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Summary 

Critical components that are prone to failure are usually constituent elements of a larger 

subsystem or system which cannot be instrumented at the component level. The inception 

of such failures, thus, often goes undetected until the anomaly spreads from one 

component to another, in a sort of domino effect, until the overall system fails. It is 

crucial, therefore, to devise methodologies that are capable of determining, from 

monitoring external system behaviors like vibrations, temperature, etc., which component 

is defective and, additionally, how specific components’ faults/failures may propagate 

from faulty to healthy components, thus causing a catastrophic failure. Model-based 

reasoning (MBR) belongs to this methodological category. MBR is a very generic but 

sufficiently potent technique, which is applicable to a wide variety of domains, from 

finding faults in digital circuits, to the diagnosis of automobiles, the monitoring of 

industrial machinery, and more recently, even to the debugging of large software. 

 

This dissertation presents a model-based reasoning architecture with a two fold purpose: 

to detect and classify component faults from observable system behavior, and to generate 

fault propagation models so as to make a more accurate estimation of current operational 

risks. The first step is the compilation of the database of functional descriptions and 

associated fault-specific features for each of the system components. The system is then 

analyzed to extract structural information, which, in addition to the functional database, is 

used to create the structural and functional models. A fault-symptom matrix is 

constructed from the functional model and the features database. The fault threshold 

levels for these symptoms are founded on the nominal baseline data. Based on the fault-
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symptom matrix and these thresholds, a diagnostic decision tree is formulated in order to 

intelligently query about the system health. For each faulty candidate, a fault propagation 

tree is generated from the structural model. Finally, the overall system health status 

report includes both the faulty components and the associated “at risk” components, as 

predicted by the fault propagation model.  

  

The MBR diagnostic architecture incorporates a novel approach to system level 

diagnostics. It addresses the need to reason about low-level inaccessible components 

from observable high-level system behavior. In the field of complex system maintenance 

it can be invaluable as an aid to human operators. The contributions from this research 

are: 

• A novel adaptation of MBR that implements a knowledge database aided diagnosis of 

inaccessible faulty components from observable system behavior. 

• A fault propagation methodology based on the information abstracted by the model-

based diagnostic reasoning step listed above. 

• An integration of the diagnosis and fault propagation algorithms in an overall model-

based reasoning architecture formulated in an industry preferred test-bench language 

like MATLAB
®
. 

• Application of the above software to intelligent fault diagnosis of existing helicopter 

power-train modules and other electro-mechanical systems. 

• Complexity analysis of the algorithms used by the reasoning architecture to ascertain 

performance guarantees for online implementation. 

• Model verification technique for complex engineered systems in temporal logic. 
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1 Introduction 

The information age, as we know it today, began with the invention of the telegraph in 

1837. Since then people have been looking into the extraction and exploitation of 

information from all possible sources to further the quality of life. However, information 

by itself serves no purpose, unless it is assimilated in some intelligent manner. With the 

advent of computing machines, this quest to represent ever-increasing information in the 

form of readily applicable abstract knowledge, has given birth to the field of artificial 

intelligence (AI). Over the years, the expanding research in AI gave rise to a variety of 

sub-fields like knowledge engineering, expert systems, and automated reasoning. 

Although the scopes of these topics often intertwine with each other, the ultimate goal 

remains to replicate human cognizance. The model-based reasoning approach to fault 

diagnosis, presented in this dissertation, is one such endeavor to facilitate the task of 

intelligent maintenance, which, till now, has primarily remained an area dominated by 

human personnel. 

 

When it comes to the maintenance and fault diagnosis of life critical machinery, human 

expertise, gained from years of experience, has never been and probably should not be 

substituted. This, however, does not detract from the importance of automated diagnosis 

as an aid to human judgment. The research work presented here retains its significance in 

as much as it helps to reduce unscheduled downtime of critical machinery, facilitate 

faster fault diagnosis and guide the human operator in taking intelligent run-time 

decisions about overall system health and operational readiness. 
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1.1 Problem Statement 

The primary purpose of this research is to formulate a model-based reasoning (MBR) 

architecture to detect and classify internal component faults from observable system 

behavior, and to generate component-level fault propagation models in order to make an 

intelligent estimate of imminent threats to the system. 

1.2 Objectives 

The research methodology described in the following chapters incorporates a novel 

approach to system level fault diagnosis. In order to effectively describe the approach, the 

work has been subdivided into smaller modular tasks like knowledge database 

construction, system analysis, model synthesis, logical representation, reasoning etc. 

Aggregating these tasks in logical groups, the major objectives of the research work can 

be stated as below: 

• To implement an MBR based diagnosis of unobservable faulty components from 

observable system behavior, aided by a functional knowledge database of system 

components. 

• To formulate a fault propagation methodology based on the component proximity 

information contained in the abstracted system models synthesized during diagnosis. 

• To integrate the diagnosis and fault propagation steps in an overall model-based 

reasoning architecture coded in an industry preferred test-bench language like 

MATLAB
®
. 

• To apply the above reasoning architecture to intelligent fault diagnosis of electro-

mechanical systems like helicopter gearboxes and airplane fuel delivery systems. 
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• To perform computational complexity analysis of the algorithms used by the 

reasoning framework so as to ascertain performance guarantees for online 

implementation. 

• To implement a model verification technique in temporal logic for functional models 

of complex systems. 

1.3 Significance of Research 

The importance of information is now being appreciated in the defense industry, more 

than ever before. There have been major changes in the ways that the premier armed 

forces of the world operate. With increasing instrumentation and the better modeling and 

simulation environments available today, the approach to fleet maintenance has gone 

from reactive to proactive. This has, in turn, led to increased war-fighting capability of 

existing platforms. Enhancing platform effectiveness, mission availability and intended 

life cycle while reducing in-theatre logistical demands and overall Whole Life Cost 

(WLC) have now become major priorities. Terms like Health and Usage Monitoring 

Systems (HUMS) and Condition-Based Management (CBM)/Prognostic Health 

Management (PHM) have become buzzwords in the maintenance paradigm in the 

aerospace and defense industries.  

 

Figure 1 depicts the big picture for these CBM/PHM paradigms. However, despite the 

plethora of sensors, hundreds of small components that critically affect the safe operation 

of the system lie beyond the scope of observation, like the gears and bearings 

(components) inside a gearbox (system). Even so, their individual characteristics leave 

indelible marks upon the externally observable system behavior. Thus, to be able to read 
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these marks from system-level sensor data and autonomously reason about them in order 

to diagnose component and overall system health, has great significance in a world where 

human beings are being increasingly bewildered by ever increasing data that need to be 

processed in very little time. 

 

 

 

 

Figure 1. The overall CBM/PHM paradigm. 

 

It is important, of course, to be able to integrate any proposed diagnostics/prognostics 

algorithm into the overall CBM/PHM scenario. MBR diagnostics fit nicely into this 

approach (shown in Figure 1), helping to identify faulty components from sensor data, 

and this is the focus of the research presented. In the context of helicopter power-train 

health monitoring, HUMS modules monitor data coming from sensors mounted on line 

replaceable units (LRUs) like the intermediate gearbox (IGB). In practice, most 
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diagnostic sensors are accelerometers mounted externally on the casings of various 

power-train modules, and there is no way to monitor the internal components directly. To 

get the maximum advantage out of this setup the health data can be passed on to a model-

based reasoning framework to come up with the likely fault candidates in the presence of 

anomalous behavior. These internal components can then be further investigated for fault 

progression by more computation intensive techniques, like particle filters (PF), utilizing 

high fidelity models. Once the identity, extent and progression rate of the fault have been 

appropriately determined then algorithms like particle filtering can again be used to 

estimate remaining useful life of the component (prognostics) in order to aid runtime 

decisions or to setup appropriate maintenance schedules.  
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2 Background Study 

In this chapter we look at the motivation behind the application of MBR for diagnostic 

reasoning, as well as the salient points in the existing body of work in this research field. 

An inspection of the state-of-the-art gives us an insight into the potency of the current 

methods along with an understanding of the gaps that still remain to be addressed. 

2.1 Motivation 

The scope of MBR for fault diagnosis has been recognized by researchers in the field of 

AI since the late 1980’s. As engineered devices became more and more complex, it gave 

rise to the need for some sort of automated diagnostics and testing. Although the basic 

principles of MBR are well understood, its application to specific domains, especially in 

mechanical systems, has been restricted due to insufficient model fidelity. However, the 

recent breakthroughs of model-based diagnosis in the field of automotive engineering 

have opened the door for MBR to conquer new vistas. The literature review presented in 

Section 2.2 describes the evolution of MBR as a diagnostic tool in greater detail.  

 

Mechanical systems, like gearboxes, are difficult to model due to their highly nonlinear 

dynamics. Classical mathematical models, found in textbooks, tend to be too simplistic, 

whereas finite-element and other micro-modeling techniques become too tedious for real-

time applications. An abstract model that captures the functional relationships within the 

mechanical system, thus, might hold the greatest promise of utility. Even though the 

information contained in such a model may be qualitative, the reasoning techniques 

developed in MBR are powerful enough to predict system behavior under different 
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operational/fault modes. This motivates the application of MBR for fault diagnosis of 

systems that we can analyze offline but of which we cannot monitor the internal 

components once in operation. 

2.2 Literature Review 

The starting point of a model-based diagnostic reasoning methodology is the 

representation of a system’s structure and behavior in the form of a suitable model that 

facilitates the diagnosis of a detected misbehavior [1]. There are two approaches to 

model-based diagnosis: the consistency-based approach and the abductive approach. In 

the consistency-based approach diagnosis is defined as a set of assumptions about the 

faulty behavior of system components, such that a detected anomaly in one component’s 

behavior is consistent with the assumption that the other components are operating 

correctly [2]. This methodology only requires the expected nominal behaviors of the 

system components for diagnosis [3]. It follows the natural progression of reasoning of 

cause and effect. The simplicity of implementation makes this approach attractive; 

however, in complex interconnected systems the underlying assumption of one fault at a 

time may not hold. Although, the probability of multiple components of a system 

developing a fault at the same time may be small, the possibility of not detecting the 

single fault before it spreads to interconnected components cannot be ignored. 

 

On the other hand, the abductive approach reasons from effects to causes [4]. Unlike the 

previous approach, abductive diagnosis looks at the models of the system’s faulty 

operational modes. Diagnosis is defined as a set of abnormality assumptions that covers 

or implies the observations. Luca Console et al. analyzed the logical definitions of model-
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based diagnosis in the literature and proposed a unified framework that describes the 

relationship between consistency-based and abductive reasoning [5]. There are, of course, 

other diagnostic reasoning approaches, like causal reasoning and Bayesian networks, that 

have achieved great successes in recent times. K.W. Przytula et al. developed a procedure 

for the efficient creation of Bayesian networks for diagnostics with applications in 

diagnostic systems for diesel locomotives, satellite communication systems, and satellite 

testing equipment [6].   

 

Among the great variety of domains that MBR has been applied to, the ones that have 

had the most successes are software debugging, configuration/reconfiguration of 

technical equipment, automobile diagnostics, and spacecraft systems. MBR techniques 

for diagnosing compromised software have successfully aided self diagnosis and failure 

recovery [7]. Successful applications in hardware debugging have also been reported [8]. 

Debugging of increasingly complex configuration knowledge databases can be achieved 

by consistency-based diagnosis [9]. The automotive industry has seen the introduction of 

a car prototype with onboard model-based diagnosis [10]. The diagnostics focus on 

electronic components and involve Failure Mode and Effect Analysis (FMEA) or the 

creation of decision trees. On the space front NASA’s Deep Space One used a model-

based diagnosis unit and a reactive planner for control and automatic error correction 

based on the model-based diagnosis system suggested by Brian Williams et al. [11]. 

