is obtained to constrain α in the SD CCN measurements. The droplet formation

timescale in the viewvolume was measured 4h (3.70 ± 0.60 s) and 8h (3.32 ± 0.50

s) into the experiments, and are shown as dotted lines in Figure 21; simulations

suggest that the SOA water vapor uptake coefficient is low early on (α ∼ 0.03)

and increases to values consistent with (NH4)2SO4 (2.23 ± 0.19 s) and hydrophilic

(monoterpene) SOA. These shifts are mostly outside the uncertainty of the droplet

formation timescale measurements. Lower values of α are highly unlikely, since the

timing difference in the peak concentration becomes very large (Fig. 21.

Figure 22a shows the simulated droplet size at the exit of the CFSTGC column

as a function of α for CCN with sc=1.09% (blue) and 0.65% (magenta). The size of
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activated calibration (NH4)2SO4 with corresponding critical supersaturations is also

shown; simulations suggest that the α for (NH4)2SO4 particles ranges between 0.04

and 0.06, which is consistent with the SD simulations for activation of (NH4)2SO4

aerosol.

The simulations of Figure 22a are combined with the droplet size data of Figure 19

to infer the water vapor uptake coefficient for the activated SOA in the CFSTGC; this

is shown in Figure 22b. Compared to the SD, growth kinetics in the CFSTGC (i.e.,

values of α) are substantially slower, with the following characteristics: i) aerosol

thermally treated in the denuder exhibits the slowest growth, with 4 times lower

α than (NH4)2SO4, ii) aerosol that is not pretreated in the denuder exhibits slow

growth kinetics early on in the experiment. Ageing gradually accelerates growth,

until it reaches the levels of ammonium sulfate after 10 hours of ageing, and, iii) the

growth at sc=0.65% is slower than particles with sc=1.09% and takes longer to reach

the growth rate of (NH4)2SO4.

The diverse range of uptake coefficients inferred for CCN in both instruments may

at first seem counterintuitive, but is consistent with thermal structuring and process-

ing of the SOA in the CFSTGC and denuder. Modification of CCN can happen in

many ways; for example, evaporation of hygroscopic volatile compounds, preferen-

tially from the surface layers of the aerosol (chemical reactions are presumed not to

happen during the residence time in the instrument and denuder), and, sintering of

insoluble material, especially if it exhibits “waxy” characteristics (i.e., changes vis-

cosity in the 25-35˚C range). In both cases, a “barrier” of insoluble and hydrophobic

material could form between the hydroscopic fraction of the SOA, which would then

decrease the growth rates of the activated CCN. The available data seems to support

the above because:

1. aerosol processed in the denuder exhibits the slowest growth (evaporates the

most hygroscopic material, and has the largest residence time at high T, hence
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has best chance to reform the SOA surface).

2. CFSTGC data at 0.65% is growing slightly more than the denuded aerosol,

because of the lower residence time at high temperature; less material evaporates

and CCN surface layer is modified to a lesser degree.

3. CFSTGC data at 1.09% grows the fastest, because the WSOC fraction is higher,

and, given that those particles are smaller (compared to those with sc=0.65%),

the amount of insoluble material (hence kinetic barrier) is much less and the

aerosol establishes “rapid growth” kinetics towards the end of the experiment.

4. The SD is closest to activating CCN in their “native” state (i.e., as produced

in the SOA chamber). This means that hygroscopic material (being secondary

and semivolatile) would tend to be located at the surface layers of the aerosol,

and growth kinetics would tend to be fast (i.e., α would approach that of

(NH4)2SO4). The growth kinetics measurements for the WSOC (Figure 20)

and for very hygroscopic (e.g., monoterpene) SOA support this [55].

The activation of CCN in the CFSTGC can be kinetically limited for other reasons

than proposed above. Limitations from dissolution kinetics of soluble material in the

CCN [?] is unlikely, given that solute diffusivity (hence growth kinetics) should be

faster at higher temperatures, contrary to what is seen in our experiments. Conden-

sation/dissolution of material from the gas phase is also possible, but also unlikely,

because the denuded aerosol would be expected to exhibit faster growth kinetics.

Chemical reactions are also a possibility, but cannot be explore using the information

available.

If volatilization of hygroscopic material (or sintering of insolubles) is responsible

for the variability seen in droplet growth kinetics, a common scaling law could be

derived between α and the amount of insoluble material in the particle (i.e., ε).

Indeed, this is the case (Figure 23); the correlation between the quantities is quite
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striking and clearly shows an explicit relationship between composition and growth

kinetics.

4.5 Implications-Conclusions

A combination of theory with measurements of CCN activity, droplet growth kinet-

ics and volatility provides a unique insight on the droplet formation characteristics

of β-caryophyllene SOA. We find that the resulting CCN contain small amounts of

hygroscopic material; hence, even if sesquiterpenes have higher aerosol yields than

monoterpenes, they are less CCN-active. From our KTA estimates, the WSOC con-

stitute roughly 10% of the SOA mass, moderately depresss surface tension and is

composed (on average) of low molecular weight compounds (< 250 g mol−1). Re-

markably, these properties are similar to water-soluble organic carbon extracted from

monoterpene oxidation (although the soluble volume fraction is much higher, between

70% and 100%, [55]). This suggests that WSOC in biogenic SOA may have similar

CCN properties (solubility, molecular weight and surfactant characteristics), and that

differences in the CCN activity of SOA from different parent hydrocarbons may be

primarily arise from the WSOC mass fraction; if true, this can constitute the bases

for a simple and mechanistically-based approach to represent the CCN activity of

SOA as a function of atmospheric age.

A major finding of this study is that the hygroscopic material in β-caryophyllene

SOA is volatile. The implications for CCN measurements are very important; the

temperature at which CCN measurements are carried out, if the aerosol is volatile

and composed of a low fraction of soluble material, may strongly affect the observed

CCN activity. In our study, this bias shifted activation diameters between 25 and 30

%. Nevertheless, this problem can be identified and quantified if the aerosol is peri-

odically passed through a thermodenuder, or, if CCN measurements are undertaken

at different temperatures. The volatility of WSOC carries important implications for
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atmospheric processes; since the temperature range in our measurements are typical

of diurnal variations found during summertime conditions (where biogenic emissions

and photochemical activity, hence SOA production, are maximum), volatilization of

small amounts of aerosol may induce an unanticipated diurnal cycle of CCN activity.

Another major finding of this study is that the less volatile material in sesquiter-

pene SOA is not very hygroscopic, but can have a profound impact on CCN growth

kinetics. The degree of kinetic limitations depend on the volume fraction of insoluble

material in the SOA, and heating of the aerosol tends to decrease the droplet growth

rates of the CCN. We postulate this to be result of soluble material evaporating from

the surface of the SOA, potentially combined with redistribution (sintering) of “waxy”

material to the CCN surface; both mechanisms would create a kinetic barrier that

partially impedes water vapor condensation. An explicit relationship between the

water vapor uptake coefficient (used here to represent variations in droplet growth

kinetics) and WSOC fraction supports that one mechanism (that scales with particle

volume) may primarily be responsible for delaying growth and that it is from the

presence of insoluble material. The implications of these findings for cloud droplet

formation are many: i) similar to CCN activity, a diurnal cycle of growth kinetics

for biogenic aerosol may exist, with profound impacts on the droplet size distribu-

tion and aerosol-cloud interactions, ii) the concept of “external mixing” may not be

only important for CCN activity (i.e., sc), but also for droplet growth kinetics, iii)

redistribution of SOA in the dry, free troposphere (which could partially evaporate

SOA from dilution) would tend to form particles that are kinetically limited, and,

iv) SOA systems with high soluble fractions (e.g., monoterpene SOA) may grow as

quickly as inorganic salt CCN (e.g., (NH4)2SO4), which is consistent with the limited

data available to date [55]. Whether a simple relationship between α and ε exists in

other SOA systems still remains to be found, but the approach outlined in this study

could be the basis of parameterizing the elusive relationship between volatility, CCN
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activity, growth kinetics and composition.
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Table 17: Formulae for the sensitivity of Mo

ρo
to the dependant KTA parameters for

β-caryophyllene experiments. These are applied for WSOC aerosol, where ε=1 and
no inorganics are present.

Property Sensitivity, Φx = ∂
∂x

(
Mo

ρo

)

σ Φσ =

(
3×256

27

(
Mw

ρw

)2 (
1

RT

)3 σ2ω−2

υo

) (
Mo

ρo

)2

ω Φω =

(
2×256

27

(
Mw

ρw

)2 (
1

RT

)3 σ3ω−3

υo

) (
Mo

ρo

)2

νo Φυo = 256
27

(
Mw

ρw

)2 (
1

RT

)3
(

Mo

ρo

)2

σ−3ω−2ν−2
o

Table 18: Köhler Theory Analysis parameters and molar volume results for the
water-soluble fraction of β-caryophyllene SOA.

Property (units) Value
FCA, ω (m1.5) 6.86 × 10−14

σ (N m−1) 6.56 × 10−2(
Mo

ρo

)
(m3 mol−1) 1.04 × 10−4

Mo (g mol−1)1 156 ± 44
1 ρs= 1500 kg m−3 [?]

Table 19: Average σ values inferred at the point of activation.

