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SUMMARY 

 

Semiconductor quantum well (QW) structures are widely adopted in optical 

components such lasers and photodetectors. Optical electroabsorption modulators 

(EAMs) that utilize QWs are known to exhibit high modulation sensitivity, which is 

required for the analog optical fiber link application, compared to other types of optical 

modulators. QW-EAMs utilize the change of absorption coefficients that depends on the 

change of electric field across the QW for the optical intensity modulation. This 

dissertation focuses on the theoretical analysis of the optical properties of asymmetric 

double QWs (ADQWs) and the systematic optimization of modulation sensitivity in low-

voltage EAMs that incorporate ADQWs. In this structure, the accurate calculation of 

excitons is especially important because the excitonic as well as the band-to-band optical 

transitions dominate the optical properties at the operating wavelength even at room 

temperature. The complex linear optical susceptibility was calculated within the density 

matrix approach in the quasi-equilibrium regime for the low excitation power and 

through a thorough treatment of line broadening, which is required for the calculation of 

the transmission properties of the QW-EAMs. Transition strengths were calculated in the 

wavevector space, which effectively includes valence subband mixing with the warping 

of the subbands, excitonic mixing effects, and possible optical selection rules (e.g., light 

polarization, spin of excitons). The calculated transmission properties were almost 

identical to the experimental data at the device operating bias range. The mixing of 

excitons in ADQWs was analyzed in detail in momentum space, which was demonstrated 

to be very important in the process of structural optimization of ADQWs. The 
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optimization of the structural parameters revealed that at an adequate barrier position and 

well width, the barrier thickness affects the modulation efficiency the most. Subsequently, 

in InGaAsP-based waveguide type QW-EAMs that operate at 1550 nm, the optimization 

of only one variable—the thickness of the coupling barrier—of the ADQWs shows 

380 % enhancement in the modulation sensitivity at a much lower bias field (70  35 

kV/cm) compared with that of single-QW structures. This enhancement is found to be 

caused by the strong mixing of the two exciton states originating in different subband 

pairs. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

Optical interconnections are currently widely used and will expand in the future 

the application areas where the conventional metal-wired electrical or wireless 

electromagnetic data transmission is not feasible due to high data rates, high signal losses, 

interferences, couplings, long interconnection distances, etc. Some of the applications, 

e.g., between chips on a board, between boards in a workstation, from the base station to 

the remote antenna (or radio-over-fiber) or to the home, and between hub-stations are 

depicted in Figure 1. Depending on the applications, the interconnection distance ranges 

from a few cm (chip to chip) to over several hundred km (hub to hub), and the data to 

 

 

Figure 1. Schematic of the applications in which optical interconnections are used.    
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be transmitted can be either analog or digital. Typical optical communication systems are 

basically composed of three functional units: transmitter, channel, and receiver. The 

transmitter modulates light, the carrier, to convey the data. There are several light 

modulation schemes, including intensity, frequency, phase, and polarization modulations. 

Among them, intensity modulation is the most widely used due to the simplicity of the 

demodulation to an electrical signal using a photodetector [1] at the receiver unit. 

Intensity modulation can be realized either by directly modulating the light output of the 

laser or by modulating the constant laser output using an external optical modulator. The 

latter has several advantages over the former such as higher modulation speed, higher 

modulation sensitivity (or efficiency), and low parasitics. These, in fact, make external 

modulation especially suitable for analog data applications, which is the main focus of 

this study.   

Two types of external optical intensity modulators are widely used: electrooptic 

modulators and electroabsorption modulators (EAMs). Electrooptic modulators are 

realized by Mach-Zehnder interferometers using LiNbO3 or bulk semiconductors, which 

exhibit highly electric-field-dependent refractive index.  These operate stably at fairly 

high input optical power due to low absorption coefficients. To obtain the required 

fundamental performance of the modulator, i.e., the modulation efficiency, however, the 

size of the device (or the interaction length of the light with the material) should be very 

large (> a few cm), which also increases the cost of the device. EAMs, on the other hand, 

use the change of absorption coefficient of bulk semiconductors or semiconductor 

heterojunction quantum wells (QWs). Since the required interaction length is typically 

very short, the EAMs can be made very small (<1 mm, in principle) and inexpensive. 
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Furthermore, they can be integrated with other semiconductor optical devices such as 

lasers [2]. Compared to bulk semiconductors which utilize only the intrinsic properties 

that are determined by the materials, QWs have more degrees of freedom in designing the 

devices for the required performance due to bandgap engineering.  

A unique feature of the optical properties of the QWs is that the exciton 

transitions are greatly enhanced due to the confinement of the carriers inside the QWs. 

An exciton is a hydrogen-like quasi-particle consisting of a bound state of an electron and 

a hole by the Coulomb force. The optical exciton transitions occur slightly below the 

band-to-band transition edge separated by the binding energy of the exciton. Compared to 

values in bulk semiconductors, the binding energies of excitons in QWs are typically 

much larger (4 times that of bulk in an ideal two-dimensional case) yielding higher 

oscillator strengths [3]. As shown in Figure 2(a), the exciton absorption peak is clearly 

observable at low temperature right below the edge of band-to-band transitions. As the 

temperature increases, the excitonic peak broadens due to scattering with phonons and, 

depending on the materials and geometries of the QWs, the excitonic peak may or may 

not be observable. Even in the latter case where the broadening is significant and 

consequently the peak is considerably broadened, however, we should expect that the 

total absorption strength nonetheless is derived from both the band-to-band and the 

excitonic transitions, as depicted in Figure 2(b). Considering the facts that most of the 

QW-EAMs operate quite below the band-edge of the QWs to reduce the insertion loss 

and that the band-edge optical properties of QWs are strongly dependent on the exciton 

transition, one can infer that accurate analysis of excitons and band-to-band transitions is 

very important in the estimate of the performance of QW-EAMs. 
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(b) 

Figure 2. Optical absorption spectrum of a typical QW at (a) 70 K and (b) 300K with (red 
solid line) and without (black dotted) the exciton transition as a function of photon energy.   
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There has been much effort to model theoretically the excitonic absorption 

properties of QWs since the first experimental observation of excitonic peaks in a QW in 

1974 [4]. The basic theories of excitonic optical absorption in bulk semiconductors and in 

perfect two-dimensional (2D) structures were fairly well established in 1957 [5] and 1966 

[3], respectively. In Ref. [3], the bound and unbound excitonic states were modeled in a 

perfect 2D structure as 2D hydrogen using the effective-mass and envelope-function 

approximations and the polarization-dependent optical absorption intensities of the states 

were derived. The quasi-2D excitonic states were calculated using the variational method 

that included the dependence of QW width in the early 1980s [6]-[8], which resulted in 

good agreements with the experimental data. The inclusion of differences in the effective 

mass [9] and the dielectric constant [10] between the barrier and well materials and the 

effect of valence-band mixing (VBM) [11] increased the accuracy of results of the 

calculation. Later, a momentum-space approach [12]-[14] has been found to be very 

convenient to obtain accurately fine structures of the excitons while including VBM, 

although it requires intense numerical calculation. 

When an electric field is applied perpendicular to the QW layers, the allowed 

energies of the subbands that are quantized along the confined direction shift down to 

lower energy while keeping most of the envelope function inside the QW, which, in 

terms of the optical properties, eventually decreases the optical transition energy between 

the associated conduction and valence subbands while keeping substantial oscillator 

strength. This electroabsorption effect in QWs, called the quantum-confined Stark effect 

(QCSE) [15], is the fundamental operating principle of QW-EAMs. This is not expected 

in bulk semiconductors [16] or in a QW with a field applied parallel to the QW layer, 
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[17] where the excitons are easily dissociated by relatively weak electric fields, and is 

strongly dependent on the potential structures of the QWs. In Figure 3 are presented the 

quantized subbands and their envelope functions in a typical single QW and its field-

dependent absorption spectra at low temperature in a range of photon energy near the 

band-edge, which clearly shows the Stark shift of the lowest excitonic absorption peak 

[labeled hh1-cb1 in Figure 3(b)] as the electric field increases.  

Theoretical and experimental investigations of the QCSE were initiated in the 

early 1980s [15],[18],[19]. When the QCSE was first demonstrated experimentally, 

optical EAMs were immediately identified as an application [19]. The fabricated 

structure was a multiple QW (MQW), whose performance as an optical modulator was 

actually quite poor. Later on, there was considerable effort to enhance the QCSE by 

changing the geometry of the QW. Studies on symmetrically coupled DQWs showed that 

the change in oscillator strength and Stark shift were enhanced compared with those of 

single QWs (SQWs) [20]-[24]. Asymmetric coupled DQWs (ADQWs) revealed much 

more drastic changes in electric-field-dependent absorption coefficients and refractive 

indices [25]-[29] due to the breaking of inversion symmetry (leading to a first-order 

QCSE). These studies explored in essence the physics of coupled DQWs such as level 

anticrossing (see Figure 19 in Chapter 4) and the corresponding mixing of excitons, 

which is the main reason for the enhancement of QCSE, however only fractionally, i.e., 

in a fixed electric field or by using simple exciton models. 

Despite the proven enhancement of QCSE in ADQWs [25]-[29], only SQWs have 

been adopted for the applications to QW-EAMs until recently [30],[31], presumably due 

to the relative complexity of the fabrication processes and the lack of a through physical 
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(b) 

Figure 3. (a) Band-edge diagram of a typical single QW and the envelope functions of the 
quantized allowed subbands (light hole is intentionally excluded in the valence band to 
show clearly the symmetries of the envelopes). (b) Absorption coefficient of a typical 
QW as a function of the applied electric field normal to the QW layer and the photon 
energy near the band-edge (the labeled narrow peaks appear as a result of excitonic 
transition).  
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understanding of and optimization of the ADQWs. In this dissertation, we analyze 

theoretically the optical properties of QWs, explore the physics of mixing of excitons and 

their oscillator strengths in the anticrossing bias range in ADQWs [32], and optimize the 

band-edge profile of ADQWs to exhibit maximum modulation efficiencies. The complex 

optical susceptibility which governs the interaction of lights with the QWs is obtained by 

the standard perturbative expression in the optical field [33]. The exciton and valence-to-

conduction subband-to-subband transitions are included in the calculation. The 

momentum space approach was used in calculating the excitons to take into account both 

VBM and mixing of the excitons. Also, detailed considerations are taken into in 

interpolating the material parameters of compound semiconductors [34],[35] and the line-

broadening of the optical transitions [36]. The fundamental theories required for the 

calculation are discussed in Chapter 2. In Chapter 3, the physics of the mixing of excitons 

in the anticrossing bias range in ADQWs is presented in detail in addition to the 

limitations of the simplified exciton models. The dependence of the modulation 

sensitivity (dα/dE, change in optical absorption coefficient per change in electric field 

across the QW) on several structural parameters of ADQWs including the width and 

position of the middle coupling barrier and the overall well width is analyzed in Chapter 

4 [37]. In Chapter 5, we pick a recently reported waveguide-type InP-based QW-EAM 

which operates at 1550 nm and compare the experimental bias-dependent transmission 

data with our simulation results. Further, we extend our analysis to ADQWs to obtain 

considerable enhancement of the performance of QW-EAMs [38]. 
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CHAPTER 2 

LINEAR OPTICAL PROPERTIES OF QUANTUM WELLS 

 

The propagation of light in media can be described fully by Maxwell’s equation 

in a classical electromagnetic theory using the known optical properties of the media 

within the relevant frequency band. When the power of the light is sufficiently low (i.e., 

low excitation regime), the optical properties of the semiconductor QWs can be described 

by its linear optical susceptibility, which can be calculated theoretically as we discuss in 

this chapter. In this limit, the frequency-dependent absorption coefficient 

)()/4()( ωχπωωα ′′⋅≈ cnb  and the refractive index )(41)( ωχπω ′+≈n of the medium 

are obtained from )()()( ωχωχωχ ′′+′= i , where χ′  and χ ′′  are the real and the 

imaginary parts of the linear complex optical susceptibility χ , nb is the background 

refractive index, and c is the speed of light. Since most QW-EAMs operate right below 

the band-gap frequency of the QWs to reduce the insertion loss, we limit our range of 

analysis around the band-edge of the QWs where the optical interband and excitonic 

transitions dominate the susceptibility. 