Although, the MBR approaches presented above may have been customized for their 

specific domains, recent research has produced generic and widely applicable reasoning 

algorithms with highly scalable properties [12]. 
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Airframe component diagnostics has been a topic of research almost from the advent of 

flight itself. Traditionally, such research has concentrated on specific components studied 

and tested in isolation [13]. The focus now has shifted to an overall system level 

approach. Mimnagh et al. proposed a Hotelling’s T2 technique based helicopter 

diagnostics methodology that outperformed contemporary diagnostic methods in 

detecting mature and propagating drive system faults while reducing fault 

misclassification [14]. The Helicopter Integrated Diagnostic System (HIDS) [15] and the 

Vibration Management Enhancement Program (VMEP) [16] diagnostic regimes adopted 

by the US armed forces have given a much needed boost to vibration based condition 

monitoring of rotary wing aircraft. However, these are primarily data-driven techniques 

that ignore the underlying physics. This deficiency is acknowledged by Mimnagh et al. 

when they write “Further study into the mathematics of the calculated indicators should 

be conducted to reveal the exact nature of their relationships and the reason these 

relationships change in the presence of a fault” [14]. In logical progression, the state-of-

the-art has seen the evolution of many model-based reasoning tools being applied to a 

variety of applications, some of them being commercially available off-the-shelf while 

others are customized for their applications. For example, the Automated Ground Engine 

Test Set (AGETS) MBR diagnostic tool [17] is designed to isolate failures in the Pratt & 

Whitney F100-PW-100/200 engines and related test equipment. However, the volume 

and complexity of AGETS measurements make it unsuitable for implementation onboard 

existing airframes.  
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In conclusion, therefore, the need for a system level model-based diagnostic technique for 

helicopter power-trains, that takes into consideration the physics behind failure 

mechanisms and can be run online on existing HUMS systems, is still unfulfilled.  
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3 Comparative Study of MBR Applications 

The suitability of applying MBR to fault diagnosis of critical systems is borne out by the 

Joint Strike Fighter (JSF) example, which is one of the most important and complex 

engineering projects of the US armed forces. Although researchers on this project are not 

allowed to publish specific details of the MBR routines, the following extract taken from 

their published work on SH-60 helicopter prognostics [18] (the same application domain 

as ours) underscores the need for MBR: 

“Without features based upon the mechanics of failures, or a method of discriminating 

benign from detrimental novelty, the simplistic detection of deviations from some baseline 

is likely to produce many false alarms and inaccurate remaining life projections. This is 

one area where the integration of prognostic analyses with advanced diagnostic methods, 

such as model-based reasoning (MBR), is most advantageous. MBR algorithms can 

differentiate normal operational changes from detrimental novelty. This assessment, as 

well as its capability to analyze multiple failure conditions, will make prognostic 

estimations more robust.” 

 

The following section presents a comparative study of different applications of MBR to 

fault diagnosis of various engineered systems. We describe each methodology and its 

application in brief and list their salient features as well as the gaps left in their approach 

that are addressed by our methodology. These gaps are referenced by cell coordinates in 

the feature comparison matrix shown in Table 1 in Section 3.7. The chosen literature 

represents a wide spectrum of perspectives, from the theoretical to the application 



 14

specific as well as a variety of domains ranging from digital circuits to advanced 

avionics. 

3.1 General Diagnostic Engine (GDE) 

Johan de Kleer and Brian C. Williams published a seminal work in model-based 

diagnosis in 1987 [2], in which they implemented the GDE and tested it in the 

troubleshooting of various digital circuits. Their underlying theory of diagnostics is the 

inference of the behavior of the composite device from the knowledge of the structure 

and function of its individual component units. Figure 2 represents the reasoning 

methodology that attempts to interpret the differences between the system model and 

observed behavioral artifacts in terms of a diagnostic methodology. 

 

 

Figure 2. Model-artifact difference [2]. 

 

The novel contributions made by this research are: 

• Multiple faults can be diagnosed. 
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• Failure candidates are represented and manipulated in terms of minimal sets of 

violated assumptions, resulting in efficient diagnosis. 

• The diagnostic process is incremental with respect to iterations. 

• Diagnosis is separated from behavior prediction, resulting in a domain 

independent methodology. 

• GDE combines model-based prediction with diagnosis to suggest measurements 

to isolate the fault. 

 

Although the theoretical groundwork for model-based diagnosis laid down by this body 

of work is extensive, there remain a few points upon which improvements may be made: 

• This approach is consistency-based, meaning that a fault symptom is defined as 

any difference between a model inference and observation, leading to larger fault 

candidate sets (cell C-1 in Table 1). 

• A priori knowledge for the chosen application consists of the circuit topology 

(structural model) along with the functional description of each of its components. 

Since the fault modes of the components are not modeled, this methodology 

cannot bypass the complications of constraint propagation by using a fault-

symptom matrix. In the chosen application domain of electrical circuits, this 

constraint was simply Ohm’s law, v = iR. Such simplicity is impossible in dealing 

with inherently more complicated systems like a gearbox (cell F-1 in Table 1). 

• The incremental diagnosis process relies on the proposed measurements 

monotonically reducing the fault candidate search space, so as to guarantee the 

convergence and uniqueness of the minimal set solution. In complex, intractable 
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systems such measurements may not be possible requiring additional tests (cell G-

1 in Table 1). 

• This methodology uses a sequence of measurements to diagnose a fault scenario 

assuming there is no fault propagation (cell I-1 in Table 1). 

3.2 AGETS MBR 

Automated Ground Engine Test Set (AGETS) is a model-based diagnostic tool designed 

to isolate failures between Pratt & Whitney’s F100-PW-100/200 engine and related test 

equipment using a system-level troubleshooting approach [17]. The backbone of the 

AGETS tool is the Qualitative Reasoning System (QRS) software that is comprised of 

two major components: a qualitative model developer and a qualitative reasoner. The 

salient steps of this methodology are listed below: 

• QRS first uses constraint propagation on the model to detect the presence of a 

failure under given symptoms. 

• QRS then uses hierarchical constraint propagation to determine the candidate 

failures that explain the observed symptoms. 

• For this list of probable failures, QRS predicts the values for model parameters 

that have not been measured. 

• Intelligent Test Selection is used to choose the measurement/test that has the 

greatest overall utility in terms of the probability of isolating the fault, the 

probabilities of various component failures and the cost of the test. This generates 

the test set. 
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Figure 3. Compound model for turbofan engine [17]. 

 

The AGETS MBR, though an invaluable diagnostic aid to engine maintenance personnel, 

has its own share of cons, which in many cases led to difficulties in troubleshooting 

during F100 engine tests. The points of difference of the AGETS MBR scheme vis-à-vis 

our methodology are as follows: 

• The physics underlying the failure mechanisms have been neglected while 

modeling the nominal modes (cell C-2 in Table 1). 

• AGETS MBR is also a consistency-based approach, requiring a large number of 

complicated models to represent a highly sophisticated system like an aircraft 

engine. Across three AGETS configurations, 1362-1398 elementary and 229-242 

compound models were used, with a high number of models being unique in 

structure. Figure 3 shows a compound model of a commercial turbofan engine. 

Such a model is a combination of both structural and functional information 

without looking at the component level (cell E-2 in Table 1). 

• The sensor requirements for the test set produced may not be feasible in an 

onboard environment (cell G-2 in Table 1). 

• The volume and complexity of the AGETS measurements may necessitate an 

offline analysis (cell H-2 in Table 1). 
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• The possibilities for fault propagation are not investigated (cell I-2 in Table 1). 

3.3 Diagnostician-on-a-Chip (DOC) 
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Figure 4. Schematic for Diagnostician-on-a-Chip (DOC) [19]. 

 

The DOC approach presented by Nolan and Giordano in 1997 [19] is based upon the use 

of microcontroller technology and an automated Concurrent Engineering Tool Set 

(CETS) comprising both a development environment (Diagnostic Profiler) and runtime 

software (Diagnostician). The Diagnostician reads system data, detects and isolates 

failure conditions and ultimately reconfigures the system in an optimal way. The key 

contribution was the capability to “adapt” the same diagnostic model to various 

reconfigured states. This methodology was applied to the design of a fault tolerant remote 

solid-state power controller. A schematic of the DOC concept is shown in Figure 4. The 

following technologies represent the salient points of this endeavor: 

• Use of a design model to implement all diagnostic logic and the integration of the 

model with on-line, embedded performance monitoring and built-in test functions. 
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• Implementation of the model-based solution on a single-chip microcontroller for 

integration in an embedded environment. 

• Full software support of operational and failure data supporting extensive 

operations monitoring and management from an off-system or remote location. 

• The adaptability of the design-based model to new hardware configurations while 

maintaining the same functionality. 

• The ability to dynamically reconfigure hardware resources in real-time to 

accommodate a failure event and maintain operations. 

• The ability to detect, isolate and reconfigure around simultaneous multiple faults 

occurring in independent portions of the circuitry. 

• Though not fully implemented, the model-base and software structure enables 

prognosis by monitoring “rate of change” of voltage levels to provide an 

indication of impending failure events. 

• Implementation of above technologies in a structured, automated, generic systems 

engineering approach. 

 

The above methodology uses the abductive approach to MBR implemented as a 

diagnostic model derived from design data. In the abductive paradigm, the fault modes of 

the system are modeled as opposed to the nominal behavior. Apart from the 

reconfigurability aspect (which is beyond the scope of our research), when compared to 

our methodology, some differences in the fault diagnosis approach stand out: 

• The structural and functional representations are merged together into one model 

(Figure 5). Although this does not hamper reconfiguration of the targeted system, 
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it inhibits the rapid prototyping of a similar system from the existing model 

database (cell A-3 in Table 1). 

 

Figure 5. Diagnostic model of system [19]. 

 

• The Diagnostic Profiler converts the CAD data into a Fault/Symptom matrix 

which represents the propagation of faults to sensors as rows, and the fault 

coverage of monitored locations as columns (Figure 5). The integration of fault 

propagation into the matrix necessitates that the sequence in which the sensors 

would indicate a spreading fault (if at all) would have to be the same for all fault 

modes. This is not necessary for all systems and hence a logical separation of 

these two steps may be required (cell D-3 in Table 1). 

3.4 Causal Network Inference System (CNETS) 

A causal network is a graph-based system representation that can be used to simulate 

both normal and abnormal behaviors, as well as to diagnose faults. In 1998 Misra et al 
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proposed CNETS as a system for representing and reasoning with causal networks [12]. 

The workings of CNETS are described in brief below: 

• First the user creates a model by specifying cause/effect relationships for the 

system. 

• The user inputs the system measurements into the CNETS software. 

• Finally the user makes queries about the system health with respect to the 

available evidence and the causal network representation of the system model. 

• CNETS has a number of inference algorithms to deal with the queries, the main 

one being the clique-tree algorithm. 

• CNETS has a compiler that allows the user to generate a runtime version of the 

system model. 

• Order of complexity, in terms of model parameters, for the CNETS approach to 

diagnostic inference can be derived by analysis. 

 

The CNETS approach differs from ours in a few key aspects: 

• The system model combines the structural and functional aspects in a simple 

logical construct (Figure 6) which may be unsuitable for complex systems like a 

gearbox (cell B-4 in Table 1). 
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Figure 6. Quantification of causal networks [12]. 

 

• Fault modes are not modeled (cell C-4 in Table 1Error! Reference source not 

found.). 

• In the CNETS paradigm the user has to make the system health queries as 

opposed to the automated system fault diagnostics, fault propagation and the 

intelligent status report generated by our approach (cell G-4 in Table 1). 
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3.5 Ordered Binary Decision Diagrams (OBDD) 

Misra et al also proposed the concept of applying OBDDs for the diagnostic reasoning of 

Discrete Event Systems (DES) [12]. This is more of a unified approach in which they 

incorporate both the nominal inputs to the system as well as the fault modes as shown in 

Figure 7. OBDDs provide a symbolic representation for Boolean functions in the form of 

directed acyclic graphs. Diagnostic reasoning using OBDDs includes the following steps: 

 

Figure 7. DES and relational models [12]. 

 

• Translating the DES or relational models into OBDDs can be done automatically. 

Domain specific models can be translated into OBDD format using model 

interpreters. 

• Diagnosability and safety analyses are done symbolically using OBDDs. These 

criteria are expressed in terms of logical relationships on the discrete state 

trajectory by the models, and checked using the OBDD algorithms. 
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• Diagnosis occurs in two steps. First, a generic runtime support is created which 

includes a diagnostic engine implemented with OBDD algorithms. Second, the 

software synthesis component configures the runtime system using the 

computational model and synthesizes the OBDDs for the models. 

 

As elegant as this method may be for a wide variety of systems like digital circuits, 

switching, communication networks etc., there are a few caveats: 

• The a priori information (DES model) includes the structural and functional 

models as well as Fault mode information. This significantly reduces flexibility of 

the approach to prototype new but similar systems for diagnostic purposes (cell 

A-5 in Table 1). 

• Not all application domains are suited to Boolean representation. For example, 

continuous systems cannot be intuitively modeled as discrete event systems. 

There will always be some approximation involved with DES models (cell B-5 in 

Table 1). 

3.6 MBR Toolset for Power System Diagnostics 

In 2003 Davidson et al proposed a software-based toolset to aid the application and 

development of model-based reasoning systems for validation and diagnosis in power 

systems [20]. System models are constructed with a component/structure based view of 

the system. During diagnosis, measurements are propagated through the models in order 

to predict the behavior of the system. This behavior is then checked for discrepancies 

with measured system observations. The salient points of their technique are: 

• Provide a toolset that allows non-software engineers to construct MBR systems. 
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• Support various models and data types. 