Sample Characteristics σ ±∆σ
(mN m−1) (mN m−1)

WSOC with 96% (NH4)2SO4 67.6 2.1
WSOC with 92% (NH4)2SO4 65.6 2.1
WSOC with 64% (NH4)2SO4 68.1 2.6
WSOC with 41% (NH4)2SO4 67.8 1.6

Table 20: WSOC molar volume uncertainty analysis

Property x Φx Molar Volume

(units) ∆x (m3 mol−1 x−1) uncertainty %
σ 1.32 × 10−3 4.62 × 10−3 7.0
ω 1.01 × 10−15 3.21 × 109 3.4
νo 0.20 2 1.02 × 10−4 23.4
Total Uncertainty 24.8

2based on up to 20% disassociation observed for HULIS [46]
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Figure 17: CCN Activity of WSOC from β-caryophyllene SOA. (a) SOA and
(NH4)2SO4 data are presented for comparison. WSOC from mixed monoterpene
and α-pinene hydrocarbon pre-cursors [54] are also shown. (b) WSOC from β-
caryophyllene SOA with mixed (NH4)2SO4 fractions.
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Figure 18: Estimated β-caryophyllene WSOC volume fraction as a function of age-
ing. (a) ε estimated using SD CCN activity at 0.6% (blue squares) and CFSTG CCN
activity 1.09% supersaturation (green closed and open symbols), 0.6% supersatura-
tion (grey symbols) and for aerosol passed through the thermodenuder and exposed to
1.09% supersaturation (open symbols) for σ=66 mN m−1 and Mo = 130 g mol−1. (b)
Soluble fractions are estimated assuming σ = 66 mN m−1 and Mo = 156 g mol−1(open
symbols), σ = 72 mN m−1 and Mo = 156 g mol−1(closed symbols) and σ = 66 mN
m−1 and Mo = 250 g mol−1(grey symbols).
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(grey) supersaturation. Droplet diameters of aerosol passed through the thermode-
nuder are shown with open circles. The shaded black and grey bands represent the
average droplet size of calibration (NH4)2SO4 with critical supersaturation of 1.09%
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Figure 22: CFSTGC growth kinetics simulations. (a) Simulated droplet wet diam-
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and 0.65% (magenta). The size of activated calibration (NH4)2SO4 is also shown for
comparison. (b) Inferred water vapor uptake coefficient for the growth kinetic data of
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CHAPTER V

WSOC PROPERTIES FROM CLOUDWATER

COLLECTED DURING MASE 2005

This study explores the CCN-relevant properties of water-soluble organic aerosol col-

lected during the Marine Stratus/Stratocumulus Experiments (MASE) off the coast

of Monterrey, California. In-situ chemical composition, CCN activity and surface

tension measurements coupled with Köhler Theory Analysis are used to infer the

molar volume and surfactant characteristics of organics contained in cloud droplets

and aerosol below cloud base. Results indicate that the aerosol does not contain

strong surfactants, and the carbonaceous material in cloud drops is far more hygro-

scopic than sub-cloud aerosol. The inferred molecular weights of the organic aerosol

within cloud residuals are low (< 200 g mol−1), consistent with carboxylic acids

identified during cloud processing. Below cloud aerosol exhibits the properties of

primary organic matter (molar mass ∼2400 kg mol−1). The substantial changes in

CCN-relevant properties of the organic fraction illustrate the strong impact of cloud

chemistry thereon.

Note: This chapter appears as reference [15].

5.1 Motivation

It is known that water soluble organic compounds (WSOC) can enhance marine

CCN number concentrations and cloud droplet number by 10 to 15% [2, 138, 147,

220]. The sources and chemical composition of marine organics vary; primary organic

marine aerosol (POMA) generated during bubble bursting may be insoluble high

molecular weight organic matter [147]. POMA concentrations vary with season [216]
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and are attributed to emissions during phytoplankton blooms [109, 147, 216]. The

production of secondary organic marine aerosol (SOMA) during cloud processing

(mostly WSOC and carboxylic acids such as oxalate) is persistent in marine cloud

regions [?]. SOMA can be produced through glyoxylic acid oxidation [192] via several

aqueous phase intermediates [31, 57, 128]. Despite the ubiquitous existence and

sources of these organics, organic marine matter and its interactions with water can

be quite complex, as they can affect particle hygroscopicity, droplet surface tension,

and droplet growth kinetics [45, 56, 60, 175, 176, 140]. In-situ chemical composition

measurements and offline surface tension and CCN activity measurements are used to

characterize thermodynamic properties and droplet growth of marine organic aerosol.

CCN measurements have been used to constrain thermodynamic properties of aerosol

relevant for cloud droplet formation [150, 154, 212]; this work uses Köhler Theory

Analysis (KTA) [150] to infer molar volumes of the aggregate organic component of

aerosol collected in-situ during airborne measurements. Surface tension at the droplet

surface is directly measured and also inferred with Köhler Theory [14, 139]. Growth

behavior of growing cloud droplets are observed and compared to (NH4)2SO4. These

analyses are presented for marine aerosol in sub-cloud regions that have the potential

to form droplets and for aerosol from cloud water samples.

5.2 Aerosol sampling and chemical composition

5.2.1 Aerosol sampling and chemical composition

In-situ samples were obtained during the 2005 Marine Stratus/Stratocumulus Ex-

periments (MASE) that took place off the coast of Monterrey, California. MASE

was conducted from July through August of 2005 during the period of persistent

formation of clouds in the boundary layer. During the experiments, the Center for

Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter airplane

sampled clear air and cloudy air masses. A full description of the aerosol and cloud
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instrument payload aboard the plane can be found in [131].

For this study, we investigate aerosol samples obtained on July 13th (with reported

high organic acid concentrations) from within and below cloud (101 and 450 m cloud

base and top, respectively [131]). NOAA Hysplit Back Trajectories indicate that the

aerosol mass was mainly a mix of pacific marine air with a potential mix of fresh

anthropogenic sources (Fig. 24).

Insert Back Trajectories

Two different inlets were employed for two different sampling stratergies. The

activated aerosol (cloud water samples) are collected within cloud (WC) regions and

aerosol sampled in clear skies are obtained within sub-cloud (SC) regions. The sub-

micrometer aerosol chemical composition of both WC and SC aerosol were mea-

sured by a particle-into-liquid sampler (PILS, Brechtel Manufacturing Inc.)[192]. The

counter-flow virtual impactor (CVI) [133, 144] inlet collected only cloud droplet resid-

uals characterized by the WC aerosol.

In the PILS, submicrometer-sized ambient particles are exposed to supersaturated

steam and grown into droplets sufficiently large to be collected by inertial impaction.

Samples are deposited in vials held on a rotating carousel; each vial contains material

representing a period of time between 3.5 and 5 min of flight. The contents of the vials

are subsequently analyzed using a dual Ion Chromatography (IC) system (ICS-2000

with 25 µL sample loop, Dionex Inc.) for simultaneous anion and cation analysis.

To preserve the samples, each are spiked with 5 µL of dichloromethane and frozen.

The WSOC content of the WC and SC samples were measured offline by a Total

Organic Carbon (TOC) Analyzer (Sievers Model 800 Turbo, Boulder, CO) (Table

21). The WSOC concentration is determined by the oxidation of organic compounds

via ultraviolet irradiation. The amount of CO2 in the stream is proportional to the

measured conductivity, hence the concentration of WSOC found in the de-ionized

sample.
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Figure 24: NOAA HYSPLIT Model Back Trajectories for July 13 2005
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Table 21: Summary of WSOC (mg C L−1) and ion concentrations(mg L−1) and α
and β parameters of the Szyszkowski-Langmuir model of each of the PILS samples

Within Cloud Sub-Cloud
Aerosol Aerosol

WSOC 220 ± 14 202 ± 7
Ca2+ 3.10 2.75
Mg+ 0.07 0.58
Na+ 21.07 20.90
Cl− 25.30 22.61
NH+

4 21.00 36.38
NO−

3 16.12 17.30
SO2−

4 35.30 87.85
Oxalate 3.61 4.22
NH4Cl 31.72 33.14

α

(mN m−1 K−1)
8.99 × 10−4 2.91 × 10−3

β

(L mg−1)
3.84 ×10−2 1.63 × 10−2

The concentration detection limit, calculated as the average concentration plus

three standard deviations of the smallest detectable peak for each ion in the IC

baseline noise (converted to air-equivalent units), is < 0.1 µg/m3 for the inorganic

ions (Na+, NH+
4 , K+, Mg2+, Ca2+, Cl−, NO−

2 , NO−
3 , and SO2−

4 ) and < 0.01 µg/m3

for the organic acid ions (dicarboxylic acids C2-C9, acetic, formic, pyruvic, glyoxylic,

maleic, malic, methacrylic, benzoic, and methanesulfonic acids). Oxalate was the

only organic acid ion above detection limits. The flight also characterized two plumes

from ship tracks of the coast and oxalate was reported in high concentrations above

cloud top compared to below cloud base (Table 21).

5.2.2 CCN activity

Aerosol from the MASE samples are atomized and regenerated offline to measure CCN

activity. Samples are atomized with a collision-type (University of Minnesota) atom-

izer (Fig. 25) operated at 5 psig pressure. The wet droplets are subsequently dried

through two silica gel dryers, charged by a Kr-85 bipolar charger and classified with
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Table 22: Aerosol chemical compositions inferred by ISOROPPIA II in terms of %
concentration

Within Cloud Sub-Cloud
Aerosol Aerosol

Organic 88.3 82
NH4Cl 3.4 3.6
NaCl 0.6 0.0
(NH4)2SO4 0.0 5.1
NaNO3 2.3 0.0
NH4NO3 0.00 2.4
Na2SO4 4.1 7.0
Ca2SO4 1.1 0.0

a Differential Mobility Analyzer (DMA 3081) (Fig. 25). The classified monodisperse

aerosol is then split and passed though a TSI 3025A Condensation Particle Counter

(CPC) for measuring aerosol number concentration (CN); the other stream was sam-

pled by a Droplet Measurement Technologies Continuous-Flow Streamwise Thermal

Gradient CCN Counter (CFSTGC) [122, 164].s

Given the limited sample available size-resolved CCN activity and growth ki-

netics measurements are obtained using scanning mobility CCN Analysis (SMCA)

[142]. SMCA couples CFSTGC measurements and a scanning mobility particle sizer

(SMPS); as the SMPS scans from 10 and 250 nm dry mobility diameter for a fixed su-

persaturation, s, an inversion procedure obtains the ratio of CCN to CN as a function

of aerosol size. The data is fit to a sigmoidal curve, neglecting the impact of doubly

charged particle. The particle dry diameter size, d, for which 50% of the particle

are CCN represents the dry diameter of the particle with critical supersaturation, sc,

equal to the instrument supersaturation. The activation experiments are repeated (a

minimum of four times) at a given s, and for varying s from 0.2 to 1.2%. The depen-

dence of d with respect to s is used to infer organic solute molar volume [16, 150] and

the presence of surfactants [14] (Sect. 5.3).

The addition of inorganic salts to an aqueous solution containing surfactants can
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Figure 25: Experimental Set-up for CCN Activity

enhance surface tension depression [16, 111] and CCN activity [16]. Adding pre-

calculated amounts of (NH4)2SO4 to organic samples can determine the presence of

surface active organics in secondary organic aerosol [14, 139]. We base the mass of

organic, morganic, in the MASE samples on the WSOC carbon concentration (Table

21) and assume that the total mass of organic is 3.75 times the mass of carbon; a

value based on the carbon to organic carbon mass ratio of oxalic acid (C2H6O4), 90

g mol−1)), the most abundant organic measured in-situ. The amount of salt to be

added, madded, is determined by the final inorganic mass fraction, α, desired and the

amount of salt pre-existing in the sample, mi. as follows;

madded =
α

(1− α)
morganic −mi (25)

where mi is assumed to be known from measurements and inferred from ionic concen-

trations (Table 22) that are input into an aerosol thermodynamic equilibrium model,

ISORPPPIA II [69].
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5.2.3 Surface tension measurements

A CAM 200 pendant drop method goniometer was used for measurements of sur-

face tension, using the procedure described in [150] and [16]. For each sample, the

measurements of sample surface tension, σ, are subsequently fit to the Szyskowski-

Langmuir equation [124]:

σ = σw − αT ln (1 + βc) (26)

where T is the temperature, σw is the surface tension of pure water and c is the

dissolved carbon concentration (mg C L−1) of the sample. α, β are constants, used

for fitting Equation 26 to the σ measurements. Equilibrium is assumed to be obtained

during the typical timescale of a measurement ( 60 s, which allows for the organics

in each pendant drop to partition between the bulk and surface layer [202]). Table

21 provides a summary of the α, β parameters for all samples considered.