The following shows the sequential procedure of calculating the susceptibility of 

a QW in a given range of the optical wavelength: 

(1) Interpolate the material parameters of the compound semiconductor alloys from those 

of the known binary alloys and define the band structure of the QW.  

(2) Calculate the electronic properties i.e., subband structures. 

(3) Calculate the exciton states. 

(4) Calculate the optical matrix elements between subbands. 
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(5) Calculate the oscillator strengths of excitons. 

(6) Estimate the line broadening of the allowed optical transitions. 

(7) Obtain the susceptibility by adding the subband-to-subband and excitonic transitions. 

The result of each step is required for the calculation of the following step. To obtain the 

electric-field-dependent susceptibility, all of the above procedures need to be repeated 

from step (1) by modifying the band structure for each new value of the electric field, 

which is the adiabatic approach valid in the low modulation frequency [39]. 

2.1 Material parameters of alloys and band-edge profiles 

The quantum heterostructures are realized by subsequently growing 

semiconductor alloys that have different bandgaps, typically by means of molecular beam 

epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD). The band-edge 

profiles that are required to calculate the allowed electronics states in the quantum 

structures can be obtained from the band parameters of each alloy. Accurate material 

parameters of the semiconductor alloys are thus crucial to obtain valid results. Since the 

complete experimental parameter maps for ternary or quaternary alloys are not always 

available, one has to resort to plausibly interpolated data from those of the known 

binaries (e.g., parameters for InxGa1-xAsyP1-y can be obtained from those of InP, InAs, 

GaP, and GaAs). In this section, we discuss how to obtain the required material 

parameters of the alloys and draw the band-edge diagram. 

2.1.1 Material parameters of alloys 

The parameter diagram of semiconductor alloys is shown in Figure 4. B, T, and Q 

denote binary, ternary, and quaternary material parameters, respectively. 
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Figure 4. Parameter diagram of semiconductor alloys. The four corners denoted by B 
represent the binary alloys. Along the lines of the rectangle are shown the ternary alloys 
denoted by T. Inside the rectangle is shown the quaternary alloys denoted by Q.    
 

 

Material parameters of a ternary alloy CBA xx
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 that is composed of the atomic elements A, 

B, and C can be obtained from the known parameters of binary materials BAC and BBC 

using the quadratic interpolation: 
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where BPABC is the quadratic bowing parameter that is obtained experimentally. When the 

bowing parameter BP is set to zero, Eq. (1) reduces to the linear interpolation. Binary 

parameters and bowing parameters of major compound semiconductors are thoroughly 

reviewed by Vurgaftman et al. [35].  

The quadratic interpolation equation (1) for ternaries can be extended to obtain 

the parameters of quaternaries. Except for the bandgap energy, we use the following 

equation by Glisson [40] to obtain the parameters of the quaternaries: 
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)1()1(
)]()1()()[1()]()()1)[(1(),(

yyxx
yTxyxTyyxyTxTyxxyxQ ACDBCDABCABD

ABCD −+−
−+−++−−

=
. 

(2) 

Here Q and T are the quadratically interpolated material parameter of the ternaries and 

quaternaries, respectively. For the bandgap energies Eg, however, we adopt the recently 

developed biquadratic interpolation scheme [34], 

,)1()1(                    
])1)[(1(])1)[(1(                    

])1[(])1)[(1(),(

Dyyxx
xBPBPxyyyBPBPyxx

yBByxyBByxyxQ

BCDACDABCABD

BCBDBDADABCD

−−+
+−−−+−−−

+−++−−=
           (3) 

where D is the biquadratic bowing parameters for quaternary alloys. When the bowing 

parameters BPs and D are set to zero, Eq. (3) reduces to a bilinear interpolation. When 

only D is zero, Eq. (3) is equivalent to the quadratic interpolation developed previously 

by Moon et al. [41]. The biquadratic bowing parameter D is currently available only for 

the bandgap energy in Ref. [34]. 

For the electron effective mass ∗
em , instead of the direct interpolation from those 

of the binary alloys, Vurgaftman et al. suggests the following in which the parameters on 

the right-hand side are the interpolated values using Eqs. (2) and (3), 

 
)(

)3/2(
)21(0

SOgg

SOgP
K

e EE
EE

F
m
m

∆+

∆+
++=∗ ,                                      (4) 

where m0 is the free electron mass, FK is the Kane parameter, EP is the interband matrix 

element, Eg is the bandgap energy, and ∆SO  is the spin-orbit splitting.  

Figure 5 shows examples of the material parameters of InxGa1-xAsyP1-y that is 

epitaxially grown on InP substrate. Other parameters can also be drawn exactly the same 

way. 
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(a)                                                                   (b) 

 

       
(c)                                                                   (d) 

 

Figure 5. Interpolated material parameters of InxGa1-xAsyP1-y: (a) lattice constant of bulk, 
(b) strain caused by the mismatch of the lattice with the substrate when grown on InP, (c) 
bandgap energy of bulk, (d) bandgap energy with the existence of the strain in (b). 
InxGa1-xAsyP1-y is lattice matched along the dotted line.  
 

GaP GaAs

InP InAs

GaP GaAs

InP InAs
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2.1.2 Band-edge profiles 

The band-edge line-up at the junction of two layers can be obtained using 

)( 2,12,1,12, gvgc EEEE +∆−=∆ , where 12,cE∆  and 12,vE∆  are conduction- and valence-band 

offsets between layer 1 and 2, respectively and igE , is the bandgap energy of the layer-i. 

The valence-band offset of quaternary layer-i referenced to the valence-band edge of the 

InP substrate InPivE −∆ ,  can be obtained by the linear interpolation of those of binary alloys. 

The deformation of the band edge of a layer must be included when the strain 

induced by lattice mismatch with the substrate exists [42]. For example, in InGaAsP 

heterostructures, unless the compositions are chosen along the dotted line in Figure 5, 

strain will be present. The hydrostatic component of the strain deforms both the 

conduction- and valence-band edges changing the bandgap energy of the layer, which 

simultaneously changes *
em  according to Eq. (4), while the shear component acts only on 

the valence band-edge with equal magnitude, but with opposite signs, on the heavy- and 

light-hole bands. 

2.2 Subbands in quantum wells 

We use the envelope-function approximation for the calculation of the subband 

states in the QWs within the effective-mass theory. The electronic subband states are 

calculated variationally by treating them as quasi-bound in an effective confinement 

region [43]. The conduction subbands are calculated by assuming a constant effective 

electron mass. The valence subbands are, however, obtained by using the Luttinger-Kohn 

Hamiltonian since this allows us to include the valence-subband nonparabolicity and 
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wavevector-dependent overlap integral between subbands that are involved in the optical 

transitions, which is known to be important for accurate exciton calculations.  

2.2.1 Conduction subbands 

The conduction subband state in a QW with confinement potential )( ezV  along 

the growth direction is expressed as  

)(),(, ||
|||| rkk ρk ci

en Uezfn e⋅= ,                                         (5) 

where ||k  is the in-plane wavevector, n is the subband index, ),( ||ken zf  is the slow-

varying envelope function, eρ =(ρe,θ) is the in-plane position vector, and )(rcU  is the 

fast-varying conduction-band Bloch function. Because the electrons move freely along 

the plane of the QW, the in-plane wavefunction is expressed as the exponential term in 

Eq. (5). The Hamiltonian for the conduction subbands in the effective mass 

approximation is  

)(
22 *

2

*

2
|| zV

m
p

m
p

H e
e

z

e
e ++= ,                                             (6) 

where ||p  and zp  are the in-plane and the growth-direction momentum operators, 

respectively. Due to the confinement, the allowed states and energies are quantized along 

the z-direction in the QWs. The kinetic energy of the 2D in-plane motion, however, is 

that of the free particle that has the effective mass and the ||k -dependent energy of the 

electron follows the quadratic behavior in each subband. 

The energy dispersion relations and envelope-functions of the conduction- 

(valence-) subbands can be conveniently calculated variationally [44] for arbitrary shaped 

QW structures. Gaussian type functions ( 1 ,0  ,,
2)( == − lezl zl ββ  with β  chosen large 
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enough to ensure accurate envelope-functions and numerical stability) are usually used 

for the (non-orthogonal) basis-function set. The number of the basis function can be 

increased until the resulting allowed energies converge sufficiently. By expanding the 

envelope-function as a linear combination of the basis-functions, the Schrödinger 

equation becomes a generalized eigenvalue problem: Ψ=Ψ SEH , where H is the 

Hamiltonian matrix, S is the overlap integral matrix of the basis set, and E is an 

eigenvalue of energy. 

Figure 6 shows the calculated envelope functions and energy dispersions of the 

two lowest conduction subbands in a typical GaAs/AlGaAs single QW. Because of the 

fixed electron effective mass, the energy dispersions are quadratic [Figure 6(b)] and the 

envelope functions do not change from those at 0|| =k as shown in Figure 6(a).  