• Support various consistency-based and abductive techniques while incorporating 

temporal issues and modeling and measurement inaccuracies. 

• Provide a flexible, reusable diagnostic engine (Figure 8) designed to allow the use 

of different component models, data types and MBR techniques within the same 

MBR framework. 

 

Figure 8. Diagnostic engine architecture [20]. 

 

The MBR toolset described above differs from the one presented in this dissertation in a 

few significant ways. The following list briefly touches upon each of these points: 

• For every new data set, the evaluation of the diagnostic decision tree in our 

methodology needs to be carried out only once, whereas multiple simulations may 

need to be performed for multiple models stored in the model documents database 

in the MBR toolset described above (cell F-6 in Table 1). 
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• As shown in Figure 8 the Prediction Controller works on system data. 

Consequently, it needs to simulate the system operation using the prediction 

control algorithms to generate the next system state. In the case of complex 

systems, such simulations are in general more resource-intensive than evaluating 

a decision tree based on features extracted from data (cell G-6 in Table 1). 

• The issue of fault propagation is more easily and intuitively handled when 

addressed from the structural model perspective instead of the system simulation 

angle. In the latter case data manipulations tends to obscure the physics behind the 

process (cell I-6 in Table 1). 

3.7 Comparison Summary 

The MBR methodologies presented above have their individual viewpoints and their 

associated pros and cons. However, the need to have a modular MBR methodology for 

the rapid prototyping of diagnostic models of distinct but similar systems, and an 

automated scheme to bridge the gaps between modeling, diagnostic reasoning and fault 

propagation, in an intuitive way, has not been satisfied. These are the issues that our 

methodology attempts to address.  

 

Table 1 summarizes the missing points of the above discussed techniques in terms of the 

features of our reasoning framework. Each cell with an X, representing a feature of our 

methodology (denoted by the row label) absent in the MBR technique (given by the 

column label), is referenced by the corresponding letter and number coordinates in the 

preceding sections. 
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Table 1. Feature comparison among different MBR techniques (X denotes features that are absent). 
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4 MBR Theory 

4.1 The Reasoning Paradigm 

The model-based reasoning paradigm introduced in this dissertation goes beyond a 

simple analytic view of the problem at hand. Section 4.1.1 briefly describes the overall 

approach whereas the later sections explain each step of the methodology in greater 

detail, along with some simple examples. Following that, the application specific details 

for validating this approach on a helicopter intermediate gearbox are discussed. However, 

before we proceed to the technical aspects of our approach, it is necessary to introduce a 

few key concepts of MBR.  

• Model – An executable, declarative structure representing an objective system 

(usually physical). 

• Model-Based Reasoning – The use of explicit models to aid intelligent reasoning 

processes in achieving set goals within such domains as diagnosis, explanation, 

training, etc. 

• Structural Model – A model representation that shows what components are 

present in the system and how they are connected together. 

• Functional Model – An abstract model composed from representations of the 

fundamental physical processes manifested in the system. A functional model 

uses qualitative representation of real-world signals for reasoning about the 

interactions among these processes. 
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4.1.1 MBR Approach to Fault Diagnosis 

Given a system to diagnose, we analyze it manually to extract information about the 

internal components. Literature survey of fault analysis of these components is conducted 

to build the knowledge database. Visual inspection of the component interconnectivity 

gives us the structural model. From there, the MATLAB
®
 encoded MBR program goes 

through various intermediate steps to generate the diagnostic tree. In the presence of 

faulty data, this tree automatically triggers the fault propagation tree. The outputs of both 

these trees combine to provide the system-level fault diagnosis. The implementation steps 

of the model-based diagnostic reasoning approach outlined above are as follows: 

• Build a database of functional models and condition-indicators for the basic 

building blocks of the specified application domain (manual process). 

• Given a system, generate the structural model by analysis (manual process). 

• Synthesize the functional model of the system from the functional description 

database (automated in MATLAB
®
). 

• Generate a fault-symptom matrix from the functional model and the CI database 

(automated in MATLAB
®
). 

• Create a diagnostic tree from the fault-symptom matrix (automated in 

MATLAB
®
).  

• From the structural model, generate the fault propagation trees for the faults 

detected by the diagnostic tree (automated in MATLAB
®
). 

• Update the health status of the system components based on the data evidence, the 

diagnosis and the fault propagation model (automated in MATLAB
®
). 
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A schematic for the above steps is shown in Figure 9. The model-based reasoning 

architecture depicted as well as the automated steps denoted by blue arrows are part of 

the contributions of this research. The following subsection provides a brief overview of 

the implementation steps of our methodology, following which Sections 4.2–4.5 

elaborate further on the details of each step.   
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Figure 9. The model-based diagnostic reasoning architecture. 

 

The MBR architecture presented in Figure 9 fits perfectly between the HUMS equipment 

and the component specific diagnostics/prognostics routine shown in the overall 

CBM/PHM paradigm in Figure 1. Time series data from the HUMS equipment can be 

passed on as input to our MBR architecture (as shown in Figure 9) to come up with the 
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candidate list of faulty and “at risk” components (from fault propagation). Fault 

progression in these internal components can then be further diagnosed by more detailed 

techniques utilizing high fidelity models. For a given component, estimates of the extent 

of the fault and its rate of progression can be used as input to a prognostics routine that 

computes its remaining useful life. Such a prediction can be an invaluable aid to decision 

making for operators or maintenance personnel in critical situations. However, 

uncertainty management remains the key hurdle faced by such diagnostics and 

prognostics algorithms. A Bayesian treatment of this problem, perhaps in the form of a 

particle filtering framework, provides an elegant and theoretically sound approach to the 

modern CBM/PHM paradigm. 

4.1.2 Brief Overview of Methodology 

The system under observation is broken down into an interconnected set of component 

units, and subsequently, the expected overall system behavior is formulated as an 

interaction of the individual component behaviors. An a priori knowledge base of the 

functional characteristics of the underlying components of the specific application 

domain is created. In association with these functional descriptions the fault modes and 

their symptoms (called features or condition indicators, CI’s) are stored for each 

component. Once the database is built, the application phase for a given system can 

begin.  

 

Structural analysis of the target system is carried out to model it in terms of the 

components stored in the database and to extract the physical interconnections between 

them. This is denoted as the structural model. Proceeding further from the structural 



 32

description of the system, we then focus our attention on the behavioral description, 

which forms the basis of model-based analysis. For each component in the structural 

model, using the corresponding functional descriptions from the database, a functional 

model of the system is synthesized.  This is a higher level of abstraction of the system, 

one which allows us to reason about the overall system behavior. This analysis is 

exceptionally useful for diagnosing faults in systems where the internal components are 

not accessible to instrumented monitoring.  

 

Based on the above described functional model and the features stored in the database a 

fault-symptom matrix is constructed. This matrix is a tabulation of the individual 

component fault modes and their respective symptoms that are observable in the overall 

system behavior. The thresholds for these symptoms are arbitrary and can be derived 

from theoretical constraints or from experimental baseline (non-faulty) data. The 

formulation steps described till now, including the structural and functional model and 

the fault-symptom matrix, sets the stage for the execution of the diagnostic reasoning 

algorithm. 

 

The main step of our methodology is the creation of the diagnostic tree from the fault-

symptom matrix. This tree lists the tests to be performed in order to determine the health 

status of the system components. The order of the tests, as laid out in the diagnostic tree, 

follows a descending order in the classification scope of the test. For example, a test that 

detects a fault in the broader class of gears would be performed before the tests that can 

isolate the faults of one gear from another. Subsequently, from the component 
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interconnection information contained in the structural model a fault propagation tree is 

generated at run-time for every faulty component. Once the faulty components and those 

most likely to be affected next (as derived from the fault propagation model) are 

determined, their status is appropriately updated in the overall system health report.  

 

The focus of this approach is to keep the whole procedure as little computationally 

intensive as possible so as to enhance the real-time online implementation potential. The 

scope of this methodology lies in assisting maintenance personnel as well as in 

preventing unscheduled down-time. It can help the operators of the system in making 

intelligent decisions about its reliability under operational conditions. Furthermore, it can 

provide useful input to prognostic algorithms about the initial conditions for fault growth 

models.  

4.2 The Knowledge Database 

The starting point of this diagnostic reasoning methodology is the creation of the a priori 

knowledge database. The target application domain is inspected to determine the primary 

building blocks along with their respective functional roles. In the decomposition of a 

system into its components, it may be possible to go down to extremely small micro-

levels like finite-element models or even the molecular or atomic level and start to 

synthesize system level behavior from there. Although this process of micro-level 

characterization might give us a better understanding of the system, it is not always 

desirable since it can be extremely tedious and computationally intensive. Often 

satisfactory results can be achieved by looking only as deep as the macro level where we 

have commercially available, replaceable components whose behaviors have been studied 
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in detail. It is to this level that the system analysis process of this methodology is 

restricted. 

 

Once the component units have been identified, their behavior is studied and stored in the 

database in the form of functional descriptions. Later on, the functional description of the 

system will be described in terms of these behaviors. Associated with these functions the 

components also have specific fault modes. Unless externally affected, most system 

failures have their roots in these component unit fault modes. Depending on the resources 

at hand, e.g., the sensors and the data collection/analysis equipment available, the 

behavioral anomalies can be monitored in a variety of ways. These observations, 

represented in the form of features extracted from signals gathered from the system, are 

called fault features or condition indicators (CI’s). The features are also stored in the 

database along with the functional description for each component. A schematic of the 

data structure of the database is shown in Figure 10. The basic unit of reasoning here is 

the fault mode j of component i, represented logically as:  

ijk
k

ij fF ∧=                             (1) 

where, f denotes the feature threshold being exceeded, k is the symptom index and ∧ 

denotes logical AND. 

 
Figure 10. Data structure for representing system components in database. 
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Although outside the scope of this research, the effectiveness of the knowledge base can 

be further improved if the component information stored is derived from the Failure 

Mode, Effects, and Criticality Analysis (FMECA) [21] study of the concerned system. 

FMECA is a powerful design/analysis tool that is used to increase system reliability. It 

can be applied during the initial design phase or to existing equipment. To be most 

effective, the FMECA should be applied at the design stage itself. In either case, it 

considers overall design, operating, and service problems, while at the same time 

addressing process and safety problems. It is an enhancement of the FMEA methodology 

[21] in which a criticality analysis is performed. Criticality analysis involves assigning a 

frequency to each failure mode and a severity to each failure effect. Criticality is a 

function of the severity of the effect and the frequency with which it is expected to occur. 

The purpose of this analysis is to rank each potential failure mode identified in the FMEA 

study according to the combined influence of severity classification and its probability of 

occurrence. The knowledge database entries for the different failure modes of each 

component can be easily augmented with such information. 

4.3 System Model Abstraction 

Having created the database, we move on to the model abstraction part. Given a system, 

we start out by analyzing its structural links. The different component parts are identified 

and their specific structural organization is stored in the form of a structural model. This 

data structure stores information about which components from the database make up the 

given system, how many there are of each type and how they are spatially arranged and 

interconnected. Information about the location of each component and its relative 

proximity to other neighboring components is crucial in predicting how a local failure in 
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one component may propagate though the entire system. Knowledge about the 

component interconnections is also important since the type of connectivity may 

sometimes restrict certain degrees of freedom of some component and hence affect its 

operational modes. For example, the vibration modes of a shaft mounted rigidly on 

bearings at both ends differ considerably from one which has an overhanging rotor on 

one end. The information stored in the structural model is, thus, indispensable in our 

diagnostic effort. In logical terms, this information is represented as: 

Set of components, V = {v1, v2, …, vn} 

Interconnection, E = {<va,vb>, <vc,vd>, …, <vi,vj>, … } 

Structural Model, MS ≡ V∪E.             (2) 

where, ∪ denotes the union of two sets. 

 

The functional model of the system is constructed by traversing the partially connected 

graph represented by the structural model and substituting the corresponding function for 

each component from the database. This model is also stored in the same data structure as 

the structural model, except that an additional function field is added to each component. 

