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SUMMARY 

Uncertainty is a norm in business decisions.  In this research, we focus on the 

inventory decisions for companies with uncertain customer demands.  First, we 

investigate forward buying strategies for single stage inventory decisions.  The situation 

is common in commodity industry where prices often fluctuate significantly from one 

purchasing opportunity to the next and demands are random.  We propose a combined 

heuristic to determine the optimal number of future periods a firm should purchase at 

each ordering opportunity in order to maximize total expected profit when there is 

uncertainty in future demand and future buying price. 

 Second, we study the complexities added by having bundling of products in an 

Assemble-To-Order (ATO) environment.  The assembler/retailer must decide how much 

assembly capacity to acquire before the selling season.  Similarly, each supplier must 

decided how much to make prior to the selling season.  All players are interdependent 

and the quantity of bundles for sale, by definition, cannot exceed the lowest quantity at 

any of the players.  We outline a salvage manipulator mechanism that coordinates the 

decentralized supply chain. 

 Third, we extend our salvage manipulator mechanism to a two stage supply chain 

with a long cumulative lead time.  With significant lead times, the assumption that the 

suppliers all see the same demand distribution as the retailer cannot be used.  We find 

that optimal profits are achieved through our subsidy mechanism. 
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CHAPTER 1 

INTRODUCTION 

 

 Uncertainty is common in all business.  For example, customer demands are very 

uncertain from time to time.   It is uncertain when a customer commit to a purchase and 

how much the customer may order.  Uncertainty increases the complexity of business 

decisions such as inventory quantity determination.  Companies that can better deal with 

uncertainty generally generate better profit.  In this research, we focus on the inventory 

decisions for company with uncertain customer demands. 

 First, we investigate forward buying strategies for single stage inventory 

decisions.  The situation is common in commodity industry where prices often fluctuate 

significantly from one purchasing opportunity to the next and demands are random.  

These fluctuations allow firms to benefit from forward buying (buying for future demand 

in addition to current demand) when prices are low.  We propose a combined heuristic to 

determine the optimal number of future periods a firm should purchase at each ordering 

opportunity in order to maximize total expected profit when there is uncertainty in future 

demand and future buying price.  We compare our heuristic with existing methods via 

simulation using real demand data from BlueLinx, a two-stage distributor of building 

products.  The preliminary results show that our combined heuristic performs better than 

any existing methods considering forward buying or safety stock separately.  We also 

compare our heuristic to the optimal inventory management policy by full enumeration 

for a smaller data set.  The proposed heuristic results also show to be close to optimal.  

This study is the first to decide both the optimal number of future periods to buy for 
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uncertain purchase price and the appropriate purchasing quantity with safety stock for 

uncertain demand simultaneously.  The experience suggests that the proposed combined 

heuristic is simple and can be very beneficial for any company where forward buying is 

possible. 

 We next investigate the complexities added by having bundling of products in an 

Assemble-To-Order (ATO) environment.  Building on Pasternack’s (1985) seminal work, 

Gerchak and Wang (2004) extend the channel coordination idea to an ATO environment.  

We build upon their work by allowing risk at both the supplier and the retailer echelon.  

The retailer must decide how much assembly capacity to acquire before the selling 

season.  Similarly, the n suppliers must decided how much to make prior to the selling 

season.  All players are interdependent and the quantity of bundles for sale, by definition, 

cannot exceed the lowest quantity at any of the players.  We outline a salvage 

manipulator mechanism that coordinates the decentralized supply chain. 

 We then extend our salvage manipulator mechanism to a two stage decision 

making environment with demand information updating.  After the first stage production 

decision, some demand uncertainty is resolve through pre-sales.  The second stage 

purchase decision is made with more information, but upper bounded by the supplier’s 

production output. 

 With these three studies, we show that inventory decisions under various kinds of 

uncertainty can be improved to increase, if not maximize, expected total supply chain 

profit.  Note that equation numbers begin with number one in each chapter and appendix. 
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CHAPTER 2 

BLUELINX CAN BENEFIT FROM INNOVATIVE INVENTORY 

MANAGEMENT METHODS FOR COMMODITY FORWARD BUYS  

 

2.1 Introduction 

This paper describes a heuristic developed to improve the purchasing decisions of 

BlueLinx Corporation, a two-stage distributor of building product materials with annual 

revenues around eight billion U.S. dollars.  Purchasing and selling commodities at 

BlueLinx is a complex process due to both fluctuating purchase prices and highly 

seasonal and uncertain customer demand.  They purchase bulk commodities from 

suppliers such as lumber mills and sell smaller truckloads to customers as requested.  The 

customers do not procure commodities directly from the mill because they 1) do not 

purchase enough volume at one time to satisfy the minimum mill quantity requirement, or 

2) they do not want to give up the flexibility of shipment size and destination that is 

absorbed by the two-stage distributor. 

BlueLinx can charge a positive margin by absorbing lead-times, breaking bulk, 

and providing fast deliveries.  However, a highly variable portion of their profit or loss is 

derived solely from the difference between the price they purchase the commodities at 

versus the price they sell them at.  Due to the competitive nature of their business, the 

price BlueLinx can charge for its product is determined by market forces and may be 

considered exogenous to BlueLinx’s decision making.  Thus, strategic purchasing that 

minimizes the cost of acquiring the product provides BlueLinx with the largest 

opportunity for improving profits.   



 4

In this paper, we provide insights into BlueLinx’s problem by modeling a two-

stage distributor that has a purchasing opportunity at a known, current cost with forecasts 

for future demands and a known distribution for future costs.  The distributor’s decision 

is whether to buy enough products to satisfy demand only in the period 0 (first or current 

period where inventory on hand can be increased by a purchase) or to also buy to meet 

demand in future periods (forward buy periods beyond the vendor delivery lead-time).  

We propose a heuristic for this problem that is a combination of two existing methods for 

determining the optimal number of future periods to buy and the order-up-to levels under 

an uncertain cost and demand environment.  The goal is to maximize the total expected 

profit.  We use actual sales data (simulated through a bootstrapping technique) from 

BlueLinx for the years 2001-2005 to demonstrate the effectiveness of the proposed 

heuristic.  The results show that our combined heuristic performs better than any existing 

methods considering forward buying or safety stock separately.  We also compare our 

heuristic to the optimal inventory management policy by full enumeration for a smaller 

data set.  It shows that the proposed heuristics is close to optimal.  This study is the first 

to decide both the optimal number of future periods to buy for uncertain purchase price 

and the appropriate purchasing quantity with safety stock for uncertain demand 

simultaneously.  The study suggests that the proposed combined heuristic is simple and 

can be very beneficial for any company where forward buying is possible. 

We begin by describing BlueLinx’s purchasing environment. 
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2.1.1 BlueLinx Purchasing Environment 

The following conditions describe the purchasing environment of BlueLinx and 

are based on discussions about procurement practices with the current and former 

directors of supply chain procurement at BlueLinx Corporation. 

Condition 1:   BlueLinx is a price taker.  BlueLinx exists in a highly fragmented 

market where the largest player comprises only 10% of the total market and where there 

are many small players with no influence at all.  Moreover, the company has little price 

flexibility.  Selling prices cannot be raised to cover prior high priced purchases; rather, 

selling prices are a constant marginal addition to current market prices for the products.  

In fact, all players in the industry are price takers.  

Condition 2:  Demand is stochastic with a known distribution.  The demand 

distribution is non-stationary given the highly seasonal nature of building product 

demand. 

Condition 3:  The demand forecast is unbiased.  Tracking signals demonstrate that 

the forecasting method is unbiased for the commodity products at BlueLinx. 

Condition 4:   The purchase price exhibits randomness as shown in Figure 2.1 for 

the price of plywood (Economagic, 2006).  It is the nature of commodity goods to 

fluctuate in price daily, and even hour to hour depending on conditions of supply and 

demand.  Figure 1 below shows 10 years of monthly data.  Each monthly figure is 

reported as the average of the daily price close.  Note the spike near the end of 2003 has 

many theories from analysts; 1) U. S. Military placed large orders in August for the First 

Armored Division in Iraq to build barracks, 2) hurricane Isabel caused significant 
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demand for plywood to reinforce windows, 3) strong single-family home builder demand 

with insufficient stock. 

Figure 2.1: Historical Plywood Prices 1996-2005 

 

 

 

 

 

 

Condition 5:   Since lead-times are significant, an order must be placed before 

demand is realized.  Products such as rebar are often purchased internationally, requiring 

significant lead times.  U.S. demand for rebar, for example, exceeds domestic production.  

Thus, local spot purchases are not available if the original order quantity falls below 

realized demand.  Therefore, the current period (period 0) in all models is really the first 

period that can have inventory increased by a purchase.  For plywood at BlueLinx, the 

period 0 is 3 months from today initially.  This period rolls forward during the horizon. 

Condition 6:   There are no viable substitute products.  Customers (builders and 

industrial manufacturer) have specifications calling for certain materials and so they will 

not use different grades or variants.  If the company is out of a particular commodity, it 

cannot fill demand with a substitute product; for example, a builder requiring Oriented 

Strand Board (OSB) would not substitute plywood for his application. 

Condition 7:   Demand is independent between periods and unmet demand is lost.   
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another player in the market.  The customer cannot wait for BlueLinx if it is out of stock.  

He will find the materials he needs for his current demands from whoever has them in 

stock.  Currently, BlueLinx estimates expected price trends but they buy just enough to 

cover the demand point forecasted. 

 

2.1.2  Forecasts 

We used Holt-Winters with additive seasonality to forecast future demand.  Given 

the highly seasonal nature of building products, this method fits the data well and is 

currently used by BlueLinx.  We applied the seasonal indices to the wood and metal 

products that were computed based on the prior four years of sales.   The smoothing 

parameters were kept constant during the simulation, as BlueLinx adjusts them 

infrequently.  Holt-Winters method with seasonality is used by BlueLinx to produce the 

monthly (period) point forecasts.  The standard deviation of demand is calculated each 

month for plywood based on the prior rolling year of sales orders.  Because the vendor 

lead-time is three months, it is necessary to use increasing prediction intervals since the 

demand distribution today is narrower than the wider distribution (more uncertainty) 

three months in the future.   

We were able to fit autoregressive functions to historical prices for plywood that 

achieved normally distributed errors and low Mean Absolute Deviations.  ARIMA (3,0,0) 

worked best for the wood price data.  ARIMA is Autoregressive Integrated Moving 

Average time series forecasting (Makridakis et al., 1998).  The first parameter (3) 

specifies that three prior data points are used to correlate to the forecasted data point.  

The second parameter specifies the degree of first differencing involved and the third 
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parameter specifies the order of the moving average portion.  The plywood data used is 

from January 1996 through May 2001.  Our simulation starts with June 2001 so that we 

can be certain the price forecast parameters are based only on the historical data that 

would have been available at the time.  For wood, the last known price -.1*(two periods 

ago) + .1 * (three periods ago) produced the lowest error.  The price forecast each period 

is a combination of the prior three price data points.  Manikas (2007) finds that, for 

plywood historical prices during 1996 through 2001, autocorrelation functions can 

accurately forecast future prices.   

 

2.2 Literature Review 

The model developed in this paper combines two existing procurement methods.  

Assuming demand is deterministic, one method is the optimal forward buying algorithm 

from Golabi (1985).  The other method incorporates uncertain demand and buys safety 

stock that may be used for future periods as outlined in Gavirneni (2004).  We discuss 

these two methods and give an example of each in the following subsections. 

 

2.2.1 Forward Buying with Deterministic Future Demand 

 Golabi (1985) proposes a method whereby material for future periods is bought as 

long as the marginal cost is less than the marginal savings.  For example, given that the 

current ordering cost in a period is $180 per unit, in the next period the ordering cost is 

expected to be $200.  If demand in the next period is expected to be one, and holding cost 

for that one unit is less than $20, it would be beneficial to purchase in the first period and 

hold the stock to fill demand in the second period.  This differential is translated into a 
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series of non-increasing price thresholds.  If the realized price is less than or equal to the 

threshold, then it is optimal to buy for that many periods forward and incur the holding 

costs.  Golabi’s model assumes concave holding costs for a single item with deterministic 

demands.  Ordering prices in each period are random with a known distribution.   

Magirou (1982) uses a very similar method to Golabi with the addition of allowing a 

fixed storage capacity and selling beyond the forecast demand in the commodities market 

for oil.     

 Golabi’s model finds the price points in a current period so that a decision maker 

could determine the optimal number of periods to forward buy in order to minimize total 

expected cost.  Golabi’s equation accounts for the probability that the next period price 

will be less than the current price plus the benefit of locking in the prior price minus the 

holding costs of one period.  Equation (1) below is the corrected equation (9) from 

Golabi’s paper that specifies the next price point such that forward buying n periods is 

optimal.  An is the threshold price per unit such that buying n periods ahead is optimal.  If 

the current purchase price is less than or equal to An, it is optimal to buy for the current 

period plus n periods ahead.  Let x be the purchase price, F(x) be the known cumulative 

price distribution for each period and h be the cost to hold one unit of stock for one 

period.  A0 is the highest possible purchase price since Golabi assumes all demand must 

be met for the current period (period 0).  Each additional threshold price is computed 

according to 

                                                                                        

                       (1) 

 

∫∫
∞

+ −+=
n

n

A
n

A

n hxdFAxxdFA )()(
0
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Given the probability the price falls in the future, the first integral in (1) is the 

opportunity cost of not being able to take advantage of a lower purchase cost in the next 

period, should it materialize.  The second integral is the benefit of locking in at the An 

purchase cost.  The final term is the holding cost for buying inventory in period n for use 

in period n+1. 

 We illustrate this heuristic with a stationary, uniform price distributions for ease 

of understanding.  However, the simulation and real situation at the company are with 

non-stationary price distributions.  Assume that the price at any buying opportunity can 

be $25, $50, $75 or $100 – each with equal probability.  Assume the holding cost for one 

period is $5.  Since we must buy to cover demand in the current period (0), A0 equals the 

highest possible price.  Thus A0 = 100, the highest possible purchase price of our 

distribution.   

 A1 is the expected price lower than or equal to A0 plus the benefit of locking in at 

the price A0 minus the one period holding cost h.   

 The expected price lower than or equal to A0 is $25 * 25% + $50 * 25% + $75 * 

25% + $100 * 25% = $62.50 

 The expected benefit of locking in the price of A0 is $0 (since the price cannot go 

higher than $100).  A1 = $62.50 + $0 - $5 = $57.50.   If the current purchase price is 

$57.50 or lower, buy for the current period demand plus the demand for next period. 

 Likewise, the expected price lower than or equal to A1 is $25 * 50% + $50 * 25% 

= $18.75.  $57.50 * 50% = $28.75 as the benefit of locking at A1 = $57.50.  Therefore, A2 

= $18.75 + $28.75 - $5 = $42.50 
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 Similarly, $25 * 25% is $6.25, and A2 * 75% is $31.88.  Therefore, A3 = $6.25 + 

$31.88 - $5 = $33.13.    

 A4 = $6.25 + $24.84 - $5 = $26.09, and A5 = $19.57 which is below the possible 

price range for the distribution so we can be certain that we will never buy for more than 

four periods in advance. 

 This method answers the question of how many periods in advance to buy for to 

satisfy all predicted demand and to minimize total expect costs.  Given our price 

distribution, Table 2.1 summarizes the number of periods to forward buy for each 

possible realization of the purchasing cost.  A period is any unit of time for the fixed 

review period procurement.  BlueLinx uses a month as its period for plywood. 

 

Table 2.1:  Price Breaks to Forward Buy 

     

    

 

 

 

 

Based on Table 2.1, if the current purchase price is $75 or $100; only buy for the 

current period’s demand.  If the current price is $50; buy for the current period’s demand 

plus the demand for one additional period.  If the current price is at $25; it is optimal to 

buy for the current period’s demand plus the demand for the next four periods.   