2.2.2 Valence subbands 

In the valence band, the confined state of a particle can be obtained using the 

Luttinger-Kohn Hamiltonian of the bulk crystal and considering the confinement 

potential )(zVh . The detailed derivation of the Luttinger-Kohn Hamiltonian for the bulk 

crystal can be found in standard solid-state physics textbooks [45]. Here, we adopt the 

4×4 Hamiltonian matrix, which excludes the split-off band (detailed expression is shown 

Eq. (A1-1) in Appendix A). The split-off band need not be considered for QWs with 

moderate potential depth (a few hundred meV) because the energy extremum of the split-

off band is separated far enough from the heavy- and light-hole bands and typically 

interacts only weakly with the heavy- and light-hole bands. The valence-subband 

structure of a QW can be obtained by including the valence-band potential )(zVh  in the 

diagonal entries of the Hamiltonian matrix and replacing the z-component wavevector zk  
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(a) 

   

(b) 

 

Figure 6. (a) Envelope functions and (b) in-plane energy dispersions of the two lowest 
conduction subbands in a GaAs/Al0.25Ga0.75As.  
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by the momentum operator zi ∂∂− / . We assume that the Bloch functions in the well and 

barrier materials are the same, which is valid for typical cubic semiconductors. In the 

envelope-function approximation, the wavefunction of the valence subband is written as 

∑ ⋅=
ν

νν )(),(, ||
|||| rkk ρk Uezgm hi

hm ,                                      (7) 

where m is the valence-subband index, ),( ||khm zgν  is the in-plane wavevector ||k -

dependent z-component of the envelope-function with the spin component ν =±1/2 or 

±3/2, and )(rνU  is the bulk valence-band Bloch function at the center of the Brillouin 

zone. When 0|| =k , the off-diagonal elements of the Hamiltonian are zeros and the 

resulting subband states are not combinations of the four states in Eq. (7) but have only 

one component in the summation, i.e., not a mixed state. When 0|| ≠k , however, the off-

diagonal elements in the Hamiltonian have nonzero values and the corresponding 

subbands are the mixed states of the four components in Eq. (7). Figure 7 shows the 

calculated energy dispersion of valence-subbands along [100] direction for 

GaAs/Al0.25Ga0.75As SQWs. These results are in excellent agreement with those obtained 

by numerous other groups (e.g., Ref. [11] and Refs. therein).  The energy separation 

between subbands is larger in a narrower QW. The dispersion curves deviate markedly 

from parabolic and due to hybridization of heavy- and light-hole states, which results 

from nonzero off-diagonal Hamiltonian elements when 0|| ≠k . Figure 8 shows the 

squared modulus of the valence subband envelope-functions of hh1-state along the z-

direction at 0|| =k  and -1
|| nm 25=k  in a 100 Å wide GaAs/Al0.25Ga0.75As SQW. The 

subband energies in the figure are measured with respect to the bulk valence-band edge. 
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(a)                                             (b)                                               (c)  
 

Figure 7. Valence-subband dispersions along [100] direction for various well width: (a) 
50 Å, (b) 100 Å, and (c) 200 Å in GaAs/Al0.25Ga0.75As QWs.  
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(a) 

 

(b) 

Figure 8. (a) Envelope functions (modulus squared) and energies of the highest four 
valence-subbands in a 100 Å GaAs/Al0.25Ga0.75As QW at 0|| =k  and (b) envelope 

functions of the four spin components of hh1 state at -1
|| nm 25=k .  
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2.3 Excitons in quantum wells 

The attractive Coulomb interaction between an electron in a conduction-subband 

and a hole in a valence-subband results in a hydrogen-like quasi-particle called an exciton. 

These include discrete bound states that play a central rôle in the optical properties of 

interest here. We calculate the QW exciton states in momentum space to include more 

easily valence subband mixing and the excitonic mixing effect. The detailed excitonic 

theory adopted here can be found in Refs. [12]-[14]. In this section, we outline the 

fundamentals of the theory.  

Within the framework of effective-mass theory, the exciton envelope function in a 

quasi-2D structure is expressed as a linear combination of the associated electron and 

hole eigenstates, 

( ) ∑∑∑ ⋅+⋅⋅=Ψ
ν

να
α ),(),(, ||||

)(

,
||||

,
,

||||

||||

qkqk ρqρk

qk
hmen

i
nm

mn
env zgzfeF he ,                  (8) 

where α is an index that labels the exciton states and ( )|||| ,qkα
nmF  are the expansion 

coefficients that represent the contribution of the subband pairs at the given wavevectors 

to the exciton state. The envelope function env,αΨ  is an eigenfunction of the exciton 

Hamiltonian 

he
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e

e
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ε

22
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2

                                 (9) 

where Ve(h) is the band-edge profile of the conduction (valence) band, HLK is the 4×4 

Luttinger-Kohn Hamiltonian for the hole, and the last term is the Coulomb interaction 

between the electron and the hole that are located at re and rh, respectively.  

The equation for the expansion coefficients is obtained by multiplying the 

Schrödinger equation HexΨα,env=EαΨα,env with the electron and hole envelope functions on 
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the left followed by an integration in real space. In doing so, we assume that light 

interacts with excitons at rest (i.e., the photon momentum is negligible) so that 

)()(),( |||||||||| kqkqk αα δ nmnm GF +=  and we further apply the axial approximation to the hole 

state so that νϕνν i
hmhm ekzgzg −= ),(),( ||||k . The physical basis of the former is that the 

photon momentum is negligible on the scale in momentum space over which the 

excitonic states vary with center-of-mass momentum; that of the later is that warping 

effectively averages out in the determination of the excitonic states.  We also express the 

expansion coefficient )( ||kα
nmG  in terms of its magnitude and phase as ϕα ill

nm ekG )( ||  (axial 

approximation decouples the excitons that have different l-values [8]). The resulting 

equation for )( ||kα
nmG  becomes independent of the angle φ  
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where 'cos'2' ||||
2

||
2

|| ϕkkkkq −+= , φ′ is the angle between ||k  and ||k′ , )()( |||| kEkE h
m

e
n −  

is the joint energy dispersion of the n-th electron and m-th hole subbands, and Elα is the 

eigenenergy of the lα-th state. The singularity arising along k||=k′|| in the denominator q  

of Eq. (11) in the numerical analysis is eliminated by accounting for screening induced 

by intrinsic carriers [46]. The envelope function for the exciton now becomes  
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where Jl–ν is the (l–ν)-th order Bessel function and ρ and θ are the magnitude and angle of 

the relative position vector (ρe–ρh) of the exciton. In Eq. (12), the l-th exciton state is the 

sum of four spinor components of the valence subbands and (l–ν) in the exponential term 

is the orbital angular momentum of the exciton component ν. In the limit of the two-band 

model (one conduction- and one valence-subband states) and by assuming that the 

valence subbands do not mix strongly, we can safely define the 2D orbital angular 

momentum quantum number of the l-th exciton state as ml=l–νm (analogous to the H-

atom: ml=0,  ±1, ±2 … for s-, p-, d-like … state, respectively) because the state is 

dominated by one of the four contributing component νm. For instance, the e1-hh1 exciton 

in an unbiased fairly narrow SQW is dominated by νm=±3/2 [for spin up (+) and down (–

)] and l=νm and l=νm±1 for s-like (ml=0) states and p-like (ml=±1) states, respectively. The 

variational approach is a convenient tool of solving Eq. (10), which is carried out by 

expanding )( ||kGl
nm
α  in a truncated set of Gaussian basis functions that minimizes the 

eigenenergy [8]. 

Figure 9 shows the expansion coefficients )( ||kGl
nm
α  of the exciton ground state 

multiplied by the in-plane wavevector and their binding energies calculated within the 

two-subband model in a typical GaAs/AlGaAs SQW (compare with the results in Ref. 

[47]). The dependence of the exciton binding energy on the well-width is plotted in 

Figure 10. In the region where the well-width exceeds 100 Å, the binding energies 

decrease as the well-width increases, which is due to the increase of the penetration of 

subband wavefunctions into the barriers. While for very small well-width, the binding 

energies also decrease for the same reason, which is well observed on the hh3-cb1 

exciton curve in Figure 10. 
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Figure 9. Relative motion wavefunction )( |||| kk nmG  for various ground state excitons and 
their binding energies in a GaAs/AlGaAs SQW (well width=80 Å, Al mole 
fraction=0.25). 

 
 

 
 

Figure 10. Exciton binding energy versus QW width in a GaAs/AlGaAs SQW (Al mole 
fraction=0.25). 
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2.4 Linear optical susceptibility in quantum wells 

The susceptibility must account for both the bound (exciton) and the continuum 

(band-to-band) transitions. They are given as [33] 
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with e the electron charge, ħ Planck’s constant, m0 the free electron mass, ε  the 

polarization vector of the light (the optical selection rule is accounted for in the dot 

product with optical matrix element nmp ), αl
exE  the eigenenergy of the lα-th bound 

exciton, and Γ a phenomenological dephasing rate of the transitions (described in Section 

2.4). The light polarization is assumed to be transverse electric throughout the 

dissertation. d
nmE  is the joint energy dispersion between the n-th conduction and m-th 

valence subband in the QW. Equation (13) is that obtained from the polarization equation 

of the semiconductor Bloch equations in the low carrier density limit. For n ≥ 109 cm–2, 

density effects, such as excitation induced dephasing, come into play. Therefore, our 

treatment should be valid in the low excitation limit. The optical (momentum) matrix 

element in the equation is ∑= ν
ν

ν )()( ||
0

,|| kpkp nmcnm I , where ν
ν UU c

c pp =0
, is the bulk 

optical interband matrix element at 0|| =k  between the conduction band and the valence 

band with the spin component ν and )( ||kν
nmI  is the ||k -dependent overlap integral 

between the n-th conduction- and the ν-spin component envelope of m-th valence-
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subband along the growth direction. The oscillator strength of the lα-th bound exciton 

state αl
osc

f  is   

2
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0,||||

0
,

0 ||

)()(2 ∑∑ −⋅=
kmn

lnm
l
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ex
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osc kIkG

Em
f ν

να
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να

α δpε .                             (14)        

The oscillator strength of the lα-th exciton state in Eq. (14) is attributed to only one of the 

four spinor components (that makes l–ν=0 due to the delta function inside the modulus 

square) that contribute to the exciton envelope function l
env,αΨ  in Eq. (8). Summations 

over n and m in both Eqs. (8) and (14) indicate that mixing of excitons originating in 

different subband pairs is included in the calculation, which is very important in 

obtaining accurate optical properties of the ADQWs (discussed in Chapter 3). The 

detailed theory of the excitons in this context is found in Refs. [12]-[14]. Here, we 

calculate only s-like excitons that significantly contribute to the absorption spectra. The 

2D Sommerfeld factor is multiplied in Eq. (13a) in the calculation to account for the 

enhancement of the optical transitions at the band edge due to the final-state Coulomb 

interaction of the exciton continuum states [3]. In the 2D-limit, the oscillator strength at 

the band edge is twice that of the free-carrier transition and the effect is decreases 

gradually as the transition energy increases. 

Figure 11 shows the overlap integrals )( ||kν
nmI  between the first conduction-

subband envelope and only the major spin components of the four valence-subband 

envelopes in a GaAs/AlGaAs SQW. If the overlap integrals are assumed to be 

independent of the wavevector, they will have the same values as at )0( || =kν
nmI .  In this 

assumption, those of hh2-cb1 and hh3-ch1 are almost zero, which reflects the selection 
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rule prohibiting the transitions at zone center. Band-mixing, however, slightly relaxes the 

selection rule, as the wavevector increases and thus the transitions are weakly allowed. 

For the accurate estimation of αl
osc

f  and .contχ , all four spin components, which are 

nonzero at 0|| ≠k , in the valence subbands should be accounted for in the )( ||kν
nmI . 
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Figure 11. In-plane wavevector dependent overlap integrals between the first conduction 
subband and the major spin components of the four valence-subband in a 100 Å thick 
GaAs/Al0.25Ga0.75As QW. 
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2.5 Line broadenings  

The line-broadening in Eq. (13) depends on the applied electric field, especially in 

QWs with ternary or quaternary alloys, thus strongly affecting the performance of QW-

EAMs. Line-broadening can be categorized into two types: homogeneous and 

inhomogeneous. 