5.2.4 Droplet growth measurements

The SMCA method, in addition to CCN activity, provides size-resolved droplet

growth. This is because the optical particle counter in the DMT CFSTGC used

for the activated droplet detection can provide the droplet size to within 0.5 µm.

This information can be used to quantify the impact of organics on droplet growth

kinetics [164, 14, 122, 139]. When exposed to the same s profile, the droplet size of

activated CCN at the exit of the flow chamber, Dp, is constant if the mass transfer

coefficient of water vapor to the growing droplet and the CCN critical supersaturation

is the same [?]. To directly assess the impact of organics on CCN growth kinetics, we

examine the Dp of CCN with sc equal to the instrument saturation (i.e., CCN with

a dry diameter equal to the cutoff diameter, d) of the activated SOA is observed and

compared to (NH4)2SO4 at identical sc.
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5.3 Analytical Theory

5.3.1 Inferring Molar Volumes

Köhler Theory Analysis (KTA) [150] can be used to infer the average molar volume

(molecular weight, Mj, over density ρj) of the organic fraction, j, of CCN. The

analysis employs a CCN activity spectrum (i.e., measurements of s versus d) to solve

for the Fitted CCN Activity parameter (FCA), ω, (Table 23) a function of
Mj

ρj
as

follows [16, 150].

Mj

ρj

=
εjυj

256
27

(
Mw

ρw

)2 (
1

RT

)3
σ3ω−2 −∑

i6=j

ρi

Mi
εiνi

(27)

where Mw, ρw are the molecular weight and density of water, respectively, R is the

universal gas constant, T is the ambient temperature, σ is the droplet surface tension

at the point of activation, ε is the volume fraction and ν is the effective van’t Hoff

factor. Subscripts i, j refer to the inorganic and organic solutes contained within the

aerosol, respectively. εk is related to the mass fraction of solute k (k being either of

i or j), mk, as:

εk =
mk/ρk∑

i6=j

mi/ρi + mj/ρj

(28)

The independent variables (σ, ω, εi, εj, νi, and νj) employed in KTA analysis for

each MASE sample is summarized in Table 23. For our calculations, we assume that

the effective organic van’t Hoff factor, εorganic = 1. Molecular weights of the organic

component are estimated assuming an average density of 1.4 g cm−3 [16, 204].

KTA can constrain molecular weight estimates to within 20% [150] for the organic

component with mass fractions between 20-50% and has been applied to complex

biomass burning aggregate organics mixtures to within 40% [16], secondary organic

aerosol to within 30% uncertainty [14], and 25% with primary marine organic matter

[139].
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Table 23: Köhler Theory Analysis Properties and Molar Volume Results

Property Within Cloud Sub-Cloud
(units) Aerosol Aerosol

σ (N m−1) 6.89×10−2 6.58×10−2

ω (m1.5) 6.80×10−14 8.75×10−14

νorganic 1 1
νNH4Cl 2 2
νNaCl 2

ν(NH4)2SO4 2.5
νNaNO3 2

ν(NH4)NO3 2
νNa2SO4 3 3
νaerosol 1.45 1.89
εorganic 0.88 0.82
εNH4Cl 0.10 0.09
εNaCl 0.01

ε(NH4)2SO4 0.12
εNaNO3 0.05

ε(NH4)NO3 0.06
εNa2SO4 0.07 0.10
ρorganic 1.4 1.4
ρNH4Cl 1.527 27
ρNaCl 2.16

ρ(NH4)2SO4 1.77
ρNaNO3 2.3

ρ(NH4)NO3 1.73
ρNa2SO4 2.68 2.68
ρaerosol 1.59 1.53

(
Maerosol

ρaerosol

)
9.22×10−5 3.10×10−4

(
Mj

ρj

)
1.05×10−4 1.72×10−3

Maerosol

(g mol−1)
143 458

Mj

(g mol−1)
157 2413
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Derivations of the equations used in this study to calculate molar volume uncer-

tainty, ∆
(

Mj

ρj

)
, can be found in [150], [16] and [139]. Here we express the general form

of the total uncertainty in inferred molar volumes as ∆
(

Mj

ρj

)
=

√ ∑
for all x

(Φx∆x)2,

where ∆x is the uncertainty in of each of the measured parameters x, (i.e., any of σ,

ω, εi, εj, νi, and νj), and Φx is the sensitivity of molar volume to x,

Φx =
∂

∂x

(
Mo

ρo

)
(29)

5.3.2 Inferring Surface Tension

For relatively low concentrations of carbon of our samples (∼100 mg L−1), the effec-

tive surface tension depression of the organic solution, ∆σ
σ

= σw−σ
σw

, may be small,

extrapolation to higher concentrations (∼ 500 mg C L−1) relevant for CCN activation

may not be reliable [14].

If CCN activity data is available for mixtures of WSOC and a salt (e.g., (NH4)2SO4),

KTA can be used to concurrently infer
Mj

ρj
and σ (as a function of WSOC concen-

tration) using an iterative procedure [139]. However, if enough salt is present in the

sample, the contribution of organic solute is negligible; the effect of the organic on

CCN activity amounts to its impact on surface tension, and can be inferred as [14],

σ = σw

(
sc

s∗c

)2/3

(30)

where sc is the measured critical supersaturation, and s∗c is the predicted value (from

Köhler theory), assuming σ = σw, the surface tension of pure water computed at the

average CFSTGC column temperature [14],

s∗c =
2

3

(
4Mwσw

RTρw

)1.5 (
εiνiρiMwd3

Miρw

+
εjνjρjMwd3

Mjρw

)−0.5

(31)

Equations 30 and 31 are iterated for each data point until convergence is achieved.

Each surface tension inference is then related to the WSOC concentration and fit to

the Szyskowski-Langmuir adsorption isotherm (Eq. 26), as described by [139].
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5.4 Results

5.4.1 Surface Tension

For the low carbon concentrations of our samples, organics have minimal effect on

surface tension (Fig. 26). Hence, Eq. 30 is used to infer σ at carbon concentrations

relevant for CCN activation. Inferred σ values shown in Fig. 26 indicate that nei-

ther sample contain organics that can significantly depress surface tension and is

corroborated by nominal changes in effective surface tension depression from our di-

rect surface measurements at limited concentrations. The inferred σ values for the

SC aerosol shows potential for surface tension depression, (−∆σ
σ
' 5%), at concen-

trations greater than 1000 mg C L−1 and are similar to results from [?]. Previous

studies show that at concentrations relevant for activation, (∼ 1000 mg L−1) marine

organics and HUmic-Like Substances (HULIS), can depress surface tension 25-42%

[16, 111, 32], tenfold larger than in the samples of this study.

5.4.2 CCN Activity

Figure 27 shows the supersaturation, s as a function of WC and SC dry diameter,

d. The data for (NH4)2SO4 aerosol has been added for comparison and, consistent

with the expectation that it is highly CCN active, lies to the left of both WC and SC

samples.

The activation slope of completely soluble aerosol is consistent with traditional

Köhler theory and exhibits a d−1.5 dependence (Fig. 27) and [150].

At low supersaturations and dissolved aerosol concentrations(s = 0.5% and [WSOC]

> 1000 mg C L−1), the WC and SC aerosol are assumed to be completely soluble

yet neither activity is parallel to (NH4)2SO4. At higher concentrations the WC and

SC converge, as indicated by a -1.66 slope and -1.53 slope respectively. The WC

aerosol contain material less hygroscopic than sulfate and more hygroscopic than

the SC aerosol; SC has the lowest CCN activity (for a given s the d of the WC is
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Figure 26: Surface Tension Depression as a function of dissolved carbon concentra-
tion. Measurements (closed symbols) and Inferred values (open symbols) of the WC
(triangles) and SC aerosol (squares) are shown as data points. WC and SC curves
(solid blue and green dashed lines, respectively) are based on Szyszkowski -Langmuir
model parameters derived from measurements in Table 21. HULIS data (solid black
line) is taken from [16], marine organic aerosol data (dash-dot grey line) taken from
[32] and dissolved organic matter (solid red line and open circles) from [139] are added
for comparison.
.

greater than SC), and the inferred −∆σ
σ

is small at low supersaturations (Fig. 27).

This is consistent with [85] who found that for a given size particle the majority of

aerosol forming cloud droplets were soluble and the insoluble particles preferentially

remained in the interstitial air. At higher supersaturations (> ∼1%), the WC aerosol

exhibits limited solubility (d−a where a > 1.5) and the SC aerosol shows enhanced

CCN activity as a result of a slight −1∆σ
σ

∼ 5% (Fig. 26).

In addition, if one assumes that the MASE WC and SC aerosol are of a similar

source, the intersection of CCN spectrum suggests that under atmospheric conditions
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i) SC aerosol activated during strong updrafts where supersaturations exceeded 1%

(conditions consistent with the definition of cumulus clouds formed in strong updrafts

[179] and cloud type sampled during MASE); and ii) WC aerosol that forms as a result

of SC aerosol cloud processing, produces organics of more hygroscopic behavior as

supported by evidence of the production of organic acids in [190]. Both WC (Fig.

28a) and SC (Fig. 28 b) increase CCN activity with the addition of (NH4)2SO4.

However in both cases the CCN activity do not surpass that of (NH4)2SO4), again

suggesting neither WC nor SC aerosol contain significant amounts of strong surface

active organic components such as HULIS [16].

5.4.3 Inferred molar volumes and uncertainties

The CCN spectrum of the both WC and SC aerosol that are shifted to the right

of (NH4)2SO4 both suggest that the aerosol that do not disassociate as readily have

chemical components with molar volumes similar or greater than that of (NH4)2SO4

(Table 22). Using a minimum aerosol density of 1.4 g mol−1, the lower limit for

the organic molecular weight in the WC aerosol is estimated to be 157± 28 g mol−1

(Table 23). This value is within range of atmospheric small carboxylic acids (i.e

mono and dicarboxylic acids C2-C9 ∼100 to 200 g mol−1; oxalic, adipic, suberic,

pimelic, azelaic, phthalic acids) and is consistent with the types of organics measured

in marine regions [32, 192]. Though not as surface active, the SC sample most likely

contain polycarboxylic acids such as HULIS, which have been shown to account for

up to 5-25% in marine dissolved organic carbon [32, 87] and may originate from

bubble bursting at the seawater surface [149]. As a result the estimated molar mass

of aerosol is five times as much as the aerosol found within cloud samples. The

aggregate organic molar mass is even larger for the ε is significant ( 0.8), and the

contribution of soluble moles is less than one third of the effective inorganic moles.