This model allows us to explain the exhibited behavior of the overall system in terms of 

the functions performed by each individual component. Any anomaly in the system 

response is then reasoned about and expressed in terms of faulty operational mode(s) of 

one or more components. In fact, the nominal system behavior is described as the absence 

of all known fault modes. This concept is formalized as: 

Functional Model, MF ≡ ij
ji

F¬∧∧                            (3) 

where, Fij denotes the fault mode j of component i and ¬ denotes logical NOT. 
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As a specific example we look at the oil cooler of the H-60 helicopter. Its primary 

function is to cool the helicopter transmission lubricant while transmitting power to the 

tail rotor drive shaft through the oil cooler shaft. Figure 11 shows the structural model of 

the oil cooler while Figure 12 depicts its functional model. The components of the oil 

cooler are centered on a splined shaft supported at the front by two shielded cartridge 

bearings and in the rear by a viscous damper bearing. The oil cooler fan assembly 

consists of a multi-bladed rotor housed inside a concentric stator. The physical 

arrangement of the above mentioned components as well as their interconnections 

comprise the structural model (Figure 11). 

 
 

Figure 11. Structural model of the H-60 oil cooler. 

 

 

A        B                 C          D     E 

Legend: 

A: accelerometer 

B: stator + casing 

C: bearings 

D: splined shaft 

E: rotor 
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Figure 12. Functional model of the H-60 oil cooler. 

 

We study the oil cooler system from a frequency domain perspective since the only 

sensors are accelerometers. The structural organization of its components (shown in 

Figure 11) can be abstracted in the form of a functional representation, where each 

component adds its own frequency signature to the overall vibration signal transmitted to 

the accelerometers by the casing. Figure 12 represents this in the form of the functional 

model. An accurate mathematical analysis of the relations mentioned above requires the 

introduction of complex concepts of rotordynamics and vibration analysis, as well as a 

good knowledge about the physical parameters of the units involved, e.g. the stiffness 

matrix of the shaft, the viscosity of the lubricants, etc.  
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However, without going into such detail, a simple qualitative analysis of the measurable 

quantities and their relations to each other offers a keen insight into the operation of the 

system. For example, since vibrations are additive in the frequency domain, the levels of 

specific frequency bands in spectrum analysis routines (like Fast Fourier Transform or 

Power Spectral Density), corresponding to the various components, are good indicators 

of fault modes. It is readily apparent that such a behavioral description is very convenient 

in formulating effective diagnostic queries as to the condition of the system.  

4.4 The Fault-Symptom Matrix 

The construction of the fault-symptom matrix is the main reasoning step regarding overall 

system behavior. Each unit in the functional model is associated with a number of fault 

modes, with each fault mode corresponding to one or more condition indicators. A 

system fault is defined as: 

F ≡ ¬MF = ij
ji

F¬¬ ∧∧  

   = ij
ji

F∨∨                       (4) 

i.e., at least one fault mode has been excited. Here ∨ denotes logical OR. 
 

A matrix tabulating the various fault modes and their symptoms is generated by 

traversing all units of the functional model and extracting their features from the 

database. If sufficient data from seeded fault testing is available from a FMECA study, 

then the fault-symptom matrix can be enhanced with criticality metrics like severity and 

frequency of occurrence. Table 2 depicts a possible fault-symptom matrix for a generic 

system with 5 fault modes and 5 symptoms. 
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Table 2. A generic fault-symptom matrix (X denotes a valid fault-symptom relation). 
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Fault Mode 1 (F1) X  X   

Fault Mode 2 (F2)  X  X  

Fault Mode 3 (F3) X  X X  

Fault Mode 4 (F4) X X  X X 

Fault Mode 5 (F5) X  X  X 

 

This matrix gives us a handle on what anomalous behaviors we can expect to occur inside 

the system and what symptoms they would exhibit in terms of observable system 

behaviors. Using baseline data provided for the system under study, we calibrate this 

matrix for the acceptable levels of the fault mode symptoms. Here we assume that the 

model of the system is incapable of setting nominal thresholds on the expected system 

behavior. This is often the case when, constrained by the sensors available, only a narrow 

slice of the entire behavioral range of the system is observable e.g., gearboxes 

instrumented with accelerometers only allow for vibration signature analysis, which 

cannot be sufficiently modeled (so as to set operational limits) due to a variety of other 

operational and system parameters. Hence, we choose to bolster our model-driven 

approach here with some data-driven limits.  

 

The choice of thresholds on these symptoms is arbitrary. In the real world, maintenance 

personnel pick these thresholds from operational experience. In the absence of such 

expert knowledge we assume that the data is normally distributed (equation 5), and we 
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construct this distribution based on the mean µ and standard deviation σ of the given 

baseline data.  

)2()( 22

2

1
)( σµ

πσ

−−= xexP               (5) 

 

It is an acceptable practice to base the control limits upon a multiple of the standard 

deviation. Usually this multiple is 3 and thus the limits are called 3-sigma limits. These 

limits give us a 99.7% confidence interval on our baseline data. If a data point falls 

outside the control limits, we assume that the system is probably demonstrating a fault 

mode and that an investigation into the cause is warranted. 

4.5 Diagnostic Reasoning 

Having determined our nominal thresholds, it is time to move on to the actual diagnostic 

step. A multi-branched diagnostic tree is constructed from the measurements of the 

overall system behavior. The internal nodes of the tree represent monitored system 

variables measurements of internal signals, whereas the leaves or terminal nodes denote 

the components that are fault candidates. To illustrate the above concepts let us look at a 

simple adder-multiplier example [22]. The simple adder-multiplier circuit shown in 

Figure 13 consists of three analog multipliers, labeled M1, M2, and M3, and two analog 

adders, labeled A1 and A2. For this simple circuit a ternary diagnostic tree is constructed 

as shown in Figure 14. In this diagram, the root and internal nodes (denoted by the letters 

F, G, X, Y and Z in circles) represent measurements, leaf nodes (denoted by the literals 

M1, M2, M3, A1 and A2 in circles) represent failed components, empty circles denote 

multiple simultaneous faults, while black squares denote either fault not detected or not 
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isolatable. Fault diagnosis proceeds as follows: if terminal F is measured LOW (BAD) 

and terminal X is measured HIGH (BAD), then the ternary tree shown in Figure 14 

correctly indicates a multiple fault (represented by an open circle).  

 

M2 M1 M3 M3 M1 M2

A1 A2 A2 A1

Y Y Y Y

Y YX XZ Z

G G G

F

�

LOW
OK

HIGH

M2 M1 M3 M3 M1 M2

A1 A2 A2 A1

Y Y Y Y

Y YX XZ Z

G G G

F

�

LOW
OK

HIGH

 

      
 

Before we delve into the nitty-gritty of the reasoning algorithm, we need to take another 

look at some of the basic concepts of MBR. As mentioned in the literature review 

(Section 2.2) traditional MBR algorithms have two different approaches: 

Consistency-Based Approach: In this approach the nominal behavior of the target 

system is modeled. The diagnosis provided discounts the probability of multiple faults as 

well as the possibility of the fault signature of one component being influenced by its 

interaction with other components. Nevertheless, it can provide an insight as to whether 

nominal operation has been disrupted or not. 

Abductive Approach: In this methodology the faulty operational modes of the 

system is modeled so as to provide more accurate fault detection and identification.  

 

Our approach combines the two in the sense that some generic feature (e.g., energy) 

evaluated on the overall system behavior diagnoses whether some fault has occurred or 

Figure 14. Diagnostic tree for analog adder-multiplier.Figure 13. Analog adder-multiplier. 
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not. This event in turn triggers the diagnostic decision tree evaluation that isolates and 

identifies the fault.   

 

The mention of several performance metrics for MBR methods exists in literature like 

entropy, logical incompleteness etc. [2] However, before we discuss performance, we 

need to lay down some assumptions: 

• The diagnostic decision tree is evaluated on the basis that some fault has occurred, 

i.e. the no fault condition does not exist. 

• All symptoms appear in one or more fault modes but not in all of them.  

For our reasoning paradigm we define some simple performance metrics. A measure of 

speed of the reasoning algorithm is the expected number of measurements needed to 

identify a fault. The cost of the diagnosis is measured in terms of the number of paths that 

diagnose a fault condition. If a component can be detected as being faulty, it should 

appear as a leaf or terminal node. Finally, the resolving power of the diagnostic tree is 

related to the number of multiple fault modes that can be discriminated. Our aim is to 

construct a decision tree maximizing speed and resolving power while reducing cost. For 

a given application, the construction of the fault-symptom matrix determines the 

resolving power of the algorithm. The speed and cost measures are thus the only metrics 

left to optimize while formulating the diagnostic tree. 

 

Since faults are expressed as minterms (logically ANDed product of literals in which 

each variable appears exactly once) as shown in equation 1, we can apply the laws of 

logic minimization to reduce our diagnostic decision tree. These rules are presented 
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below. Here, 1 signifies a TRUE value, which in the context of the fault-symptom matrix 

represents a symptom indicative of a fault, denoted by an X, while 0 or FALSE implies 

the absence of a symptom in a fault mode, + and  • signify logical AND and OR 

respectively. 

 

Operations with 0 and 1: 

X + 0 = X     X • 1 = X 

X + 1 = 1     X • 0 = 0 

Idempotent Law: 

 X + X = X     X • X = X 

Involution Law: 

¬ (¬X) = X 

Laws of Complementarity: 

X +¬X = 1     X • ¬X = 0 

Commutative Law: 

 X + Y = Y + X    X • Y = Y • X 

Associative Laws: 

(X + Y) + Z = X + (Y + Z)   (X • Y) • Z = X • (Y • Z) 

                                = X + Y + Z           = X • Y • Z 

Distributive Laws: 

 X • (Y+ Z) = (X • Y) + (X • Z)  X + (Y • Z) = (X + Y) • (X + Z) 

Simplification Theorems: 

 X • Y  +  X • ¬Y = X    (X + Y)  •  (X +¬Y) = X 
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X + X • Y = X     X • (X + Y) = X 

(X +¬Y) • Y = X • Y    (X •¬Y) + Y = X + Y 

DeMorgan's Law: 

 ¬ (X + Y + ...) = ¬X •¬Y • ...  ¬ (X • Y • ...) = ¬X +¬Y + ... 

 

Karnaugh maps or K-maps are a useful graphic technique to perform the minimization of 

a canonical (minterm) form. They utilize the above theorems in a mapping procedure 

which results in a simplified Boolean expression. There are five basic steps in the 

minimization procedure:  

• Develop the first canonical expression from the associated truth table.  

• Plot 1’s in the K-map for each minterm in the expression.  

• Loop adjacent groups of 1’s (expressible as a power of 2) together.  

• Write one minterm per loop, eliminating variables where possible.  

• Logically OR the remaining minterms together to give the simplified minterm   

expression. 

 

The specific rules for looping on a k-variable K-map are summarized here: 

• Loops must contain 2
n
 cells set to 1, where n is an integer not larger than k.  

• A single cell (loop of 2
0
) cannot be simplified.  

• A loop of 2 (2
1
) is independent of 1 variable, a loop of 4 (2

2
) is independent of 2 

variables. In general a loop of 2
n
 cells is independent of n of the k variables 

involved.  

• Using the largest loops possible will give the simplest functions.  
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• All cells in the K-map set to 1 must be included in at least one loop when 

developing the minterm or maxterm form.  

• Loops may overlap if they contain at least one other unlooped cell in the K-map.  

• Any loop that has all of its cells included in other loops is redundant.  

• Loops must be square or rectangular. Diagonal or L-shaped loops are invalid. The 

edges of a K-map are considered to be adjacent. Therefore a loop can leave at the 

top of a K-map and re-enter at the bottom, and similarly for the two sides.  

There may be different ways of looping a K-map since for any given truth table there 

may not be a unique minimal form. 

 

In the case that we allow unknown faults (those not covered in the fault-symptom 

matrix), optimizing the decision tree for maximum efficiency as well as accuracy 

becomes difficult. The condition in every cell in any given row of the fault-symptom 

matrix must be satisfied before that fault is declared. For example, if the fault F4 (from 

Table 2) is to be declared then the thresholds for symptoms S1, S2, S4 and S5 must be 

exceeded while S3 feature value must be nominal. For any case not covered in the matrix 

an unknown fault is declared. Basically, for the 5 symptoms we have 25 = 32 fault modes 

(F1-F5 and 27 unknown modes). Since the number of decision steps for F1-F5 (the 

known faults) is 5 in each case, we can only optimize for the set of unknowns (denoted 

by U). The procedure is similar to K-map minimization. At each step we select the 

symptom to be tested in such a way so as to minimize the number of literals involving U 

in each half of the K-map differentiated by the symptom as shown in 

Figure 15 below. 
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Step 1: 

  
          Symptom chosen: S3 
           

          Literals: (6, 6) 
        

 
 
Step 2: 

  
           Symptoms chosen: S1 
 

           Literals: (1, 5) 
 
 

 
 
Step 3: 

  
           Symptoms chosen: S4 
 

           Literals: (5, 1) 
 

 
 
Step 4: 

  
           Symptoms chosen: S2 
 

           Literals: (4, 1) 
 

 
 
Step 5: 

  
           Symptoms chosen: S2 
 

           Literals: (1, 4) 
 

 
 
Step 6-11: 

  
           Symptoms chosen:  
                        S4 
                    S1 
                        S5   

 

 

Figure 15. Diagnostic tree formation based on K-map minimization. Si (i=1–5) denotes the threshold 

for Symptom i has been exceeded, while Si signifies nominal feature levels. The shaded boxes denote 

leaf nodes for unknown fault conditions. 
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Figure 16. Diagnostic decision tree for the fault-symptom matrix in Table 2. Leaf nodes denoting 

faults are shown in shaded color. 