Homogeneous broadening is caused by the finite lifetime of the interband 

excitations due to scattering with phonons, impurities, and other carriers [36], radiative 

recombination, and field-induced tunneling out of the QWs [47]. At 300 K, the 

broadening due to scattering with impurities and the carriers [48] may be ignored in the 

limit of low background doping and low optical excitation; instead, phonon-induced 

broadening dominates. The full width at half-maximum (FWHM) of the thermal 

(phonon-induced) broadening is  

1)exp(
)( 0,

−
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−

Γ
=Γ

Tk

T

B
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ph
ph h

,                                                (15) 

with Γph,0 the contribution at T = 0 K, ħΩLO the LO-phonon energy, and kB the Boltzmann 

constant. Γph,0 depends on the material and dimensionality (2D-GaAs ~ 10 meV, 2D-

InGaAs ~ 18 meV, 3D-GaAs ~ 14 meV) [49], and we take the value for 2D-InGaAs for 

InGaAsP-QWs. The LO-phonon energies for binary compounds are 35.4, 50.09, 42.7, 

62.2, 50.7, and 29.6 meV in GaAs, AlAs, InP, AlP, GaP, and InAs, respectively [50], and 

those of ternary and quaternary alloys can be interpolated linearly from these using Eq. 

(2). Thermal broadening is considered independent of the applied field. The FWHM 

associated with field-induced tunneling ΓT, however, can be strongly bias-dependent even 

at low electric field depending on the height and the width of the isolating barriers  



 30

 

 

 

 

0 50 100 150
0

5

10

15

20

Electric field (kV/cm)

Li
ne

w
id

th
 (m

eV
)

 

 
Figure 12. Line-broadening caused by the Fowler-Nordheim (F-N) tunneling of the 
lowest conduction subband in InGaAsP SQWs (well width ~105 Å) for various 
conduction offsets as a function of the bias showing that tunneling begins to increase 
drastically above the direct tunneling regime. 
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between the QWs. ΓT is related to the tunneling lifetime τT of the carrier by TT τ/h=Γ . In 

the limit of strong confinement, the broadening caused by direct tunneling at low bias 

field (see the inset of Figure 12) is found to be smaller than 0.5 meV and can be safely 

ignored. As the bias is increased and the lowest barrier height becomes smaller than the 

subband energy (i.e., triangular barrier), the tunneling probability increases rapidly, 

following the Fowler-Nordheim model [48]. The tunneling lifetime of a carrier can be 

calculated using [48],[52] 
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with i the index of the carrier type (electron or hole), ns the subband index, Lw the width 

of well, and mw(b)i the effective mass in the well (isolating barrier), respectively. ∆E and ε 

are the band offset and the energy of the subband in the well and F is the electric field 

across the barrier. In InGaAsP QWs, electrons usually have much shorter tunneling 

lifetime than holes do because of the lower effective mass and barrier height. ΓT’s that are 

induced by the first conduction subband (cb1) of a 10.5 nm wide InGaAsP SQW for 

various conduction-band offsets are calculated and plotted in Figure 12. Equation (16) 

should be modified if the confining barrier is thin and the broadening induced by direct 

tunneling is comparable to other broadenings. The electron-hole Coulomb attraction is 

expected to suppress the effects of Fowler-Nordheim tunneling to some degree; thus, this 

model offers a quite conservative estimate of the effects of field ionization. 

Inhomogeneous broadening is caused by imperfections in the physical structures 

such as well-width fluctuations and the microscopic compositional variations of the 

alloys. This broadening mechanism can be treated as independent of temperature, but not 
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of electric field. In InGaAsP alloy QWs, statistical broadening due to compositional 

fluctuations, which are mainly caused by the migration and the segregation of P atoms, is 

large and should be accounted for. We use the experimentally measured statistical 

broadening Γst of InGaAsP SQWs [53] that depends on the mole fraction of P atoms of 

the well layer, which is reproduced in the inset of Figure 13. The broadening due to layer-

width fluctuation Γww is estimated by calculating the difference of the allowed energies 

between the original and a structure thicker by one monolayer [54]. Since not only the 

subband energies shift but also the exciton binding changes as the electric field increases, 

Γww is strongly bias-dependent. Γst is assumed independent of the bias field. The right 

inset in Figure 13 shows the field-dependent Γww of the 1s-like excitons between cb1 and 

the four highest valence subbands (hh1, lh1, hh2, hh3) in the 10.5 nm wide InGaAsP 

SQW. The broadening due to the distributed field strengths from layer to layer in the 

MQW that is induced by the background doping in the intrinsic active region [52] is not 

considered in this work because when the doping level is less than 5×1015 cm-3 and the 

thickness of the active layer is smaller than 0.3 µm, the maximum bias difference in the 

active layer is found to be less than 0.22 kV/cm. This, however, increases linearly with 

the doping level, which can be serious if the concentration of the unwanted impurities is 

poorly controlled in the fabrication process. The actual picture of inhomogeneous 

broadening is quite complicated as microscopic alloy fluctuations may produce an 

effective potential landscape for excitons [55] with fluctuations on larger length scales 

that will also in effect be bias dependent. The total FWHM is obtained by summing all of 

the above contributions, which is plotted as a function of the bias field in Figure 13.  
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Figure 13. Total line-broadening of the four lowest exciton 1s-like states as functions 
of electric field at room temperature in SQW-A (solid: cb1-hh1, dashed: -lh1, dotted: -
hh2, dot-dashed: -hh3). Left inset: line-broadening caused by the well-width 
fluctuations. Right inset: measured photoluminescence linewidth in an InGaAsP QW 
as a function of As-mole fraction [53].   
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CHAPTER 3 

ELECTRIC-FIELD-INDUCED MIXING OF EXCITONS IN 

ASYMMETRIC DOUBLE QUANTUM WELLS  

 

In the introduction, we proposed to adopt ADQWs in enhancing the 

electroabsorption properties of the QW-EAMs for analog/digital interconnects 

applications. Extensive band-gap engineering demonstrated that coupled double QW 

(CDQW) structures could offer enhanced electro-optical properties and thus has been a 

popular research topic to the present day [21],[22],[28],[43],[48],[56]-[62]. CDQWs 

exhibit more complicated bias-dependent optical properties than those of SQWs, thus 

requiring a more careful consideration of effects frequently neglected for SQWs, such as 

the mixing of excitons originating in different subband pairs. (This should not be 

confused with the spatial extension of subband envelope wavefunctions from well to well 

in CDQWs that occurs regardless of the Coulombic mixing of the subband pairs or 

valence subband mixing.) The mixing of excitons is pronounced when the energy 

difference between two adjacent excitons is smaller than the typical exciton binding 

energy, which occurs not only in fairly wide SQWs with weak confinements, but also in 

some bias range of electric field in CDQWs. VBM affects both the energy levels and the 

oscillator strengths of excitons through the nonparabolic energy dispersions of the 

valence subbands and wavevector-dependent overlap integrals between the electron and 

hole envelope functions, leading to increased accuracy of the theoretical estimates. A 

convenient way of including the k||-dependences and exciton mixing is via the 

momentum-space approach that is discussed in the previous chapter.   
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Early theoretical studies on DQWs, however, did not take full account of VBM, 

although they included the mixing of excitons in various ways. Bauer et al. [63] included 

only the nonparabolic E-k|| dispersions of single particles, i.e., electrons or holes in their 

calculation, where the excitonic mixing was explicitly included through the off-diagonal 

matrix elements of the effective-mass Hamiltonian. Lee et al. [22] calculated excitonic 

spectra of ADQWs in electric fields without including the mixing of excitons and VBM, 

and obtained the fundamental optical properties. Fox et al. [64] included the mixing 

between ground-state excitons in symmetric coupled QWs, where the mixing effects 

appeared in the exciton wavefunctions as the modifications of the unmixed single-particle 

subband wavefunctions. They also pointed out that the anticrossing bias field of the two 

ground-state excitons shifts from that of the corresponding band-to-band transitions due 

to the exchange of the exciton binding energies. Kamizato et al. [43] applied almost-

degenerate perturbation theory to the unmixed ground-state excitons to account for the 

mixing in DQWs. Dignam et al. [57] analyzed in detail the four exciton states e1-hh1, e1-

hh2, e2-hh1, and e2-hh2 [en (hhm) refers to the quantized n (m)-th conduction (valence) 

subband] in symmetric and asymmetric CQWs in a static electric field by employing the 

variational method and showed that inter- and intra-well transitions strongly mix the 

radial components of exciton states, which agreed with the results in Ref. [43]. In DQWs 

with thin coupling barriers, however, the unmixed exciton model was found to yield good 

agreement with the experimental results [58]. These studies in essence did not require a 

deeply rigorous treatment of VBM effects because most of the involved excitonic 

anticrossings were between electron subbands, i.e., between e1-hh1 and e2-hh1, where 

VBM does not play an important rôle.  
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Numerous studies have demonstrated that incorporating an ADQW can yield 

better performance of QW Stark electro-optic modulators [28],[59],[60] and can lead, 

further, to the development of new functional devices [61],[62] for practical applications. 

In ADQWs, utilizing the heavy-hole subband anticrossing (e1-hh1 and e1-hh2), however, 

can be advantageous: The effective mass of the heavy hole is in general much greater 

than that of electrons in type-I QWs, which leads to stronger confinement and thus 

requires thinner barrier thickness for the same degree of anticrossing effect. This, in turn, 

can increase the overall absorption efficiency per unit thickness of the device. In addition, 

the bias field required for the anticrossing of the excitons near the band edge is much 

smaller than that of electron anticrossings, which potentially reduces the operating bias of 

the device. However, a complete theoretical analysis of these effects has hitherto not been 

carried out. This is important since marked discrepancies between theory and experiment 

may show up in the oscillator strengths whereas the exciton binding energies may be 

computed with adequate accuracy in an overly simplified model. 

In this chapter, we study theoretically the effect of strong mixing of e1-hh1 and 

e1-hh2 s-like excitons on the energy levels and oscillator strengths of excitons within the 

anticrossing bias range while including VBM rigorously. The effect of mixing is 

appreciated in two ADQW structures having different degrees of coupling between the 

two wells through the coupling barrier (CB, thickness ~1.2, 3 nm) by including and 

excluding the off-diagonal Coulomb matrix elements (between the two different subband 

pairs) in the effective-mass Hamiltonian for excitons. The validity of the results obtained 

from these models is discussed in terms of the oscillator-strength sum rule (f-sum rule). 

We find that the f-sum rule breaks down in models that ignore exciton mixing, the reason 
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for which is sought by analyzing the k||-dependent Coulomb matrix element and the 

corresponding expansion coefficients of the exciton wavefunction. Further, we show that 

applying almost-degenerate perturbation theory to the two unmixed ground-state excitons 

obtained from the two-subband model which includes VBM should be carried out with 

caution in analyzing the electric-field-dependent optical properties of ADQWs, a 

technique that has often been employed to account for the mixing of excitons. 