As a result, KTA estimates a large Mj = 2413± 536, a value consistent with less
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Figure 28: CCN Activity of MASE samples with the addition of (NH4)2SO4. Ap-
proximate mass fractions of salts are given in percentages. (a) WC sample obtained
within cloud regions. (b) SC sample obtained in sub-cloud regions
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hygroscopic polycarboxilic materials and corroborated by the SC aerosol potential to

depress surface tension. As with other KTA estimates, molar mass values are within

30% uncertainty; the greatest sources of error stem from the FCA parameter, then σ

and chemical composition analysis Table 24 and 25.

Table 24: Molar Volume Sensitivity Analysis for WC Organic Marine Aerosol.

Property x Φx Molar volume
(units)

∆x
(m3 mol−1 x−1) uncertainty (%)

σ (N m−1) 1.38 × 10−3 3.83× 10−3 5.72
ω (m1.5) 4.43 × 10−15 2.59 × 109 12.42
νNH4Cl 0.5 6.43 × 10−6 3.49
νNaCl 0.5 1.54 × 10−6 0.83
ν(Na)NO3 0.5 4.18 × 10−6 2.27
εNH4Cl 1.95 × 10−3 8.50 × 10−4 0.79
ε(NaCl 2.03 × 10−3 8.25 × 10−4 0.80
εorganic 6.36 × 10−3 4.10 × 10−3 2.82
νorganic 0.20 4.39 × 10−5 9.52
Total Uncertainty, % 17.5

Table 25: Molar Volume Sensitivity Analysis for SC Organic Marine Aerosol.

Property x Φx Molar volume
(units)

∆x
(m3 mol−1 x−1) uncertainty (%)

σ (N m−1) 1.32 × 10−3 1.97× 10−2 8.37
ω (m1.5) 4.43 × 10−15 9.89 × 109 14.13
νNH4Cl 0.5 6.35 × 10−5 10.24
ν(NH4)2SO4 0.5 3.74 × 10−6 0.60
ν(NH4)NO3 0.5 2.82 × 10−6 0.45
εNH4Cl 1.95 × 10−3 4.21 × 10−3 2.64
ε(NH4)2SO4 2.03 × 10−3 4.10 × 10−3 2.69
εorganic 6.36 × 10−3 4.63 × 10−3 9.50
νorganic 0.20 7.21 × 10−5 4.65
Total Uncertainty, % 22.2
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5.4.4 Droplet growth kinetics

Figure 29 illustrates the droplet size measurements at the OPC for all supersatura-

tions and samples considered. The flow rate within the instrument was maintained

at 0.5 L min−1 and the sheath to aerosol ratio was 10:1 to generate similar super-

saturation profiles for all data points. Similar to the WSOC droplet data presented

in [14, 55, 139], almost all of the growth droplet data lie within the measurement

uncertainty. Hence the growth kinetics (or water vapor mass transfer coefficient) of

the SC and WC aerosol are assumed to be uniform and similar to that of (NH4)2SO4.

The WSOC SC that contain components of higher molecular weight with mild surface

active characteristics they do not affect the droplet growth kinetics.
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Figure 29: Off-line Droplet size measurements. Within-cloud samples (WC, solid
symbols), Sub-cloud samples (SC,open symbols) and (NH4)2SO4 (solid black line)
wet droplet sizes are plotted for each supersaturation.
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5.5 Summary and implications

CCN activity, chemical composition and droplet growth measurements of within-

cloud and sub-cloud samples collected during MASE 2005 are explored. This work

presents a novel sampling method in combination with offline measurements to eluci-

date similarities and differences of the aerosols collected in and out of stratocumulus

cloud regions. Several analytical techniques exploiting CCN activity are employed to

characterize the thermodynamic properties, chemical composition, and surfactant be-

havior of the organic containing aerosol. The WC aerosol was more hygroscopic than

the SC aerosol and mostly likely contains SOMA formed during cloud processing.

The direct and inferred surface tension measurements show neither sample contained

strong surfactants and as both material is soluble their droplet growth is similar to

(NH4)2SO4. A similar analysis performed in regions where phytoplankton blooms are

prominent may show indicate the presence of strong aerosol surfactants within sub

cloud regions and potentially within cloud regions as well.
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CHAPTER VI

WSOC PROPERTIES FROM CLOUDWATER

COLLECTED DURING GOMACCS 2006

Little is understood about the water-soluble organic composition and properties re-

quired to model droplet growth and predict CCN number. The CCN activity analysis

of cloud water samples provides insight into the thermodynamic properties of ambi-

ently activated organic aerosol. The experimental technique is revisited and applied

to aerosol obtained from a particle-in-liquid sampler (PILS) during the Gulf of Mexico

Atmospheric Composition and Climate Study (GoMACCs) in 2006. The sampling

and experimental strategy employed characterize the potential differences in aerosol

that have been activated within cloud regions (top, middle, and bottom) and below

cloud regions. Specifically, samples are obtained from two inlets; already activated

aerosols incorporated in cloud droplets are first sampled by a counter-flow virtual im-

pactor (CVI) then PILS within cloud regions and sub-cloud and interstitial aerosols

are sampled by the PILS in regions below cloud levels. The molar mass and surfactant

characteristics of the average aerosol constituents are estimated using Köhler theory

analysis. Droplet size measurements are also presented and quantify the water-soluble

growth kinetics of inorganic and organic mixtures in urban environments. The in-

ferred values presented are of particular importance for they can be incorporated into

CCN closure studies and aid in the agreement of predicted and measured values.

Note: This chapter appears as reference [10].
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6.1 Motivation

Aerosol have the potential to indirectly change cloud properties such that increasing

the number of atmospheric cloud-forming aerosols, cloud condensation nuclei (CCN),

may yield a larger number of smaller droplets and brighter clouds for a given amount of

condensable water vapor (otherwise referred to as the “Twomey effect”) [99, 205, 130].

However quantifying the global annual influence of the anthropogenic indirect aerosol

effect is subject to uncertainty [130, 34, 158, 90, 99] mainly due to a lack of under-

standing of the physical based parameters (i.e., chemical composition, hygroscopicity,

growth kinetics etc.,) incorporated in global climate models to constrain cloud droplet

formation [68, 193].

Köhler theory is an ideal and commonly used thermodynamical model used to

predict CCN concentrations. Traditional theory is aptly applied to inorganic salts

and low molecular weight (< 250 g mol−1) hygroscopic species and constrain CCN

concentrations well [41, 159]. Yet the ideal theory is less successful for partially

soluble compounds and less hygroscopic compounds and inorganic/organic mixtures

[41, 159]. This is especially true for ambient predictions in polluted areas [36, 207, 196,

?] that can be influenced by partially soluble organics that may contribute surface

active materials, affect hygroscopicity, dissolution rates, and influence droplet growth

kinetics [64, 35, 60, 45, 184, 74, 140, 12].

The aerosol sampled within cloud regions and below cloud regions can be of sig-

nificantly different organic composition [15]. Cloud processing that produces mono-

carboxylic and dicarboxylic organic acids is known to occur ubiquitously at cloudtop

[190]; whereas sub-cloud aerosol, such as marine organics generated from the bubble

bursting of dissolved matter are more likely to contain weakly hygroscopic, polycar-

boxlic organics of considerably larger (> 250 g mol−1) molar mass [146, 147, 32,

139, 15, 171]. These differences in chemical composition and hygroscopicity will ef-

fect CCN behavior, cloud droplet number and the indirect effect and thus must be
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explored.

During the 2006 Texas Air Quality Study (TexAQS) and Gulf of Mexico Atmo-

spheric Composition and Climate Study (GoMACCS), research flight experiments

aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS)

Twin Otter probed aerosol cloud properties and radiative effects. Chemical, physical,

and optical, properties of the aerosol in the Eastern Texas and Gulf of Mexico region

were investigated; in particular the properties and behavior of urban and industrial

aerosol that affect regional haze, the aerosol direct and indirect radiative forcing of

climate were explored.

From measurements of in-situ samples, we investigate the behavior of urban

aerosol that has already been activated within cloud and out of cloud using the

experimental and analytical techniques first presented with marine cloud water sam-

ples in stratocumulus cloud regions [15]. In this previous work, it was shown that

cloudwater aerosol are more hygroscopic than the type found below cloud [15]. The

water-soluble component of already-activated aerosol are of particular interest be-

cause their thermodynamic organic properties will help constrain estimates of cloud

droplet number. The water-soluble properties of the aerosol obtained below cloud

will aid in the agreement of CCN measurement and predictions for ground-based and

airborne CCN Closure studies [?].

6.2 Experimental Methods

6.2.1 In-Flight Measurements

6.2.1.1 Aerosol sampling

For this study, we investigate aerosol samples obtained on seven research flights (Ta-

ble 26). These flights sampled aerosol in key pollutant regions of Eastern Texas:

downwind of the Parish Power Plant plume, in the Houston Ship Channel (a con-

glomerate of oil refineries located close to the city, in the Gulf Air stream, and the
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metropolitan area of Houston, Fig. 30).

As with the cloud water experiments during the Marine Statrocumulus Experi-

ments (MASE I), two different inlets were employed; one for sampling cloud droplets;

activated aerosols within cloud (AWC) regions and another for sampling in clear

skies, (above and below cloud regions, AC and BC respectively) and interstitial

aerosol within the cloud (IWC). The inlet of the counter-flow virtual impactor (CVI)

[133, 144]) collected cloud droplet residuals (AWC). The sub-micrometer aerosol

chemical composition was subsequently measured by a particle-into-liquid sampler

(PILS, Brechtel Manufacturing Inc) [189, ?, 191] and collected for offline measure-

ments. IWC, AC and BC samples collected within cloud and in clear skies were

sampled from the PILS inlet, measured for chemical composition and then collected

for analysis. Some samples are not obtained near cloud regions, as a result their

names are characterized by the location with which the PILS sampled and collected

(i.e., Transit refers to aerosol obtained over the Gulf as the aircraft flew to its intended

destination, Ship Channel and Plume are collected within their respective regions and

the Gulf air sample is characteristic of a cleaner air mass (Fig. 31).

6.2.1.2 Chemical composition Measurements

In the PILS, submicrometer-sized ambient particles are exposed to supersaturated

steam and grown into droplets sufficiently large to be collected by inertial impaction.

Samples are deposited in vials held on a rotating carousel; each vial contains material

representing a period of time between 3.5 and 5 minutes of flight. The contents

of the vials are subsequently analyzed using a dual IC system (ICS-2000 with 25 µL

sample loop, Dionex Inc.) for simultaneous anion and cation analysis. To preserve the

samples for offline measurements, each vial was spiked with 5µL of dichloromethane

and frozen.