 

The corresponding decision tree is shown in Figure 16. The performance metrics for the 

example discussed above are: speed = 50/12 = 4.17, cost = 12, resolving power = 5. 

 

However, considering unknown faults may not always be practical from an engineering 

standpoint. The previous method, while optimizing the diagnostic process, is not suitable 

for fault propagation. Countless experiences have shown that single faults, left 

uncorrected, spread from one component to another, causing fault modes to be triggered 

elsewhere. In the diagnostic tree this would be represented as leaf nodes with multiple 

faults.   Of course, the case of all possible faults happening in a chain before the system 

fails is also rare. Accordingly, the decision tree must be pruned to reflect these 

constraints. Before we discuss the tree formulation procedure in this case, it is imperative 

to restate our assumptions at this point. 

• The fault-matrix table covers all possible fault modes (this is not an unreasonable 

assumption if the table is constructed from a FMECA study). 

• Faults are independent of each other, i.e. the occurrence of one does not affect the 

probability of occurrence of another. 

S2 

U S4 

U S1 

S5 S5 

U F4 U F2 

S5 S5 

F3 U F5 F1 

S4 

S2 
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• The set of symptoms of a fault is not a subset of another fault, for example in 

Table 2 fault F1 was a subset of F3 and F5.  

• The diagnostic tree is not computed under no-fault conditions. 

This approach is more suited to the representation of faults as minterms (equation 1) since 

the absence of an unrelated symptom does not give us any more information about the 

concerned fault mode. The tree formulation steps are similar as before, where we 

construct a truth table from the fault-symptom matrix and then use K-map minimization 

to get the sequence of the symptoms to be tested. Although the theory behind the 

approach remains the same, the truth table formulation is slightly different. This is 

explained in the example below. 

Table 3. Another generic fault-symptom matrix (X denotes a valid fault-symptom relation). 

 
Symptom 1 

(S1) 
Symptom 2 

(S2) 
Symptom 3 

(S3) 

Fault Mode 1 (F1) X X  

Fault Mode 2 (F2) X   

Fault Mode 3 (F3)   X 

 

Table 3 gives the fault-symptom matrix of another generic case where we consider 3 

symptoms spread over 3 faults. The fault modes can be written as:  

F1 = S1∧S2 = (S1∧S2∧S3) ∨ (S1∧S2∧¬S3) 

F2 = S1 = (S1∧S2∧S3) ∨ (S1∧S2∧¬S3) ∨ (S1∧¬S2∧¬S3) ∨ (S1∧¬S2∧S3) 

F3 = S3 = (S1∧S2∧S3) ∨ (S1∧¬S2∧S3) ∨ (¬S1∧¬S2∧S3) ∨ (¬S1∧S2∧S3)               (6) 
 

The truth table representing this set of literals is shown in Figure 17(a) while the 

corresponding diagnostic tree is shown in Figure 17(b). The asterisks in the truth table 

denote “don’t care” conditions, whereas in the leaf nodes below <Fi, …,Fn> denotes that 

any possible combination of the included faults may occur. Thus, <F1,F2,F3> includes 

the fault modes F1, F2, F3, F1∧F2, F1∧F3, F2∧F3, and F1∧F2∧F3. The bold boxes show 
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the partitions made after K-map minimization of literals at each step. The performance 

metrics are: speed = 33/12 = 2.75, cost = 4, resolving power = 4. 

    

   (a)      (b) 

Figure 17. (a) Truth table and (b) diagnostic decision tree for the fault-symptom matrix in Table 3. 

 

As each fault mode is identified, the corresponding faulty component is determined from 

the database. Corresponding to each faulty component a fault propagation tree is 

generated based on the structural links stored in the structural model. In case of an 

unknown fault the fault propagation step is not performed. The theoretical foundation for 

logically reasoning about propagating a fault through a system represented by a partially 

connected graph can be specified using Z formalism [23]. Simply put, the fault 

propagation step takes the set of fault nodes as input and outputs the set of “at risk” 

nodes. Starting with the input set we search for the set of connected nodes (representing 

components) maintaining the acyclic property (we do not cycle back to the faulty nodes) 

such that all input nodes must be reachable from nodes in the output set with a jump size 

of one, i.e. the nodes (components) are physically adjacent. This is logically represented 

as: 

 Set of “at risk” nodes = {vi|(vi ∈ V)∧(∃j,x:¬MF⇒Fxj)∧(<vi,vx>∈E)}        (7) 

 

F3 

<F2,F3> 

S2 

<F1,F2,F3> 

S1 

F1 
S3 

LOW           HIGH 
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Let us consider the process plant example studied in the Models and Techniques for 

Integrated System Safety Engineering (MATISSE) project [23]. The system consists of a 

computer-based controller, valve A, valve B, level sensor X and level sensor Y as shown 

in Figure 18. Let us assume that the aim is to maintain the liquid level in the tank 

between level sensors X and Y. Valve A is manually operated to drain the tank while the 

controller tries to maintain the level using valve B. 

 
Figure 18. Process plant schematic. 

 

Now, assume that the input ports of the Controller fail such that it can no longer read the 

X and Y levels. There can be two possible failure scenarios: a) if valve A was open and 

the tank was being replenished at the time of failure then the valve B would not be 

switched off even after the level reached Y and the tank would overflow, and b) if the 

level was between X and Y and valve B was closed then continual drainage through 

valve A would cause the tank to run dry. These possibilities are captured in the fault 

propagation tree depicted in Figure 19. 
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Figure 19. Process plant fault propagation tree for failed controller input ports. 

 

In order to update the overall system health report, the full fault propagation tree is not 

required. Rather the components at the second level of the tree (i.e. adjacent components) 

are indicated as the components mostly likely to develop fault modes in the future. 

Failed I/P 
Ports on 

Level X not 
updated 

Level Y not 
updated 

Tank runs 
dry 

Tank 
overflows 
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5 Computational Complexity Analysis 

As a branch of the theory of computation in computer science, computational complexity 

theory describes the scalability of algorithms, and the inherent difficulty in providing 

scalable algorithms for specific computational problems. The implications of the theory 

are important to any practical application. The speed and memory capacity of computers 

are always increasing, but then so are the dimensions of the problems that need to be 

analyzed. If algorithms fail to scale well, then even vast improvements in computing 

technology will result in only marginal improvement in solution time. 

 

5.1 Analysis of Reasoning Steps 

The following paragraphs describe the computational complexity analyses of the 

automated steps in the overall algorithm. The formulation of the model database and the 

structural model of the system are user inputs and hence are not part of this study. For the 

sake of simplicity, we assume that there are p components, each with q fault modes, e 

interconnect edges, and a total of r distinct symptoms. 

 

5.1.1 Functional Model 

The functional model of the system is constructed by traversing the partially connected 

graph represented by the structural model and substituting the corresponding function for 

each component from the database. Since this step involves the traversal of a p-node e-

edge graph the computational complexity is O(p+e). 
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5.1.2 Fault Symptom Matrix 

The matrix tabulating the various fault modes and their symptoms is generated by 

traversing all units of the functional model and extracting their features from the 

database. For each component, we have q fault modes and r symptoms. Thus, to create 

this matrix we have a computational complexity of O((p+e)×q×r). 

 

5.1.3 Diagnostic Tree 

The generation of the diagnostic tree is split into two subroutines: the formulation of the 

K-map representation of the fault symptom matrix, followed by the sequencing of the 

diagnostic queries depending upon the K-map minimization rules. The computational 

complexity of formulating the table is O(2
r ) as determined by the number of symptoms. 

In order to find the complexity of the diagnostic tree generation routine we carry out a 

worst case analysis. For r symptoms the largest diagnostic tree would be a balanced 

binary tree with 2r leaf nodes and r diagnostic decision levels. The number of nodes at 

any given level i of the tree (the root being the 0
th
 level) is 2

i
 and the number of possible 

diagnostic choices at any node of that level is r-i. Also for a node at level i the number of 

cells in the K-map representation that need to be checked to see if they form a leaf node 

or not is 2
(r-i-1)

. Hence, the overall number of diagnostic tree possibilities along with the 

number of K-map cells to be checked at each level is given by 

  ∏
−

=

−−+
1

0

)1(2.2).1(
r

i

irii . 

The computational complexity is thus determined to be O( r! 2
r ( r-1 ) ). 
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5.1.4 Fault Propagation 

The fault propagation step takes the set of fault nodes as input and outputs the set of “at 

risk” nodes, such that all input nodes are reachable from nodes in the output set and the 

nodes (components) are physically adjacent. In the worst possible case it amounts to the 

complete traversal of the structural model graph which is O(p+e). 

 

5.1.5 System Status Update 

This step simply involves displaying the list of the faulty and the “at risk” nodes from the 

diagnostic and fault propagation steps and hence the computational requirements are 

taken care of in the previous steps. 

 

5.2 Analysis of Reasoning Steps 

In computational complexity theory, NP ("Non-deterministic Polynomial time") is the set 

of decision problems solvable in polynomial time on a non-deterministic Turing machine. 

Equivalently, it is the set of problems whose solutions can be "verified" by a 

deterministic Turing machine in polynomial time. Thus, the challenge of NP problems is 

to efficiently find the answer, given an efficient (polynomial-time) way of verifying it 

once it is found.  

 

NP-complete problems are the most difficult problems in NP ("non-deterministic 

polynomial time") in the sense that they are the smallest subclass of NP that could 
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conceivably remain outside of P, the class of deterministic polynomial-time problems. 

The reason is that a deterministic, polynomial-time solution to any NP-complete problem 

would also be a solution to every other problem in NP [24]. A supposed answer is very 

easy to verify for correctness, but no one knows a significantly faster way to solve the 

problem than to try every single possible subset, which is very slow. Nobody has yet 

been able to prove whether NP-complete problems are in fact solvable in polynomial 

time, making this one of the great unsolved problems of mathematics [24].  

 

In the celebrated Cook-Levin theorem (independently proved by Leonid Levin), Cook 

proved that the Boolean satisfiability problem is NP-complete [25], which makes the 

Diagnostic Tree generation step the most significant computational bottleneck in our 

methodology.  Our approach, so far, has been to restrict the input size of our problem by 

focusing only on the most critical faults and a limited domain of features. Even so, it is 

preferable in practical applications that all steps upto Diagnostic Tree generation be done 

offline, since they need to be done only once for a given system, and only the Diagnostic 

Tree evaluation, Fault Propagation and System Status Update steps be done online in 

real-time. 

 

5.3 Parallelizability 

Parallel processing is the simultaneous execution of the same task (split up and specially 

adapted) on multiple processors in order to obtain results faster. The idea is based on the 

fact that the process of solving a problem usually can be divided into smaller tasks, which 

may be carried out simultaneously with some coordination. Currently, with the advent of 
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multi-core cell processors the parallelized implementation of computation-intensive 

algorithms has gained greater importance. 

 

The steps of our methodology can be broadly classified into two groups: those that 

involve look-up functions or updates on different nodes or components (e.g. generation of 

the functional model from the structural model, fault-symptom matrix formulation, 

conversion to the K-map minimization format, and system status update), and those that 

involve graph or tree traversals (like the diagnostic tree and fault propagation). The 

former class lends itself well to parallel implementations since operations on nodes are 

mostly independent of each other. The latter class would also benefit from parallelization; 

however, the benefits would not be significant if the node connectivity structure is not 

balanced. 
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6 The IGB Application Domain 

6.1 The Helicopter Power-train Components 

The application domain chosen for the model-based reasoning paradigm envisioned here 

is comprised of helicopter power-train modules. They are composed of three basic types 

of fundamental mechanical units – gears, shafts and bearings. Albeit the individual 

specifications of these units as components of different modules, like the main 

transmission or the intermediate gearbox, differ significantly, however, their underlying 

functions remain the same. Thus, a collection of condition-indicators (CI’s) that are 

characteristic of anomalies in these functions provides a suitable platform for diagnostic 

reasoning.  