A0 A1 A2 A3 A4

Current 
Period

Buy 1 
period 
ahead

Buy 2 
periods 
ahead

Buy 3 
periods 
ahead

Buy 4 
periods 
ahead

$100.00 $57.50 $42.50 $33.13 $26.09 
Calculated 

Value
 $       100 Yes
 $         75 Yes
 $         50 Yes Yes
 $         25 Yes Yes Yes Yes Yes
Purchase 

Price
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 As an example, assume the forecasts for the next 6 months are as shown in Table 

2.2, where 0 is the current month, 1 denotes one period in the future, etc.: 

Table 2.2:  Example Monthly Demand Forecasts 

 

Assume the current price to purchase the item is $50.  Given the price thresholds 

previously calculated (shown in Table 2.1), this price falls between A1 and A2.  

Therefore, we should buy one period forward since we have passed the A1 threshold but 

not the A2 two-period threshold.  We always include the current period 0 in the order up 

to level equation.  In this example, given that the items can be purchased for $50 each, 

Golabi’s method would recommend we order enough units to get our inventory up to 100 

+ 110 = 210 units. 

 This method assumes deterministic demand and instantaneous replenishment.  

However, BlueLinx’s demand data appears to be normally distributed around the forecast 

mean and thus Golabi’s method does not take into account the uncertainty of demand.  

Additionally, if prices fluctuate less than the one-period holding costs, forward buying 

will never occur under this method.  We also provide for non-zero lead times by moving 

the current period 0 out by three months to account for transit time, for example, from 

China to the USA.  Therefore, period 0, 1, 2, 3 in the above example are 3, 4, 5, 6 months 

into the future for plywood at BlueLinx. 

 

2.2.2 Buying with Uncertain Future Demand 

The second method from Gavirneni (2004) accounts for demand uncertainty.  We 

use the forecast error to estimate the distribution of demand in each period instead of 

Period 0 1 2 3 4 5
Demand 100 110 105 90 120 115
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using just the point forecast of demand.  We choose the normal distribution because the 

shape of the forecast error closely follows a normal bell curve in the real demand data 

from BlueLinx.  However, for ease of explanation we have used a more simple uniform 

distribution in the examples in the prior section. 

Gavirneni proposes a myopic heuristic based on a newsvendor ratio to calculate 

the quantity to procure each period.  Gavirneni shows the closed form of the order up 

equation where the purchasing cost is constant, however the equation cannot easily be 

integrated when purchasing costs fluctuate so the myopic heuristic is a practical 

approximation. The newsvendor equation with the profit margin as cost of underage and 

the holding costs as the cost of overage for myopic buying provides the critical ratio.  

This ratio is applied to the demand distribution to offer the optimal amount to procure 

given the demand distribution.  The notation for this method is: 

p Selling price 

c Actual cost to purchase in the period 0 

c  Expected cost to purchase in the period 0 

h Holding cost for one period 

y  Order-up-to level for period 0 

x Sum of average period demand to forward buy 

w Total order-up-to-level for GOGA (w=x+y) 

i Inventory position (on hand plus on order) 

1−Φ  Inverse CDF (cumulative distribution function) of demand 

The standard newsvendor equation where the overage is simply the one period 

holding costs has the following order-up-to level as shown in (2). 
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          (2) 

As an example, assume the same monthly forecasts from Table 2.2.  The current 

purchase cost (c) is $50 and the selling price (p) for this item is $101, and the holding 

cost is $5 per period.  Using the forecast error as a surrogate for the variability of 

demand, a demand distribution can be generated about the point forecast.  For period 0, 

the point forecast is 100.  For the sake of clarity in this example, we will assume that the 

demand distribution is uniform centered on the point forecast of 100, ~U(50,150).  

The critical ratio is calculated as: 

          (3) 

 

The order up to quantity y is given by the equation: 

          (4) 

 

Therefore, y = (150 – 50) * .91 + 50 = 141 units.  The standard newsvendor would 

suggest we buy enough units to have 141 units in the period 0 instead of just the 100 units 

point forecast.  The extra 41 units are safety stock and may be used to fill future demand 

as well, but they have been calculated solely based on the demand distribution in the 

period 0.  

Gavirneni modifies the standard newsvendor to use the expected cost in the 

denominator and the realized purchasing cost in the numerator as shown in (5).   

          (5)   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
Φ= −

chp
cp

y 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
Φ= −

chp
cpy 1

%91
56
51

505101
50101

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

−+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
chp

cp

)91(.1−Φ=y



 15

Using the same example as we did above for the standard newsvendor, but with 

the expected cost ( c ) to buy is $62.50, the average of prices from our known distribution 

of $25, $50, $75, $100.  The critical ratio is calculated as: 

          (6) 

 

Because the holding cost is 10% of the purchase cost, yet the current realized 

procurement cost is 20% below expected, the critical ratio is very large.  Planning to hold 

safety stock to cover 100% of uncertainty in a period is the  maximum safety, therefore if 

(6) mathematically yields a number greater than 100%, we force the ratio to be 100%.  

The order up to quantity y is given by the (7) below: 

 

          (7) 

Therefore, y = (150 – 50) * 1.00 + 50 = 150 units rounded up.  Gavirneni’s 

method would recommend we buy enough units to have 150 on hand in the current 

period.  The extra 50 units above the point forecast are safety stock worth holding given 

our profits and holding costs for one period.  Gavirneni’s method applies this modified 

newsvendor ratio to each period 0’s demand distribution iteratively, but his method does 

explicitly buy for future period demand distributions.  Gavirneni and Morton (1999) look 

at stochastic demand with a one-time price increase for speculative buying.  However, 

period to period prices may decrease or increase when looking to forward buy.  

Therefore, we cannot directly apply their dynamic programming solution to BlueLinx’s 

problem. 
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Gavirneni’s method takes into account demand and price uncertainty, but it also 

involves buying safety stock rather than taking into account the predicted demand in 

future periods.  BlueLinx’s demand is highly seasonal, therefore the shape and size of 

each period’s demand distribution is important for forward buys.   

 

2.3 Problem Statement and Proposed Heuristic 

2.3.1 Problem 

A company that procures commodities knows the current prices to purchase at.  

At each ordering opportunity a company needs to decide how much to order to cover 

both current demand and possible future demand.  The tradeoff to such a decision is that 

the company would be buying more and thus incurring holding costs (warehouse space, 

capital tied up, etc.) to offset  the possibility of paying higher purchase prices closer to 

when demand will be realized.   

We examine a two stage distributor’s ordering strategy given forecasted customer 

demand, forecasted purchase prices and linear holding costs.  Unfilled demand is 

assumed lost to competitors.  

 

2.3.2 Proposed Heuristic 

Our proposed method, which combines the work of Golabi (1985) and Gavirneni 

(2004), is named GOGA out of respect for their prior contributions.  We use the price 

breaks per Golabi in (1) to determine how many periods to forward buy.  For each period, 

the newsvendor from Gavirneni is used to account for uncertainty in the demand.  For 

forward buys, only the mean forecasted demand is bought, just as Golabi does for all 



 17

periods including period 0.  In essence, we are using Gavirneni’s method on the demand 

distribution for period 0, then we use Golabi’s method for forward buys for additional 

periods using the point forecast of demand. 

The Holt-Winters model with additive seasonality is used to produce point 

forecasts for future sales of the commodity.  A forecasting method with seasonality needs 

to be used given the clear seasonality of the consumption of building products.  Plywood 

is used extensively in construction, which is clearly a seasonal activity.  (For a thorough 

discussion on the Holt-Winters forecasting method see Chatfield (1978).)  Given our 

work with the two stage distributor BlueLinx, we feel that additive seasonality is 

appropriate for the forecast models.  The Holt-Winters forecast is used to generate the 

mean future forecast.  The lead time from purchase to receipt is explicitly taken into 

account by shifting the current period to the forecast 3 months from now to account for 

transit time to the USA from China.    To account for the increasing uncertainty in time, 

the demand distribution prediction intervals increase.  In the case of BlueLinx, the lead 

time is three months, so the point forecast of demand three months out is used as the 

current period demand, with the distribution expanded by applying Yar and Chatfield’s 

(1990) prediction interval equations for three steps ahead.  Those equations are beyond 

the scope of our paper, but similar accounting for the non-stationary distribution of 

demand for long lead-time items is suggested for companies implementing our proposed 

heuristic.   

Although commodities are not perishable, we balance the lost profit versus cost of 

capital to derive the critical ratio when forward buying.  The cost of underage (Cu) is the 

profit lost by not selling the product.  The cost of overage (Co) is the one period holding 
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cost (h).  The critical fractile over the demand distribution D is given by (3).  Since the 

critical ratio is to buy safety stock and since we have buying opportunities each period, 

the ratio is only used for the current period and not for a future period during a forward 

buy.  The modified newsvendor ratio is shown in (8) where p is the expected selling 

price, h is the holding cost for one period (holding % times c), c is the current 

procurement cost, and c is the expected price.  We modify the expected price to be the 

expected cost next period rather than the forecasted cost this period as Gavirneni (2004) 

does.  This minor modification results in significantly better results.  We believe the 

improvement comes from using a estimate of next period’s cost, thus including the most 

recent realized cost and where the expected cost this period is based on the prior three 

months of data.  The optimal order up to inventory y in each current period is given in 

equation (9).   

 

          (8) 

 

          (9) 

For the normally distributed demand with mean of μ and standard deviation σ, 

y=μ+z*σ, where z is the inverse standard distribution of CDF computed in (8).  For 

plywood at BlueLinx, the demand appeared normally distributed. 

As a simple numerical example, assume a company buys a commodity at (c) $95 

per unit and sells it for (p) $100 per unit, plus they have a per period holding cost (h) of 

10% annually / 12 months; thus, the holding cost is .83% of the buying cost or $0.79 per 

month.  For one period ahead, underage (Cu) is $5 and overage (Co) is $0.79; therefore, 
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the critical ratio is calculated at 86.3%.  If the demand is normally distributed, using a 

standard normal inverse table, this translates to a factor (z) of 1.09.  Therefore, the 

optimal order up to inventory y calculated from (9) becomes: 

          (10) 

In our application, the mean (µ) comes from the Holt-Winters forecast of demand, 

and the factor 1.09 comes from the t-value of the Student's one-tailed t-distribution as a 

function of the prior forecast error and the degrees of freedom assuming that we do not 

have σ available.   

In contrast to our heuristic, the Golabi (1985) method would buy only the point 

forecast during every period.  Likewise, the Gavirneni (1985) method would buy the 

optimal y each period but it would not forward buy unless under the speculative 

assumption. 

We will use a numerical example to demonstrate how our method works.  

Holding (h) is $5, selling price (p) is $101, the current purchasing cost (c) is $50, and the 

expected purchasing cost ( c ) is $62.50.  Using equation (8) we get a ratio over 100%, 

which we truncate this to 100%.  The demand distribution for period zero is distributed 

uniformly (50,150).  The forecasts for the next six months are as shown previously in 

Table 2.2. (Note that if the holding cost (h) is more than $12.5, the ratio from equation 

(8) will be less than 100 %.)  

Using Gavirneni’s formula from equation (8) we apply a ratio of 100% to the 

demand distribution giving y=150 units.  Next, we use Golabi’s price thresholds to find 

that we should also forward buy one period (since the purchasing cost $50 is less than A1 

$57.50 and greater than A2 42.50 from Table 2.1).  Therefore, we also buy next period’s 

σμ ∗+= 09.1y
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point forecast of 110 units (x=110).  The total purchase under our method will be 260 

units this period (150 + 110 units = 260 units for w).  Note that in all methods, the 

calculated amount is an order up to quantity.  Therefore, if the inventory position (on 

hand plus open purchase orders) is 260 or more units, zero additional units will be 

purchased.  If the inventory position is 190 units, 70 more will be purchased. 

In summary, the proposed heuristic and the cost and revenue are performed 

according to the steps below each period throughout the planning horizon: 

1. Compute y and x.  y is the order up level for period 0 (current period) 

based on the modified Gavirneni’s method shown in equation (8).  x is the 

sum of point forecasts corresponding to additional periods beyond period 

0 specified by Golabi’s method for forward buys.  Recall, the total order 

up quantity w=x+y 

2. Order w-i  if i is less than w, where i is the inventory position in period 0. 

Otherwise, order nothing.  The cost c*(w-i) is added to the total cost if i is 

less than w.  The ordered units arrive with deterministic lead-time, so 

inventory position increases to w in period 0. 

3. Let D be the demand realized.  Sell minimum of D and i.  Total Revenue 

has c * ( 1 + ε) * min (Di, i) added to it, where ε is the profit margin.  We 

assume that each period we maintain a constant percent margin beyond the 

current purchase cost that is valid for commodities. Inventory position i is 

decremented by min ( D, i ). 

4. Each remaining unsold unit incurs a holding cost h if D is less than i.  

Total cost has h * (i-D) added to it. 
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2.4 Simulation Method 

We tested the effectiveness of our proposed procurement method using 

simulation.  We ran 100 replications using four years of daily demand supplied by 

BlueLinx.  The daily sales orders were aggregated into monthly demand to correspond to 

BlueLinx’s fixed review period for purchasing plywood.  For each replication, we ran 

nine parameter combinations of holding cost and profit margin.  We choose 100 

replications because it gave us a relative error of 3.5%.  One data set was the actual 

invoice data from BlueLinx and the other 99 were created through bootstrapping 

(Davidson and Hinkley; Demirel and Willemain, 2002). 

Our objective was to maximize expected profits given that purchase prices 

fluctuate from period to period.  Selling prices are some percent profit ε of the selling 

period purchase price regardless of at what price the inventory was purchased at.  

Holding costs of 20% are typical for this industry due to the inclusion of obsolescence, 

shrinkage and other miscellaneous costs.  A holding cost based solely on the cost of 

capital would be around 8%.  We also included 14% as a number between these two 

extremes.  Plywood gross margins in this industry range from 14% to 22%.  We used 

margins of 14%, 18% and 22% to test the wood data.  At the request of BlueLinx, their 

specific holding costs and profit margin are not specified, but do lie within the parameter 

ranges used.  The commodity building product business is highly competitive and the 

company feels part of its competitive edge is the lack of public knowledge regarding its 

commodity sales. The parameter values are summarized in Table 2.3.    
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Table 2.3:  Parameter Values for Simulation 

  Holding Cost % h  8% 14% 20% 

  Plywood Profit Margin ε  14% 18% 22% 

 

 Actual invoiced daily demands over four years for plywood were used.  To create 

a new test case, the number of selling days in a month was calculated; subsequently, the 

same number of random draws with replacement was performed to make a new possible 

sales month for the item.  Since every day had sales except weekends and holidays, we 

did not need to determine time between orders; we only needed to determine the quantity 

of each selling day per month.  Note that ordering costs were omitted, as they are 

insignificant compared to the material purchase costs.   

For comparison, five methods were used for each test data set: 1) no forward buy 

or safety stock purchased, 2) safety stock using the normal newsvendor ratio, 3) Golabi’s 

(1985) method for forward buys, 4) Gavirneni’s (2004) newsvendor method for safety 

stock, and 5) our proposed method, called GOGA, which has forward buys and the 

newsvendor model for safety stock. 

 

2.5 Results 

For the 100 simulation runs of the wood product, the profits for each of the 

parameter settings for the five methods are shown below in Table 2.4.  Note that the four 

year profit has been adjusted so that the lowest profit method shows $1000 and all other 

methods are scaled accordingly.  This profit scaling was done at the request of BlueLinx 
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to ensure that neither volume nor profit of commodity products are communicated to 

competitors from this article. 

 

Table 2.4:  Comparison of Buying Methods for Wood 

ε = 14% ε = 18% ε = 22%
h = 8% 1,000$              1,000$                 1,000$                 No forward buys/SS

1,264$              1,294$                 1,319$                 Newsvendor SS
1,287$              1,232$                 1,198$                 Golabi
1,454$              1,432$                 1,411$                 Gavirneni
1,564$              1,517$                1,508$                 GOGA

h = 14% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,207$              1,244$                 1,269$                 Newsvendor SS
1,099$              1,080$                 1,068$                 Golabi
1,318$              1,316$                 1,327$                 Gavirneni
1,373$              1,367$                1,369$                 GOGA

h = 20% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,165$              1,204$                 1,231$                 Newsvendor SS
1,000$              1,000$                 1,000$                 Golabi
1,232$              1,253$                1,269$                 Gavirneni
1,232$              1,253$                1,269$                 GOGA  

For the highest holding cost (20%), it was not optimal to ever forward buy.  