The detection limit, calculated as the average concentration plus three standard
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(b)

(a)

(c)

Figure 30: An aerial view of the sampling locations studied. (a) Downtown Houston
(b) Houston Ship Channel (c) Clouds Sampled during TexAQS/ GoMACCS
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deviations of the smallest detectable peak for each ion in the IC baseline noise (con-

verted to air-equivalent units), is < 0.1 µg m3 for the inorganic ions (Na+, NH+
4 ,

K+, Mg2+, Ca2+, Cl−, NO−
2 , NO−

3 , and SO2−
4 ) and < 0.01 µg m3 for the organic

acid ions (dicarboxylic acids C2-C9, acetic, formic, pyruvic, glyoxylic, maleic, malic,

methacrylic, benzoic, and methanesulfonic acids). The average aerosol composition

is presented in Table 27.

6.2.2 Off-line Measurements

Aerosols from the TexAQS/GoMACCS samples are atomized and regenerated offline.

CCN activity and droplet sizes are measured with an identical experimental set-up

and analysis as presented in [?]. Such that samples are atomized with a collision-

type (University of Minnesota) atomizer operated, subsequently dried, charged clas-

sified with a Differential Mobility Analyzer (DMA 3081). The classified monodisperse

aerosol is then split and passed though a TSI 3025A Condensation Particle Counter

(CPC) for measuring aerosol number concentration (CN). CCN concentrations are

measured in the other stream by a Droplet Measurement Technologies Continuous-

Flow Streamwise Thermal Gradient CCN Counter (CFSTGC) [122, 164].

Scanning mobility CCN Analysis (SMCA) [142] is used to obtain size-resolved

CCN activity and growth kinetic measurements for small sample amounts. At a fixed

supersaturation, s, the ratio of CCN to CN is measured for a range of dry mobility

diameter (between 10 and 250 nm). The SMCA data is fit to a sigmoidal curve,

neglecting the impact of doubly charged particle. The particle dry diameter size, d,

for which 50% of the particle are CCN represents the dry diameter of the particle with

critical supersaturation, sc, equal to the instrument supersaturation. The activation

experiments are repeated (a minimum of four times) at a given s, and for varying

s from 0.2 to 1.2%. The dependence of d with respect to s is used to infer organic

solute molar volume [16, 150] and the presence of surfactants [14].
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Size-resolved droplet growth of wet particle size Dp > 1 µm are measured with

the DMT with an optical particle counter (OPC). Aerosol exposed to the similar s

profiles within the instrument, will grow to the same wet diameter, Dp, provided that

the mass transfer coefficient of the water vapor to the growing droplet and the critical

supersaturation is the same [141, 164, 122]. The droplet sizes of WSOC are compared

to droplet sizes measured from pure (NH4)2SO4 so that the growth kinetics may be

quantified.

6.3 Analytical Theory

6.3.1 Köhler Theory Analysis

Köhler Theory Analysis (KTA) [150] is used to infer molar volumes (molecular weight,

Mo, over density ρo) of the aggregate organic component, o, of CCN. As previously

shown, the analysis employs a CCN activity spectrum (i.e., measurements of s versus

d) to solve for the Fitted CCN Activity parameter (FCA), ω.
(

Mo

ρo

)
is also a function

of the molecular weight and density of water, of Mw and ρw respectively, the universal

gas constant, R, the ambient temperature, T ,the droplet surface tension at the point

of activation, σ, the mass fraction, m volume fraction ε and the effective vant Hoff

factor ν is for organic components, o, and inorganic components, i. mi is assumed

to be known from measurements and inferred from ionic concentrations. Using an

iterative procedure, KTA can the surface tension at the droplet surface, σ for salted

samples [139, 14]. If enough salt is present in the sample, the contribution of organic

solute is small and the effect of the organic on CCN activity amounts to its impact

on surface tension [14].

6.4 Results

The main component of aerosol mass collected during the study are inorganics. On

average sulfates make up 84% ± 14% of the water-soluble fraction observed in the

Texas region [?]. Sulfates from industrial and urban sources are the most abundant
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Table 28: KTA properties of the Samples Studied

ω (M
ρ )

aerosol
M

Sample Name (m1.5) (m3 mol−1) (g mol−1)
RF2 CVI 4.12 × 10−14 6.05 × 10−5 76.5
RF2 Transit 4.68 × 10−14 1.26 × 10−4 121.2

RF4 CVI 3.98 × 10−14 6.97 × 10−5 71.5
RF4 BelowCloud 4.60 × 10−14 7.01 × 10−5 95.6

RF7 ShipChannel 4.93 × 10−14 8.29 × 10−5 137.2
RF7 Plume 4.96 × 10−14 9.22 × 10−5 111.0

RF8 GulfAir 5.23 × 10−14 9.82 × 10−5 123.6

RF9 CVI 5.31 × 10−14 9.62 × 10−5 127.3
RF9 BelowCloud 4.92 × 10−14 7.43 × 10−5 109.3
RF9 AboveCloud 5.42 × 10−14 9.05 × 10−5 132.7

ions in the data presented (Table 27). As a result, the average properties from all

flights show that the CCN are very hygroscopic, of low molecular weight and behave

a lot like sulfate (Fig. 32 and Table 28).

The CCN activity of samples obtained during RF-2 concur with [15] and find that

the AWC contain more hygroscopic materials than aerosol sampled over the Gulf.

The estimated molar masses of the CCN are statistcally different (they are not the

within the typical 30% uncertainty [139, 16, 14]) and suggest that the AWC contains

low molecular weight species, most likely to be organic acids.

During RF-4 the cloud sampled is close to the sulfate plume source. The mass

loading of water-soluble components measured BC is almost twice that measured WC

(Table 27). Despite the addition of water-soluble mass in the BC aerosol, AWC shows

enhanced CCN activity, surpasses that of (NH4)2SO4 aerosol, and likely contains

surface active materials (Fig. 32). The estimated molar mass of the AWC and BC

aerosol are within uncertainty of each other and thus are presumably of similar source.

However the differences in the small water-soluble organic fraction, brought about by
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cloud processing, can account for the effects of reduced hygroscopicity in BC sample

and enhanced surfaced activity in AWC samples.

RF-7 that characterized industrial plumes and ship channel sources contained the

most soluble mass (Table 27). Consistently we observe that the samples obtained

near the Parish Power Plant (RF-4,7,9) all behave like sulfate. Furthermore, the

CCN activity of RF-7 suggests CCN from industrial and urban plumes are alike.

RF-8 that studied cleaner air masses from the gulf region are more likely to contain

sea-salt sulfates and dissolved organic marine materials. The average CCN material is

less hygroscopic than sulfate and a slight enhancement of surface activity is observed

in CCN measurements (Fig. 32).

The droplet growth of water-soluble material does not differ from (NH4)2SO4

(Fig. 33). In addition the aerosol collected within and out of cloud regions grows to

similar sizes. This suggests that droplet formation in urban areas where abundant

water soluble mass is present is similar regardless of location or plume source.
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6.5 Summary and Implications

Use of a CVI and PILS is a viable method we can use to assess ambient CCN properties

and infer aerosol composition. The data set from the PILS and the estimated molar

mass of the aerosol presented suggests that the majority of components from the

sampled regions are low molecular weight species ( < 250 mol−1 ). The organic mass

fraction can vary up to 50% in this region, and consequently the resulting molecular

weight of the organic component as inferred from the overall molar mass of the aerosol

can vary on the order of ∼100 to ∼1000 g mol−1, depending on the dissociatative and

hygroscopic properties. This quantity will be constrained in future work. Though

CCN Activity varied between locations, the organic constituents in the water-soluble

component do not alter droplet growth kinetics. Regardless of composition, the water-

soluble fraction grows like (NH4)2SO4, and suggests that any kinetic limitation on

droplet growth beyond what is expected for sulfate aerosol is likely from the presence

of insoluble species (i.e., not water soluble surfactants). Additional Aeroodyne Mass

Spectrometer data, not yet available from this mission will aid in quantifying soluble

and insoluble organic influences.
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CHAPTER VII

CLOUD CONDENSATION NUCLEI IN URBAN PLUMES:

AIRBORNE CCN MEASUREMENTS AND CLOSURE

DURING THE TEXAS AIR QUALITY STUDY OF 2006

In August through October, airborne measurements of cloud condensation nuclei

(CCN) were conducted with a Continuous-Flow Streamwise Thermal Gradient CCN

counter aboard the National Oceanic and Atmospheric Administrations (NOAA) WP-

3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric

Composition and Climate Study (TexAQS/GoMACCS) over eastern Texas and the

northwestern Gulf of Mexico. Many of these experiments were conducted downwind of

the Houston, Texas ship channel and were heavily influenced by industrial and urban

pollution sources. The time series of aerosol measurements show the evolution of CCN

downwind of plumes and suggest the ageing of aerosol via sulfate deposition, coating

or coagulation, or organic oxidation may enhance CCN activity. CCN measurements

are compared to predictions derived from traditional Köhler Theory. Mixing state

(internal/external) assumptions along with bulk and chemical size-resolved data are

used to constrain and improve estimates of CCN concentration in the closure study.

Results concur with previously published literature that suggest that chemical com-

position size resolved data may improve predictions. Our predictions further indicate

that in discrete cases organic properties such as molecular weight, surface tension,

hygroscopicity, and effect solute disassociation may enhance the agreement between

measurements and predictions.

Note: This chapter appears as reference [11].
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7.1 Motivation

The global annual influence of the anthropogenic indirect aerosol effect is subject to

large uncertainties [130, 34, 158, 90, 99]. Much of this uncertainty is due to a lack of

understanding of the physical based parameters (e.g., chemical composition, hygro-

scopicity) incorporated in global climate models to constrain cloud droplet formation

[68, 193]. As a result several studies have experimentally investigated CCN properties

on regional and global scales to improve model parameters [185, 33, 136, 196, ?, 25,

209, 163, 36, 207, 40, 52, 217].

Köhler theory, an ideal thermodynamical model and the most popular model used

to predict CCN concentrations, describes the formation of cloud droplets from CCN

[115]. Köhler theory can be aptly applied to inorganic salts and low molecular weight

hygroscopic species to constrain CCN concentrations well [41, 159], yet is less success-

ful for partially soluble compounds that are less hygroscopic and inorganic/organic

mixtures [41, 159]. This is especially true for ambient predictions in polluted areas

[36, 207, 196] that can be influenced by partially soluble organics that may contribute

surface active materials, affect hygroscopicity, dissolution rates, and influence droplet

growth kinetics [64, 35, 60, 45, 184, 74, 140, 13].

The degree of agreement between field measurements and predicted CCN con-

centrations values is often (and will be henceforth) referred to as its CCN closure; a

closure study tests the theoretical understanding of CCN activation and highlights

appropriate simplifying assumptions that will improve predictions.

