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PACS 83.80.Fg – Granular solids
PACS 81.40.Lm – Deformation, plasticity, and creep
PACS 83.60.-a – Material behavior

Abstract –Granular packings under constant shear stress display below the Coulomb limit, a
logarithmic creep dynamics. However the addition of small stress modulations induces a linear
creep regime characterized by an effective viscous response. Using Diffusing Wave Spectroscopy,
we investigate the relation between creep and local plastic events spatial distribution (“hot-spots”)
contributing to the plastic yield. The study is done in the two regimes, i.e. with and without
mechanical activation. The hot-spot dynamics is related to the material effective fluidity. We
show that far from the threshold, a local visco-elastic rheology coupled to an ageing of the fluidity
parameter, is able to render the essential spatio-temporal features of the observed creep dynamics.

Introduction. – Granular packings are often seen as
rigid below a limit corresponding to a critical ratio be-
tween shear stress and normal stress (Coulomb threshold)
[1]. However, the existence of a clear-cut transition be-
tween a solid-like and liquid-like behaviour is currently
strongly challenged [2–5]. In the presence of a shear band
(i.e. a fluid zone dwelling somewhere in the packing) differ-
ent authors brought evidences for mechanically activated
creeping processes taking place in remote regions, below
the Coulomb threshold [2, 3]. This behaviour led to non-
local rheological relations proposed to extend the stan-
dard local constitutive relations for granular flows [6–9].
For granular packing sheared in all of its parts below the
Coulomb limit, dynamical processes leading to a logarith-
mic creep occurs [4, 5, 10]. Interestingly, this creeping dy-
namics can be mapped onto a simple visco-elastic model
initially designed to render the phenomenology of yield
stress fluids displaying ageing in the solid phase [11]. The
model is centred on a dynamical equation for a fluidity pa-
rameter representing an effective visco-elastic relaxation.
This phenomenological parameter was directly related to
the occurrence of mesoscopic plastic events called ”hot
spots” [5]. In the vicinity of the dynamical threshold, these
events combine to provide large scale plastic yields [5,12].
Recently, we have shown that providing a tiny stress mod-
ulation around a nominal shear stress, the creep dynam-

ics changes from a logarithmic to a linear behaviour [13].
The physical interpretation stems from the combination
of memory effects and non-linearities, leading to a ”secu-
lar” accumulation of tiny effects, meaning that the creep
dynamics is revealed at a time scale much larger than the
modulation. We call this behaviour “rectified creep” in the
following as the interpretation of this regime is different
from an Eyring-like activated process. As the ingredients
at the origin of this rectified creep are generic for a large
class of soft glassy materials, this effect should be seen in
other yield stress fluids displaying creep [14–17].

In this paper, using a spatially resolved multiple scat-
tering technique [18], we monitor the spatial distribution
of hot-spots during the two creep regimes. In parallel, a
spatially resolved visco-elastic model is solved assuming a
direct relation between the hot-spots production rate and
the local fluidity value. The numerical solution is com-
pared to the experiments. Interpretation of the results in
the framework of a local rheological model is provided.

Methods. – The experimental set-up is shown in
fig. 1a. It consists in a cylindrical shear cell (Radius
R = 5cm, height H = 10cm) filled with glass beads of
density ρ = 2500 kg/m3 and mean diameter d = 200 µm
(rms polydispersity ∆d = 30 µm). A well defined pack-
ing fraction Φ = 0.605 ± 0.005 is obtaining using an air
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Fig. 1: (a) Experimental set-up: shear is imposed by an hanging mass m connected to the vertical axis; vertical displacement of
the water reservoir allows modulation of the applied stress; a camera collects backscattered light from a He-Ne laser illuminating
the top of the shear cell. (b) Mean strain as a function of time for two experiments performed at σ0 = 1100Pa, and δ = 7.5Pa
, and for two oscillations frequencies: 0.099 Hz (blue line) and 0.168 Hz (green line). The oscillations start at t = 1500s (grey
area). γ̇∞ is the slope of the linear part. (c) Imposed stress during an experiment: stress ramp to reach mean stress, σ0,
constant stress during tw and stress modulation characterized by a frequency fσ and an amplitude δ. (d) Steady state strain
rate, γ̇∞, as a function of mean stress, σ0. Color of the symbol stands for the value of modulation stress rate Rσ = 4δf .

fluidized bed as described by Nguyen et al. [4].