Therefore, the GOGA and Gavirneni methods are equally effective.  For lower holding 

costs, our GOGA method outperforms the other methods as shown in Table 2.5. 

Table 2.5:  Profit % improvement over no FB/no SS 

 

 

 

 

The results above demonstrate that, by taking into account demand uncertainty, 

the normal newsvendor equation and Gavirneni’s modified newsvendor equation give 

additional profit beyond the no forward buying-no safety stock base-case.  Forward 

Newsvendor Golabi Gavirneni GOGA
h = 8% 29.2% 23.9% 43.2% 53.0%
h = 14% 24.0% 8.2% 32.0% 37.0%
h = 20% 20.0% 0.0% 25.1% 25.1%

ε = 14% 21.2% 12.9% 33.5% 39.0%
ε = 18% 24.7% 10.4% 33.4% 37.9%
ε = 22% 27.3% 8.9% 33.6% 38.2%
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buying under Golabi’s method is most beneficial under lower holding costs which allow 

more speculative stock to be purchased.  However, at a holding cost of 20%, forward 

buying offers no benefit and Golabi’s method’s performs the same as the base-case 

method with no forward buying and no safety stock.  Our GOGA method combines the 

modified newsvendor of Gavirneni to handle demand uncertainty and Golabi’s view of 

price uncertainty to forward buy.  When the distribution of future prices is known, this 

information can be exploited for forward buys along with the demand uncertainty, 

thereby making the GOGA method superior for commodity forward buys in comparison 

to existing methods.  In Gavirneni’s (1985) paper, he found results that were very close to 

optimal for three different distributions.  His method does well with this real data as well, 

but not at the same level.  A difference with the test data he used is that it had five price 

levels ranging from $5 to $25 which is a large swing in commodity prices, not present in 

the historical plywood data during the past 10 years.  Another difference from his results 

that does not hold with our price data is the highly predictable spot price movements 

found in Random Walk, Mean Reverting, or Momentum distributions.    

As a final test, we compute the optimal expected profit attainable for small 

datasets.  We used uniformly distributed prices between $10 and $100, and uniformly 

distributed demand levels.  Only a small number of periods were used since the number 

of combinations to compute grows quickly.  Table 2.6 shows how close to optimal the 

GOGA heuristic achieved.   In all cases tested, the expected profits from GOGA are at 

most off the optimal profits by less than 6%. 
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Table 2.6:  GOGA Profit Compared to Optimal FB/SS  

 

 

 

 

 

 

 

2.6 Conclusions and Discussion 

 Given the fluctuating prices of commodities, forward buys make sense.  Even 

though wood and other commodities are non-perishable, the newsvendor formula can be 

applied to the demand distribution to balance profit and holding costs.  Golabi’s method 

should be used to determine the number of periods to forward buy given supplier lead 

times, current purchase price and expected future purchase prices.  However, the quantity 

to procure should not be the point forecast but rather it should be based upon the 

distribution of demand.  The distribution of demand should reflect more uncertainty 

through increasing prediction intervals.  By utilizing Gavirneni’s application of the 

newsvendor equation to the increasingly spread out demand distribution as part of our 

GOGA heuristic, we achieve better results overall than either Golabi or Gavirneni’s 

methods achieve in isolation.   

 Forward buys as outlined in Golabi’s method clearly increases profits over not 

doing so as shown in the Table 2.4 and Table 2.5.  The modified newsvendor equation of 

Gavirneni provides advantages over buying no safety stock as shown in these same two 

Periods
Demand 
Levels

Price 
Levels % E[Optimal]

2 2 2 94.0%
2 3 3 96.0%
2 4 4 95.0%
2 5 5 96.0%

3 2 2 100.0%
3 3 3 100.0%

2 2 2 94.0%
3 2 2 100.0%
4 2 2 100.0%
5 2 2 100.0%
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tables.  Our GOGA method combines forward buys and safety stock based upon a 

modified newsvendor equation for maximum profit improvement.  For plywood 

purchasing the GOGA method has the best expected profit overall.  In Table 2.6, we 

showed that the GOGA heuristic achieves near optimal or optimal for smaller datasets.  

The real world demand and price data are much larger and less predictable, so the GOGA 

results when applied to the BlueLinx data cannot be said to be either close or far from 

optimal with any certainty.    

 The Director of Global Sourcing at BlueLinx has written that he is convinced by 

the simulation results that his company will be able to significantly improve the bottom 

line with this new method.  He has formally request BlueLinx’s IT resources to review 

options for developing programs utilizing these formulas into their ERP (Enterprise 

Resource Planning) system.  The company believes that this more formal approach will 

improve their profitability on commodity buys but has requested that only the method be 

shared publicly, not their expected dollar profit improvement or volume of commodity 

sales as those are competitive secrets.  An article in the Atlanta Journal-Constitution 

(AJC Online, 2002) on November 2, 2006 stated, “The slump in the housing industry is 

causing real pain, and not just among home builders…In a conference call with analysts, 

CEO Stephen E. Macadam said BlueLinx eliminated about 8 percent of its work force, 

including 175 salaried employees and 100 hourly workers.”  The timeline for the 

implementation of the GOGA method is now uncertain.    

 This new method will be programmed into the existing routines in the homegrown 

ERP system.  A table needs to be added to store the historical commodity price data to 

allow future price forecasting via an autoregressive function.  The role of adding and 
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ownership of the data in this new table will be assigned as additional duties to an 

employee in the purchasing department.  Demand forecasting and order up to formulas 

currently exist in the ERP routines, but do require modifications to perform the new 

GOGA method.  The change to the calculations is behind the scenes and will result in 

new quantities in the recommended purchase quantity field.   Because product specialists 

already order the system recommended amount on a PO, no new training is required for 

existing procurement staff. 

 It is important to note that although this method was demonstrated on plywood for 

one particular company, it is applicable to any industry where purchases prices fluctuate 

from purchase period to purchase period.  To model the long lead time vendor, we shift 

the Golabi period 0 out three months and use wider prediction intervals to reflect the 

increased demand uncertainty.  Some real examples from companies in different 

industries are; Boeing’s Commercial Aircraft Group requires titanium to build the frame 

for the cockpit.  Potash Corporation buys natural gas to process the potash into dry, 

granular fertilizer.  A plastic film converter faces highly variable prices of mill rolls of 

polystyrene from Dow because this plastic is petroleum based.  RR Donnelly is faced 

with volatile paper prices from mills to print and bind books.  Pepsi-Cola General bottlers 

must decide how much sugar to buy and when.  As these few examples illustrate, for 

many products, and in many industries, fluctuating purchases prices are a normal part of 

business decision making.  The GOGA method can be applied to all these situations for 

profit improvement. 
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2.7 Extension for Volume Price Discounts 

 We now demonstrate the calculations under volume price discounts.  We again 

assume that the list price at any buying opportunity can be $25, $50, $75 or $100 – each 

with equal probability.  Assume the holding cost for one period is $5.  We have the 

following threshold price breaks shown in Table 2.7. 

 Table 2.7:  Quantity Discount Thresholds 

 

 

As an example, assume the forecasts for the next 6 months are as shown in Table 2.8 

where 0 is the current month, 1 denotes one period in the future, etc.: 

 Table 2.8:  Example Monthly Demand Forecasts 

 

 

To account for volume discounts and surcharges, we modify (1) as below, where Δd is 

the change in discount rate from the last threshold An. 

 

          (11) 

 

Using (11) we can create new price thresholds as shown in Table 2.9, where Cum. Dem is 

the cumulative volume of demand, d is the percent discount or surcharge, and Δd is the 

change in percent discount from the last threshold.   

Threshold % Discount
250 10%
300 15%
350 20%

Period 0 1 2 3 4 5
Demand 150 110 105 90 175 190
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Table 2.9:  Forward Buying with Discounts 

A0 A1 A2 A3 A4 A5

Current 
Period

Buy 1 
Period 
Ahead

Buy 2 
Period 
Ahead

Buy 3 
Period 
Ahead

Buy 4 
Period 
Ahead

Buy 5 
Period 
Ahead

100.00$      64.44$       51.64$       39.98$       31.23$        24.67$       
25.00$        YES YES YES YES YES
50.00$        YES YES YES
75.00$        YES

100.00$      YES
Cum. Dem 150 260 365 455 630 820

d 0% 10% 20% 20% 20% 20%
Δd 0% 10% 10% 0% 0% 0%  

Now it is beneficial, with a current price of $50, to buy 2 periods ahead compared with 1 

period in the base case shown in Table 2.  Notice that at a quantity of 300 we have a 15% 

discount, but also a 20% discount at 20%.  Since the additional demand of 105 for period 

2 takes the total to 365, we apply just the 20% discount for d, for a net change of 10% 

(20% - 10%) on the A2 row. 

 As expected, the price thresholds are higher starting in period 1 since we are 

eligible for a 10% discount off the entire purchase.  Notice that even though there are no 

future price discounts for additional quantities starting in period 3, the price thresholds 

A3, A4 and A5 are all higher than in the base case.  This is due to the lowered realized 

price threshold in period 0 as we cross price thresholds when buying ahead for period 1 

and period 2. 

 

 As an extreme example of surcharges, the next example in Table 2.10 shows a 

30% surcharge for purchases of 200 or more at one time. 
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Table 2.10:  Forward Buying with Surcharge 

Calculated 
Value 25.00$        50.00$        75.00$        100.00$      Cum Dem. d Δd

A0 100.00$      Yes Yes Yes Yes 150 0% 0%
A1 43.08$        Yes 260 10% 10%
A2 35.29$        Yes 365 20% 10%
A3 27.72$        Yes 455 20% 0%  

 

Notice that the threshold to buy for period 1 has lowered significantly from the base case 

from $57.50 to $43.08.  Again, all additional forward buys are lowered as well.  In the 

base case it was possible to buy four periods ahead, while this surcharge example makes 

only three periods feasible (since the fourth period $22.04 threshold is not possible given 

the lowest possible price of $25 per unit).  Now for a current price to buy of $50, it does 

not make sense to buy beyond the current period.  The current price would have to be 

$43.08 or lower to recommend buying ahead one period.  

Table 2.11:  Parameter Levels 

Holding Cost % h  8% 14% 20% 

Plywood profit margin ε  14% 18% 22% 

Price Discount   -1% 0% 1% 2% 5% 

 We used the actual invoiced daily demand for plywood over four years.  To 

create a new test case, the number of selling days in a month were calculated; 

subsequently, the same number of random draws with replacement were performed to 

make a new possible sales month for the item.  Since every day had sales except 

weekends and holidays, we did not need to determine time between orders; we only 

needed to determine the quantity of each selling day per month.  Note that ordering costs 

were omitted, as they are insignificant compared to the material purchase costs.   
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Five methods were used for each test data set: 1) no forward buy or safety stock 

purchased, 2) safety stock using the normal newsvendor ratio, 3) Golabi’s (1985) method 

for forward buys, 4) Gavirneni’s (2004) newsvendor method for safety stock, and 5) our 

proposed method, called GOGA, which has forward buys and the newsvendor model for 

safety stock.  Each run included no volume discount, 1% volume surcharge, 1% volume 

discount, 2% volume discount, and 5% volume discount. 

 

2.7.1 Results 

For the 100 simulation runs of the wood product, the profits for each of the 

parameter settings for the five methods are shown below in Table 2.12 for a zero percent 

discount (effectively, a no volume discount scenario).  Note that the four year profit has 

been adjusted so that the lowest profit method shows $1000 and all other methods are 

scaled accordingly. 

Table 2.12:  Comparison of Buying Methods for Wood 

ε = 14% ε = 18% ε = 22%
h = 8% 1,000$              1,000$                 1,000$                 No forward buys/SS

1,264$              1,294$                 1,319$                 Newsvendor SS
1,287$              1,232$                 1,198$                 Golabi
1,454$              1,432$                 1,411$                 Gavirneni
1,564$              1,517$                1,508$                 GOGA

h = 18% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,207$              1,244$                 1,269$                 Newsvendor SS
1,099$              1,080$                 1,068$                 Golabi
1,318$              1,316$                 1,327$                 Gavirneni
1,373$              1,367$                1,369$                 GOGA

h = 20% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,165$              1,204$                 1,231$                 Newsvendor SS
1,000$              1,000$                 1,000$                 Golabi
1,232$              1,253$                1,269$                 Gavirneni
1,232$              1,253$                1,269$                 GOGA  
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For the highest holding cost (20%), it was not optimal to ever forward buy.  

Therefore, the GOGA and Gavirneni methods are equally effective.  For lower holding 

costs, the profit from our GOGA method was increased by using the forward buys from 

Golabi as one can see in Table 2.13 below. 

Table 2.13:  Profit % improvement over no FB/no SS 

 

 

 

 

 

The results above demonstrate that, by taking into account demand uncertainty, 

the normal newsvendor equation and Gavirneni’s modified newsvendor equation give 

additional profit beyond no safety stock.  Forward buying under Golabi is most beneficial 

when holding costs are lowest because these low holding costs allow more speculative 

stock to be purchased.  However, at the holding cost of 20%, no forward buying was 

done and thus Golabi’s methods are equal to the method with no forward buying and no 

safety stock.  Our GOGA method combines the modified newsvendor of Gavirneni to 

handle demand uncertainty with Golabi’s view of price uncertainty to forward buy.  

When the distribution of future prices is known, this information can be exploited for 

forward buys along with the demand uncertainty, thereby making the GOGA method 

superior for commodity forward buys in comparison to existing methods.  This base case 

is developed and the results are discussed in detail in Manikas, Chang and Ferguson 

(2006). 

Newsvendor Golabi Gavirneni GOGA
h = 8% 29.2% 23.9% 43.2% 53.0%
h = 18% 24.0% 8.2% 32.0% 37.0%
h = 20% 20.0% 0.0% 25.1% 25.1%

ε = 14% 21.2% 12.9% 33.5% 39.0%
ε = 18% 24.7% 10.4% 33.4% 37.9%
ε = 22% 27.3% 8.9% 33.6% 38.2%
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We now examine price discounts for volume purchases.  The threshold quantity 

was set to twice the average monthly invoiced sales over the four year data set from 

BlueLinx.  This amount allows forward buying and safety stock buying to be even more 

advantageous over buying the mean forecast every period.  Discounts are typically small 

for commodity purchases and they can be an immediate price break, year end rebate, or 

other more favorable terms.  Since immediate price breaks and favorable terms are easily 

translated into a single percent discount off the current purchase price, we focus on those 

price breaks here.  We first examine the case where, at a threshold, the price drops by 

1%.  If this threshold is met, all units purchased are at the discounted price.  There are no 

additional tiers of further discounting.  Table 2.14 below shows the improvement over no 

forward buying and no safety stock from the various methods with a 1% discount.  The 

results of holding and margin combinations are listed in the appendix B.  

Table 2.14:  Profit % improvement over no FB/no SS with 1% Discount 

 

 

 

 

We also consider the effects of a 2% discount and a 5% discount to meet the 

threshold purchase quantity in one period as shown in tables 2.15 and 2.16 respectively. 

Table 2.15:  Profit % improvement over no FB/no SS with 2% Discount 

 

 

 

Newsvendor Golabi Gavirneni GOGA
h = 8% 30.3% 26.3% 41.9% 53.8%
h = 18% 24.9% 9.0% 31.2% 36.7%
h = 20% 20.9% 0.0% 24.7% 24.7%

ε = 14% 22.3% 14.2% 32.1% 38.8%
ε = 18% 25.7% 11.4% 32.7% 38.0%
ε = 22% 28.1% 9.7% 33.1% 38.4%

Newsvendor Golabi Gavirneni GOGA
h = 8% 31.3% 32.1% 43.9% 57.6%
h = 18% 25.8% 9.7% 32.2% 38.2%
h = 20% 21.7% 0.0% 22.7% 22.7%

ε = 14% 23.4% 16.8% 32.3% 40.0%
ε = 18% 26.6% 13.5% 33.0% 39.0%
ε = 22% 28.8% 11.5% 33.5% 39.5%
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Table 2.16:  Profit % improvement over no FB/no SS with 5% Discount 

 

 

 

 

There is a possibility that exceeding a certain threshold will actually cause prices 

to increase.  Given the typical high capacity nature of mills it may allocate a certain 

volume of stock to the buyer, and any excess will have to be met by withholding stock 

from another customer.  It may also be the case that the excess quantity has to be bought 

from an alternative supply source, which is equivalent to a volume surcharge.  In table 

2.17, we show the results for a 1% surcharge for meeting the threshold. 