Undoubtedly, knowing the amount of water vapor necessary for activation, the

critical supersaturation, sc , is crucial for understanding CCN theory [?] and for

reliable ambient measurements; the key aerosol parameter for obtaining good clo-

sure is size [53, ?]. Yet in the presence of organics, predictions can be significantly

improved by incorporating size-resolved chemical composition, soluble fraction, and

hygroscopicity data [?, 136]. Size-resolved chemical composition data is commonly
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measured with an aerosol mass spectrometer (AMS) and additional chemical com-

position and soluble fraction data maybe incorporated from particle-in-liquid sam-

plers (PILS). Cloudwater samples obtained from PILS will also be of use to infer

water-soluble organic molar mass and surface tension from CCN activity measure-

ment [15, 10]. Organic hygroscopic properties that constrain droplet growth, may be

measured by i) a Hygroscopic Tandem Differential Mobility Analyzers (HTDMA) or

with ii) a humidograph system that exploits light scattering data at sub-saturated

relative humidities, e.g., [40, ?]. The growth parameters are subsequently applied

to supersaturated conditions for CCN estimates [40, ?, 185]. Incorporating organic

surface tension depression will also improve predictions [33]. As suggested by [196]

and [13], in polluted cases a more robust closure may be achieved by including the

effects of growth kinetics. Utilizing several or any combination of these methods can

achieve closure to within reasonable uncertainty [217, 52, ?, 136].

Many closure studies are ground based measurements, e.g., but not limited to

[30, 165, 217, 26, 136, 52, 25, 33, 161], a few airborne CCN measurements have been

presented [185, 186, 36], and even fewer with fast time resolved measurements em-

ploying a Continuous-Flow Stream-wise Thermal Gradient CCN Counter (CFSTGC)

[207]. For this study, airborne CCN concentrations were measured with a CFSTGC

in Houston, Texas, USA, an urban and industrial area dominated by sulfates and

organics [218, 63]. The evolution and ageing of CCN in plumes are presented. The

measurements are compared to predictions that incorporate mixing state assump-

tions and measurements of aerosol size, bulk and size-resolved chemical composition.

Droplet size data is presented and growth kinetic behavior is qualitatively assessed.

Lastly, we determine the simplest of experimental, sampling techniques and modeling

schemes that would best characterize and predict urban CCN concentrations.
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7.2 Observational Data Set and Instrumentation

7.2.1 Study location and Flight Trajectories

The Texas Air Quality Study (TexAQS) and Gulf of Mexico Climate Change Study

(GoMACCS) of 2006 (the second in the TexAQS series) used several platforms (e.g.,

ground based, airborne, ship, and satellite measurements) to probe the atmospheric

chemistry and understand the transport of pollutants in the eastern Texas and North-

ern Gulf of Mexico region (Fig. 34). Among these platforms, the National Oceanic and

Atmospheric Administration (NOAA) WP-3D aircraft explored physical and chemical

aerosol characteristics of pollutants during the months of September through October

in 2006.

The studied region is characterized by a strong petrochemical, industrial and

urban influence; the Houston ship channel hosts several petrochemical refineries and

numerous powerplants (e.g., Parish, Big Brown, Limestone) can be found in the

Houston and Dallas metropolitan region (Fig. 34). Like other urban environments,

much of the aerosol is dominated by sulfates and organics [218]. Specifically, the work

of [63], simulate aerosol formation using the U.S Environmental Protection Agency’s

models-3 Community Multiscale Air Quality model (CMAQ) and ground-based and

aircraft aerosol measurements of TexAQS 2000, predict roughly 30% sulfate, 32%

organics (including elemental carbon (EC)) in the particulate phase. Roughly 10%

ammonium is also found in the total PM2.5 mass. As a result the organic component

are a significant component in urban aerosol and can potentially alter ideal CCN

behavior. We report CCN measurements for 10 flights that characterized aerosol over

the eastern Texas during the months of the mission and highlight several findings

from a few of these days.
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7.2.2 Low Turbulence Aerosol Sampling Inlet

Aerosol instrumentation aboard the WP-3D sampled from a low turbulence inlet

(LTI) [96, 213]. The LTI produces a laminar deceleration of the airstream with

calculable effects on the particle concentrations. There is a potential for inertial

enhancements of particle concentrations with the LTI and particle losses within the

tubing however these issues are nominal for submicron aerosol measurements [213, 24].

7.2.3 Aerosol Size Measurements

Three instruments, coupled with a nonlinear inversion algorithm [132], measure the

aerosol dry size distribution from from 0.003 to 8.3 µm diameter at a rate of 1 Hz

aboard the aircraft. The measurement and analysis technique are identical to that

employed aboard WP3-D during the New England Air Quality Study (NEAQS) of

2004 [24]. As in NEAQS 2004, the submicron urban aerosol dominates the particle

number and surface area. The instrument specifically used to measure the ultra-fine

particles (diameters < 0.1 µm), is composed of five condensation particle counters

(CPC). The sample flowrate was maintained at 45 cm3 s−1 and the sample air was

warmed to 35 ◦C prior to detection, reducing the relative humidity (RH) for more

than 90% of the samples to < 50% RH. Size distributions were derived from the

observed concentrations in the five size classes. Characterized with a 50% detection

efficiency, the submicron aerosol is classified at 0.004, 0.008, 0.015, 0.030, and 0.055

µm sizes. Particles size distributions within the fine mode were classified with a sec-

ond instrument, a modified Lasair 1001 laser optical particle counter (OPC, Particle

Measuring Systems Inc., Boulder, CO, USA). Monodisperse aerosol were size selected

in 64 size bins over a diameter range from 0.12 to 0.95 µm sampled at 5 cm3 s−1. A

robust description of the instrument methodology and data analysis is provided in

[24].
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7.2.4 Black Carbon and Carbon Monoxide Measurements

Carbon monoxide (CO) and black refactory elemental carbon (BC) are anthropogenic

tracers that can be used to quantify the origin of air mass in urban regions. BC

aerosol, that is generated from fossil fuel and biomass burning emissions, is measured

by a Single-Particle Soot Photometer (SP2). The SP2 uses an intense laser beam

to vaporize the particles and detect the wavelength of resolved thermal radiation

emissions to provide qualitative information on the BC mass of an individual particle

in the size range of 0.2-1 µm. [178, 21, 195, 71]. CO is also measured aboard the

aircraft every 1 second and reported in terms of ng m−3 [94].

7.2.5 Size Resolved Chemical Composition Measurements

The Aerodyne aerosol mass spectrometer (AMS), operated in mass spectrum mode

measures size-resolved mass distributions and total mass loadings of non-refractory

chemical species from submicron particles [102, 5, 103]. Within the instrument, the

sampled particles are focused into a vaporizer located within the electron impaction

ionization source region of a quadrupole mass spectrometer. When it is operated

in the mass spectrum mode, mass spectra from m/z 1300 can be collected from

several particles with good time resolution without particle size information. By

extracting the mass spectral ion signals for various species, it has been shown to

yield quantitative aerosol compositions for sulphate, nitrate, ammonium and total

organic particulate matter [3, 4, 18, 177]. As expected the dominate composition in

the fine particulate mode are sulfates and organics in the Eastern Texas Region. For

our analysis, only soluble volume fraction, and not size information is extracted and

applied to CCN closure.

7.2.6 CCN Measurements

A Continuous-Flow Streamwise Thermal Gradient CCN (CFSTG) counter developed

by Droplet Measurement Technologies (DMT) measured CCN concentrations aboard
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the NOAA WP-3D aircraft. Within the DMT CFSTG instrument, supersaturation,

s is generated by applying a constant temperature gradient to the instrument walls;

the difference in thermal and water vapor diffusivity generates a constant s at the

centerline [164, 122, 168]. A heat transfer and fluid dynamics model of the CCN

instrument developed in [141] and [122] is used to precise the actual s, caused by

variations that arise from temporal and pressure fluctuations (mainly due to changes

in altitude during flight) in the instrument profile . Calibration data with (NH4)2SO4

is used to characterize the heat transfer across the wetted walls of the instrument and

the fitted parameters are subsequently applied to calculate instrument s [122].

The DMT CFSTG CCN counter sampled from the LTI at a flow rate 1000 cm3

min −1 and is capable of measuring CCN concentrations and droplet sizes between

controlled supersaturations at 0.07% and 3% at a rate of ∼ 1 Hz [164]. To avoid

instrument overheating during the hot Texas summer, the temperature gradient, ∆T

was maintained below <∼ 10 ◦K. During the earlier flights of the TexAQS 2006

mission, the temperature gradient, ∆T was kept constant at 4.2 ◦K (Table 29). For

the later research flights, three different ∆T were cycled in 3 minute increments

to explore measurements at different s. The time required to achieve temperature

stability within the instrument for the smallest ∆T exceeded 2.5 minutes; thus the 30

second averaged data from the lowest s has been excluded from the following analysis.

7.3 Data Analysis and CCN Prediction

CCN closure was calculated using DMT CFSTG CCN measurements at 1 Hz, dry par-

ticle size distribution measurements at 1 Hz, and aerosol mass spectrometry (AMS)

measurements at 0.1 Hz. Data from the CCN counter were filtered to remove tem-

perature and pressure transients. Temporal variation between the measured CCN

concentrations and particle size distributions arising from different instrumental res-

idence times was accounted for by visually aligning the measured CCN counts to the
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total CN counts as obtained from the integrated size distributions. It was observed

that the size distribution measurements usually led the CCN measurements by ap-

proximately 10-15 seconds. For the closure analysis, all measurements were averaged

over 30-second intervals to further reduce data noise.

7.3.1 The Application of Traditional Köhler Theory

Köhler theory is used to predict the fraction of the total particle distribution that

is CCN active at a given supersaturation for particles of known composition. The

critical activation diameter, dc, is a function of the ability of aerosol composition to

add solute (Raoult term) and reduce curvature (Kelvin Term) to depress the vapor

pressure equilibrium at the droplet surface. dc is calculated at each measurement

timestep using Eq. 32 [136, 179].

dc = s2 27

256

(
ρwRT

Mwσ

)3 (
ρs

Ms

Mw

ρw

νsεs

)−1/3
(32)

where supersaturation, s, is that of the CCN counter at each timestep, as deter-

mined from instrument calibrations with (NH4)2SO4. R is the universal gas constant,

T is the average instrument temperature, σ is the droplet surface tension at the point

of activation, Ms is the molar mass of solute, Mw is the molar mass of water, ρw is

the density of water, νs is the effective vant Hoff factor, and εs is the volume fraction

of soluble solute.

εs, is calculated as follows;

ε =

ms

ρs

ms

ρs
+ 1−ms

ρs

(33)

where ms is the soluble mass fraction and ρs is the density of the soluble components.