Shear is obtained by applying a torque on a stain-
less steel four-blade vane (radius R0 = 1.27 cm, height
H0 = 2.54 cm) via a mass m suspended from a pulley (see
fig. 1a). Using this “Atwood-machine” technique, mechan-
ical noise inherently coming from any motorized process
can be suppressed. The mass m hangs partially inside
a reservoir filled with water. Thus, by modulating the
Archimedes force, through the up and down motion of the
reservoir sitting on a vertical translation stage, controlled
modulation of the torque applied to the granular packing
can be obtained. A torque probe connected to the vane
axis measures the applied torque T . The vane rotation
angle α is monitored via a transverse arm whose displace-
ment is measured by an induction probe. Torque and dis-
placement signals as well as the vertical translation stage
command are connected to a Labview controller board.
We defined here the mean stress and the mean strain as
σ0 = T

2πR2

0
H0

and γ = αR0

R−R0

respectively.

For a given experiment, the protocol (fig. 1c) is the fol-
lowing (i) stress ramp at constant stress rate (σ̇ = 5 Pa/s)
up to the desired mean stress value σ0; (ii) constant shear
σ0 applied during tw = 1500 s; (iii) modulation of the
stress around σ0 for at least 2 hours. The modulation
consist in triangular oscillations with an amplitude δ and
a frequency fσ. We introduce the modulation stress rate,
Rσ = 4δfσ to characterize the modulation.

Let us note that we used the same set-up and protocol
than [13] and results presented here include those already
presented. The two following points differs from the for-
mer study.

Here, two vane penetration depths were used : h = 5 cm
and 0 cm. During the vane insertion procedure, in order

to prevent large scale disturbances in the packing, pressur-
ized air is gently flown, just below the fluidization thresh-
old providing a packing at the surface bearing almost no
confining pressure. In addition, after the introduction of
the vane, we kept the air flowing during 10 min in or-
der to relax the remaining stress perturbations induced
by the vane insertion. The air flow is switched off before
the start of the experiment. For experiments performed
with the vane near the surface (h = 0 cm), the grains are
confined with a glass plate in order to obtain a confining
pressure at the top of the vane close to the one existing
for experiments done at the insertion height h = 5 cm.
The circular glass plate has a central hole to let the vane
shaft go through and the vertical confinement pressure was
adjusted by placing loads on the glass plate.

In addition to the mechanical measurements, we obtain,
by diffusive wave spectroscopy (DWS) [5, 18, 19], a spa-
tially resolved map of the top surface deformations. DWS
is an interference technique using scattering of coherent
light by strongly diffusive materials. In our case, a He-Ne
laser (λ = 633 nm) illuminates the top of the shear cell.
A camera imaging the surface at a frame rate of 0.1 Hz
collects back-scattered light (fig. 1a). The correlation of
scattered intensities between two successive images, gI , is
computed by zones of 16 × 16 pixels, composing corre-
lation maps of 370 µm resolution. The link between the
value of gI and the corresponding deformations that have
occurred inside the sample were extensively described in
[18,19]. Maximal correlation (gI > 0.99, white on Fig. 2a)
corresponds to an homogeneous deformation below 10−7