 

The helicopter drive train assembly is shown in Figure 20. The tail rotor drive train 

consists of a drive shaft that transfers torque from the main transmission to the oil cooler 

drive shaft, four drive shaft interconnected sections that transfer torque from the oil 

cooler drive shaft to the intermediate gear box, and another drive shaft that transfers 

torque from the intermediate gear box to the tail gear box [26]. The intermediate gearbox 

(IGB) of a helicopter is an assembly consisting of a pair of meshed spiral pinion gears, 

whose shafts are supported at either end by bearings. It is located at the end of the tail 

boom of the helicopter and serves the purpose of changing the direction of the tail rotor 

drive shaft up towards the tail rotor gearbox. The tail rotor serves a very important 

function in the helicopter - not only as a directional (yaw) control but it prevents the 

machine from spinning out of control in the direction opposite to the main rotor rotation. 
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Hence, fault diagnosis of the intermediate gearbox, that powers the tail rotor, is of critical 

importance. 

 
 

Figure 20. Helicopter Drive Train Assembly Drawing [26]. 

 

In our example, we shall discuss the power-train components of the H-60 (Black Hawk) 

helicopter. The H-60 helicopter plays a pivotal role in a variety of missions for the U.S. 

armed forces. Variations of the helicopter include Black Hawks, Pave Hawks, and 

Seahawks. The manufacturer, Sikorsky Aircraft Corp., says more than 2,500 H-60s are in 

service with the U.S. Army, Navy, Coast Guard, Air Force, and Marine Corps. A 

schematic view of the H-60 IGB is shown in Figure 21. 
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Figure 21. Schematic of the H-60 intermediate gearbox. 

 

6.2 IGB Diagnostics 

We start with the database of functional descriptions and fault mode condition indicators 

for each of the power-train module components, namely gears, bearings and shafts. It is 

also possible to model the casing, but we shall ignore it for simplicity since casing 

fracture is a rare occurrence for the IGB. Also, by simply concentrating on the three types 

of components listed above, we retain a significant amount of commonly occurring fault 

modes. Since the effectiveness of the approach depends on the validity of the database, it 

is critical to have a thorough idea about the functions of each component and the fault 

modes resulting from these functions. Table 4 lists the three component types under study 

along with their relevant vibration related fault modes [27]. The database is stored in the 
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form of an array of data structures with the component type, function, fault modes and 

associated feature calculation parameters as constituent fields.  

Table 4. A priori knowledge of gearbox components. 

Component Function Fault Modes Features 

Gear Change 

rotational speed 

(RPM) by gear 

tooth ratio 

• Crack in gear • High vibration levels at the 

gear natural frequency (g.n.f.) 

• Sidebands around the g.n.f. 

spaced at the running speed of 

the bad gear 

Bearing Support 

rotating shaft 

with balls 

circulating in 

grooves 

• Bearing race 
defect 

• (n/2) x shaft speed, n is the 

number of balls 

• Excessive 
bearing 

clearance 

• sub-synchronous whirl 

Shaft Transmit 

torque from 

one end to 

another 

• Rotor imbalance • 1 x shaft speed 

• Shaft 
misalignment 

• 2 x shaft speed  

• high axial vibration 

• Mechanical 

looseness 

• higher harmonics of shaft 

speed 

 

Next, the H-60 intermediate gearbox is analyzed and the structural model is extracted. In 

this process the mechanical linkage between each component is noted and the model is 

again stored in the form of a linked graph. Each node of the graph is a data structure 

representing the component name (e.g. Input Gear, Output Shaft, etc.), its type (e.g. gear, 

shaft, etc.) and the pointers to its neighboring components. Figure 22 is a diagrammatic 

representation of the structural model of the H-60 IGB. As shown in the picture, the heart 

of the IGB is a pair of spiral bevel gears. Each gear is connected to the respective input 

and output sides of the gearbox by splined shafts. Each shaft is in turn supported by ball 

bearings at the exit ports of the IGB casing. The accelerometers are stud mounted on the 

input and output port flanges of the casing. 
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Figure 22. Structural diagram 

of the H-60 IGB.                 

Figure 23.  Functional diagram of the H-60 IGB. 

 

The functional model of the system is constructed by traversing the structural model 

graph and substituting the respective functional descriptions for each node from the 

knowledge database. A block diagram of this functional model is shown in Figure 23. 

The function of the bevel gears is to maintain constant mesh between the input and the 

output sides and change the input rotational speed (RPM) into the output RPM through 

the 25:31 gear ratio. The input shaft transfers torque from the IGB input to the input 

bevel gear while the output shaft transfers the torque from the output gear to the IGB 

output. The functions of the input and the output bearings are to support their respective 

shafts and inhibit and motion other than axial rotation. The casing holds the entire 

assembly and transmits the combined vibrations from the internal components to the 

mounted accelerometers. 
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The response of a mechanical system to vibrating motion is simply modeled as a mass-

spring-damper system [28]. However, in the chosen application, due to the system 

nonlinearities, precise first principle based modeling is impractical. Our approach takes 

advantage of the fact that during forced vibrations of mass-spring-damper systems the 

vibration frequency is the same as the driving frequency. As the vibration from one 

component passes to another, there is some attenuation, but the frequency remains 

unchanged. Hence, the signals picked up by the casing mounted accelerometers contain 

aggregated vibration signatures from each of the components, as shown in the functional 

description of the casing in Figure 23.  

 

The IGB has multiple fault modes depending upon which components are subjected to 

damage. For example, a bearing may develop a defect in the inner/outer race, a shaft or a 

gear pinion might develop a crack, or even a gear tooth may be worn out or chipped. All 

of these fault modes give rise to characteristic vibration signatures. By looking at the 

corresponding frequency bands in the accelerometer readings, we can classify the fault 

modes present [21]. Some common IGB fault classification heuristics are given below. 

Although this list is not comprehensive, it is sufficient for our purpose, namely to 

demonstrate the application of our model-based diagnostic reasoning approach. 

• Rotor Imbalance – 1 x shaft speed 

• Shaft Misalignment – 2 x shaft speed, high axial vibration 

• Mechanical Looseness – higher harmonics of shaft speed 

• Excessive Bearing Clearance – sub-synchronous whirl instability 

• Bearing Race Defect – (n/2) x shaft speed, n is the number of balls 
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• Gear Bevel Defect – gear natural freq., sidebands spaced at the running speed of the 

bad gear. 

 

With the above concepts in view, the vibration specific fault-symptom matrix is 

constructed from the functional model and the database as shown in Table 5. The choice 

of thresholds on these symptoms is arbitrary. In this application, for all the symptoms, 

except for the side band spacing, the energy thresholds are set at the upper 3 sigma limit 

as determined from the baseline data. For the sideband spacing feature the symptom can 

take the value of either the input shaft speed or the output shaft speed. The system 

parameters required, as input to the MBR program for full IGB diagnostics, are given as 

68.6 Hz input shaft speed, 25:31 gear ratio, and gear natural frequency around 822 Hz for 

both input and output gears. 

Table 5. Fault-Symptom Matrix for the IGB (the symptoms are represented by associated frequency 

bands in Hz). 
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Input Gear Crack      820-825 65-70 

Output Gear Crack      820-825 82-87 

Input Bearing Race Defect    200-350    

Output Bearing Race Defect    250-435    

Excessive Clearance I/P Brg 20-50       

Excessive Clearance O/P Brg 25-60       

Input Shaft Imbalance  50-100      

Output Shaft Imbalance  60-125      

Input Shaft Misalignment   100-150     

Output Shaft Misalignment   125-185     

Input Shaft Looseness     350-450   

Output Shaft Looseness     435-560   
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Since the fault symptoms described above are primarily energy metrics, the energy 

content of each data sample received is used to determine whether the system is in 

nominal mode or not. Once a fault is diagnosed at the system level we evaluate the 

diagnostic decision tree to isolate and identify the fault. The assumptions involved are:  

• All possible fault modes are covered in the fault-symptom matrix. 

• There are no simultaneous multiple faults. 

• Fault modes of each component are independent of each other. Hence multiple 

symptoms can be explained as the occurrence of multiple faults. 

  

For the H-60, the fault-symptom matrix (Table 5) shows that other than the gear natural 

frequency the remaining symptoms are different for the input and the output sides. To 

exploit this feature two diagnostic decision trees are constructed for each of the input and 

output accelerometer data. Taking advantage of the fact that most faults have only a 

single symptom we devise a simpler linear decision tree. Although the decision tree is 

manually optimized in this case, automated generation by the MBR program also arrives 

at the same solution. Figure 24 shows the generic form of these decision trees for both the 

input and output side. The performance metrics are computed as speed = 4.1, cost = 8, 

resolving power = 7. This tree is traversed in the depth-first method with all left branches, 

starting from the root, being taken in each iteration. Each iteration corresponds to a new 

dataset recorded from the sensors. When any one of these nodes returns a fault, then the 

same traversal process is applied to the right sub-tree of that node. It is to be noted that 

the search space is not narrowed down after initial diagnosis since a fault initiation in one 

component does not rule out the possibility of other components going bad.  
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Figure 24. Generic diagnostic decision tree for IGB. 

 

 

 

 

 

In any given iteration, after the detection of the fault mode(s), a fault propagation tree is 

generated corresponding to each faulty component based on the links stored in the 

structural model graph. In order to update the overall system health report, the full fault 

propagation tree is not required. Rather the components at the second level of the tree 

(just below the root) are indicated as the components mostly likely to develop fault 

modes in the future. Figure 25 shows an example of the fault propagation tree for an 

input gear fault. A schematic of this approach is presented in Figure 26. The double 

arrows going from the fault-symptom matrix to the diagnostic tree in the diagram denote 

that the latter was obtained from the former by both manual optimization as well as 

MATLAB
®
 code. 

i/p gear 

i/p shaft o/p 
 

o/p 
 

o/p brg 

i/p brg 

Figure 25. Fault propagation tree 

for input gear fault. 
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Figure 26. An MBR approach to fault detection and classification in the IGB. 

 

6.3 Results 

For fatigue crack analysis, an H-60 IGB pinion gear made of 9310 steel was used in a 

cyclic crack growth test. It was seeded with faults to initiate cracks. These faults 

consisted of notches made by an electric discharge machine (EDM), and were located at, 

and parallel to, the root of one of the gear teeth, as shown in Figure 27. The crack growth 

test consisted of rotation in a spin pit, at a constant high speed with a varying load cycle, 

to simulate flight conditions. Data collection was done using 2 stud mounted 
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accelerometers at the input and the output of the IGB. The data consists of 36 sets of 

accelerometer readings from both the input and the output ends. 

 

A healthy gearbox exhibits certain characteristic frequencies. The primary component of 

the spectrum is the gear mesh frequency, which is 1714.5 Hz in our case. The harmonics 

of the mesh frequency are also present but their energy content varies with load 

conditions. When a crack initiates in the gear, the power spectrum starts to show a clear 

peak at the natural frequency of the gear. There are also characteristic sidebands spaced 

at the running speed of the bad gear. Thus, the major energy component of the signal 

shifts from the mesh frequency to the gear natural frequency and its sidebands. 

 

For the frequency domain analysis of the given data, we primarily look at the power 

spectral density. First, we eliminate the mesh frequency and its prominent harmonics. 

Then we measure the features listed in Table 4.  The normalized energy at the gear 

natural frequency (822 Hz) is observed to be the prime indicator of a growing fault 

condition. The spacing between the sidebands is then analyzed to see if it matches either 

the input or the output shaft speed. This provides a means of classifying which pinion 

gear is faulty. The simulation is done in MATLAB
®
. Figure 28 shows the plots of the 

feature values and their associated fault status flags. 

Crack

Figure 27. IGB crack. 
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Figure 28. Plots showing various features and their flags vs. sample index. (a) Subharmonic energy 

(subH) in dB, (b) 1st harmonic or shaft speed energy (1x) in dB, (c) 2nd harmonic energy (2x)  in dB, 

(d) bearing defect freq. energy (brg) in dB, (e) higher harmonic energy (highH) in dB, (f) gear 

natural freq. energy (gnf) in dB, (g) sideband spacing about gnf (sbsp) in Hz, and (h) the status flags 

of the 7 features listed above, displaced from each other. 

 

In accordance with the plot shown in Figure 28(h) the text output received from the 

program is as follows: 

time index 1 -> nominal 
time index 22 -> gear fault 
time index 24 -> i/p gear fault 
time index 24 -> at risk: i/p shaft o/p gear 
time index 32 -> i/p shaft mechanical looseness 
time index 24 -> at risk: i/p brg o/p gear 
time index 33 -> i/p brg race defect 
time index 24 -> at risk: o/p gear 
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The photograph of the input pinion crack, shown in Figure 27, provides validation for our 

approach. The fault propagation tree shown in Figure 25 is also validated by the fault 

flags for the input bearing defect and the input shaft mechanical looseness being thrown. 