3.1 Mixing of excitons originating in different subband pairs 

We focus on the mixing of the e1-hh1 and e1-hh2 excitons, where the major 

spinor component (νm=±3/2) of the mixed exciton states remains the same as that of 

unmixed excitons obtained from the two-subband model, which retains ml as a good 

quantum number even after the mixing. However, this is not always true for the mixing 

of heavy- and light-hole excitons; orbital angular momentum is not a good quantum 

number because the mixed state is not dominated by only one component. 

Because p-like states have negligible oscillator strengths (unless they mix strongly 

to the s-like light-hole excitons and ml is not well defined any more [65]), we consider the 

mixing of only s-like (l=3/2) states of e1-hh1 and e1-hh2 excitons in Eq. (10), which 

yields the 2×2 Hamiltonian matrix to be diagonalized, 

⎥
⎦

⎤
⎢
⎣

⎡

+
+

= ∗ ll

ll
l

VTV
VVT

H
12,121212,11

12,1111,1111

)(
,                                           (17) 

where Tnm is the kinetic energy of the n-th electron and m-th hole (to calculate p-like 

states, one only need change l to 1/2). Neglecting exciton mixing is simply to set the off-

diagonal element lV 12,11 =0. Applying the variational approach only to the diagonal element 

Hl
11 (Hl

22) with an appropriate set of Gaussian basis functions and solving the matrix 
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eigenvalue equation yields the energy UClE ,
)2(11

α  and expansion coefficient )( ||
,

)2(11 kG UClα  of the 

uncoupled s-like ground- and excited-state excitons up to the number of the basis set, as 

discussed in Chapter 2. When exciton mixing is considered, lV 12,11  is no longer zero but 

must be computed, and the corresponding matrix eigenvalue equation yields the energy 

ClE ,α  and the expansion coefficients  

)()()( ||
,

1212||
,

1111||
, kGCkGCkG ClClCl ααα +=                                   (18) 

of the coupled excitons, where the terms on the right side )( ||
,

)2(11)2(11 kGC Clα  is interpreted as 

the amplitude of the contribution of the e1-hh1(2) subband pair to the coupled state 

)( ||
, kG Clα  and the addition on the right side thus does not mean the simple arithmetic 

addition of the two terms. Note that )( ||
,

)2(11 kG Clα  is different from the uncoupled exciton 

state )( ||
,

)2(11 kG UClα . 

The mixed excitons can be calculated alternatively by applying almost-degenerate 

perturbation theory to the uncoupled states, which gives a convenient way to understand 

the physics of exciton mixing. The uncoupled states of the e1-hh1 and e1-hh2 excitons 

are evaluated separately as described above. The Coulomb interaction lV 12,11  is then 

treated as a perturbation to the uncoupled states. The corresponding matrix to be 

diagonalized is  

⎥
⎦

⎤
⎢
⎣

⎡
∗ UCll

lUCl

EV
VE

,
1212,11

12,11
,

11

)( α

α

,                                               (19) 

where the Coulomb matrix element lV 12,11  is evaluated by using the obtained uncoupled 

states: 
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,
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,
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kk

.                         (20) 

The corresponding mixed state is then obtained as  

( )∑
′

′′ +=
α

α
α

α
α

α )()()( ||
,

1212,||
,

1111,|| kGCkGCkG UCl
l

UCl
l

l
ADP ,                          (21) 

where the coefficients )2(11,αlC  are the components of the eigenvectors obtained from the 

diagonalization of Eq. (19), which are the portions of the contribution of the uncoupled 

states to the mixed ones. Note that Eqs. (18) and (21) are not the same. The oscillator 

strengths of the mixed excitons can be obtained using the general expression Eq. (14). 

3.2 Analysis of exciton mixing in ADQWs 

We first analyze two ADQWs having different degrees of coupling of the two 

wells in the excitonic anticrossing bias range and show that the f-sum rule breaks down 

dramatically if exciton mixing is neglected.  This is followed by a detailed investigation 

of the excitonic-mixing effect on the oscillator strengths and energy levels. We also 

discuss that almost-degenerate perturbation theory can be misleading if carelessly applied. 

3.2.1 Effect of exciton mixing in strongly and weakly coupled ADQWs 

The effects of e1-hh1 and e1-hh2 exciton mixing in an anticrossing bias range are 

investigated in two ADQW samples notated ADQW-30 and ADQW-12 which consist of 

3 and 1.2 nm thick Al0.25Ga0.75As coupling barriers, respectively, and two GaAs wells 

(widths ~6.5 nm and ~3.5 nm). The mole fraction of the confining walls is the same as 

that of the coupling barrier. The material parameters are adopted from Ref. [12]. 

The mixing is strong in ADQW-30 because the energy difference between the 

ground states of the e1-hh1 and e1-hh2 excitons becomes much smaller than the exciton 
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binding energy in this sample, as shown in Figure 14(a). The energy differences between 

the band-to-band transitions (dotted) and the coupled lowest two excitons (solid) can be 

interpreted as the exciton ground-state binding energies. As stated in Ref. [64], the band-

to-band transition energies (energy difference between the electron and the hole subbands 

at k=0) anticross at much lower bias (~25 kV/cm) than that of the coupled excitons (~31 

kV/cm), both very sharply over very narrow bias ranges due to the thick coupling barrier. 

The binding energies, however, are exchanged gradually from ~25 kV/cm to ~31 kV/cm. 

This implies that severe mixing of excitons as well as VBM between the hh1 and hh2 

subbands occur in this bias range. In Figure 14(a), the uncoupled exciton energies 

(dashed), however, do not even anticross, showing the change of the binding energy at 

the anticrossing bias of the band-to-band transitions due to the neglect of the mixing 

effect, which is incorrect. 

The corresponding oscillator strengths of the uncoupled and coupled states are 

shown in Figure 14(b),(c). The transfer of oscillator strength from the e1-hh1 to the e1-

hh2 ground-state excitons occurs around ~25 kV/cm and ~31 kV/cm in the uncoupled 

and coupled cases, respectively. Moreover, the sum of the oscillator strengths of the two 

uncoupled states [dashed curves in Figure 14(b)] is not uniform in the anticrossing bias 

range, while this is not so in the coupled case.  (The reason for the breakdown of the f-

sum rule in the uncoupled case will be discussed later in this section.) The minimum of 

the sum of the oscillator strengths in the uncoupled case at 25.3 kV/cm is only 45 % of 

the summed value outside the anticrossing range as shown in Figure 14(b).  

Figure 14(d) shows that the oscillator strength Csf ,1  of the coupled ground state 

has a major contribution from the e1-hh1 (dotted with marks) subband pair until the bias 
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Figure 14. Energy levels and 
oscillator strengths of excitons in 
ADQW-30 as a function of the bias 
field strength. The inset in (a) is the 
band-edge diagram along the 
growth direction. (a) Energy levels 
(solid: couple excitons CsE ,α , 
dashed: uncoupled ground-state 
excitons UCsE ,1

)2(11 , dotted: band-to-

band transitions dE )2(11 . e1-hh1
excitons have dots on the curves). 
Oscillator strengths of (b) 
uncoupled ground-states UCsf ,1

)2(11 (c) 
coupled ground- and excited-state 
excitons Csf ,α  (solid) and their
sum (dashed). Oscillator strengths 
of the coupled (d) ground- and (e) 
first excited-state excitons (solid) 
and the contributions from e1-hh1
(dotted with marks, Csf ,

11
α ) and e1-

hh2 (dotted, Csf ,
12
α ) subband pairs. 
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 reaches ~25 kV/cm following which the e1-hh2 (dotted) subband pair contribute the 

majority, which maintains Csf ,1  uniform until the bias reaches just below ~31 kV/cm 

[ Csf ,1
11  and Csf ,1

12  are obtained from Eq. (14) by taking the modulus square of nm=11 and 

nm=12 separately instead of summing up in advance, which are not physically 

measurable; this is adopted only to show the portion of the contribution of each subband 

pair to the coupled states]. Figure 14(e) shows that the oscillator strength of the e1-hh2 

ground-state exciton may be slightly overestimated when only Csf ,2
12  is accounted for [the 

sum of the contributions from the two subband pairs (e1-hh1 and e1-hh2) in the modulus 

square of Eq. (14) is smaller than that of only e1-hh2 subband pair]. Figure 15 shows the 

actual absorption spectra of an ADQW with a thick coupling barrier that are calculated 

with and without the inclusion of Coulombic interaction between the two lowest excitons 

at low temperature.  

 

 

 

Figure 15. Absorption spectra in the anticrossing bias range calculated with (right) and 
without (left) the inclusion of exciton mixing effects in an ADQW with BW ~ 21 Å.  
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The mixing effect is expected to be weak in ADQW-12 because the minimum 

difference of the band-to-band transition energies in the anticrossing bias range is ~7 

meV, which is almost the same as the binding energies of the uncoupled ground-state 

excitons at the same bias ~33 kV/cm, as shown in Figure 16(a). The energy differences 

before (dashed) and after (solid) the inclusion of coupling are less than 1 meV in both e1-

hh1 and e1-hh2 ground-state excitons. The minimum of the sum of the oscillator 

strengths in the uncoupled case, however, is only 66 % of the expected value [Figure 

16(b)], which is substantial, while the f-sum rule is conserved in the coupled case as 

shown in Figure 16(c). This shows that weak coupling in terms of the energy level can 

still have substantial effect on the oscillator strength. In Figure 16(c), the oscillator 

strength of the first excited state is transferred to the higher excited states sequentially as 

the bias increases, which is due to the coupling of the uncoupled e1-hh1 excited states 

and the e1-hh2 ground state.  
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Figure 16. Energy levels and 
oscillator strengths of excitons in 
ADQW-12 as a function of the bias 
field strength. (a) Energy levels of 
excitons (solids from the lowest to 
highest: from ground to fourth 
coupled excitons CsE ,α , lower 

dashed: UCsE ,1
11 , upper dashed: UCsE ,1

12 ). 
Oscillator strengths of (b) uncoupled 
ground-state excitons UCsf ,1

)2(11  (solid) 
and their sum (dashed) and (c) 
coupled excitons Csf ,α  up to fourth 
excited states (solid), their sum 
(dashed: total sum, dotted: sum 
except Csf ,1 , which shows the 
sequential transfer of oscillator 
strength to higher state). (d) and (e) 
are the same as those in Figure 14. 
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3.2.2 Analysis in the in-plane wavevector space 

The mixing of excitons is attributed to the Coulomb interaction of the excitons, 

which appears in the off-diagonal elements in Eq. (17) and (19). In the following, we 

discuss the effect of the terms on the exciton envelope functions and the corresponding 

oscillator strengths. We pick a bias field of ~26 kV/cm in ADQW-30 that exhibits strong 

excitonic mixing. 