and vanishing correlation (black on Fig. 2a) corresponds
to deformations larger than 10−5.
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Experimental results. – Figure 1.b shows typi-
cal deformations for two experiments performed at the
same mean stress (σ0 = 1100Pa) and oscillation ampli-
tude (δ = 7.5Pa) for two oscillation frequencies. These
two experiments were performed at a penetration depth
h = 5cm. During the phase at constant stress, we ob-
serve a slow increase of the deformation, γ(t), similar for
both experiments. This initial dynamics can be fitted by a
logarithmic curve as in [4]. Then, when submitted to oscil-
lations, the system transits to a linear creep regime char-
acterized by a constant mean strain rate, γ̇∞, which in-
creases with the oscillation frequency. This sub-threshold
fluidization by mechanical perturbation has been already
reported and interpreted in [13] as a secular drift process.
Figure 1.d shows the value of the steady state strain rate,
γ̇∞, for all the experiments performed at h = 5cm and at
various σ0 and Rσ = 4δfσ. Though the data are dispersed,
γ̇∞ clearly increases with σ0 and Rσ as predicted by [13]
as long as σ0 is below ∼ 1500Pa. For higher stresses,
γ̇∞ keeps increasing with σ0 but the influence of Rσ re-
mains unclear. For these stress values around the stress
dynamical threshold (see [4]), the mean shear rate γ̇∞ in-
deed becomes very large, however the experiments display
a great amount of sensitivity to preparation, which makes
measurements in this limit quite difficult.
Several experiments performed at either h = 0 or 5 cm

were coupled to the DWS technique. Fig. 2a represents
a typical map of the top surface deformation: in average,
the correlation, gI , is larger than 0.99 (white) implying
a low and homogeneous deformation except over small
areas (black spots), called “hot spots” in [5], which are
characterized by relatively large plastic deformations. Fig-
ures 2b-d show the mean strain, γ(t) and the cumulative
number of “hot spots”, Nc(t), over the surface of interest,
S, as a function of time for three experiments performed
at the same mean stress, σ0 = 1000Pa. For the experi-
ment shown in Fig. 2c no modulation is performed unlike
the ones shown in Fig. 2b and d. Experiments b and d
differ in the depth of the vane, respectively h = 5 cm and
h = 0 cm. One can note that the “hot-spots” are present
at the top surface even when the vane is buried inside the
packing (fig. 2b) which indicates that the localized relax-
ation process is spreading over the whole material.
Fig. 3a shows Nc(t) normalized by S/σ0 as a function

the global plastic deformation for experiments performed
at the same stress for either h = 0 cm (green) or h = 5 cm
(orange). Without modulation (fine lines in Fig. 3.a), the
proportionality between Nc(t) and γ(t) observed already
in [5] is recovered, with a smaller slope in the case of
h = 5 cm (fine orange line) compared to the case h = 0 cm
(fine green line). When the stress modulation is turned on,
we also obtain, after a transient regime, a proportional re-
lationship betweenNc(t) and γ(t) but with a smaller slope.
This proportionnality shows that the macroscopic plas-
tic deformation is the result of the accumulation of local
plastic events. The coefficient of proportionality depends
thus on the value of h but also on the regimes (relaxation
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Fig. 2: (a) Typical correlation map of the top surface. Two
typical “hot spots” are visible. The shaded part is not used
in the analysis. (b-d) Comparison of the mean strain, γ(t)
(blue) and the cumulative number of spots, Nc(t) (red) as a
function of time for three experiments performed at the same
mean stress, σ0 = 1000Pa without (b) or with (c-d) stress
modulation (δ = 10Pa, fσ = 0.1Hz). Experiments (c) and
(d) are performed at h = 0 cm, experiment (b) at h = 5 cm.
The grey strip shows when the modulation is on. (e)-(f) Mean
strain, γ(t) (blue) and cumulative fluidity, Nc(t) (red) obtained
by the numerical resolution of eqs. (4-5) taking into account the
Couette geometry of the system, without (e) and with (f) stress
modulation around the same mean stress. Parameters : a = 1,
σ0 = 0.8σD , f0 = 1, modulation: δ = 0.005σD and fσ = 0.2.

or rectified-regime). For the latter, the “hot-spots” pro-
duction rate inducing similar plastic deformations when
compared to the relaxation-regime values, is significantly
smaller (Fig. 3a). The change of the slope is visible in both
experiments at h = 0 and 5 cm. Finally, two experiments
with stress modulation for each depth are superimposed,
showing the reproducibility of the measurements.