Table 2.17:  Profit % improvement over no FB/no SS with 1% Surcharge 

 

 

 

 

At quantities less than half the average monthly demand, the methods all take 

advantage of discounts and the results trend toward the base case with no discount as 

shown in Table 2.13.  Similarly, at thresholds greater than four times the average monthly 

demand, none of the methods trigger discounts and the results again trend toward the 

base case with no discount. 

Newsvendor Golabi Gavirneni GOGA
h = 8% 34.3% 40.8% 50.0% 69.0%
h = 18% 28.6% 11.8% 38.3% 45.8%
h = 20% 24.3% 0.0% 26.8% 26.8%

ε = 14% 26.8% 21.4% 39.2% 49.6%
ε = 18% 29.3% 17.0% 38.3% 46.5%
ε = 22% 31.2% 14.2% 37.7% 45.6%

Newsvendor Golabi Gavirneni GOGA
h = 8% 28.2% 21.5% 35.0% 51.5%
h = 18% 23.0% 7.5% 29.0% 33.0%
h = 20% 19.2% 0.0% 25.0% 25.0%

ε = 14% 20.1% 11.6% 27.8% 36.7%
ε = 18% 23.8% 9.4% 29.7% 36.3%
ε = 22% 26.5% 8.0% 31.5% 36.5%
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 The GOGA method performs as well as or better than the other methods tested 

here for a wide range of profit margins and holding costs, even in the presence of volume 

price discounts or surcharges.  In all situations, the new GOGA heuristic is likely to 

increase profits of plywood buying and selling.   

 

2.7.2 Conclusions and Discussion 

 Given the fluctuating prices of commodities, forward buys and safety stock make 

sense in certain situations.  Golabi’s method works well to determine the number of 

periods to forward buy given current and expected future prices.  However, the quantity 

to procure in the current period should not be the point forecast but rather it should 

include safety stock based upon the holding costs and price differential in the current 

period versus expected price.  By utilizing both Gavirneni’s application of the 

newsvendor equation to the normal distribution and Golabi’s price thresholds for forward 

buys, our GOGA heuristic achieves better results overall than either of those methods 

alone achieves.   

 Forward buys as outlined in Golabi’s method clearly increases profits over not 

doing so, as shown in the Tables 2.8-2.12.  However, as holding costs increase and profit 

margins decrease, this benefit is reduced or nullified.  The modified newsvendor equation 

of Gavirneni provides advantages over buying no safety stock.  Tables 2.8-2.12 show that 

over the range of price discounts, holding costs, and profit margins tested, using 

Gavirneni’s modified newsvendor formula is advantageous to total profit.  Our GOGA 

method combines aspects of these two methods for maximum profit improvement.   
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2.8 Equation for the GOGA Heuristic 

The maximum number of periods to forward buy j, is obtained from solving the equation 

below.  Note that unlike the cost distribution in Golabi (1985), we are using the data note 

(Manikas, 2007) to predict the point cost CJ.   

 

Max j :      0≥j      (12) 

 

Once the number of periods to forward buy is calculated, the order up to level y can be 

determined using the following equation: 
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CHAPTER 3 

PRACTICAL COORDINATION MECHANISMS FOR ASSEMBLE-

TO-ORDER SUPPLY CHAINS 

 

3.1 Introduction and Literature 

 An Assemble-To-Order (ATO) system is where an assembler packages a number 

of components from different suppliers into final products and sells them to end-

customers. Such systems are very common in the business world and can be found in the 

fashion industry (e.g. perfume gift sets), in high technology manufacturing (e.g. 

computers and printers), and in the service industry (e.g. all-inclusive travel packages). 

Due to the presence of many stakeholders each with their localized objectives, these 

systems are very difficult to manage. Fugate et al. (2006) note that often in business each 

supply chain member attempts to myopically optimize without consideration of the full 

system.  Maximum efficiency can be achieved if a central decision maker decides all 

quantities, but many participants are unwilling to give up control of their organizations. 

As a result, many of these systems are run in a decentralized manner and that results in a 

significant loss in overall efficiency. To overcome this inefficiency it is necessary to 

identify mechanisms that give the participants control over their local entity while at the 

same time enable them to make decisions that achieve centralized efficiency. Such 

mechanisms, when they can be clearly identified, are called supply chain coordination 

contracts (Cachon (2003)). 

 The inefficiency caused by decentralized control was observed by Pasternack 

(1985) and he proposed a coordination mechanism that provides partial credit for unsold 
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goods at the retailer. Since then a number of authors have identified other contracts that 

can achieve coordination in supply chains. Examples of these coordinating contracts are 

buy-back contracts (He et al. (2006)), revenue sharing contracts (Dana and Spier (2001), 

Cachon and Lariviere (2005)), and mid-term returns (Taylor (2001)).  However, revenue 

sharing as a coordination mechanism has a downside because it allows a retailer to 

“cheat” (Wang et al. ( 2004)) or to give less sales effort (Cachon and Lariviere (2005)).   

All these contracts were developed with a two-stage serial system (similar to the one in 

Bollapragada et. al. (2004)) as the basic supply chain setting.      

The literature on coordination contracts for ATO systems is rather sparse. 

Gerchak and Wang (2004) noticed that a revenue sharing contract does not coordinate a 

three member (2 suppliers, 1 retailer) ATO supply chain. They propose a subsidy 

mechanism by which the retailer helps the two suppliers with the excess inventory at their 

locations. In their system, the retailer does not face any uncertainty and is clearly the 

profit leader of the supply chain. As will become apparent later, that is not true in the 

setting we consider.  Bernstein and DeCroix (2006) analyze a three player ATO supply 

chain in a multi-period setting, establish the effectiveness of a mechanism in which 

subsidies flow from the retailer to the suppliers, and transfer payments flow from the 

suppliers to the retailer. In our setting the subsidies can flow in either direction (i.e. from 

the retailer to a supplier or from a supplier to the retailer) or concurrently in both 

directions.  Gurnani and Gerchak (2007) propose a penalty mechanism for each supplier 

proportional to the amount deficient to the needs of the assembler firm.  We utilize a 

reward rather than penalty structure that allows each supplier to gain additional expected 

profit. In addition, our model allows the assembler to be rewarded; i.e. we do not a priori 
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assume that the power lies solely with either the retailer (assembler) or the supplier 

echelon. 

 Our paper extends the existing literature on coordination contracts for ATO 

supply chains in many aspects. We consider a generic n-supplier, 1-retailer supply chain 

while most of the existing ATO literature has focused on a 2-supplier, 1-retailer setting. 

We model the fact that the retailer also faces uncertainty and has to make a capacity 

acquisition decision at the same time when the suppliers are making their production 

decisions.  With the retailer capacity acquired, assembly requires an insignificant lead 

time and can be initiated upon demand realization (as done in Wang and Gerchak 

(2003)).  There is no presumed profit leader in our model and any of the suppliers or the 

retailer could be the profit leader. For this type of supply chain, in order to achieve 

coordination, we propose a salvage manipulation mechanism by which the lower risk 

participants support the higher risk participants by promising additional salvage value for 

their leftover inventories or capacity.  We provide a simple computational mechanism to 

obtain the exact magnitudes of the salvage manipulation flows across the supply chain.  

We show that these supplemental salvage values can flow in either direction and in some 

cases in both directions.  We extend our salvage manipulation options to include transfer 

pricing to prevent firms deviating from the optimal solution for the supply chain (as done 

in Cachon and Zipkin (1999)). 

3.2  Model and Notation 

 We investigate a supply chain with a single retailer that assembles the finished 

good (kit) upon realized customer demand which is only known in distribution when the 

production decisions (at the suppliers) and the capacity acquisition decision (at the 
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retailer) are made at the beginning of the period.  Components (without loss of generality 

one each) from n suppliers comprise the finished good.  The product and the components 

in the supply chain have a single selling period and must be salvaged at a reduced price at 

the end of the season.  While at first the single period assumption appears to be very 

restrictive, it is valid for many products that have a well-defined selling season (e.g. 

travel packages, holiday perfume sets, and any seasonal products) and whose production 

has significant lead-time enabling only a single production decision.  We assume (as was 

done in Barnes-Schuster et al. (2002)) that a single product is sold to consumers at a fixed 

market price that is exogenously specified for a single selling season.  Fixed prices are 

common for catalog goods where the price has to be published and is not easily altered 

during the selling season (Emmons and Gilbert (1998)).  The retailer has to make a 

capacity acquisition decision at the beginning of the season (concurrent with when the 

suppliers are making their production decisions) and due to the demand uncertainty, the 

acquired capacity may not be enough or some of it may go unused.  

3.2.1 Sequence of Events  

  The sequence of events for the supply chain members is as follows:   

Before Selling Season: 

1. The forecasted demand distribution is viewed by all members. 

2. The retailer decides how much assembly capacity to buy and acquires it.  

Concurrently with the retailer’s decision, each supplier determines his or her 

production quantity, makes the components and stocks them. 

During Selling Season: 

3. Actual end customer demand x is realized at the retailer. 
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4. Retailer uses components from each supplier to assemble finished goods, sell 

them, collect revenue, and pays suppliers for the components used. 

5. Salvage values, if any, are recovered at the suppliers and at the retailer.   

3.2.2 Assumptions 

 We assume (as was done in much of existing literature (e.g. Rao et al. (2005)) that 

the production costs, selling prices, and salvage values for all the components and the 

final product are exogenously given and known to all participants in the supply chain.    

We also follow their assumption that the unmet demand is lost.  The customer demand 

distribution parameters are known at the beginning of the season by the retailer and all 

suppliers. We further assume that, for each of the suppliers, the wholesale selling price to 

the retailer must be greater than the production cost to ensure selling is profitable.  

Additionally, the salvage value at each supplier must be less than his or her respective 

cost to produce the component or there is no penalty for over-production.  We use the 

features of capacity decision, delayed final assembly, and no finished goods held at the 

retailer similar to that done in Anderson, Morrice and Lundeen (2006).  The capacity 

acquisition cost and its salvage value at the retailer are known to all the participants. In 

addition, the salvage value must be less than the cost to acquire that capacity in order to 

induce a risk of over-acquisition by the retailer.  The component suppliers own and 

manage their component inventory, and the retailer assembles components into finished 

goods as demand arrives.  This is similar to the Vendor Managed Consignment Inventory 

(VMCI) strategy proposed by Fang et al. (2007). It is assumed, without loss of generality, 

that the final product requires one component from each of the n suppliers.   

3.2.3 Notation 
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The following notation is used to model our problems.  

i Index, for the suppliers (i=1, …n), and for the retailer (i=0) 

x Random variable for final product demand from end customers 

μ Mean of demand x 

f(x) probability density or mass function of demand x 

F(x) CDF of demand x 

qc The centralized quantity 

qi The make to stock quantity at supplier i (i=1,..,n), and the assembly capacity at 

 the retailer (i=0) 

m The minimum quantity from all players, i.e. minimum of qi, i=0,..,n 

ci The cost to produce one unit at supplier i (i=1,..,n) and the cost to acquire one unit 

 of assembly capacity at the retailer (i=0) 

p The selling price of the final product by the retailer 

wi The selling price of one component from supplier i to the retailer 

si The salvage value for one unsold unit at supplier i (i=1,..,n) and the salvage value 

 of one unit of unused capacity at the retailer (i=0) 

)( cqγ  The loss function (i.e. expected shortage) in the centralized control case if the 

 demand x is more than the production quantity qc, where 

)( iqγ  The loss function for player i (i=0,…,n) in the decentralized control case 

δi The salvage manipulation from the retailer to supplier i (i=1,..,n) 

Based on our discussion above, all the costs must be non-negative and satisfy the 

following conditions in order to make sense in a business context.  Salvage values may be 

positive or negative (in the case of disposal costs). 

∫
∞

−=
cq

cc dxxfqxq )()()(γ
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     0>>> ii cwp     (1) 

The retailer must stand to make a profit above his capacity acquisition cost and the 

components’ costs to be in the business.       

     ∑
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+>
n

i
iwcp
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0      (2) 

3.3 Centralized and Decentralized Supply Chain Operation  

 In this section, we determine the optimal inventory control policies when this 

supply chain is operated under centralized control and then under decentralized control. 

First, we deal with the centralized decision making environment. 

3.3.1 Centralized Control Case 

 Solving the centralized case enables us to determine the maximum expected 

supply chain profit that we use as a baseline for evaluating the performance of the 

decentralized supply chain. When a single entity owns or controls (as in vertical 

integration) all suppliers and the retailer/assembler, double marginalization (Spengler 

(1950)) can be eliminated.   The company decides on a single quantity to stock at each 

supplier and the retailer also will acquire this amount of assembly capacity. 

Proposition 3.1: The total supply chain profit is maximized when all players select the 

same quantity. 

Proof: By contradiction. Assume that {q0, q1,…,qn} with qi≠qj, for some pair i,j be an 

optimal solution. Let m be the minimum of {q0, q1,…,qn}. Consider an alternate solution 

in which every player in the supply chain acquired only m units. The total revenue 

associated with the new solution would be no different from the revenue associated with 

the original solution since only m units of final product can be produced. However, the 

total cost associated with the new solution is lower than that associated with the original 
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solution where there are excess units for some players. Thus either (i) the solution in 

which every player orders m units is an alternate optimal solution; or (ii) the original 

solution was not optimal implying a contradiction.            □ 

 The total expected centralized profit of the centralized supply chain, ][ CE Π , can 

be computed as follows: 

 ∫ ∫∑∑
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The terms in (3) above represent the component production costs, the capacity acquisition 

cost at the retailer, the capacity and component salvage value, the retailer revenue when 

demand is less than qc, and the retailer revenue when demand is greater than or equal to 

qc.  We can rewrite (3) as: 
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Recall that μ is the average demand and ∫
∞
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cq

cc dxxfqxq )()()(γ , and therefore, the total 

expected supply chain profit becomes  
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We take its first derivative and set it to zero to give the critical fractile shown below, 

where *
cq  is the optimal order quantity for the centralized system and )( *

cqF  is its 

corresponding CDF of the demand.   
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Solving (6) gives the critical fractile: 
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The ratio in (7) is always less than 100% given the conditions in (1).  Figure 3.1 below 

shows an example of the centralized control supply chain.  

 

 

 

 

 

 

 

Figure 3.1:  The Centralized Solution for an ATO with 1 Retailer and 2 Suppliers (n=2). 

For this supply chain, if the demand is uniformly distributed between 0 and 99, the total 

expected profit will be $1011.20 given the values for p, ci, and si as shown in Figure 3.1. 

 In the expected profit function in (5), we use the subscript C to denote centralized 

control. Subsequently, we will use D to denote the decentralized case, and M to denote 

the salvage manipulation coordinated case.  For a standardized uniform demand 

distribution (without loss of generality) over the range [0, 1], we know the probability 

density function is 1
01

1)( =
−

=xf  and μ =1/2.  Using this probability density function 

in (5) with the loss function 2)1(
2
1)( cc qq −=γ  gives the expression below. 
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c 1 5.00$       
s 1 4.00$       

c 2 4.00$       
s 2 1.00$       

p 40.00$     
c 1 +c 2 9.00$      

c 0 5.00$      
s 0 +s 1 +s 2 7.00$      

ratio 79%

Supplier 1 Supplier 2

Retailer
(Assembler)

1 1

Supplier 1 Supplier 2

Retailer
(Assembler)

1 1
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For brevity, the equivalent expressions for exponential and normal demands have been 

omitted. We provide the profit function for the uniform distribution here because that is 

the distribution we use in most of our examples. However, it is worth noting that all our 

results are established without any assumption on the demand distribution. 