The physical explanation of the observed phenomena is as follows. As the gear crack is 

allowed to grow unchecked, the resulting vibrations are transmitted through the shaft to 

the input bearing. The shaft itself starts to deviate from pure axial rotation from the 

impulses provided by the opening and closing of the gear crack in each turn. This leads to 

the degradation of the input bearing and mechanical looseness of the input shaft. 
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7 The JSF Fuel Supply System Example 

As an effort to show the applicability of the MBR diagnostic methodology to systems 

different from the H-60 IGB, we look at the fuel supply system of the F-35 Joint Strike 

Fighter (JSF) [29]. Figure 29 shows the structural model of the fuel supply system while 

Figure 30 depicts its functional model. As depicted, the system comprises of two 

independent fuel tanks with dedicated pumps feeding a common fuel line. The power 

circuitry to the pumps along with an extensive set of current and flow rate sensors make 

up the rest of the system. The physical arrangement of the above mentioned components 

as well as their interconnections comprise the structural model (Figure 29). 

 

                      

Figure 29. Structural model of JSF fuel delivery system [29]. 
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Figure 30. Functional model of JSF fuel delivery system [29]. 

 

7.1 System Abstraction 

The functional specification of the system is to maintain the net required fuel flow rate 

from the two tanks. The fuel transfer sensor monitors the net flow rate, which is modeled 

as the simple sum of the individual pump flow rates, measured by their respective flow 

rate sensors. The individual flow rate of each tank is then expressed in terms of the 

change in fuel level in the tank. Assuming the pump to be the only source of fuel 

extraction from the tank, the decrease in level can be related to the current/power 

supplied to the pump through the power switch monitored by the pump power switch 

sensor. Finally, the power supplied through the switch is directly controlled by the on-

time of the pump power switch signal. Thus, a functional flow diagram is built up to 

explain the overall system response in terms of its component units. Figure 30 represents 
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this in the form of the functional model. Accurate mathematical analysis of the relations 

mentioned above requires the introduction of complex concepts of fluid dynamics, as 

well as a good knowledge about the physical parameters of the units involved, e.g. the 

rotational speed of the pump, the cross-sectional profile of the fuel pipes, the viscosity of 

the fuel, etc. Again, without going into such detail, a simple behavioral analysis offers a 

good understanding of the condition of the system. For example, in the case of 

insufficient flow rate, if it is observed that the pump is powered but the tank level does 

not drop, then the tank must be faulty.   

7.2 Reasoning 

In order to draw up the fault symptom matrix we need to enlist the components of the 

system that can go wrong. Assuming that the fuel piping and the electrical wiring are OK 

and do not develop faults, we restrict ourselves to the following components along with 

the fault modes shown: 

• Pump power switch 

o stuck ON 

o stuck OFF 

• Tank 1 

o fuel leak 

• Tank 2 

o fuel leak 

• Pump 1 

o cracked seal 

o debris buildup 
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• Pump 2 

o cracked seal 

o debris buildup 

Linking these fault modes with the sensors shown in Figure 29 we can build the fault 

symptom matrix as shown in Table 6. 

Table 6. Fault-Symptom Matrix for the JSF Fuel Delivery System. 
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S1 S2 S3 S4 S5 S6 S7 S8 

Power Switch Stuck ON F1 OFF ON       

Power Switch Stuck OFF F2 ON OFF       

Tank 1 Fuel Leak F3  OFF  DEC     

Tank 2 Fuel Leak F4  OFF   DEC    

Pump 1 Cracked Seal  F5  ON OK   LOW  LOW 

Pump 2 Cracked Seal F6  ON OK    LOW LOW 

Pump 1 Debris Buildup F7  ON HIGH   LOW  LOW 

Pump 2 Debris Buildup F8  ON HIGH    LOW LOW 

 

The next step is the construction of the diagnostic decision tree. The tree is traversed in 

the depth-first method starting from the root in every iteration. Each iteration corresponds 

to a new dataset recorded from the sensors. Figure 31 shows the diagnostic decision tree 

as derived from Table 6. 
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Figure 31. Diagnostic Decision Tree for the JSF Fuel Delivery System. 

 

The figures of merit for the above binary decision tree are as follows: 

� Speed = 29/8 = 3.625 

� Cost  = 8 

� Resolving Power = 8. 

 

A schematic of the MBR diagnostic approach in the JSF case is presented in . In this 

case, the structural and functional models of the fuel delivery system are given [29], and 

are, therefore, manually coded into the MATLAB
®
 program. The system analysis and 

subsequent literature review to build the knowledge database about tanks, pumps, 

switches, etc. are also done manually. These steps are showed by the tan colored arrows 

in . The MBR program takes over from this point to generate the rest of the diagnostic 

reasoning framework (shown by blue arrows). 

 S2

 S1 S1

 S4

 S5

 S3

 S6

 S7

 S6

 S7

 F1  F2 

 F3 

 F4  F5 

 F6 

 F7 

 F8 



 76

Knowledge

Database

Structural 

Model
Functional 

Model

Fault -Symptom MatrixFault -Symptom Matrix

Fault Propagation Tree

System Status 

Update

Simulated Data

Input

Input

System Analysis

and Abstraction

Intermediate Step            Output Step

MBR Architecture

System-Level

Diagnostics

Manual Process

Automated in Matlab

Knowledge

Database

JSF Fuel System

Diagnostic Tree

 
 

Figure 32. An MBR approach to fault detection for the JSF fuel delivery system. 

 

7.3 Results 

Since there exists no real data for this system we simulate sensor data by modeling the 

components as signal sources with superimposed Gaussian white noise. The tanks are 

modeled as containers with possible leakage flow. The pumps are modeled such that the 

flow rate is directly proportional to the input current and inversely proportional to debris 

buildup. The switches modeled with inline fuses that blow at preset current thresholds. 

Both tanks start at the arbitrary fuel level of 100. The flow rate of the pumps are 1 under 

nominal conditions. The flow rate and pump power consumption thresholds are set at 3-
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sigma limits assuming normal distribution of data. During the simulation a fault is 

introduced at time unit 4 in the form of debris blockage in pump 2. Figure 33 shows the 

simulation plots of the fault symptoms (blue) along with the fault flags (red). 

 

Figure 33. Plots of the JSF Fuel Delivery System fault symptoms (symptoms in blue; fault flags in 

red). 

 

As shown by the plots, at time unit 4.4 the pump 2 low flow rate flag is thrown indicating 

some either a broken seal or debris in the flow path. The latter is confirmed by the pump 

power high flag being thrown at time unit 4.5. Rising consumption of power by pump 2 

results in the power switch blowing a fuse and becoming stuck OFF. This is indicated by 

the power switch fault flag as well as the pump 1 low flow rate flag being thrown at time 

unit 9. This sequence demonstrates the fault propagation in the system. 
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8 Model Verification 

One of the most important steps of the model-based diagnostic reasoning methodology 

described thus far is the formulation of the functional model. Consequently, it is vital to 

ensure that the generated model correctly captures the system behavior we are interested 

in. “Model verification is the process of determining that a model implementation 

accurately represents the developer’s conceptual description and specifications” [30]. 

Model checking is a technique for formally verifying finite-state concurrent systems. 

Specifications about the system are expressed as temporal logic formulas, and efficient 

symbolic algorithms are used to traverse the model defined by the system and check if 

the specification holds or not.  Extremely large state-spaces can often be traversed in 

significantly less time than simulation methods. 

 

There are a plethora of software tools for model checking applications.  However, most 

are geared towards digital hardware design.  Formal verification of complex real time 

systems requires support for specifying temporal properties built into the model checking 

software.  Temporal logic of actions (TLA) is a logic for specifying and reasoning about 

concurrent systems [31].  Systems and their properties are represented in the same logic, 

so the assertion of the specifications that a system meets and the assertion of what a 

system implements are both expressed by logical implication. 

 

TLA+ [31] is a specification language for concurrent and reactive systems that combines 

the temporal logic TLA with full first-order logic and ZF set theory [32].  TLC is a model 

checker for debugging a TLA+ specification by checking invariance properties of a 
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finite-state model of the specification [31].  It accepts a subclass of TLA+ specifications 

that can be used to describe most real time systems. Major components of the overall 

system are modeled and verified individually.  These temporal logic modules are then 

collated to form the description of the entire system. The verification plan for a system 

module can be summarized in the following steps: 

• Express the system and its expected behavior as logical constructs in TLA+ using 

the system’s functional model. 

• Express the specifications for the system model under test in the form of TLA+ 

constructs. 

• Run the TLC model checker to test the compliance of the system to stated 

specifications. 

8.1 The IGB Example 

In the case of the IGB, all that is required for the model verification process is to make 

sure that the input shaft speed of the IGB is multiplied by the gear ratio at the output. 

Looking at Figure 23 we can see that the gears are only components that modify the 

rotational speed, and hence the only components that need to be modeled in temporal 

logic.  Figure 34 shows the TLA+ code that verifies the IGB model. The variables 

IPGRrot and OPGRrot represent input gear and output gear rotation angles in terms 

of the number of teeth respectively, while ipspd and opspd are the respective input 

and output shaft speeds. The constants N1 and N2 are the number of teeth on the input 

and output gears respectively. The initialization statement IGBini says that the initial 

rotation angles start from zero. The IPGRnxt and OPGRnxt statements describe how 
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the rotation angles increment. The IGB statement expresses the system as a combination 

of the initial conditions and the state transitions, while the ASSRT specification states that 

as long as the gears are meshed, the output speed will be the product of the input speed 

and the gear ratio. The TLC model checker verifies this code, thus implying that the IGB 

functional model accurately captures the expected behavior. 

 

 

Figure 34. TLA+ Representation of the IGB. 

 

 

Although this example has few logical expressions, this model verification methodology 

can be applied to more complex systems like the monopropellant propulsion system 

described in the next section. 

--------------------- MODULE IGB ------------------------ 
EXTENDS Naturals 
VARIABLES IPGRrot, OPGRrot, ipspd, opspd 
CONSTANTS N1, N2 
--------------------------------------------------------- 
 
 IGBini  ==  /\ (IPGRrot = 0) /\ (OPGRrot = 0) 
 IPGRnxt  ==  /\ ipspd’ = ipspd 
      /\ IPGRrot’ = IPGRrot + N1*ipspd 
 OPGRnxt  ==  /\ opspd’ = opspd 
      /\ OPGRrot’ = OPGRrot + N2*opspd 
 IGBnxt  ==  /\ IPGRnxt /\ OPGRnxt 
 IGB  ==  /\ IGBini /\ [][HTRnxt]_<<IPGRrot, OPGRrot, 
ipspd, opspd>> 
 ASSRT  ==  (IPGRnxt = OPGRnxt) -> (opspd = 
(N1/N2)*ipspd) 
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8.2 The Monopropellant Example 

The monopropellant propulsion system under study [33] uses hydrogen peroxide (H2O2) 

that passes over a catalyst and decomposes into oxygen, water, and heat, creating an 

expanding gas that produces the required thrust.  
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Figure 35. Schematic of the NASA monopropellant propulsion system. 

 

 

The system, as shown in Figure 35, consists of a reservoir tank of inert gas that feeds 

through an isolation valve IV1 to a pressure regulator RG. The pressure regulator senses 

the pressure downstream and opens or closes a valve to maintain the pressure at a given 
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set point. Separating the inert gas from the propellant is a bladder that collapses as the 

propellant is depleted. The propellant is forced through a feed line to the thruster isolation 

valve IV2 and then to the thrust chamber isolation Valve IV3. For the thruster to fire, the 

system must first be armed, by opening the IV1 and IV2. After the system is armed, a 

command opens the IV3 and allows H2O2 to enter the thrust chamber. As the propellant 

passes over the catalyst, it decomposes producing oxygen, water vapor and heat. The 

mixture of hot expanding gases is allowed to escape through the thruster nozzle, which in 

turn creates the thrust. The relief valves RV1-4 are available to dump inert gas/propellant 

overboard should an overpressure condition occur in any corresponding part of the 

system. 