Rheological model. – The observed linear creep was
interpreted in [13] as a secular drift, i.e. the accumula-
tion of tiny effects over a very long time. The ingredi-
ents necessary for this sub-threshold fluidization by me-
chanical fluctuations to take place are the combination of
shear rejuvenation and memory effect. Such ingredients
are taken into account in the simplest mathematical way
in a model put forwards by Derec et al. [11], to render
the macroscopic phenomenology of aging complex fluids.
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Fig. 3: Normalized cumulative number of hot-spots as a func-
tion of the mean strain for 5 different experiments performed
at σ0 = 1000Pa. Green lines: h = 0cm, orange lines: h = 5cm.
Fine line: no modulation, thick lines: with modulation. Dash
lines are guide to the eye. (b) Corresponding graph obtained
by numerical resolution of eq. (4-5) taking into account the
geometry of the system. Same parameters as Fig 2.e-f.

This model was used successfully to interpret experimen-
tal strain relaxation curves and rectified creep in previous
works [4, 13, 20]. A central parameter in this model is a
fluidity variable f representing the rate of visco-elastic re-
laxation for the shear stress σ :

σ̇ = Gγ̇ − fσ (1)

G is the shear elastic modulus. The rheological complex-
ity stems from the dynamical equation undertaken by the
fluidity variable. Many forms were suggested by Derec et
al. [11], but in the context of granular creeping flow the
experiment results point on a simple expression :

ḟ = −af2 + rγ̇2 (2)

where dimensionless parameters a and r represent respec-
tively ageing and shear-induced rejuvenation processes.
This model naturally induces a logarithmic relaxation un-
der constant shear and also a dynamical threshold σD =
G
√

a/r. In the context of granular matter this thresh-
old value should be proportional to the confining pressure
to get a Coulomb dynamical friction coefficient. Experi-
ments [4] seems to indicate that under large shear, major
reorganizations may occur in the packing and one should
not consider anymore a and r as stress independent pa-
rameters. Recently, Pons et al. [13] have shown theoret-
ically that the threshold of a visco-elastic fluid describes
by this model will be destroyed by vanishingly small stress
fluctuations around a bias by a secular effect. Conse-
quently, below the threshold (σ0 < σD), an effective vis-
cosity is expected of the form:

η =
GσD

ωδ

√

2

(

1−
σ2
0

σ2
D

)

. (3)

In the following, we will consider the present model in
its simple form (a and r constant) to see if at least qualita-
tively the salient experimental outcomes can be recovered.

The rheological equations (1) and (2) present rescaling
parameters which are for stress σD = G

√

a/r, for de-
formation γ0 = σD/G, for fluidity Rσ/σD and for time
σD/Rσ. Then the dimensionless equations are as follows

σ̇ = γ̇ − fσ (4)

ḟ = −a(f2 − γ̇2) (5)

Note that in this dimensionless representation the only re-
maining material parameter is a and the only control pa-
rameters describing the stress are the dimensionless mean
stress and amplitude: σ0/σD and δ/σD. This system of
equations can then be solved numerically to reproduce the
experimental protocol. In presence of stress modulation,
the resulting plastic deformation exhibits a transient log-
arithmic response followed by a linear regime (Fig. 2f).
As we established before [13], this is qualitatively what
is observed experimentally. The model allows thus to re-
cover the general experimental behaviour as far as global
deformation is concerned.
Several works have shown experimentally a direct re-

lation between the rate of plastic events and the fluidity
variable f [5, 21]. However, it is not clear a priori that
the mechanical driving would generate the same modes
of plastic relaxation in the packing in the presence of the
mechanical perturbations. And indeed, in fig. 3a, one can
identify a systematic change of slope for the relation be-
tween the cumulated number of ”hot-spots” and the mean
strain in the presence of stress modulation. This exper-
imental fact leads to a central question on the relation
between the rate of “hot spots” production and the fluid-
ity parameter. This is the central object of the incoming
discuccion.