3.3.2 Decentralized Case 

 We now look at the case where all the suppliers and the retailer act independently 

in an attempt to maximize their local profits without implicit or explicit agreements 

amongst them.  The retailer’s objective is to maximize his profit (denoted by the 

following equation) by selecting the capacity to acquire ( 0q ) with known values for all 

other variables except demand (assuming niqqi ,..,1,0 =≥ ).  
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Taking the first derivative of the above profit function with respect to q0 and setting it 

equal to zero allows us to solve for the critical fractile and hence the optimal capacity *
0q  

to maximize his expected profit. 
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Solving (10) gives the critical fractile: 
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Proposition 3.2: The centralized critical fractile is greater than the decentralized 

retailer’s local critical fractile if ( ) ( ) ∑∑∑∑∑∑
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Proof: It is easy to prove the condition by setting (7)>(11) given the assumptions in (1) 

hold.                      □ 

 For the decentralized supply chain, the suppliers need to decide on their 

production quantity prior to the selling season for the retailer.  The retailer will only pay 

for the units it needs once the demand is realized.  The supplier may get a salvage value 

( )ii cs <  for each unsold unit at the end of the selling season.  Assuming that the retailer 

has sufficient capacity to use any quantity that each supplier produces, the supplier i’s 

expected profit is shown below (assuming jiqq ij ≠≥ , ): 
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Again, taking the first derivative of (12) above with respect to qi and setting it equal to 

zero allows us to solve for the critical fractile and hence the optimal production quantity 

*
iq for each supplier in the decentralized situation. 
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Solving (13) gives the critical fractile: 
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i sw

cwqF
−
−

=)( *      (14) 

Similarly, the ratio in (14) is always less than 100% given the conditions in (1).  

However, if ci is close enough to si, the ratio will be close to 100%.  The ratio in (14) may 

be more or less than the ratio in (7).  That is, depending on the values of the parameters, 

each supplier may have a higher or lower ratio or production quantity under decentralized 

decision making than under centralized control.  The following proposition shows the 
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condition that the decentralized supplier’s critical fractile is greater than the centralized 

supplier’s critical fractile. 

Proposition 3.3: Supplier i’s local critical fractile is higher than the centralized critical 

fractile if ( ) ( ) ⎟
⎠

⎞
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Proof:  Again the proof is straightforward by setting (14)>(7) given the assumptions in 

(1) hold.                                                                                                                               □ 

Provided that the retailer makes it quantity decision *
0q  based on (11) and each supplier 

makes its quantity decision *
iq  based on (14), the final quantity of finished product the 

retailer can make will be the minimum of those, denoted as m.  It is worth mentioning 

here that we also analyzed the case in which the participants did not know the costs 

present at the other participants. The performance of the decentralized supply chain is 

much worse in that setting and as a result, the benefits of our proposed mechanism will 

be much more pronounced. By making an assumption of common knowledge of cost 

parameters, we are only estimating a lower bound on the performance of the salvage 

manipulation mechanism.  This lower bound of the total expected profit for the 

decentralized supply chain can be expressed as follows: 
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The total expected decentralized supply chain profit can be rewritten as below, where 
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 We will now find the expected supply chain profit for the demand distribution 

that is uniform [0, 1], 2)1(
2
1)(,

2
1 mm −== γμ .  The profit equation becomes: 
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Figure 3.2 shows the same supply chain as in Figure 3.1, but under decentralized 

decision-making.  Even though Supplier 1 has a ratio of 88%, no more components can 

be sold than the quantity corresponding to 40% on the CDF of demand since Supplier 1’s 

components must be mated with those of Supplier 2. 

 

 

 

 

 

 

  

Figure 3.2:  The Representative Supply Chain Under Decentralized Control. 

 Given uniform demand [0,99], using (16) gives ][ DE Π =$769.40.  This expected 

profit is under the assumption that each player in the supply chain is rational and will 

maximize his/her expected profit with full knowledge of the other player’s information 

(as done in Cachon and Lariviere (2001)).  

 However, if the cost information regarding other players was not known or not 

utilized during decentralized quantity decision-making, the ][ DE Π =$586.40 from (9) 

and (12) where mqi ≠ for every i.  The loss of total supply chain profit is the value of 

w 1 12.00$         
c 1 5.00$           
s 1 4.00$           

ratio 88%

w 2 6.00$            
c 2 4.00$            
s 2 1.00$            

ratio 40%

p 40.00$          
w=w 1 +w 2 18.00$         

c 0 5.00$           
s 0 2.00$           

ratio 85%

Supplier 1 Supplier 2

Retailer
(Assembler)

1 1

Supplier 1 Supplier 2

Retailer
(Assembler)

1 1
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information.  Using all known information, the profit is better than ignoring information, 

however it is still less than the expected profit under centralized control.  

Proposition 3.4: E[ΠD] ≤ E[ΠC].  

Proof: We can prove this in two steps: 

(i). There is at least one critical ratio in (11) or (14) less than or equal to the critical ratio 

in (7).  This can then be translated to m≤qc. 

(ii). The profit functions in (5) and (17) are concave. 

We can prove (i) by contradiction. 

Let us assume that all ratios in (11) and (14) are greater than that in (7).  Let a0, 

a1,…, an, b0, b1,…, bn and x and y be positive numbers.  If ai/bi>x/y for i=0, …,n, it is 

relatively straightforward to prove that (a0+a1+…+an)/(b0+b1+…+bn)>x/y by simple 

algebraic manipulations.  However, if we perform similar operation for all numerators 

and denominators in (11) and (14) for all i=0, …, n, it will be exactly equivalent to the 

ratio in (7).  That is a direct violation of (a0+a1+…+an)/(b0+b1+…+bn)>x/y.  Hence, we 

can not have all ratios in (11) and (14) are greater than that in (7).  That is, there is at least 

one qi≤qc, and therefore m≤qc. 

For (ii), we can take the second derivative in (6) and prove that it is less than 0.  

Therefore, both the profit functions in (5) and (17) are concave. 

Combining (i) and (ii), we can conclude that E[ΠD] ≤ E[ΠC].  

                                                         □ 

3.4 Coordinated Decentralized Supply Chain 

 It is not realistic to assume that all players will be owned and controlled by one 

entity. It is most commonly the case that they remain decentralized decision makers each 
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with their local profit function.  However, the decentralized expected profit has been 

shown to be no more than the expected profit under centralized control.  It would be 

desirable to have a mechanism that enables all the decision makers to optimize their local 

profit functions and yet make decisions that lead to globalized efficiency. This is the 

concept of supply chain coordination and we achieve that here with a method we call 

salvage manipulation. 

 The inefficiency in the system is mainly due to the disparity of different 

profitabilities associated with each of the participants. If all of them had the same 

profitability, the localized critical fractiles would be equal to the globalized critical 

fractile and the decentralized supply chain would have the same total profit as the 

centralized supply chain.  One way to overcome this disparity would be for the more 

profitable participants to support the less profitable ones and do so in a way that enables 

every one in the supply chain to order exactly the same quantity as in the centralized 

solution. We achieve this by proposing a salvage manipulation scheme in which the more 

profitable participants promise to help with salvage of leftover (if any) inventories or 

capacity at the less profitable participants. Let us denote by δi the additional (to the 

salvage value that was already available to him/her) salvage value that the retailer 

promises to supplier i for the leftover inventory at his/her location. Notice that δi can be 

either positive or negative. If it is positive, that means the retailer is more profitable than 

supplier i and if it is negative, it means that supplier i is more profitable than the retailer.   

For the coordinated case, the expected profit for supplier i is:   
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Taking the first derivative with respect to qi and setting it equal to zero gives: 
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Solving (19) for the supplier i’s fractile and setting it equal to the centralized fractile in 

(7), we can find the salvage manipulation (δi) for supplier i from the following equality. 
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The expected profit for the retailer is:      
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Taking the first derivative of (21) with respect to m and setting it to zero gives: 
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Solving the critical ratio in (22) and setting it equal to the critical ratio from the 

centralized control case as the right hand side of the formulation, we get the following 

equality.   

   
∑

∑

∑∑

∑

=

=

==

=

−

−
=

−+−

−−

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

sp

cp

swp

cwp

0

0

0
11

0
1

δ
    (23) 

The retailer has an additional overage cost of ∑
=

n

i
i

1
δ .  If the sum of salvage manipulations 

is negative, the retailer is being offered the salvage manipulation against his capacity cost 

c0 by one or more of the suppliers.   

Solving n equation (20) allows us to calculate the salvage manipulation that the retailer 

promises to each supplier i: 
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According to conditions in (1) and (2), the denominator of the above equation will be 

non-zero.  Therefore, we are assured that the salvage manipulation will never be 

undefined. In addition, this salvage manipulation calculation is independent of the 

demand distribution. 

Proposition 3.5:  If the iδ ’s are chosen such that the retailer and all the suppliers have 

the same critical ratio, then that common ratio is equal to the centralized ratio. 

Proof:  Let iδ ’s be defined such that for some θ, 
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From (25) above, we get iiiii swcw θδθθ −−=−        (27) 

Summing up over i, we get the expression for the n suppliers: 
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From (26) above, we get 
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Adding (28) and (29) on both sides we get 
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Leading us to : 
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           □ 

The total expected supply chain profit is: 
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Similar to the decentralized control case in section 3.2, the expected total supply chain 

profit for normal, uniform and exponential can be determined.  The profit under 

coordination in (31) is identical to that of (5) in the decentralized case with cqm = .   

Proposition 3.6: ][][ CM EE Π=Π . The proposed salvage manipulation mechanism 

coordinates the supply chain and improves the overall expected profit.  

Proof:  As proved in Proposition 3.5, the common ratio after the salvage manipulation is 

equal to the centralized ratio in (7).  That implies that cqm =  and the expected profit in 

(31) is equal to that in (5).        □ 
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Figure 3.3:  Results of Salvage Manipulation for the Previous Supply Chain. 

 Figure 3.3 illustrates a savage manipulation result for the previous example.  The 

manipulations are obtained from (24).  Given uniform demand [0,99], ][ ME Π =$1011.20 

from (31) using salvage manipulations and it is identical to the profit under centralized 

control.  Recall that in Figure 3.2, the retailer had a ratio of 85%, supplier 1 had a ratio of 

88% and supplier 2 had a ratio of 40%.  To coordinate this supply chain for maximum 

efficiency, each player needs to select the same ratio as under the centralized control 

case.  Since supplier 1 has a ratio higher than the centralized ratio, he offers salvage 

manipulation of $0.88 to the retailer for any unsold capacity.  Supplier 2 originally had a 

ratio of 40%, and therefore the retailer offers supplier 2 a salvage manipulation of $2.46 

to offset the cost of his leftover units.  Notice that the retailer in this example is receiving 

salvage manipulation as well as giving salvage manipulation.  The retailer’s net salvage 

manipulation is a promise to pay out $1.58 to the suppliers for every unit of leftover 

inventory.   

 We can examine the salvage manipulation equation for each retailer-supplier 

relationship to determine what happens to the amount of salvage manipulation flow to 

w 1 12.00$          
c 1 5.00$            
s 1 4.00$            
δ 1 (0.88)$          

ratio 79%

w 2 6.00$            
c 2 4.00$            
s 2 1.00$            
δ 2 2.46$            

ratio 79%

p 40.00$          
w=w 1 +w 2 18.00$         

c 0 5.00$           
s 0 2.00$           

δ 1 +δ 2 1.58$           
ratio 79%

Supplier 1 Supplier 2

Retailer
(Assembler)

1 1

Supplier 1 Supplier 2

Retailer
(Assembler)

1 1
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supplier i when the parameters change.  The effects that parameters have on the salvage 

manipulation from the retailer to a supplier are shown in Table 3.1.  For example, δi will 

increase when retailer final price p increases or supplier component production cost ci 

increases; δi will decrease when supplier selling price wi increases or supplier salvage 

value si increases. 

Table 3.1:  Parameter Effects on a Salvage Manipulation 

 

 

 

 

Recall that a negative salvage manipulation δi signifies that a promise is made by supplier 

i against unused capacity at the retailer, while a positive value denotes that a promise is 

made by the retailer toward unsold inventory at supplier i.   

3.4.1 Participation Options 

 We have proved that the salvage manipulation can enhance and coordinate the 

overall expected profit for the entire decentralized supply chain.  However, there are four 

options for firms in the supply chain to participate in the salvage manipulation 

mechanism to ensure that all players will do at least as well as they would under the 

decentralized case.  These options are described and discussed below. 

1) “Minimum”Option - No Salvage Manipulation: 

This option is where the players are not willing to participate in coordination.  

There are no practical implementation issues with this option since it is the default 

decentralized control result.  We now determine conditions under which this may happen.  
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Define y as the difference between the centralized quantity and a decentralized quantity:  
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The following proposition describes the condition when a participant will gain benefit by 

using the salvage manipulation. 

Proposition 3.7: As compared to non-coordinated decentralized case, the retailer’s 

expected profit increases via the salvage manipulation if:  
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and supplier i’s expected profit increases via salvage manipulation if: 
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Proof: The left-hand-side (LHS) of (21) will increase as long as (33) holds.  Similarly, 

the LHS of (18) will increase as long as (34) holds.            □ 

 When one or more of these inequalities are not satisfied, there could be a subset of 

supply chain participants who would be unwilling to sacrifice their expected profits in 

order to increase total expected supply chain profit.  In such a case, the rational choice is 

not to use salvage manipulation and everyone realizes the same expected profit as in the 

decentralized setting.  When one player’s critical ratio is at an extreme value, this 

scenario can arise.  Table 3.2 shows the situation where the retailer, a department store, 

has very low risk (high ratio) compared to the risks of the suppliers.  The perfume 

manufacturer and body lotion supplier both own the items and assume all risk for 

unsold/unused items.  It takes a bottle of perfume and one body lotion to make a bundle 
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for the customer.  Assume that p=400, c0=5, w1=150, c1=40, w2=70, c2=20 and all other 

parameters are zero.  In this situation, the department store may not sacrifice its profit by 

offering the full salvage manipulation. 

Table 3.2:  Minimum Participation as the Only Option for the Retailer. 

Minimum Full
Ratio Profit Profit Profit

Dept. Store 84% 13,860.00$  7,824.20$    7,240.30$  
Perfume 3,976.00$    4,551.04$    
Body lotion 1,760.80$    2,068.66$    

13,860.00$ 13,561.00$ 13,860.00$ 

Centralized

 

2)  “Full” Option - Everyone is better off:  

With this option, each player uses the full salvage manipulation to achieve the 

optimal total expected supply chain profits.  For n suppliers, n salvage manipulation 

agreements are constructed.  If salvage manipulation increases the expected profit of all 

players while coordinating the supply chain this option makes perfect sense.  There are a 

wide range of parameters where this occurs.  Table 3.3 below uses the scenario depicted 

in Figure 3.3 to show the centralized control option versus the Full and Minimum 

options.  In this case the full salvage manipulation benefits all participants. 

Table 3.3:  Comparison of Centralized versus Minimum and Full Option Profits.  

Minimum Full
Ratio Profit Profit Profit

Dept. Store 79% 1,011.20$    516.00$       661.17$       
Perfume 214.40$       272.25$       
Body lotion 39.00$         77.78$         

1,011.20$   769.40$      1,011.20$   

Centralized

 

3) “Partial” Option - Use Partial Salvage Manipulation:  

 With this option, the players may choose to use partial manipulation to achieve 

coordination effect.  When one or more of the inequalities in proposition 3.7 are not 

satisfied, it may be possible to identify a salvage manipulation mechanism that achieves 
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partial coordination without diminishing the profit of any firm.  Unfortunately, there is no 

shortcut to compute the magnitudes of salvage manipulation.  Rather, an appropriate 

method to find the optimal salvage manipulation is via line search starting at m+1 and 

going up to qc in reasonable increments.  