 

The corresponding functional model is depicted in Figure 36. The yellow circles denote 

the system components, the blue rounded rectangles represent the component functions, 

the grey boxes are external inputs, and the labeled arrows denote the system variables of 

interest. An autonomous contingency management (ACM) module is built around the 

monopropellant system so as to control the internal variables within acceptable limits in 

the presence of various fault scenarios. The main components that must be modeled 

include the Heater, Tank, Pressure Regulator, and Valves. As an example of the 

verification methodology we will look at a simplified behavior of the monopropellant and 

the ACM module together. We restrict ourselves to only a qualitative analysis of the 

interactions between the ACM module and the monopropellant. It is to be noted that the 

entire system may be modeled down to the level of partial differential equations 

involving the system variables as dictated by the equations of physics. However, it is our 
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intention to only verify the logic of the ACM module as it applies to restricting the 

monopropellant from going in to unwanted states. 
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Figure 36. Functional model of the monopropellant propulsion system. 
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Figure 37 (the code section below) shows the TLA+ representation of the combined 

monopropellant-ACM system behaviors. The monopropellant system variables of interest 

are limited to the inert gas tank pressure (p_TK) and the propellant tank pressure (p_PT). 

These two pressures also respectively denote the input and output pressures of the 

pressure regulator. The ACM control variables are the heater ON/OFF switch (sw_HTR), 

release valve (RV1) flow control switch (flow_RV1), the regulator set point (sp_RG) and 

the system status (SYS_status). The HTR_cond, RV1_cond and the RG_cond variables 

simply reflect the statuses of the three fault flags of the system which are discussed later. 

All the values shown for the state variables are arbitrarily chosen so as to quantitatively 

reflect the qualitative changes during state transitions. The system specification is 

denoted by the SPEC statement that implies if the ACM module declares the 

monopropellant to be in NOMINAL state then the inert gas tank pressure must be within 

certain lower and upper thresholds (chosen to be 100 and 150) and if the propellant tank 

pressure dips below 80 then the heater must be switched on as a contingency 

management measure, or the ACM module must put the monopropellant in the 

FAILSAFE state. 

 
-------------------------- MODULE Monopropellant----------------------------------------- 
(***************************************************************************************) 
(* This module specifies the behavior of the test system *******************************) 
(***************************************************************************************) 
EXTENDS  Naturals 
 
VARIABLES  sw_HTR, 
  p_TK, 
  flow_RV1, 
  sp_RG, 
  p_PT, 
  SYS_status, 
  HTR_cond, 
  RV1_cond, 
  RG_cond 
 
SPEC == \/ (/\ p_TK >= 100 
      /\ p_TK <= 150 
      /\ (p_PT < 80 => sw_HTR = 1) 
      /\ SYS_status = "NOMINAL") 
  \/ SYS_status = "FAILSAFE" 
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----------------------------------------------------------------------------------------- 
 
Init ==  /\ SYS_status = "NOMINAL" 
  /\ HTR_cond = "OK" 
  /\ RV1_cond = "OK" 
  /\ RG_cond = "OK" 
  /\ sw_HTR = 0 
  /\ p_TK = 125 
  /\ flow_RV1 = 0 
  /\ sp_RG = 100 
  /\ p_PT = 100 
 
SYS(HTR_fail, RV1_fail, RG_fail)  
 ==  IF SYS_status = "NOMINAL" 
  THEN 
  /\ CASE 
   HTR_fail = 0 -> 
   /\ HTR_cond' = "OK" 
   /\ sw_HTR' = IF p_TK <= 100 THEN 1 ELSE IF p_TK >= 150 THEN 0 ELSE 
sw_HTR 
   [] 
   HTR_fail = 1 -> 
   /\ HTR_cond' = "STUCK OFF" 
   /\ sw_HTR' = IF p_TK >= 150 THEN 0 ELSE sw_HTR 
   [] 
   HTR_fail = 2 -> 
   /\ HTR_cond' = "STUCK ON" 
   /\ sw_HTR' = IF p_TK <= 100 THEN 1 ELSE sw_HTR 
  /\ CASE 
   RV1_fail = 0 -> 
   /\ RV1_cond' = "OK" 
   /\ flow_RV1' = IF p_TK > 150 \/ (p_TK = 150 /\ HTR_cond' = "STUCK 
ON")  
     THEN 1 ELSE 0 
   [] 
   RV1_fail = 1 -> 
   /\ RV1_cond' = "STUCK CLOSED" 
   /\ flow_RV1' = 0 
   [] 
   RV1_fail = 2 -> 
   /\ RV1_cond' = "STUCK OPEN" 
   /\ flow_RV1' = 1 
  /\ p_TK' = p_TK + sw_HTR'*10 - flow_RV1'*10 - 5  
  /\ CASE 
   RG_fail = 0 -> 
   /\ RG_cond' = "OK" 
   /\ sp_RG' = 100 
   /\ p_PT' = IF p_TK' > sp_RG' THEN sp_RG' ELSE p_TK' 
   [] 
   RG_fail = 1 -> 
   /\ RG_cond' = "80%" 
   /\ sp_RG' = 120 
   /\ p_PT' = IF p_TK' > sp_RG' THEN sp_RG' - 20 ELSE p_TK' - 20 
   [] 
   RG_fail = 2 -> 
   /\ RG_cond' = "STUCK @ 80%" 
   /\ sp_RG' = 100 
   /\ p_PT' = IF p_TK' > sp_RG' THEN sp_RG' - 20 ELSE p_TK' - 20 
  /\ SYS_status' = IF  \/ (p_TK' > 150 /\ RV1_cond' = "STUCK CLOSED") 
     \/ (p_TK' < 100 /\ RV1_cond' = "STUCK OPEN")  
     \/ (RG_cond' = "80%" /\ HTR_cond' = "STUCK OFF") 
     \/ RG_cond' = "STUCK @ 80%" 
     THEN "FAILSAFE" ELSE SYS_status 
  ELSE UNCHANGED << 
   sw_HTR, 
   p_TK, 
   flow_RV1, 
   sp_RG, 
   p_PT, 
   SYS_status, 
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   HTR_cond, 
   RV1_cond, 
   RG_cond>> 
 
Next  ==  \E HTR_fail, RV1_fail, RG_fail \in {0, 1, 2} : SYS(HTR_fail, RV1_fail, 
RG_fail)  
   
SYSTEM == /\ Init 
  /\ [][Next]_<< 
   sw_HTR, 
   p_TK, 
   flow_RV1, 
   sp_RG, 
   p_PT, 
   SYS_status, 
   HTR_cond, 
   RV1_cond, 
   RG_cond>> 
 
----------------------------------------------------------------------------------------- 
THEOREM  SYSTEM => []SPEC 
========================================================================================= 
 

Figure 37. TLA+ specification of the combined monopropellant-ACM system. 

 

 

The initial state of the system, as described by the Init statement, assumes the system to 

be in the NOMINAL state with no faults in any of the monopropellant subsystems, the 

heater being OFF, the release valve being CLOSED, the regulator set point being at its 

nominal value of 100 and the inert gas tank and propellant tank pressures being 125 and 

100 respectively. The next statement SYS describes the possible behavior of the system. 

It takes 3 parameters HTR_fail, RV1_fail and RG_fail that respectively denote the fault 

conditions in the heater, release valve RV1 and the regulator. If the HTR_fail flag is 0 

then the heater is in OK condition and according to the ACM strategy it is turned ON if 

p_TK ≤ 100, turned OFF if p_TK ≥ 150 and otherwise left as is. If HTR_fail is 1 then the 

heater is STUCK OFF, i.e. it can be turned OFF as before but cannot be turned ON. The 

conditioned is reversed for the STUCK ON case when HTR_fail is 2. The ACM strategy 

for the release valve RV1 in the OK state (RV1_fail = 0) is to keep it CLOSED unless 

p_TK > 150 or p_TK = 150 and the heater is STUCK ON. The fault scenarios are 

denoted by RV1_fail = 1 when RV1 is STUCK CLOSED (no flow) and RV1_fail = 2 

when STUCK OPEN (constant continuous flow). At every state transition p_TK has a 



 87

constant decreasing effect of 5 assuming constant thrust conditions and a decreasing 

effect of 10 if RV1 is open due to reducing mass and an increasing effect of 10 if the 

heater is ON due to temperature increase. These effects are simply a quantization of the 

behavior mandated by the ideal gas equation: PV = nRT, where P, V, n, R and T 

respectively denote the pressure, volume, mass (in moles), gas constant and temperature 

(in °K). The regulator, in the OK condition (RG_fail = 0), regulates output pressure 

(p_PT) at the set point sp_RG if the input pressure (p_TK) is higher than the set point or 

at input pressure if it is lower.  The ACM module sets sp_RG at 100 in this case. Under 

faulty conditions p_PT is regulated at 20 below the value stated above. If the regulator is 

at 80% (RG_fail = 1) then the ACM strategy is to increase the set point to 120 to offset 

the output pressure reduction, but if the regulator is STUCK @ 80% then sp_RG cannot 

be changed and it remains at 100 with a correspondingly lower p_PT. The system status 

(SYS_status) is determined as follows: if p_TK < 100 and RV1 is STUCK OPEN, or 

p_TK > 150 and RV1 is STUCK CLOSED, or the regulator is at 80% and the heater is 

STUCK OFF, or if the regulator is STUCK @ 80% then change status to FAILSAFE, 

else maintain NOMINAL state. The state variables are only updated under NOMINAL 

conditions but not in the FAILSAFE mode. The Next statement declares the SYS 

expression as the rule for state change with the fail flag parameters taking any value from 

the set {0, 1, 2}. 

 

The TLC model checker takes this system description and tries to prove the THEOREM, 

which states that the desired system specification SPEC can at all times (denoted by the 

symbol []) be derived from the system description SYSTEM (comprising of the Init and 
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Next statements). If there is some discrepancy between the system description and the 

specifications, the model checker will find it and output a counterexample to prove the 

case. For example if we run the model checker on the above test module (Figure 37), then 

we get a specification violation as shown in Figure 38.  

 
Figure 38. TLC output for faulty system specification. 
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There are two options for rectifying this error. If the specification is correct then we must 

modify the system description till it matches with the specification. In our case, changing 

the SYS_status expression to include the case where the system status is changed to 

FAILSAFE when p_TK < 100 and the heater is STUCK OFF (as shown in Figure 39) 

enables a positive verification as shown in Figure 40. Alternatively, if the system 

description cannot be changed (as for a system past the implementation phase), then the 

model checker may be used to find out the limits of the system by altering the 

specifications until a positive verification is achieved. 

  … 
  /\ SYS_status' = IF  
     \/ (p_TK' > 150 /\ RV1_cond' = "STUCK CLOSED") 
     \/ (p_TK' < 100 /\ RV1_cond' = "STUCK OPEN")  
     \/ (p_TK' < 100 /\ HTR_cond' = "STUCK OFF")  
     \/ (RG_cond' = "80%" /\ HTR_cond' = "STUCK OFF") 
     \/ RG_cond' = "STUCK @ 80%" 
     THEN "FAILSAFE" ELSE SYS_status 
  … 

Figure 39. Change in the TLA+ specification of the combined monopropellant-ACM system. 

 

 
Figure 40. TLC output for corrected system specification. 
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9 Conclusions 

On the conceptual front, the research work presented formulates a model-based reasoning 

architecture in order detect and classify fault modes of non-observable internal 

components from observable system behavior, and generates component-level fault 

propagation models so as to make an intelligent estimate of system health. This research 

attempts to bridge the gap between the overall system-level control and diagnostics 

applications of MBR and the computationally intensive quantitative analyses applied to 

component-level fault diagnosis.  

 

On the software side, the end product is a MATLAB
®
 program that takes a system 

structural model and a domain knowledge database as input and outputs a reasoner, 

comprising of the diagnostic decision tree and the fault propagation tree, which when 

applied to time-series data, gives an intelligent report of the system health. 

9.1 Contributions 

• A novel adaptation of MBR implementing a knowledge database aided diagnosis of 

inaccessible faulty components from observable system behavior. 

• A fault propagation methodology based on the information abstracted by the model-

based diagnostic reasoning step listed above. 

• An integration of the diagnosis and fault propagation algorithms in an overall model-

based reasoning architecture formulated in an industry preferred test-bench language 

like MATLAB
®
. 
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• Application of the above software to intelligent fault diagnosis of existing helicopter 

power-train modules and other electro-mechanical systems. 

• Complexity analysis of the algorithms used by the reasoning architecture to ascertain 

performance guarantees for online implementation. 

• Model verification technique for complex engineered systems in temporal logic. 

9.2 Remaining Work 

The data structures used in the MBR program presented, though suitable for the intended 

applications, would benefit from modifications that allow encoding of failure probability 

and criticality derived from FMECA studies. Also, MATLAB
®
 representations of system 

models, though suitable for the chosen application domain, do not lend themselves easily 

to qualitative reasoning, while more intuitive representation in an AI programming 

language like TLA+ is not easily applicable to quantitative analysis. This underscores the 

need to combine the two approaches perhaps using tools like MATLAB
®
 Stateflow.  
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