Spatial response. – Provided the assumption of a
constant linear relationship between the rate of hot-spots
production and the fluidity, the local and global distribu-
tion of hot-spot events can be computed. First, the radial
heterogeneity of the stress field is taken into account in
the model, i.e. σ(r) = σ(R0)R

2
0/r

2. However, here we do
not account for the vertical heterogeneities as for example
would be the case for experiments with the vane buried.
Eqs. (4) and (5) are then integrated numerically for

each r giving local values of the fluidity f(r) and strain
γ(r). Because of the cylindrical geometry, the total rate
of hot-spots occurrence is then expected to be propor-

tional to
∫ R

R0

f(r)rdr. The cumulated number of spot

Nc(t) can then be obtained numerically (within a mul-
tiplicative constant) by integrating this rate over time:

Nc(t) =
∫ t

0

∫ R

R0

f(τ, r)rdτdr. In parallel, γ(r) is integrated

over r in order to obtain the rotation angle α(t) of the
vane. Thus we can obtained numerically the mean strain
γ(t) = α(t)R0/(R−R0) corresponding to the one experi-
mentally measured. Those two quantities are compared to
the dimensionless time in Fig. 2e-f. In the case of Fig. 2e
no stress modulation is considered and we recover the be-
haviour of the model when no spatial dependence is taken
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into account [4, 5]. In the case of Fig. 2f, stress modu-
lation are imposed from t = 0 and in this last case we
observe a change of creep regime after a transient regime,
in agreement with the experimental graphs of Fig. 2b and
d. Finally, Fig. 3b shows the relationship between Nc(t)
and γ(t) obtained numerically in each case. This relation-
ship is the same as the one observed in experiments: the
integral of the fluidity is proportional to the plastic defor-
mation and for the rectified creep, a strong reduction of
the slope is observed when the transient is terminated.
Therefore, the outcome of the simulations is qualita-

tively very similar to the experimental results. In par-
ticular, the change of slope in Fig. 3a is reproduced in
the rheological model when the heterogeneity of the stress
field due to the geometry is taken into account. Micro-
scopically, this reduction originates from a difference in
spatial distribution of “hot spots” for the two cases as we
show numerically and experimentally in Fig. 4. Fig. 4a
(resp. b) shows the radial evolution of the fluidity pa-
rameter without (resp. with) stress modulation at dif-
ferent time of the numerical integration. For the simple
relaxation regime (logarithmic creep), the fluidity is quite
homogeneous across the cell and thus rather independent
of the local stress. The fluidity decreases uniformly with
time, reflecting the decrease of the strain rate. On the
contrary, for the rectified regime (Fig. 4b), the fluidity is
quite different close or further away from the centre. It
reaches rapidly a permanent regime with a high density
value close to the centre while far from it, the density be-
haviour is close to the one observed without modulation.
The radial distribution of hot-spots production can also

be obtained experimentally and and are shown in Fig. 4c
(without modulations) and d (with modulations). The
different curves correspond to the time evolution of the
density. The density is calculated by averaging the num-
ber of “hot spots” over a time windows of 5000s and for
a 5mm wide annulus. We first observe that this density
decreases with time for both experiments. Then, although
the data are quite noisy due to the small statistics, it seems
that this radial density stays homogeneous for the simple
relaxation (Fig. 4c) while the apparition of “hot spots” de-
creases more rapidly far from the center of the cell during
the rectified creep (Fig. 4d), which qualitatively corrobo-
rates the outcome of the numerical measurements.

Discussion. – To interpret this difference of be-
haviour in the radial spatial repartition of fluidity in the
two regimes, we use the analytical results obtained from
the perturbative analysis done in [13], but here, we explic-
itly take into account the spatial dependence of the stress.
In absence of modulation, the fluidity is mostly governed
by its initial value f0 [4]:

f(r, t) =
f0

1 + af0

(

1− σ2

0
(r)

σ2

D

)

t
≈

f0
1 + af0t

(6)

Consequently, when σ0 ≪ σD, the non-rectified fluidity
is independent of the radial position, a result recovered
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Fig. 4: (a-b) Numerical resolution of eq. (4-5) taking into ac-
count the geometry of the system: evolution of the radial spa-
tial fluidity over time whitout and with stress modulation, re-
spectively. (c-d) Experimental results displaying the evolution
of the radial hot spots density over time (experiments of Fig. 2c
and d respectively). The vertical axis unit is arbitrary but
identical for both experiments. (e) Schematic of the mechani-
cal response in absence of modulation: the fluidity is spatially
uniform in the cell (pink uniform background); the stress and
the strain have the same spatial dependence. (f) Rectified case:
the fluidity is non uniform and decreases as ∝ 1/r2.

both in numerical solution (Fig. 4a) and in experiment
(Fig. 4c). Yet, it uniformly slowly decreases with time.