 Figure 3.4 below shows that the department store can increase his profit via the 

Partial option.  The department store is willing to participate in partial salvage 

manipulation to make the perfume supplier’s ratio between 51% and 57% because the 

department store would be no worse off than the Minimum option in this range.  The 

department store maximizes his expected profit by promising salvage manipulation to 

where the perfume supplier’s ratio is 55% (marked by the vertical dashed line in Figure 

3.4 below).  This situation is probably more suitable when there is a “power retailer” 

(Raju and Zhang (2005)). 

 

 

 

 

 

 

 

 

Figure 3.4:  Expected Profit for Each Player as Salvage Manipulation is Applied. 

It must be stressed that although the Partial option is always to the benefit of any player 

that had a decentralized ratio above the centralized ratio, the simplicity of using the Full 
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option can outweigh the minor profit improvement for the single player.  Furthermore, 

only under the Full option is the total supply chain profit equivalent to the centralized 

supply chain profit.  Figure 3.5 below shows the critical ratios for each player as salvage 

manipulation is applied to achieve the expected profit curves shown in Figure 3.4.   

 

 

 

 

 

 

 

Figure 3.5:  Critical Ratios for Each Player as Salvage Manipulation is Applied. 

The low risk participant can choose any point along the x-axis as long as his/her profits 

are not hurt. In this example, it so happens that he/she will choose the lowest critical ratio 

of 0.55 as shown in Figure 3.4. In fact, we can show that the low-risk player never 

maximizes his/her profits by choosing the salvage manipulation that sets the minimum 

critical ratio to the centralized critical ratio.  The following proposition describes this 

situation. 

Proposition 3.8: The expected profit of the highest ratio player is maximized at a 

quantity less than the centralized control quantity when salvage manipulation is promised 

to lower ratio players. 

Proof: Either (i) the quantity corresponding to the centralized critical fractile corresponds 

to the optimal profit for the highest ratio player providing salvage manipulation; or (ii) a 
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quantity corresponding to a fractile smaller than the centralized control fractile 

maximizes expected profit for the highest ratio player.  Since the expected profit function 

is concave, the slope must be zero at its maximum point.   We examine the slope at the 

quantity corresponding to the centralized control ratio where (i) the retailer has the 

highest ratio, (ii) one or more suppliers has the highest ratio.  

For (i), a power retailer provides salvage manipulation to the supplier(s).  By definition 

∑
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>
n

i
i

1
0δ  if the retailer has a localized critical fractile higher than the centralized control 

critical fractile.  Substituting optimal centralized critical ratio from (7) into the 

coordinated retailer’s first order equation in (23) gives (35) below: 
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The first term (-c0) dominates the final term since c0>s0 and the ratio in the final bracket 

is at most 1.  The middle terms are composed of a positive term multiplied by a negative 

term.  Therefore, the slope of the retailer’s expected profit function is negative at the 

quantity corresponding to the centralized control ratio.  There must exist a ratio smaller 

than the centralized ratio where the retailer’s expected function is maximized. 

 (ii)  Let there be a single supplier (without loss of generality) with the highest ratio 

denoted as supplier i.  Substituting (7) into the coordinated supplier’s first order equation 

in (19) gives (36) below: 
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The first term is clearly negative.  Furthermore, since ci>si and the critical ratio in 

brackets is at most 1, we know that the first term dominates the second term.  By 

definition, δi is negative when the supplier has the highest ratio.  wi is positive, but it is 

multiplied by a negative term in the final bracket.  We know that the slope equation 

shown in (36) is always negative.   Therefore, the supplier with the highest local ratio will 

always have a maximum expected profit at a quantity corresponding to a ratio less than 

the centralized control ratio.                                                                                                □ 

 We simulated 10,000 problems where the parameters p, c0, c1, c2, w1, w2, s0, s1, 

and s2 were randomly generated ensuring that the retailer’s ratio was higher than the 

centralized ratio (power retailer).  Specifically, salvage value was ~U(0,9) (Uniform from 

0 to 9), component cost was ~U(1+si, 51+si), component price was ~U(1+ci, 51+si).  

Retailer capacity salvage was ~U(0,4) and capacity cost was ~U(1+s0, 11+s0).  Selling 

price was ~U(1+c0+w1+w2, 101+c0+w1+w2).  Demand was distributed uniformly from 0 

to 99.  For the retailer, using Full salvage manipulation achieved 93.34% of the optimal 

profit under Minimum or Partial options for each test case.  If the Minimum option is not 

the best option, the Full option achieved 94.46% of the profits as under the Partial option.  

Note that the Minimum option was the best option in 19.89% of the cases. 

4) “Transfer Payment” option – Use post coordination side payments: 

 With this option, transfer payments will be made in order to take advantage of 

coordination via the full salvage manipulation.  If transfer payment agreements can be 

made such that all players are no worse off than using either the Minimum or Partial 

option, the Full option can be used to achieve this coordination. An increase or decrease 

in realized profit would be split amongst the players, effectively sharing both risk and 
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reward. This option can be illustrated by modifying our department store problem 

parameters.  Let p=250, c0=5, s0=0, w1=100, c1=50, s1=0, w2=70, c2=30, s2=0.  Therefore, 

the salvage manipulations needed to fully coordinated the supply chain are δ1=24.24, 

δ2=9.39.  There are infinite combinations of percentage splits among players for the 

Transfer Payment option.  An equitable split would be to agree on splitting the realized 

profit according the percentage of expected profit for each player under the decentralized 

setting.  This option requires two contracts per supplier/retailer relationship and therefore 

is more complicated in practice.  In addition to salvage manipulation, players may 

provide a side payment according to prearranged profit margin values (e.g. split in 

relation to the share of expected profit under the Minimum option).   

 Table 3.4 below shows the expected profits under the Minimum, Full, Partial, and 

Transfer Payment options.  In this example, we chose to have the perfume and body 

lotion suppliers make up the expected profit difference (coordinated minus partial option) 

for the department store in proportion to their respective percentage profit improvements 

from Full coordination.  A transfer payment agreement will work provided that no player 

is worse off after transfer payments than if they did not participate.   

Table 3.4:  Comparison of the Participation Options. 

Minimum Full Partial (55%)
Ratio Profit Profit Profit Profit Amount Profit

Dept. Store 66% 5,362.50$    2,730.00$    2,437.50$  2,764.63$       327.13$   2,764.63$    
Perfume 1,225.00$    1,625.00$    1,312.27$       (215.91)$ 1,409.09$    
Body lotion 1,107.50$    1,300.00$    1,120.50$       (111.22)$ 1,188.78$    

5,362.50$    5,062.50$   5,362.50$   5,197.40$      0.00$      5,362.50$   

Transfer PaymentCentralized

 

3.5 Conclusion and Discussion 

 Centralized control of an ATO supply chain results in the highest overall expected 

profit for the n-supplier and one assembler supply chain.  However, it is typically not 
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practical or not feasible to have a single company that owns or controls the entire supply 

chain.  Therefore, a decentralized supply chain is the business setting in which the retailer 

and suppliers have to operate.  With each player acting independently, we have shown 

that the expected profits of the total supply chain may be reduced due to asymmetries in 

the critical ratios amongst the players even with perfect information availability.   

 We have introduced a new coordinating mechanism called salvage manipulation 

that allows the supply chain to obtain the same expected profit as under centralized 

control.  Salvage manipulation is a promise from the low risk participants to offset costs 

of overage at the high risk members, but do not result in cash flow if demand is not less 

than the decision quantity.  It is possible that a full application of salvage manipulation 

makes one or more players worse off than under decentralized control.  If this is the case, 

players may choose partial salvage manipulation, decentralized quantities (Minimum 

option), or a contract involving transfer payments.  These options offer the supply chain 

participants to consider when and how to take advantage of the salvage manipulation.  

 Our contribution comes from allowing risk at any player in the supply chain 

rather than assuming a power retailer or dominant supplier base.  In addition, our 

proposed coordination mechanism allows simultaneous bi-directional subsidies.  This 

allows our model to be more robust than prior models that require either no-risk suppliers 

or a no-risk assembler. 

There are many ways to extend our proposed mechanism.  First, we can further 

investigate under what kind of conditions the various salvage manipulation options are 

desirable and what benefits they offer.  Second, we can study the interaction and 

competition of more than one retailer or alternate suppliers using this salvage 
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manipulation mechanism.  Third, we always can try to extend our proposed mechanism 

to multiple supplier levels in the supply chain. 
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CHAPTER 4 

COORDINATION OF A TWO-TIER SUPPLY CHAIN WITH 

DEMAND INFORMATION UPDATING 

 

4.1 Introduction and Motivation 

 We investigate a two tier serial supply chain with two players that make 

production decisions in sequence.  The supplier decides his production quantity, then 

produces and stocks the goods.  During the production lead time, some demand 

uncertainty is resolved at the retailer via advanced sales information (e.g. pre-orders).  

The second player, the retailer, then selects how many units to buy from the supplier and 

may incur additional cost to convert the components to finished goods.  Fugate et al. 

(2006) note that often in business each supply chain member attempts to myopically 

optimize without consideration of the full system.  Maximum efficiency can be achieved 

if a central decision maker decides all quantities, but in practice, this is not desirable or 

possible.  As a result, many decentralized systems are run in a manner that results in a 

significant loss in overall efficiency. To overcome this inefficiency it is necessary to 

identify mechanisms such that participants make decisions that achieve centralized 

efficiency. Such mechanisms, when they can be clearly identified, are called supply chain 

coordination contracts (Cachon (2003)).  We contribute to the research by (i) applying a 

single salvage manipulation mechanism, previously utilized in single period settings only, 

to this two period extension, (ii) specifying the parameter effects on the salvage 

manipulation to the retailer, and (iii) investigating the parameter effects of demand 

uncertainty on the disparity between uncoordinated and coordinated decision making. 
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 The existing literature is rich in two tier supply chain coordination models where 

the supplier and retailer view the same demand distribution (stationary demand 

distributions).  Pasternack (1985) models a two-stage supply chain where the 

manufacturer offers retailers a partial credit for all unsold goods.  he proposed a 

coordination mechanism that provides partial credit for unsold goods at the retailer.  

Since then a number of authors have identified other contracts that can achieve 

coordination in supply chains. Buy-back contracts (He et al. (2006)), revenue sharing 

contracts (Dana and Spier (2001), Cachon and Lariviere (2005)), and mid-term returns 

(Taylor (2001)) are examples of coordinating contracts.  A downside to the revenue 

sharing mechanism is that it allows a retailer to “cheat” (Wang et al. ( 2004)) or to exert 

less sales effort (Cachon and Lariviere (2005)).   These contracts were all developed with 

a two-stage serial system (similar to the one in Bollapragada et. al. (2004)) as the supply 

chain setting.      

 Coordination has been extended to two period problems with demand 

information updating.  Gurnani and Tang (1999) allow information updating between the 

first and second production periods where the production cost in the second period is 

random.  Donohue (2000) models two production modes with a contract based on 

wholesale prices and return price for excess stock at the retailer.  Chen et al. (2006) 

modify Donohue’s work to be a single production quantity in period one and a retailer 

procurement decision in period two.  They suggest a contract where the retailer provides 

additional salvage value to the supplier for excess components and the supplier provides 

a partial credit to the retailer for excess stock at the end of the selling season.  We 

thoroughly investigate this scenario and provide insights into the incentives for both 
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parties to participate.  We use a single subsidy mechanism, salvage manipulation as 

introduced in Chapter 3, to coordinate the supply chain.  We use numerical examples to 

illustrate the benefits of coordination under a variety of cost parameters, presales ranges, 

and demand distribution variance resolutions. 

The problem of coordinating multiple independent decision makers in a supply 

chain is widespread in practice.  Commonly, the lead time between stages (tiers) of the 

supply chain is such that additional demand information is learned between decision 

points.  This additional market information can be used to update the demand forecast 

prior to the next decision. 

 

4.2 Model and Notation 

 We focus on a two-stage supply chain for a single selling period situation.  The 

situation is further complicated when the demand distributions viewed by each player are 

not identical.  The supplier makes his production quantity decision with the most demand 

uncertainty.  The retailer resolves some demand uncertainty through pre-sales prior to 

making her purchase quantity decision bounded by the supplier’s stock level.  See Figure 

4.1 for a representative two-tier serial supply chain.  

End
Customer
Demand

RetailerSupplier
 

Figure 4.1:  Representative Two-Tier Serial Supply Chain 
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At both stages of the supply chain value may be added in the form of material and 

labor.  The retailer’s purchase quantity is constrained by the stock at the supplier.  The 

supplier has no constraint on the amount of raw material it can procure or production 

capacity it may utilize.  There are no wealth restrictions in the supply chain, meaning that 

the supplier can produce any quantity it desires and the retailer can procure any quantity 

available (Eeckhoudt (1995)).  The lead time between the supplier and retailer is 

deterministic.  For long lead times, such as a supplier in China shipping a component to a 

company in North America via ocean freight, the lead time variance is very small 

compared to the average lead time.  Therefore, a deterministic lead time based on the 

average lead time does not severely limit the practicality of our model.   We assume (as 

was done in Barnes-Schuster et al. (2002)) that a single product is sold to consumers at a 

fixed market price that is exogenously specified for a single selling season at the retailer.  

Fixed prices are common in practice (e.g. catalog goods) where the price has to be 

published and is not easily altered during the selling season (Emmons and Gilbert 

(1998)).   

 This is an important problem to investigate because we seek to maximize the 

expected total supply chain profit without artificially assuming that a central control 

structure is implemented.  It is neither practical nor desirable to have a single controlling 

entity in a global supply chain environment.  Additionally, demand signals prior to the 

selling season do occur in practice through presales or other market indicators.  A rational 

retailer will adjust her procurement quantity accordingly. 

4.2.1 Notation 
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Sc   Cost to make one unit at the supplier (raw material and production value  

  add) 

Rc   Additional cost to retailer per one unit above supplier costs (value added,  

  landed  cost including shipping)    

Ss   salvage value of a unit at the supplier 

Rs   Salvage value of a unit at the retailer 

β   Goodwill (shortage) cost at the retailer per unit of unmet customer demand 

p   Retailer selling price 

w   Wholesale price (supplier selling price to the retailer per unit)   

Sq   Production quantity at the supplier (decision variable) 

Rq   Retailer component purchase and production quantity (decision variable) 

SL   Production lead time at the supplier 

RL   Production lead time at the retailer 

TL   Transportation lead time between the supplier and the retailer 

x   Random demand prior to information update 

μ   Demand mean prior to information update 

σ   Standard deviation of demand prior to information update 

ex   Random pre-order demand signal during supplier lead time, i.e. “New  

  Market Information” as described in Donohue (2000).   ex  is   

  ordered such that 21
ee xx <  implies )|()|( 21

ee xxGxxG ≥ . 

eμ   Pre-order mean (advanced demand information mean) 
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eσ   Standard deviation of the advanced demand information 

f(.)  pdf/pmf of demand as viewed at the first decision point (supplier tier) 

)|( exxg   pdf/pmf of demand as viewed at the second decision point, given ex  

F(.)  CDF of demand as viewed at the first decision point 

G(.)  CDF of demand as viewed at the second decision point, given ex  

(.)γ   The retailer loss function (i.e. expected shortage) if the demand is more  

  than the production quantity where ∫
∞

−=
Rq

eRR dxxxgqxq )|()()(γ  

4.2.2  Sequence of Events 

At time t= 0: 

1) Supplier makes quantity production decision Sq to maximize his expected profit 

2) Supplier begins production 

3) Retailer may begin collecting advanced demand information 

At time t= SL : 

4) Supplier stocks product at his location 

5) Retailer uses pre-sales information ( ex ) to determine new demand distribution  

6) Retailer makes her quantity procurement decision Rq  in order to maximize her 

expected profit, upper bounded by the supplier’s on hand inventory 

7) Supplier recovers salvage value (if any) for unsold goods 

At time t= TS LL + : 

8) Retailer receives components from supplier and then produces the finished goods 

 ( Rc  represents all costs incurred by retailer beyond wholesale purchase price) 
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At time t RTS LLL ++≥ : 

9) End customer demand is realized 

10) Retailer has goodwill penalty for unmet demand (if any).  Retailer recovers 

salvage value (if any) for unsold products 

 

 

t=0  SLt =    TS LLt +=   RTS LLLt ++≥  

(1)&(2)&(3) (4)&(5)&(6)&(7) (8)   (9)&(10) 

 

4.2.3  Assumptions 

 Once the selling season begins at the retailer, no additional products can be 

produced or shipping in time from the supplier to meet the demand.  Any unmet demand 

is lost, while excess stock is discarded, possibly for a salvage value.   