 The valence-subband dispersion is plotted in Figure 17(a), where the hh1 and hh2 

subbands are seen to anticross at ~0.15 nm–1 (vertical dotted line).  Figure 17(b) shows 

the Coulomb matrix elements as functions of k|| that are obtained from Eq. (11) by taking 

the integral along φ′ and putting k′||=0, which shows the approximate trend of the k||-

dependent Coulomb interaction [in the calculation, the full two-dimensional (k′||, k′||)-

dependence should be considered]. The diagonal elements (V11,11, V12,12) have their 

largest values near k||=0 and decrease gradually until the two subbands anticross 

following which they decrease more rapidly and fall to zero. Thus, the resulting k||-

dependent UCsG ,1
11  for the uncoupled ground-state exciton originating in the e1-hh1 

subband pair, for example, has very little contribution after the anticrossing k|| value, as 

shown in Figure 17(c). This leads to the negligible oscillator strength integrand UCsGI ,1
11  in 

the corresponding k|| range [solid line in Figure 17(d)], where αl
nmGI  represents the 

integrand )()( |||| kIkG nm
l
nm

να  in Eq. (14). On the other hand, the off-diagonal element V11,12 

that represents the Coulomb interaction between the e1-hh1 and e1-hh2 subband pairs 

begins to increase from zero at k||=0 and reaches its maximum at the value of k|| near the 

anticrossing, which exceeds V11,11 in this sample at the given bias field. This means that  
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Figure 17. (a) Energy dispersions of 
four highest valence subbands, (b) one 
dimensional diagonal and off-diagonal 
Coulomb matrix elements, (c) 
expansion coefficients of uncoupled 
ground-state excitons, (d) integrands of 
oscillator strengths of uncoupled 
ground-state excitons in Eq. (6), (e) 
components of coupled ground-state 
exciton in Eq. (8) and (f) the 
corresponding integrands of oscillator 
strengths (dotted and dashed) and their 
sum (solid), (g) components of coupled 
first excited-state exciton in Eq. (8) and 
(h) the corresponding integrands of 
oscillator strengths (dotted and dashed) 
and their sum (solid) as a function of the 
in-plane wavevector in ADQW-30 at the 
bias field of ~26 kV/cm. Vertical dotted 
line indicates the wavevector where 
hh1- and hh2- subbands anticross. 
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the Coulomb coupling of the e1-hh2 to the e1-hh1 subband pair is larger than the 

Coulomb interaction between the e1 and hh1 subbands. As a result of the coupling, the 

lowest exciton expansion coefficients CsG ,1  is expressed as a mixture of the basis CsG ,1
11  

and CsG ,1
12  whose k||-dependent profiles significantly differ from the uncoupled expansion 

coefficients UCs
nmG ,1 . The basis CsG ,1

)2(11  for the coupled states in Figure 17(e) retains 

substantial values even after the anticrossing k|| while UCs
nmG ,1  in Figure 17(c) does not. 

Consequently, the overall value of CsGI ,1  of the coupled ground state in Figure 17(f) that 

is obtained by adding CsGI ,1
11  and CsGI ,1

12  has a significantly larger contribution than the 

sum of the uncoupled ones [ UCsGI ,1
11 and UCsGI ,1

12  in (c)] after the anticrossing k|| value. By 

following the same procedure, the coupled first excited state CsG ,2  that corresponds to 

the uncoupled e1-hh2 ground-state exciton is found to have negligible oscillator strength 

as shown in Figure 17(h).  

In summary, neglecting the Coulomb coupling between different subband pairs in 

a sample that exhibit strong VBM results in the diminish of the contribution of the k||-

dependent subband pairs after the anticrossing k|| value, which in turn leads to the 

underestimation of the oscillator strength, breaking the f-sum rule. 

3.2.3 Almost-degenerate perturbation theory 

Almost-degenerate perturbation theory was applied to the uncoupled states of 

ADQW-30 to account for the mixing of excitons. In this case, the mixed states are 

expressed as a linear combination of the uncoupled states as shown in Eq. (21). 

Employing the two uncoupled ground states UCsG ,1
11  and UCsG ,1

12  only as a basis set for the 
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purpose of obtaining the coupled ground and first excited states, however, did not yield 

sufficiently accurate energy levels or oscillator strengths, as shown in Figure 18(a) and 

(b); the sum of the oscillator strengths is exactly the same as that of the uncoupled ground 

states due to the unitarity of the transformation to diagonalize the perturbation matrix (see 

Appendix B). It is found that incorporating only the ground states of the uncoupled 

excitons obtained by including VBM as a basis set is insufficient to account accurately 

for the strongly mixed exciton states (however, neglecting the VBM [i.e., assuming 

constant effective mass] and incorporating the uncoupled ground states may yield valid 

but approximate results [43],[64]). The same results as those obtained from the full 

mixing model were obtained by incorporating up to ten excited uncoupled states as 

shown in Figure 18(e). The results in Figure 18(c) and (d), obtained by using only two 

ground states, however, show that in the bias range from ~25 to ~31 kV/cm the majority 

of the oscillator strength in the lowest exciton state is attributed to the uncoupled upper 

ground-state exciton UCsG ,1
12  as a result of strong mixing between the two uncoupled 

ground-state excitons caused by the Coulomb interaction. 
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Figure 18. Bias-dependent 
energy levels and oscillator 
strengths of excitons in 
ADQW-30 that are obtained 
from the almost-degenerate 
perturbation (ADP) theory. (a) 
Energy levels of excitons 
obtained by ADP with two 
bases ADPs

exE ,α  that show 
notable deviation from CsE ,α . 
Oscillator strengths of coupled 
excitons (solid) from ADP with 
(b) two bases and (e) ten bases 
and their sum (dashed). 
Oscillator strengths of the 
coupled (c) ground-state and 
(d) first excited-state excitons 
from ADP with two bases 
(solid) and the contributions to 
it from e1-hh1 (dotted with 
marks) and e1-hh2 (dotted) 
subband pairs. 
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CHAPTER 4 

OPTIMIZATION OF ASYMMETRIC DOUBLE QUANTUM WELLS  

 

In the proceeding chapters, we reviewed the theories required to obtain the linear 

optical susceptibility of the semiconductor QWs around the band edge and to optimize 

the ADQW band structures. In the introduction, we proposed to adopt ADQWs as a way 

of enhancing the modulation sensitivities of the QW-EAMs for analog/digital 

interconnects applications based on the numerous reports. In this chapter, we analyze the 

main reason of the enhanced QCSE and discuss the optimization of the structural 

parameters of ADQWs. We adopt the GaAs/AlGaAs QWs and assume that there is only 

thermal broadening, which greatly simplifies the analysis and shows clearly the 

dependences on the structural parameters.  

4.1 Enhanced QCSE in ADQWs 

QCSE, the basic operating principle of the QW-EAM, has been reported to be 

enhanced by adopting the asymmetric QWs. This enhancement stems from the 

anticrossing of the two lowest ground-state (i.e., s-like) excitonic peaks near the band 

edge, which is in essence the result of the anticrossing of the two subbands nearest the 

band edge in either the conduction or valance band. More specifically, there is an 

electric-field range in which the spatial location of one of the relevant subband states 

shifts rapidly with field from one side of the AQW to the other (see Figure 19). ADQWs 

further enhance such effects over graded SQWs or step QWs, where the former typically 

involves stronger excitonic mixing in the anticrossing bias range than the latter.  
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The calculated absorption spectrum and the sensitivity spectrum of a typical 

ADQW consisting of a 10 Å thick Al0.25Ga0.75As barrier and 65 Å and 35 Å wide GaAs 

wells are plotted in Figure 19. The two lowest conduction subbands (cb1and cb2) and the 

four highest valence subbands (hh1, hh2, lh1, and hh3) were included in the calculation, 

yielding eight observable 1s-like exciton peaks in Figure 19(a). One notes that the two 

lowest exciton peaks (hh1-cb1 and hh2-cb1) anticross at the bias field of ~40 kV/cm, 

which is the result of the anticrossing of hh1 and hh2 valence subbands. The maximum 

dα/dE thus is found at the same bias field, as seen in the dotted circle in Figure 19(b). 

Figure 20 shows the subband envelopes at different bias fields. At zero bias [Figure 

20(a)], most of the hh1 (hh2) envelope lies in the wide (narrow) well, whereas 

considerable part of cb1 envelope still remains in the narrow well due to the smaller 

effective mass and band-offset ratio of the conduction band. As the bias increases from 

zero, the oscillator strength of the lowest exciton (hh1-cb1) increases and its energy level 

blue-shifts due to the increased overlap integral of hh1 and cb1 envelopes and the 

corresponding increase of the exciton binding energy [Figure 20(b)] until hh1 subband 

moves to the narrow well, which we call the critical bias field. Thereafter, a large red-

shift is observed due to the rapid reduction of the energy difference between hh1 (in the 

narrow well) and cb1 (in the wide well) subbands while still keeping observable 

oscillator strength caused by the cb1 envelope that is confined in the wide well [Figure 

20(c)]. 
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Figure 19.  (a) Absorption coefficient spectra of an ADQW as a function of the applied 
electric field and photon energy. The FWHM of the Lorentzian function is 2 meV. The 
anticrossing of hh1-cb1 and hh2-cb1 exciton is shown in the dotted circle. (b) Modulation 
sensitivity spectra obtained by taking the partial derivative of the absorption coefficient 
(a). The maximum sensitivity is observed in the dotted circle where the two lowest 
excitonic states anticross.  

       
(a) 

 

 
(b) 
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(a) 

 

(b) 

 

(c) 

Figure 20.  Subband envelopes at (a) zero bias, (b) 40 kV/cm (before anticrossing), and 
(c) 60 kV/cm (after anticrossing). 
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4.2 Optimization of ADQWs 

We focus on the dependence of the maximum modulation sensitivity on various 

parameters of the ADQW: BW, barrier position (BP, distance from the QW center), 

overall WW, and the FWHM of the Lorentzian line-broadening function [37]. The band-

edge diagram of an arbitrary ADQW is drawn in Figure 21. The well material is GaAs 

and the middle barrier and the confining walls are AlxGa1-xAs with x ~0.25. The band-

offset energy is calculated from ∆Eg = 1.155x+0.37x2 and the ratio between conduction 

and valence band offsets is assumed 0.6/0.4.  

 

 

 

Figure 21. Band-edge diagram of an ADQW composed of the two GaAs wells coupled 
through a Al0.25Ga.0.75As middle barrier and the confining walls having identical 
composition to the middle barrier.  
 

 

Figure 22 shows the dependence of the maximum sensitivity on the BW and the 

FWHM. The BP and the overall WW are fixed at 10 Å and 100 Å, respectively. When 

the BW is very small (or even zero), the anticrossing of the lowest two heavy-hole 

subbands occurs over a very wide bias range yielding an overall QCSE similar to that of 
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the SQW. As the BW is increased, the sensitivity increases up to a maximum because of 

the more abrupt anticrossing of the lowest two exciton states over a narrower bias range 

caused by stronger repulsion of the states induced by the stronger coupling between them. 

Heuristically, a very thick barrier should separate the two wells so greatly to the extent 

they do not couple and behave as independent SQWs yielding the QCSE of the two 

SQWs with different WWs. This was observed in our simulation result; as the BW 

increases from zero, the maximum sensitivity reaches maximum at 23 Å and then 

decreases for the FWHM of 1 meV in Figure 22. It is also natural that the maximum 

sensitivity decreases as the FWHM increases, because the absolute value of the 

absorption coefficient caused by the broadening of the excitonic peaks decreases. 