We thus obtain γ̇(r, t) = f(t)σ0(r)
G

∝ 1/r2. This case is
schematically represented in Fig. 4e.
On the other hand, in the rectified case, as recalled in

the description of the rheological model (eq. 3), the local
stationary value f∗(r) of the fluidity is for σ0 ≪ σD [13]:

f∗(r) =
ωδ(R0)

σD

√
2

R2
0

r2
, (7)

If we suppose that a stationary solution is reached across
the cell, we obtain for the local strain rate γ̇(r) =
f∗(r)σ0(r)

G
∝ 1/r4. In this case, represented in Fig. 4f,

the strain is highly localized in the vicinity of the blades.
Because of the strong decrease of the fluidity with r in

the rectified case, the total activity in the cell for a given
mean strain across the cell is smaller in the case of Fig. 4f
than of Fig. 4e. This is the origin of the decrease of the
slope in Fig 3 in the rectified regime. Note that further
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refinement of the discussion taking into account that the
stationary solution, in the rectified case, is not reached at
large r does not change the picture. The duration of the
transients are nevertheless of major importance in such
experiments and it can be problematic to conclude on the
nature of the creep. Indeed, the time for the transient to
reach the stationary solution f∗ is typically 1/f∗ which di-
verges when the targeted fluidity decreases. Actually, the
distinction between a rectified creep of very small f∗ and a
logarithmic creep could be pointless experimentally. The
time to reach the stationary solution may become increas-
ingly long while environmental background noise, always
presents in practice, may eventually hinder the latter.

Conclusion. – In this report, we studied the creep re-
sponse of a granular packing below the Coulomb fluidiza-
tion threshold, both in the case of a logarithmic relaxation
and for the mechanically rectified regime leading to a lin-
ear creep. In both cases, the global plastic deformation
was monitored in parallel with the production rate of local
plastic events. The experimental results were compared
to the outcome of a simple visco-elastic model, solved nu-
merically in the cylindrical geometry, which associates the
local fluidity parameter to a rate of hot-spots production.
Even though this model is quite simple, the salient ex-
perimental features were reproduced semi-quantitatively.
First the effective linear relation between the cumulated
number of hot-spots and the plastic deformation is recov-
ered with a larger slope in the transient as compared to
the rectified regime. Second, the qualitative features of the
spatial distribution of hot spots are recovered in the model
in both regimes: a weak radial dependence and an almost
uniform decrease with time in the logarithmic creep case;
and in the case of a linear creep, strong spatial dependence
of the stationary solution close to the inner cylinder.

Interestingly, at this point, we do not need any non-
local model to reproduce those generic experimental fea-
tures. Heterogeneities of the stress field need to be taken
into account to fully understand the data but not any
spatial diffusion of the fluidity which is currently taken
into account in more sophisticated fluidity models [6–9].
However, it is important to note that this result does not
necessarily exclude the generic presence of non-local terms
in the rheological picture. It may simply mean that in the
present experiments the non-local terms would not con-
tribute significantly to the rheology. The experiments were
performed at two different depths of the shearing vane, in
the bulk and at the surface with an over-load inducing an
equivalent confining ptressure. Hot-spots were observed in
both configurations but the slope between the cumulated
number of hot-spots and the plastic deformation differs.
A further step to infirm or confirm that a local model is
sufficient for the interpretation of all our data would be to
test if this change of slope can be recovered when taking
into account the full stress spatial distribution when the
vane is buried or not. Indeed, the presence of hot-spots
in the case when the vane is buried may be indicative of

the spatial propagation of the plastic activity through the
material bulk and thus of non-locality.
Finally, we must underline that most of the present re-

sults were obtained rather far from the dynamical thresh-
old, where essentially, we could individualize the hot-spot
apparition. Closer to the threshold and possibly due to
spatial coupling and avalanching events, it would be inter-
esting to see if quantitatively the simple local description
still holds.
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