The predicted CCN concentration is the sum of particles measured in the dry size
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distributions whose diameters are greater than or equal to the critical activation diam-

eter; the sum is subsequently compared to the measured CCN concentrations to deter-

mine the degree of closure. 5 different schemes are employed, (PRSULFATE, BULK-

EX, BULK-INT, SR-EX, SR-INT), that assume different mixing states and soluble

properties of the aerosol size distribution as outlined in Sections 7.3.1.1, 7.3.1.2, 7.3.1.3

and 7.3.1.4. The PRSULFATE scheme assumes that all aerosol are soluble and have

properties of sulfate (M = 132 g mol −1, ρ = 1500 kg m −3). In the following closure

methods, organics are assumed to be effectively insoluble and not surface-active (σ

= 72 m Nm−1, the value of water); although, this latter assumption can be relaxed

by incorporating the empirically-determined surface tension depression of the organ-

ics obtained, for example, from measurements of PILS samples [10]. Furthermore,

the soluble inorganic fraction is assumed to be entirely composed of ammonium sul-

fate with an average effective van’t Hoff factor of 2.5 [23] (measured concentrations

of other inorganic in the aerosol phase, such as nitrate, were observed to be negli-

gible compared to ammonium and sulfate fractions). The aerosol composition are

treated as either internal or external mixtures. Internally mixed aerosol are defined

by homogeneous composition whereas externally mixed aerosol are considered to be

of heterogenous nature and can be treated as completely separate insoluble and sol-

uble fractions; the terminology can be applied to entire aerosol size distribution or

individual bin sizes as follows:

7.3.1.1 BULK-EX

The BULK-EX scheme assumes an external aerosol mixing state and applies bulk

composition measurements to the Köhler theory model. At each timestep, dc, is

calculated first by assuming εs = 1 in Eq. 33. The average mass fractions of soluble

salts,ms, and insoluble organics,(1−ms), from the entire size distribution are obtained

from AMS data and εs is calculated using Eq. 33. The total number of particles where
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d > dc are multiplied by εs to obtain the predicted CCN number at each measurement

timestep.

7.3.1.2 BULK-INT

The BULK-INT scheme assumes an internal aerosol mixing state and applies bulk

composition measurements to the Köhler theory model. At each timestep, the average

mass fraction of soluble salts,ms, and insoluble organics,(1 − ms), from the entire

size distribution are obtained from AMS data and εs is calculated using Eq. 33.

Subsequently, dc, is calculated using Eq. 33. The predicted CCN number is then the

sum of all particles in size bins where d > dc.

7.3.1.3 SR-EX

The SR-EX scheme assumes an external aerosol mixing state and applies size-resolved

composition measurements to the Köhler theory model. At each timestep, dc, is

calculated first by assuming εs = 1 in Eq. 33. The average mass fractions of soluble

salts,ms, and insoluble organics,(1 − ms), of size d > dc are determined and εs is

calculated for each of these bins. The predicted CCN concentration is the sum of the

number of particles in each bin size d > dc multiplied by the εs of that each sizebin.

7.3.1.4 SR-INT

The SR-INT scheme assumes an internal aerosol mixing state and applies size-resolved

composition measurements to the Köhler theory model. The average mass fractions

of soluble salts,ms, and insoluble organics,(1 −ms), are determined for all size bins

and εs is calculated for each of these bins. Subsequently, dc, is calculated for every

size bin with Eq. 33. The predicted CCN number is then the sum of all particles in

size bins where d > dc.
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7.3.2 Closure Agreement: Predictions vs Observations

Predictions are presented using the 5 schemes described above and are compared to

observations graphically. The extent of closure agreement (excellent agreement being

predicted equal to measured values and within 5% uncertainties) is reported in terms

of two error metrics, the Normalized Mean Error (NME) and the Normalized Mean

Bias (NMB) (Table 30). NME and NMB are described as follows;

NME =

n∑
i

|Pi −Oi|
n∑
i

Oi

and NMB =

n∑
i

(Pi −Oi)

n∑
i

Oi

(34)

where Pi is each predicted value and Oi is the measurement at each timestep, i.

The NME indicates the degree of scatter between predictions and observations (small

values suggest little if any scatter) and the NMB shows the degree of systematic errors

(biases) between the predicted and measured values; a negative NMB value shows

that the model underpredicts and positive values suggests overprediction. Predictions

are calculated for dates where size distribution and chemical composition data are

available.

7.4 Results and Discussion

Plumes within the Houston area can be broad and air masses may are comprised of

a mixture of urban, ship channel, biogenic, and power point plume influences. The

background air in the region is a “soup” of pollutants from these various sources that

make it difficult to quantitatively assess the ageing of the aerosol. Unlike ground

based measurements, the aircraft’s sampling strategy at different points downwind

of the plume does not correspond to a single time of emission; one transect might

intersect a plume that was emitted during morning rush hour, and the next farthest

transect might have been emitted in the early morning hours. As a result we focus on

a few case studies and highlight significant shifts in the evolution of CCN downwind
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Table 30: Closure Analysis for TEXAQS 2006 Data Set.
Research

Flight
Date s Error PRSULFATE SR-INT SR-EXT BULK-INT BULK-EXT

#1 September 20 0.23% NME (%) 17.4 NAMS NAMS 51.3 79.1
NMB (%) 5.66 NAMS NAMS -51.3 -79.1

#2 September 21 0.23% NME (%) 22.0 NAMS NAMS 32.4 60.7
NMB (%) 5.12 NAMS NAMS -27.2 -60.5

#3 September 25 0.28% NME (%) 39.3 57.3 80.7 50.6 78.8
NMB (%) -22.1 -56.1 -80.7 -49.4 -78.8

0.38% NME (%) 38.0 54.3 82.6 47.6 79.5
NMB (%) -21.5 -53.3 -82.6 -47.5 -79.5

#4 September 26 0.28% NME (%) 18.3 53.6 76.2 40.0 68.7
NMB (%) 0.06 -53.2 -76.2 -39.4 -68.7

0.38% NME (%) 15.7 49.8 77.0 41.2 71.4
NMB (%) -11.5 -49.7 -77.0 -41.0 -71.4

#5 September 27 0.28% NME (%) 11.0 35.0 67.3 30.1 67.2
NMB (%) -2.68 -34.7 -67.3 -29.7 -67.2

0.38% NME (%) 9.47 34.7 69.7 29.8 68.2
NMB (%) -6.58 -34.4 -69.7 -29.8 -68.2

#6 September 29 0.28% NME (%) 10.8 36.5 69.8 21.7 59.1
NMB (%) 7.79 -36.0 -69.8 -20.9 -59.1

0.38% NME (%) 7.96 37.4 72.0 29.0 63.6
NMB (%) -1.77 -37.3 -72.0 -28.8 -63.6

#7 October 05 0.28% NME (%) 12.0 33.9 68.3 21.3 55.4
NMB (%) -7.56 -33.7 -68.3 -21.0 -55.4

0.38% NME (%) 11.8 33.5 71.9 23.0 58.4
NMB (%) -9.29 -33.3 -71.9 -22.5 -58.4

#8 October 06 0.28% NME (%) 10.28 NAMS NAMS 22.3 68.4
NMB (%) 7.79 NAMS NAMS -21.5 -68.4

0.38% NME (%) 7.52 NAMS NAMS 25.9 69.7
NMB (%) -1.59 NAMS NAMS -25.7 -69.7

#9 October 08 0.28% NME (%) 7.48 NAMS NAMS 21.0 63.6
NMB (%) -1.03 NAMS NAMS -21.0 -63.6

0.38% NME (%) 5.14 NAMS NAMS 20.3 64.1
NMB (%) -2.60 NAMS NAMS -20.3 -64.1

#10 October 10 0.28% NME (%) 19.5 NAMS NAMS 7.61 54.5
NMB (%) 19.3 NAMS NAMS -1.81 54.5

0.38% NME (%) 10.5 NAMS NAMS 9.40 55.5
NMB (%) 9.71 NAMS NAMS -8.56 -55.4

NAMS = No AMS Data Available
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Figure 35: Flight Track of Research Flight #1 on September 20. Aircraft Position
is plotted as a function of CN concentrations and the BC/CO ratio. The marker size
reflects total CN concentrations and the WP3-D transects plumes blown by winds
from the east.

of plumes. Closure from the different models schemes is used to quantify the extent

to which horizontal mixing of existing pollutants effect freshly emitted plumes and

CCN behavior.

7.4.1 Research Flight #1 September 20

Research flight #1, like flights 1-5, 7 and 8, was a 6.5 hour flight that focused on the

daytime urban atmospheric chemistry and probed aerosol characteristics during the

height of the boundary layer. The WP3-D, departed in the eastward direction from

the field base at 3:54:00PM Coordinated Universal Time (UTC), traveling westward

in a zig-zag flight pattern across industrial areas in the region. The aircraft transects

two significant plumes (aerosol concentrations > 50×103 cm−3) transported from

east to west across the region (Fig. 35). The highest CN concentrations are observed

exiting the ship channel and downtown areas. The time series data indicates that
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droplet size are plotted as a function of UTC Time. Predicted values are calculated
with the PRSULFATE scheme.

the aerosol concentration varies greatly during the flight (on the order of 1 order of

magnitude, ∼ 104 to ∼ 105, Fig. 36). Yet CCN concentrations remain fairly constant

and account for roughly 10% (and even less in freshly emitted plumes) of the total CN

population. It is presumed that much of the aerosol number on this day is dominated

by sulfates in the superfine mode that are smaller than dc, the organic components

are more likely to have influence in size ranges d > dc.

In the absence of size-resolved chemical composition measurement, the best closure

is achieved using the PRSULFATE prediction scheme (Table 30). Small changes

in instrument s during the flight (∆s <0.01%, Fig. 36) do not significantly affect

measurments, however as the aerosol transects plumes and CN counts increase, closure

agreement shifts (Fig. 37); aerosol in the background “Houston soup” treated as pure

sulfate is overpredicted and contributes significantly to the positive PRSULFATE

5.66% NMB. Even though good closure is achieved (to within 20% error), better
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closure may be achieved if background organic aerosol are not treated as completely

soluble with properties of sulfate. At the other limit, treating the contributions of

organics as insoluble (BK-INT and BK-EXT) severely underpredicts CCN counts and

worsens predictions (NMB and NME < -50%) for all measured aerosol.

The aerosol measured in the downtown and ship channel must therefore be water-

soluble. The external mixing state assumption worsens predictions and suggests that

for the best closure partially soluble organics must be treated as homogenous mixtures

with sulfate. In addition, within plume regions (CN > 50×103 cm−3), the PRSUL-

FATE closure agreement is best (Fig. 37). This may indicate that enhanced sulfate

number in the superfine mode can act as a coating or facilitate the water-soluble

properties (e.g, hygroscopicity, σ) of the organic aerosol. Research flight #1 suggests

good closure can be achieved with the simplest of measurements and analysis; the

instrument supersaturation is kept constant and size distribution and bulk chemical

properties are the only other speciation data measured.