However, the BW that maximizes the sensitivity also decreases as the FWHM increases, 

as observed in Figure 22. When the BW increases, the energy difference of two lowest 

exciton states becomes smaller in the anticrossing bias range because of the decrease of 

the energy difference between the hh1 and hh2 valence subbands. As the energy 

difference of the two lowest exciton states becomes smaller than the FWHM of the 

absorption peaks, the two excitonic features begin to overlap yielding the decrease in the 

sensitivity as the BW increases further. For example, for the FWHM of 1 (3, 5) meV in 

Figure 22, the maximum sensitivity reaches its greatest value at the BW of 23 (18, 12) Å 

and thereafter decreases, which means that the energy difference of the two anticrossing 

exciton states is about 1 (3, 5) meV at the bias point where the maximum sensitivity is 

found. The maximum sensitivities are 6.5µ104 kV-1 and 1.2 µ103 kV-1 with FWHM of 1 

meV (4.2 K) and 7 meV (298 K) and BWs of 24 Å and 12 Å, respectively.  
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Figure 22. Maximum absorption coefficient modulation sensitivity as a function of the 
barrier width and FWHM (Γ) of the exciton peaks.  
 

 

Figure 23 shows the dependence of the maximum sensitivity on the BP, which is 

equivalent to the degree of asymmetry of the DQW. The BW and the overall WW are 

fixed at 12 Å and 100 Å, respectively. As the BP becomes offset from the center of the 

QW, the sensitivity attains its maximum at some point following which it falls off. This is 

also because of the increase of abruptness of the anticrossing up to this point. When the 

barrier is close to the side of the QW and one well becomes so narrow that the lowest 

subband in that well lies at considerably higher energy, the ADQW assumes the 

properties of a SQW, which is the reason for the decrease of the sensitivity. Apparently, 

the degree of the asymmetry of the DQW is an important parameter in enhancing the 

sensitivity, but its dependence is not as significant as that on the BW. The BP that 

maximizes the sensitivity did not show notable change as the FWHM increases. The 

maximum sensitivities are 4.48µ104 kV-1 and 1.25 µ103 kV-1 with FWHM of 1 meV and 

7 meV, respectively, and BP of 15 Å.  
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Figure 23. Maximum absorption coefficient modulation sensitivity as a function of the 
barrier position and FWHM (Γ) of the exciton peaks.  
 

 

The dependence of the sensitivity on the overall WW with fixed BW and ratio of 

the two wells at 12 Å and 3:2, respectively, was also investigated. The overall WW was 

changed from 50 Å to 180 Å. When the overall WW decreased below 70 Å, the 

anticrossing of the two lowest exciton states did not significantly enhance the modulation 

sensitivity, just showing that of an asymmetric SQW, because the energy difference of 

the two lowest heavy-hole states was so large (> 20 meV) that the two states did not 
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and interacted more strongly resulting in the increased modulation sensitivity. However, 
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large FWHM, the blurring of the overall absorption spectra and sensitivity spectra, which 

looks like those of the continuum state. 

In summary, the BW, the BP, and the WW of ADQWs are optimized theoretically 

to exhibit maximum modulation sensitivity, which provides the design guidelines in 

fabricating high-sensitivity QW-EAMs. For sufficiently high quality QWs, the 

dependence on the FWHM of the exciton peaks can be mapped onto temperature. 

However, caution is required in generalizing this interpretation, because the FWHM may 

also be sensitive to the applied bias, the quality of the heterojunction interfaces, and the 

uniformity from QW to QW within a sample. In this work, each of the three parameters – 

BW, BP, and WW – are optimized independently by fixing the other two parameters at 

the intuitively chosen values. The sensitivity may be improved further by optimizing 

these parameters collectively using a multivariate optimization algorithm [66]. 
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CHAPTER 5 

ELECTROOPTIC PROPERTIES OF InGaAsP-BASED 

ASYMMETRIC DOUBLE QUANTUM WELLS 

 

Quantum-well (QW) electroabsorption modulators (EAMs) are considered most 

suitable for applications in analog optical fiber links especially because of their superb 

modulation efficiency and small size compared with several other types of optical 

modulators [1]. Among them, InGaAsP-based QW-EAMs are popular due to the 

feasibility of operating at ~1550 nm, integration with other devices, and mature 

fabrication technology [2]. There are two types of QW-EAMs depending on the 

propagation direction of the light through the QW: normal incidence and waveguide 

types. For high speed operation, the waveguide type is preferred because not only the 

light propagates along the optical waveguide, but also the electrical field that modulates 

the light can be designed to travel along the electromagnetic waveguide electrodes, which 

facilitates the high frequency operation. Recently, a traveling waveguide InP-based QW-

EAM operating above 20 GHz for analog applications was reported to exhibit high 

modulation efficiency at low driving voltage while keeping other parameters comparable 

with those of the conventional ones [30]. The device adopted multiple layers of single 

QWs (SQWs) as the active absorptive layers.  

In the preceding chapter we optimized only the potential structures of an ADQW 

that maximizes the modulation sensitivity of the absorption coefficient rather than 

optimizing the performance of the real device–QW-EAM. In this chapter, we adopt a 

InGaAsP-based waveguide-type single QW-EAMs [67] that was studied experimentally 
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and was found to exhibit the best modulation efficiency; we therefore adopt this as a test 

case, and reproduce the experimental transmission data theoretically by using our model. 

Further, we show that the modulation efficiency, which is one of the most important 

figures-of-merit in the analog optical fiber link application, can be enhanced considerably 

by employing an optimized ADQW. To simplify the problem, the optimization of the 

ADQWs was carried out on only one parameter, the middle barrier width, which was 

shown to be most important in Chapter 4.     

5.1 Transmission in SQW-EAMs 

5.1.1 Modeling the transmission of waveguide EAMs 

The optical power transmitted through an EAM in a waveguide geometry can be 

modeled as  

)exp()1( LRT c γα−−Γ= ,  

where Γc is the coupling loss to the modulator, R is the reflectance at the interface, γ is the 

optical confinement factor, α is the absorption coefficient, and L is the interaction length 

of the modulator; Γc  and γ are determined by the optical mode of the fiber and the cross 

sectional geometry of the EAM, and empirically obtained numbers are adopted in this 

study [68]. The schematic diagram is shown in Figure 24. The absorption coefficient is a 

function of frequency and the applied electric field across the QW, which is the most 

important parameter in estimating the performance of the EAM and we obtain this using 

the model discussed in the previous chapters. The transmission T was calculated with 

parameters cΓ , R, γ, and L set to 0.25, 0, 0.2  and 300 µm [68]. After slight fitting, they 

are fixed for all samples to secure the consistency.  
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Figure 24. Schematic diagram of an InGaAsP waveguide QW-EAM [68].  
 

 

5.1.2 Device specifications 

We first validate our approach by comparing our results with experimental data 

available in the literature. The band-edge profiles of the two samples that were 

experimented are shown in Figure 25. SQW-A is a waveguide EAM whose active region 

is composed of ten layers of 10.4 nm wide In0.485Ga0.515As0.979P0.021 QWs with 7.6 nm 

thick In0.923Ga0.077As0.325P0.675 barriers [67]. SQW-B is the same as SQW-A except for the 

increased well width of 12 nm and the reduced band offsets from 0.13 (0.163, 0.231) to 

0.115 (0.147, 0.212) eV for electron (heavy hole, light hole) [30], which was attempted to 

achieve higher slope efficiency and higher saturation power compared to those of SQW-
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A. As indicated in Ref. [30], the enhanced QCSE due to the increased well width and the 

shift of the peak of the lowest exciton peak to the higher wavelength did increase the 

slope efficiency at the expense of the increased insertion loss.  

5.1.3 Analysis in Single Quantum Wells 

Figure 26 compares the calculated bias-dependent transmission (dB) of SQW-A 

with the measured data [67], which shows that the two are essentially identical, verifying 

the validity of the calculation. The calculated absorption spectra of the two samples at 

low temperature are plotted in Figure 27(a) and (b), showing that the QCSE is enhanced 

in SQW-B. The bias-dependent FWHM of cb1-hh1 1s-like exciton in each sample at 300 

K is plotted in Figure 27(e). The FWHM of SQW-B (solid) is slightly smaller than that of 

SQW-A (dashed) at zero bias because the broadening of energy levels caused by the 

layer-width fluctuation is less sensitive in the wider well whereas the other contributions 

are almost identical. As the bias increases, however, the FWHM of SQW-B increases 

more rapidly because of the higher tunneling probability of the cb1 state due to the lower 

barrier height (0.115 eV) and the more rapid increase of Γww due to the enhanced QCSE. 

In both samples, the bias dependence of ΓT is much stronger than that of Γww because of 

the low conduction-band offsets. As the bias increases from 0 to 150 kV/cm, Γww 

increases from 1.7 to 4.2 and from 1.3 to 4.4 meV in SQW-A and SQW-B, respectively, 

whereas ΓT increases from 0 to 8.3 meV and from 0 to 11 meV in the respective samples. 

The tunneling probability of SQW-B is larger throughout the bias range and increases 

much faster than that of SQW-A, which guarantees higher optical saturation power of the 

device. The obtained transmissions of the samples broadened by the FWHMs in Figure 

27(e) are plotted in dB as functions of the wavelength and F in (c) and (d). 
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(a)                                                          (b) 

Figure 25. Band-edge profiles of (a) SQW-A and (b) SQW-B. (Upper solid line: 
conduction-band edge, lower solid line: valence-band edge with only hydrostatic strain, 
dotted line: light-hole band edge with shear strain, dashed line: heavy-hole band edge 
with shear strain). As discussed in Section 2.1.2, the shear components of the strains in 
the epitaxial layers shifted the effective valence-band edges of heavy (dashed line) and 
light (dotted line) holes. 
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Figure 26. Transmission loss of SQW-A in dB as a function of the applied bias voltage 
(solid: theory, dashed: experiment) at various wavelengths (from left to right: 1550, 1560, 
1570 nm).  
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(a)                                                                          (b)  

 

   
(c)                                                                        (d) 
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Figure 27. Calculated absorption coefficients of SQW-A (a) and SQW-B (b) as functions 
of bias and wavelength (FWHM = 1 meV was assumed to observe the peak shift and 
oscillator strength clearly) and transmission loss in dB of SQW-A (c) and SQW-B (d) at 
room temperature [bias-dependent FWHM (e) was used for the broadening]. The 
horizontal dotted lines (1550 nm) meet the lowest exciton peaks at 110 (a) and 73 kV/cm 
(b) in SQW-A and SQW-B, respectively. 
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The small-signal modulation efficiency for an analog optical link is governed by 

the maximum slope efficiency of the modulator [1], which is obtained from the 

normalized transmission curve. The transmission that is normalized to its maximum value 

at each wavelength is plotted in Figure 28. The maximum slope efficiencies at 1550 nm 

are 0.019 and 0.032 (kV/cm)-1 for SQW-A and SQW-B at the bias fields of 70 and 38 

kV/cm, respectively, showing ~70 % improvement in SQW-B. The transmission in dB is 

also plotted in Figure 29. At zero bias, SQW-B has ~6 dB more insertion loss than SQW-