We assume that the retail price is exogenous.  All products are sold for a single 

price through one retailer.  The retailer sells this one product only and the product’s 

lifecycle extends through the entire horizon.  Therefore, we do not have to explicitly 

account for product decline or new product introduction with possible cannibalization 

effects (Roberts and McEvily (2005)).  In the centralized model, the retailer controls all 

stages of the supply chain and thus the supply chain avoids double marginalization (Lee 

et. al (1997), Spengler (1950)).  The decision makers in the supply chain are rational and 

do not suffer from misperceptions of information flowing through the supply chain 

(Sterman (1987)).   
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Figure 4.2 below shows representative views of end customer demand in time.  

When the supplier makes his production quantity decision, the distribution is widest 

indicating the most uncertainty.  During the production lead time, market information 

such as pre-sales resolves some demand uncertainty.  When the retailer makes her 

procurement decision at SLt = , the mean has been updated and standard deviation 

reduced based upon pre-orders received at the retailer.  The third distribution is the 

narrowest demand distribution seen at the start of the selling season at the retailer, and 

therefore occurs after the decision points in our model.  The retailer has already procured 

and readied the goods for selling prior to this point in time. 

Supplier                                                     Retailer
t=0                              t= t

Demand
realization

RTS LLL ++≥SL  

Figure 4.2:  Demand Distribution Resolution in Time 

Note that the retailer may place her order at time t=0, however this would mean she 

forgoes the opportunity to utilize advance demand information she may receive during 

the supplier production lead time.  The supplier cannot ship goods before SLt =  

regardless.  If 0== TS LL  then the problem compresses to the conventional single 
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period newsvendor with both decisions viewing the same customer demand distribution.  

This simpler problem has been solved in Pasternack (1985) and subsequent research. 

4.3 Supply Chain Operation Scenarios 

 We now analyze the centralized and decentralized control scenarios to illustrate 

how myopic decision making introduces inefficiencies. 

4.3.1  Analysis of the Centralized Control Case 

An example of the demand uncertainly resolution is shown in Figure 4.3 below where 

one of three smaller distributions will be viewed by the retailer based on market 

information during the supplier production lead time.  Retailer distributions may overlap 

and be many in number (not limited to the three as illustrated).  At the supplier’s decision 

point, a wider distribution exists reflecting greater uncertainty about customer demand at 

the retailer. 

End
Customer
Demand

RetailerSupplier

xe=100

xe=50

x
e=0

 

Figure 4.3:  Centralized Control Supply Chain 
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 For centralized control, there is no intermediate selling price (wholesale).  The 

price is simply the selling price to the customer from the retailer.  In addition, the total 

costs are composed of the raw material costs and value added costs to the point where the 

product is in the value chain.    The product may be salvaged at the supplier if it is not 

sent to the retailer for further processing and sold to a customer. 

 The superscript C denotes centralized quantity decisions.  To solve this problem 

we investigate the decisions backwards starting with the optimal second stage quantity 

decision at the retailer, followed by the optimal procurement and production quantity at 

the supplier. 

Second Stage Problem 

Given the sunken production cost at the supplier with C
Sq  on hand, the retailer in the 

second stage wants to maximize the expected profit.  The retailer quantity decision to 

maximize profit depends on (1) below:   

 [ ]C
RR

C
R

C
R

C
SS

C
RR

C
Re

C
R

C
R qcqxqqsxqsqxpExq −−−−+−+=Π ++ )()()(),min()|( β  (1) 

 Equation (1) contains the revenue plus the salvage value for goods not sold in the 

second period and the salvage for supplier goods not sent to the retailer minus the 

goodwill/shortage cost for unmet demand minus the retailer production costs.  The 

maximal expected profit can be determined for the second period decision at the retailer 

from (11).  Let CZ  denote the optimal order quantity for the retailer in period two given 

the advance demand information ex .  We will solve for CZ  below for two possible cases. 

Case 1:  C
S

C qZ <  
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We first assume that the second period order quantity is less than the first period 

production.  Instead of subscript R for retailer, we will use 1 for this first case where the 

second period retailer purchase quantity is less than the first period supplier production 

quantity.  Subsequently, we will use subscript 2 to denote the case where the second 

period purchase quantity is equal to the first period production quantity (when the 

optimal buy quantity is equal or greater than the supplier stock on hand). 
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Taking the first derivative of the expected profit in (4) with respect to quantity CZ  and 

setting it to zero gives: 
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Lemma 4.1:  Given C
S

C qZ < , the expected profit function (4) is concave in the 

retailer quantity CZ  
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Given the first derivative in (5), we can find that the second derivative of the expected 

profit function as shown in (7) below.  Given the assumptions on the parameters, the 

equation will always be negative.  Therefore, the expected profit function curve is 

concave. 
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           □ 

 If the retailer had bought an additional unit from the supplier, the opportunity to 

receive the salvage value at the supplier for that unit is forgone.  Therefore, the profit 

margin of an additional unit sold by the retailer is reduced by the lost salvage value at the 

supplier ( Ss ).  Likewise, if the retailer is over stock an additional unit, this indicates that 

she bought the unit from the supplier, so the opportunity cost of not collecting salvage 

value at the supplier must be added to the overage cost.  Equation (6) is the same as the 

conventional newsvendor formulation with the following cost of underage and cost of 

overage: 

Cost of underage is SR scpu −−+= β  

Cost of overage SRR ssco +−=  
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Case 2:  C
S

C qZ ≥  

When the second period optimal order quantity is equal to or greater than the first period 

production quantity, the salvage term in the retailer profit function and critical ratio drops 
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out as shown below.  The retailer is limited to procure exactly C
Sq   components from the 

supplier. 
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Taking the first derivative of the expected profit in (11) with respect to quantity CZ  and 

setting it to zero gives: 
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For the retailer, the costs of underage and overage from (13) are shown below.  Since the 

retailer is buying all the stock from the supplier in this case, there is no supplier salvage 

term: 

Cost of underage is Rcpu −+= β  

Cost of overage RR sco −=  
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Lemma 4.2:  Given C
S

C qZ ≥ , the expected profit function (11) is concave in the 

retailer quantity CZ  

We now find the second derivative of the expected profit function from the first 

derivative shown in (12).  Given the assumptions on the parameters, the equation will 

always be negative.  Therefore, the expected profit function curve is concave. 
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Therefore, (13) gives the solution to the optimal retailer quantity as shown below: 
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First Stage Problem (Supplier Production Quantity Decision): 

The production cost for C
Sq  units is C

SS qc . 

Because we have accounted for the salvage at the supplier already in the profit realized in 

the second stage, there is only one profit equation for the first stage quantity decision.   

Borrowing the notation from Chen et al. (2006), let 
 
               if the set is non-empty, 

=)( C
Sqk  

  0             otherwise.   
 
 
Figure 4.4 below illustrates what k represents.  Given the possible final distributions (G) 

seen by the retailer given advanced demand information ( ex ), k corresponds to the point 

where the Z quantity from the critical ratio is equal to the supplier on hand ( Sq ). 
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0=ex 25=ex 50=ex

)|( exxg )|( exxg )|( exxg

Z Z Z

SqZ =  

Figure 4.4:  Illustration of k on possible retailer distributions 

This single profit equation combines the two cases from stage two.  The centralized 

control supply chain profit, where the first stage production quantity is C
Sq , can be written 

as: 
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From (4) and (11) we can rewrite (16) as 
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A closed form solution to equation (17) cannot be found easily even for normal 

distributions for end customer demand and presales information, but the optimal stage 

one quantity can be computed via simulation.    

Proposition 4.1:  There exists an optimal profit for stage one, and therefore an 

optimal production quantity in stage one. 
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Proof:  This follows from equation (17)’s concavity.  The first derivative of the terms in 

(17) with respect to Sq  is SRSRS cspqGcs −−+−+− )))((1( β  .  The second derivative 

with respect to Sq  is 0)( <++− Rsp β .                □ 

 During the supplier’s production lead time ( SL ) to make the *
Sq  units, pre-orders 

will be taken at the retailer that resolve some demand uncertainty.  The retailer’s decision 

quantity will be bound above by *
Sq .  Salvage may occur at the supplier for production 

units that the retailer realizes are no longer ideal to purchase given updated demand 

information.  In this situation, the units will be salvaged at the supplier and not incur 

value added costs at the retailer.  Likewise, the retailer may desire more units that 

produced by the supplier.  However, the retailer is bounded above by the units in stock at 

the supplier. 

4.3.1.1 Numerical Example 

 We now demonstrate the effect of applying equations (8) and (15) for a uniform 

demand distribution.  For exposition, we allow the advanced demand signal ex  to take 

two values; 0 (low) or 1 (high).  If ex  is 0 then the end customer demand distribution is 

~U(0,99), while if ex  is 1, the end customer demand distribution is ~U(100,199). 

Let 2,6,20,4,10,0,60 ======= SSRR scwscp β .  Therefore, the critical ratio that 

the retailer will select from (8), is: 
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   (18) 

The supplier, with his knowledge that ex  of 0 and ex  of 1 each have a 50% probability,  

knows that the retailer will want to buy either 85 or 185 units.  The net benefit for another 
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unit for the supplier to produce is positive at 171 units, but turns negative at 172 units.  

This is equivalent to the combined net benefit for the two stages, where the first two 

terms in (19) are the retailer having bought a unit acquired from the supplier and the third 

term represents the units left over for the units beyond 85:  

))(Pr())(Pr())(Pr( SSRSR scnobuyspnotsellccpsell −−−+−−−+ ββ   (19) 

Since 1=ex  has a 50% probability, the retailer will want to buy 185 units with 50% 

probability (for the first bracket), and with 50% probability not buy 185 units (buy 85 

only), leaving the supplier to salvage components (in excess of 85) in the second bracket 

below. 

]%[50]*%71*%29[*%50 S
O

R
O

R
U ccc −−       (20) 

12.0]4%[50]24.4[*%50]4%[50]8*%7144*%29[*%50 =−=−−  

Similarly, for 186 units: 

]%[50]*%72*%28[*%50 S
O

R
O

R
U ccc −−       (21) 

)16.0(]4%[50]68.3[*%50]4%[50]8*%7244*%28[*%50 =−=−−  

In this example, there are two possible advanced demand signals.  For 0=ex , the retailer 

learns that customer demand is ~U(0,99).  Therefore, applying his critical ratio, she buys 

85 of the 171 units available at supplier.   The supplier will salvage the remaining 86 

units.  The centralized profit is $1,349.20.  If 1=ex , the retailer updates the customer 

demand distribution to ~U(100,99).  She wants to buy 185 units from the supplier but can 

procure only 171.  The centralized profit is $6,092.64 with this higher advanced demand 

signal.  Under decentralized control, for the two demand signals, profit would be 

$1,140.40 and $5,940.40 respectively.   
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4.3.2  Decentralized Control Case 

 Under decentralized decision making, the supplier makes his production decision 

based on the lower of (i) his myopically calculated production quantity, (ii) his estimate 

of the retailer’s future purchase quantity. 

 The superscript D denotes decentralized quantity decisions.  Similar to our 

solution method under centralized control, we will solve the second stage problem 

followed by the first stage problem. 

Second Stage Problem (Retailer’s quantity decision): 

 Retailer receives pre-sale orders during the supplier’s production lead time ( SL ).   

Retailer then modifies the end customer demand distribution according to information 

gained from customer demand pre-ordered.  At the end of the supplier production lead 

time, the retailer updates the customer demand distribution and then makes her quantity 

decision per (27) below: 
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Lemma 4.3:  In the decentralized case, the expected profit function (22) is concave in 

the retailer quantity D
Rq  
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The second derivative of (23) is shown below.  Given the assumptions on the parameters, 

the equation will always be negative.  Therefore, the expected profit function curve is 

concave. 
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           □ 

Setting (23) equal to zero, we get  
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Total profit for the retailer is shown below: 
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First Stage Problem (Supplier Production Quantity): 

 Supplier uses the expected distribution of retailer’s problem as his distribution for 

the production quantity decision.  The supplier’s profits follows the same two cases; case 

1 where the retailer buy less than the supplier has on hand (shown in (29)), and case 2 

where the retailer buys all of the supplier stock (shown in (30)) where D
S

D
R qq = . 
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The first derivative of (29) with respect to D
Sq  for case 1 is 
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The first derivative of (30) with respect to D
Sq  for case 2 is 

    SSD
S

D
S csw

q
−+=

∂
Π∂ ][

     (33) 

 

Substituting (32) and (33) into (31) gives: 
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Setting (34) equal to zero and solving it gives the optimal supplier production quantity 

( D
Sq ).   

The total supply chain profit in the decentralized case is simply the sum of (28) and (34).  

This expected profit can be compared to that in (17). 

Proposition 4.2:  D
R

C
R qq ≥  

Proof: This follows from a comparison of the retailer centralized ratio in (8) and (13) for 

the two cases with the decentralized retailer ratio in (26).  Since the ratio is larger under 

centralized control, the retailer purchase quantity is thus larger.  Therefore, the expected 

profit under decentralized control can be no greater than that under centralized control.   

           □ 

4.4 Coordinated Decentralized Supply Chain 

The superscript M denotes salvage manipulation influenced quantity decisions.  Again we 

solve the problem backwards starting with the second stage first. 
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Retailer’s Problem: 

 The retailer may receive pre-orders during the supplier’s production lead time and 

modify the customer demand distribution accordingly.   

Second Stage Problem (Retailer’s buy Quantity Decision): 

 The retailer receives pre-sale orders during the supplier’s production lead time  

( SL ).  The retailer can use this advance demand information to update the end customer 

distribution, then makes her quantity decision per (41) below.  Salvage manipulation (δ ) 

is a promise between the supplier and the retailer.  A positive value signifies that the 

retailer is promising to ease the financial burden of excess stock at the supplier, while a 

negative value indicates that the supplier must promise additional salvage value for 

excess inventory at the retailer.   
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Similar to (28), the retailer’s profit is: 
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M
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Therefore, for the two cases as used in (29) and (30), we have two possible profits as 

shown in (38) and (39): 
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Lemma 4.4:  In the coordinated case, the expected profit function (37) is concave in 

the retailer quantity D
Rq  

The second derivative of (37) is shown below.  Given the assumptions on the parameters, 

the equation will always be negative.  Therefore, the expected profit function is concave. 
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           □ 

Setting (36) equal to zero gives 
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We need to set δ  so that equation (42) is equal to the CSC equation (8). 

   
δβ

β
β

β
+−+

−−+
=

−+
−−+

R

R

R

SR

sp
cwp

sp
scp

    (44)  

Therefore, the salvage manipulation term (retailer promise to supplier) is: 
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Proposition 4.3:  From the retailer’s point of view, the salvage manipulation always 

is a promise from the supplier to the retailer ( 0≤δ ). 
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Proof: This follows from our assumptions regarding the parameters in (45).  The 

denominator is positive and the numerator contains a negative term multiplied by a 

positive term.  The retailer’s critical ratio (8) and (15) under centralized control is always 

greater than the ratio under decentralized control in (26).  Therefore, to achieve optimal 

profits, the retailer must be promised additional salvage for excess units for her to 

procure the quantity optimal for the entire supply chain.  The supplier takes on this extra 

risk to boost the total expected supply chain profit to optimal.  By adjusting wholesale 

price, the supplier may adjust the proportion of total profits he receives compared to the 

retailer under coordination. 

                 □ 

First Stage Problem (for the Supplier Production Quantity): 

 The supplier uses the distribution of the retailer’s problem as his distribution for 

the production quantity decision.   
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Using the two profit cases from (38) and (39) we can assemble the entire profit equation 

as shown below. 
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M
Sq  is solved by setting the first derivative of (47) to zero.  However, since the k term 

depends on the supplier ratio and demand distribution after information updating, (47) 

needs to be solved via iteration.  We give an example of this below.   