7.4.2 Research Flight #2 September 21

As with research flight #1, flight #2 also characterizes Houston urban and ship chan-

nel plumes (Fig. 38). The total CN concentrations are significantly higher in flight

#1 than #2 (Figs. 36 and 39), for the aerosol plume intensities are greater. Research

flight #2 is of particular interest because an obvious shift in CCN behavior is observed

upwind of the plume after 7:00PM UTC (Figs. 36). Early on and close to the plume

sources, CCN concentrations remain fairly stable and do not follow variances in CN

concentration. As assumed in flight #1, close to the source the dominate mode of

particles are ultrafine and not of relevant CCN size at the measured s. After signif-

icant dilution effects downwind (observed by the decreasing CN concentration trend

in transects of the plume, Fig. 39), measured CCN concentration increase and have

similar variance as CN concentrations. The closer agreement between measured CN
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and CCN number concentrations indicates that aerosol have grown, the size distribu-

tion has shifted to the CCN relevant sizes, and ageing in the form of coagulation or

either horizontal mixing with background airmass of larger aerosol sizes has occurred

downwind of the plume.

The overall closure for flight#2 is good assuming PRSULFATE (NMB= 5.12%,

NME= 22.0% and Fig. 40a) and worsens with other schemes that assume an insoluble

organic component. Again the CCN measured in background air tend to overpredict

suggesting that the organics in the background are partially soluble or are most likely

of larger molecular weight than (NH4)2SO4. Low CCN concentrations (< 1500 #

cm−3) regardless of CN concentrations, measured close to the source agree well with

PRSULFATE, BK-INT, and BK-EXT predictions; though size-resolved composition

is unavailable, it can be presumed that the organic component is not as influential

earlier on in the plume transects and becomes more so as horizontal mixing and

dilution processes from the background “soup” influence the plume.
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Figure 39: Research Flight #2, September 21 Time Series. Aircraft altitude, in-
strument supersaturation, measured CN and CCN concentrations and droplet size
are plotted as a function of UTC Time. Predicted values are calculated with the
PRSULFATE scheme.

7.4.3 Research Flight #3 September 25

During research flight #3, the WP3-D aircraft first headed north to Dallas and then

made its way south towards the Houston metropolitan area. The daytime flight

probed the mid-morning aerosol in the Dallas metropolitan area, emissions from the

larger power plants in the area (Big Brown and Limestone) and the afternoon aerosol

composition in the Houston Metropolitan. The aircraft transected plumes several

times, as seen by the sharp increases in the total CN concentrations in Fig. 41 and

Fig 42. During this (and subsequent flights) the CFSTGC was operated at multiple

supersaturations. The measured CCN concentrations vary significantly and track the

changes in total aerosol concentration (Fig 42) for much of the aerosol in the plume

are of CCN relevant sizes.

CCN predictions are available for the leg of the flight towards and leaving Dallas

area (between 4:30 and 7:30 UTC). CCN predicted by the PRSULFATE scheme
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Figure 40: Research Flight #2. September 21 Closure Plot. Predicted versus Mea-
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Figure 42: Research Flight #3. September 25 Time Series plot. Aircraft altitude,
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are plotted as a function of UTC Time. Predicted values are calculated with the
PRSULFATE scheme.

agree well with measurements at low CN concentrations but deviate significantly

(sometimes > 50%) for high (CN > 30×103 cm−3 )concentrations (Fig 42).

The PRSULFATE CCN closure underpredicts above 2000 CCN cm−3 (Fig 43) but

this is independent of instrument s and mostly a result of change in aerosol composi-

tion; greater CCN concentrations are expected at higher s, however NME (∼-40% for

PRSULFATE) and NMB (∼-20%for PRSULFATE) are the same at both measured

s (Table 30). This plume is transported south and is influenced by the outflow of

aerosol produced in Dallas morning traffic, as reflected by BC/CO ratios above 1.

The urban Dallas plume CCN that are significantly underpredicted in PRSULFATE

are assumed to be completely soluble aerosol and the closure worsens for these aerosol

when organic fraction is considered insoluble in the other schemes. In addition, the

disassociation of organics is unlikely to surpass sulfate (one of the largest plausible

reported values of organic atmospheric HULIS being ν = 1.25 [48, 47]) and the molar
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mass of organic component is most likely to be of comparable or larger size. Thus

it can be inferred these aerosol contain surfactants and a significant depression in

surface tension is required to obtain good closure for these particular aerosol in the

Dallas plume.

Applying size-resolved (versus bulk composition) data improves overall predic-

tions by roughly < 10% (Table 30). The external mixing assumption applied to the

Dallas urban outflow significantly worsens predictions, and reinforces the importance

of organic CCN as soluble and or surface active components.

7.4.4 Research Flight #4- September 26

Very good closure is obtained for the PRSULFATE case at low s during research flight

#4 (NMB = 0.06%, Table 30). Predictions at higher s are accurate (< 20%) but show

a significant bias for underprediction. Assuming an insoluble organic fraction or an

external mixing state worsens closure and as with flight #3, flight #4 suggests that

homogeneous organic/inorganic mixtures play significant roles for enhancing CCN

activity. (Fig. 45).

This is best observed in the PRSULFATE case at higher CCN concentrations that

are significantly (> 25%) underpredicted. Many of these underpredicted values are

within plumes from the Parish Power plant (Figs. 44 and 47). In region 1 of the

plume, soluble organic mass dominates (Fig. 46) and PRSULFATE CCN predictions

match measurements well. As the aircraft transects plumes in region 2 and 3, two

interesting phenomena occur i.) sulfate mass in the region of CCN relevant sizes

becomes comparable to organic mass (especially for sizes below PRSULFATE dc,

Fig. 46) and ii.) measured CCN number increases and rival that of total CN counts

('104 cm−3) suggesting an enhanced activity at smaller measured sizes due to a

depression in the Kelvin term of the Köhler equation.

The organic in region 2, less than 50 km and measured only 10 minutes downwind,
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Figure 43: Research Flight #3. September 25 Closure Plot. Predicted versus Mea-
sured values are plotted as a function of CN concentrations and dashed lines represent
50% uncertainty (a) PRSULFATE, s = 0.28% (closed), s = 0.38%(open symbols, (b)
SR-INT, (c)SR-EXT (d)BK-INT and (e)BK-EXT are schemes are presented
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Figure 45: Research Flight #4. September 26 Closure Plot. Predicted versus Mea-
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Figure 46: Mass distributions from AMS data in regions 1,2,and 3 of the Parish
Power Plant during Research Flight #4. Much of the mass distribution is of CCN
relevant sizes; dc is ∼75 and ∼60 nm for s equal to 0.28% and 0.38%, respectively.
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are presumably of similar composition and solubility to region 1. Yet in regions 2 and

3, the sulfate fraction can partition more of these organics to the droplet surface and

induce a ”salting out effect” that has been previously shown in laboratory experiments

to depress surface tension at the droplet surface and enhance CCN activity [111, 16].

The partitioning effect at low s becomes less significant for CCN predictions; solute

is dilute at activation and as a result the NMB for low s is close to zero. In addition,

measured droplet sizes in regions 2 and 3, especially for higher s where the dissolved

solute activates at higher concentrations, are relatively smaller than those measured

elsewhere during the flight(Dp ' 2 µm, Figs. 48 and 47). This maybe indicative of

film forming compounds that have the potential for slow growth [64].

7.5 Summary and Implications

The Eastern Texas and Gulf of Mexico region is dominated by aerosol composed

of sulfate and organic materials. In general, the simplest and best closure scheme
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Figure 48: Research Flight #4. September 26 Time Series plot. Aircraft altitude,
instrument supersaturation, BC/CO, measured CN and CCN concentrations and
droplet size are plotted as a function of UTC Time. Predicted values are calculated
with the PRSULFATE scheme.

assumes the aerosol is completely soluble and worsens considerably when organics are

presumed to be insoluble. As a result, knowing the hygroscopic and thermodynamic

properties of the water soluble organic component (WSOC) in regional urban aerosol

will significantly improve CCN predictions. In specific cases we observe deviations

from good closure and thus assuming ideal sulfate behavior should not always be

applied; for these studies CCN closure will improve with mixing state, size-resolved

chemical composition and organic surface tension inputs. In this study, the aerosol

composition and CCN behavior close to plume sources differs significantly from the

background aerosol masses. Though the age of this industrial “soup” has not been

determined, it can significantly affect CCN measurements and predictions downwind

of plumes.

Regardless of location, much of the aerosol contain sulfate and organics in the
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accumulation mode, and as corroborated by our closure study are most likely inter-

nally mixed. More work is required to understand the morphology of the internally

mixed aerosol especially as it ages; sulfates have the potential to act as organic aerosol

coatings or may be evenly mixed with organics.

For most flights closure at high s is more likely to underpredict than at low s.

this trend is consistent with and indicative of partially soluble surface active organic

components; ideal models based on Köhler theory whose Kelvin and Raoult terms are

more suspectable to changes with higher solute concentrations will show discrepancies

in closure. At low s, partially soluble materials will not be overpredicted and at high

s more dissolved organic solute can further depress σ and reduce underprediction.

Our analysis and study, suggests more airborne measurements of fast-resolved CCN

concentrations and WSOC properties are warranted to achieve good closure as a

function of plume age.
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CHAPTER VIII

FUTURE DIRECTIONS AND IMPLICATIONS

In this thesis we observed the interactions of organic and water vapor via the study of

CCN. The wide array of aerosol types studied suggest that organic behavior cannot be

easily generalized; age, aerosol mixing state, volatility and even soluble organic frac-

tion can easily alter CCN activity. For example, HULIS observed in biomass burning

aerosol could depress surface tension significantly, whereas smaller amounts poten-

tially found in sub-cloud marine aerosol could have little if no effect on droplet surface

tension at activation. Thus the question arises – “how much is the right amount?”

Measurements of sesquiterpene SOA with several instruments revealed substantial

volatility effects and potential instrumentation artifacts whereas no volatility effects

were observed in similar experiments of SOA generated from monoterpenes. For

water-soluble aerosol studied, droplet growth that differs from (NH4)2SO4 is minimal,

only significant differences are observed when insoluble non-hygroscopic fractions are

present.

As initially stated organic aerosol is complex. Detailed speciation of all interac-

tions is impractical and unwarranted for climate model improvements. Instead, future

work should focus on categorizing the different states of aerosol ageing that could be

any combination of the identified CCN activity and droplet growth kinetic factors

(mixing state, volatility, soluble fraction). A more thorough understanding of these

organic parameters will improve CCN and cloud droplet number predictions and will

eventually lead to a better characterization of the aerosol-indirect affect.
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