A due to the shift of the exciton peak to higher wavelength. As the bias field increases, 

the transmission curve of SQW-B at 1550 nm decreases smoothly down to -70 dB and 

meets a notch at ~73 kV/cm where the vertical dotted line crosses. This bias point is 

where the lowest exciton shifts to 1550 nm from that at zero bias, which is found where 

the vertical (~73 kV/cm) and horizontal (1550 nm) dotted lines cross in Figure 27(b). In 

SQW-A at 1550 nm, the same phenomenon occurs at ~110 kV/cm with much smaller 

transmission ~55 dB [see Figure 27(a)], although the notch is not observed because the 

FWHM is much larger and the oscillator strength is smaller at this bias. At other 

wavelengths in Figure 29, sudden changes of the transmission curves can be explained 

exactly the same way. Consequently, at the expense of the increased insertion loss, SQW-

B achieved higher slope efficiency, lower operating bias voltage, and more absorption at 

the turn-off stage, which was experimentally demonstrated.  
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Figure 28. Normalized transmission curves of SQW-A (dashed) and SQW-B (solid) at 
various wavelengths (from left to right: 1550, 1560, 1570 nm). 
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Figure 29. Transmission in dB of SQW-A (dashed) and SQW-B (solid) at various 
wavelength (from left to right: 1550, 1560, 1570 nm). 
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5.2 Enhanced slope efficiency in ADQWs 

We extend this theoretical analysis to ADQWs and show that the performance of 

optical EAMs can be improved significantly. To make the problem simple, we fixed all 

structure and material parameters to those of SQW-A and located a barrier centered at 1.5 

nm off the center of the well, where the barrier composition is identical to that of the 

isolating barrier. The width of the barrier (BW) was varied from 3 to 15 Å with an 

interval of 3 Å. Clearly, a barrier 3 Å, which is near the half-monolayer thickness, is 

rather ill-defined in the case of ternaries and quarternaries sharing anions and/or cations, 

but nonetheless provides a picture of the parameter dependence of the performance. For 

consistency, the overall bandgap energy of the sample was adjusted to exhibit maximum 

transmission (insertion loss) of -20 dB at 1550 nm while keeping the conduction- and 

valence-band-edge profiles unchanged.     

 

Figure 30. Band-edge profiles of ADQW-x where x denotes the barrier width. 
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Figure 31 shows the absorption coefficient (a) of the ADQW with 6 Å thick BW 

at low temperature and the corresponding transmission loss of the EAM (b) that is 

broadened by the bias-dependent FWHM in Figure 32. At zero bias, most of the hh1 

envelope lies in the wide well, whereas considerable part of cb1 envelope still remains in 

the narrow well due to the smaller effective mass and band-offset ratio of the conduction 

band. As the bias increases from zero, the oscillator strength of the lowest exciton 

increases and its energy level blue-shifts due to the increased overlap integral of hh1 and 

cb1 envelopes and the corresponding increase of the exciton binding energy until hh1 

subband moves to the narrow well, which we call the critical bias field. Thereafter, a 

large red-shift is observed due to the rapid reduction of the energy difference between 

hh1 (in the narrow well) and cb1 (in the wide well) subbands while keeping considerable 

oscillator strength caused by the cb1 envelope that is remaining in the wide well. The 

overall bias-dependent line-broadening FWHM of the lowest exciton peak is also 

minimized at the bias field where the lowest exciton energy is, as shown in Figure 32. At 

low bias, its bias-dependence is governed by Γww, which exhibits an almost linear relation 

to the slope of the exciton energy level as shown in the inset of Figure 8. At high bias, ΓT 

increases rapidly after certain bias field where the Fowler-Nordheim tunneling of the 

electron in cb1 subband begins to increase, which dominates the overall broadening. The 

higher slope of ΓT at negative bias is caused by the higher cb1-subband energy that is 

confined in the narrow well. 

At 1550 nm, the lowest exciton peaks are found at 75 and -60 kV/cm for positive 

and negative bias, respectively, in Figure 31. The corresponding notch in the transmission  
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                                        (a)                                                              (b) 
 

 
 

(c) 
 

 
Figure 31. Calculated absorption coefficients (a) and transmission loss in dB (b) of 
ADQW-6. The cross points of vertical and dotted lines indicate where the exciton peaks 
were found at 1550 nm. (c) Band-edge diagrams and envelope functions at k||=0 of the 
lowest electron (cb1) and three highest holes (solid: hh1, dashed:hh2, dotted: lh1) under 
various bias fields. 
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Figure 32. Total line-broadening of ADQW-6 as a function of bias. The inset shows 
the line-broadening caused by well-width fluctuation (solid) and cb1-subband 
tunneling (dotted).  
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Figure 33. Normalized transmission curves of ADQW-6 at various wavelength (from the 
center: 1550, 1560, 1570 nm). Inset: transmission in dB of ADQW-6 at various 
wavelength (from the center: 1550, 1560, 1570 nm). 
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curve (inset of Figure 33) is, however, not observable at 75 kV/cm because of the same 

reason that was described for SQW-A. The normalized transmissions at several 

wavelengths are plotted in Figure 33. The maximum transmission is found at the bias 

field ~30 kV/cm, following which the transmission falls off rapidly due to the shift of 

exciton peak and the increased line-broadening. The maximum slope efficiency is 

observed at ~42 kV/cm. 

The maximum slope efficiencies and other important numbers of the five ADQW 

samples and two SQW samples are summarized in Table I. The slope efficiency of the 

ADQW with 1.2 nm thick BW (ADQW-12), which showed best performance among the 

samples, is enhanced by 3.8 times that of SQW-A at a much reduced bias of ~34 kV/cm. 

The highest extinction ratio is found in ADQW-6 with the minimum transmission at the 

negative bias of -56 kV/cm although further study is required on this. In ADQWs with 

barriers thicker than 12 Å, the enhancement begins to decrease mainly because of the 

diminished oscillator strength of the lowest exciton peak, which is caused by the 

increased confinement of the cb1 envelope in the wide well. However, the optimum 

barrier thickness may change depending on the other structural parameters of the EAM 

such as interaction length.  
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In summary, there are three main factors that contributed to the enhancement of 

the slope efficiency exclusively in ADQWs: First, the bias for the maximum transmission 

moves from that of flat-band condition (zero-field) to substantially higher field, which 

also reduces the operating bias voltage. Second, after the critical bias, the increased bias-

dependent red-shift of the lowest exciton, while retaining a substantial amount of the 

oscillator strength, increases the transmission loss rapidly. Third, rapid increase of 

FWHM after the critical bias helps increase the transmission loss even more rapidly by 

broadening the peak to the operating wavelength. 

Table 1. Comparison of slope efficiencies and other parameters in different QW 
structures  

Sample Maximum slope efficiency (cm/kV) 
 / bias field (kV/cm) 

TdB,max (dB)  
/ bias field 

TdB,min(dB)  
/ bias field 

SQW-A 0.019   /   70 -15 / 0 -57 / 110 

SQW-B 0.032   /   38 -20 / 0 -71 / 72 

ADQW-3 0.054   /   44 -20 / 30 -82 / -65 

ADQW-6 0.058   /   42 -20 / 30 -86 / -56 

ADQW-9 0.060   /   32 -20 / 28 -85 / -50 

ADQW-12 0.074   /   34 -20 / 28 -81 / -48 

ADQW-15 0.068   /   34 -20 / 28 -74 / -46 
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CHAPTER 6 

CONCLUSIONS 

 

In summary, the linear optical properties of the ADQWs were analyzed and the 

band-edge profile was optimized to exhibit enhanced QCSE leading to improved 

performances of QW-EAMs. In the calculation of the optical susceptibilities, band-to-

band transitions as well as exciton transitions were included, which is based on an 

accurate exciton model in momentum space, band-edge profiles obtained by a recently 

developed interpolation scheme, the use of up-to-date material parameters, and a number 

of material-related line-broadening mechanisms. The mixing effect of excitons 

originating in different subband pairs in ADQWs was investigated in the range of electric 

field where the two highest heavy-hole subbands mix strongly in their dispersions. This 

was found to be very important in accurately estimating the optical properties of and 

optimizing the band profiles of the ADQWs. The parametric optimization of the ADQWs 

showed that, in a proper asymmetry, the coupling barrier width is the most critical to the 

enhancement of the modulation sensitivity. The optical transmission curves of InGaAsP-

based QW-EAMs were calculated and found to be essentially identical to the 

experimental data, which confirmed the reliability of the calculation. Estimation of the 

ADQW-EAMs showed that the slope efficiency can be enhanced significantly (3.8 times 

larger than that of SQW-A) at substantially reduced bias voltage by properly optimizing 

the band structures. It was found that the enhancement in the ADQWs is attributed to the 

three distinguishing factors that are not expected in SQWs – shift of the maximum 
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transmission bias, enhanced QCSE after the critical bias, and the increase of FWHM near 

the critical bias.  

Currently, the collaborative research on the enhanced ADQW-EAMs based on the 

simulation result is under discussion with an experimental group, which will enable the 

realization of the low cost, high sensitivity optical modulators for analog optical fiber-

link or fiber-to-the-home applications. The research is now expanded to the investigation 

of optical properties of the THz-modulated QWs and optimization of the QWs for 

sideband generations, which can be used as ultra-high-bandwidth optical switches in the 

future wavelength division multiplexing systems [39].  
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APPENDIX A 

 

The theory of the k·p method enables one to calculate the band structure of 

semiconductor.  From the one-particle Schrödinger equation in a periodic potential  
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where the wave function is expressed by the Bloch function 
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The Bloch function, ),( rkλU  has the same period as )(0 rV . By inserting the wave 

function into the Schrödinger equation, we get the equation for the Bloch function: 
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which is the starting point of the k·p analysis. The resulting Luttinger-Kohn Hamiltonian 

for the valence band in a bulk semiconductor is 
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The Luttinger parameter 1γ , 2γ , and 3γ  are related to A, B, and C by the relations: 
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The corresponding basis functions for the Hamiltonian are 
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where, x , y , and z are p-like unit cell Bloch wave functions in the valence band and α  

and β  are the spin-up and spin-down states of the electron. The subband structure for the 

QWs can be obtained by solving the Schrödinger equation 

[ ] )()()(0, zEzzVH hLK Ψ=Ψ+ , 

where )(zVh  is the valence band-edge profile. The resulting Hamiltonian for the valence 

band in a QW is  
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The oscillator strengths of the uncoupled ground-state excitons UCsf ,1
)2(11   are 

calculated from Eq. (6)  
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1
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and their sum UCs
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The application of the almost-degenerate perturbation theory to the two uncoupled 

ground states yields two mixed states 
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where c1 and c2 are the elements of the eigenvectors that are obtained by diagonalizing 

Eq. (9), which are normalized (c1
2 + c2

2 = 1). From Eq (6), the corresponding oscillator 

strengths are 
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2,1

121
,1

112
,2 ~ UCsUCsADPs GIcGIcf − . 

Adding ADPsf ,1  and ADPsf ,2  after taking the modulus square yields the same expression 

as UCs
sumf ,1  in Eq. (A2-1). 
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