 As an illustration of the supplier’s control of profits via the wholesale price, we 

now show a numerical example.  2,5,5,8,10,100 ====== SSRR scscp β .  Note that 
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in every case below, with proper selection of salvage manipulation according to (45) by 

the supplier, the total supply chain profit is optimal.  However, by adjusting his wholesale 

price (w) and the corresponding salvage manipulation, the supplier is able to split the 

total supply chain profits between himself and the retailer in any manner he desires.  This 

profit split is the incentive mechanism for the supplier to participate in a salvage 

manipulation agreement with the retailer.  The retailer’s incentive comes solely from the 

salvage manipulator mechanism.  The Retailer % Profit is 
)47()37(
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Figure 4.5:  Wholesale price affecting profit percentage 

Proposition 4.4:  C
R

D
R qq =  

Proof: The δ term is chosen to make the critical ratio for the retailer under decentralized 

decision making equal to the critical ratio under centralized decision making, therefore 

C
R

D
R qq = .  Given the retailer wants the same quantity, the supplier can produce a quantity 
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such that the total profits achieved under coordination are equivalent to those achieved 

under centralized control.              □ 

 We can examine what effect changes in parameters have on the subsidy offered 

by the supplier to the retailer in order to coordinate the supply chain.  Table 4.1 shows 

how the negativity of the salvage manipulation changes when parameters change in (45).  

Recall that the more negative δ is, the higher the subsidy that the supplier must promise 

to the retailer to achieve coordination.  The supplier provides a promise of δ−  per unit 

left over at the retailer at the end of the selling season. 

Table 4.1:  Subsidy effect when parameters change 

δ negativity
Retail price (p) ↑ ↓
Goodwill (β ) ↑ ↑
Wholesale price (w) ↑ ↑
Retailer production cost (c R ) ↑ ↑
Supplier production cost (c S ) ↑ no effect
Retailer salvage value (s R ) ↑ ↓
Supplier salvage value (s S ) ↑ ↓

Parameter

 

 In the above table 4.1, for example, the higher the retailer selling price p, the less 

negative δ is, thus the supplier promises less salvage manipulation to the retailer.  

Similarly, the higher the retailer goodwill/shortage cost, the more negative δ  is, thus the 

supplier must promise more salvage manipulation to the retailer to coordinate the supply 

chain.   

4.5  Experimental Setup, Computation Results and Managerial Insights 

 In this section, we demonstrate the disparity between coordinated profit and non-

coordinated profit to demonstrate the importance of using a coordination mechanism such 

as our proposed salvage manipulation mechanism.  First, let us assume the following 

simple example: 
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)33.1,5(~ Nxe , effectively giving a range of zero through 10. 

)10*,150(~ exNx  

Also let 5,9,20,5,12,14,85 ======= SSRR scwscp β  

In the centralized setting, the ideal quantity for the supplier to produce ( C
Sq ) is 182 units.  

The retailer will buy the 71% point on whatever the stage two distribution is after 

observing presales ( ex ).  Assume that the advanced demand information is 7=ex . 

By solving (8), (15) and (17), we find the centralized total profit.  With this advanced 

demand information, the retailer would like to buy 189 units, but is limited to buy all 182 

units from the supplier in the centralized and coordinated scenarios.   

Centralized control profit    = $9,996.00  

By solving (28) and (34), we find the decentralized total profit.   

Decentralized control profit    = $8,028.00 total 

       = $6,386.00 retailer 

       = $1,642.00 supplier 

In the decentralized scenario, the retailer buys 158 units from the supplier given the same 

advance demand information.  This is because her local ratio is smaller than under 

centralized decision making.  Our salvage manipulation coordination mechanism resolves 

this discrepancy.  By solving (37) and (47), we find the coordinated total profit. 

Coordinated via Salvage Manipulation Profit = $9,996.00 total 

       = $7,994.00 retailer 

       = $2,002.00 supplier 
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In this example, both players are better off through salvage manipulation even though it 

flows from supplier to retailer only.  However, as shown in Figure 4.5, the supplier may 

manipulate his expected profit via his wholesale selling price to the retailer. 

 To thoroughly test the disparity between coordinated and non-coordinated profits 

based on variance reduction through advanced demand information and also based on the 

myopic retailer ratio let us use the following parameter ranges for simulation.   

Let:  )1000,100(~ Uη , where 
%
1

2 η
σ

σ =  to decrease variance in stage two 

)50,1(~ UcS  

)1,0(~ −SS cUs  

)51,1(~ ++ SS ccUw  

)50,1(~ UcR  

)1,0(~ −RS cUs  

)101,1(~ ++++ RR cwcwUp  

)1,0(~ −pUβ  

 The results for these 10,000 random scenarios was an average decentralized 

supply chain profit loss of $389.72.  The centralized control case and coordination via 

salvage manipulation case both had an average supply chain profit of $4,525.02.  Taking 

the absolute percentage improvement in profit between coordination and decentralized 

decision making (where 0% is equivalence), coordinated achieved a 409% average 

improvement in dollars. This number is skewed to such a large value by some 

coordinated total profits that are small, while the decentralized case had a large negative 
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profit.  Regardless of the magnitude of inefficiency,  decentralized control is clearly not a 

profitable strategy since salvage manipulation can provide such a significant upside. 

 Somewhat counter intuitively, regression shows that as the standard deviation 

reduction for the second decision point (retailer) is increased, the difference between 

coordinated and non-coordinated profits appears random (p-value of .39).  The localized 

retailer critical ratio may be correlated to the disparity between coordinated and non-

coordinated profits.  With a p-value of .07, the disparity decreases as the ratio increases.  

This could be due in part to the reduced quantities available for coordinating when at a 

higher ratio (e.g.., a decentralized retailer ratio of 95%, can only be raised up to 5% more 

via coordination). 

 With advanced demand information, the second stage has better information to 

make procurement and production decisions.  However, the supply chain profit depends 

on the interdependence of the two players because the stage one production quantity 

limits the stage two purchase quantity, and the stage one inventory on hand will 

necessarily be excess if the stage two retailer chooses to purchases less than the full 

amount on hand at the supplier.   

 We have shown that the centralized retailer quantity is always equal to or greater 

than the quantity the retailer will select under decentralized control without incentive.  

The supplier may also want to select less than the optimal quantity under myopic decision 

making and therefore requires an incentive to produce more.  Because the retailer buys 

and owns the stock from the supplier, she assumes the risk of unsold goods she has 

bought.  Therefore, the supplier will need to provide a subsidy to the retailer if he wants 

the retailer to procure the optimal quantity of goods from him.  The supplier transforms 
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the optimal retailer procurement quantity to optimal via the salvage manipulation 

mechanism – a promise to the retailer to provide additional salvage value for unsold 

goods at the end of the selling season.  However, the supplier cannot expect a reduction 

in his risk from a third party promising salvage manipulation to him.  Therefore, for him 

to produce and stock the amount optimal for the entire supply chain, he will manipulate 

the wholesale price such that he receives an appropriate percentage of the total 

coordinated supply chain profits.  This result is similar to that found in Pasternack (1985) 

for a single stage problem. 

4.6 Conclusion and Future Research 

 We have developed a single subsidy parameter (salvage manipulation) to 

coordinate this two stage newsvendor problem.  The subsidy that the supplier promises to 

the retailer for excess stock at the end of the selling season can be calculated by (45).  We 

have also shown the effect that the cost parameters for both players have on the subsidy 

value. 

 Through numerical example and simulation, we have shown the magnitude of 

profit loss through decentralized decision making.  Coordinating the supply chain is 

essential to profit maximization. Although a single owner (centralized decision maker) 

will coordinate this supply chain, however, in practice this is not practical.  Our salvage 

manipulation mechanism allows retention of decentralized decision making, but with 

coordinated supply chain profits. 

 This research can be extended in several important ways; rather than a single 

supplier, multiple component suppliers to an assemble-to-order retailer would enhance 

the problem (as done in Chapter 3).  The supplier could have his own supplier.  Having 
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multiple tiers of suppliers could be accommodated with a series of salvage manipulation 

terms, rather than one as done here.  For a single retailer and n suppliers, n salvage 

manipulation terms would be required.  Other extensions may include having competing 

suppliers, multiple production modes, or multiple retailers with competition. 
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APPENDIX A 

DERIVATIONS FOR CHAPTER 3 OPTIMAL QUANTITY 

 With centralized supply chain control, given selling price p at the retailer, every 

supplier will produce the same quantity iqqi ∀= ,0 .  Total profit is given below: 
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and the expected profit is          
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If the retailer acquires capacity greater than the quantity of items produced at the 

suppliers (qR>m), his expected profit equation below, will change 

           (4) 
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We can now write the total expected profit equation where all suppliers choose the same 

quantity to make, and the retailer purchases an equivalent amount of capacity. 

Recall that μ is the average demand and ∫
∞

−=
0

)()()( 00
q

dxxfqxqγ , therefore, the total 

expected supply chain profit, becomes  

           (5) 

 

To obtain the optimal expected profit for the supply chain, we take its first derivative and 

set it to zero and it gives the critical fractile shown below, where *
0q  is the optimal order 

quantity for the centralized system and )( *
0qF  is its corresponding CDF of the demand. 
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Where the cost of underage/expedite ∑
=

−=
n

i
iu cpC

0
and the cost of 

overage ∑
=

−=
n

i
iio scC

0

)( .  Note, that the situation where the retailer has unlimited 

assembly capacity (no risk) can be modeled by setting 0,0 00 == sc .   

 Under the decentralized control scenario, the retailer chooses the capacity to buy 

prior to the selling season.  This reflects his ability to deliver end-bundles of product to 

the customers.  Additionally, the manufacturer chooses the quantity of units to make and 

stock prior to the selling season.  The retailer may sell up to the minimum of his capacity 

qR and the minimum qi on hand at the manufacturers.  All demand beyond the minimum 

of these quantities is assumed lost.  The manufacturers receive salvage value for unsold 

units at the end of the selling period.  The retailer’s expected profit is shown below where 

qR is the quantity of capacity bought prior to the selling season.  For this ratio, we will 

first assume that the manufacturers make at least qR units so that there is no constraint on 

qR. 

 

           (10) 

 

 

and the expected retailer’s profit is         

           (11) 

 

Taking the partial derivative of the above profit equation with respect to qR and setting it 

to zero allows us to solve for the critical fractile for retailer in the decentralized case. 
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           (12) 

          

           (13) 

Giving the critical fractile below 

           (14) 

 

 The manufacturer has to decide on the quantity of units to make and stock prior to 

the selling season.  The retailer will only pay for the units he needs once demand is 

realized.  The manufacturer may get a salvage value ( )ii cs <  for each unsold unit at the 

end of the selling season.  Manufacturer i’s expected profit is shown below assuming that 

the retailer has sufficient capacity to use any quantity he provides. 

           (15) 

 

and the expected profit for manufacturer i is       

   

           (16) 

 

Taking the partial derivative of the above profit equation with respect to qi and setting it 

to zero allows us to solve for the critical fractile for decentralized case. 

 

           (17) 
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           (18) 

Giving the critical fractile here 

           (19) 

 

We can relate the critical fractile (26) to the cost of overage (Co) and the cost of 

underage/expedite (Cu) since qi, ci, and p are not affected by demand being above or 

below x.   

           (20) 

The critical fractile for each supplier i is shown below.  Since each component costs (ci) 

and salvage cost (si) can be different per supplier, the fractile may be different for each 

supplier. 

           (21) 

 

 For the coordinated case, the manufacturer’s expected profit is shown below.   

           (22) 

 

The expected profit for manufacturer i is       

           (23) 
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Taking the first derivative with respect to qi and setting it to zero gives 

 

           (24) 

           (25) 

 

We can solve the following equality to find the salvage manipulator (δi) for each 

manufacturer. 

 

           (26) 

 

Therefore, the salvage manipulator that supplier i promises to the retailer is: 
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The retailer’s expected profit is shown below.   

           (28) 

 

 

The expected profit for the retailer is        

           (29) 
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Taking the first derivative with respect to q and setting it to zero gives 

 

           (30) 

           

           (31) 

 

Using the critical ratio from the centralized control case as the right hand side of the 

formulation, we get the equality shown below.   

 

           (32) 

 

We can solve the above equation to find the salvage manipulators against the retailer 

capacity.  However, we already know each δi, so we can just sum those to find the net 

payment to manufacturers (may be negative).    
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APPENDIX B 

HOLDING AND PROFIT COMBINATION RESULTS FOR 

VOLUME DISCOUNT FORWARD BUYS 

 

Table B1:  1% Discount Results 

ε = 14% ε = 18% ε = 22%
h = 8% 1,000$              1,000$                 1,000$                 No forward buys/SS

1,276$              1,304$                 1,328$                 Newsvendor SS
1,317$              1,255$                 1,216$                 Golabi
1,436$              1,420$                 1,401$                 Gavirneni
1,572$              1,525$                1,517$                GOGA

h = 18% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,218$              1,253$                 1,277$                 Newsvendor SS
1,108$              1,087$                 1,074$                 Golabi
1,301$              1,310$                 1,326$                 Gavirneni
1,366$              1,365$                1,371$                GOGA

h = 20% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,175$              1,213$                 1,238$                 Newsvendor SS
1,000$              1,000$                 1,000$                 Golabi
1,227$              1,250$                1,265$                Gavirneni
1,227$              1,250$                1,265$                GOGA  
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Table B2:  2% Discount Results 

ε = 14% ε = 18% ε = 22%
h = 8% 1,000$              1,000$                 1,000$                 No forward buys/SS

1,288$              1,314$                 1,336$                 Newsvendor SS
1,386$              1,311$                 1,265$                 Golabi
1,464$              1,439$                 1,415$                 Gavirneni
1,620$              1,561$                1,546$                GOGA

h = 18% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,229$              1,262$                 1,284$                 Newsvendor SS
1,117$              1,094$                 1,079$                 Golabi
1,311$              1,320$                 1,335$                 Gavirneni
1,384$              1,379$                1,384$                GOGA

h = 20% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,185$              1,222$                 1,245$                 Newsvendor SS
1,000$              1,000$                 1,000$                 Golabi
1,195$              1,231$                1,255$                Gavirneni
1,195$              1,231$                1,255$                GOGA  
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Table B3:  5% Discount Results 

ε = 14% ε = 18% ε = 22%
h = 8% 1,000$              1,000$                 1,000$                 No forward buys/SS

1,325$              1,343$                 1,362$                 Newsvendor SS
1,497$              1,395$                 1,331$                 Golabi
1,547$              1,497$                 1,456$                 Gavirneni
1,763$              1,672$                1,635$                GOGA

h = 18% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,262$              1,289$                 1,307$                 Newsvendor SS
1,144$              1,115$                 1,096$                 Golabi
1,383$              1,380$                 1,386$                 Gavirneni
1,479$              1,451$                1,444$                GOGA

h = 20% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,216$              1,247$                 1,267$                 Newsvendor SS
1,000$              1,000$                 1,000$                 Golabi
1,245$              1,272$                1,288$                Gavirneni
1,245$              1,272$                1,288$                GOGA  

 

Table B4:  1% Surcharge Results 

ε = 14% ε = 18% ε = 22%
h = 8% 1,000$              1,000$                 1,000$                 No forward buys/SS

1,252$              1,284$                 1,310$                 Newsvendor SS
1,258$              1,209$                 1,179$                 Golabi
1,332$              1,347$                 1,371$                 Gavirneni
1,545$              1,508$                1,491$                GOGA

h = 18% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,195$              1,234$                 1,261$                 Newsvendor SS
1,090$              1,073$                 1,062$                 Golabi
1,272$              1,291$                 1,307$                 Gavirneni
1,325$              1,329$                1,337$                GOGA

h = 20% 1,000$              1,000$                 1,000$                 No forward buys/SS
1,155$              1,196$                 1,224$                 Newsvendor SS
1,000$              1,000$                 1,000$                 Golabi
1,231$              1,252$                1,267$                Gavirneni
1,231$              1,252$                1,267$                GOGA  
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